US 20060036755A1

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2006/0036755 Al

Abdullah et al.

43) Pub. Date: Feb. 16, 2006

(54

(76)

@D
(22

(60)

G
(52)

META-PROTOCOL

Inventors: Ibrahim S. Abdullah, Jeddah (SA);
Daniel A. Menasce, Cabin John, MD
(US)

Correspondence Address:

GEORGE MASON UNIVERSITY
OFFICE OF TECHNOLOGY TRANSFER,
MSN 5G5

4400 UNIVERSITY DRIVE

FAIRFAX, VA 22030 (US)

Appl. No.: 11/122,099
Filed: May 5, 2005

Related U.S. Application Data

Provisional application No. 60/568,664, filed on May
7, 2004.

Publication Classification

(7) ABSTRACT

The present invention teaches a multi-layer protocol man-
agement system and method, embeddable in a tangible
computer-readable medium, that allow for on-the-fly
machine-readable protocol discovery and negotiation, dis-
tribution of protocol specifications and components, auto-
matic implementation of protocols from corresponding
machine-readable protocol specifications, and correspond-
ing execution of automatically generated implementations.
Automatic protocol implementation may be accomplished
using eXtensible Markup Language (XML)-related tech-
nologies and Component-based Software Engineering
(CBSE). The present invention is also a tangible computer-
readable medium encoded with instructions capable of gen-
erating, as well as capable of being designed to generate,
protocol specifications. A program of instructions, called
XML-based protocol specification language (XPSL), may
be used for creating a specification of a communication
protocol (such as high-level specifications of a protocol) in
a machine readable form. Using CBSE principles, XPSL
may also be used for allowing high-level specifications of a
protocol, expressible in Finite State Machines (FSM). An
eXtensible Stylesheet Language for Transformations
(XSLT) may be used to transform specification description
into actual code. XSLT stylesheets can be designed to

Int. CL produce code in different programming languages (e.g., C++
GO6F 15/16 (2006.01) or Java). CBSE may be used to build a set of operations
US. Clo s 709/230 needed by a protocol.
Meta-Protocol Framework
Negotiation Layer
| Negotiation Mechanism |
£ t t 4>
Security Security
Measure Measure
Distribution
A V.4 t L_’ Layer J i AV.4
Implementation . " _ | Implementation
N Delivery
Layer v |1 Mechanism Layer
Machine- > ray Machine-
Readable Readable
Protocol L Protocol
Specification S kbl Specification
Converter earchable ja N Converter
<:> Repository {¥ v
4 7y System <>
\ 4 I
Security Security
Measure Measure
F 3 (L $J F 3
< v T__., Trusted 37 4_1 v U
Execution Layer ,E arty Execution Layer
Executable | | Executable
Code System _L| Code System
Manager A — — - ‘; Manager
- ————— — — —

Patent Application Publication Feb. 16,2006 Sheet 1 of 67 US 2006/0036755 A1

Protocol Management System

Negbtiation Executable Code
Mechanism System Manager
Distribution .
Mechanism Security Measure
Searchable Repository Layered
System Architecture

Machine-Readable
Protocol Specification
Transformer

FIG. 1

Patent Application Publication Feb. 16,2006 Sheet 2 of 67 US 2006/0036755 A1

) Negotiation Layer
Distribution Layer
Implementation Implementation
Layer Layer
Trusted 3" Party
I/ >
Execution Layer A e — _' L Execution Layer
N— — — ——— — —

FIG. 2

Patent Application Publication Feb. 16,2006 Sheet 3 of 67 US 2006/0036755 A1

Meta-Protocol Framework
Negotiation Layer
| Negotiation Mechanism |
'S t t L)
Security Security
Measure Measure
t T Distribution T t
I l]/ 4’ Layer ‘ I li p
mplementation : mplementation
Delivery
L .
ayer C:> Mechanism C:D Layer
Machine- <S> Machine-
Readable Readable
Protocol Protocol
Specification Specification
Converter <:> Searcl}able A N Converter
Repository | v
VA i [—b System <>
Security Security
Measure Measure
1u1
) t L_., Trusted 3 qJ I 1
Execution Layer ,E arty Execution Layer
Executable I | Executable
Code System _J__I Code System
Manager A — — —_— = = Manager
= — e e e —— o ——

FIG. 3

Patent Application Publication Feb. 16,2006 Sheet 4 of 67 US 2006/0036755 A1

¢ Start)

¥

Agree upon protocol specification

v

Retrieve and/or distribute protocol specification and any missing component

v

Convert protocol specification and any missing component into executable
code

|

Load and/or run executable code

v

C End)
FIG. 4a

Tangible Computer-Readable Medium
C Start J

Agree upon protocol specification

Retrieve and/or distribute protocol specilication and any missing

gomlf(fnent

Convert protocol specification and any missing component into
executable code

v

Load and/or run executable code

C End _)

FIG. 4b

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 5 of 67

qs 'Sld

puy

2P0 IQEINIIXI
unJa .Io/pue peo|

#

IPo? I[qBINIIXI
ojul Juduodwiod guissiw
Aue pue uonedyRIds
‘[03030.4d 313AU0))

1 '

eg 'Old

puy

3P0 IqEBINIIXI
unt 10/pue peo|

ﬁ

IPOI I[qEINIIXI
0yur yuduodwod Suissnu
Aue pue uonedyIds
[03030ad J13AU0))

#

y

duodwod surssyu UIJ)SAS
Aue pue uonedIYAds |[g¢=p| JudswIgeuew
[030304d 3.1038 1931044

yuduodwio) SuISSI
Aue pue uonedyAds
[03030ad 31038

<P

WII)SAS
juwdeus
IREITE |

* A

juduodwod Juissiw Aue

pue uonedy133ds j05030.4d |-
INQLISIP JO/PUR ALY

+

uoneBIYINAAS
[050304d uodn 3348y

A wmip3N
J[qepedy-1andwo)) Iqidue |,

D

*

$

juduodwod Suissiw Aue
pue uonedyIds j030)0ad
ANQLISIP J0/PUE ALY

——————]

1

uoedyIAds

[03030.4d uodn 3.8y

@)

Patent Application Publication Feb. 16,2006 Sheet 6 of 67 US 2006/0036755 A1

Bit: 0 8 16 24 31
Initiator Cookie
Responder Cookie
Next | Exchange
Payload | MjVer | MnVer & Flags
Type '
Type
Message ID
Total Length (Header + Payloads)
ISAKMP Main Header
Next
Payload Reserved Payload Length
Type '

Payload Header

FIG. 6

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 7 of 67

4. ‘Old

Japuodsay

yiny 1di
A+

1o}y

el ‘dld

peojAed uoneonuayIne Yy

pt 1apuodsar “pt 1otentur 1y Il
peojAed a3ueyoxa A3 T
UOIJRIDOSSE AJLINJAS VS
1opuodsay ¥

oreniy |

TOTIEION

dBuBYOXd YIne pue pr ‘A9 Yy Iqr ‘AN [<A
d3ueyoxs yine pue pr ‘Aoy] gy 1] Y ¥ < [

¥ 4q 1esodoud e 199[2¢ NUOU YS [<Y
uonenodau y§ [-aseyd uidag NUOU ‘YS Y < [

Patent Application Publication Feb. 16,2006 Sheet 8 of 67 US 2006/0036755 A1

Bit: 0 8 16 24 31
Initiator Cookie = MDS [IP source + IP dist + UDP source
port + UDP dist port + local secret]
Responder Cookie = null
MjVer | MnVer Proposal ISAKMP
Proposal # 1 =1 =5 Exchange Flags Header
Message ID = 100
Total Length = 32 + 256 + 512 = 800 bits
Protocol L
Location Reserved Payload Size = 256
Proto. ID = . . Proposal
Proposal # 1 500 MjVer MinVer Payload
Protocol Name = Protocol X
Null Reserved Payload Size = 512)
Location
. . Payload
Protocol Location = http://www.xyz.com/dirl

FIG. 8

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 9 of 67

aseyoed

<

SHUWAIINDIY

6 'Old
MV Jold
)
sdueaqi|
pod
C———
SIouwea80.4J
uoneyumIwWIduwy
_ D <+
jvovjuad
® © ©

(DAY +39)
uoneIIds

!
— i

#

INSA

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 10 of 67

2po)

IYundoxy

SoLIBIqQIT]
po)

Y

Jwpuny

+
Jdwo)

0L Old

SIWWRISOI]

uonedYdg
juduodwo))

390D

CAR TN

AUSSIIVA

LSTIX

SIUAWAIIN DAY

ul $9dg

juevjuaqd

JusIsaq
juovjua g

BUYOS

SELTTRETAVIN

"TAX

<1l
|
[

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 11 of 67

WId)SASNS
JIART UoNNIIXY

il "Old

uRJSAsqNg
JaAe] uoneyuduRdwy

un)sAsqng
JaAeT uonnquisi(q

wa)sAsqng
J3AeY uonenosaIN

>

ERRIAREILLY |

AISISAY

dpo)) 10d0304g
SNBIYNII))
SAIY] 219§
sjmuodwio))
$33dg 020304
oJuf [ENUIPILD)
oJuj] uoneInsuo))
ISIT SSANY

Sayuyvle(]

1Idwo))

J0ss3doad JISX

J10)BIAUIL) IPO))

AIOURIA] dyde)

J9[[013U0))

(SDd) WIISAS [0.13U0)) 020304

Interfaces

SIIALI(] YI0MIIN

UIR)SAS sunerRdQ

suoned[ddy

SA9N[|

Patent Application Publication Feb. 16,2006 Sheet 12 of 67 US 2006/0036755 A1
) Permissions
User ID Object ID R W B D
Bob DESEncrypt 1 1 1 0
Smith Protocol X 0 0 1 0
Alice Protocol_S[;ec_Y 1 0 1 1
* * 1]o]1]o

FIG. 12

Patent Application Publication Feb. 16,2006 Sheet 13 of 67 US 2006/0036755 A1

Users _
- UserID: Integer UserGroups
- Name: String , -
- GroupID: Integer| * Belong to » |- GrouplD: I nteger
. »1- Name: String
- Contact: String - Description: Strin
- Address: String p0%: g
- Tel: Integer
1
=)
z
2
0..%
AccessPermission 4
- ComponentID: Integer SysComponents
- GrouplD: Integer - ComponentID: Integer
- Read: Boolean 1.* Described by 1 | Name: String
- Write: Boolean - GrouplD: Integer
- Execute: Boolean - Location: String
- Delete: Boolean

FIG. 13

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 14 of 67

b1 'Old
AN 010101000 | g Auedwo)) Julupy sdwod\ oy zAX mmm\\:dpy | yusuodwo))
500Z-6Z-0T ‘00:6| TOT00T010 | V Auedwo) | juimpy $12[q0SDd\:D X [0303014
uoneaidxy aumjeusiq | 1apiaoag | Aq paadisiday uonedIo | ar 121qo

Users

- UserID: Integer

- Name: String

- GrouplID: Integer
- Contact: String

- Address: String

- Public Key: Byte

[u—y

JIISISNN

*

=

y

Registry

- ComponentID: Integer
|- UserID: Integer
- Date: Date

1..*

Patent Application Publication Feb. 16,2006 Sheet 15 of 67

Descri.bed by

US 2006/0036755 A1

Providers

- ProviderID: Integer
- Name: String

- Address: String

- Public Key: Byte

suMQ

0..*

Y

SysComponents

- Expiration: Date
- Rig-by: String
- Signature: Byte

FIG. 15

- ComponentID: Integer
- Name: String

- GrouplD: Integer

- Location: String

Cache Memory Search

Negotiation

(Call for protocol executiOID

v

Search for protocol in
cache memory

% [Not Found]

[Found]

A 4

(Execute the protocol)(—

Patent Application Publication Feb. 16,2006 Sheet 16 of 67

Local Search

Search for protocol
specification locally

[Not Found]

Remote Search

Search for protocol
specification on
remote site

[Found] [Not Found

Search for protocol
component locally

’ é [Not Found]

[Found]

A 4

Search for protocol
component on
remote site

[Found]

(XSLT processing)«

A 4

—(Compilation)

[Not Found]

@eport Error)(—

FIG. 16

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 17 of 67 US 2006/0036755 A1

Client Process Server Process

(A) (B)

timeout

-{A,Na}Kb

FIG. 17

Patent Application Publication Feb. 16,2006 Sheet 18 of 67 US 2006/0036755 A1

FSM
@ ® © o ¢
> RFC , Protocol .
Implementation
Protocol Programmers
" Design
Processor ————
Code _
Libraries
~—

Prior Art

FIG. 18

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 19 of 67

3Ppo)

Y BInIIX

—

6l ‘OId

SJWweIs04J

—Mé

N\

|
-l

)
saLIvAqU /u\./
Ipo)
uoneIIAAS
juduodwo))
uon UMW du| 1SdX
] 10553200 I'ISX =] u1$33dg
|[vvupLad
|Juovpvag
1IYSIAIS RUAYIS
LTSX juovyvag

JIUBISaq
jvovyvad

ﬁ

WS4

Patent Application Publication Feb. 16,2006 Sheet 20 of 67 US 2006/0036755 A1

1
<protocol >

—— <pame >
— <object>*

—— <name>

L <field>— [type]
| <instance>"

| <name>'

— <ty pe>1

—— <initial-values >!
- <action>"
— <first—state>1
SR <state>1" 1

<name >
——— <arg >*—[name]
<type>1
——— <object>"
—— <name>

| <field>— [type]

L <instance>
| <name>"
— <type>1
—— <initial-values>

*

. 1.
——— <action> 0.1
L— <moveto>]
<expression >
1.*
<case> [test]
*
<action>

1
<moveto>0

.
<expression >
1.*
<case> [test]
. *
<action>

FIG. 20

Patent Application Publication Feb. 16,2006 Sheet 21 of 67 US 2006/0036755 A1

Start

Using a First Element

Adding a Second Element

Adding a Third Element

End

FIG. 21

Patent Application Publication Feb. 16,2006 Sheet 22 of 67 US 2006/0036755 A1

<state> <pame>state3 </name>
<Arg NAINes *SS“‘;« aW?SesﬁonStaieﬁ:ff}‘pe’ <larg>
<arg name="e"> |
<t§'pf}€0mp13hﬁﬁcrmge<; typess </arg>
<action>>CompLib.Cos sg
{SS.Nb,’ ChentComm){!actm}
<action=CompLib.Encrypt (“ClientConfirm.txt”,
“ClientConfirm.enc™, “myPubl”") <faction>
<actien>CompLib. Smi:»isg{”?) e:fa;ctmn}
<moveto> <expression>>e.code</expression>
< Case t&gr‘“l“:as'accesﬁﬁﬂ,md{fcase}
<case test="2">EmorState(e)</case>
</moveto>
</state>

FIG. 22

Patent Application Publication Feb. 16,2006 Sheet 23 of 67 US 2006/0036755 A1

G

Using a First Element

1)

Adding a Second Element

y

Addinf_; a Third Element

\ 4
Adding a Fourth Element

v

Adding a Fifth Element

y

Adding_g a Sixth Element

|

Adding a Seventh Element

|

Adding an Eighth Element

Adding a Ninth Element

|

Adding a Tenth Element

|

Addingr an Eleventh Flement

End

FIG. 23

Patent Application Publication Feb. 16,2006 Sheet 24 of 67 US 2006/0036755 A1

< object> <name>SessionState< /name:
< field F}@E‘- Shing i tfjﬁtld}
< field type=""int" ~»Na</field>
<field iype—« ‘it = Nb</feld >
<field type="key" >PrivateKey< field>
< field type="key " >Publickey< Meld>
</lobject>

FIG. 24

Patent Application Publication Feb. 16,2006 Sheet 25 of 67 US 2006/0036755 A1

FIG. 25

Patent Application Publication Feb. 16,2006 Sheet 26 of 67 US 2006/0036755 A1

<action>CompLib.checkRevSynA ck(tcb, p, e)</action>
<action>
<moveto> <expression> e.code</expression>
<case test="1">
<action> errorState(tcb, e) </action>
<action> return </action>
</case>
</moveto>
</action>

FIG. 26

Patent Application Publication Feb. 16,2006 Sheet 27 of 67 US 2006/0036755 A1

FIG. 27

Patent Application Publication Feb. 16,2006 Sheet 28 of 67 US 2006/0036755 A1

<action><instance>
<name>R</name>
<type> CompLib.IntObject </type>
<initial-values> (0) </initial-values>
</instance></action>

<action> CompLib.GeneratintRandomNumber(R)</action>

FIG. 28

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 29 of 67

3po)H
IYBJI9x Y

<

6¢ Old
uonedwo HoneHLIoSUE.LL —h—MQAWW&m
nedwod [e— o oneoguoy [152208
[uvuiva g

$S330.1J pajewiony

[snusp

uonedJnadyg
§3231q0
1]

INSA

Patent Application Publication Feb. 16,2006 Sheet 30 of 67 US 2006/0036755 A1

Tangible Computer-Readable Medium

Using a First Element

Adding a Second Element
Adding a Third Element
FIG. 30a
Tangible Computer-Readable Medium
Using a First Element Addingﬁ Seventh Element
Adding a Second Element Adding a Eighth Element
Adding a Third Element Adding.a Ninth Element
Adding a Fourth Element Adding a Tenth Element
Adding a Fifth Element Adding a Eleventh Element
Adding a Sixth Element

FIG. 30b

Patent Application Publication Feb. 16,2006 Sheet 31 of 67

US 2006/0036755 A1

Data Type Ja.va C C-.H_ H?L
(Bits) (Bits) (Bits) (Bits)
Byte 8 8 8 N/A
Short Int 16 16 16 16
Unsigned Short Int N/A 16 N/A 16
Unsigned Int N/A 32 N/A N/A
Int 32 32 32 N/A
Long Int 64 32 64 32
Float 32 32 32 32
Double 64 64 64 64
Long Double N/A 96 128 N/A
Char 16 8 8 8
String Variable | Variable | Variable Variable
Boolean 1 1 1 ‘Unspecified
FIG. 31a

Primitive Data Types

Size (Bits)

Byte 8
Int 32
Long 64
Char 16
String Variable
Boolean 1

FIG. 31b

Patent Application Publication Feb. 16,2006 Sheet 32 of 67 US 2006/0036755 A1

FIG. 32b

FIG. 32a

Patent Application Publication Feb. 16,2006 Sheet 33 of 67 US 2006/0036755 A1
L 1
<protocol>

 <first-state>!

