
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2006/0036755A1 

Abdullah et al. 

US 20060036755A1 

(43) Pub. Date: Feb. 16, 2006 

(54) META-PROTOCOL (57) ABSTRACT 
The present invention teaches a multi-layer protocol man 
agement System and method, embeddable in a tangible 

(76) Inventors: Ibrahim S. Abdullah, Jeddah (SA); computer-readable medium, that allow for on-the-fly 
Daniel A. Menasce, Cabin John, MD machine-readable protocol discovery and negotiation, dis 
(US) tribution of protocol Specifications and components, auto 

matic implementation of protocols from corresponding 
Correspondence Address: machine-readable protocol Specifications, and correspond 
GEORGE MASON UNIVERSITY ing execution of automatically generated implementations. 
OFFICE OF TECHNOLOGY TRANSFER, Automatic protocol implementation may be accomplished 
MSN 5G5 using eXtensible Markup Language (XML)-related tech 
4400 UNIVERSITY DRIVE nologies and Component-based Software Engineering 
FAIRFAX, VA 22030 (US) (CBSE). The present invention is also a tangible computer 

readable medium encoded with instructions capable of gen 
(21) Appl. No.: 11/122,099 erating, as well as capable of being designed to generate, 

protocol Specifications. A program of instructions, called 
(22) Filed: May 5, 2005 XML-based protocol specification language (XPSL), may 

be used for creating a specification of a communication 
Related U.S. Application Data protocol (Such as high-level specifications of a protocol) in 

a machine readable form. Using CBSE principles, XPSL 
(60) Provisional application No. 60/568,664, filed on May may also be used for allowing high-level Specifications of a 

7, 2004. protocol, expressible in Finite State Machines (FSM). An 
eXtensible Stylesheet Language for Transformations 

Publication Classification (XSLT) may be used to transform specification description 
into actual code. XSLT Stylesheets can be designed to 

(51) Int. Cl. produce code in different programming languages (e.g., C++ 
G06F 15/16 (2006.01) or Java). CBSE may be used to build a set of operations 

(52) U.S. Cl. .............................................................. 709/230 needed by a protocol. 

Meta-Protocol Framework 

Negotiation Layer 
Negotiation Mechanism 

Security Security 
Measure Measure 

Implementation Implementation 
Layer Layer 

Distribution 
Layer 

Delivery O 

chable 

Machine 
Readable 
Protocol 

Specification 
Converter 

Machine 
Readable 
Protocol 

Specification 
Converter X R epository 

Executable 
Code System 
Manager 

Executable 
Code System 
Manager 

  



Patent Application Publication Feb. 16, 2006 Sheet 1 of 67 US 2006/0036755A1 

Protocol Management System 

Negotiation Executable Code 
Mechanism System Manager 

Distribution 
es Security Measure 

Mechanism ty 

Searchable Repository Layered 
System Architecture 

Machine-Readable 
Protocol Specification 

Transformer 

FIG. 1 

  



Patent Application Publication Feb. 16, 2006 Sheet 2 of 67 US 2006/0036755A1 

Negotiation Layer 

. . ) C KX 
Implementation Implementation 

Layer Layer 

Trusted 3' Party 

Execution Layer Execution Layer 

FIG. 2 

  



Patent Application Publication Feb. 16, 2006 Sheet 3 of 67 US 2006/0036755A1 

Meta-Protocol Framework 

Negotiation Layer 
Negotiation Mechanism 

Security 
Measure Measure 

Distribution 
Layer 

Implementation Deli Implementation 
Layer KC Layer 

Mechanism 
Machine- Machine 
Readable Readable 
Protocol Protocol 

Specification Specification 
Converter Converter 

Executable Executable 
Code System Code System 
Manager Manager 

FIG. 3 

  



Patent Application Publication Feb. 16, 2006 Sheet 4 of 67 US 2006/0036755A1 

Agree upon protocol specification 

Retrieve and/or distribute protocol specification and any missing component 

Convert protocol specification and any missing component into executable 
code 

Load and/or run executable code 

End 

FIG. 4a 

Tangible Computer-Readable. Medium 

Agree upon protocol specification 

Retrieve and/or distribute protocol specification and any missing 
Omponent 

Convert protocol specification and any missing component into 
executable code 

Load and/or run executable code 

  



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 5 of 67 

bp03 º Iqe?noºxò unu 10/pub peoT 

  

  

  

  

  

  

  

  

  

  

  

  



Patent Application Publication Feb. 16, 2006 Sheet 6 of 67 US 2006/0036755A1 

Bit: O 8 16 24 31 

Initiator Cookie 

Responder Cookie 

Exchange 
Payload MjVer MnVer Type Flags 

Message ID 

Total Length (Header + Payloads) 

ISAKMP Main Header 

Payload Length 

Payload Header 

FIG. 6 

  



US 2006/0036755A1 2006 Sheet 7 of 67 9 Patent Application Publication Feb. 16 

  



Patent Application Publication Feb. 16, 2006 Sheet 8 of 67 US 2006/0036755A1 

Bit: 0 8 16 24 31 

Initiator Cookie = MD5 IP source + IP dist + UDP source 
port + UDP dist port + local secret 

Responder Cookie F null 

MVer MnVer Proposal ISAKMP 

Message ID = 100 

Total Length = 32 + 256+512 = 800 bits 

Protocol - - - 
Location Reserved Payload Size = 256 

Proto. D = d P Proposal 
Proposal #1 500 MjVer Min Ver Payload 

Protocol Name = Protocol X 

Location 
Payload 

Protocol Location = http://www.xyz.com/dir1 

FIG. 8 

  

    

  



IU JUJU...d. 

INSH 

Patent Application Publication Feb. 16, 2006 Sheet 9 of 67 

  

  

  

  

  

  



US 2006/0036755A1 

€ 
TIS IX u? sp3dS IUoUyuud 

aussøju.id JLSTX 

3p00 

ºpoö 90.InoS 
100 LISðIÁ?S 

Patent Application Publication Feb. 16, 2006 Sheet 10 of 67 

  

  

  

  

  

  

  

  



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 11 of 67 

JOSS000.Id LTSX (SOA) uu04SÁS 10.I?u00 I00040.1) 

Interfaces 

S-løSI ? 

  



Patent Application Publication Feb. 16, 2006 Sheet 12 of 67 US 2006/0036755A1 

Object ID 

DESEncrypt 
Protocol X 

Protocol Spec Y 

FIG. 12 

  



Patent Application Publication Feb. 16, 2006 Sheet 13 of 67 US 2006/0036755A1 

- Name: String 
- Group D: Integer Belong to 
- Contact: String 
- Address: String 
- Tel: Integer 

- Group D: Integer 
- Name: String 
- Description: String 

SvsCommonents 
- Component D: Integer 

Described by - Name: String 
- Group D: Integer 
- Location: String 

FIG. 13 

  



US 2006/0036755A1 

?00Z-6Z-OL :00:6 | 101001010 I V Kubdu00 ?aev |Sjøø?qOSO&\:0|x pouva 

Patent Application Publication Feb. 16, 2006 Sheet 14 of 67 

  

  

  



Patent Application Publication Feb. 16, 2006 Sheet 15 of 67 US 2006/0036755A1 

Providers 

- ProviderD: Integer 
- Name: String 
- Address: String 
- Public Key: Byte 

- UserID: Integer 
- Name: String 
- Group D: Integer 
- Contact: String 
- Address: String 
- Public Key: Byte 

i 

- Component D: Integer 
- Name: String 
- Group D: Integer 
- Location: String 

- Component D: Integer 
-- UserID: Integer 
- Date: Date 
- Expiration: Date 
- Rig-by: String 
- Signature: Byte 

Described by 

FIG. 15 

  

  

  

  

  

  

  

  

  



Patent Application Publication Feb. 16, 2006 Sheet 16 of 67 US 2006/0036755A1 

Cache Memory Search Local Search Remote Search 

Negotiation 

Call for protocol execution) 

Search for protocol in 
cache memory 

SNot Found Search for protocol 
specification locally 

Not Found Search for protocol C specification on 
remote site 

Search for protocol C Not Found 
component locally 

Found 

Search for protocol 
component on 

n remote site 
XSLT processing 

Execute the protocol Compilation 

FIG. 16 

  

    

  

  

  

    

  



Patent Application Publication Feb. 16, 2006 Sheet 17 of 67 US 2006/0036755A1 

Client Process Server Process 

(A) (B) 

F.G. 17 

  



Patent Application Publication Feb. 16, 2006 Sheet 18 of 67 US 2006/0036755A1 

FSM 

O O O O O 
Protoco 

RFC Implementation 

Protocol Programmers 
Design 

Processor 

Code 
Libraries 

Prior Art 

FIG. 18 

  



61 · 914 

US 2006/0036755A1 

Suðu uubuï#0.1) 

buºqoS IU JUJU..ud 

WSH 

Patent Application Publication Feb. 16, 2006 Sheet 19 of 67 

  

  

  

  



Patent Application Publication Feb. 16, 2006 Sheet 20 of 67 US 2006/0036755A1 

1 <protocol Z 
1 

<name> 

<object> 
<nan e' 
<field> -type) 

<instance 
<name> 
<types 
<initial-values > 

<action> 
1 

<first-Stated 
1.* 

<Stated 1 

Chane D 

<arg> -name) 
1 - <type) 

<name 
<field> -type 

<instance> 

<name: 
<types 1 
<initial-values 
1. 

<aCtion> 
- <moveto 

1 
<expression > 

1.* 
<C3S62 test 

0.1 

0.1 <action> 
<novetO> 1 

<expression > 
<cases test 

--action > 

FIG. 20 



Patent Application Publication Feb. 16, 2006 Sheet 21 of 67 US 2006/0036755A1 

Start 

Using a First Element 

Adding a Second Element 

Adding a Third Element 

End 

FIG. 21 



Patent Application Publication Feb. 16, 2006 Sheet 22 of 67 US 2006/0036755A1 

<state Kname>states.</name> 
<arg name="SS"><types-SessionState-type) <larg> 
<arg name="e"> 

<typex CompLibError message (/typex <larg> 
<action>Complib.ComposeClientMsg 

(SSNb,"ClientConfirm.txt").<faction> 
<action>Complib. Encrypt ("ClientConfirm.txt", 

"ClientConfirmenic"."myPubl) <faction> 
kaction>Complib. SendMsg(2)<faction> 
Kmovetos Cexpression>ecode-?expressions 

case testie''>Successfulledkcase 
<case test=2">ErrorState(e)</case 

elimovetox 
<states 

FIG. 22 

  



Patent Application Publication Feb. 16, 2006 Sheet 23 of 67 US 2006/0036755A1 

Start 

Using a First Element 

Adding a Second Element 

Adding a Third Element 

Adding a Fourth Element 

Adding a Fifth Element 

Adding a Sixth Element 

Adding a Seventh Element 

Adding an Eighth Element 

Adding a Ninth Element 

Adding a Tenth Element 

Adding an Eleventh Elemen Adding an Eleventh Element 

End 

FIG. 23 



Patent Application Publication Feb. 16, 2006 Sheet 24 of 67 US 2006/0036755A1 

>Nbcffield> 
a. "key": Pubickeyfields 

FIG. 24 

  



Patent Application Publication Feb. 16, 2006 Sheet 25 of 67 US 2006/0036755A1 

FIG. 25 

  



Patent Application Publication Feb. 16, 2006 Sheet 26 of 67 US 2006/0036755A1 

<action>Complib.checkRcvSynAck(tcb, p, e)</action> 
<action> 

<moveto <expression e.codes/expression 
<case test="1"> 

<action> errorState(tcb, e) </action> 
<action> return </action> 

</cased 
</moveto 

</action> 

FIG. 26 

  



Patent Application Publication Feb. 16, 2006 Sheet 27 of 67 US 2006/0036755A1 

FIG. 27 

  



Patent Application Publication Feb. 16, 2006 Sheet 28 of 67 US 2006/0036755A1 

<action><instance> 

<name>R</name> 

<type Complib.Intobject </type 

<initial-values (0) </initial-values 
</instance></action> 

Complib.GeneratintRandomNumber(R)-/action> 

FIG. 28 

  



US 2006/0036755A1 

3p00 

Patent Application Publication Feb. 16, 2006 Sheet 29 of 67 

  

  



Patent Application Publication Feb. 16, 2006 Sheet 30 of 67 

Tangible Computer-Readable Medium 

Using a First Element 

Adding a Second Element 

Adding a Third Element 

US 2006/0036755A1 

FIG. 30a 

Tangible Computer-Readable Medium 

Using a First Element Adding a Seventh Element 

Adding a Second Element Adding a Eighth Element 

Adding a Third Element Adding a Ninth Element 

Adding a Fourth Element Adding a Tenth Element 

Adding a Fifth Element Adding a Eleventh Element 

Adding a Sixth Element 

FIG. 3Ob 

  



Patent Application Publication Feb. 16, 2006 Sheet 31 of 67 US 2006/0036755A1 

C-H DL 
(Bits) (Bits) (Bits) (Bits) 

Byte 8 8 8 N/A 

N/A N/A N/A 

Long Double N/A 96 128 N/A 
Char 16 8 8 8 

Boolean Unspecified 
FIG. 31a 

Primitive Data Types Size (Bits) 

Byte 

Long 

Char 

String Variable 

Boolean 

FIG. 31b. 

  
  

  

  

  

  

  



Patent Application Publication Feb. 16, 2006 Sheet 32 of 67 US 2006/0036755A1 

  



Patent Application Publication Feb. 16, 2006 Sheet 33 of 67 US 2006/0036755A1 

<protocol 

<first-states 

W . 1 
<expression> 
<case-1--test) 
L- <action>1." 

FIG. 33 

  



US 2006/0036755A1 

19}{33?O Buuò?OS 100040.1) 

u043b3J100dS TINX 

Patent Application Publication Feb. 16, 2006 Sheet 34 of 67 

  

  

  

  

  

  
  

  

  

  

  

  



Patent Application Publication Feb. 16, 2006 Sheet 35 of 67 US 2006/0036755A1 

k?xml version=1.02> 
| <xsd:schema xmlins:xsd= 

"http:/www.w3.org/2001/XMLSchema"> 
<xsd:element name="protocol'> <xsd:complexType 

<xsd:sequence> 
<xsd:element name="name" type="xsdistring'> 
<xsd:element ref="object' minOccurs="0" 

maxOccurs=“unbounded'> 
<xsd:element refs"instance' minOccurs="0' 

maxOccurs="unbounded.> 
<xsd:element, ref="action' minOccurs="0" 

maxOccurs="unbounded'> 
<xsd:element refe"first-state' minOccurs="l' 

maxOccurs-'l' f> 
kxsd:element ref="state" inhinoccurs="l 

- maxOccurs='''unbounded.> 

</xsd:sequence> 
<xsd:complexType) <fxsd:element> 

FIG. 35 

  



Patent Application Publication Feb. 16, 2006 Sheet 36 of 67 US 2006/0036755A1 

<xsd:element name="object'> 
<xsd:complexType> <xsd:sequence> 

<xsd;element names''name” type=''xsd;string"/> 
<xsd:element refefield maxOccurse'unbounded'/> 

</xsd:sequence) </xsd:complexType 
</xsd:element> 
<xsd:element name="field'> 

<xsd:complexType) <xsd:simpleContent> 
<xsd:extension base=''xsd:string'> 

<xsdattribute name="type' use="requiredf> 
</xsd:extension> 
</xsd:simpleContent><ixsd:complexType) 

</xsd:element> 

FIG. 36 

  



US 2006/0036755A1 

?uu?um?I BAeT 

(SH SS ‘SH AOL ‘AVSN “õ”.9) u0?bolygoºdS 100040.Ja 

JLTSX 

sjuòuoduo Q 

Patent Application Publication Feb. 16, 2006 Sheet 37 of 67 

  

  

  

  

  

  

  



Patent Application Publication Feb. 16, 2006 Sheet 38 of 67 US 2006/0036755A1 

K?xml version='0' encoding=UTF-8"> 
<?xml-stylesheet type="text/xsl'?) 
<xsl:stylesheet version="l.0' 
xmlns:xsl="http://www.w3.org/1999/XSLTransform"> 
<xsl:output method="html" indent="yes"> 
<xsl: template match="protocol'> 

<xsl:apply-templates select="/protocol/name''> 
public static void main(String? args) 
<xsl:apply-templates select="action' f> 
<xsl:apply-templates select="first-state'> } 
<xsl:apply-templates select="object' /> 
<xsl:apply-templates select “state/> 
private void pGen0 throws Exception {}} 

sist"Phi - 

FIG. 38 

  



Patent Application Publication Feb. 16, 2006 Sheet 39 of 67 US 2006/0036755A1 

<xsl:template match-first-state'> 
Kxsl:value-of select=''f> : 

<ixsl:template) 

FIG. 39 

  



Patent Application Publication Feb. 16, 2006 Sheet 40 of 67 US 2006/0036755A1 

<xsl:template match="object' > 
public static class 
<xsl:value-of select=''name"/> 
<xsl:apply-templates select="fieldf> 
public <xsl:value-of select=''name''> 
(<xslapply-templates select-field 
mode="argdef>) 
<xsl:apply-templates select="field 
mode="construct/> }} 

</xsl:template) 

FIG. 40 

  



Patent Application Publication Feb. 16, 2006 Sheet 41 of 67 US 2006/0036755A1 

<xslitemplate match "instance' > 
<xsl:value-of select="type"> 
<xsl:texts Kxsl:text 
<xslapply-templates select "name''> = new 
<xsl:value-of select=type"f> 

8 <xsl:apply-templates selects"initial-values"/>: 
</xsl-templated 

FIG. 41 

  



Patent Application Publication Feb. 16, 2006 Sheet 42 of 67 US 2006/0036755A1 

<xsl: template match="action"> 
<xs:choose <xs: when test="instance"> 

<xsl:apply-templates select="instance" f> 
</xs: when <xsl:when test='moveto"> 

<xsl:apply-templates select="moveto"/> 
</xsl:when><xsl:when test="object"> 

<xsl:apply-templates select="object" /> 
</xsl:when> <xsl:otherwise) 