, 1.
-— <state>

<iname>1

e <moveto3-"

.4
<expression>
———— <case>l— [test]

I——— <action>1-"

FIG. 33

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 34 of 67

7'\\)

uonedJAdSg [030)0.4]
jueljduio) BwadYdS

Ve

Old

I

I13YI3Y)
BUWAYIS [090)04 g

BUWAYIS [030)04

uonedIYNIAS [030)04
paneuwLIo) oy

SAOLI

JNIPY)D
SuneuLIof 19 AN

ITNX

[vovvag

uonedyndIdg

SA0LL

N

uonedyINRds TINX

JUWNDOP UusIsAIq

Patent Application Publication Feb. 16,2006 Sheet 35 of 67 US 2006/0036755 A1

< 7xml version=%1.0"7>
<xsd:schema xmins:xsd=
“http:fiwww.w3.org/2001/XMLSchema™ >
<xsd:element name="protocol”> <xsd:complexType>
<xsd:sequence>>
<xsd:element name="name” type="xsd: stnng >
<xsd:element ref="cbject” mmOeccurs=*0"
maxOccurs=“unbounded”/>
<xsd:element ref="“instance” minOccours="0"
maxOccurs=unbounded”/ >
<xsd:element ref="acticn” minOccurs="“0"
maxOccurs=“unbounded”/>
<xsd:element ref="first-state” minOccurs=*1"
maxQOcours="1" />
<xsd:elentent ref=“state” aunOccurs="1"
, maxOccurs="“‘unbounded”/>
<fxsd:sequence>
<fxsd:complexType> </xsd:element>

FIG. 35

Patent Application Publication Feb. 16,2006 Sheet 36 of 67 US 2006/0036755 A1

<xsd:element name="object”>
<xsd:complexType> <xsd:sequence>>
<xsd:element name=*pame” type=“xsd:string”/>
<xsd:element ref="field” maxOccurs="unbounded™/>
</xsd:sequence> </xsd:complexType>
</xsd:element>
<xsd:element name=“feld”>
<xsd:complexType> < xsd:simpleContent>
<xsd:extension base="xsd:string”>
<xsd:attribute name="type” use=“required”/>

</xsd:extension>
</xsd:simpleContent></xsd:complexType>
</xsd:element>

FIG. 36

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 37 of 67

llll\\\\\llll

ndinQ

1

JUIUUOITAU T
Jwyuny vAep

¥

po)
Aq eaer

Jojidwo))
BAE[

L€ "Old

WeI301 J eAep

JIULIOJSUB T,
LISX

Areaqry
syuduodwio))

Aedund I,
UONBULIOJSUB. T,
LISX

/l\\\ By
(SH SS

‘SH dO.L 'dVSN "'379)
uonedInNIdg j020304 4

Patent Application Publication Feb. 16,2006 Sheet 38 of 67 US 2006/0036755 A1

< ?xml version=1.0" encoding=“UTF-8"?>

< Txml-stylesheet type="‘text/xsl” 7>

<xsl:stylesheet version=*1.0"

xmins:xsl=“http:/Avww.w3.org/1999/XSL/Transform">

< xsl:output method="html” indent="yes"/>

< xsl:template match="/protocol”>
<xsl:apply-templates select="/protocol/name™/>
public static void main{String[] args)
<xsl:apply-templates select=“action™ />
<xsl:apply-templates select="first-state™/> }
<xsl:apply-templates select="“object™ />
<xsl:apply-templates select="state”™/>
private void vpGen() throws Exception {}}

< /xsk:template>

FIG. 38

Patent Application Publication Feb. 16,2006 Sheet 39 of 67 US 2006/0036755 A1

<xsl:template match="first-state”>
| <xsl:value-of select=""/> :
</xsl:template>

FIG. 39

Patent Application Publication Feb. 16,2006 Sheet 40 of 67 US 2006/0036755 A1

< xsh:template match="object” >
public static class
<xshvalue-of select="name"/> {
<xshapply-templates select="field"/>
public <xsl:value-of select="name"/>
(<xslapply-templates select="feld"
mode="“argdef/>){
<xshapply-templates select="field™
mode="construct’/> }}

- </xsltemplate™>

FIG. 40

Patent Application Publication Feb. 16,2006 Sheet 41 of 67 US 2006/0036755 A1

<xsl:template match="instance™ >
<xslivalue-of select="type”/>
<xsltext> </xsl:text>
<xsl:apply-templates select="name”/> = new
<xslvalue-of select="type™/>
<xsl:apply-templates select="mitial-values™/>;
< /xsl:template>

FIG. 41

Patent Application Publication Feb. 16,2006 Sheet 42 of 67 US 2006/0036755 A1

<xsl:template match="action">
<xsl:choose><xsl:when test="instance'>
<xsl:apply-templates select=""instance" />
</xsl:when><xsl:when test="moveto'>
<xsl:apply-templates select="moveto"/>
</xsl:when><xsl:when test="object" >
| <xsl:apply-templates select=""object" />
</xsl:when> <xsl:otherwise>
<xsl:value-of select="."/>;
</xsl:otherwise>
</xsl:choose>
</xsl:template>

FIG. 42

Patent Application Publication Feb. 16,2006 Sheet 43 of 67 US 2006/0036755 A1

<xsl:template match="moveto">
switch (<xsl:value-of select="expression'"/>) {
<xsl:apply-templates select="case' /> }
</xsl:template>

FIG. 43

Patent Application Publication Feb. 16,2006 Sheet 44 of 67 US 2006/0036755 A1

<xsl:template match=""state'">
static void <xsl:value-of select="name"/>
(<xsl:apply-templates select=""arg"/>) throws Exception {
<xsl:apply-templates select="instance" />
<xsl:apply-templates select="action" />
<xsl:apply-templates select="moveto'"/> }

</xsl:template>

FIG. 44

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 45 of 67

S¥ Old

{1 ¢ AqNGIPAIRS = AN JIIAIIS “SIY)

tAINAHIUIND

= ADJALPUIAILD) "S1Y)
P YN = YN SIy)

1

BN = BN SIY)
pL=pLsiy

(A3)[IqNJIIAIIE BULNS * AIDAUJIWAND SULIS ' QN BULBS* BN BuLiS* Pl SuLyg)

9)BISuUoIssag dqnd

¢ ANGNJIIAIIS SULS dqnd
¢ ADAMQURID Bukyg d1qnd

13

.
[
L]

qN 3uyg dngqnd
NELERTT qnd
: p1 suLng dlqnd
} 9)¥)QUOISSIS SSB[I d13e)s djqnd

Patent Application Publication Feb. 16,2006 Sheet 46 of 67 US 2006/0036755 A1

(2) (V)
4602 4608

WAIT

FIG. 46

Patent Application Publication Feb. 16,2006 Sheet 47 of 67 US 2006/0036755 A1

Client Events Server Events
Branch From To Branch From To
1 CLOSED | SYNSENT | = 2 CLOSED LISTEN
3 LISTEN |JSYNRCVD
3 SYNSENT ESTAB
2 SYNRCVD | ESTAB
FIG. 47a
Client Server Client
Syn SynAck Ack
SeqNumber 3000 5000 3002
AckNumber 0 3001 5001
ACK 0 1 1 FIG. 47b
SYN 1 1 0
FIN 0 0 0
RST 0 0 0
Client Events Server Events
Branch From To Branch From To
1 CLOSED | SYNSENT 2 CLOSED LISTEN
3 LISTEN |SYNRCVD
Change is introduced manually as an error in the SynAck message
3 [SYNSENT [Error State | | [
FIG. 47¢
Client Server
Syn SynAck
SeqNumber 3000 5000
AckNumber 0 - 3001
ACK 0 1 FIG. 47d
SYN 1 1
FIN 0 0
RST 0 0

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 48 of 67

8v "Old

<IJEPS/>
<UJIAVWL/><INEY />

<"oNIE/> soay <UO}OB>
<UONIE/> (9 ‘4oy)IBISUISI] <UOLIT>

< Cn=I594 ISBI>
| <avEY/>

<UONIB/>nvoay <UO)OIB>
<UOIIB/>(3 ‘y0y)I)B)SIUISUAS<UOL)IL>
<UonIB/>(| JASAIPUIS qriduwo)<uonde>
<uonIe/>(d , Jx3"NAS,,Jueigeleqpuas-qridwo)<uonde>
<UWOIB/>y DY d<uonde>
<UONIB/> | _NAS d<uonjie
<UONIB/>(—RGUINNN Iy d<uoyde>
<UONIEB/>IdqUINN] bag qu—IqunNbag d<uonde
<UOT}IL/>MOPUIA "4 I)—MOPUIAL “d<UOIE>
<UONPB/>UIOPISIJ Y330 ST d<uonde>
<HONIE/>LI0JININ0S Yoy |10 J3QIN0S A<UOT)IE>
<ddUB)SUl/>

<soupea [BIMUL>(,, 4“4 ‘U000 UV U) <o ea [BDTUL>
<ad4y/> meagdejeqd D Lqridwo)<adLy>
<dweu/>tmsus> <IUe)su-

<4 1 =159} 95EI>

<UOTISSIIAXI/> N 'A <UOISSIIAXI> <uy

<uonde/>
(A ‘s)indupropress qryduo)
HuNRIqOIuLqrdwo) mau _£ alqoyur-qridwo)
3, suado darssed 0§ ¢ ‘uado AR 10} | avyuy,,=S JULIS
(1 ARISPIsOD) :uS, Jupurad-yno uisAg
. <uonde>
< o n s UODBZIUOIYIUAS [ENURUE J0] UOLIE ATRI0AWII) € SB PILIISUI UII(Q SBY IPOD BAE[L SUIMO[[O) 3y], >
<BI8/> <3d£)/>aBesSoW avaay ' qrTdwo)<ddA)> <,,9,,=oweu ie>
<Baef> AdL>gH 1 qriduoe)<ddLy> <, yop,,=dWweu 318>
<IwiBu/> LISPISOP <dweu>

JAUW >

<dPBPS>

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 49 of 67

6v 'Old

{
{1 ‘qeeay
¢ (3 *yvy)IreISUISI|
f 7 e
{ HeIay
{3 'qvy)a1BIQIUISUAS
*(1)3spuag-qrdwo)
H(d * X NAS,Juergejeqpuas-qriduo)
$0=310Vv'd
‘1=NASd
o=1qunNYOVv-d
pqunNbIg qu=1aqunNbag-d
SMOPUIAA "Yyuy=MOPpuIp-d
S0 gISII Y=o s1qrd
110 J32aN0S 4uy=)10J32.1n0§ d
i "0 0 70°0°0°0°0°0°0°0°0) weABE)IRQJD L qQITdWo) MIu = d weiseie(qd) L qIrjdwo)
$ 11 9Is®d
$ (NA) goyms
¢ (Ashndupaogirepp-qrydwo)
H(0NRIqONIIqrTdwo) sdu =A 13lqOrur-qiTdwo)
¢, Juddo dAlssed J0J ¢ ‘uddo IAI)IB A0) | avjuy,,=S JULIS
$(,, BISPISO]) :Ne)S,, Jupurid-Inu wIISAg
} ondAdXY sA0aY) (3 IBESSIW avaay qIrrdwo)) * qI3 DL qrydwo))) 3eiSpaIso]d pioa dneis

Patent Application Publication Feb. 16,2006 Sheet 50 of 67 US 2006/0036755 A1

State Description Component Names

The initiator sends a proposal | HashingStringMD5

to the responder. The BXcomposeMainHeader
State 1 proposal includes three parts: | CompLib.BXcomposeProposals
ISAKMP main header, a GeneratIntRandomNumber
proposal payload, and a BXcomposePayload,
nonce payload. ReadFileToBytes, SendUDP
The initiator receives a ListenForUDP,
message from the responder |BXSaveMHeader
containing the responder BXExtractMHeader
State 2 selection. The received BXCompareTwoStrings
message includes three parts: |ClearBytesArray,
main header, selection CreateNewFile,
payload, and a nonce payload. | BXExtractPayload
BXcomposePayload

The initiator sends a message | BXcomposeMainHeader
of four parts: a main header, | BXcomposePayload

an id, key information, and an | CreateNewFile

State 3 | authentication payload. The |AppendFileToFile
authentication payload is a HashingFileMDS

hash value of all previously ReadFileToBytes

exchanged messages. SendUDP
The initiator receives from ListenForUDP, CreateNewFile
the responder the BXExtractMHeader

authentication message. The |BXSaveMHeader
initiator verifies the received |BXExtractPayload

State 4 | hash value against his AppendFileToFile
calculated value. If values do |HashingFileMDS5
not match, the BXCompareTwoStrings

communication is aborted
and the user is notified.

This state prints an error return
ErrorState | message and aborts the
communication.

FIG. 50

Patent Application Publication Feb. 16,2006 Sheet 51 of 67 US 2006/0036755 A1

public static class ISAKMPFSM {

public int SourcePort, DistPort;
public String SourcelP, DistIP, Secret;
public String SourceCookie, DistCookie;
public String certPublic, certPrivate;
public int Mjrver, Minver, Flags, MessagelD, Totallength;
public String InitNonce, RespNonce;

public String ProtName, ProtLocation;

public int SelectedProtID, ProtMjrver, ProtMinver;

FIG. 51

Patent Application Publication Feb. 16,2006 Sheet 52 of 67 US 2006/0036755 A1

public static void BXcomposeMainHeader(ISAKMPFSM fsm,
int NPayloadType, int ExchangeType,
String fname) throws Exception {
System.out.printin(" Composing ISAKMP main header ");
String filler=""
Strmg x= fsm.SourceCookie + flller,byte[] BSourceCookie=new byte[32];
BSourceCookie=x.getBytes(); x=""-+fsm.DistCookietfiller;
byte[] BDistCookie=new byte[32]; BDistCookie=x.getBytes();

x=""+ NPayloadType+filler; byte[] BNPayloadType=new byte[8];
BNPayload Type=x.getBytes(); x=""+fsm.Mjrver+tfiller;

byte[] BMjrver=new byte[4]; BMjrver=x.getBytes();
x=""+fsm.Minvertfiller; byte[] BMinver=new byte[4];
BMinver=x.getBytes(); x=""+ ExchangeType-+filler;

byte[] BExchangeType=new byte|8]; BExchangeType=x.getBytes();
x=""+ fsm.Flags +filler; byte[] BFlags=new byte|[8];
BFlags=x.getBytes(); x=""+ fsm.MessagelD +filler;
byte[] BMessageID=new byte[32]; BMessagelD=x.getBytes();
x=""+ fsm.Totallength +filler; byte[] BTotallength=new byte[32];
BTotallength=x.getBytes();
FileOQutputStream fos = new FileOQutputStream(fname);
for {int count=0; count <32; count++){fos.write(BSourceCookie[count]);}
for (int count=0; count <32; count++){fos.write(BDistCookie[count]);}
for (int count=0; count <8; count++) {fos.write(BNPayloadType|[count]);}
for (int count=0; count <4; count++) {fos.write(BMjrver[count]);}
for (int count=0; count <4; count++) {fos.write(BMinver[count]); }
for (int count=0; count <8; count++) {fos.write(BExchangeType[count]);}
for (int count=0; count <8; count++) {fos.write(BFlags[count]); }
for (int count=0; count <32; count++) {fos.write(BMessagelD|[count]); }
for (int count=0; count <32; count++) {fos.write(BTotallength[count]);}
fos.close(); System.out.printin("File: "+fname+ " has been written"); }

FIG. 52

Patent Application Publication Feb. 16,2006 Sheet 53 of 67 US 2006/0036755 A1

public static void SendUDP(BytesObject b, int len, String DistIP,
int DistPort) throws Exception {
InetAddress serverAddress = InetAddress.getByName(DistIP);
byte[] bytesToSend = b.N;
int servPort = DistPort;
DatagramSocket socket = new DatagramSocket();
DatagramPacket sendPacket = new
DatagramPacket(bytesToSend,
bytesToSend.length, serverAddress, servPort);
socket.send(sendPacket);
System.out.println("UDP packet sent.");
socket.close(); }

FIG. 53

Patent Application Publication Feb. 16,2006 Sheet 54 of 67 US 2006/0036755 A1

C, S: Client and Server, Ks: Server Public key, Sk: Set
of shared keys

CS: {ClientHello}

SC: {ServerHello, Certificate, ServerHelloDone}

CS: {ClientKeyExchange}Ks -

CS: {ChangeCipherSpec}

CS: {Finish}Sk

SC:{ChangeCipherSpec}

SC:{Finish}Sk

FIG. 54

Patent Application Publication Feb. 16,2006 Sheet 55 of 67 US 2006/0036755 A1

Initiator Responder

error + Client Hello

- Client Hello

+ Server Hello
+ Certificate
+ Server Hello done

- Server Hello
- Certificate
- Server Hello done

- Client Key Exchange
- Change Cipher Spec
- Finished (Protected)

+ Client Key Exchange
+ Change Cipher Spec
+ Finished (Protected)

- Change Cipher Spec
- Finished

+ Change Cipher Spec
+ Finished

Option: TLS_RSA_with_DES_CIBS_SHA

"FIG. 55

Patent Application Publication Feb. 16,2006 Sheet 56 of 67 US 2006/0036755 A1

<object>

</object>

<name>SessionState </name>

<field type="byte'"> VersionMajor</field>

<field type="byte'"> VersionMinor</field>

<field type=""'String"> id</field>

<field type=""int"> CurrentState</field>

<field type=""'String"> ClientPrivKeyFname</field>
<field type=""String"> ServerCertFname</field>

<field type="1ong"> ClientRandom</field>

<field type="long"> ServerRandom</field>

<field type=""byte[]"'> PreMasterSecret</field>

<field type="byte[]"> MasterSecret </field>

<field type=""int"> SessionlD</field>

<field type=""String'> CipherSuite</field>

<field type=""String"> CompressionMethod</field>
<field type="byte[]"> client_write. MAC_secret</field>
<field type=""byte[]"> server_write. MAC_ secret</field>
<field type="byte[]"> client_write_ key</field>

<field type="byte[]"> server_write_key</field>

<field type="byte[]"> client_write I'V</field>

<field type=""byte[]"> server_write I'V</field>

FIG. 56

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 57 of 67

LS 'Ol

<JJEIS/>
<uonde/>(d ‘SS)rAeIS <uonIE>
<UonIB/>()SSINpUIS-qryduwo) <uonIes
<uonde
/> IXO[PHIUWIDTSS., *dyd)o[RHIudIDISodo) TSS qridwo)<uondes
<UONIB/>N"Y=wupuey dyd <uonIe>
<UONIB/>N "Y=WOPUBYIURI[)'SS <uonoe>
<UoNIB/>(y)RqUm N\ Wopueupiedudn qryduo)) <uondre>
<uonIe/>
<due)sul>
<seMBA [BIIUL/> () <doupea [BRIUI>
<3d£y/> 12lqOITqrTdmwo) <dd4)>
<IUWEBU/>Y <AUWEU> <QIUEISul>
<uonde>
<uonde/>
<dduesul/>
<soupea [BRIUY/>(, uu,, *$3 Q0L 0"¢A" | A)<sonea [EDIUL>
<3d4y/> OPHIUAIDISS qrTdwo) <adA)>
<dueu/>dyruieus <duejsul>
<uonyes
<uonde/> AINQIIYdI) S =82 JULg <uondIe>
<UONIB/>IOUIAJUOISIIA "SS=7A IJAQ <UONIB>
<U01)IEB/> JOIBJAUOISIIA "SS=1A JJAQ <uondIe>
<BIB/> <ddA)/>a88SSoUW avaayqrydwo)<dd4Ay> < 3, =dwieu sie>
<dIe/> <3dA)/>a)8IQUOoISSIS<AdL)> <, §S,,=dweu die>
<duigl/> |3IB)§ <PUBU>
<IJEBIS>

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 58 of 67

8g 'Old

<JJEIS/>
<uonIB/>(d *SS)ABIS <uonIe>
<uondIe/>sNING.RYdID) dyir=aingnydi)-gS<uondre>
<uondIe/> wupusy dyI=wWoOpULHIUAI) SS<U0}oe>
‘ <uonde
/AGIXVOIRHIWIDTTSS,, dYd)OIPHIUIDPEYTSS qrdwo)<uonoe>
<uonoe/>
. <duejsul/>
<soupsa [BRIUI/>(, |11y, *$I *0QT°('¢A" 1A)<Son6A [ERIUL>
<3dAy/> oPHIWAI D) ISS qI Tdwo) <dd4y>
<Quieu/>dyP<dueu> <dduejsul>
<uonde>
<uonde/> AmMSIRYdi) SS =53 sULl)§ <uoipe>
<UONIE/>IOUTAUOISII A 'SS=¢A 9Aq <uondes
<UO0NIE/> JIOIBAUOISIIA'SS=1A NAq <uonIe>
<Bae/> <3d£)/>aessaw avaay qryduwo)<ddLy> < 3, =dweu sie>
<BIe/> <3dA}/>3)eIQUOISSIS<AdA)> <, SS,,=dweu gie>
<dureu/> jIje)§ <duvu>
<IEPS>

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 59 of 67

65 Old

(3 *S9)ers
+(1)3SPWIS-qITdwo)
{LAXFOIPHIWAIDTSS,, "dYy2)oPHIWIDIsOdmo) TSS qridwo)
N d=wupusy dyd
N Y=WOPUBYHUAI[)'SS
$() quin N wopuejpupeuIn-qirydwo)
mﬁ:——::.-
'$3*00T°0°2A" 1A) OIPHIWIIDTSS qITAWO) MaU = dyd O[[FHIUAN) ISS qITdwo)
2 NGIIYAID) §S =S SULNS
LIOUTAJUOISII A "SS=¢A NA(
¢ JOIBIAJUOISIIA"SS=1A 3)Aq
§ UONAIIXH SMOIY) (3 ITLSSAIW avaay qridwo)) * ¢S I)BISUOISSIS)
| 19J8)S PIOA d1E)S

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 60 of 67

09 OId

(3@ 'SS)MeIg

sQIYd1) dydr=ingrydi)-ss

: wopusy dyI=mwopueIudI[)'SS

{(WIXFOIPHIWIDTSS., "dYd)O[RHIUIDPEIYISS qITdwo)
(uliny,,

*$3 °00T°0"¢A" 1A) O[PIIWIDISS qIIdwo) MU =dyd O[PHIUADTSS qITdwo)

: NGIYAID) S =53 FuLng

CTOUTAJUOISII A "SS=7A IAQ

: JOIBJAUOISII A "SS=] A JJAq
§ UOIIAIIXY SMOIY) (3 ITBSSIW avaay " qITduio)) * S)BISUOISSIS)
19)€)S PI0oA d1E)S

Patent Application Publication Feb. 16,2006 Sheet 61 of 67 US 2006/0036755 A1

Client Process Server Process

- Client Hello + Client Hello

- Server Hello
- Certificate
- Server Hello done

’ + Server Hello
+ Certificate
+ Server Hello done

”+ Client Key Exchange
+ Change Cipher Spec
+ Finished (Protected)

. Client Key Exchange
- Change Cipher Spec
7 - Finished (Protected)

- Change Cipher Spec
- Finished (Protected)

7,
+ Change Cipher Spec
+ Finished (Protected)

wait for packet from
client

wait for data from
application

gl | error -
£ =
= Decrypt, check MAC, &
Fragment S e
S remove header, S
error remove pads

Add header, add MAC,

padding, encrypt, send
error

FIG. 61

Patent Application Publication Feb. 16,2006 Sheet 62 of 67 US 2006/0036755 A1

public static class SSLSessionState {
public byte VersionMajor;
public byte VersionMinor;
public String id, IP;
public int PortNo, CurrentState;
public String PrivKeyFname;
public String PublicKeyFname;

- public String RespPublicKeyFname;

public long ClientRandom;
public long ServerRandom;
public byte[48] PreMasterSecret;
public byte[48] MasterSecret;
public int SessionID;
public int CipherSuite;
public String CompressionMethod;
public byte[8] client_write. MAC_secret;
public byte[8] server_write_ MAC_secret;
public byte[8] client_write_key;
public byte[8] server_write_key;
public byte[8] client_write_IV;
public byte[8] server_write_IV; }

FIG. 62

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 63 of 67

€9 '9OId

<uonde/>(0SD ‘N'ue| ‘N'¢eep)puwdSd) I qiduo)<uonde

<uonde/>(uv| ‘geyep *, DUIPUISTSS,,)SNAGO [A1 APeY qI'Tdwo)<uonies
<uonde/>(|N-uat|334q MuNRIqOSNAG -qITdwo) Mau =gejep 1IqOsasg-qriduo)<uonies
<U0NIE/>(uey *,,2UIPUISTTSS,, PZISIL qI'Tdwo)<uonoe>

<UoNIE/>(A] NLIM JUAIP"SS

"3 NUIM JUIA[QS U PUISTSS., *,IXF PUISTTSS) SA@UADUT qrTdwo)<uonie>
<UONIB/>(,1x) PUSSTISS,, "qUHAPRIYPPY ISS qr Tdwo)<uonoe

<uondE/>(,1x1PUISTISS,, ‘0T Nousaysey R0 [$NAgpuaddy-qriduo)<uonye=
<UONIB/>(,Ix) PUISTISS,, "N'u9| ‘N'616pP[IJ0 [SNAgIseS (I Tdwo)<uonre>

<UONIE/>(, X3 PUISTSS,, RIAMINIBAL) qITdwo)<uonde>

<UORIEB/>(vnpsaysey "N uI|' N 636p ‘124098 JVIA UM JWIP'SS)IVHS DVINH qridwo)<uonos>
<UOINE/>(u9| ‘vypp *, JX)°,, WU)SNAGO 1 peN] qrdwo)<uoijde>

Patent Application Publication Feb. 16,2006 Sheet 64 of 67

US 2006/0036755 A1

1 Byte
Type

2 Bytes
Version

4 Bytes
Length

Data

(Variable Length, max 2*14)

Hash Value (20 Bytes)

Pad

Pad Length

FIG. 64

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 65 of 67

g9 "Old

$(AWIBUJ*IZISBSAIAIAL “IAJJNGIIAQ)1 {0 LSaAgoaaeg
{(IZISBSTAJAII+,, =IZIS I PIAIIAI 33NI0S D L., JUPULId INU WIISAS
(NG ANAQ)psoaur = IZISTSTAJAII
JwednSindupdgs-gRoIu = ul wedygyndug
13Jynq 3ARINY // {|AZISANGI9IAq Mou = 1dJInganAq [|aAq
. I3BSSIU PIAIIIAL JO IZIS // {(=IZISTSTAAIAL YUl
:(,, BUIUAISIT ST33¥I0S D L, JUpuLldIno-wid)sAg
)
uondadXy smMoay) (duivuj suLil§ “MI0SIUd 1331qO19}20§)uNSITID 1 P1oA dne)s djqnd

US 2006/0036755 A1

Patent Application Publication Feb. 16,2006 Sheet 66 of 67

99 'Old

<uonIB/>((N216AYSEY)SULI)G MIU4 |, IN[BA YSBY PIAIIIAM LIAIRS,, JUPULId)nu W)SAG<UO)IE>
<UOIIB/> (oueaysey ‘Nud| ‘(07 N U9 ‘N 6p6p)ALIyqnSRn qrydwo)<uondes
<UONIB/>((N 21 BAYSBY)SULIIS MIUL |, (9N[BA YdBY PIjs|uasy LIIAIIS,, JUPULIA INnU WIISAG<UOID B>
<UONIE/>(sujsayssy ‘0T N'ud|'N'ep6p 1J2099s DV MM JWIP'SS) 1 VHS DOVINH QI Tdwo)<uonoe
<uonIE/><ujda0ouwl />
<d¥S8)/>
<UOIIEB/> uanjaa <uoIpIe>
<uondIE/> (,,PIAINRI I Apdwif,, Jupurid-yno wISAS<uonIe>
<,,0,,=153) INBI>
<UOISSAIAXI/>N "ud| <UOISSAIAXI>
<UJIAOUWI> A:o-aowv
<uonde/>(uvj ‘vpep IUWLUJ)SNAGO II[1APeRn] qIrduwo)<uondes
<uonde/>(IN” :.:_33 Bo:!oa_nomo;m qrrduwo)) Mau =e)ep 1IqOsAAg-qrqduo)<uondres
<uoNIB/>(uv) *NEIWRUJ)IZIQII qITduwo) <uonies>
<uonde/>(,, padris Japedy eje 1SS, JUPULId-Inu uRISAS <uonIe>
<U0NIE/>(IIWRUJ *y(g)1PLIYdLISTSS qIrTduio) <uondIe>
<uoNdB/>(NAWeuJ+,, :0) p3ajdArdd(i, Jupurid-ynv-uI)SAS<uondIL>
. <uonyoe
[>(A1 LA JUIII'SS ‘A LI JUIIP'SS N@IweU] duduesu))SH@QdAIq qrqdwo)<uondes
<uonIE/>((7)1IGOIUT qITAWO)) MIU =U3] 23lqOIu qITdwo)<uoyde>
<UONIEB/>,, 3P BIB(IPIARIINYTSS,,=NIWeuj SuL)S<uonIe>.
<UO0NIB/>, DU BIB(IPIARINYTSS, =d)uJdweuj suLS<uondIL:

Patent Application Publication Feb. 16,2006 Sheet 67 of 67 US 2006/0036755 A1

public static void Encrypt(String fileInput,String fileOutput,
String publicKeyFilename) throws Exception {
PublicKey publicKey=LoadPublicKey(publicKeyFilename);
// Open up an output file for the output of the encryption
DataOutputStream output = new DataOutputStream
(new FileOutputStream(fileOutput));
// Create a cipher using that key to initialize it
Cipher rsaCipher = Cipher.getInstance(""RSA/ECB/PKCS1Padding');
rsaCipher.init(Cipher. ENCRYPT_MODE, publicKey);
// Now create a new 128 bit Tripple-DES key to encrypt the file itself.
// This will be the session key. ‘
KeyGenerator myKeyGenerator = KeyGenerator.getInstance('' DESede');
System.out.println("'Generating session key..."");
Key DESedeKey = myKeyGenerator.generateKey();
/I Encrypt the DESese key with the RSA cipher
/I and write it to the beginning of the file.
byte[] encodedKeyBytes= rsaCipher.doFinal(DESedeKey.getEncoded());
output.writeInt(encoded KeyBytes.length);
output.write(encoded KeyBytes);
// Now I need an Initialization Vector for the symmetric cipher in CBC mode
SecureRandom random = new SecureRandom();
byte[] iv = new byte[8];
random.nextBytes(iv); -
// Write the IV out to the file.
output.write(iv);
IvParameterSpec spec = new IvParameterSpec(iv);
/I Create the cipher for encrypting the file itself.
Cipher symmetricCipher = Cipher.getInstance('' DESede/CBC/PKCS5Padding');
symmetricCipher.init(Cipher. ENCRYPT_MODE, DESedeKey, spec);
CipherOutputStream cos = new CipherQutputStream(output, symmetricCipher);
System.out.printin("'Encrypting the file..."");
FileInputStream input = new FileInputStream(fileInput);
int theByte = 0;
while ((theByte = input.read()) !=-1)
{ cos.write(theByte); }
input.close();
cos.close();
System.out.printin(''File encrypted.");
return; }

FIG. 67

US 2006/0036755 Al

META-PROTOCOL

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims the benefit of pro-
visional patent application: Ser. No. 60/568,664 to Abdullah
et al., filed on May 7, 2004, entitled “Meta-Protocol,” which
is hereby incorporated by reference.

[0002] Reference to Computer Program Listing Appendix
on a Compact Disc

[0003] Two copies of a single compact disc (Compact
Disc), labeled Copy 1 and Copy 2, are hereby incorporated
by reference in their entirety. Each Compact Disc contains
Computer Program Listing Appendices A-H. Computer Pro-
gram Listing Appendix A (created on Compact Disc on May
5, 2005 and having a size of 482,816 bytes) contains
Documentation of Experiments. Computer Program Listing
Appendix B (created on Compact Disc on May 5, 2005 and
having a size of 57,856 bytes) contains XSLT Stylesheet for
Protocol Transformation. Computer Program Listing
Appendix C (created on Compact Disc on May 5, 2005 and
having a size of 54,272 bytes) contains XPSL XML Schema.
Computer Program Listing Appendix D (created on Com-
pact Disc on May 5, 2005 and having a size of 31,744 bytes)
contains Java Interface Code to Process XSLT Stylesheet.
Computer Program Listing Appendix E (created on Compact
Disc on May 5, 2005 and having a size of 262,656 bytes)
contains Needham Schroeder Authentication Protocol
(NSAP) protocol FSM, XML protocol specifications and
java code. Computer Program Listing Appendix F (created
on Compact Disc on May 5, 2005 and having a size of
561,664 bytes) contains Transport Control Protocol (TCP)
3-way Handshake protocol FSM, XML protocol specifica-
tions, java code and testing scenarios. Computer Program
Listing Appendix G (created on Compact Disc on May 5,
2005 and having a size of 477,696 bytes) contains Internet
Security Association and Key Management Protocol
(ISAKMP) Base Exchange Experiment protocol FSM, XML
protocol specifications and java code. Computer Program
Listing Appendix H (created on Compact Disc on May 5,
2005 and having a size of 557,056 bytes) contains a protocol
FSM, XML protocol specifications and java code for Secure
Socket Layer (SSL) Experiment: TLS_RSA_with-
_DES_CBC_SHA. Computer Program Listing Appendix I
(created on Compact Disc on May 5, 2005 and having a size
of 1,581,056 bytes) contains Protocol Components Library
showing a description of components and listing of compo-
nents in java code used in the experiments.

BACKGROUND OF THE INVENTION

[0004] Communication protocols play a central role in
today’s information systems. The wide spread use of the
Transmission Control Protocol/Internet Protocol (TCP/IP)
protocol and the rapid development of communication tech-
nologies laid the ground for an explosion in the use of
information technologies at homes, businesses and govern-
ment agencies. Several protocols, including TCP/IP, HTTP,
SMTP, S/MIME, SSL and IPsec, have contributed to this
growth. Moreover, new technologies are emerging fre-
quently to support the growing need for efficient, easy and
secure communication.

[0005] Developed in the mid-1970’s by the Defense
Advanced Research Project Agency (DARPA) of the U.S.

Feb. 16, 2006

Department of Defense, the TCP/IP protocol has several
features that led to its widespread adoption: open standard,
freely available for developers and independent of any
specific physical network hardware. The first two features
led to TCP/IP’s wide acceptance, and the latter feature made
it easy for different kinds of networks to interoperate. With
the adoption of TCP/IP, the Internet has seen an exponential
growth.

[0006] The TCP/IP stack consists of four layers: the net-
work access layer, the Internet Protocol layer (IP), the
transport layer and the application layer. The network access
layer is located at the bottom of the architecture. It consists
of many protocols that provide access to physical networks.
Compared to the Open System Interconnection (OSI) seven-
layer reference model, the network access layer comprises
just two layers: a data link layer and a physical layer.

[0007] The IP layer is responsible for defining the Internet
addressing scheme, composing datagrams and routing them
to their destination. IP is a connectionless protocol. Yet, it
does not provide handshake or reliability mechanisms. Thus,
IP depends on other layers to provide such services.

[0008] The transport layer consists of two protocols:
Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). TCP provides connection management
reliability, flow control and sequencing, whereas UDP
serves as a simple interface between applications and IP.
One other distinction is that UDP does not provide reliabil-
ity, flow-control or error-recovery.

[0009] The application layer is at the top of the stack. It
includes protocols that use the transport layer to deliver data
to the network. Many protocols run at the application layer
to provide services such as TELNET, HTTP, SMT and FTP.

[0010] Problematically, TCP/IP does not have security
measures to support the kind of applications that have
appeared over time. Therefore, several security solutions
have been proposed to address the different kinds of vul-
nerabilities of TCP/IP, as well as the additional security
needs of applications. Such security solutions are typically
associated with a single layer of the TCP/IP stack or with
specific applications.

[0011] Security protocols also play a central role in
today’s information systems. Most tend to have more com-
monalities than differences. For example, security protocols
share significant functionality and utilize a common set of
encryption, hash and compression algorithms. They usually
differ in the handshaking mechanism (which includes
authentication), target data, header processing, key sizes,
replay mechanisms and the order in which the various
algorithms are applied.

[0012] One common security protocol is the secure socket
layer (SSL). The motivation for the SSL protocol develop-
ment was to provide protection to electronic commerce and
Web transactions. In 1994, Netscape communications intro-
duced SSL version 1.0 in its Mosaic Web browser. Netscape
made SSL an open standard and encouraged the Web com-
munity to participate in its development. Later, in May 1996,
the development of SSL became the responsibility of the
Internet Engineering Task Force (IETF), which was later
renamed as Transport Layer Security (TLS).

[0013] SSL has two important features. First, it provides
strong protection based on public key cryptography. That is,

US 2006/0036755 Al

SSL uses public key cryptography to encrypt the pre-master
key that is used to generate the set of shared keys. Second,
SSL is efficient because it uses symmetric key cryptography
to protect the traffic between the communicating parties.
Therefore, SSLL consumes relatively little CPU time to
protect the exchange of data between parties. These two
features made SSL suitable for most e-commerce applica-
tions on the Internet.

[0014] Today, SSL is the most widely used Web security
protocol. Almost every browser and Web server supports
SSL. SSL adds security by inserting itself between the
Hypertext Transfer Protocol (HTTP) application and the
TCP layer. Therefore, SSL requires minor changes in the
applications. In addition, SSL is not limited to HTTP traffic
(through its original specification) but it can support other
Internet applications, such as Net News, FTP and Telnet.

[0015] However, a disadvantage of SSL is that it only
supports TCP. In the typical handshake process, an SSL
initiator sends to the second party a list of the security
capabilities that it can support. For instance, TLS v.1 cur-
rently supports 32 different capabilities. In this format, the
responder selects his preferred capability and sends it back
to the initiator along with a certificate that contains a public
key. The certificate is then used by the initiator to authen-
ticate the responder. Next, the initiator creates a pre-master
secret key, encrypts it with the responder’s public key and
sends the encrypted message to the responder. Afterwards,
both parties use the pre-master secret key to create six shared
keys for the protection of the subsequent communication.
Each party indicates its readiness to switch to protected
mode by sending a single byte message called ChangeCi-
pherSpec. The first protected message sent by each party is
the Finish message. This message contains a hash value of
all the previously exchanged messages between the parties
to protect the session against replay attacks.

[0016] Another security protocol is IP Security Protocol
(IPsec). IPsec is a security standard developed by the
Internet Engineering Task Force (IETF). This protocol is
designed to establish a solid security ground for the Internet.
IPsec is part of the Next Generation Internet or Internet 11
(IPv6). Most of the VPN products nowadays adopt the IPsec
protocol (e.g., Cisco VPN, eTrust, VPN-1 and Symantec). A
complex technology, [Psec’s main goal is to secure the flow
of information between two endpoints. Its security services
are designed for the IP layer. Furthermore, it provides
several types of protections such as source IP authentication,
integrity and confidentiality. The protection scope varies.
For example, it may include the IP header, or it may be
limited to the payload only. These choices are determined by
a set of security policies that are managed by a system
administrator. However, an [Psec-secured connection is very
cumbersome to setup and configure because it comes in
many varieties. Therefore, an IPsec user has to have a clear
set of requirements and security policies before implemen-
tation. Otherwise, it would be hard to validate whether there
is a secure connection or not.

[0017] IPsec consists of two major protocols: Authentica-
tion Header (AH) and Encapsulating Security Payload
(ESP). Each protocol can be configured to run in Transport
Mode or in Tunnel Mode. The Transport Mode provides
security for transport layer (TCP, UDP or ICMP). Typically,
this mode is used for end-to-end communication. Therefore,

Feb. 16, 2006

ESP in transport mode encrypts, and optionally authenti-
cates, the IP payload but not the IP header. Similarly, AH in
transport mode authenticates the IP payload and selected
portions of the IP header without encryption.

[0018] Tunnel mode provides security for the entire
packet. A new header with the gateway destination address
is added to the packet. ESP in tunnel mode adds a new
header to the packet, encrypts it and optionally authenticates
the new packet including the new header. In contrast, AH in
tunnel mode authenticates the entire packet and parts of the
new header without encryption.

[0019] IPsec manages keys and establishes sessions
through a protocol called the Internet Key Exchange (IKE).
IKE is a collection of protocols: Internet Security Associa-
tion and Key Management Protocol (ISAKMP), Oakley Key
Determination Protocol (Oakley) and Secure Key Exchange
Mechanism (SKEME). Therefore, IPsec supports a wide
variety of key types and sizes.

[0020] IPsec provides general IP security services regard-
less of the specific needs of the applications. However, [Psec
is transparent to applications. Therefore, similar to SSL,
IPsec cannot address specific needs of an application, such
as authenticating a user or protecting parts of a document
(e.g., part of a contract or a payment document).

[0021] The current approach to implementing security
protocols is centered on designing a protocol as a single
package comprised of two layers: control and a library of
algorithms. This approach is based on the assumption that
every protocol is complete and does not need to be inte-
grated with other security protocols. Yet, this assumption
may not be valid in situations where several security pro-
tocols need to coexist. In such cases, redundancy and
conflicts may occur. For example, running Secure/Multipur-
pose Internet Mail Extensions (S/MIME) over IPsec intro-
duces redundancy. Both provide similar encryption:
S/MIME does it at the document level and IPsec at the
packet level. This situation is common in business-to-busi-
ness (B2B) applications when an application uses S/MIME
as a document-level protection while using IPsec to protect
the communication with a remote branch office.

[0022] Moreover, the current approach of designing
autonomous and complete protocols has several disadvan-
tages. First, it may result in conflicts when various protocols
need to coexist. For example, if compression is done at an
upper layer (e.g., S/MIME), repeating it at a lower layer may
increase the size of the message. Second, there is not enough
flexibility in most security protocols (e.g., SMIME, SSL,
IPsec) and, consequently, their users have to adopt them
without being able to make changes. For instance, a user
may want to change the header by adding or removing some
fields for quality of service (QoS) purposes. Third, these
protocols offer coarse grained security services and the
developer of an application does not have the ability to fine
tune operations within the use of these protocols. For
example, S/MIME services are applied to an entire docu-
ment, preventing a user from applying it on selective parts
of the document. Fourth, the use of coarse grain services
may lead to unnecessary performance degradation. For
instance, SSL has to calculate a block of four shared keys
and a couple of IVs even if the user does not want to use
some of the modes such as the read mode, the write mode,
the encryption service or the integrity service.