<xs:value-of select="."/>; 
</xsl:otherwise 
</xsl:choose 

</xsl:template 

F.G. 42 



Patent Application Publication Feb. 16, 2006 Sheet 43 of 67 US 2006/0036755A1 

<xsl:template match="moveto"> 
switch (<xsl:value-of select="expression"/>) { 

<xsl:apply-templates select="case"/> 
</xsl:template 

F.G. 43 



Patent Application Publication Feb. 16, 2006 Sheet 44 of 67 US 2006/0036755A1 

<xsl: template match="state"> 
static void <xsl:value-of select="name"/> 
(<xsl:apply-templates select="arg"/> ) throws Exception { 
<xsl:apply-templates select="instance" /> 
<xsl:apply-templates select="action" /> 
<xsl:apply-templates select="moveto"/> 

</xsl: template> 

FIG. 44 



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 45 of 67 



Patent Application Publication Feb. 16, 2006 Sheet 46 of 67 US 2006/0036755A1 

  



Patent Application Publication Feb. 16, 2006 Sheet 47 of 67 US 2006/0036755A1 

Client Events Server Events 
From TO From To 

CLOSED SYNSENT .. 2 CLOSED LISTEN 
LISTEN SYNRCVD 

SYNSENT ESTAB 
SYNRCVD ESTAB 

FIG. 47a 
Client 
Syn 

SeqNumber 3000 
AckNumber 

ACK FIG. 47b 

FIN 
RST 

Client Events Server Events 

From To Branch From To 
1. SYNSENT CLOSED 

3 LISTEN SYNRCVD 
Change is introduced manually as an error in the Synack message 

SYNSENT Error State 
FIG. 47C 

Client Server 
Syn SynAck 

AckNumber 0 3001 
A FIG.47d 
FIN 0 0 
RST 0 0 

  

  

    

  



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 48 of 67 



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 49 of 67 



Patent Application Publication Feb. 16, 2006 Sheet 50 of 67 US 2006/0036755A1 

The initiator sends a proposal HashingStringMD5 
to the responder. The BXcomposeMainHeader 
proposal includes three parts: Complib.BXcomposeroposals 
ISAKMP main header, a Generatint RandomNumber 
proposal payload, and a BXcomposepayload, 
nonce payload. ReadFileToBytes, Send UDP 

ListenForUDP, 

State 1 

The initiator receives a 
message from the responder BXSaveMHeader 
containing the responder BXExtractMHeader 
Selection. The received BXCompareTwoStrings 
message includes three parts: ClearBytes Array, 
main header, selection CreateNewFile, 
payload, and a nonce payload. BXExtractPayload 

BXcomposeayload 

The initiator sends a message BXcomposeMainHeader 
of four parts: a main header, BXcomposepayload 
an id, key information, and an OreateNewFile 
authentication payload. The AppendFileTofile 
authentication payload is a HashingFileMD5 
hash value of all previously Read FileToBytes 
exchanged messages. Send UDP 

ListenForUDP, CreateNewFile The initiator receives from 
the responder the BXExtractMHeader 
authentication message. The BXSaveMHeader 
initiator verifies the received BXExtractPayload 

State 4 hash value against his AppendFileTofile 
calculated value. If values do HashingFileMD5 
not match, the BXCompareTwoStrings 
communication is aborted 
and the user is notified. 

This state prints an error 
message and aborts the 
communication. 

ErrorState 

FIG. 50 

  

    

  

  

      

    

  

  

  

  

  

  

  

  

  

  

  

  

    

    

    

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  



Patent Application Publication Feb. 16, 2006 Sheet 51 of 67 US 2006/0036755A1 

public static class ISAKMPFSM { 
public int SourcePort, DistPort; 
public String Source P, DistIP, Secret; 
public String SourceCookie, DistCookie; 
public String certPublic, certPrivate; 
public int Mjrver, Minver, Flags, MessageID, Totallength; 
public String InitNonce, RespNonce; 

public String ProtName, ProtLocation; 
public int Selected ProtD, ProtMjrver, ProtMinver; 

FIG. 51 



Patent Application Publication Feb. 16, 2006 Sheet 52 of 67 US 2006/0036755A1 

public static void BXcomposeMain Header(ISAKMPFSM fism, 
int NPayloadType, int ExchangeType, 
String finame) throws Exception { 

System.out.println("Composing ISAKMP main header"); 
String filler=" "; 
String x=fsm.SourceCookie + filler; byte BSourceCookie=new byte(32; 

BSourceCookie=x.getBytes(); x="+fsm.DistCookie-filler; 
byte BDistCookie=new byteS2); BDistCookie-FX.getBytes(); 
x="+NPayload Type-filler; byte BNPayloadType=new byte.8; 
BNPayloadType=x.getBytes(); x="+fsm.Mjrver-filler; 
byte BMjrver=new byte4; BMjrver-x.getBytes(); 
x="+fsm.Minver-filler; byte BMinver-new byte4; 
BMinver-x.getBytes(); x="+ ExchangeType-filler; 
byte BExchangeType new byte8;BExchangeType=x.getBytes(); 
x="+ fism. Flags +filler; byte BFlags=new byte.8; 
BFlags=X.getBytes(); x="+ fism.MessageID +filler; 
byte BMessageID=new byte32; BMessageID=x.getBytes(); 
x="+fsm.Totallength +filler; byte BTotallength=new byte(32; 

BTotallength=x.getBytes0; 
FileOutputStream fos = new FileOutputStream(fname); 
for int count=0; count <32; count +){fos.write(BSourceCookie count);} 
for (int count=0; count <32; count-H){fos.write(BDistCookie count);} 
for (int count=0; count <8; count-H) {fos.write(BNPayloadType count);} 
for (int count=0; count <4; count-H) {fos.write(BMjrver count);} 
for (int count=0; count <4; count-H) {fos.write(BMinvercount); } 
for (int count=0; count <8; count-H) {fos.write(BExchangeType count);} 
for (int count=0; count <8; count-H) {fos.write(BFlagscount); } 
for (int count=0; count <32; count-H) {fos.write(BMessageID count); } 
for (int count=0; count <32; count-H) {fos.write(BTotallength count);} 
fos.close(); System.out.println("File: "+fname+" has been written"); } 

F.G. 52 



Patent Application Publication Feb. 16, 2006 Sheet 53 of 67 US 2006/0036755A1 

public static void Send UDP(BytesObject b, int len, String DistIP, 
int DistPort) throws Exception { 
InetAddress serverAddress = InetAddress.getByName(DistP); 

byte bytesToSend = b.N; 
int servPort = DistPort; 
Datagram Socket socket = new DatagramSocket0; 

Datagram Packet send Packet eW 
Datagram Packet(bytesToSend, 

bytesToSend.length, serverAddress, servPort); 
socket.send(sendPacket); 
System.out.println("UDP packet sent."); 
socket.close(); 

FIG. 53 



Patent Application Publication Feb. 16, 2006 Sheet 54 of 67 US 2006/0036755A1 

C, S: Client and Server, Ks: Server Public key, Sk: Set 
of shared keys 
CS: {ClientHello} & 
SC: ServerHello, Certificate, ServerHello Done} 
CS: ClientkeyExchange}Ks 
CS: {Change(CipherSpec} 
CS: Finish: Sk 
SC:{ChangecipherSpec} 
SC:{Finish Sk 

F.G. 54 



Patent Application Publication Feb. 16, 2006 Sheet 55 of 67 US 2006/0036755A1 

Initiator Responder 

- Client Hello -- Client Hello 

- Server Hello 
- Certificate 
- Server Hello done 

- Server Helo 
+ Certificate 
- Server Hello done 

- Client Key Exchange 
- Change Cipher Spec 
- Finished (Protected) 

+ Client Key Exchange 
+ Change Cipher Spec 
+ Finished (Protected) 

- Change Cipher Spec 
- Finished 

+ Change Cipher Spec 
+ Finished 

Option: TLS RSA with DES CIBS SHA 

FIG. 55 

  

  

  

  

  

  

  

  

  



Patent Application Publication Feb. 16, 2006 Sheet 56 of 67 US 2006/0036755A1 

<object> 

</object> 

<name>SessionState </name> 
<field type="byte"> VersionMajor-/field> 
<field type="byte"> VersionMinor-/field> 
<field type="String"> id</field> 
<field type="int"> CurrentState-/field> 
<field type="String"> ClientPrivKeyFname</field> 
<field type="String"> ServerCertFname</field> 
<field type="long"> ClientRandom-/field> 
<field type="long"> ServerRandoms/field> 
<field type="byte"> PreMasterSecret-/field> 
<field type="byte"> MasterSecret </field> 
<field type="int"> SessionID-/field> 
<field type="String"> CipherSuite</field> 
<field type="String"> CompressionMethod-/field> 
<field type="byte"> client write MAC secret-/field> 
<field type="byte"> server write MAC secret-/field> 
<field type="byte"> client write key-/field> 
<field type="byte"> server write key-/field> 
<field type="byte"> client write IV-/field> 
<field type="byte"> server write IV-/field> 

FIG. 56 



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 57 of 67 



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 58 of 67 



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 59 of 67 



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 60 of 67 



Patent Application Publication Feb. 16, 2006 Sheet 61 of 67 US 2006/0036755A1 

Client Process Server Process 

+ Server Hello - Server Hello 
+ Certificate - Certificate 
-- Server Hello done - Server Hello done 

2- Client Key Exchange + Client Key Exchange 
- Change Cipher Spec + Change Cipher Spec 
- Finished (Protected) + Finished (Protected) 
+ Change Cipher Spec Change Cipher Spec 
+ Finished (Protected) - Finished (Protected) 

wait for packet from 
client 

Wait for data from 
application 

Decrypt, check MAC, 
remove header, 
remove pads 

FIG. 61 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

      

    

  



Patent Application Publication Feb. 16, 2006 Sheet 62 of 67 US 2006/0036755A1 

public static class SSLSessionState { 
public byte VersionMajor; 
public byte VersionMinor; 
public String id, IP; 
public int PortNo, CurrentState; 
public String PrivKeyFname; 
public String PublicKeyFname; 
public String RespublickeyFname; 
public long ClientRandom; 
public long ServerRandom; 
public byte48 PreMasterSecret; 
public byte48 MasterSecret; 
public int SessionID; 
public int CipherSuite; 
public String CompressionMethod; 
public byte8 client write MAC secret; 
public byte.8 server write MAC secret; 
public byte.8 client write key; 
public byte8 server write key; 
public byte8 client write IV; 
public byte.8 server write IV; } 

F.G. 62 



99 "SDIH 

US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 63 of 67 



Patent Application Publication Feb. 16, 2006 Sheet 64 of 67 US 2006/0036755A1 

2 Bytes 
Version 

Data 
(Variable Length, max 2^14) 

Hash Value (20 Bytes) 

Pad Length 

FIG. 64 

  



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 65 of 67 



US 2006/0036755A1 Patent Application Publication Feb. 16, 2006 Sheet 66 of 67 



Patent Application Publication Feb. 16, 2006 Sheet 67 of 67 US 2006/0036755A1 

public static void Encrypt(String fileInput,String fileOutput, 
String publickey Filename) throws Exception { 

PublicKey publickey=Load PublicKey(publicKeyFilename); 
// Open up an output file for the output of the encryption 
DataOutputStream output = new DataOutputStream 
(new FileOutputStream(fileOutput)); 
// Create a cipher using that key to initialize it 
Cipher rsaCipher = Cipher.getInstance("RSA/ECB/PKCS1Padding"); 
rsaCipherinit(Cipher.ENCRYPT MODE, publicKey); 
// Now create a new 128 bit Tripple-DES key to encrypt the file itself. 
// This will be the session key. m 
KeyGenerator myKey Generator = Key Generator.getInstance("DESede"); 
System.out.println("Generating session key..."); 
Key DESedekey = myKeyGenerator.generateKey(); 
// Encrypt the DESese key with the RSA cipher 
// and write it to the beginning of the file. 
byte encoded KeyBytes= rsaCipher..doFinal(DESedekey.getencoded()); 
output.writent(encoded KeyBytes.length); 
output.write(encoded Key Bytes); 
// Now I need an Initialization Vector for the symmetric cipher in CBC mode 
SecureRandom random = new SecureRandom (); 
byte iv = new bytes; 
random.nextBytes(iv); . 
// Write the IV out to the file. 
output.Write(iv); 
IvParameterSpec spec = new IvParameterSpec(iv); 
// Create the cipher for encrypting the file itself. 
Cipher symmetricCipher = Cipher:getInstance("DESede/CBC/PKCS5Padding"); 
symmetricCipher.init(Cipher.ENCRYPT MODE, DESedekey, spec); 
CipherOutputStream cos = new CipherOutputStream(output, symmetricCipher); 
System.out.println("Encrypting the file..."); 
FileInputStream input = new FileInputStream(fileInput); 
int the Byte = 0; 
while (thebyte = input.read()) = -1) 
cos.write(thebyte); } 

input.close(); 
cos.close(); 
System.out.println("File encrypted."); 
return; } 

F.G. 67 



US 2006/0036755A1 

META-PROTOCOL 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. The present application claims the benefit of pro 
visional patent application: Ser. No. 60/568,664 to Abdullah 
et al., filed on May 7, 2004, entitled “Meta-Protocol,” which 
is hereby incorporated by reference. 
0002 Reference to Computer Program Listing Appendix 
on a Compact Disc 
0003) Two copies of a single compact disc (Compact 
Disc), labeled Copy 1 and Copy 2, are hereby incorporated 
by reference in their entirety. Each Compact Disc contains 
Computer Program Listing Appendices A-H. Computer Pro 
gram Listing Appendix A (created on Compact Disc on May 
5, 2005 and having a size of 482,816 bytes) contains 
Documentation of Experiments. Computer Program Listing 
Appendix B (created on Compact Disc on May 5, 2005 and 
having a size of 57.856 bytes) contains XSLT Stylesheet for 
Protocol Transformation. Computer Program Listing 
Appendix C (created on Compact Disc on May 5, 2005 and 
having a size of 54,272 bytes) contains XPSLXML Schema. 
Computer Program Listing Appendix D (created on Com 
pact Disc on May 5, 2005 and having a size of 31,744 bytes) 
contains Java Interface Code to Process XSLT Stylesheet. 
Computer Program Listing Appendix E (created on Compact 
Disc on May 5, 2005 and having a size of 262,656 bytes) 
contains Needham Schroeder Authentication Protocol 
(NSAP) protocol FSM, XML protocol specifications and 
java code. Computer Program Listing Appendix F (created 
on Compact Disc on May 5, 2005 and having a size of 
561,664 bytes) contains Transport Control Protocol (TCP) 
3-way Handshake protocol FSM, XML protocol specifica 
tions, java code and testing Scenarios. Computer Program 
Listing Appendix G (created on Compact Disc on May 5, 
2005 and having a size of 477,696 bytes) contains Internet 
Security ASSociation and Key Management Protocol 
(ISAKMP) Base Exchange Experiment protocol FSM, XML 
protocol Specifications and java code. Computer Program 
Listing Appendix H (created on Compact Disc on May 5, 
2005 and having a size of 557,056 bytes) contains a protocol 
FSM, XML protocol specifications and java code for Secure 
Socket Layer (SSL) Experiment: TLS RSA with 
DES CBC SHA. Computer Program Listing Appendix I 

(created on Compact Disc on May 5, 2005 and having a size 
of 1,581,056 bytes) contains Protocol Components Library 
showing a description of components and listing of compo 
nents in java code used in the experiments. 

BACKGROUND OF THE INVENTION 

0004 Communication protocols play a central role in 
today's information Systems. The wide spread use of the 
Transmission Control Protocol/Internet Protocol (TCP/IP) 
protocol and the rapid development of communication tech 
nologies laid the ground for an explosion in the use of 
information technologies at homes, businesses and govern 
ment agencies. Several protocols, including TCP/IP, HTTP, 
SMTP, S/MIME, SSL and IPsec, have contributed to this 
growth. Moreover, new technologies are emerging fre 
quently to Support the growing need for efficient, easy and 
Secure communication. 

0005 Developed in the mid-1970s by the Defense 
Advanced Research Project Agency (DARPA) of the U.S. 

Feb. 16, 2006 

Department of Defense, the TCP/IP protocol has several 
features that led to its widespread adoption: open Standard, 
freely available for developerS and independent of any 
Specific physical network hardware. The first two features 
led to TCP/IP's wide acceptance, and the latter feature made 
it easy for different kinds of networks to interoperate. With 
the adoption of TCP/IP, the Internet has seen an exponential 
growth. 
0006. The TCP/IP stack consists of four layers: the net 
work access layer, the Internet Protocol layer (IP), the 
transport layer and the application layer. The network access 
layer is located at the bottom of the architecture. It consists 
of many protocols that provide access to physical networks. 
Compared to the Open System Interconnection (OSI) seven 
layer reference model, the network access layer comprises 
just two layers: a data link layer and a physical layer. 
0007. The IPlayer is responsible for defining the Internet 
addressing Scheme, composing datagrams and routing them 
to their destination. IP is a connectionless protocol. Yet, it 
does not provide handshake or reliability mechanisms. Thus, 
IP depends on other layers to provide Such Services. 
0008. The transport layer consists of two protocols: 
Transmission Control Protocol (TCP) and User Datagram 
Protocol (UDP). TCP provides connection management 
reliability, flow control and sequencing, whereas UDP 
Serves as a simple interface between applications and IP. 
One other distinction is that UDP does not provide reliabil 
ity, flow-control or error-recovery. 
0009. The application layer is at the top of the stack. It 
includes protocols that use the transport layer to deliver data 
to the network. Many protocols run at the application layer 
to provide services such as TELNET, HTTP, SMT and FTP. 
0010 Problematically, TCP/IP does not have security 
measures to Support the kind of applications that have 
appeared over time. Therefore, Several Security Solutions 
have been proposed to address the different kinds of vul 
nerabilities of TCP/IP, as well as the additional security 
needs of applications. Such Security Solutions are typically 
associated with a single layer of the TCP/IP stack or with 
Specific applications. 
0011 Security protocols also play a central role in 
today's information Systems. Most tend to have more com 
monalities than differences. For example, Security protocols 
share significant functionality and utilize a common Set of 
encryption, hash and compression algorithms. They usually 
differ in the handshaking mechanism (which includes 
authentication), target data, header processing, key sizes, 
replay mechanisms and the order in which the various 
algorithms are applied. 
0012 One common security protocol is the secure socket 
layer (SSL). The motivation for the SSL protocol develop 
ment was to provide protection to electronic commerce and 
Web transactions. In 1994, Netscape communications intro 
duced SSL version 1.0 in its Mosaic Web browser. Netscape 
made SSL an open Standard and encouraged the Web com 
munity to participate in its development. Later, in May 1996, 
the development of SSL became the responsibility of the 
Internet Engineering Task Force (IETF), which was later 
renamed as Transport Layer Security (TLS). 
0013 SSL has two important features. First, it provides 
Strong protection based on public key cryptography. That is, 



US 2006/0036755A1 

SSL uses public key cryptography to encrypt the pre-master 
key that is used to generate the Set of shared keys. Second, 
SSL is efficient because it uses Symmetric key cryptography 
to protect the traffic between the communicating parties. 
Therefore, SSL consumes relatively little CPU time to 
protect the exchange of data between parties. These two 
features made SSL Suitable for most e-commerce applica 
tions on the Internet. 