US 2006/0036755 Al

[0023] Furthermore, the traditional approach to imple-
menting protocols is monolithic. Adhering to monolithic
protocols limits users to situations for which the protocols
were implemented. Internet applications and their security
requirements are evolving very rapidly. Video, audio, wire-
less applications, collaborative applications and many other
emerging technologies raise new challenges and require
flexible approaches to deal with them. This monolithic
implementation approach is not well-suited to cope with
rapid changes in communication and security requirements.

[0024] Overall, the current process of implementing a
protocol is tedious and error-prone. Protocol specifications
in natural language are often ambiguous and may lead to
defective implementations. Moreover, implementations
have to be thoroughly tested. This testing is a time-consum-
ing effort due to the timing dependencies of events processed
by protocols.

[0025] Consequently, it would be desirable to have a
model for sharing protocol specifications to produce proto-
col implementations automatically. It would also be desir-
able to free protocols from being dependent on the mono-
lithic implementation of a limited number of capabilities.
Additionally, it would be desirable to have a flexible infra-
structure for businesses to exchange protocol specifications
and automatically generate code that supports the evolving
B2B environment. Furthermore, it would be desirable to
have a framework that could be applied to overlay networks
and Web Services.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0026] The accompanying drawings, which are incorpo-
rated in and form a part of the specification, illustrate an
embodiment of the present invention and, together with the
description, serve to explain the principles of the invention.

[0027] FIG. 1 shows a protocol management system.

[0028] FIG. 2 shows one embodiment as per an aspect of
a layered structure of the Meta Protocol framework.

[0029] FIG. 3 shows another embodiment as per an aspect
of a layered structure of the Meta Protocol framework.

[0030] FIG. 4a shows one embodiment as per an aspect of
a flow process for interacting among the layered structure of
a protocol management system.

[0031] FIG. 4b shows a tangible computer-readable
medium encoded with the embodiment of FIG. 4a.

[0032] FIG. 5a shows another embodiment as per an
aspect of a flow process for interacting among the layered
structure of a protocol management system.

[0033] FIG. 5b shows a tangible computer-readable
medium encoded with the embodiment of FIG. 5a.

[0034] FIG. 6 shows an ISAKMP packet format.

[0035] FIG. 7a shows a list of messages for Base
Exchange.

[0036] FIG. 7b shows FSM diagrams for ISAKMP Base
Exchange.

[0037] FIG. 8 shows an example of an ISAKMP header
carrying a proposal payload.

Feb. 16, 2006

[0038] FIG. 9 shows a manual protocol production pro-
cess.

[0039] FIG. 10 shows an automated protocol production
process.

[0040]
[0041]

[0042] FIG. 13 shows an example of a UML entity class
diagram for the access list.

[0043]
database.

[0044] FIG. 15 shows a UML entity class diagram for the
registry database.

[0045] FIG. 16 shows a UML activity diagram for a PCS
operation.

[0046] FIG. 17 shows FSM diagrams for the Needham-
Schroeder authentication protocol.

FIG. 11 shows a system architecture.

FIG. 12 shows an example of an access list.

FIG. 14 shows an example of records in a registry

[0047] FIG. 18 shows a traditional manual protocol pro-
duction process.

[0048] FIG. 19 shows an automated protocol production
process.

[0049] FIG. 20 shows an example of XPSL XML ele-
ments.

[0050] FIG. 21 shows one embodiment as per an aspect of

a method for using XPSL.

[0051] FIG. 22 shows a XPSL syntax for NSAP’s client
state 3.

[0052] FIG. 23 shows another embodiment as per an
aspect of a method for using XPSL.

[0053] FIG. 24 shows an example of an <object> element.
[0054] FIG. 25 shows an example of an <instance> ele-
ment.

[0055] FIG. 26 shows an example of a <moveto> element
nested inside an <action> element.

[0056]

[0057] FIG. 28 shows an example of an <instance> ele-
ment nested inside an <action> element.

[0058] FIG. 29 shows an example of protocol specifica-
tion and implementation using XPSL.

[0059] FIG. 30a shows one embodiment as per an aspect
of XPSL stored in a tangible computer-readable medium.

[0060] FIG. 30b shows another embodiment as per an
aspect of XPSL stored in a tangible computer-readable
medium.

[0061] FIG. 31a shows a data type comparison between
programming languages.

[0062] FIG. 31b shows a list of XPSL protocol primitive
data types.

[0063] FIG. 324 shows a common pictorial view of an
FSM indicating the possible transitions between states.

[0064] FIG. 32b shows a behaviorally equivalent pictorial
representation.

FIG. 27 shows an example of a <moveto> element.

US 2006/0036755 Al

[0065] FIG. 33 shows a tree of XML elements corre-
sponding to an FSM.

[0066] FIG. 34 shows one embodiment as per an aspect of
steps required to check a protocol specification.

[0067] FIG. 35 shows a main segment of the XML
schema for XPSL specifications.

[0068] FIG. 36 shows an XML schema definition of an
<object> element.

[0069] FIG. 37 shows steps required to generate a proto-
col implementation from an XPSL specification.

[0070] FIG. 38 shows an XSLT main template.

[0071] FIG. 39 shows an example of a <first-state> tem-
plate.

[0072] FIG. 40 shows an example of an <object> tem-
plate.

[0073] FIG. 41 shows an example of an <instance> tem-
plate.

[0074] FIG. 42 shows an example of an <action> tem-
plate.

[0075] FIG. 43 shows an example of a <moveto> tem-
plate.

[0076] FIG. 44 shows an example of a <state> template.
[0077] FIG. 45 shows partial Java code of the NSAP.

[0078] FIG. 46 shows an FSM diagram for TCP hand-
shake.

[0079] FIG. 47a shows a TCP sequence of states transi-
tion.

[0080] FIG. 47b shows a TCP sequence of message
exchange.

[0081] FIG. 47c shows a TCP sequence of states transi-
tion.

[0082] FIG. 47d shows another TCP sequence of message
exchange.

[0083] FIG. 48 shows an XPSL specification of the first
state.
[0084] FIG. 49 shows a list of the Java code corresponds

to the specification presented in FIG. 48.

[0085] FIG. 50 shows components and objects used in the
ISAKMP initiator.

[0086] FIG. 51 shows data structure of the ISAKMPFSM
object.

[0087] FIG. 52 shows BXcomposeMainHeader Java
class.

[0088] FIG. 53 shows a Java class for sending a UDP
packet.

[0089] FIG. 54 shows an SSL. Handshake sequence of
message exchange.

[0090] FIG. 55 shows an FSM diagram for SSL. Hand-
shake.

[0091] FIG. 56 shows an SSL Handshake Client Session-
State object XPSL specification.

Feb. 16, 2006

[0092] FIG. 57 shows an SSL. Handshake Client first state
XPSL specification.

[0093] FIG. 58 shows an SSI. Handshake Server first state
XPSL specification.

[0094] FIG. 59 shows a generated Java code correspond-
ing to the specification in FIG. 56.

[0095] FIG. 60 shows a generated Java code correspond-
ing to the specification in FIG. 57.

[0096] FIG. 61 shows FSM diagrams for an XSPL SSL
protocol.

[0097] FIG. 62 shows an SSLSessionState data structure.

[0098] FIG. 63 shows actions inside state 7 of the client
XPSL specification.

[0099] FIG. 64 shows a format of an SSL packet.

[0100] FIG. 65 shows java implementation of the
TCPListen Component.

[0101] FIG. 66 shows XPSL actions inside state 6 of the
Server process.

[0102] FIG. 67 shows an example of an encryption com-
ponent.

DETAILED DESCRIPTION OF THE
INVENTION

[0103] The present invention is a multi-layer protocol
management system and method, embeddable in a tangible
computer-readable medium, that allow for on-the-fly
machine-readable protocol discovery and negotiation, dis-
tribution of protocol specifications and components, auto-
matic machine-readable protocol implementation and
execution of machine-readable protocol specifications.
Automatic protocol implementation may be accomplished
using eXtensible Markup Language (XML)-related tech-
nologies and Component-based Software Engineering
(CBSE).

[0104] The present invention is also a tangible computer-
readable medium encoded with instructions capable of gen-
erating, as well as capable of being designed to generate,
protocol specifications. A program of instructions, called
XML-based protocol specification language (XPSL), may
be used for generating a specification of a communication
protocol (such as high-level specifications of a protocol) in
a machine readable form. A language that protocol designers
can use to describe the design of a protocol, XPSL may be
expressible in Finite State Machines (FSM) by using CBSE
principles. Taking an XPSL document as input, an eXten-
sible Stylesheet Language for Transformations (XSLT) may
be used as a code generator to transform specification
description into actual code (e.g., an implementation for the
communication protocol). XSLT stylesheets can be designed
to produce code in different programming languages (e.g.,
C++ or Java). CBSE may be used to build a set of operations
needed by a protocol.

[0105] XML is a set of rules for creating new markup
languages. Originally, XML may be construed as a subset of
the Standard Generalized Markup Language (SGML),
which specifies syntactic and semantic rules for creating
new markup languages, such as the Hypertext Markup

US 2006/0036755 Al

Language (HTML). SGML may also be deemed as an
International Standards Organization (ISO) standard.

[0106] XML 1.0 was announced as a World Wide Web
Consortium (W3C) recommendation on Feb. 10, 1998. A
goal of XML is to provide a language for expressing
metadata. Metadata refers to information about data. Meta-
data is often important in searches, filtering, and document
management. XML is intended to be human-readable as well
as machine-readable. A document that conforms to the XML
specification can be called “well-formed.” XML editors and
parsers typically provide the capability to check if an XML
document is well-formed or not.

[0107] An XML specification may include two parts. One
may specify rules for constructing XML documents, while
the other may specify rules for Document Type Definitions
(DTD). ADTD may specify how tags are used in a class of
XML documents; the order they should appear; the nesting
structure of a document; and the attributes of XML elements
for that class of documents. A DTD may also describe
constraints on XML elements that are used to validate the
correctness of an XML document. But, a DTD may also
have disadvantages. First, it is not written in XML; it has a
special syntax. Second, a DTD has a limited expressive
syntax to address needs such as different kinds of data types
and cardinality constraints. To overcome the limitations of
DTDs, XML schemas may be introduced.

[0108] The W3C released the Schema standard in May
2001. An XML schema may specify valid elements and
attributes in an XML document. It may also specify XML
elements order, attributes constraints, accepted data types
and accepted value ranges. Schema can help applications
determine whether an XML document complies with a
system’s requirements.

[0109] XPSL may be based on XML, which is an open
standard used to express Metadata in machine readable
form. Because XML is known to be widely used for easy
sharing and exchanging of information about transmitted
data, XPSL can benefit from the wide spread tools and
technologies of XML. In essence, the development of XPSL
addresses the need of sharing and exchanging protocol
specifications among users in a machine readable form.

[0110] The eXtensible Stylesheet Language (XSL) is a
language that allows XML document users to specify how
an XML document may be transformed into a resulting
output document (e.g., HTML, SVG, PS, PDF, plain text, or
any other format). The XSLT 1.0 recommendation was
released on Nov. 16, 1999. XSLT tends to be attractive to
developers because it is not a programming language. An
XSLT stylesheet may be written down as a set of rules,
which may be applied to the XML document during the
transformation to produce the required output.

[0111]

[0112] A protocol may be defined as a set of rules shared
by two or more communicating parties to facilitate data
communication. These rules can have two parts: syntax and
semantic. Syntax refers to the format of the messages that
are to be exchanged; semantic refers to the sequence of
operations to be performed by each party when events (e.g.,
timeouts and reception of messages) occur.

I. The Meta-Protocol Framework

[0113] Referring to FIG. 1, as one embodiment, a protocol
management system, sometimes referred to as a Meta-

Feb. 16, 2006

Protocol framework, can demand a plurality of require-
ments. First, it may require a negotiation mechanism for
allowing communicating parties to agree upon a machine-
readable protocol specification (also sometimes referred to
as protocol specification or specification). The specification
may be an XPSL specification. Second, it may require a
delivery mechanism for retrieving and/or distributing the
machine-readable protocol specification and any missing
component. Third, it may require a searchable repository
system to store specifications and any missing component.
Fourth, it may require a machine-readable protocol specifi-
cation converter to convert the protocol specification and
any missing component into executable code. Fifth, it may
require an executable code system manager for managing
the executable code by loading it and running it as needed.
Sixth, it may require a security measure against attacks, such
as identify theft, Denial of Service (DoS), anti-replay and
connection hijacking. Seventh, it may require a layered
architecture.

[0114] The layered architecture is often necessary to main-
tain flexibility. Natural boundaries between layers may be
found according to technologies chosen at each layer.
Indeed, each layer may encompass multiple technologies
that fit the requirements of that layer. For example, off-line
or online approaches may be used at the negotiation layer,
which is usually the first layer of the Meta-Protocol frame-
work. Moreover, any security measures needed may vary per
layer.

[0115] To implement the Meta-Protocol framework, a
development environment and/or an execution environment
may be needed. The development environment is generally
responsible for writing down protocol specifications from
protocol designs, developing components, and verifying
specifications and components. Once a specification is com-
plete along with all the required components, the protocol
may be deployed into the execution environment. The
development environment architecture and tools can be
widely open and can vary from a simple standalone editor
and compiler to complex visual (e.g., GUI) systems that
integrate editing, coding, and verification.

[0116] The distinction between the two environments is
important from an operational and performance point of
view. An objective of the development environment is to
prepare a system and produce necessary code. This objective
may be achieved in the background (e.g., under no time
constraints). On one hand, operations in the development
environment may involve human interaction and may take
several cycles to produce the correct specification and, if
any, components code. On the other hand, operations in the
execution environment may take place at run time. There-
fore, by separating these two environments, protocol code
may be executed with minimum possible overhead.

[0117] Referring to FIG. 2, the Meta-Protocol framework
may have four different layers: a negotiation layer, a distri-
bution layer, an implementation layer and an execution
layer. In the negotiation layer, communicating parties may
agree upon protocol specification. It is preferable, albeit not
necessary, that the protocol specification be written using
XPSL. For example, the protocol specification can also be
written using XML. In the distribution layer, the responding
party may retrieve and/or distribute the agreed upon protocol
specification, as well as any components needed for the

US 2006/0036755 Al

protocol implementation. The protocol specification may
exist locally or at a remote site. The responder may retrieve
the protocol specification and verify its authenticity, or
alternatively, allow a trusted third party to do so. In the
implementation layer, the protocol specification may auto-
matically be converted into code (e.g., executable code)
through a transformation process that uses XSLT. In the
execution layer, the code may be loaded and executed as
needed.

[0118] Various mechanisms may be employed to assist in
performing these functions. These include a negotiation
mechanism, delivery mechanism, machine-readable proto-
col specification converter and executable code system
manager. Each may be embedded within its respective layer
as exemplified in FIG. 3. Additionally, the framework may
also be supplemented by incorporating a searchable reposi-
tory system and a security measure. The searchable reposi-
tory system may assist in storing a protocol specification
and/or any missing component. A security measure can help
protect the system and method from attacks, such as viruses
and access without permission.

[0119] The system may be able to interact among the
layers using a method as exemplified in FIG. 4a. Addition-
ally, the method may further include a storing step and a
securing (i.e., protection) step as exemplified in FIG. 5a.
Both FIGS. 4b and 5b show that its respective method may
be embedded in a tangible computer-readable medium.

[0120] A. Negotiation Layer

[0121] A goal of the negotiation layer is to establish an
agreement between two communicating parties on the name
and location of a protocol specification and its components.
The protocol specification may be written in XML and/or
include a description of a protocol specification language
(such as, but not limited to XPSL) specified in an XML
schema. In essence, for example, the protocol specification
may be a machine-readable XPSL specification. A compo-
nent may be any software component, such as the ones listed
in the Computer Program Listing Appendix. A negotiation
mechanism can be used to help accomplish this goal. The
initiator of the communication can provide a set of proposed
protocol specifications. The responder can then select a
protocol specification according to its preferences and notify
the initiator.

[0122] This goal may be achieved either manually or
automatically. The manual approach may be feasible for
local areas but may not be appropriate for long distances.
Under the automatic approach, the goal may be achieved
either via a secure channel (e.g., SSL or IPsec) or through
the use of a customized version of the Internet Security
Association and Key Management Protocol (ISAKMP).
Customization can be performed according to a user’s
requirements or needs. If secure channels are used, nego-
tiation mechanisms may need to be added. Yet, it is prefer-
able to choose a customized version of ISAKMP because it
may already provide a negotiation mechanism in addition to
several important security features.

[0123] ISAKMP tends to provide packet formats and
negotiation procedures for establishing security associations
(SA) and key management. For the purpose of maintaining
interoperability between systems, it is preferable to separate
security association management from key exchange. In

Feb. 16, 2006

addition, the ISAKMP standard may be independent of any
specific security protocol or key exchange algorithm. More-
over, this standard may be highly flexible and interoperable
with other protocols and algorithms.

[0124] Every ISAKMP packet may include one or more
payloads organized as a linked list. Each payload can vary
in length as specified in a payload header. The first payload
may be defined in the main ISAKMP header, and every
payload may carry a field that defines the next payload type,
which may define the structure of such payload and its
content.

[0125] 1t is preferable to customize a Domain of Interpre-
tation (DOI) to define new payload formats, exchange types
and name conventions, as well as to save time and effort. To
achieve this feature, the IPsec format may be used with
various types of information tailored to the needs of the
Meta-Protocol framework. For example, IPsec may use
ISAKMP proposals to deliver information related to the
IPsec type of operation and transforms (e.g., AH or ESP). In
the Meta-Protocol framework, ISAKMP may be used to
deliver information related to protocol name, location and
versions.

[0126] The operation of ISAKMP may include two
phases. The first phase preferable negotiates security pro-
posals. An agreement upon a specific proposal can establish
phase-1-SA. In the second phase, a protocol specific SA may
be created under the protection of phase-1-SA. The first
phase may offer five types of exchanges: Base, Identity
Protection, Authentication Only, Aggressive and Informa-
tional. Each type of exchange tends to describe a sequence
of messages, and each may differ in the level of authenti-
cation and number of messages exchanged. An initiator can
select one of these exchanges to deliver proposals according
to its needs. The Base Exchange may provide session
integrity protection. One embodied implementation of the
present invention uses this exchange to deliver the file name
and file location of an XPSL protocol specification instead
of delivering IPsec related information. If confidentiality is
required, then the Identity Protection exchange can be used.

[0127] As an embodiment, FIG. 6 exemplifies the format
of ISAKMP’s main header and payload header. ISAKMP
may mandate the use of UDP as the transport protocol for
ISAKMP messages. According to one ISAKMP recommen-
dation, a set of cookies in the header is generated by hashing
the IP source and destination addresses, the UDP source and
destination ports, and any locally generated secret number.
The Next Payload Type field in the main header defines 13
types and leaves a range of values from 128 to 255 for
private use. The Exchange Type field defines the five types
of exchanges as mentioned previously. This field also leaves
a range of values from 240 to 255 for private use. The
private use code ranges provide the flexibility to define
additional sequences of messages for different types of
exchange as needed.

[0128] FIG. 7a shows a list of messages that may be used
by Base Exchange to deliver protocol proposals. FIG. 7b
shows an example of FSM diagrams for this Base Exchange.
As part of the customization of IPSec’s DOI, the semantic
of the messages of the Base Exchange may be changed.

[0129] According to these exemplified illustrations, in
ISAKMP’s Base Exchange, an initiator starts by sending a

US 2006/0036755 Al

set of protocol proposals, similarly to an exchange of
security associations, and a nonce. The nonce may be used
to protect against anti-replay. The responder chooses one of
the proposals and notifies the initiator. This notification
message also includes another nonce. In the next two
messages, the parties exchange key information and authen-
tication information. The authentication payload contains a
hash value over the previous messages to protect against
session highjacking.

[0130] The ISAKMP protocol may contain all the security
measures needed to protect the negotiation process against
DoS, anti-replay and connection highjacking. The five
exchange types in ISAKMP usually have different levels of
authentication. The most protected exchange may be the
Identity Protection exchange with six messages, and the
least protected may be the Aggressive exchange with only
three messages.

[0131] In aninstance, as shown in FIG. 8, an initiator may
send an ISAKMP packet to deliver a protocol proposal
composed of a protocol specification name, its location and
its version. The name and location of the protocol specifi-
cation are preferably mandatory; the protocol version is
optional. The protocol specification name (Protocol_X) and
versions (MjVer and MinVer) are placed in the first payload
while the location goes in the next payload. An initiator may
send multiple proposals linked to a main ISAKMP header
using the Next Payload field. The list is terminated by a null
value in the Next Payload field.

[0132] The initiator may also have the option to append to
the packet a key exchange payload carrying information
about the proposed key exchange technique (e.g., Oakley or
Diffie-Hellman). The key exchange may also carry the
required data to generate session keys.

[0133] Preferably, a protocol specification of the custom-
ized version of ISAKMP may serve as the bootstrap of the
Meta-Protocol framework. Simply, this embodiment is typi-
cally required from any network node to use the Meta-
Protocol framework since the code for ISAKMP may be
generated from its specification.

[0134] B. Distribution Layer

[0135] Generally, specifications and components refer-
enced therein do not need to be stored locally. Communi-
cating parties may exchange them directly (e.g., via a
communicating party distribution) or retrieve them from a
trusted third party. Such exchange may be facilitated using
a delivery mechanism. Specifications and components that
are only needed for a short period of time may be deleted
after their use to save space. Alternatively, specifications
may be retrieved and/or distributed from a local cache. To
protect specifications and components referenced therein
from unsolicited or malicious alteration, each ought to be
digitally signed by their authors and verified by the receiving
party. Trusted providers may place their specifications and
components at public repositories on the Internet so users
may retrieve them when needed. Newer versions may also
be pushed from these providers to subscribed users to keep
theirs up-to-date.

[0136] As a preferred embodiment, the distribution layer
uses a directory service, such as the Universal Description,
Discovery, and Integration (UDDI) directory, which is a
known comprehensive industry initiative that helps busi-

Feb. 16, 2006

nesses define themselves, discover other businesses and
share information about their interactions globally. UDDI is
also an architecture for web services integration that con-
tains standards-based specifications for advertising, descrip-
tion and discovery services. Each service advertised in a
UDDI directory has the freedom to specify a transport
mechanism to access that service (e.g., SMTP, FTP, HTTP,
and SOAP). Every UDDI user may have the option to check
the transport mechanism of the service he or she is seeking
before connecting to that service. Communicating parties in
the present invention may use UDDI to advertise protocol
names, the location of their specifications, the location of the
components needed by the specification and the preferred
transport mechanism to download the specification and
components.

[0137] In addition, using UDDI at the distribution layer
may also serve users who are planning to start a negotiation
but do not have specifications to propose to another party.
Such users may consult UDDI directories to discover pro-
tocol specifications, their providers, the location of the
specifications and their components for download.

[0138] UDDI is an open standard specification for direc-
tory services. The standard was released on Sep. 6, 2000 as
a project aimed to provide service-centric business-to-busi-
ness (B2B) integration. A goal of UDDI is to enable busi-
nesses to establish many business relationships. UDDIs are
repositories of information that facilitate discovery and
interaction between customers and vendors. Vendors may
present their offerings through UDDI as regular text descrip-
tions or as electronic representations (e.g., Web services).

[0139] Another goal of UDDI is to provide two main
services: publishing and discovery. Typically, publishing is
done by the service providers, and discovery is done by the
customers. Today, there are several public UDDI sites that
are running the most current specifications and are usually
available free-of-charge to UDDI developers (e.g., uddi.ib-
m.com, uddi.rte.microsoft.com and udditest.sap.com).
These UDDI sites help enable anyone to search existing data
or register new services.

[0140] The data available within UDDI may be divided
into three categories: white pages, yellow pages and green
pages. White pages may include general information about
the provider of the service (e.g., contact information). Yel-
low pages may provide classification information about the
service providers (e.g., industry, products and codes). Green
pages may contain technical information about the service.
This technical information may contain a pointer to an
external specification, address of the service provider and a
specification of the method for accessing the service. UDDI
may not be limited to advertising Web services. Rather,
UDDI can be used to advertise any service including web
pages, e-mail addresses and Common Object Request Bro-
ker Architecture (CORBA) services.

[0141] C. Implementation Layer

[0142] The traditional manual process, as shown in FIG.
9, for producing protocols may have three stages: design,
verification and implementation. The first two stages may
produce a specification document. The specification of stan-
dard protocols (e.g., TCP/IP, FTP, SSL and IPsec) may be
written in natural English (e.g., RFC) and may be translated
into code by programmers.

US 2006/0036755 Al

[0143] The manual design and verification process may be
similar to the traditional approach. However, the design
process in the present invention may use FSMs to produce
protocol specifications in XML. These specification docu-
ments generally have to be well-formed XML documents
and ought to comply with the rules specified in the protocol
XML schema. If these conditions are satisfied, an XSLT
stylesheet may automatically implement the protocol with-
out human intervention.

[0144] The implementation layer of the present invention
may include an approach to produce code (e.g., executable
code) that implements a protocol automatically. The pro-
posed approach is preferably based on XML.-related tech-
nologies and a multitude of components referenced in at
least one of the protocol specifications. XML-related tech-
nologies may include, but are not limited to, XML schema,
XSLT transformations, XSLT processors, XML parsers, and
XML editors. Where XPSL protocol specifications are
involved, it is suggested that an XML-based language, such
as XPSL as later discussed herein, be used to produce code.
In general, XPSL may specify protocols described through
FSMs. XSLT may be used to transform or convert the
specification and any missing component into actual code,
such as an executable code. To aid this conversion process,
a machine-readable protocol specification converter may be
used. XSLT stylesheets may be designed to produce code in
different programming languages (e.g., C++, Java or Cobol).
It is possible that a single XSLT stylesheet may be associated
with a single programming language. Such stylesheet may
be used to generate an executable code, which may either be
an implementation of or a code used for implementing at
least one protocol specification, for a multitude of protocol
specifications. The executable code itself may be retrieved
from a local cache.

[0145] CBSE, a software component, may be used to build
a set of operations (e.g., encryption) needed by the protocol.
Such set may be a multitude of components referenced in at
least one of the protocol specifications. FIG. 10 highlights
a proposed automated protocol production process.

[0146] Every component used in an XPSL specification
may be an executable program designed based on CBSE
principles. Furthermore, a component may be a software
component. Moreover, a component may be shared by more
than one XPSL specification. For example, an RSA encryp-
tion algorithm may be used in a single protocol several times
and may be shared by many protocols. However, a compo-
nent may also comprise several subcomponents. For
instance, a security envelope component consists of a header
processing subcomponent, a MAC subcomponent and an
encryption algorithm subcomponent.

[0147] The idea of modular or component-based design
approach is common in many engineering fields and indus-
tries. For instance, most electronic devices, such as com-
puters, are assembled from parts that can interoperate within
a single system. These parts comprise many different kinds
and are supported by many “industry standards”™ such as
motherboards, chips, memory, keyboard and cables. This
process also requires that standards for interfaces be defined
to allow disparate sets of parts to be assembled into one
system. Some of these standards may be dictated by major
vendors, while others may be de facto industry standards.

[0148] In software engineering, CBSE may help improve
the efficiency of the software development process, reduce

Feb. 16, 2006

maintenance costs and enhance the quality of the resulting
product. Recently, CBSE has been adopted by many vendors
in technologies such as CORBA, COM+, JavaBeans and
Software Agents.

[0149] A software component may be defined as “a soft-
ware element that conforms to a component model and can
be independently deployed and composed without modifi-
cation according to a composition standard.” The compo-
nent model mentioned in this definition refers to the inter-
action and composition standard. The interaction aspect of
the model defines the interface of the component. The
composition aspect defines the deployment of the compo-
nent in terms of installation, configuration and instantiating.
While other definitions exist for software component, the
recurring characteristics identified by these definitions are
independency, interface, context, relationships and the archi-
tecture of the component.

[0150] CBSE is an approach that helps simplifying com-
plex systems by dividing them into smaller subsystems.
Each subsystem may be regarded as a component that can be
designed, implemented and tested independently. This
approach may exhibit several advantages: the ease of
designing and developing large systems, language-indepen-
dent, reusable, scalable, facilitation of testing and validation,
and flexibility.

[0151] D. Execution Layer

[0152] Generally, the execution layer deals with an
executable code of a protocol and depends on services
provided by an underlying operating system and a network.
All kinds of message exchanges between parties may be
performed by a code running at this layer. Protocol code
should be loaded as a privileged process by the operating
system. This process and its address space may need to be
protected against any malicious alteration or termination. To
manage the loading and/or running of an executable code, an
executable code system manager may be used.

[0153] Playing a central and integrative role in the present
invention, this layer may include a set of interfaces and
control operations. The interfaces are usually responsible for
delivering requests and feedback between the external world
and the execution layer to, for example, deliver user requests
to start or terminate a protocol. The external world may be
defined as anything outside of the execution layer, such as a
tangible or intangible object, system, action, method, pro-
cess, etc. Control operations, which may take place at run
time, may manage the internal affairs of the execution layer.
Internal affairs may be defined as the internal matters,
activities, thought processes, operations, etc. within a par-
ticular environment, such as the execution layer. Examples
include authenticating a user to access a protocol, checking
the availability of a protocol, loading or terminating a
protocol.

[0154] In this environment, the Protocol Control System
(PCS) may control the internal activities and provide several
interfaces to connect the layers of the present invention to
the external world. FIG. 11 shows one aspect of a proposed
system architecture for the implementation of the Meta-
Protocol framework. The PCS may include a controller,
cache memory, code generator, a set of interfaces, a set of
databases (including protocol specifications and compo-
nents), and a collection of components. These components

US 2006/0036755 Al

may be protected by an operating system. There are usually
two types of allowable access to the PCS: administrative
access and user access. Users may access the PCS to request
operations, such as the execution of a protocol or addition of
a protocol specification or component. Administrative
access may be granted to a few legitimate users for admin-
istrative and maintenance tasks, such as registering users,
registering a trusted site and changing the configuration of
the system (e.g., audit policies). In highly secure environ-
ments, administrators may also be classified into several
levels according to the environment requirements, such as
supervisor, backup only and users’ management adminis-
trator.

[0155] The controller often serves as the core of the PCS.
It is generally responsible for the coordination of the internal
activities of the system. To maintain the integrity of the
system, all types of accesses to the internal subsystems
should be limited to the controller. The controller is typically
responsible for receiving protocol invocation requests, veri-
fication of user’s access privileges, configuration manage-
ment, storage of specification and components, protocol
code creation or removal, loading or terminating the execu-
tion of a protocol, and auditing operations. Requests for
system services may come to the PCS from, for example, a
user, the operating system, an application or a network.

[0156] The controller may also be responsible for authen-
ticating users to access protocols or modify databases (e.g.,
for registering, adding or deleting a specification or com-
ponent). To achieve this task, the controller may need to
consult internal or external user directory services and
access lists determined by the PCS configuration.

[0157] Management of the configuration information may
also be part of the responsibility of the controller. Only a
supervisor administrator is generally allowed to change the
configuration information. Configuration information may
include time synchronization source, host identity and
address, administrator contacts, maximum disk quota
allowed for various system databases, audit policies, and
access information to external databases (e.g., locations,
user accounts, and access methods).

[0158] Important roles of the controller include audit and
I/0 management. Audit logs may be important for problem
analysis and security investigations. I/O services may
include handling and protecting inter-process communica-
tion, as well as communicating with network interfaces. The
interfaces with the execution layer may also maintain their
own logs of activities.

[0159] The cache memory is basically a temporary
memory that may used by the PCS to improve the efficiency
of the system. Copies of frequently used protocols, compo-
nents or security related information (e.g. keys and pass-
words) may be temporarily stored in this cache to reduce
preparation time and to speed up execution of protocols.

[0160] The code generator may include two processors: an
XSLT processor and a compiler. The code generator may act
on behalf of the implementation layer. The XSLT processor
may take as input an XSLT stylesheet for a specific pro-
gramming language and an XPSL protocol specification.
The XSLT processor may output source code in the language
specified in the XSLT stylesheet. The compiler may convert
the source code from the XSLT processor into executable
code for the protocol.

Feb. 16, 2006

[0161] The interfaces subsystem may be responsible for
facilitating the communication between the external world
and the PCS. Multiple types of interfaces (e.g., a user,
application, operating system, network, etc.) are often
needed. Breaking down the communication of the PCS with
the external world into specific interfaces may improve
evolution and the scalability of the system. Evolution may
be improved by replacing an old version of an interface with
a newer one. Scalability may be improved by adding new
interfaces as needed (e.g., when a new network driver

appears).

[0162] A difference between the user interface and the
application interface is that the former may be used for the
manual access to the system. The latter may be used for
automated access. For example, a system administrator who
wants to make changes in the system needs a user interface.
However, an application that needs to query the system or
invoke the execution of a protocol requires an application
interface. The operating system interface is typically respon-
sible for coordinating the execution of protocols with the
operating system. The network interface is often responsible
for remote management of the PCS and for retrieving
specifications and components from remote sites.

[0163] The database subsystem may manage information
needed for the operation of the PCS, such as, though not
limited to, users’ accounts, access list, secret keys, certifi-
cates, XPSL protocol specifications, components, adminis-
trative accounts, trusted providers, and a registry. To save
system resources, some of these databases may be main-
tained externally (e.g., LDAP, UDDI, iPlant, and Active
Directories). Thus, the PCS may consult these directories
and retrieve information as needed. The choice of an exter-
nal or internal database is part of the configuration process
of the PCS; such information may be saved as part of the
configuration information.

[0164] Preferably, the present invention uses an access list
and a registry. These two databases tend to be specific to the
PCS operation. The access list defines the access permission
that each user has to each object (XPSL specification or
component) in the system. Each user may have four types of
permissions: read (R), write (W), execute (E), and delete
(D). A user may also be assigned to a combination of these
permissions. FIG. 12 shows an example of an access list.
The “*” in the last row of the table stands for “others.” A
value of “1” in the table indicates permission and value of
“0” indicates denial. FIG. 13 shows an example of a Unified
Modeling Language (UML) entity class diagram for the
access list.

[0165] The second database can be the registry. This
database may be used to register available objects (specifi-
cations or components), their location, provider information,
authentication information, and expiration date. This regis-
try can be updated in two ways: automatically or manually.
The automatic update may be limited to adding new speci-
fications or components through the on-the-fly process of
exchanging protocol specifications. Deleting an object from
the registry may be limited to legitimate users (e.g., Admin-
istrator). Legitimate users may be allowed to access this
registry manually and update it. FIG. 14 shows an example
of records in the registry database.

[0166] A registry record may include, inter alia, an object
id, object location, identity of a user who registered the

US 2006/0036755 Al

object, identity of a provider who created the object, a
signature value (e.g., in binary format), and an expiration
date and time for the use of the object. FIG. 15 shows a
UML entity class diagram for the registry database.

[0167] Every component may be an executable program
having a design based on CBSE principles. A component can
be designed out of a simple operation (e.g., encryption), or
it could comprise several components as a compound com-
ponent (e.g., security envelope). A component may be
shared by more than one XPSL protocol specification. On
one hand, for example, an RSA encryption algorithm can be
a single component. Such a component may be used in a
single protocol several times, as well as being shared by
many protocols. On the other hand, a component may also
comprise several subcomponents. For instance, a security
envelope component may include a header processing sub-
component, a MAC subcomponent and an encryption algo-
rithm subcomponent.

[0168] The set of all needed components may not need to
be stored in every PCS system. Communicating parties can
download a code of a component from one system to another
if a code is needed but missing from one of the systems.
Moreover, components that are needed for a short time
period or by a certain process can be deleted from the system
after their use. Furthermore, upgrading a component may be
easier than upgrading a version of a protocol in the tradi-
tional sense. This same concept may also apply to the XPSL
specification of protocols, which can be downloaded from
one user to another or from a trusted center to the user for
temporary usage or for an upgrade.

[0169] To protect these components from malicious alter-
ation, they may need to be signed by their authors and
checked by the PCS system before being added to the
system. As portrayed in FIG. 3, trusted third parties, such as
trusted component providers, may place the components in
public repositories on the Internet so that users may pull
them when needed. Newer versions may also be pushed
from trusted providers to subscribed users to keep their
systems up-to-date.

[0170] Every component may have an interface that speci-
fies its parameters and types. This interface should be
published with a description of the component operations so
that protocol designers can understand it and use it. Devel-
oping interfaces and defining conventions for components,
names and functions may be, however, essential for com-
patibility and interoperability among components in the
framework. This development can be achieved in two
ways—either by standards development committees or by
the fact that a component becomes widely available because
a major vendor with global reach supports it. A component
should not have several names on different machines
because this aspect may create confusion and may prevent
PCS systems from locating the correct component. More-
over, duplicates can occur because the PCS may contain
several instances of the same components but with different
names.

[0171] Data objects may also be considered components in
the system. Such data objects may be used during the
process of writing of protocol specifications. Additionally,
such data objects tend to be used to hold values that are
common among several components, such as time, security
keys, sequence and random numbers, and header informa-
tion.

Feb. 16, 2006

[0172] One objective of the operation of the PCS is to
integrate the layers of the Meta-Protocol framework. Each
layer of the framework may be implemented through at least
one call for an operation as follows:

[0173] 1. At least one call for negotiating an operation;

[0174] 2. At least one call for retrieving a specification
or a component;

[0175] 3. At least one call for generating protocol code
(XSLT processing and compilation); and

[0176] 4. At least one call for execution.

[0177] One way that a call may be performed is via a
mechanism within a layer as shown in FIG. 3. For example,
a negotiation mechanism may negotiate a protocol specifi-
cation. A delivery mechanism may retrieve a specification or
a component. A machine-readable protocol specification
converter may generate protocol code. An executable system
code manager may conduct execution.

[0178] FIG. 16 illustrates a UML activity diagram for a
PCS operation. This diagram describes how the four layers
of the framework can be integrated via implementation of
the four calls mentioned above. For simplification purposes,
FIG. 16 does not show all the error controls and security
checks. Examples of security checks not shown in the
diagram include (1) checking user authority to use a proto-
col, (2) checking authority to access a component and (3)
verifying the integrity of the protocol specification and its
components.

[0179] To exemplify how a PCS may operate, one may
consider a typical scenario that starts with a request to run
a protocol. The PCS checks locally for the protocol code. If
that code is found, the PCS sends that code for execution. If
that code is not found, the PCS looks for a specification,
transforms the specification into code, and sends it for
execution. Otherwise, the PCS uses the location information
provided in the request to retrieve the specification. Once the
specification is downloaded, the PCS transforms the speci-
fication into code and sends the code for execution. The
transformation of protocol specifications to code requires the
availability of the code of the components mentioned in the
specification. If there are missing components, the PCS has
to retrieve them from remote locations according to its
internal operational policies.

[0180] The minimum requirements for any user of the
present invention are usually the ISAKMP specification, its
components and an XML transformation stylesheet. Again,
ISAKMP may be considered the bootstrap of the present
invention. Communicating parties may be required to gen-
erate code for ISAKMP to be able to agree upon the
subsequent protocol they plan to use. Once that agreement
is established, the parties may proceed to download the
specification of the agreed-upon protocol, generate a code
and start communication by running the generated code.

[0181] Performance can also be a concern. While actual
performance may depend on the implementation of the
present invention, some architectural issues may be relevant
to performance. In general, the development process of
components and protocols should generate optimized code
that has reasonable performance compared to traditional
protocols. For example, if a specification specifies the ser-
vices of an SSL protocol, the present invention should be

US 2006/0036755 Al

able to generate an implementation of SSL with similar
performance characteristics as an implementation generated
by traditional means. The code generated by the PCS can be
cached in memory for reuse by similar calls to avoid the
overhead of regenerating it.

[0182]
[0183] A. Use of FSMs in Protocol Design

II. XPSL

[0184] FSMs are commonly used for describing protocols.
The graphical representation of an FSM may serve as a
visual aid to a designer of a protocol. This representation can
help in testing and verifying the correctness of the design.
An FSM may have a set of states (represented by circles) and
a set of transitions between these states (represented by
directed arrows connecting the states). At each state, a set of
events may occur. Each event may trigger a transition out of
a state. Before a transition occurs, a (possibly empty) set of
actions may be executed. One of the states in an FSM is
often designated the initial state. To portray an FSM, as
shown in FIG. 17, one may consider a Needham-Schroeder
authentication protocol (NSAP), which is a two-way authen-
tication protocol based on public key cryptography. A client
may start the process by using the public key of a server to
encrypt his identity and a random number, Na. The server
may receive the message, generate a random number, Nb,
encrypt the concatenation of Na and Nb using the client’s
public key, and send the message back to the client. The
server’s authenticity may be verified if the client success-
fully retrieves his Na. The client may return Nb encrypted
with the server’s public key to prove his identity.