0014) Today, SSL is the most widely used Web security 
protocol. Almost every browser and Web server supports 
SSL. SSL adds security by inserting itself between the 
Hypertext Transfer Protocol (HTTP) application and the 
TCP layer. Therefore, SSL requires minor changes in the 
applications. In addition, SSL is not limited to HTTP traffic 
(through its original specification) but it can Support other 
Internet applications, such as Net News, FTP and Telnet. 

0.015 However, a disadvantage of SSL is that it only 
supports TCP. In the typical handshake process, an SSL 
initiator Sends to the Second party a list of the Security 
capabilities that it can Support. For instance, TLS V.1 cur 
rently supports 32 different capabilities. In this format, the 
responder Selects his preferred capability and sends it back 
to the initiator along with a certificate that contains a public 
key. The certificate is then used by the initiator to authen 
ticate the responder. Next, the initiator creates a pre-master 
Secret key, encrypts it with the responder's public key and 
Sends the encrypted message to the responder. Afterwards, 
both parties use the pre-master Secret key to create six shared 
keys for the protection of the Subsequent communication. 
Each party indicates its readiness to Switch to protected 
mode by Sending a single byte message called ChangeCi 
pherSpec. The first protected message Sent by each party is 
the Finish message. This message contains a hash value of 
all the previously exchanged messages between the parties 
to protect the Session against replay attackS. 

0016. Another security protocol is IP Security Protocol 
(IPSec). IPsec is a security standard developed by the 
Internet Engineering Task Force (IETF). This protocol is 
designed to establish a Solid Security ground for the Internet. 
IPsec is part of the Next Generation Internet or Internet II 
(IPv6). Most of the VPN products nowadays adopt the IPsec 
protocol (e.g., Cisco VPN, eTrust, VPN-1 and Symantec). A 
complex technology, IPSec's main goal is to Secure the flow 
of information between two endpoints. Its Security Services 
are designed for the IP layer. Furthermore, it provides 
Several types of protections Such as Source IP authentication, 
integrity and confidentiality. The protection Scope varies. 
For example, it may include the IP header, or it may be 
limited to the payload only. These choices are determined by 
a Set of Security policies that are managed by a System 
administrator. However, an IPsec-Secured connection is very 
cumberSome to Setup and configure because it comes in 
many varieties. Therefore, an IPsec user has to have a clear 
Set of requirements and Security policies before implemen 
tation. Otherwise, it would be hard to validate whether there 
is a Secure connection or not. 

0017 IPsec consists of two major protocols: Authentica 
tion Header (AH) and Encapsulating Security Payload 
(ESP). Each protocol can be configured to run in Transport 
Mode or in Tunnel Mode. The Transport Mode provides 
security for transport layer (TCP, UDP or ICMP). Typically, 
this mode is used for end-to-end communication. Therefore, 

Feb. 16, 2006 

ESP in transport mode encrypts, and optionally authenti 
cates, the IP payload but not the IP header. Similarly, AH in 
transport mode authenticates the IP payload and Selected 
portions of the IP header without encryption. 
0018 Tunnel mode provides security for the entire 
packet. A new header with the gateway destination address 
is added to the packet. ESP in tunnel mode adds a new 
header to the packet, encrypts it and optionally authenticates 
the new packet including the new header. In contrast, AH in 
tunnel mode authenticates the entire packet and parts of the 
new header without encryption. 
0019 IPsec manages keys and establishes sessions 
through a protocol called the Internet Key Exchange (IKE). 
IKE is a collection of protocols: Internet Security ASSocia 
tion and Key Management Protocol (ISAKMP), Oakley Key 
Determination Protocol (Oakley) and Secure Key Exchange 
Mechanism (SKEME). Therefore, IPsec Supports a wide 
variety of key types and sizes. 
0020 IPsec provides general IPsecurity services regard 
less of the specific needs of the applications. However, IPsec 
is transparent to applications. Therefore, Similar to SSL, 
IPsec cannot address Specific needs of an application, Such 
as authenticating a user or protecting parts of a document 
(e.g., part of a contract or a payment document). 
0021. The current approach to implementing security 
protocols is centered on designing a protocol as a single 
package comprised of two layers: control and a library of 
algorithms. This approach is based on the assumption that 
every protocol is complete and does not need to be inte 
grated with other Security protocols. Yet, this assumption 
may not be valid in Situations where Several Security pro 
tocols need to coexist. In Such cases, redundancy and 
conflicts may occur. For example, running Secure/Multipur 
pose Internet Mail Extensions (S/MIME) over IPsec intro 
duces redundancy. Both provide Similar encryption: 
S/MIME does it at the document level and IPsec at the 
packet level. This situation is common in business-to-busi 
ness (B2B) applications when an application uses S/MIME 
as a document-level protection while using IPsec to protect 
the communication with a remote branch office. 

0022. Moreover, the current approach of designing 
autonomous and complete protocols has Several disadvan 
tages. First, it may result in conflicts when various protocols 
need to coexist. For example, if compression is done at an 
upper layer (e.g., S/MIME), repeating it at a lower layer may 
increase the Size of the message. Second, there is not enough 
flexibility in most security protocols (e.g., S/MIME, SSL, 
IPSec) and, consequently, their users have to adopt them 
without being able to make changes. For instance, a user 
may want to change the header by adding or removing Some 
fields for quality of service (QoS) purposes. Third, these 
protocols offer coarse grained Security Services and the 
developer of an application does not have the ability to fine 
tune operations within the use of these protocols. For 
example, S/MIME services are applied to an entire docu 
ment, preventing a user from applying it on Selective parts 
of the document. Fourth, the use of coarse grain Services 
may lead to unnecessary performance degradation. For 
instance, SSL has to calculate a block of four shared keys 
and a couple of IVs even if the user does not want to use 
Some of the modes Such as the read mode, the write mode, 
the encryption Service or the integrity Service. 



US 2006/0036755A1 

0023. Furthermore, the traditional approach to imple 
menting protocols is monolithic. Adhering to monolithic 
protocols limits users to Situations for which the protocols 
were implemented. Internet applications and their Security 
requirements are evolving very rapidly. Video, audio, wire 
leSS applications, collaborative applications and many other 
emerging technologies raise new challenges and require 
flexible approaches to deal with them. This monolithic 
implementation approach is not well-Suited to cope with 
rapid changes in communication and Security requirements. 
0024. Overall, the current process of implementing a 
protocol is tedious and error-prone. Protocol Specifications 
in natural language are often ambiguous and may lead to 
defective implementations. Moreover, implementations 
have to be thoroughly tested. This testing is a time-consum 
ing effort due to the timing dependencies of events processed 
by protocols. 
0.025 Consequently, it would be desirable to have a 
model for sharing protocol Specifications to produce proto 
col implementations automatically. It would also be desir 
able to free protocols from being dependent on the mono 
lithic implementation of a limited number of capabilities. 
Additionally, it would be desirable to have a flexible infra 
Structure for businesses to exchange protocol Specifications 
and automatically generate code that Supports the evolving 
B2B environment. Furthermore, it would be desirable to 
have a framework that could be applied to overlay networks 
and Web Services. 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

0026. The accompanying drawings, which are incorpo 
rated in and form a part of the Specification, illustrate an 
embodiment of the present invention and, together with the 
description, Serve to explain the principles of the invention. 
0.027 FIG. 1 shows a protocol management system. 
0028 FIG. 2 shows one embodiment as per an aspect of 
a layered structure of the Meta Protocol framework. 
0029 FIG.3 shows another embodiment as per an aspect 
of a layered structure of the Meta Protocol framework. 
0030 FIG. 4a shows one embodiment as per an aspect of 
a flow process for interacting among the layered Structure of 
a protocol management System. 
0.031 FIG. 4b shows a tangible computer-readable 
medium encoded with the embodiment of FIG. 4a. 

0.032 FIG. 5a shows another embodiment as per an 
aspect of a flow process for interacting among the layered 
Structure of a protocol management System. 
0033 FIG. 5b shows a tangible computer-readable 
medium encoded with the embodiment of FIG. 5a. 

0034 FIG. 6 shows an ISAKMP packet format. 
0035 FIG. 7a shows a list of messages for Base 
Exchange. 

0036 FIG. 7b shows FSM diagrams for ISAKMP Base 
Exchange. 

0037 FIG. 8 shows an example of an ISAKMP header 
carrying a proposal payload. 

Feb. 16, 2006 

0038 FIG. 9 shows a manual protocol production pro 
CCSS. 

0039 FIG. 10 shows an automated protocol production 
proceSS. 

0040 
0041) 
0042 FIG. 13 shows an example of a UML entity class 
diagram for the acceSS list. 
0043) 
database. 

0044 FIG. 15 shows a UML entity class diagram for the 
registry database. 
004.5 FIG. 16 shows a UML activity diagram for a PCS 
operation. 

0046 FIG. 17 shows FSM diagrams for the Needham 
Schroeder authentication protocol. 

FIG. 11 shows a system architecture. 
FIG. 12 shows an example of an access list. 

FIG. 14 shows an example of records in a registry 

0047 FIG. 18 shows a traditional manual protocol pro 
duction process. 
0048 FIG. 19 shows an automated protocol production 
proceSS. 

0049 FIG. 20 shows an example of XPSL XML ele 
mentS. 

0050 FIG.21 shows one embodiment as per an aspect of 
a method for using XPSL. 
0051 FIG. 22 shows a XPSL syntax for NSAP's client 
state 3. 

0052 FIG. 23 shows another embodiment as per an 
aspect of a method for using XPSL. 
0053 FIG.24 shows an example of an <object> element. 
0054 FIG. 25 shows an example of an <instance> ele 
ment. 

0055 FIG. 26 shows an example of a <movetos element 
nested inside an <action> element. 

0056) 
0057 FIG. 28 shows an example of an <instance> ele 
ment nested inside an <action> element. 

0058 FIG. 29 shows an example of protocol specifica 
tion and implementation using XPSL. 

0059 FIG.30a shows one embodiment as per an aspect 
of XPSL stored in a tangible computer-readable medium. 

0060 FIG. 30b shows another embodiment as per an 
aspect of XPSL stored in a tangible computer-readable 
medium. 

0061 FIG. 31a shows a data type comparison between 
programming languages. 

0062 FIG. 31b shows a list of XPSL protocol primitive 
data types. 
0063 FIG. 32a shows a common pictorial view of an 
FSM indicating the possible transitions between states. 
0064 FIG. 32b shows a behaviorally equivalent pictorial 
representation. 

FIG.27 shows an example of a <movetos element. 



US 2006/0036755A1 

0065 FIG. 33 shows a tree of XML elements corre 
sponding to an FSM. 
0.066 FIG. 34 shows one embodiment as per an aspect of 
StepS required to check a protocol Specification. 
0067 FIG. 35 shows a main segment of the XML 
schema for XPSL specifications. 
0068 FIG. 36 shows an XML schema definition of an 
<object> element. 
0069 FIG. 37 shows steps required to generate a proto 
col implementation from an XPSL specification. 
0070 FIG. 38 shows an XSLT main template. 
0071 FIG. 39 shows an example of a <first-states tem 
plate. 

0.072 FIG. 40 shows an example of an <object> tem 
plate. 

0.073 FIG. 41 shows an example of an <instance> tem 
plate. 

0.074 FIG. 42 shows an example of an <action> tem 
plate. 

0075 FIG. 43 shows an example of a <movetos tem 
plate. 
0.076 FIG. 44 shows an example of a <stated template. 
0077 FIG. 45 shows partial Java code of the NSAP. 
0078 FIG. 46 shows an FSM diagram for TCP hand 
Shake. 

007.9 FIG. 47a shows a TCP sequence of states transi 
tion. 

0080 FIG. 47b shows a TCP sequence of message 
eXchange. 

0081 FIG. 47c shows a TCP sequence of states transi 
tion. 

0082 FIG. 47d shows another TCP sequence of message 
eXchange. 

0083 FIG. 48 shows an XPSL specification of the first 
State. 

0084 FIG. 49 shows a list of the Java code corresponds 
to the specification presented in FIG. 48. 
0085 FIG. 50 shows components and objects used in the 
ISAKMP initiator. 

0.086 FIG. 51 shows data structure of the ISAKMPFSM 
object. 

0087 FIG. 52 shows BXcomposeMain Header Java 
class. 

0088 FIG. 53 shows a Java class for sending a UDP 
packet. 

0089 FIG. 54 shows an SSL Handshake sequence of 
message eXchange. 

0090 FIG. 55 shows an FSM diagram for SSL Hand 
Shake. 

0091 FIG. 56 shows an SSL Handshake Client Session 
State object XPSL specification. 

Feb. 16, 2006 

0092 FIG. 57 shows an SSL Handshake Client first state 
XPSL specification. 

0093 FIG.58 shows an SSL Handshake Server first state 
XPSL specification. 
0094 FIG. 59 shows a generated Java code correspond 
ing to the specification in FIG. 56. 
0095 FIG. 60 shows a generated Java code correspond 
ing to the specification in FIG. 57. 
0096 FIG. 61 shows FSM diagrams for an XSPL SSL 
protocol. 

0097 FIG. 62 shows an SSLSessionState data structure. 
0.098 FIG. 63 shows actions inside state 7 of the client 
XPSL specification. 

0099 FIG. 64 shows a format of an SSL packet. 
0100 FIG. 65 shows java implementation of the 
TCPListen Component. 

0101 FIG. 66 shows XPSL actions inside state 6 of the 
Server process. 

0102 FIG. 67 shows an example of an encryption com 
ponent. 

DETAILED DESCRIPTION OF THE 
INVENTION 

0103) The present invention is a multi-layer protocol 
management System and method, embeddable in a tangible 
computer-readable medium, that allow for on-the-fly 
machine-readable protocol discovery and negotiation, dis 
tribution of protocol Specifications and components, auto 
matic machine-readable protocol implementation and 
execution of machine-readable protocol Specifications. 
Automatic protocol implementation may be accomplished 
using eXtensible Markup Language (XML)-related tech 
nologies and Component-based Software Engineering 
(CBSE). 
0104. The present invention is also a tangible computer 
readable medium encoded with instructions capable of gen 
erating, as well as capable of being designed to generate, 
protocol Specifications. A program of instructions, called 
XML-based protocol specification language (XPSL), may 
be used for generating a specification of a communication 
protocol (Such as high-level specifications of a protocol) in 
a machine readable form. Alanguage that protocol designers 
can use to describe the design of a protocol, XPSL may be 
expressible in Finite State Machines (FSM) by using CBSE 
principles. Taking an XPSL document as input, an eXten 
sible Stylesheet Language for Transformations (XSLT) may 
be used as a code generator to transform Specification 
description into actual code (e.g., an implementation for the 
communication protocol). XSLT stylesheets can be designed 
to produce code in different programming languages (e.g., 
C++ or Java). CBSE may be used to build a set of operations 
needed by a protocol. 

0105 XML is a set of rules for creating new markup 
languages. Originally, XML may be construed as a Subset of 
the Standard Generalized Markup Language (SGML), 
which specifies Syntactic and Semantic rules for creating 
new markup languages, Such as the Hypertext Markup 



US 2006/0036755A1 

Language (HTML). SGML may also be deemed as an 
International Standards Organization (ISO) standard. 
0106 XML 1.0 was announced as a World Wide Web 
Consortium (W3C) recommendation on Feb. 10, 1998. A 
goal of XML is to provide a language for expressing 
metadata. Metadata refers to information about data. Meta 
data is often important in Searches, filtering, and document 
management. XML is intended to be human-readable as well 
as machine-readable. A document that conforms to the XML 
specification can be called “well-formed.” XML editors and 
parsers typically provide the capability to check if an XML 
document is well-formed or not. 

0107 An XML specification may include two parts. One 
may specify rules for constructing XML documents, while 
the other may specify rules for Document Type Definitions 
(DTD). A DTD may specify how tags are used in a class of 
XML documents, the order they should appear; the nesting 
structure of a document; and the attributes of XML elements 
for that class of documents. A DTD may also describe 
constraints on XML elements that are used to validate the 
correctness of an XML document. But, a DTD may also 
have disadvantages. First, it is not written in XML; it has a 
Special Syntax. Second, a DTD has a limited expressive 
Syntax to address needs Such as different kinds of data types 
and cardinality constraints. To overcome the limitations of 
DTDs, XML schemas may be introduced. 
0108). The W3C released the Schema standard in May 
2001. An XML Schema may specify valid elements and 
attributes in an XML document. It may also specify XML 
elements order, attributes constraints, accepted data types 
and accepted value ranges. Schema can help applications 
determine whether an XML document complies with a 
System's requirements. 
0109) XPSL may be based on XML, which is an open 
Standard used to express Metadata in machine readable 
form. Because XML is known to be widely used for easy 
Sharing and exchanging of information about transmitted 
data, XPSL can benefit from the wide spread tools and 
technologies of XML. In essence, the development of XPSL 
addresses the need of Sharing and eXchanging protocol 
Specifications among users in a machine readable form. 
0110. The eXtensible Stylesheet Language (XSL) is a 
language that allows XML document users to specify how 
an XML document may be transformed into a resulting 
output document (e.g., HTML, SVG, PS, PDF, plain text, or 
any other format). The XSLT 1.0 recommendation was 
released on Nov. 16, 1999. XSLT tends to be attractive to 
developerS because it is not a programming language. An 
XSLT stylesheet may be written down as a set of rules, 
which may be applied to the XML document during the 
transformation to produce the required output. 
0111 
0112 A protocol may be defined as a set of rules shared 
by two or more communicating parties to facilitate data 
communication. These rules can have two parts: Syntax and 
Semantic. Syntax refers to the format of the messages that 
are to be exchanged; Semantic refers to the Sequence of 
operations to be performed by each party when events (e.g., 
timeouts and reception of messages) occur. 

I. The Meta-Protocol Framework 

0113 Referring to FIG. 1, as one embodiment, a protocol 
management System, Sometimes referred to as a Meta 

Feb. 16, 2006 

Protocol framework, can demand a plurality of require 
ments. First, it may require a negotiation mechanism for 
allowing communicating parties to agree upon a machine 
readable protocol specification (also Sometimes referred to 
as protocol specification or specification). The specification 
may be an XPSL Specification. Second, it may require a 
delivery mechanism for retrieving and/or distributing the 
machine-readable protocol Specification and any missing 
component. Third, it may require a Searchable repository 
System to Store specifications and any missing component. 
Fourth, it may require a machine-readable protocol Specifi 
cation converter to convert the protocol Specification and 
any missing component into executable code. Fifth, it may 
require an executable code System manager for managing 
the executable code by loading it and running it as needed. 
Sixth, it may require a Security measure against attacks, Such 
as identify theft, Denial of Service (DoS), anti-replay and 
connection hijacking. Seventh, it may require a layered 
architecture. 

0114. The layered architecture is often necessary to main 
tain flexibility. Natural boundaries between layers may be 
found according to technologies chosen at each layer. 
Indeed, each layer may encompass multiple technologies 
that fit the requirements of that layer. For example, off-line 
or online approaches may be used at the negotiation layer, 
which is usually the first layer of the Meta-Protocol frame 
work. Moreover, any Security measures needed may vary per 
layer. 

0115) To implement the Meta-Protocol framework, a 
development environment and/or an execution environment 
may be needed. The development environment is generally 
responsible for writing down protocol Specifications from 
protocol designs, developing components, and Verifying 
Specifications and components. Once a Specification is com 
plete along with all the required components, the protocol 
may be deployed into the execution environment. The 
development environment architecture and tools can be 
widely open and can vary from a simple Standalone editor 
and compiler to complex visual (e.g., GUI) systems that 
integrate editing, coding, and verification. 

0116. The distinction between the two environments is 
important from an operational and performance point of 
view. An objective of the development environment is to 
prepare a System and produce necessary code. This objective 
may be achieved in the background (e.g., under no time 
constraints). On one hand, operations in the development 
environment may involve human interaction and may take 
Several cycles to produce the correct specification and, if 
any, components code. On the other hand, operations in the 
execution environment may take place at run time. There 
fore, by Separating these two environments, protocol code 
may be executed with minimum possible overhead. 

0117 Referring to FIG. 2, the Meta-Protocol framework 
may have four different layers: a negotiation layer, a distri 
bution layer, an implementation layer and an execution 
layer. In the negotiation layer, communicating parties may 
agree upon protocol Specification. It is preferable, albeit not 
necessary, that the protocol Specification be written using 
XPSL. For example, the protocol specification can also be 
written using XML. In the distribution layer, the responding 
party may retrieve and/or distribute the agreed upon protocol 
Specification, as well as any components needed for the 



US 2006/0036755A1 

protocol implementation. The protocol Specification may 
exist locally or at a remote Site. The responder may retrieve 
the protocol Specification and Verify its authenticity, or 
alternatively, allow a trusted third party to do so. In the 
implementation layer, the protocol Specification may auto 
matically be converted into code (e.g., executable code) 
through a transformation process that uses XSLT. In the 
execution layer, the code may be loaded and executed as 
needed. 

0118 Various mechanisms may be employed to assist in 
performing these functions. These include a negotiation 
mechanism, delivery mechanism, machine-readable proto 
col Specification converter and executable code System 
manager. Each may be embedded within its respective layer 
as exemplified in FIG. 3. Additionally, the framework may 
also be Supplemented by incorporating a Searchable reposi 
tory System and a Security measure. The Searchable reposi 
tory System may assist in Storing a protocol Specification 
and/or any missing component. A Security measure can help 
protect the System and method from attacks, Such as viruses 
and access without permission. 
0119) The system may be able to interact among the 
layers using a method as exemplified in FIG. 4a. Addition 
ally, the method may further include a storing Step and a 
Securing (i.e., protection) step as exemplified in FIG. 5a. 
Both FIGS. 4b and 5b show that its respective method may 
be embedded in a tangible computer-readable medium. 
0120 A. Negotiation Layer 
0121. A goal of the negotiation layer is to establish an 
agreement between two communicating parties on the name 
and location of a protocol Specification and its components. 
The protocol specification may be written in XML and/or 
include a description of a protocol Specification language 
(such as, but not limited to XPSL) specified in an XML 
Schema. In essence, for example, the protocol Specification 
may be a machine-readable XPSL Specification. A compo 
nent may be any Software component, Such as the ones listed 
in the Computer Program Listing Appendix. A negotiation 
mechanism can be used to help accomplish this goal. The 
initiator of the communication can provide a set of proposed 
protocol Specifications. The responder can then Select a 
protocol Specification according to its preferences and notify 
the initiator. 

0122) This goal may be achieved either manually or 
automatically. The manual approach may be feasible for 
local areas but may not be appropriate for long distances. 
Under the automatic approach, the goal may be achieved 
either via a Secure channel (e.g., SSL or IPSec) or through 
the use of a customized version of the Internet Security 
Association and Key Management Protocol (ISAKMP). 
Customization can be performed according to a user's 
requirements or needs. If Secure channels are used, nego 
tiation mechanisms may need to be added. Yet, it is prefer 
able to choose a customized version of ISAKMP because it 
may already provide a negotiation mechanism in addition to 
Several important Security features. 

0123 ISAKMP tends to provide packet formats and 
negotiation procedures for establishing Security associations 
(SA) and key management. For the purpose of maintaining 
interoperability between Systems, it is preferable to Separate 
Security association management from key exchange. In 

Feb. 16, 2006 

addition, the ISAKMP standard may be independent of any 
Specific Security protocol or key exchange algorithm. More 
over, this standard may be highly flexible and interoperable 
with other protocols and algorithms. 

0.124. Every ISAKMP packet may include one or more 
payloads organized as a linked list. Each payload can vary 
in length as Specified in a payload header. The first payload 
may be defined in the main ISAKMP header, and every 
payload may carry a field that defines the next payload type, 
which may define the Structure of Such payload and its 
COntent. 

0.125. It is preferable to customize a Domain of Interpre 
tation (DOI) to define new payload formats, exchange types 
and name conventions, as well as to Save time and effort. To 
achieve this feature, the IPsec format may be used with 
various types of information tailored to the needs of the 
Meta-Protocol framework. For example, IPsec may use 
ISAKMP proposals to deliver information related to the 
IPsec type of operation and transforms (e.g., AH or ESP). In 
the Meta-Protocol framework, ISAKMP may be used to 
deliver information related to protocol name, location and 
versions. 

0126 The operation of ISAKMP may include two 
phases. The first phase preferable negotiates Security pro 
posals. An agreement upon a specific proposal can establish 
phase-1-SA. In the Second phase, a protocol Specific SA may 
be created under the protection of phase-1-SA. The first 
phase may offer five types of exchanges: Base, Identity 
Protection, Authentication Only, Aggressive and Informa 
tional. Each type of exchange tends to describe a sequence 
of messages, and each may differ in the level of authenti 
cation and number of messages exchanged. An initiator can 
Select one of these exchanges to deliver proposals according 
to its needs. The Base Exchange may provide Session 
integrity protection. One embodied implementation of the 
present invention uses this exchange to deliver the file name 
and file location of an XPSL protocol specification instead 
of delivering IPsec related information. If confidentiality is 
required, then the Identity Protection exchange can be used. 

0127. As an embodiment, FIG. 6 exemplifies the format 
of ISAKMP's main header and payload header. ISAKMP 
may mandate the use of UDP as the transport protocol for 
ISAKMP messages. According to one ISAKMP recommen 
dation, a set of cookies in the header is generated by hashing 
the IP source and destination addresses, the UDP source and 
destination ports, and any locally generated Secret number. 
The Next Payload Type field in the main header defines 13 
types and leaves a range of values from 128 to 255 for 
private use. The Exchange Type field defines the five types 
of exchanges as mentioned previously. This field also leaves 
a range of values from 240 to 255 for private use. The 
private use code ranges provide the flexibility to define 
additional Sequences of messages for different types of 
eXchange as needed. 
0128 FIG. 7a shows a list of messages that may be used 
by Base Exchange to deliver protocol proposals. FIG. 7b 
shows an example of FSM diagrams for this Base Exchange. 
As part of the customization of IPSec's DOI, the semantic 
of the messages of the Base Exchange may be changed. 
0129. According to these exemplified illustrations, in 
ISAKMP's Base Exchange, an initiator starts by sending a 



US 2006/0036755A1 

Set of protocol proposals, Similarly to an exchange of 
Security associations, and a nonce. The nonce may be used 
to protect against anti-replay. The responder chooses one of 
the proposals and notifies the initiator. This notification 
message also includes another nonce. In the next two 
messages, the parties exchange key information and authen 
tication information. The authentication payload contains a 
hash Value over the previous messages to protect against 
Session highjacking. 
0130. The ISAKMP protocol may contain all the security 
measures needed to protect the negotiation process against 
DoS, anti-replay and connection highjacking. The five 
exchange types in ISAKMP usually have different levels of 
authentication. The most protected exchange may be the 
Identity Protection exchange with six messages, and the 
least protected may be the Aggressive eXchange with only 
three messages. 
0131. In an instance, as shown in FIG. 8, an initiator may 
send an ISAKMP packet to deliver a protocol proposal 
composed of a protocol Specification name, its location and 
its version. The name and location of the protocol Specifi 
cation are preferably mandatory; the protocol version is 
optional. The protocol specification name (Protocol X) and 
versions (MVer and MinVer) are placed in the first payload 
while the location goes in the next payload. An initiator may 
send multiple proposals linked to a main ISAKMP header 
using the Next Payload field. The list is terminated by a null 
value in the Next Payload field. 
0132) The initiator may also have the option to append to 
the packet a key exchange payload carrying information 
about the proposed key exchange technique (e.g., Oakley or 
Diffie-Hellman). The key exchange may also carry the 
required data to generate Session keys. 
0.133 Preferably, a protocol specification of the custom 
ized version of ISAKMP may serve as the bootstrap of the 
Meta-Protocol framework. Simply, this embodiment is typi 
cally required from any network node to use the Meta 
Protocol framework since the code for ISAKMP may be 
generated from its Specification. 
0134 B. Distribution Layer 
0135 Generally, specifications and components refer 
enced therein do not need to be Stored locally. Communi 
cating parties may exchange them directly (e.g., via a 
communicating party distribution) or retrieve them from a 
trusted third party. Such exchange may be facilitated using 
a delivery mechanism. Specifications and components that 
are only needed for a short period of time may be deleted 
after their use to Save Space. Alternatively, Specifications 
may be retrieved and/or distributed from a local cache. To 
protect specifications and components referenced therein 
from unsolicited or malicious alteration, each ought to be 
digitally signed by their authors and Verified by the receiving 
party. Trusted providers may place their Specifications and 
components at public repositories on the Internet So users 
may retrieve them when needed. Newer versions may also 
be pushed from these providers to Subscribed users to keep 
theirs up-to-date. 
0136. As a preferred embodiment, the distribution layer 
uses a directory Service, Such as the Universal Description, 
Discovery, and Integration (UDDI) directory, which is a 
known comprehensive industry initiative that helps busi 

Feb. 16, 2006 

neSSes define themselves, discover other businesses and 
share information about their interactions globally. UDDI is 
also an architecture for Web Services integration that con 
tains Standards-based specifications for advertising, descrip 
tion and discovery Services. Each Service advertised in a 
UDDI directory has the freedom to specify a transport 
mechanism to access that service (e.g., SMTP, FTP, HTTP, 
and SOAP). Every UDDI user may have the option to check 
the transport mechanism of the Service he or she is Seeking 
before connecting to that Service. Communicating parties in 
the present invention may use UDDI to advertise protocol 
names, the location of their specifications, the location of the 
components needed by the Specification and the preferred 
transport mechanism to download the Specification and 
components. 

0.137 In addition, using UDDI at the distribution layer 
may also serve users who are planning to Start a negotiation 
but do not have specifications to propose to another party. 
Such users may consult UDDI directories to discover pro 
tocol Specifications, their providers, the location of the 
Specifications and their components for download. 

0.138 UDDI is an open standard specification for direc 
tory services. The standard was released on Sep. 6, 2000 as 
a project aimed to provide Service-centric business-to-busi 
ness (B2B) integration. A goal of UDDI is to enable busi 
nesses to establish many business relationships. UDDIs are 
repositories of information that facilitate discovery and 
interaction between customers and vendors. Vendors may 
present their offerings through UDDI as regular text descrip 
tions or as electronic representations (e.g., Web Services). 
0.139. Another goal of UDDI is to provide two main 
Services: publishing and discovery. Typically, publishing is 
done by the Service providers, and discovery is done by the 
customers. Today, there are several public UDDI sites that 
are running the most current specifications and are usually 
available free-of-charge to UDDI developers (e.g., uddiib 
m.com, uddi.rte.microsoft.com and udditest. Sap.com). 
These UDDI sites help enable anyone to search existing data 
or register new Services. 

0140. The data available within UDDI may be divided 
into three categories: white pages, yellow pages and green 
pages. White pages may include general information about 
the provider of the Service (e.g., contact information). Yel 
low pages may provide classification information about the 
Service providers (e.g., industry, products and codes). Green 
pages may contain technical information about the Service. 
This technical information may contain a pointer to an 
external Specification, address of the Service provider and a 
specification of the method for accessing the service. UDDI 
may not be limited to advertising Web services. Rather, 
UDDI can be used to advertise any service including web 
pages, e-mail addresses and Common Object Request Bro 
ker Architecture (CORBA) services. 
0141 C. Implementation Layer 

0142. The traditional manual process, as shown in FIG. 
9, for producing protocols may have three Stages: design, 
Verification and implementation. The first two stages may 
produce a Specification document. The Specification of Stan 
dard protocols (e.g., TCP/IP, FTP, SSL and IPsec) may be 
written in natural English (e.g., RFC) and may be translated 
into code by programmerS. 



US 2006/0036755A1 

0143. The manual design and verification process may be 
Similar to the traditional approach. However, the design 
proceSS in the present invention may use FSMs to produce 
protocol Specifications in XML. These specification docu 
ments generally have to be well-formed XML documents 
and ought to comply with the rules Specified in the protocol 
XML Schema. If these conditions are satisfied, an XSLT 
Stylesheet may automatically implement the protocol with 
out human intervention. 

0144. The implementation layer of the present invention 
may include an approach to produce code (e.g., executable 
code) that implements a protocol automatically. The pro 
posed approach is preferably based on XML-related tech 
nologies and a multitude of components referenced in at 
least one of the protocol Specifications. XML-related tech 
nologies may include, but are not limited to, XML Schema, 
XSLT transformations, XSLT processors, XML parsers, and 
XML editors. Where XPSL protocol specifications are 
involved, it is Suggested that an XML-based language, Such 
as XPSL as later discussed herein, be used to produce code. 
In general, XPSL may specify protocols described through 
FSMs. XSLT may be used to transform or convert the 
Specification and any missing component into actual code, 
Such as an executable code. To aid this conversion process, 
a machine-readable protocol Specification converter may be 
used. XSLT Stylesheets may be designed to produce code in 
different programming languages (e.g., C++, Java or Cobol). 
It is possible that a single XSLT stylesheet may be associated 
With a single programming language. Such Stylesheet may 
be used to generate an executable code, which may either be 
an implementation of or a code used for implementing at 
least one protocol Specification, for a multitude of protocol 
Specifications. The executable code itself may be retrieved 
from a local cache. 

0145 CBSE, a software component, may be used to build 
a set of operations (e.g., encryption) needed by the protocol. 
Such Set may be a multitude of components referenced in at 
least one of the protocol specifications. FIG. 10 highlights 
a proposed automated protocol production process. 
0146) Every component used in an XPSL specification 
may be an executable program designed based on CBSE 
principles. Furthermore, a component may be a Software 
component. Moreover, a component may be shared by more 
than one XPSL specification. For example, an RSA encryp 
tion algorithm may be used in a single protocol Several times 
and may be shared by many protocols. However, a compo 
nent may also comprise Several Subcomponents. For 
instance, a Security envelope component consists of a header 
processing Subcomponent, a MAC Subcomponent and an 
encryption algorithm Subcomponent. 
0147 The idea of modular or component-based design 
approach is common in many engineering fields and indus 
tries. For instance, most electronic devices, Such as com 
puters, are assembled from parts that can interoperate within 
a single System. These parts comprise many different kinds 
and are Supported by many “industry Standards' Such as 
motherboards, chips, memory, keyboard and cables. This 
proceSS also requires that Standards for interfaces be defined 
to allow disparate Sets of parts to be assembled into one 
System. Some of these Standards may be dictated by major 
vendors, while others may be de facto industry Standards. 
0.148. In software engineering, CBSE may help improve 
the efficiency of the Software development process, reduce 

Feb. 16, 2006 

maintenance costs and enhance the quality of the resulting 
product. Recently, CBSE has been adopted by many vendors 
in technologies such as CORBA, COM+, JavaBeans and 
Software Agents. 

0149. A software component may be defined as “a soft 
ware element that conforms to a component model and can 
be independently deployed and composed without modifi 
cation according to a composition Standard.” The compo 
nent model mentioned in this definition refers to the inter 
action and composition Standard. The interaction aspect of 
the model defines the interface of the component. The 
composition aspect defines the deployment of the compo 
nent in terms of installation, configuration and instantiating. 
While other definitions exist for software component, the 
recurring characteristics identified by these definitions are 
independency, interface, context, relationships and the archi 
tecture of the component. 
0150 CBSE is an approach that helps simplifying com 
plex Systems by dividing them into Smaller Subsystems. 
Each Subsystem may be regarded as a component that can be 
designed, implemented and tested independently. This 
approach may exhibit Several advantages: the ease of 
designing and developing large Systems, language-indepen 
dent, reusable, Scalable, facilitation of testing and validation, 
and flexibility. 