[0185] A pair of FSMs, one for each communicating party,
may specify a protocol. State activities and state transitions
may be coordinated between these two FSMs based on
message exchanges. Each state machine may keep track of
its internal shared state. The machine shared state may hold
common information needed by individual states, such as
public or shared keys, user identities and access permissions.
The termination of the FSM or the final state may be
implicitly defined according to the execution sequence.

[0186] B. XPSL XML Elements

[0187] An essential concept of the present invention is the
use of a domain-specific specification language in lieu of
technical natural language for the specification of protocols,
as in IETF RFCs. This approach may facilitate automatic
protocol implementation from specification. FIG. 18 shows
the traditional manual production process for protocols. The
process can pass through three stages: design, verification,
and implementation. The first two stages may produce a
specification document. Standard protocols (e.g., TCP/IP,
FTP, SSL and IPsec) specifications may be written in natural
English (e.g., RFC). Programmers may have to translate
these documents into code.

[0188] As illustrated in FIG. 19, the manual design and
verification process of the present invention appear similar
to the traditional approach. However, the design process
may use FSMs to produce protocol specifications in XPSL.
These specification documents may have to be well-formed
XML documents and may have to comply with the rules
specified in the protocol XPSL schema. If both conditions
are satisfied, the XSLT stylesheet may automatically pro-
duce implementation for the protocol without human inter-

Feb. 16, 2006

vention. Many different implementations in several pro-
gramming languages can be developed for the same protocol
specification.

[0189] For a number of reasons, XML may be used as the
basis for a language, which may be called XPSL, to express
the specification of protocols. First, XML tends to be an
open standard. Second, the tools for handling and processing
XML documents and its related technologies are typically
mature and widely available. Third, XML is often program-
ming language neutral. Fourth, the XSLT technology usually
makes it easy to transform an XML document into any
user-preferred programming language.

[0190] To specify a protocol executable by a machine
under the control of a program of instructions, preferably
XPSL, several types of XML elements may be utilized or
added. For example, these types include, but are not limited
to and are without any particular order, <protocol>, <first-
state>, <object>, «<instance>, <state>, <action> and
<moveto>. FIG. 20 illustrates a tree structure of these XML
elements and their relationships with each other. The XML
elements are depicted in triangular brackets; the attributes of
these elements are shown in square brackets. It is important
to note that elements not designated as optional are prefer-
ably mandatory.

[0191] Referring to FIG. 21, as one embodiment, the basic
foundation of the present invention begins with three ele-
ments, capable of being encoded in a tangible computer-
readable medium readable by a machine. Preferably, a first
element used may be a <protocol> element. The <protocol>
element may serve as a root element of an XML protocol
specification document and is a mandatory element accord-
ing to the XPSL definition. It may also serve as the parent
element of the following elements: <first-state>, <state>,
<object>, <instance> and <action>. It should be noted that
both <object> and <instance> tend to have a global scope
and may be used to prepare objects shared by the states of
the protocol.

[0192] A second element that may be added is a <first-
state> element. Typically a mandatory element, the <first-
state> element may be used to identify the starting state of
an FSM. The starting state generally serves as the state that
produces the “Hello” message to start a communication.
This element should occur only once in an XPSL specifi-
cation given that an FSM can only have one initial state.
However, all other elements may have multiple occurrences.

[0193] A third element that may be added is a <state>
element. The <state> element may describe different states
of a protocol. FIG. 22 illustrates an XPSL syntax for
NSAP’s client state 3. A <state> element may not be able to
be nested inside another <state> element. Every state in an
FSM ought to be described by exactly one <state> element
XPSL.

[0194] Staying with this embodiment, a protocol may
include at least one protocol specification written in XML.
Moreover, a protocol may include a description of a protocol
specification language (such as XPSL) specified in an XML
schema.

[0195] Additionally, several elements may be added, and
used, to extend a machine-readable XPSL for specifying
protocols and a method of its integration, into a machine-
readable tangible computer-readable medium. A purpose of

US 2006/0036755 Al

extension is to address possible requirements of a general
XML specification and the process of generating executable
code. Such extension may be exemplified in FIG. 23.

[0196] Hence, a fourth element that may be added is an
<object> element. The <object> element may be used to
define data, such as messages, keys, constants and random
numbers, needed during protocol operations. Every object
may have a name and a set of fields. Every field may have
a type attribute associated with a <name> element as later
described herein. Data types may include, but are not limited
to, predefined types, such as Keys, Strings, Integers and
Booleans. Objects may be passed as parameters from one
action to another. Exemplified in FIG. 24, an object called
SessionState is used to hold shared information between
states. Simply, there may not be any public information
unless it is defined as an object and passed as a parameter to
the actions of a state.

[0197] A fifth element that may be added is an <instance>
element. The <instance> element is similar to the concept of
instance in object-oriented programming; objects may rep-
resent definitions of classes and instances may either be the
actual realization of the definition or hold actual data. An
object may have several instances, as needed. However,
every instance may represent one object and there may not
be any shared information among instances. For example, an
object, called error-message, may be used to create several
instances of error messages as needed in the protocol states.
Every error message instance may hold different error codes
and an identification of the component that generated the
message.

[0198] FIG. 25 depicts an example of an error message
<instance> element. This element includes a name, a type
and at least one initial value. This example shows an
instance named error with a type CompLib.Error_message,
and initial values (0,0,null). The data type definition of this
instance may come from a component library called Com-
pLib. This library may also provide interface descriptions
for each component to help developers determine the initial
values.

[0199] A sixth element that may be added is an <action>
element. The <action> element may define actions (e.g.,
calls to components in a library) that take place inside a
state. In some cases, elements may be nested inside an
<action> element. These situations may occur when a com-
ponent needs an instantiation of a data object that was not
passed to the state for temporary local usage. For example,
a seventh element, such as a <moveto> element, may be
added and nested inside an action in various situations (e.g.,
branching out of a state before completing all the actions in
a state due to errors). FIG. 26 shows a <moveto> element
nested inside an <action> element. This example shows that
if the component CompLib.checkRevSynAck raised an
error, the control flow will branch to an error state instead of
moving to the next action.

[0200] The <moveto> element may act as a switch-case
statement in a procedural programming language. This ele-
ment may provide the mechanism that controls the transi-
tions from one state to another. The <moveto> element may
add an eighth element, namely an <expression> element,
serving as a logical expression, and a ninth element, namely
a <case> element, serving as a list of cases. This logical
expression may be evaluated to produce a set of predefined

Feb. 16, 2006

values. A <case> element may point to the next state for each
possible value of the expression. FIG. 27 illustrates the
XML syntax for a <moveto> element.

[0201] A <moveto> element may either be a child of the
<state> element or, again, a child of an <action> element.
Being a child of an <action> element can provide flexibility
for early branching out of the state before finishing all the
actions listed in the state. This feature can be useful if an
error or timeout is raised by some actions. However, when
a <moveto> is used as a child of a state, it may have to be
the last element in the state after all the actions.

[0202] As another example of an element nested in an
<action> clement, FIG. 28 shows a case where a nested
<instance> element instantiates a random integer object that
may be needed locally by a component but was not passed
to the state. State local objects should be created locally. But,
they should not be passed as parameters to other states.

[0203] Referring again to the third element, as depicted in
FIG. 20, a <state> element can have one of the following
child elements: <object>, <instance>, <action> and
<moveto>. A purpose of these elements is to express the
operations that may be performed inside every state of the
FSM. Typically, the branching out of a state is performed as
the last action in a state. However, in a case where an error
exists, branching may take place in the middle of the state.
Developers should anticipate such cases and place
<moveto> elements after the actions that raised such errors.

[0204] Furthermore, each <state> element may add an
optional tenth element called <arg>, as illustrated in FIG.
22. This child element may describe external objects that are
passed to the state. The <arg> element may have a name
attribute, the name of the object to be passed to the state and
may be followed by a <type> element that describes the type
of the object.

[0205] Moreover, XPSL and its method of integration may
add an optional, eleventh element that is used for identifi-
cation purposes for any of the above elements. This addi-
tional element may be called a <name> element and may be
designated as a single or child element. For example, as
shown in FIG. 20, the <name> element may be used as a
child element of the <protocol> element to help identify the
<protocol> element. The XSLT processor may either ignore
or replace the <name> element with any other user-supplied
identifier.

[0206] Writing down XPSL specifications may be gener-
ally perceived as a manual process, as illustrated in FIG. 29.
In this process, an FSM may be mapped to a set of XML
elements. As one embodiment of the present invention, one
process of writing down XPSL specifications may follow
this sequence:

[0207] 1. Place the <protocol> element as the root of the
XPSL specification document.

[0208] 2. Add a <name> element as a child of the
<protocol> element to specify the name of the protocol.

[0209] 3. If nceded, add a group of elements that
prepare the environment (e.g., define public objects as
<objects> or <instances>).

[0210] 4. Add the <first-state> element to specify the
starting state of the FSM.

US 2006/0036755 Al

[0211] 5. For each state in the FSM, insert a <state>
element.

[0212] a.Inside each <state> element, add a group of
<action> elements to perform the actions required by
the state.

[0213] b. At the end of each state, add a <moveto>
element to indicate the next state.

[0214] XPSL may be stored in a tangible computer-read-
able medium readable by a machine, as exemplified in
FIGS. 30a and 30b. A tangible computer-readable medium
includes, but is not limited to, CDs, DVDs, hard drives,
floppy disks, random access memory (RAM), read only
memory (ROM), flash cards, memory cards, computer chips,
cache files, etc. A machine includes, but is not limited to,
computers, personal digital assistants (PDAs), phones, CD
players, DVD players, cameras, camcorders, etc.

[0215] C. Protocol Data Types

[0216] Every programming language often follows a spe-
cific approach for defining syntax and semantics for data
types. XPSL may adopt a minimum common denominator to
provide a unified approach to serve the most popular pro-
gramming languages. This aspect may be addressed by two
formats. First, XPSL may support six primitive data types
that are common in most programming languages: byte, int,
long, char, string and Boolean. FIG. 31a shows a compari-
son of data types among several programming languages.
FIG. 31b shows a set of primitive data types chosen for
developing XPSL protocol specifications. Second, using an
objected-oriented approach, new data types may be defined
in a component library when needed for an XPSL specifi-
cation.

[0217] D. Sufficiency of the Specification Language

[0218] The set of XML elements used in XPSL may be
sufficient to describe any FSM. For illustrative purposes, all
elements of an FSM are mapped into the XPSL specification,
and the XPSL specification captures the behavior of an FSM
in terms of state transitions. For instance, an FSM F is a tuple
(S, sg, T), where S is a set of states, s, is the initial state and
Tis a set of state transitions defined as T={(s, v, ¢, A) |s, veS,
ccQ, Ac©®)}. In addition, a transition (s, v, ¢, A) is a tuple
with two states (the “from” state s and the “to” state v), a
condition ¢ from a set of conditions €, and a set of actions
A from the set of possible actions ®. The condition ¢ is a
Boolean expression whose terms may include occurrence of
events (e.g., arrival of a message and timeout) and compari-
sons including variables (e.g., window size) and constants.
Examples of actions include composing and sending mes-
sages.

[0219] The behavior of an FSM may be defined by the set
of rules that determine how the FSM moves from state to
state starting from the initial state s,. This behavior may be
described by the following algorithm:

s €5,
repeat
if3 (s, v,c,A) €ET| (v = null) Alc = true)
then s ¢—v;
execute actions in A
else stop
forever

13

Feb. 16, 2006

[0220] This algorithm may start execution from the initial
state s,, the current state s at the beginning. Then, all
transitions (s, v, ¢, A) out of the current state may be
examined. The one for which the condition ¢ is true may
trigger a state transition to state v. Before moving to the next
state, all actions in the set A ought to be executed. The next
state should then become the current state s. The process
may repeat itself until a terminal state (i.e., a state with no
outgoing transitions) is reached.

[0221] FIG. 32a exemplifies a common pictorial view of
an FSM indicating the possible transitions between state s
and states V,, ..., V_ . The labels alongside each transition
show the condition c; that may trigger the transition and the
set of actions A; carried out when the transition takes place.

[0222] FIG. 32b illustrates a behaviorally equivalent pic-
torial representation. The decision on what state to move to
and the corresponding actions to execute may be shown
“inside” the state circle and not along the transition arc. Yet,
the behavior should still remain the same. The design of
XPSL may be based on the pictorial representation of FIG.
32(b), which is generally equivalent to the FSM represen-
tation of FIG. 32(a).

[0223] An FSM may be described with a tree of XML
elements as in FIG. 33. The initial state s, of an FSM is
preferably mapped to a <first-state> element and every state
in the FSM may be mapped to a <state> element. Every
<state> element may have two child elements: a <name>
element to identify the state and a <moveto> element that
specifies the process of evaluating the conditions and
executing the actions associated with each state. The
<moveto> element may have two acceptable types of child
elements: a single <expression> element and as set of
<case> elements. Each <case> element preferably corre-
sponds to a transition in the set T in the FSM in which the
“from” state is the state identified by the <name> element
and the “to” state is specified by the <case> element.

[0224] Because an FSM may have limitations for describ-
ing the behavior of programs, the XML tree referenced in
FIG. 33 should be extended to address the requirements
imposed by the general XML specification and the process
of generating executable code. To address these require-
ments, four XML elements may be added to XPSL: a
<name> element to identify the implementation of the
protocol, <object> and <instance> elements to define data
objects, and an <arg> element to define data objects to be
passed to states. Basically, an executable code needs a name
to identify the resulted code. Therefore, a <name> element
may be added to the specification to identify the generated
executable code. This <name> element may be placed as a
child of the <protocol> element. Now, since an FSM does
not explicitly express data objects, the <object> element
may be added to express the types and structure of the data
involved in the FSM. In addition, according to the object
oriented programming approach, instances tend to be cre-
ated out of data objects during the execution to hold the
actual data. Therefore, an <instance> element may be added
to address this requirement. Furthermore, to control the

US 2006/0036755 Al

scope of access of objects in the different states, an <arg>
element may be added as a child of the <state> element. One
purpose of the <arg> element is to facilitate passing data
objects to states. FIG. 20 shows a full XPSL as per an aspect
of the present invention. FIG. 20 also shows that <action>
elements may be allowed under the root element before the
<first-state> and under the <state> element before
<moveto>. The reason for such design choice is to allow for
code optimization. The actions that are placed in these
positions are usually common actions required by the pro-
tocol or by a state, which result in reducing the repetition of
the shared code.

[0225] E. The XML Schema for XPSL

[0226] Tt is favorable to have an XML schema to enforce
XML protocol rules. This schema may be used to validate
the syntax of protocol specifications. Generally, the schema
prevents developers of XPSL specifications from introduc-
ing illegal elements. The schema may also help developers
find any missing mandatory elements, such as the <first-
state> element, before they run a transformation. The XPSL
schema for protocols described using FSMs can be found in
the Computer Program Listing Appendix. FIG. 34 shows the
steps required to check a protocol specification.

[0227] For each element or an attribute in an XPSL
protocol specification, there tends to be a corresponding
definition or constraint that controls the content of the
specification. FIG. 35 highlights the main segment of
XPSL’s XML schema. Referring to this drawing, the first
two lines declare the XML and schema versions followed by
the definition of the protocol root element. The root element
may contain a <name> element and five references. Each
reference may define the allowed content and its cardinality.
The minOccurs and maxOccurs constraints may define how
many times an element could appear in a protocol specifi-
cation.

[0228] The definitions in FIG. 35 show that a protocol
specification may have zero or more objects. Similarly,
instances and actions may occur zero or more times. How-
ever, as a preferred embodiment, the <first-state> element
needs to appear exactly once. Moreover, as another preferred
embodiment, the <state> element must appear at least once.
Otherwise an error may be signaled.

[0229] FIG. 36 exemplifies a definition of an <object>
element. This definition indicates that if an <object> element
exists, then it should have a <name> element and at least one
<field> element. The value in the field element may indicate
the name of the field. The field may also have a required
attribute that indicates its type. If the value or attributes is
missing from the XPSL specification, the XML Schema
checker may raise an error. Typically, the XML Schema
checkers enforce the permitted data types (e.g., string, int,
byte) for a field.

[0230]

[0231] To transform XPSL protocol specifications into
code, XSLT may be used. In some cases, only one XSLT is
needed to transform the protocol specifications in a given
programming language. Every element in an XPSL speci-
fication may cause the XSLT processor to produce the
required code. An XSLT spreadsheet may be developed to
produce Java code from any XPSL protocol specification.
This spreadsheet may also be used on several XPSL protocol

III. Automatic Code Generation

Feb. 16, 2006

specifications. For example, Sun Microsystems’ XML Pack,
which includes an XSLT transformer and an XML Schema
checker, may be used. XSLT rules and filters may be used to
identify different XML elements, convert them to their
corresponding program code and lace them in the proper
XSLT output tree. Every programming language tends to
require its own XSLT transformation sheet. Once that sheet
is available, any protocol specification written in XPSL may
be transformed to that language and compiled in an appro-
priate system. Code for an XSLT spreadsheet may be found
in the Computer Program Listing Appendix.

[0232] As a demonstration, FIG. 37 shows the steps
required to generate a protocol implementation from an
XPSL specification. Using this approach, any system on the
Internet with the proper XSLT stylesheet may be able to
download an XPSL specification and use the stylesheet to
produce code in the preferred programming language, com-
pile it and run it. For instance, sixteen templates may be used
in the Java XSLT stylesheet to transform XPSL specifica-
tions to Java code. The XML specifications, the Java XSLT
stylesheet and the XML schema that were developed for
validation of the XML specifications may be found in the
Computer Program Listing Appendix.

[0233] A. The Stylesheet Structure

[0234] Producing Java code may require writing a main
program and a set of classes. The main program is typically
responsible for starting the execution. Classes may corre-
spond to either objects or states. Thus, the first few lines in
the stylesheet tend to describe the XML version, the
stylesheet version, the XPSL name space, and the type of
output. FIG. 38 displays such description. The main tem-
plate can be used to determine the stylesheet’s structure.
This main template may push to the output a header for the
main Java program and may call five other templates:
(1)/protocol/name, (2) action, (3) first-state, (4) object and
(5) state template. In addition, FIG. 38 also shows declara-
tive instructions and the main template of the stylesheet.
From among all templates, which may be found in the
Computer Program Listing Appendix, favorable examples
include <first-state>, <object> and <instance>.

[0235] The <first-state> template often serves as a trivial
template that produces the name of an entry point of the state
machine. This template may be called once from the main
template of the stylesheet. Therefore, as portrayed in FIG.
39, the main Java program may only have one class to call.

[0236] The <object> template typically produces code for
data objects. As shown in FIG. 40, this template may
produce a Java class that defines an object interface and a
construct for the instantiation of the data members. This
template may be called from the main template or from any
state. If it is called from the main template, the object may
become a public object. However, if it is called from within
a state, it may become local to that state.

[0237] The <instance> template, referring to FIG. 41, may
cause the transformer to push Java code that corresponds to
instantiating an object. The data object, name, type and
initial values may be picked up from the XPSL specification
and arranged into the appropriate Java code.

[0238] FIG. 42 shows the template of an action. A goal of
the <action> template is to push out the interface statement
of a component as listed in the protocol specification.

US 2006/0036755 Al

However, since this element may be nested with other
elements, the template may have to test for three cases:
instance, moveto or object. If none of these cases exist, the
default action may be listing the interface of the component.

[0239] The <moveto> template may be responsible for
producing a Java switch statement for branching. This
template generally calls two other templates: (1) the test part
of the Java switch statement, and (2) the expected cases as
presented in the protocol specification. The first may be
referred to as “expression,” whereas the second may be
referred to as “case.”FIG. 43 identifies an example of a
<moveto> template.