0151. D. Execution Layer 
0152 Generally, the execution layer deals with an 
executable code of a protocol and depends on Services 
provided by an underlying operating System and a network. 
All kinds of message eXchanges between parties may be 
performed by a code running at this layer. Protocol code 
should be loaded as a privileged proceSS by the operating 
System. This process and its address Space may need to be 
protected against any malicious alteration or termination. To 
manage the loading and/or running of an executable code, an 
executable code System manager may be used. 
0153 Playing a central and integrative role in the present 
invention, this layer may include a Set of interfaces and 
control operations. The interfaces are usually responsible for 
delivering requests and feedback between the external World 
and the execution layer to, for example, deliver user requests 
to Start or terminate a protocol. The external World may be 
defined as anything outside of the execution layer, Such as a 
tangible or intangible object, System, action, method, pro 
ceSS, etc. Control operations, which may take place at run 
time, may manage the internal affairs of the execution layer. 
Internal affairs may be defined as the internal matters, 
activities, thought processes, operations, etc. within a par 
ticular environment, Such as the execution layer. Examples 
include authenticating a user to access a protocol, checking 
the availability of a protocol, loading or terminating a 
protocol. 

0154) In this environment, the Protocol Control System 
(PCS) may control the internal activities and provide several 
interfaces to connect the layers of the present invention to 
the external world. FIG. 11 shows one aspect of a proposed 
system architecture for the implementation of the Meta 
Protocol framework. The PCS may include a controller, 
cache memory, code generator, a set of interfaces, a set of 
databases (including protocol specifications and compo 
nents), and a collection of components. These components 



US 2006/0036755A1 

may be protected by an operating System. There are usually 
two types of allowable access to the PCS: administrative 
access and user access. Users may access the PCS to request 
operations, Such as the execution of a protocol or addition of 
a protocol Specification or component. Administrative 
access may be granted to a few legitimate users for admin 
istrative and maintenance tasks, Such as registering users, 
registering a trusted Site and changing the configuration of 
the System (e.g., audit policies). In highly Secure environ 
ments, administrators may also be classified into Several 
levels according to the environment requirements, Such as 
Supervisor, backup only and users management adminis 
trator. 

0155 The controller often serves as the core of the PCS. 
It is generally responsible for the coordination of the internal 
activities of the System. To maintain the integrity of the 
System, all types of accesses to the internal Subsystems 
should be limited to the controller. The controller is typically 
responsible for receiving protocol invocation requests, Veri 
fication of user's access privileges, configuration manage 
ment, Storage of Specification and components, protocol 
code creation or removal, loading or terminating the execu 
tion of a protocol, and auditing operations. Requests for 
System Services may come to the PCS from, for example, a 
user, the operating System, an application or a network. 
0156 The controller may also be responsible for authen 
ticating users to access protocols or modify databases (e.g., 
for registering, adding or deleting a specification or com 
ponent). To achieve this task, the controller may need to 
consult internal or external user directory Services and 
access lists determined by the PCS configuration. 
O157 Management of the configuration information may 
also be part of the responsibility of the controller. Only a 
Supervisor administrator is generally allowed to change the 
configuration information. Configuration information may 
include time Synchronization Source, host identity and 
address, administrator contacts, maximum disk quota 
allowed for various System databases, audit policies, and 
access information to external databases (e.g., locations, 
user accounts, and access methods). 
0158 Important roles of the controller include audit and 
I/O management. Audit logs may be important for problem 
analysis and Security investigations. I/O Services may 
include handling and protecting inter-proceSS communica 
tion, as well as communicating with network interfaces. The 
interfaces with the execution layer may also maintain their 
own logs of activities. 
0159. The cache memory is basically a temporary 
memory that may used by the PCS to improve the efficiency 
of the System. Copies of frequently used protocols, compo 
nents or Security related information (e.g. keys and pass 
words) may be temporarily Stored in this cache to reduce 
preparation time and to Speed up execution of protocols. 
0160 The code generator may include two processors: an 
XSLT processor and a compiler. The code generator may act 
on behalf of the implementation layer. The XSLT processor 
may take as input an XSLT Stylesheet for a specific pro 
gramming language and an XPSL protocol Specification. 
The XSLT processor may output Source code in the language 
specified in the XSLT stylesheet. The compiler may convert 
the source code from the XSLT processor into executable 
code for the protocol. 

Feb. 16, 2006 

0.161 The interfaces subsystem may be responsible for 
facilitating the communication between the external World 
and the PCS. Multiple types of interfaces (e.g., a user, 
application, operating System, network, etc.) are often 
needed. Breaking down the communication of the PCS with 
the external world into Specific interfaces may improve 
evolution and the scalability of the system. Evolution may 
be improved by replacing an old version of an interface with 
a newer one. Scalability may be improved by adding new 
interfaces as needed (e.g., when a new network driver 
appears). 
0162. A difference between the user interface and the 
application interface is that the former may be used for the 
manual access to the System. The latter may be used for 
automated access. For example, a System administrator who 
wants to make changes in the System needs a user interface. 
However, an application that needs to query the System or 
invoke the execution of a protocol requires an application 
interface. The operating System interface is typically respon 
Sible for coordinating the execution of protocols with the 
operating System. The network interface is often responsible 
for remote management of the PCS and for retrieving 
Specifications and components from remote sites. 
0163 The database subsystem may manage information 
needed for the operation of the PCS, such as, though not 
limited to, users accounts, access list, Secret keys, certifi 
cates, XPSL protocol Specifications, components, adminis 
trative accounts, trusted providers, and a registry. To Save 
System resources, Some of these databases may be main 
tained externally (e.g., LDAP, UDDI, iPlant, and Active 
Directories). Thus, the PCS may consult these directories 
and retrieve information as needed. The choice of an exter 
nal or internal database is part of the configuration process 
of the PCS, such information may be saved as part of the 
configuration information. 
0.164 Preferably, the present invention uses an access list 
and a registry. These two databases tend to be specific to the 
PCS operation. The access list defines the access permission 
that each user has to each object (XPSL specification or 
component) in the System. Each user may have four types of 
permissions: read (R), write (W), execute (E), and delete 
(D). A user may also be assigned to a combination of these 
permissions. FIG. 12 shows an example of an acceSS list. 
The “*” in the last row of the table Stands for “others. A 
value of “1” in the table indicates permission and value of 
“0” indicates denial. FIG. 13 shows an example of a Unified 
Modeling Language (UML) entity class diagram for the 
acceSS list. 

0.165. The second database can be the registry. This 
database may be used to register available objects (specifi 
cations or components), their location, provider information, 
authentication information, and expiration date. This regis 
try can be updated in two ways: automatically or manually. 
The automatic update may be limited to adding new speci 
fications or components through the on-the-fly process of 
eXchanging protocol Specifications. Deleting an object from 
the registry may be limited to legitimate users (e.g., Admin 
istrator). Legitimate users may be allowed to access this 
registry manually and update it. FIG. 14 shows an example 
of records in the registry database. 
0166 A registry record may include, inter alia, an object 
id, object location, identity of a user who registered the 



US 2006/0036755A1 

object, identity of a provider who created the object, a 
Signature value (e.g., in binary format), and an expiration 
date and time for the use of the object. FIG. 15 shows a 
UML entity class diagram for the registry database. 
0167 Every component may be an executable program 
having a design based on CBSE principles. A component can 
be designed out of a simple operation (e.g., encryption), or 
it could comprise Several components as a compound com 
ponent (e.g., Security envelope). A component may be 
shared by more than one XPSL protocol specification. On 
one hand, for example, an RSA encryption algorithm can be 
a single component. Such a component may be used in a 
Single protocol Several times, as well as being shared by 
many protocols. On the other hand, a component may also 
comprise Several Subcomponents. For instance, a Security 
envelope component may include a header processing Sub 
component, a MAC Subcomponent and an encryption algo 
rithm Subcomponent. 
0168 The set of all needed components may not need to 
be Stored in every PCS System. Communicating parties can 
download a code of a component from one System to another 
if a code is needed but missing from one of the Systems. 
Moreover, components that are needed for a short time 
period or by a certain process can be deleted from the System 
after their use. Furthermore, upgrading a component may be 
easier than upgrading a version of a protocol in the tradi 
tional Sense. This Same concept may also apply to the XPSL 
Specification of protocols, which can be downloaded from 
one user to another or from a trusted center to the user for 
temporary usage or for an upgrade. 
0169. To protect these components from malicious alter 
ation, they may need to be signed by their authors and 
checked by the PCS system before being added to the 
system. As portrayed in FIG. 3, trusted third parties, such as 
trusted component providers, may place the components in 
public repositories on the Internet So that users may pull 
them when needed. Newer versions may also be pushed 
from trusted providers to subscribed users to keep their 
Systems up-to-date. 
0170 Every component may have an interface that speci 
fies its parameters and types. This interface should be 
published with a description of the component operations So 
that protocol designers can understand it and use it. Devel 
oping interfaces and defining conventions for components, 
names and functions may be, however, essential for com 
patibility and interoperability among components in the 
framework. This development can be achieved in two 
ways—either by Standards development committees or by 
the fact that a component becomes widely available because 
a major vendor with global reach Supports it. A component 
should not have Several names on different machines 
because this aspect may create confusion and may prevent 
PCS systems from locating the correct component. More 
over, duplicates can occur because the PCS may contain 
Several instances of the same components but with different 

CS. 

0171 Data objects may also be considered components in 
the System. Such data objects may be used during the 
process of writing of protocol Specifications. Additionally, 
Such data objects tend to be used to hold values that are 
common among Several components, Such as time, Security 
keys, Sequence and random numbers, and header informa 
tion. 

Feb. 16, 2006 

0172] One objective of the operation of the PCS is to 
integrate the layers of the Meta-Protocol framework. Each 
layer of the framework may be implemented through at least 
one call for an operation as follows: 

0173 1. At least one call for negotiating an operation; 
0.174 2. At least one call for retrieving a specification 
or a component; 

0.175 3. At least one call for generating protocol code 
(XSLT processing and compilation); and 

0176 4. At least one call for execution. 
0177. One way that a call may be performed is via a 
mechanism within a layer as shown in FIG. 3. For example, 
a negotiation mechanism may negotiate a protocol Specifi 
cation. A delivery mechanism may retrieve a Specification or 
a component. A machine-readable protocol Specification 
converter may generate protocol code. An executable System 
code manager may conduct execution. 
0178 FIG. 16 illustrates a UML activity diagram for a 
PCS operation. This diagram describes how the four layers 
of the framework can be integrated via implementation of 
the four calls mentioned above. For simplification purposes, 
FIG. 16 does not show all the error controls and security 
checks. Examples of Security checks not shown in the 
diagram include (1) checking user authority to use a proto 
col, (2) checking authority to access a component and (3) 
verifying the integrity of the protocol specification and its 
components. 

0179 To exemplify how a PCS may operate, one may 
consider a typical Scenario that Starts with a request to run 
a protocol. The PCS checks locally for the protocol code. If 
that code is found, the PCS sends that code for execution. If 
that code is not found, the PCS looks for a specification, 
transforms the Specification into code, and Sends it for 
execution. Otherwise, the PCS uses the location information 
provided in the request to retrieve the Specification. Once the 
specification is downloaded, the PCS transforms the speci 
fication into code and sends the code for execution. The 
transformation of protocol Specifications to code requires the 
availability of the code of the components mentioned in the 
Specification. If there are missing components, the PCS has 
to retrieve them from remote locations according to its 
internal operational policies. 
0180. The minimum requirements for any user of the 
present invention are usually the ISAKMP specification, its 
components and an XML transformation Stylesheet. Again, 
ISAKMP may be considered the bootstrap of the present 
invention. Communicating parties may be required to gen 
erate code for ISAKMP to be able to agree upon the 
Subsequent protocol they plan to use. Once that agreement 
is established, the parties may proceed to download the 
Specification of the agreed-upon protocol, generate a code 
and Start communication by running the generated code. 
0181 Performance can also be a concern. While actual 
performance may depend on the implementation of the 
present invention, Some architectural issues may be relevant 
to performance. In general, the development process of 
components and protocols should generate optimized code 
that has reasonable performance compared to traditional 
protocols. For example, if a Specification Specifies the Ser 
vices of an SSL protocol, the present invention should be 



US 2006/0036755A1 

able to generate an implementation of SSL with Similar 
performance characteristics as an implementation generated 
by traditional means. The code generated by the PCS can be 
cached in memory for reuse by Similar calls to avoid the 
overhead of regenerating it. 

0182 
0183 A. Use of FSMs in Protocol Design 

II. XPSL 

0184 FSMs are commonly used for describing protocols. 
The graphical representation of an FSM may serve as a 
Visual aid to a designer of a protocol. This representation can 
help in testing and Verifying the correctness of the design. 
An FSM may have a set of states (represented by circles) and 
a set of transitions between these States (represented by 
directed arrows connecting the States). At each State, a set of 
events may occur. Each event may trigger a transition out of 
a state. Before a transition occurs, a (possibly empty) set of 
actions may be executed. One of the states in an FSM is 
often designated the initial state. To portray an FSM, as 
shown in FIG. 17, one may consider a Needham-Schroeder 
authentication protocol (NSAP), which is a two-way authen 
tication protocol based on public key cryptography. A client 
may start the process by using the public key of a Server to 
encrypt his identity and a random number, Na. The Server 
may receive the message, generate a random number, Nb, 
encrypt the concatenation of Na and Nb using the client's 
public key, and Send the message back to the client. The 
Server's authenticity may be verified if the client Success 
fully retrieves his Na. The client may return Nb encrypted 
with the server's public key to prove his identity. 

0185. A pair of FSMs, one for each communicating party, 
may specify a protocol. State activities and State transitions 
may be coordinated between these two FSMs based on 
message eXchanges. Each State machine may keep track of 
its internal shared State. The machine shared State may hold 
common information needed by individual States, Such as 
public or shared keys, user identities and access permissions. 
The termination of the FSM or the final state may be 
implicitly defined according to the execution Sequence. 

0186 B. XPSL XML Elements 
0187. An essential concept of the present invention is the 
use of a domain-specific Specification language in lieu of 
technical natural language for the Specification of protocols, 
as in IETF RFCs. This approach may facilitate automatic 
protocol implementation from specification. FIG. 18 shows 
the traditional manual production process for protocols. The 
proceSS can pass through three Stages: design, Verification, 
and implementation. The first two stages may produce a 
specification document. Standard protocols (e.g., TCP/IP, 
FTP, SSL and IPSec) specifications may be written in natural 
English (e.g., RFC). Programmers may have to translate 
these documents into code. 

0188 As illustrated in FIG. 19, the manual design and 
Verification process of the present invention appear Similar 
to the traditional approach. However, the design proceSS 
may use FSMs to produce protocol specifications in XPSL. 
These specification documents may have to be well-formed 
XML documents and may have to comply with the rules 
specified in the protocol XPSL schema. If both conditions 
are Satisfied, the XSLT Stylesheet may automatically pro 
duce implementation for the protocol without human inter 

Feb. 16, 2006 

vention. Many different implementations in Several pro 
gramming languages can be developed for the same protocol 
Specification. 

0189 For a number of reasons, XML may be used as the 
basis for a language, which may be called XPSL, to express 
the specification of protocols. First, XML tends to be an 
open Standard. Second, the tools for handling and processing 
XML documents and its related technologies are typically 
mature and widely available. Third, XML is often program 
ming language neutral. Fourth, the XSLT technology usually 
makes it easy to transform an XML document into any 
user-preferred programming language. 
0190. To specify a protocol executable by a machine 
under the control of a program of instructions, preferably 
XPSL, several types of XML elements may be utilized or 
added. For example, these types include, but are not limited 
to and are without any particular order, <protocold, <first 
Stated, <object>, <instance>, <Stated, <action> and 
<movetox. FIG. 20 illustrates a tree structure of these XML 
elements and their relationships with each other. The XML 
elements are depicted in triangular brackets, the attributes of 
these elements are shown in Square brackets. It is important 
to note that elements not designated as optional are prefer 
ably mandatory. 

0191 Referring to FIG. 21, as one embodiment, the basic 
foundation of the present invention begins with three ele 
ments, capable of being encoded in a tangible computer 
readable medium readable by a machine. Preferably, a first 
element used may be a <protocold element. The <protocol> 
element may serve as a root element of an XML protocol 
Specification document and is a mandatory element accord 
ing to the XPSL definition. It may also serve as the parent 
element of the following elements: <first-Stated, <state>, 
<object>, <instance> and <action>. It should be noted that 
both <object> and <instance> tend to have a global Scope 
and may be used to prepare objects shared by the States of 
the protocol. 
0.192 A second element that may be added is a <first 
Stated element. Typically a mandatory element, the <first 
Stated element may be used to identify the Starting State of 
an FSM. The Starting State generally Serves as the State that 
produces the "Hello” message to start a communication. 
This element should occur only once in an XPSL specifi 
cation given that an FSM can only have one initial State. 
However, all other elements may have multiple occurrences. 
0193 A third element that may be added is a <stated 
element. The <Stated element may describe different States 
of a protocol. FIG. 22 illustrates an XPSL syntax for 
NSAP's client state 3. A <states element may not be able to 
be nested inside another <Stated element. Every State in an 
FSM ought to be described by exactly one <stated element 
XPSL. 

0194 Staying with this embodiment, a protocol may 
include at least one protocol Specification written in XML. 
Moreover, a protocol may include a description of a protocol 
Specification language (Such as XPSL) specified in an XML 
Schema. 

0.195 Additionally, several elements may be added, and 
used, to extend a machine-readable XPSL for Specifying 
protocols and a method of its integration, into a machine 
readable tangible computer-readable medium. A purpose of 



US 2006/0036755A1 

extension is to address possible requirements of a general 
XML Specification and the process of generating executable 
code. Such extension may be exemplified in FIG. 23. 
0196. Hence, a fourth element that may be added is an 
<object> element. The <object> element may be used to 
define data, Such as messages, keys, constants and random 
numbers, needed during protocol operations. Every object 
may have a name and a Set of fields. Every field may have 
a type attribute associated with a <name> element as later 
described herein. Data types may include, but are not limited 
to, predefined types, Such as Keys, Strings, Integers and 
Booleans. Objects may be passed as parameters from one 
action to another. Exemplified in FIG. 24, an object called 
SessionState is used to hold shared information between 
States. Simply, there may not be any public information 
unless it is defined as an object and passed as a parameter to 
the actions of a State. 

0.197 A fifth element that may be added is an <instance> 
element. The <instance> element is similar to the concept of 
instance in object-oriented programming, objects may rep 
resent definitions of classes and instances may either be the 
actual realization of the definition or hold actual data. An 
object may have Several instances, as needed. However, 
every instance may represent one object and there may not 
be any shared information among instances. For example, an 
object, called error-message, may be used to create Several 
instances of error messages as needed in the protocol States. 
Every error message instance may hold different error codes 
and an identification of the component that generated the 
meSSage. 

0198 FIG. 25 depicts an example of an error message 
<instance> element. This element includes a name, a type 
and at least one initial value. This example shows an 
instance named error with a type Complib. Error message, 
and initial values (0,0, null). The data type definition of this 
instance may come from a component library called Com 
pI ib. This library may also provide interface descriptions 
for each component to help developerS determine the initial 
values. 

0199 A sixth element that may be added is an <action> 
element. The <action> element may define actions (e.g., 
calls to components in a library) that take place inside a 
State. In Some cases, elements may be nested inside an 
<action> element. These situations may occur when a com 
ponent needs an instantiation of a data object that was not 
passed to the State for temporary local usage. For example, 
a Seventh element, Such as a <movetoa element, may be 
added and nested inside an action in various situations (e.g., 
branching out of a State before completing all the actions in 
a state due to errors). FIG. 26 shows a <movetos element 
nested inside an <action> element. This example shows that 
if the component Complib.checkRcvSynAck raised an 
error, the control flow will branch to an error State instead of 
moving to the next action. 
0200. The <movetos element may act as a Switch-case 
Statement in a procedural programming language. This ele 
ment may provide the mechanism that controls the transi 
tions from one State to another. The <movetos element may 
add an eighth element, namely an <expression> element, 
Serving as a logical expression, and a ninth element, namely 
a <cased element, Serving as a list of cases. This logical 
expression may be evaluated to produce a set of predefined 

Feb. 16, 2006 

values. A <cased element may point to the next State for each 
possible value of the expression. FIG. 27 illustrates the 
XML syntax for a <movetos element. 
0201 A <movetos element may either be a child of the 
<Stated element or, again, a child of an <action> element. 
Being a child of an <action> element can provide flexibility 
for early branching out of the state before finishing all the 
actions listed in the State. This feature can be useful if an 
error or timeout is raised by Some actions. However, when 
a <movetoa is used as a child of a State, it may have to be 
the last element in the State after all the actions. 

0202 As another example of an element nested in an 
<action> element, FIG. 28 shows a case where a nested 
<instance> element instantiates a random integer object that 
may be needed locally by a component but was not passed 
to the state. State local objects should be created locally. But, 
they should not be passed as parameters to other States. 
0203 Referring again to the third element, as depicted in 
FIG. 20, a <stated element can have one of the following 
child elements: <object>, <instance>, <action> and 
<movetoz. A purpose of these elements is to express the 
operations that may be performed inside every State of the 
FSM. Typically, the branching out of a state is performed as 
the last action in a State. However, in a case where an error 
exists, branching may take place in the middle of the State. 
DeveloperS should anticipate Such cases and place 
<movetoa elements after the actions that raised Such errors. 

0204 Furthermore, each <states element may add an 
optional tenth element called <arg>, as illustrated in FIG. 
22. This child element may describe external objects that are 
passed to the State. The <arg> element may have a name 
attribute, the name of the object to be passed to the State and 
may be followed by a <types element that describes the type 
of the object. 
0205 Moreover, XPSL and its method of integration may 
add an optional, eleventh element that is used for identifi 
cation purposes for any of the above elements. This addi 
tional element may be called a <name> element and may be 
designated as a single or child element. For example, as 
shown in FIG. 20, the <name> element may be used as a 
child element of the <protocold element to help identify the 
<protocold element. The XSLT processor may either ignore 
or replace the <name> element with any other user-Supplied 
identifier. 

0206 Writing down XPSL specifications may be gener 
ally perceived as a manual process, as illustrated in FIG. 29. 
In this process, an FSM may be mapped to a set of XML 
elements. AS one embodiment of the present invention, one 
process of writing down XPSL specifications may follow 
this Sequence: 

0207 1. Place the <protocold element as the root of the 
XPSL specification document. 

0208 2. Add a <name> element as a child of the 
<protocold element to Specify the name of the protocol. 

0209) 3. If needed, add a group of elements that 
prepare the environment (e.g., define public objects as 
<objects> or <instances>). 

0210 4. Add the <first-stated element to specify the 
starting state of the FSM. 



US 2006/0036755A1 

0211 5. For each state in the FSM, insert a <stated 
element. 

0212 a. Inside each <State> element, add a group of 
<action> elements to perform the actions required by 
the State. 

0213 b. At the end of each state, add a <movetos 
element to indicate the next State. 

0214 XPSL may be stored in a tangible computer-read 
able medium readable by a machine, as exemplified in 
FIGS. 30a and 30b. A tangible computer-readable medium 
includes, but is not limited to, CDs, DVDs, hard drives, 
floppy disks, random access memory (RAM), read only 
memory (ROM), flash cards, memory cards, computer chips, 
cache files, etc. A machine includes, but is not limited to, 
computers, personal digital assistants (PDAS), phones, CD 
players, DVD players, cameras, camcorders, etc. 
0215 C. Protocol Data Types 
0216 Every programming language often follows a spe 
cific approach for defining Syntax and Semantics for data 
types. XPSL may adopt a minimum common denominator to 
provide a unified approach to Serve the most popular pro 
gramming languages. This aspect may be addressed by two 
formats. First, XPSL may support six primitive data types 
that are common in most programming languages: byte, int, 
long, char, String and Boolean. FIG. 31a shows a compari 
Son of data types among Several programming languages. 
FIG. 31b shows a set of primitive data types chosen for 
developing XPSL protocol Specifications. Second, using an 
objected-oriented approach, new data types may be defined 
in a component library when needed for an XPSL specifi 
cation. 

0217 D. Sufficiency of the Specification Language 
0218. The set of XML elements used in XPSL may be 
sufficient to describe any FSM. For illustrative purposes, all 
elements of an FSM are mapped into the XPSL specification, 
and the XPSL specification captures the behavior of an FSM 
in terms of state transitions. For instance, an FSMF is a tuple 
(S, So, T), where S is a set of States, so is the initial State and 
T is a set of State transitions defined as T={(S, V, c, A) is, VeS, 
cc 2, AC0)}. In addition, a transition (S, V, c, A) is a tuple 
with two states (the “from' states and the “to” state v), a 
condition c from a set of conditions S2, and a set of actions 
A from the set of possible actions 0. The condition c is a 
Boolean expression whose terms may include occurrence of 
events (e.g., arrival of a message and timeout) and compari 
Sons including variables (e.g., window Size) and constants. 
Examples of actions include composing and Sending mes 
SageS. 

0219. The behavior of an FSM may be defined by the set 
of rules that determine how the FSM moves from state to 
State starting from the initial State so. This behavior may be 
described by the following algorithm: 

s €so 
repeat 

if (s,v, c., A) e T (v z null) a?c = true) 
then s €-w: 

execute actions in A 
else stop 

forever 

13 
Feb. 16, 2006 

0220. This algorithm may start execution from the initial 
State So, the current state S at the beginning. Then, all 
transitions (S, V, c, A) out of the current State may be 
examined. The one for which the condition c is true may 
trigger a State transition to State V. Before moving to the next 
State, all actions in the Set A ought to be executed. The next 
State should then become the current State S. The process 
may repeat itself until a terminal State (i.e., a state with no 
outgoing transitions) is reached. 

0221 FIG. 32a exemplifies a common pictorial view of 
an FSM indicating the possible transitions between states 
and States V1, ..., V. The labels alongside each transition 
show the condition c. that may trigger the transition and the 
Set of actions A carried out when the transition takes place. 

0222 FIG. 32b illustrates a behaviorally equivalent pic 
torial representation. The decision on what State to move to 
and the corresponding actions to execute may be shown 
"inside' the State circle and not along the transition arc. Yet, 
the behavior should still remain the same. The design of 
XPSL may be based on the pictorial representation of FIG. 
32(b), which is generally equivalent to the FSM represen 
tation of FIG. 32(a). 

0223) An FSM may be described with a tree of XML 
elements as in FIG. 33. The initial state so of an FSM is 
preferably mapped to a <first-stated element and every state 
in the FSM may be mapped to a <stated element. Every 
<Stated element may have two child elements: a <name> 
element to identify the State and a <movetoa element that 
Specifies the process of evaluating the conditions and 
executing the actions associated with each State. The 
<movetoa element may have two acceptable types of child 
elements: a single <expression> element and as Set of 
<cased elements. Each <cased element preferably corre 
sponds to a transition in the set T in the FSM in which the 
“from state is the state identified by the <name> element 
and the “to' State is specified by the <cased element. 

0224. Because an FSM may have limitations for describ 
ing the behavior of programs, the XML tree referenced in 
FIG. 33 should be extended to address the requirements 
imposed by the general XML Specification and the process 
of generating executable code. To address these require 
ments, four XML elements may be added to XPSL: a 
<name> element to identify the implementation of the 
protocol, <object> and <instance> elements to define data 
objects, and an <arg> element to define data objects to be 
passed to States. Basically, an executable code needs a name 
to identify the resulted code. Therefore, a <name> element 
may be added to the Specification to identify the generated 
executable code. This <name> element may be placed as a 
child of the <protocold element. Now, since an FSM does 
not explicitly express data objects, the <object> element 
may be added to express the types and Structure of the data 
involved in the FSM. In addition, according to the object 
oriented programming approach, instances tend to be cre 
ated out of data objects during the execution to hold the 
actual data. Therefore, an <instance> element may be added 
to address this requirement. Furthermore, to control the 



US 2006/0036755A1 

Scope of access of objects in the different States, an <arg> 
element may be added as a child of the <Stated element. One 
purpose of the <arg> element is to facilitate passing data 
objects to states. FIG. 20 shows a full XPSL as per an aspect 
of the present invention. FIG. 20 also shows that <action> 
elements may be allowed under the root element before the 
<first-Stated and under the <Stated element before 
<movetoz. The reason for Such design choice is to allow for 
code optimization. The actions that are placed in these 
positions are usually common actions required by the pro 
tocol or by a State, which result in reducing the repetition of 
the shared code. 

0225. E. The XML Schema for XPSL 
0226. It is favorable to have an XML schema to enforce 
XML protocol rules. This schema may be used to validate 
the Syntax of protocol Specifications. Generally, the Schema 
prevents developers of XPSL specifications from introduc 
ing illegal elements. The Schema may also help developerS 
find any missing mandatory elements, Such as the <first 
stated element, before they run a transformation. The XPSL 
schema for protocols described using FSMs can be found in 
the Computer Program Listing Appendix. FIG. 34 shows the 
StepS required to check a protocol Specification. 

0227. For each element or an attribute in an XPSL 
protocol Specification, there tends to be a corresponding 
definition or constraint that controls the content of the 
specification. FIG. 35 highlights the main segment of 
XPSL's XML schema. Referring to this drawing, the first 
two lines declare the XML and schema versions followed by 
the definition of the protocol root element. The root element 
may contain a <name> element and five references. Each 
reference may define the allowed content and its cardinality. 
The minOccurs and max0ccurs constraints may define how 
many times an element could appear in a protocol Specifi 
cation. 

0228. The definitions in FIG. 35 show that a protocol 
Specification may have Zero or more objects. Similarly, 
instances and actions may occur Zero or more times. How 
ever, as a preferred embodiment, the <first-Stated element 
needs to appear exactly once. Moreover, as another preferred 
embodiment, the <Stated element must appear at least once. 
Otherwise an error may be signaled. 
0229 FIG. 36 exemplifies a definition of an <object> 
element. This definition indicates that if an <object> element 
exists, then it should have a <name> element and at least one 
<field> element. The value in the field element may indicate 
the name of the field. The field may also have a required 
attribute that indicates its type. If the value or attributes is 
missing from the XPSL specification, the XML Schema 
checker may raise an error. Typically, the XML Schema 
checkers enforce the permitted data types (e.g., String, int, 
byte) for a field. 
0230) 
0231. To transform XPSL protocol specifications into 
code, XSLT may be used. In some cases, only one XSLT is 
needed to transform the protocol Specifications in a given 
programming language. Every element in an XPSL Speci 
fication may cause the XSLT processor to produce the 
required code. An XSLT spreadsheet may be developed to 
produce Java code from any XPSL protocol Specification. 
This spreadsheet may also be used on several XPSL protocol 

III. Automatic Code Generation 

Feb. 16, 2006 

specifications. For example, Sun Microsystems XML Pack, 
which includes an XSLT transformer and an XML Schema 
checker, may be used. XSLT rules and filters may be used to 
identify different XML elements, convert them to their 
corresponding program code and lace them in the proper 
XSLT output tree. Every programming language tends to 
require its own XSLT transformation sheet. Once that sheet 
is available, any protocol specification written in XPSL may 
be transformed to that language and compiled in an appro 
priate system. Code for an XSLT spreadsheet may be found 
in the Computer Program Listing Appendix. 

0232. As a demonstration, FIG. 37 shows the steps 
required to generate a protocol implementation from an 
XPSL Specification. Using this approach, any System on the 
Internet with the proper XSLT stylesheet may be able to 
download an XPSL specification and use the stylesheet to 
produce code in the preferred programming language, com 
pile it and run it. For instance, Sixteen templates may be used 
in the Java XSLT stylesheet to transform XPSL specifica 
tions to Java code. The XML specifications, the Java XSLT 
stylesheet and the XML schema that were developed for 
validation of the XML specifications may be found in the 
Computer Program Listing Appendix. 
0233 A. The Stylesheet Structure 
0234 Producing Java code may require writing a main 
program and a set of classes. The main program is typically 
responsible for Starting the execution. Classes may corre 
spond to either objects or states. Thus, the first few lines in 
the stylesheet tend to describe the XML version, the 
Stylesheet version, the XPSL name Space, and the type of 
output. FIG. 38 displays such description. The main tem 
plate can be used to determine the Stylesheet's Structure. 
This main template may push to the output a header for the 
main Java program and may call five other templates: 
(1)/protocol/name, (2) action, (3) first-state, (4) object and 
(5) state template. In addition, FIG.38 also shows declara 
tive instructions and the main template of the Stylesheet. 
From among all templates, which may be found in the 
Computer Program Listing Appendix, favorable examples 
include <first-stated, <object> and <instance>. 
0235. The <first-states template often serves as a trivial 
template that produces the name of an entry point of the State 
machine. This template may be called once from the main 
template of the stylesheet. Therefore, as portrayed in FIG. 
39, the main Java program may only have one class to call. 
0236. The <object> template typically produces code for 
data objects. As shown in FIG. 40, this template may 
produce a Java class that defines an object interface and a 
construct for the instantiation of the data members. This 
template may be called from the main template or from any 
State. If it is called from the main template, the object may 
become a public object. However, if it is called from within 
a State, it may become local to that State. 
0237) The <instance> template, referring to FIG. 41, may 
cause the transformer to push Java code that corresponds to 
instantiating an object. The data object, name, type and 
initial values may be picked up from the XPSL specification 
and arranged into the appropriate Java code. 
0238 FIG. 42 shows the template of an action. A goal of 
the <action> template is to push out the interface Statement 
of a component as listed in the protocol Specification. 



US 2006/0036755A1 

However, since this element may be nested with other 
elements, the template may have to test for three cases: 
instance, moveto or object. If none of these cases exist, the 
default action may be listing the interface of the component. 

0239). The <movetos template may be responsible for 
producing a Java Switch Statement for branching. This 
template generally calls two other templates: (1) the test part 
of the Java Switch statement, and (2) the expected cases as 
presented in the protocol Specification. The first may be 
referred to as “expression,” whereas the Second may be 
referred to as “case.”FIG. 43 identifies an example of a 
<movetoa template. 

0240 The <states template is similar to the main tem 
plate. Every <Stated template may represent a State of an 
FSM. Every State may consist of a set of objects, instances, 
actions, and should end up with a <movetoa Statement. The 
<Stated template may produce a Java class that corresponds 
to an FSM state. Typically, the <movetos statement comes 
toward the end of the State to determine the next State. 
However, in Some cases (e.g., errors) control flow may 
branch earlier. Such cases should be expected by the devel 
oper of the protocol Specification. Therefore, the <movetoa 
Statement should be embedded inside an <action> Statement. 
Otherwise, the sequence of operations may be faulty. FIG. 
44 shows an example of a <Stated template. 

0241 B. Protocol Components 

0242 Generally, every component has an interface that 
Specifies its parameters and their types. This interface should 
be published with a description of a component's operations 
So that protocol designers can understand and use it. Devel 
oping interfaces and defining conventions for component 
names and functions may, however, be essential for com 
patibility and interoperability among components in a 
framework. These actions may be achieved either by Stan 
dard development committees or by the fact that a compo 
nent becomes widely available because of a major vendor 
with global reach it Supports. A component should not have 
different names on the same or different machines because 
doing So may prevent the execution layer of the present 
invention from locating the correct component. 

0243 Data objects may also be considered components. 
Such data objects may be used during the process of writing 
protocol Specifications. Furthermore, data objects are often 
used to hold values that are common among Several com 
ponents, Such as time, Security keys, Sequence and random 
numbers and header information. 

0244 C. Performance 
0245 An automatically generated implementation may 
perform Similarly to that of a manually generated one. Some 
performance degradation should be tolerated given that the 
present invention often provides an extra level of flexibility 
(e.g., on-the-fly code generation for new protocols) not 
available in manually generated implementations. It is likely 
that most performance concerns may be handled if the 
components used in the implementation generated by the 
present invention are optimized for performance. Further 
performance optimizations may be obtained by caching 
already generated code for reuse. 