[0240] The <state> template is similar to the main tem-
plate. Every <state> template may represent a state of an
FSM. Every state may consist of a set of objects, instances,
actions, and should end up with a <moveto> statement. The
<state> template may produce a Java class that corresponds
to an FSM state. Typically, the <moveto> statement comes
toward the end of the state to determine the next state.
However, in some cases (e.g., errors) control flow may
branch earlier. Such cases should be expected by the devel-
oper of the protocol specification. Therefore, the <moveto>
statement should be embedded inside an <action> statement.
Otherwise, the sequence of operations may be faulty. FIG.
44 shows an example of a <state> template.

[0241] B. Protocol Components

[0242] Generally, every component has an interface that
specifies its parameters and their types. This interface should
be published with a description of a component’s operations
so that protocol designers can understand and use it. Devel-
oping interfaces and defining conventions for component
names and functions may, however, be essential for com-
patibility and interoperability among components in a
framework. These actions may be achieved either by stan-
dard development committees or by the fact that a compo-
nent becomes widely available because of a major vendor
with global reach it supports. A component should not have
different names on the same or different machines because
doing so may prevent the execution layer of the present
invention from locating the correct component.

[0243] Data objects may also be considered components.
Such data objects may be used during the process of writing
protocol specifications. Furthermore, data objects are often
used to hold values that are common among several com-
ponents, such as time, security keys, sequence and random
numbers and header information.

[0244] C. Performance

[0245] An automatically generated implementation may
perform similarly to that of a manually generated one. Some
performance degradation should be tolerated given that the
present invention often provides an extra level of flexibility
(e.g., on-the-fly code generation for new protocols) not
available in manually generated implementations. It is likely
that most performance concerns may be handled if the
components used in the implementation generated by the
present invention are optimized for performance. Further
performance optimizations may be obtained by caching
already generated code for reuse.

Feb. 16, 2006

[0246]

[0247] Several experiments may be conducted to demon-
strate the feasibility of the present invention. For instance,
XPSL may be used to specify NSAP, TCP’s three-way
handshake, ISAKMP and SSL cipher suite number 16
(SSL#16). Choosing protocols may provide diversity in
terms of protocol purpose (e.g., authentication, transport,
negotiation, location in the network stack, and complexity).
Except for NSAP, which is usually a simple theoretical
security protocol that has no practical use unless combined
with other security mechanisms (e.g., anti-replay), all other
protocols are often used widely in the Internet. Documen-
tation of these experiments may be found in the Computer
Program Listing Appendix.

IV. Validation Experiments

[0248] Each experiment preferably has two parts: 1) speci-
fication and automatic code generation and 2) execution and
verification of the resulting code. These experiments may be
designed to test four qualities of the framework: complete-
ness, consistency, correctness, and flexibility. A complete
sequence of operations typically includes negotiation, deliv-
ery, automatic code generation, and execution. To demon-
strate the consistency of the framework, four experiments
may be developed according to the Meta-Protocol frame-
work, where an XPSL specification is preferably written for
these protocols. This specification may be shared between
two remote parties for generating code. ISAKMP’s Base
Exchange may be used for the negotiation to determine the
required subsequent protocol (e.g., the SSL#16).

[0249] The correctness of the framework may be validated
by testing the correctness of the XPSL specification, the
XSLT stylesheet, and the generated code. The correctness of
the generated code may be verified by compiling and
running the code and checking its output (e.g., values,
formats and sequence of messages). Several test cases may
be designed to provide adequate coverage of the main paths
of the protocol operation. The results of these tests showed
that the four protocol implementations compiled correctly
and performed according to their specifications.

[0250] The flexibility aspect of the framework may be
demonstrated by introducing changes into the XPSL speci-
fication, such as replacing some components with others that
perform different functionality, changing the order of opera-
tions, or inserting additional operations into the sequence. In
the ISAKMP Base Exchange (BX) experiment, the MD5
secure may be replaced with a Secure Hash Algorithm
(SHA). In the SSL experiment, a Data Encryption Standard
(DES) encryption may be replaced with Triple-DES (3DES).
These changes may require modification of a single line in
the XPSL specification. The code generated through the Java
XSLT stylesheet may be tested and found to run correctly.

[0251] A. The NSAP Experiment

[0252] Two processes are generally needed: one for the
client and one for the server. The network support may be
simulated in the form of files. A process writing to a file may
be considered as sending out data to a communication
channel. Message receiving events is typically manual. The
process may be designed to pause for input when entering
every state to give the user the control to coordinate between
a client process and a server process. FIG. 45 shows partial
Java code of the NSAP, where the code shows Java output
of the transformation of the object SessionState.

[0253] The generation of the NSAP code typically
requires four components developed specifically for NSAP,

US 2006/0036755 Al

as well as several other generic components, which are not
limited to NSAP and could be shared by many protocols.
These specific components include: ComposeNSAClient-
Msg, ComposeNSAServerRes, DecomposeNSAClienMsg,
and DecomposeNSAServerRes. Examples of generic com-
ponents include Encrypt, Decrypt and Generate_Int_rand.

[0254] B. The TCP Handshake Experiment

[0255] As one embodiment, this experiment requires a
single process because the FSM for TCP given in RFC 793
recommends the use of a single FSM that combines the
client and server operations. Therefore, the XPSL protocol
specification and the XSLT transformation may produce
code that works on behalf of either a client or a server.
However, two error states may be added to demonstrate their
flexibility.

[0256] An example of a TCP Handshake FSM diagram is
illustrated in FIG. 46. It includes 13 states. The final state is
the ESTAB, where actual data transfer starts between two
parties. The first party (a sender) starts a handshake by
sending a message containing a SYN bit on and a sequence
number. The sequence number is a random number. In this
experiment a fixed number is used to simplify readability
and verification of the changes. Therefore, the sender’s
sequence number starts at 3000, and the server’s sequence
number starts at 5000.

[0257] As seen in FIG. 46, the second party (a receiver)
receives the SYN message, sends back an ACK message,
and moves to a SYN-RCVD state. The ACK message
consists of an ACK bit set and two sequence numbers: a new
sequence number and the received sequence number after
increasing its value by one. When the first party receives the
ACK message, it compares the values of its previous
sequence number with the received number to verify that
both are in sync. If this verification process succeeds, the
first party sends another ACK message. In this message,
both sequence numbers are advanced by one. If the second
party succeeds in receiving and verifying the sequence
numbers, the handshake is complete and the data transfer
starts. This process may be called “3-way handshake”
because it requires three messages to complete the hand-
shake.

[0258] The following Table 1 outlines the commands for
the FSM diagram for the TCP handshake, as illustrated in
FIG. 46.

TABLE 1

Identifier Commands for FSM diagram for TCP Handshake

Identifier Command

4602 Passive open;
create TCP
Control Block
(TCB)

4604 CLOSE;
Delete TCB

4606 SEND;
Send SYN

4608 Active open;
create TCB;
Send SYN

4610 CLOSE;
Delete TCB

Feb. 16, 2006

TABLE 1-continued

Identifier Commands for FSM diagram for TCP Handshake

Identifier Command

4612 Receive SYN;
Send SYN, ACK

4614 Receive SYN;
Send ACK

4616 CLOSE;
Send FIN

4618 Receive ACK of
SYN; x

4620 Receive SYN,
ACK; Send ACK

4622 CLOSE;
Send FIN

4624 Receive RIN;
Send ACK

4626 Receive ACK
of FIN; x

4628 Receive FIN;
Send ACK

4630 CLOSE;
Send FIN

4632 Receive FIN;
Send ACK of
FIN2

4634 Receive ACK
of FIN; x

4636 Receive ACK
of FIN2; x

[0259] Two data objects and five components have been
designed specifically for this experiment. The first data
object may be used to maintain the state of the process. One
of its functions is to hold public information: sequence
numbers and port numbers. The second data object may be
used to construct a TCP datagram. The components may be
designed for composing and sending TCP datagrams (send-
Datagram), checking the received sequence number (check-
AckofSYN and checkRevSynAck), receiving TCP data-
grams and decomposing its information, and printing out
datagram information (for testing purposes). TCP datagram
fields that have no role in the handshake tend not to be
implemented (e.g., URG, data offset, and options).

[0260] One example of state transition and exchange of
messages to set up a handshake is shown in FIGS. 47a and
47b, respectively. In this exchange, the client starts by
sending a SYN message with a SYN bit on and a sequence
number of 3000. The server responds with both SYN and
ACK bits on, a new sequence number of 5000, and a
received sequence number after incrementing it with one. To
complete the handshake, the client verifies the numbers and
sends back an ACK message and incremented sequence
numbers. FIG. 47a shows the branch numbers that the
sequence of operations follows, along with the state names.
FIG. 47b shows the message contents at each transition.
Another scenario is shown in FIGS. 47c and 47d to dem-
onstrate the transition in case an error is introduced in the
SynAck message.

[0261] The user may be required to run the code twice to
develop client-server interaction scenarios on a single
machine. This experiment may be more difficult to run and
synchronize manually. Therefore, to lessen the difficulty, a
testing result sheet showing the expected results for each
sequence to be compared with the results obtained in the

US 2006/0036755 Al

experiment may be used. For instance, the branches may be
labeled with numbers. The user may be prompted during the
experiment to choose a branch. FIG. 48 shows an XPSL
specification of the first state, the closed state. This state may
receive two objects as input parameters. The first object may
be called tcb and may maintain the state information of the
process. The second object may be an error message request-
ing the code to be returned. The description of the error
message may occur inside the state. The first action in this
state may be inserting Java code. This code may be inserted
temporarily for the purpose of manual synchronization.
Based on this action, the user may choose one of the two
branches that the state can move to. This move may be
expressed using a <moveto> element. In the first choice, a
set of actions may initialize a TCP datagram with proper
information and may move to synsent state. However, in the
second choice, the control may flow to the listen state
without changing the state of the machine. The XPSL
specification of the TCP Handshake may be found in the
Computer Program Listing Appendix.

[0262] The same XSLT stylesheet used in the previous two
experiments may be used again to generate Java code. Being
able to generate correct code for the three experiments using
the same XSLT stylesheet may help demonstrate the power
of the XSLT transformation. FIG. 49 lists Java code that
may correspond to the specification presented in FIG. 48.

[0263] C.ISAKMP Experiment

[0264] ISAKMP may be used to implement the negotia-
tion layer of the Meta-Protocol. Once again, FIG. 7b shows
an example of an FSM diagram of ISAKMP Base Exchange.
Based on this diagram, two XPSL specifications may be
developed: one for an initiator and the other for a responder.
In addition, components and objects needed for the actions
taking place in each of the FSM states were developed.
Fourteen new components and five new objects may be
added to a component library to implement ISAKMP.

[0265] Referring to FIGS. 7a and 7b, the initiator may
start by sending a set of proposals. The responder may select
one of the proposed protocols and notify the initiator. In the
remaining states, both could exchange identification and
security-based information to close the agreement.

[0266] A comparison between a list of components and
objects used in the initiator (i.e., ISAKMP initiator), as
exemplified in FIG. 50, and the list mentioned in the XPSL
specification for ISAKMP, as depicted in the Computer
Program Listing Appendix, shows a high rate of reuse of
components. It also may show that a component can be used
several times within a protocol, as well as being shared by
other protocols. For example, the Error State component is
used in every state, the SendUDP component is used in
states 1 and 3, and CreateNewFile is used in the states 2, 3,
and 4. In addition, other components, such as Generatlnt-
RandomNumber and HashingStringMD5, may also be used.

[0267] Inthe first state of an ISAKMP session, the initiator
receives some input parameters from an application: desti-
nation IP and port, a secret value to be used in generating
cookies, and initiator private, and public RSA keys. These
values may then be passed inside an object called ISAK-
MPFESM. This object may hold all the variables that are
publicly required by all the states during a session. FIG. 51
illustrates a data structure of the ISAKMPFSMobject.

Feb. 16, 2006

[0268] A goal of the initiator, in the first state, is to prepare
a proposal and send it to the responder. This proposal may
consist of three parts: payload header, proposed protocol
name and location. Again, an example of an ISAKMP initial
message may be viewed in FIG. 8. Five components are
used to build the client message in the first state: Hashing-
StringMD5, BXcomposeMainHeader, CompLib.BXcom-
poseProposals, GeneratIntRandomNumber, and BXcom-
posePayload. The names used for these components indicate
their functionality. FIG. 52 shows a Java class that may
perform the operation of composing an ISAKMP main
header. In this operation, the nine fields of the header may
be concatenated into a string of bytes. These fields may have
a fixed length. Therefore padding may be needed to adjust
the length of each field to a proper size. The resulting string
of bytes may then be stored into a file. The proposal payload
and the nonce payload may be prepared similarly. When this
process is complete, the initiator may send the main header
and the payloads to the responder. The UDP protocol may be
used for the exchange of these messages in ISAKMP.

[0269] A Java class for the send operation, SendUDP, may
be represented in FIG. 53. This operation may take as input
an array of bytes, the length of the array, destination IP
address, and destination port number.

[0270] The responder XPSL specification may work simi-
larly compared to that of the initiator but in reverse order.
For example, when the initiator sends a message, the
responder should receive that message. Most action com-
ponents are shared by both parties. However, there tends to
be two main differences, namely the values they process and
some context-specific operations. For instance, cookies and
nonces are prepared by the same components (e.g., MD5 and
random number), but their values vary because they are
generated by two different processes with different input
values (e.g., IP address and port numbers for cookies).
Examples of context-specific operations include, but are not
limited to, preparing proposal payloads and preparing selec-
tion payloads. The proposal payload operation may be
performed by the initiator; the selection operation may be
performed by the responder.

[0271] D. The SSL Experiment

1. SSL Handshake Experiment

[0272] In this experiment, two processes may be used to
represent a client and a server. The user may also be required
to synchronize between the two processes manually. The
experiment can be limited only to the Handshake protocol.
The Record layer protocol and the Alert protocol are gen-
erally not part of the experiment. Therefore, the process
should stop after generating the shared keys, composing the
Finish message and delivering it to the record layer protocol.
The record layer protocol may have to use the negotiated set
of keys to apply crypto operations and add an SSL header.
Also, limited error checking may be implemented. More-
over, the client and the server may read the RSA keys from
local files.

[0273] Generally, SSL handshake has three objectives: a
client and server need to agree on a set of crypto algorithms
to be used to protect traffic, agree on a set of shared keys and
authenticate each other. The last objective is optional and
may be used to authenticate a server to a client. The SSL
specification may provide about 32 options for the first

US 2006/0036755 Al

objective. Each option may represent a set of algorithms. An
example of an option is: TLS_RSA_with DES_CBC_SHA.

[0274] As per one aspect of the present invention, the SSL
handshake process follows the following sequence:

[0275] 1. A client sends a Hello message to a server.
This Hello message contains the client’s supported
ciphers suite and a random number.

[0276] 2. A server responds with a Hello message, a
digital certificate and a ServerHelloDone message. The
server Hello message contains the chosen set of ciphers
and a random number. The ServerHelloDone is a single
byte message indicating that the server has sent all the
messages to be sent at this phase.

[0277] 3. The client sends a KeyExchange message, a
ChangeCipherSpec message and a Finish message. The
KeyExchange message contains a pre-master_secret
(48 bytes consisting of two bytes of the client’s version
number followed by 46 random bytes). The client uses
the server’s public key to protect the pre master_secret.
The ChangeCipherSpec is a single byte message to
indicate the switch to protected mode. The client also
calculates the set of shared keys, which are also used to
protect the Finish message. The Finish message is
produced by hashing all previous messages exchanged
by the client and server.

[0278] 4. The Server uses the pre-master_secret and
random numbers to generate the shared keys. The
server sends a ChangeCipherSpec message and a Finish
message.

[0279] FIG. 54 shows a SSL Handshake sequence of
messages in notation form, and FIG. 55 shows embodied
sequences of states in FSM form. One way of performing
this experiment is to develop 19 components to carry out
operations. The calculation of the keys may be done accord-
ing to the specification given in RFC2246, TLS protocol
version 1.0.

[0280] The XPSL protocol specification may follow the
sequence shown in the FSM. The state of the machine is
maintained in an object called SessionState. FIG. 56 shows
an XPSL specification of the SessionState object of a client
process. This object may include version numbers, session
id, the RSA keys file names, and a set of shared keys to be
used to protect the traffic of a session.

[0281] FIG. 57 shows an XPSL specification of the first
state of a client process. Two parameters may be passed to
this state: a SessionState object and an Error_message
object. The Error_message object may be used to return an
error code in case of error inside the state. This state may
start with the creation of an instance of ClientHello object
and initialization with proper values from the SessionState
object. A random number may be generated using the
component IntObject, which may return an integer random
number. The ClientHello message, which may be composed
by the content of the ClientHello object, may be sent to the
server.

[0282] FIG. 58 shows the first state of an SSL server
process. In this state, another ClientHello object may be
instantiated. A component CompLib.SSLReadClientHello,
may be used to read a received ClientHello message and
load its content to the ClientHello object. The SessionState

Feb. 16, 2006

object may be updated accordingly. For simplification, the
code shown in FIGS. 57 and 58 may not include some
actions used for synchronization and user help. As one
aspect, the XPSL specification for SSL is presented in the
Computer Program Listing Appendix.

[0283] The Java code corresponding to the specification
shown in FIGS. 57 and 58 is shown in FIGS. 59 and 60,
respectively. This code may be generated using the same
XSLT Stylesheet used in the three previously presented
experiments.

[0284] The component library may provide a component,
called createKey, that generates a pair of RSA keys. Gen-
erally, this component has to be executed before running the
client and server processes. It may take as input a) two file
names, one for the public key and the other for the private
key, and b) a password to protect the private key. These file
names may have to be included in the specification of the
protocol before generating the code of the experiment.

SSL #16 Experiment

[0285] Here, again, two processes may be used to repre-
sent a client and a server. As one embodiment, the SSL
record layer protocol has to use the negotiated set of keys in
the handshake phase to apply the crypto operations and add
the SSL header. The SSL. may have 32 options, where each
option may represent a set of cryptographic algorithms. The
operation may be limited to a single option: TSA_R-
SA_with_DES CBC_SHA. Moreover, 44 components
including 9 data objects may be developed to carry out the
operations of SSL#16.

[0286] The experiment here is an extension to the SSL
Handshake experiment. Five new states may be added to the
XPSL specification used in the SSL handshake. FIG. 61
shows an expanded SSL. FSM. The states used in the
handshake are shaded with diagonal lines and the other
states are clear. This part of the experiment also tends to
show how easy it may be to extend or shrink some protocol
specifications by simply adding more states or components
or removing them from the specification. FIG. 61 also
shows this sequence of operations in an FSM diagram.

[0287] An example of the XPSL specification for SSL#16
is listed in the Computer Program Listing Appendix.
Twenty-five components, including 9 data object types, may
be developed according to the SSL specification RFC2246 to
simplify demonstration and verification. The list of compo-
nents and data object types is among the components library
in the Computer Program Listing Appendix.

[0288] It is important to note that this experiment ignores
the implementation of many checks (e.g., errors, resource
availability, or data types and ranges validations) because
such checks may complicate the experiment and verification
process. However, one skilled in the art would recognize that
such features are needed in real life, and would preferably
include such checks to address real life scenarios. In addi-
tion, except for the network (TCP), interfaces to application
and the operating system are not implemented. TCP may be
used to demonstrate that the experiment can run over a
network. However, to include these interfaces, a user may
manually manage such operations in the experiment.