Feb. 16, 2006 

0246 
0247. Several experiments may be conducted to demon 
Strate the feasibility of the present invention. For instance, 
XPSL may be used to specify NSAP, TCP's three-way 
handshake, ISAKMP and SSL cipher Suite number 16 
(SSLit16). Choosing protocols may provide diversity in 
terms of protocol purpose (e.g., authentication, transport, 
negotiation, location in the network Stack, and complexity). 
Except for NSAP, which is usually a simple theoretical 
Security protocol that has no practical use unless combined 
with other Security mechanisms (e.g., anti-replay), all other 
protocols are often used widely in the Internet. Documen 
tation of these experiments may be found in the Computer 
Program Listing Appendix. 

IV. Validation Experiments 

0248. Each experiment preferably has two parts: 1) speci 
fication and automatic code generation and 2) execution and 
Verification of the resulting code. These experiments may be 
designed to test four qualities of the framework: complete 
neSS, consistency, correctness, and flexibility. A complete 
Sequence of operations typically includes negotiation, deliv 
ery, automatic code generation, and execution. To demon 
Strate the consistency of the framework, four experiments 
may be developed according to the Meta-Protocol frame 
work, where an XPSL specification is preferably written for 
these protocols. This Specification may be shared between 
two remote parties for generating code. ISAKMP's Base 
Exchange may be used for the negotiation to determine the 
required Subsequent protocol (e.g., the SSLif16). 
0249 The correctness of the framework may be validated 
by testing the correctness of the XPSL specification, the 
XSLT stylesheet, and the generated code. The correctness of 
the generated code may be verified by compiling and 
running the code and checking its output (e.g., values, 
formats and Sequence of messages). Several test cases may 
be designed to provide adequate coverage of the main paths 
of the protocol operation. The results of these tests showed 
that the four protocol implementations compiled correctly 
and performed according to their specifications. 
0250) The flexibility aspect of the framework may be 
demonstrated by introducing changes into the XPSL Speci 
fication, Such as replacing Some components with others that 
perform different functionality, changing the order of opera 
tions, or inserting additional operations into the Sequence. In 
the ISAKMP Base Exchange (BX) experiment, the MD5 
Secure may be replaced with a Secure Hash Algorithm 
(SHA). In the SSL experiment, a Data Encryption Standard 
(DES) encryption may be replaced with Triple-DES (3DES). 
These changes may require modification of a single line in 
the XPSL specification. The code generated through the Java 
XSLT stylesheet may be tested and found to run correctly. 
0251 A. The NSAP Experiment 
0252) Two processes are generally needed: one for the 
client and one for the Server. The network Support may be 
Simulated in the form of files. A process writing to a file may 
be considered as Sending out data to a communication 
channel. Message receiving events is typically manual. The 
process may be designed to pause for input when entering 
every State to give the user the control to coordinate between 
a client process and a server process. FIG. 45 shows partial 
Java code of the NSAP, where the code shows Java output 
of the transformation of the object SessionState. 
0253) The generation of the NSAP code typically 
requires four components developed specifically for NSAP, 



US 2006/0036755A1 

as well as Several other generic components, which are not 
limited to NSAP and could be shared by many protocols. 
These specific components include: ComposeNSAClient 
Msg, ComposeNSAServerRes, DecomposeNSAClienMsg, 
and DecomposeNSAServerRes. Examples of generic com 
ponents include Encrypt, Decrypt and Generate Int rand. 
0254 B. The TCP Handshake Experiment 
0255 As one embodiment, this experiment requires a 
single process because the FSM for TCP given in RFC 793 
recommends the use of a single FSM that combines the 
client and server operations. Therefore, the XPSL protocol 
Specification and the XSLT transformation may produce 
code that works on behalf of either a client or a server. 
However, two error states may be added to demonstrate their 
flexibility. 

0256 An example of a TCP Handshake FSM diagram is 
illustrated in FIG. 46. It includes 13 states. The final state is 
the ESTAB, where actual data transfer starts between two 
parties. The first party (a Sender) starts a handshake by 
Sending a message containing a SYN bit on and a sequence 
number. The Sequence number is a random number. In this 
experiment a fixed number is used to Simplify readability 
and Verification of the changes. Therefore, the Sender's 
sequence number starts at 3000, and the server's sequence 
number starts at 5000. 

0257 As seen in FIG. 46, the second party (a receiver) 
receives the SYN message, sends back an ACK message, 
and moves to a SYN-RCVD state. The ACK message 
consists of an ACK bit Set and two Sequence numbers: a new 
Sequence number and the received Sequence number after 
increasing its value by one. When the first party receives the 
ACK message, it compares the values of its previous 
sequence number with the received number to verify that 
both are in Sync. If this verification proceSS Succeeds, the 
first party Sends another ACK message. In this message, 
both Sequence numbers are advanced by one. If the Second 
party Succeeds in receiving and Verifying the Sequence 
numbers, the handshake is complete and the data transfer 
starts. This process may be called "3-way handshake” 
because it requires three messages to complete the hand 
Shake. 

0258. The following Table 1 outlines the commands for 
the FSM diagram for the TCP handshake, as illustrated in 
FIG. 46. 

TABLE 1. 

Identifier Commands for FSM diagram for TCP Handshake 

Identifier Command 

46O2 Passive open; 
create TCP 
Control Block 
(TCB) 

4604 CLOSE; 
Delete TCB 

4606 SEND; 
Send SYN 

4608 Active open; 
create TCB; 
Send SYN 

4610 CLOSE; 
Delete TCB 

Feb. 16, 2006 

TABLE 1-continued 

Identifier Commands for FSM diagram for TCP Handshake 

Identifier Command 

4612 Receive SYN: 
Send SYN, ACK 

4614 Receive SYN: 
Send ACK 

4616 CLOSE; 
Send FIN 

4618 Receive ACK of 
SYN; x 

462O Receive SYN, 
ACK; Send ACK 

4622 CLOSE; 
Send FIN 

4624 Receive RIN: 
Send ACK 

4626 Receive ACK 
of FIN; x 

4628 Receive FIN: 
Send ACK 

4630 CLOSE; 
Send FIN 

4632 Receive FIN: 
Send ACK of 
FIN2 

4634 Receive ACK 
of FIN; x 

4636 Receive ACK 
of FIN2; x 

0259. Two data objects and five components have been 
designed specifically for this experiment. The first data 
object may be used to maintain the State of the process. One 
of its functions is to hold public information: Sequence 
numbers and port numbers. The Second data object may be 
used to construct a TCP datagram. The components may be 
designed for composing and sending TCP datagrams (send 
Datagram), checking the received sequence number (check 
AckofSYN and checkRcvSynAck), receiving TCP data 
grams and decomposing its information, and printing out 
datagram information (for testing purposes). TCP datagram 
fields that have no role in the handshake tend not to be 
implemented (e.g., URG, data offset, and options). 
0260 One example of state transition and exchange of 
messages to set up a handshake is shown in FIGS. 47a and 
47b, respectively. In this exchange, the client starts by 
sending a SYN message with a SYN bit on and a sequence 
number of 3000. The server responds with both SYN and 
ACK bits on, a new sequence number of 5000, and a 
received Sequence number after incrementing it with one. To 
complete the handshake, the client verifies the numbers and 
Sends back an ACK message and incremented Sequence 
numbers. FIG. 47a shows the branch numbers that the 
Sequence of operations follows, along with the State names. 
FIG. 47b shows the message contents at each transition. 
Another Scenario is shown in FIGS. 47c and 47d to dem 
onstrate the transition in case an error is introduced in the 
Synack message. 

0261) The user may be required to run the code twice to 
develop client-Server interaction Scenarios on a Single 
machine. This experiment may be more difficult to run and 
Synchronize manually. Therefore, to lessen the difficulty, a 
testing result sheet showing the expected results for each 
Sequence to be compared with the results obtained in the 



US 2006/0036755A1 

experiment may be used. For instance, the branches may be 
labeled with numbers. The user may be prompted during the 
experiment to choose a branch. FIG. 48 shows an XPSL 
Specification of the first State, the closed State. This State may 
receive two objects as input parameters. The first object may 
be called tob and may maintain the State information of the 
process. The Second object may be an error message request 
ing the code to be returned. The description of the error 
message may occur inside the State. The first action in this 
State may be inserting Java code. This code may be inserted 
temporarily for the purpose of manual Synchronization. 
Based on this action, the user may choose one of the two 
branches that the state can move to. This move may be 
expressed using a <movetoa element. In the first choice, a 
Set of actions may initialize a TCP datagram with proper 
information and may move to Synsent State. However, in the 
Second choice, the control may flow to the listen State 
without changing the state of the machine. The XPSL 
specification of the TCP Handshake may be found in the 
Computer Program Listing Appendix. 

0262 The same XSLT stylesheet used in the previous two 
experiments may be used again to generate Java code. Being 
able to generate correct code for the three experiments using 
the same XSLT stylesheet may help demonstrate the power 
of the XSLT transformation. FIG. 49 lists Java code that 
may correspond to the specification presented in FIG. 48. 

0263. C. ISAKMP Experiment 
0264. ISAKMP may be used to implement the negotia 
tion layer of the Meta-Protocol. Once again, FIG. 7b shows 
an example of an FSM diagram of ISAKMP Base Exchange. 
Based on this diagram, two XPSL specifications may be 
developed: one for an initiator and the other for a responder. 
In addition, components and objects needed for the actions 
taking place in each of the FSM states were developed. 
Fourteen new components and five new objects may be 
added to a component library to implement ISAKMP. 

0265 Referring to FIGS. 7a and 7b, the initiator may 
Start by Sending a set of proposals. The responder may select 
one of the proposed protocols and notify the initiator. In the 
remaining States, both could exchange identification and 
Security-based information to close the agreement. 
0266. A comparison between a list of components and 
objects used in the initiator (i.e., ISAKMP initiator), as 
exemplified in FIG.50, and the list mentioned in the XPSL 
specification for ISAKMP, as depicted in the Computer 
Program Listing Appendix, shows a high rate of reuse of 
components. It also may show that a component can be used 
Several times within a protocol, as well as being shared by 
other protocols. For example, the Error State component is 
used in every state, the Send UDP component is used in 
states 1 and 3, and CreateNewFile is used in the states 2, 3, 
and 4. In addition, other components, Such as Generatint 
RandomNumber and HashingStringMD5, may also be used. 

0267 In the first state of an ISAKMP session, the initiator 
receives Some input parameters from an application: desti 
nation IP and port, a Secret value to be used in generating 
cookies, and initiator private, and public RSA keys. These 
values may then be passed inside an object called ISAK 
MPFSM. This object may hold all the variables that are 
publicly required by all the states during a session. FIG. 51 
illustrates a data structure of the ISAKMPFSMobject. 

Feb. 16, 2006 

0268 A goal of the initiator, in the first state, is to prepare 
a proposal and Send it to the responder. This proposal may 
consist of three parts: payload header, proposed protocol 
name and location. Again, an example of an ISAKMP initial 
message may be viewed in FIG. 8. Five components are 
used to build the client message in the first State: Hashing 
StringMD5, BXcomposeMain Header, Complib.BX.com 
pose Proposals, GeneratintRandomNumber, and BX.com 
poSepayload. The names used for these components indicate 
their functionality. FIG. 52 shows a Java class that may 
perform the operation of composing an ISAKMP main 
header. In this operation, the nine fields of the header may 
be concatenated into a String of bytes. These fields may have 
a fixed length. Therefore padding may be needed to adjust 
the length of each field to a proper size. The resulting String 
of bytes may then be Stored into a file. The proposal payload 
and the nonce payload may be prepared similarly. When this 
process is complete, the initiator may send the main header 
and the payloads to the responder. The UDP protocol may be 
used for the exchange of these messages in ISAKMP. 
0269. A Java class for the send operation, Send UDP, may 
be represented in FIG. 53. This operation may take as input 
an array of bytes, the length of the array, destination IP 
address, and destination port number. 
0270. The responder XPSL specification may work simi 
larly compared to that of the initiator but in reverse order. 
For example, when the initiator Sends a message, the 
responder should receive that message. Most action com 
ponents are shared by both parties. However, there tends to 
be two main differences, namely the values they process and 
Some context-specific operations. For instance, cookies and 
nonces are prepared by the same components (e.g., MD5 and 
random number), but their values vary because they are 
generated by two different processes with different input 
values (e.g., IP address and port numbers for cookies). 
Examples of context-specific operations include, but are not 
limited to, preparing proposal payloads and preparing Selec 
tion payloads. The proposal payload operation may be 
performed by the initiator; the Selection operation may be 
performed by the responder. 
0271) D. The SSL Experiment 

1. SSL Handshake Experiment 
0272. In this experiment, two processes may be used to 
represent a client and a Server. The user may also be required 
to Synchronize between the two processes manually. The 
experiment can be limited only to the Handshake protocol. 
The Record layer protocol and the Alert protocol are gen 
erally not part of the experiment. Therefore, the process 
should stop after generating the shared keys, composing the 
Finish message and delivering it to the record layer protocol. 
The record layer protocol may have to use the negotiated Set 
of keys to apply crypto operations and add an SSL header. 
Also, limited error checking may be implemented. More 
over, the client and the server may read the RSA keys from 
local files. 

0273 Generally, SSL handshake has three objectives: a 
client and Server need to agree on a set of crypto algorithms 
to be used to protect traffic, agree on a set of shared keys and 
authenticate each other. The last objective is optional and 
may be used to authenticate a server to a client. The SSL 
Specification may provide about 32 options for the first 



US 2006/0036755A1 

objective. Each option may represent a Set of algorithms. An 
example of an option is: TLS RSA with DES CBC SHA. 
0274. As per one aspect of the present invention, the SSL 
handshake process follows the following Sequence: 

0275 1. A client sends a Hello message to a server. 
This Hello message contains the client's Supported 
cipherS Suite and a random number. 

0276 2. A server responds with a Hello message, a 
digital certificate and a ServerHellodone message. The 
Server Hello message contains the chosen Set of ciphers 
and a random number. The ServerHellodone is a single 
byte message indicating that the Server has sent all the 
messages to be sent at this phase. 

0277 3. The client sends a KeyExchange message, a 
ChangeCipherSpec message and a Finish message. The 
KeyExchange message contains a pre-master Secret 
(48 bytes consisting of two bytes of the client's version 
number followed by 46 random bytes). The client uses 
the server's public key to protect the pre master Secret. 
The ChangeCipherSpec is a single byte message to 
indicate the Switch to protected mode. The client also 
calculates the Set of shared keys, which are also used to 
protect the Finish message. The Finish message is 
produced by hashing all previous messageS eXchanged 
by the client and server. 

0278 4. The Server uses the pre-master secret and 
random numbers to generate the shared keys. The 
Server Sends a Change CipherSpec message and a Finish 
meSSage. 

0279 FIG. 54 shows a SSL Handshake sequence of 
messages in notation form, and FIG. 55 shows embodied 
sequences of states in FSM form. One way of performing 
this experiment is to develop 19 components to carry out 
operations. The calculation of the keys may be done accord 
ing to the specification given in RFC2246, TLS protocol 
version 1.0. 

0280. The XPSL protocol specification may follow the 
sequence shown in the FSM. The state of the machine is 
maintained in an object called SessionState. FIG. 56 shows 
an XPSL specification of the SessionState object of a client 
process. This object may include version numbers, Session 
id, the RSA keys file names, and a set of shared keys to be 
used to protect the traffic of a Session. 
0281 FIG. 57 shows an XPSL specification of the first 
State of a client proceSS. Two parameters may be passed to 
this state: a SessionState object and an Error message 
object. The Error message object may be used to return an 
error code in case of error inside the State. This State may 
start with the creation of an instance of ClientHello object 
and initialization with proper values from the SessionState 
object. A random number may be generated using the 
component IntObject, which may return an integer random 
number. The ClientHello message, which may be composed 
by the content of the ClientHello object, may be sent to the 
SCWC. 

0282 FIG. 58 shows the first state of an SSL server 
process. In this state, another ClientHello object may be 
instantiated. A component Complib.SSLReadClientHello, 
may be used to read a received ClientHello message and 
load its content to the ClientHello object. The SessionState 

Feb. 16, 2006 

object may be updated accordingly. For simplification, the 
code shown in FIGS. 57 and 58 may not include some 
actions used for Synchronization and user help. AS one 
aspect, the XPSL specification for SSL is presented in the 
Computer Program Listing Appendix. 
0283 The Java code corresponding to the specification 
shown in FIGS. 57 and 58 is shown in FIGS. 59 and 60, 
respectively. This code may be generated using the same 
XSLT Stylesheet used in the three previously presented 
experiments. 
0284. The component library may provide a component, 
called createKey, that generates a pair of RSA keys. Gen 
erally, this component has to be executed before running the 
client and server processes. It may take as input a) two file 
names, one for the public key and the other for the private 
key, and b) a password to protect the private key. These file 
names may have to be included in the Specification of the 
protocol before generating the code of the experiment. 

SSL #16 Experiment 
0285) Here, again, two processes may be used to repre 
Sent a client and a Server. AS one embodiment, the SSL 
record layer protocol has to use the negotiated Set of keys in 
the handshake phase to apply the crypto operations and add 
the SSL header. The SSL may have 32 options, where each 
option may represent a set of cryptographic algorithms. The 
operation may be limited to a single option: TSA R 
SA with DES CBC SHA. Moreover, 44 components 
including 9 data objects may be developed to carry out the 
operations of SSLif16. 
0286 The experiment here is an extension to the SSL 
Handshake experiment. Five new states may be added to the 
XPSL specification used in the SSL handshake. FIG. 61 
shows an expanded SSL FSM. The states used in the 
handshake are shaded with diagonal lines and the other 
States are clear. This part of the experiment also tends to 
show how easy it may be to extend or shrink Some protocol 
Specifications by Simply adding more States or components 
or removing them from the specification. FIG. 61 also 
shows this sequence of operations in an FSM diagram. 
0287. An example of the XPSL specification for SSL#16 
is listed in the Computer Program Listing Appendix. 
Twenty-five components, including 9 data object types, may 
be developed according to the SSL specification RFC2246 to 
Simplify demonstration and Verification. The list of compo 
nents and data object types is among the components library 
in the Computer Program Listing Appendix. 
0288. It is important to note that this experiment ignores 
the implementation of many checks (e.g., errors, resource 
availability, or data types and ranges validations) because 
Such checks may complicate the experiment and Verification 
process. However, one skilled in the art would recognize that 
Such features are needed in real life, and would preferably 
include Such checks to address real life Scenarios. In addi 
tion, except for the network (TCP), interfaces to application 
and the operating System are not implemented. TCP may be 
used to demonstrate that the experiment can run over a 
network. However, to include these interfaces, a user may 
manually manage Such operations in the experiment. 