[0289] Since the first four states of the SSL#16 have been
described in SSL Handshake, this section describes the

US 2006/0036755 Al

remaining five states. In these states, the client and the server
may use shared keys developed during the handshake to
exchange application data. These keys may be held in an
object called SSLSessionState. The structure of the SSLS-
essionState may be shown in FIG. 62 using Java-like code.
This data object may be instantiated at the beginning of each
session with null values. During the handshake process the
values may be generated and stored for later use by any
component during the session.

a. The Client Process

[0290] This experiment may implement a transfer of files
from a client to a server. Implementing the other way around
is generally straightforward and can be achieved in two
ways: either by switching the XPSL specification or adding
the components that are responsible for sending files to the
XPSL specification of the server. The client FSM, shown in
FIG. 61, may have two loops at states 5, 7 and 8. Each
iteration of the first loop may be responsible for transferring
a single file. The second loop may be responsible for
fragmenting large file sizes (greater than 2 "14). However,
when it is preferred to simplify the output of the verification
process, the second loop is not implemented. SSL#16 secure
session may start the process of protecting application data
at state 5. At this state, the client may request a file name
from the user of the experiment. The file may have to be
located in the home directory of the experiment programs.
At state 7, the client may load the file, produce an SHA1
hash value, append the hash value to the file, add the SSL
header, encrypt the file using DES, and send the encrypted
file to the server. FIG. 63 illustrates the list of actions in the
XPSL specification of state 7. FIG. 64 shows the format of
an SSL packet that is prepared by the client for transfer.

b. The Server Process

[0291] FIG. 61 and the Computer Program Listing Appen-
dix show the FSM and the XPSL specification of a server
process, respectively. After the handshake is complete, the
server process may wait for TCP connections. TCP listen
socket may be implemented at state 5 through a component
called TCPListen. The files received on this socket may be
sent by the client and may be encrypted. FIG. 65 shows a
Java implementation of the TCPListen component. In state
6, the received file may be decrypted, the TCP header and
the hash value may be striped out, and the hash value may
be calculated again by the server for comparison with the
received value. FIG. 66 shows an XPSL specification of
state 6. Java statements that are embedded within the XPSL
specification may be used for simplification or for helping
users of the experiments in verifying the output.

[0292] Similar to the client process, a loop may be placed
between states 5 and 7. One purpose of this loop is to repeat
the process of receiving SSL protected files from the client.
Human intervention may not be needed. The loop may be
indefinite until an empty file is received from the client,
which may indicate a request for the end of the connection.
It may not be necessary to implement the process of assem-
bling large files at state 7 because the fragmentation process
might not be implemented in the client process.

[0293] E. The Components Library

[0294] Preferably, the present invention uses CBSE. To
run these experiments, a library that comprises all the

Feb. 16, 2006

necessary operations may be developed. The library may
contain about 86 components and 24 data objects. All may
be written in Java and may follow the object-oriented
programming paradigm. Therefore, messages and data struc-
tures are preferably designed as objects that are passed to the
components for processing. Moreover, objects that are
shared by more than one protocol (e.g., error message) may
be implemented as part of the component library for easier
accessibility. Similarly, objects that are shared by more than
one component may also be included as part of the compo-
nent library (e.g., StringObject, BytesObject and TCP dia-
gram). The interfaces and brief description of these compo-
nents may be found in the Computer Program Listing
Appendix.

[0295] Most of the components have been developed for
the purpose of these experiments. However, some may wrap
standard Java crypto functions or modified pieces of bor-
rowed code. The component’s interfaces and brief descrip-
tion may be provided in the Computer Program Listing
Appendix, which lists all the components that are used by
the three protocols: NSAP, TCP’s 3-way handshake and SSL
Handshake. The information there may also indicate
whether the component is general, or specific to NSAP, TCP
or SSL.

[0296] As an example, FIG. 67 shows an encryption
component. This component takes as input three file names
and an RSA public key. The first file name is for the file to
be encrypted. The second file name is for the encrypted file.
The third file name is for the public RSA key file name. This
component uses the RSA public key to encrypt a generated
3DES shared key. The generated 3DES shared key may be
used to encrypt the file. An objective is to send the encrypted
file along with the encrypted key to the owner of the public
RSA key. The owner of the RSA public key may use his
private key to decrypt the 3DES shared key and the file.

[0297] V. Related Work

[0298] Related work in the area of communication proto-
cols may be found in several research projects: x-kernel,
Cactus, Ensemble and the Click router. The x-kernel is an
operating system communication kernel designed to provide
configurable communication services in which a communi-
cation protocol represents a unit of composition. The x-ker-
nel architecture may be extendable. For example, Horus and
Coyote are extensions and applications of the x-kernel
architecture to the area of group communications. The
present invention differs from these research works in that
none of them has proposed high level protocol specifications
so users may exchange and produce implementations auto-
matically.

[0299] In security protocols, the Conduits+framework has
been used to implement IPsec. Cactus is another framework
that may be used to implement a security system called
SecCom. Conduits+ and SecComm differ from the present
invention in two aspects. The first aspect is that the speci-
fication of the required configuration may be transmitted
through the header information of the messages. In contrast,
the specification of the present invention may be coded in a
separate document so that it may be transmitted indepen-
dently of the messages in a secure fashion. Second, the
event-driven approach in Cactus to activate components at
runtime may add a layer of delay to the system. In contrast,
the sequence of operations in the present invention may be

US 2006/0036755 Al

predetermined before runtime based on the specification of
the protocol leading to the efficient execution of the selected
components.

[0300] Protocol implementations may be derived auto-
matically from abstract specifications in languages, such as
SDL, Esterel, Estelle, LOTOS, Promela++, SMURPH and
Cicero. However these languages follow a low level proce-
dural programming paradigm. Therefore, protocol develop-
ers need to work out all the details of the operations of the
protocols. Conversely, the present invention tends to capi-
talize on CBSE to produce a high level specification. There-
fore, most of the details of the operations of a protocol are
usually hidden inside the components:

[0301] Automatic Protocol Generation (APG) work pro-
duces protocol designs in an automated way. The APG
process takes as input a set of requirements and produces a
set of proposed protocol designs. Quite the opposite, unlike
APG, the present invention may take a design (i.e., the
output of the APG process) and may convert it into a
specification used to automatically generate executable code
for a protocol.

[0302] Cryptographic libraries implement security ser-
vices as independent components. Examples of such librar-
ies include IBM’s CCA, RSA’s Cryptokit, Microsoft’s
CryptoAPI, Sun’s JCA/JCE, X/Open’s GCS-API and Intel’s
CSSM-API. However, there is no high level and easy way
for producing useful valid compositions out of these librar-
ies. Resolving this issue, the present invention may add a
layer of mechanisms that facilitate the generation of useful
compositions out of these components.

[0303] UML is also used for the purpose of automatic code
generation. The UML approach differs from the technique
taught by the present invention in two aspects: 1) the present
invention is simple because it may depend on FSMs, which
provide a simpler graphical representation for protocols than
UML diagrams, and 2) the present invention may use XSLT
to generate code automatically from an XML-based speci-
fication, while UML code generation solutions tend to be
proprietary and are based on UML graphical representations.
It should be noted that XML Metadata Interchange (XMI)
may be used as a model interchange format for UMI, but it
is not part of the code generation process.

[0304] Related work that includes the use of XML to
produce program code, such as Libxm12, may also be found.
In such works, an instrument designer produces an XML
document that describes the instrument’s services. This
XML document may be used to produce a user information
document in HTML format and source code for the instru-
ment embedded services. Generally, the XML description is
just a listing of the services, where each service may be
associated with a piece of C code that is loaded from a
library by an XSLT transformer.

[0305] The present invention distinctly contrasts such
works by extending such works to the area of protocol
implementations in conjunction with the use of CBSE. The
XML specification in the present invention may be based on
FSMs to provide a detailed description of the flow of
control, handling of data objects and the set of operations.

[0306] FSMs have also been used to generate code for
protocols. For example, a C++ code skeleton for the flow of
control of the protocol may be generated directly out of the

Feb. 16, 2006

FSM diagrams. The present invention is distinguishable
from this technique in that the present invention may encode
FSMs in XML, allowing for automatic code generation in
any programming language.

[0307] The foregoing descriptions of the preferred
embodiments of the present invention have been presented
for purposes of illustration and description. They are not
intended to be exhaustive or to limit the invention to the
precise forms disclosed, and obviously many modifications
and variations are possible in light of the above teaching
without departing from the scope of this invention and its
broader aspects. The illustrated embodiments were chosen
and described in order to best explain the principles of the
invention and its practical application to thereby enable
others skilled in the art to best utilize the invention in various
embodiments and with various modifications as are suited to
the particular use contemplated. For example, one skilled in
the art will recognize that the present invention may be used
in search engines, databases and docket systems. Addition-
ally, the present invention may also be used in banks, stock
trades, manufacturing of vehicles (e.g., cars, planes, boats,
etc.), production plants (e.g., paper mills, oil, etc.), human
resources, payroll, etc.

[0308] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

What is claimed is:

1. A tangible computer readable medium encoded with
instructions for generating protocol specifications, execut-
able by a machine under the control of a program of
instructions, in which said machine includes a memory
storing said program, wherein execution of said instructions
by one or more processors causes said one or more proces-
sors to perform a multitude of steps comprising:

a. using at least one first element, said at least one first
element including at least one protocol element, each of
said at least one protocol element capable of being used
as a root of an XML protocol specification document;

b. adding at least one second element, said at least one
second element including at least one first-state ele-
ment, ecach of said at least one first-state element
capable of specifying the starting state of a Finite State
Machine (FSM); and

c. adding at least one third element, wherein said at least
one third element includes at least one state element,
for each state in said FSM.

2. A tangible computer readable medium according to

claim 1, further comprising:

a. adding at least one fourth element, said at least one
fourth element including at least one object element,
each of said at least one object element capable of
defining data.

3. A tangible computer readable medium according to

claim 1, further comprising:

US 2006/0036755 Al

a. adding at least one fifth element, said at least one fifth
element including at least one instance element, each of
said at least one instance element capable of holding
actual data.

4. A tangible computer readable medium according to

claim 1, further comprising:

a. adding at least one sixth element, said at least one sixth
element including at least one action element, each of
said at least one action element capable of defining
actions required by each state.

5. A tangible computer readable medium according to

claim 4, further comprising:

a. adding at least one seventh element, said at least one
seventh element including at least one moveto element,
each of said at least one moveto element capable of
indicating the next state.

6. A tangible computer readable medium according to

claim 5, further comprising:

a. adding at least one eighth element, said at least one
eighth element including at least one expression ele-
ment, capable of serving as a logical expression for
producing a set of predefined values; and

. adding at least one ninth element, said at least one ninth
element including at least one case element, capable of
serving as a list of cases for pointing to the next state
for each possible value of said logical expression.

7. A tangible computer readable medium according to
claim 1, wherein the step of said “adding at least one third
element” further comprises at least one of the following
steps:

a. adding at least one fourth element, said at least one
fourth element including at least one object element,
each of said at least one object element capable of

defining data;

. adding at least one fifth element, said at least one fifth
element including at least one instance element, each of
said at least one instance element capable of holding
actual said data;

. adding at least one sixth element, said at least one sixth
element including at least one action element, each of
said at least one action element capable of performing
actions required by each state;

. adding at least one seventh element, said at least one
seventh element including at least one moveto element,
each of said at least one moveto element capable of
indicating the next state;

. adding at least one tenth element, said at least one tenth
element including at least one arg element, each of said
at least one arg element capable of facilitating the
passing of data objects to said at least one state element;
and

f. adding at least one eleventh element, said at least one
eleventh element including at least one name element,
each of said at least one name element capable of
identifying elements.

8. A tangible computer readable medium according to

claim 1, further comprising:

21

Feb. 16, 2006

a. adding at least one eleventh element, said at least one
eleventh element including at least one name element,
each of said at least one name element capable of
identifying elements.

9. A tangible computer readable medium according to
claim 1, in which said protocol specifications include at least
one XML protocol specification.

10. A tangible computer readable medium according to
claim 1, in which said protocol specifications include a
description of a protocol specification language specified in
an XML schema.

11. A protocol management system having a layered
approach comprising:

a. a negotiation layer capable of allowing communicating
parties to agree upon at least one protocol specification,
wherein said negotiation layer includes a negotiation
mechanism;

. a distribution layer capable of retrieving and/or distrib-
uting said at least one protocol specification and any
missing component, wherein said distribution layer
includes a delivery mechanism;

. an implementation layer capable of using eXtensible
Stylesheet Language Transformations (XSLT) for con-
verting said at least one protocol specification and said
any missing component into at least one executable
code capable of implementing said at least one protocol
specification and said any missing component, wherein
said implementation layer includes a machine-readable
protocol specification converter; and

. an execution layer capable of loading and/or running
said at least one executable code, wherein said execu-
tion layer includes an executable code system manager.

12. A protocol management system according to claim 11,
further including at least one searchable repository system,
said at least one searchable repository system capable of
storing said at least one protocol specification and said any
missing component.

13. A protocol management system according to claim 11,
further including at least one security measure, said at least
one security measure capable of protecting said system.

14. A protocol management system according to claim 11,
wherein said negotiation layer uses at least one of the
following approaches:

a. a manual approach; and

b. an automatic approach, wherein said automatic

approach includes at least one of the following:
i. a secure channel; and

ii. a customized version of the Internet Security Asso-
ciation and Key Management Protocol (ISAKMP).

15. A protocol management system according to claim 14,
wherein a protocol specification using said customized ver-
sion of ISAKMP is a bootstrap of said system.

16. A protocol management system according to claim 11,
wherein said distribution layer uses at least one directory
service.

17. A protocol management system according to claim 11,
wherein said distribution layer is capable of distributing at
least one digitally signed protocol specification.

US 2006/0036755 Al

18. A protocol management system according to claim 11,
wherein said distribution layer is capable of distributing at
least one digitally signed component referenced in a proto-
col specification.

19. A protocol management system according to claim 11,
wherein said distribution layer is capable of retrieving said
at least one protocol specification from a local cache.

20. A protocol management system according to claim 11,
wherein said implementation layer produces code that
implements said at least one protocol specification automati-
cally using:

a. XML-related technologies, wherein said XML-related
technologies include XML schema, XSLT transforma-
tions, XSLT processors, XML parsers, and XML edi-
tors; and

b. a multitude of components referenced in said at least

one protocol specification.

21. Aprotocol management system according to claim 20,
wherein said system uses Component-based Software Engi-
neering to build said “multitude of components referenced in
said at least one protocol specification.”

22. A protocol management system according to claim 11,
wherein a single XSLT stylesheet is associated with a single
programming language, said XSLT stylesheet capable of
generating said at least one executable code for a multitude
of said at least one protocol specification, wherein said at
least one executable code is an implementation of said at
least one protocol specification.

23. A protocol management system according to claim 11,
wherein said at least one executable code of said at least one
protocol specification is retrieved from a local cache.

24. A protocol management system according to claim 11,
wherein said execution layer comprises at least one of the
following:

a. at least one interface responsible for delivering requests
and feedback between the external world and said
execution layer; and

b. at least one control operation capable of managing

internal affairs of said execution layer.

25. A protocol management system according to claim 11,
in which said at least one protocol specification includes at
least one XML protocol specification.

26. A protocol management system according to claim 11,
in which said at least one protocol specification includes a
description of a protocol specification language specified in
an XML schema.

27. A method for managing protocols comprising the
steps of:

a. agreeing upon at least one protocol specification;

b. retrieving and/or distributing said at least one protocol
specification and any missing component;

c¢. converting said at least one protocol specification and
said any missing component into at least one execut-
able code, said at least one executable code is an
implementation of said at least one protocol specifica-
tion; and

d. loading and/or running said at least one executable
code.

Feb. 16, 2006

28. A method according to claim 27, further including the
step of storing said at least one protocol specification and
said any missing component.

29. A method according to claim 27, further including the
step of protecting said method of managing protocols using
at least one security measure.

30. A method according to claim 27, wherein the step of
“agreeing” uses at least one of the following approaches:

a. a manual approach; and

b. an automatic approach, wherein said automatic
approach includes at least one of the following:

i. a secure channel; and

ii. a customized version of the Internet Security Asso-
ciation and Key Management Protocol (ISAKMP).

31. A method according to claim 30, wherein said at least
one protocol specification using said customized version of
ISAKMP is a bootstrap of said method.

32. A method according to claim 27, wherein the step of
“retrieving and/or distributing” further includes using at
least one directory service.

33. A method according to claim 27, wherein the step of
“retrieving and/or distributing” further includes distributing
at least one digitally signed protocol specification.

34. A method according to claim 27, wherein the step of
“retrieving and/or distributing” further includes distributing
at least one digitally signed component referenced in a
protocol specification.

35. A method according to claim 27, wherein the step of
“retrieving and/or distributing” further includes retrieving
said at least one protocol specification from a local cache.

36. A method according to claim 27, wherein the step of
“converting” further includes producing code that imple-
ments said at least one protocol specification automatically
using:

a. XML-related technologies, wherein said XML-related
technologies include XML schema, XSLT transforma-
tions, XSLT processors, XML parsers, and XML edi-
tors; and

b. a multitude of components referenced in said at least

one protocol specification.

37. A method according to claim 36, wherein said method
uses Component-based Software Engineering to build said
“multitude of components referenced in said at least one
protocol specification.”

38. A method according to claim 27, wherein a single
XSLT stylesheet is associated with a single programming
language, said XSLT stylesheet capable of generating said at
least one executable code for a multitude of said at least one
protocol specification, wherein said at least one executable
code is an implementation of said at least one protocol
specification.

39. A method according to 27, wherein the step of
“converting” further includes retrieving at least one execut-
able code associated with at least one protocol specification
from a local cache.

40. A method according to 27, wherein the step of
“loading and/or running” comprises at least one of the
following steps:

a. delivering requests and feedback; and

b. managing internal affairs.

US 2006/0036755 Al

41. A method according to claim 27, in which said at least
one protocol specification includes at least one XML pro-
tocol specification.

42. A method according to claim 27, in which said at least
one protocol specification includes a description of a pro-
tocol specification language specified in an XML schema.

43. A tangible computer readable medium comprising
instructions for a method of managing protocols, said tan-
gible computer readable medium executable by a machine
under the control of a program of instructions, in which said
machine includes a memory storing said program, wherein
said instructions comprise the steps of:

a. agreeing upon at least one protocol specification;

b. retrieving and/or distributing said at least one protocol
specification and any missing component;

c¢. converting said at least one protocol specification and
said any missing component into at least one execut-
able code, said at least one executable code is an
implementation of said at least one protocol specifica-
tion; and

d. loading and/or running said at least one executable

code.

44. A tangible computer readable medium according to
claim 43, wherein said instructions further include the step
of storing said at least one protocol specification and said
any missing component.

45. A tangible computer readable medium according to
claim 43, wherein said instructions further include the step
of protecting said method of managing protocols using at
least one security measure.

46. A tangible computer readable medium according to
claim 43, wherein the step of “agreeing” uses at least one of
the following approaches:

a. a manual approach; and

b. an automatic approach, wherein said automatic
approach includes at least one of the following:

i. a secure channel; and

ii. a customized version of the Internet Security Asso-
ciation and Key Management Protocol (ISAKMP).

47. A tangible computer readable medium according to
claim 46, wherein said at least one protocol specification
using said customized version of ISAKMP is a bootstrap of
said method.

48. A tangible computer readable medium according to
claim 43, wherein the step of “retrieving and/or distributing”
further includes using at least one directory service.

49. A tangible computer readable medium according to
claim 43, wherein the step of “retrieving and/or distributing”
further includes distributing at least one digitally signed
protocol specification.

Feb. 16, 2006

50. A tangible computer readable medium according to
claim 43, wherein the step of “retrieving and/or distributing”
further includes distributing at least one digitally signed
component referenced in a protocol specification.

51. A tangible computer readable medium according to
claim 43, wherein the step of “retrieving and/or distributing”
further includes retrieving said at least one protocol speci-
fication from a local cache.

52. A tangible computer readable medium according to
claim 43, wherein the step of “converting” further includes
producing code that implements said at least one protocol
specification automatically using:

a. XML-related technologies, wherein said XML-related
technologies include XML schema, XSLT transforma-
tions, XSLT processors, XML parsers, and XML edi-
tors; and

b. a multitude of components referenced in said at least

one protocol specification.

53. A tangible computer readable medium according to
claim 52, wherein said method uses Component-based Soft-
ware Engineering to build said “multitude of components
referenced in said at least one protocol specification.”

54. A tangible computer readable medium according to
claim 43, wherein a single XSLT stylesheet is associated
with a single programming language, said XSLT stylesheet
capable of generating said at least one executable code for
a multitude of said at least one protocol specification,
wherein said at least one executable code is an implemen-
tation of said at least one protocol specification.

55. A tangible computer readable medium according to
43, wherein the step of “converting” further includes retriev-
ing at least one executable code associated with at least one
protocol specification from a local cache.

56. A tangible computer readable medium according to
43, wherein the step of “loading and/or running” comprises
at least one of the following steps:

a. delivering requests and feedback; and

b. managing internal affairs.

57. A tangible computer readable medium according to
claim 43, in which said at least one protocol specification
includes at least one XML protocol specification.

58. A tangible computer readable medium according to
claim 43, in which said at least one protocol specification
includes a description of a protocol specification language
specified in an XML schema.