0289 Since the first four states of the SSL#16 have been 
described in SSL Handshake, this section describes the 



US 2006/0036755A1 

remaining five States. In these States, the client and the Server 
may use shared keys developed during the handshake to 
eXchange application data. These keys may be held in an 
object called SSLSessionState. The structure of the SSLS 
essionState may be shown in FIG. 62 using Java-like code. 
This data object may be instantiated at the beginning of each 
Session with null values. During the handshake process the 
values may be generated and Stored for later use by any 
component during the Session. 

a. The Client Process 

0290 This experiment may implement a transfer of files 
from a client to a Server. Implementing the other way around 
is generally Straightforward and can be achieved in two 
ways: either by Switching the XPSL specification or adding 
the components that are responsible for Sending files to the 
XPSL specification of the server. The client FSM, shown in 
FIG. 61, may have two loops at states 5, 7 and 8. Each 
iteration of the first loop may be responsible for transferring 
a single file. The Second loop may be responsible for 
fragmenting large file sizes (greater than 2 14). However, 
when it is preferred to simplify the output of the verification 
process, the Second loop is not implemented. SSLif16 Secure 
Session may start the process of protecting application data 
at State 5. At this State, the client may request a file name 
from the user of the experiment. The file may have to be 
located in the home directory of the experiment programs. 
At state 7, the client may load the file, produce an SHA1 
hash value, append the hash value to the file, add the SSL 
header, encrypt the file using DES, and Send the encrypted 
file to the server. FIG. 63 illustrates the list of actions in the 
XPSL specification of state 7. FIG. 64 shows the format of 
an SSL packet that is prepared by the client for transfer. 

b. The Server Process 

0291 FIG. 61 and the Computer Program Listing Appen 
dix show the FSM and the XPSL specification of a server 
process, respectively. After the handshake is complete, the 
server process may wait for TCP connections. TCP listen 
Socket may be implemented at State 5 through a component 
called TCPListen. The files received on this socket may be 
sent by the client and may be encrypted. FIG. 65 shows a 
Java implementation of the TCPListen component. In state 
6, the received file may be decrypted, the TCP header and 
the hash value may be Striped out, and the hash value may 
be calculated again by the Server for comparison with the 
received value. FIG. 66 shows an XPSL specification of 
state 6. Java statements that are embedded within the XPSL 
Specification may be used for Simplification or for helping 
users of the experiments in Verifying the output. 
0292 Similar to the client process, a loop may be placed 
between states 5 and 7. One purpose of this loop is to repeat 
the process of receiving SSL protected files from the client. 
Human intervention may not be needed. The loop may be 
indefinite until an empty file is received from the client, 
which may indicate a request for the end of the connection. 
It may not be necessary to implement the process of assem 
bling large files at State 7 because the fragmentation proceSS 
might not be implemented in the client process. 
0293 E. The Components Library 
0294 Preferably, the present invention uses CBSE. To 
run these experiments, a library that comprises all the 

Feb. 16, 2006 

necessary operations may be developed. The library may 
contain about 86 components and 24 data objects. All may 
be written in Java and may follow the object-oriented 
programming paradigm. Therefore, messages and data Struc 
tures are preferably designed as objects that are passed to the 
components for processing. Moreover, objects that are 
shared by more than one protocol (e.g., error message) may 
be implemented as part of the component library for easier 
accessibility. Similarly, objects that are shared by more than 
one component may also be included as part of the compo 
nent library (e.g., StringObject, BytesObject and TCP dia 
gram). The interfaces and brief description of these compo 
nents may be found in the Computer Program Listing 
Appendix. 
0295 Most of the components have been developed for 
the purpose of these experiments. However, Some may wrap 
Standard Java crypto functions or modified pieces of bor 
rowed code. The component's interfaces and brief descrip 
tion may be provided in the Computer Program Listing 
Appendix, which lists all the components that are used by 
the three protocols: NSAP, TCP's 3-way handshake and SSL 
Handshake. The information there may also indicate 
whether the component is general, or specific to NSAP, TCP 
or SSL. 

0296. As an example, FIG. 67 shows an encryption 
component. This component takes as input three file names 
and an RSA public key. The first file name is for the file to 
be encrypted. The Second file name is for the encrypted file. 
The third file name is for the public RSA key file name. This 
component uses the RSA public key to encrypt a generated 
3DES shared key. The generated 3DES shared key may be 
used to encrypt the file. An objective is to Send the encrypted 
file along with the encrypted key to the owner of the public 
RSA key. The owner of the RSA public key may use his 
private key to decrypt the 3DES shared key and the file. 
0297 V. Related Work 
0298 Related work in the area of communication proto 
cols may be found in Several research projects: X-kernel, 
Cactus, Ensemble and the Click router. The X-kernel is an 
operating System communication kernel designed to provide 
configurable communication Services in which a communi 
cation protocol represents a unit of composition. The X-ker 
nel architecture may be extendable. For example, Horus and 
Coyote are extensions and applications of the X-kernel 
architecture to the area of group communications. The 
present invention differs from these research works in that 
none of them has proposed high level protocol Specifications 
So users may exchange and produce implementations auto 
matically. 

0299. In security protocols, the Conduits+framework has 
been used to implement IPsec. Cactus is another framework 
that may be used to implement a Security System called 
SecCom. Conduits+ and SecComm differ from the present 
invention in two aspects. The first aspect is that the Speci 
fication of the required configuration may be transmitted 
through the header information of the messages. In contrast, 
the Specification of the present invention may be coded in a 
Separate document So that it may be transmitted indepen 
dently of the messages in a Secure fashion. Second, the 
event-driven approach in Cactus to activate components at 
runtime may add a layer of delay to the System. In contrast, 
the Sequence of operations in the present invention may be 



US 2006/0036755A1 

predetermined before runtime based on the Specification of 
the protocol leading to the efficient execution of the Selected 
components. 

0300 Protocol implementations may be derived auto 
matically from abstract specifications in languages, Such as 
SDL, Esterel, Estelle, LOTOS, Promela++, SMURPH and 
Cicero. However these languages follow a low level proce 
dural programming paradigm. Therefore, protocol develop 
ers need to work out all the details of the operations of the 
protocols. Conversely, the present invention tends to capi 
talize on CBSE to produce a high level specification. There 
fore, most of the details of the operations of a protocol are 
usually hidden inside the components: 
0301 Automatic Protocol Generation (APG) work pro 
duces protocol designs in an automated way. The APG 
process takes as input a set of requirements and produces a 
Set of proposed protocol designs. Quite the opposite, unlike 
APG, the present invention may take a design (i.e., the 
output of the APG process) and may convert it into a 
Specification used to automatically generate executable code 
for a protocol. 
0302) Cryptographic libraries implement security ser 
vices as independent components. Examples of Such librar 
ies include IBM's CCA, RSA's Cryptokit, Microsoft's 
Crypto API, Sun's JCA/JCE, X/Open's GCS-API and Intel's 
CSSM-API. However, there is no high level and easy way 
for producing useful valid compositions out of these librar 
ies. Resolving this issue, the present invention may add a 
layer of mechanisms that facilitate the generation of useful 
compositions out of these components. 
0303 UML is also used for the purpose of automatic code 
generation. The UML approach differs from the technique 
taught by the present invention in two aspects: 1) the present 
invention is simple because it may depend on FSMs, which 
provide a simpler graphical representation for protocols than 
UML diagrams, and 2) the present invention may use XSLT 
to generate code automatically from an XML-based speci 
fication, while UML code generation solutions tend to be 
proprietary and are based on UML graphical representations. 
It should be noted that XML Metadata Interchange (XMI) 
may be used as a model interchange format for UMI, but it 
is not part of the code generation process. 

0304 Related work that includes the use of XML to 
produce program code, Such as LibXm12, may also be found. 
In Such works, an instrument designer produces an XML 
document that describes the instrument's services. This 
XML document may be used to produce a user information 
document in HTML format and Source code for the instru 
ment embedded services. Generally, the XML description is 
just a listing of the Services, where each Service may be 
asSociated with a piece of C code that is loaded from a 
library by an XSLT transformer. 
0305 The present invention distinctly contrasts such 
Works by extending Such works to the area of protocol 
implementations in conjunction with the use of CBSE. The 
XML specification in the present invention may be based on 
FSMs to provide a detailed description of the flow of 
control, handling of data objects and the Set of operations. 
0306 FSMs have also been used to generate code for 
protocols. For example, a C++ code skeleton for the flow of 
control of the protocol may be generated directly out of the 

2O 
Feb. 16, 2006 

FSM diagrams. The present invention is distinguishable 
from this technique in that the present invention may encode 
FSMs in XML, allowing for automatic code generation in 
any programming language. 
0307 The foregoing descriptions of the preferred 
embodiments of the present invention have been presented 
for purposes of illustration and description. They are not 
intended to be exhaustive or to limit the invention to the 
precise forms disclosed, and obviously many modifications 
and variations are possible in light of the above teaching 
without departing from the Scope of this invention and its 
broader aspects. The illustrated embodiments were chosen 
and described in order to best explain the principles of the 
invention and its practical application to thereby enable 
others skilled in the art to best utilize the invention in various 
embodiments and with various modifications as are Suited to 
the particular use contemplated. For example, one skilled in 
the art will recognize that the present invention may be used 
in Search engines, databases and docket Systems. Addition 
ally, the present invention may also be used in banks, Stock 
trades, manufacturing of vehicles (e.g., cars, planes, boats, 
etc.), production plants (e.g., paper mills, oil, etc.), human 
resources, payroll, etc. 
0308) A portion of the disclosure of this patent document 
contains material which is Subject to copyright protection. 
The copyright owner has no objection to the facsimile 
reproduction by anyone of the patent document or the patent 
disclosure, as it appears in the Patent and Trademark Office 
patent file or records, but otherwise reserves all copyright 
rights whatsoever. 

What is claimed is: 

1. A tangible computer readable medium encoded with 
instructions for generating protocol Specifications, execut 
able by a machine under the control of a program of 
instructions, in which Said machine includes a memory 
Storing Said program, wherein execution of Said instructions 
by one or more processors causes Said one or more proces 
Sors to perform a multitude of Steps comprising: 

a.. using at least one first element, Said at least one first 
element including at least one protocol element, each of 
Said at least one protocol element capable of being used 
as a root of an XML protocol Specification document; 

b. adding at least one Second element, Said at least one 
Second element including at least one first-State ele 
ment, each of Said at least one first-State element 
capable of Specifying the Starting State of a Finite State 
Machine (FSM); and 

c. adding at least one third element, wherein Said at least 
one third element includes at least one State element, 
for each state in said FSM. 

2. A tangible computer readable medium according to 
claim 1, further comprising: 

a. adding at least one fourth element, Said at least one 
fourth element including at least one object element, 
each of Said at least one object element capable of 
defining data. 

3. A tangible computer readable medium according to 
claim 1, further comprising: 



US 2006/0036755A1 

a. adding at least one fifth element, Said at least one fifth 
element including at least one instance element, each of 
Said at least one instance element capable of holding 
actual data. 

4. A tangible computer readable medium according to 
claim 1, further comprising: 

a. adding at least one Sixth element, Said at least one Sixth 
element including at least one action element, each of 
Said at least one action element capable of defining 
actions required by each State. 

5. A tangible computer readable medium according to 
claim 4, further comprising: 

a. adding at least one Seventh element, Said at least one 
Seventh element including at least one moveto element, 
each of Said at least one moveto element capable of 
indicating the next State. 

6. A tangible computer readable medium according to 
claim 5, further comprising: 

a. adding at least one eighth element, Said at least one 
eighth element including at least one expression ele 
ment, capable of Serving as a logical expression for 
producing a set of predefined values, and 

. adding at least one ninth element, Said at least one ninth 
element including at least one case element, capable of 
Serving as a list of cases for pointing to the next State 
for each possible value of said logical expression. 

7. A tangible computer readable medium according to 
claim 1, wherein the Step of Said “adding at least one third 
element' further comprises at least one of the following 
Steps: 

a. adding at least one fourth element, Said at least one 
fourth element including at least one object element, 
each of Said at least one object element capable of 
defining data; 

. adding at least one fifth element, Said at least one fifth 
element including at least one instance element, each of 
Said at least one instance element capable of holding 
actual Said data; 

. adding at least one Sixth element, Said at least one Sixth 
element including at least one action element, each of 
Said at least one action element capable of performing 
actions required by each State; 

. adding at least one Seventh element, Said at least one 
Seventh element including at least one moveto element, 
each of Said at least one moveto element capable of 
indicating the next State; 

. adding at least one tenth element, Said at least one tenth 
element including at least one arg element, each of Said 
at least one arg element capable of facilitating the 
passing of data objects to Said at least one State element; 
and 

adding at least one eleventh element, Said at least one 
eleventh element including at least one name element, 
each of Said at least one name element capable of 
identifying elements. 

8. A tangible computer readable medium according to 
claim 1, further comprising: 

21 
Feb. 16, 2006 

a. adding at least one eleventh element, Said at least one 
eleventh element including at least one name element, 
each of Said at least one name element capable of 
identifying elements. 

9. A tangible computer readable medium according to 
claim 1, in which Said protocol Specifications include at least 
one XML protocol Specification. 

10. A tangible computer readable medium according to 
claim 1, in which said protocol Specifications include a 
description of a protocol Specification language Specified in 
an XML Schema. 

11. A protocol management System having a layered 
approach comprising: 

a. a negotiation layer capable of allowing communicating 
parties to agree upon at least one protocol Specification, 
wherein Said negotiation layer includes a negotiation 
mechanism; 

... a distribution layer capable of retrieving and/or distrib 
uting Said at least one protocol Specification and any 
missing component, wherein Said distribution layer 
includes a delivery mechanism; 

... an implementation layer capable of using eXtensible 
Stylesheet Language Transformations (XSLT) for con 
Verting Said at least one protocol Specification and Said 
any missing component into at least one executable 
code capable of implementing Said at least one protocol 
Specification and Said any missing component, wherein 
Said implementation layer includes a machine-readable 
protocol Specification converter; and 

d. an execution layer capable of loading and/or running 
Said at least one executable code, wherein Said execu 
tion layer includes an executable code System manager. 

12. A protocol management System according to claim 11, 
further including at least one Searchable repository System, 
Said at least one Searchable repository System capable of 
Storing Said at least one protocol Specification and Said any 
missing component. 

13. A protocol management System according to claim 11, 
further including at least one Security measure, Said at least 
one Security measure capable of protecting Said System. 

14. A protocol management System according to claim 11, 
wherein Said negotiation layer uses at least one of the 
following approaches: 

a. a manual approach; and 

b. an automatic approach, wherein Said automatic 
approach includes at least one of the following: 

i. a Secure channel; and 

ii. a customized version of the Internet Security ASSO 
ciation and Key Management Protocol (ISAKMP). 

15. A protocol management System according to claim 14, 
wherein a protocol Specification using Said customized ver 
sion of ISAKMP is a bootstrap of said system. 

16. A protocol management System according to claim 11, 
wherein Said distribution layer uses at least one directory 
Service. 

17. A protocol management System according to claim 11, 
wherein Said distribution layer is capable of distributing at 
least one digitally signed protocol Specification. 



US 2006/0036755A1 

18. A protocol management System according to claim 11, 
wherein Said distribution layer is capable of distributing at 
least one digitally signed component referenced in a proto 
col Specification. 

19. A protocol management System according to claim 11, 
wherein Said distribution layer is capable of retrieving Said 
at least one protocol Specification from a local cache. 

20. A protocol management System according to claim 11, 
wherein Said implementation layer produces code that 
implements Said at least one protocol Specification automati 
cally using: 

a. XML-related technologies, wherein said XML-related 
technologies include XML schema, XSLT transforma 
tions, XSLT processors, XML parsers, and XML edi 
tors, and 

b. a multitude of components referenced in Said at least 
one protocol Specification. 

21. A protocol management System according to claim 20, 
wherein Said System uses Component-based Software Engi 
neering to build Said "multitude of components referenced in 
Said at least one protocol Specification.” 

22. A protocol management System according to claim 11, 
wherein a Single XSLT Stylesheet is associated with a single 
programming language, Said XSLT Stylesheet capable of 
generating Said at least one executable code for a multitude 
of Said at least one protocol Specification, wherein Said at 
least one executable code is an implementation of Said at 
least one protocol Specification. 

23. A protocol management System according to claim 11, 
wherein Said at least one executable code of Said at least one 
protocol Specification is retrieved from a local cache. 

24. A protocol management System according to claim 11, 
wherein Said execution layer comprises at least one of the 
following: 

a. at least one interface responsible for delivering requests 
and feedback between the external world and said 
execution layer; and 

b. at least one control operation capable of managing 
internal affairs of Said execution layer. 

25. A protocol management System according to claim 11, 
in which Said at least one protocol Specification includes at 
least one XML protocol Specification. 

26. A protocol management System according to claim 11, 
in which Said at least one protocol Specification includes a 
description of a protocol Specification language Specified in 
an XML Schema. 

27. A method for managing protocols comprising the 
Steps of: 

a. agreeing upon at least one protocol Specification; 

b. retrieving and/or distributing Said at least one protocol 
Specification and any missing component; 

c. converting Said at least one protocol Specification and 
Said any missing component into at least one execut 
able code, Said at least one executable code is an 
implementation of Said at least one protocol Specifica 
tion; and 

d. loading and/or running Said at least one executable 
code. 

22 
Feb. 16, 2006 

28. A method according to claim 27, further including the 
Step of Storing Said at least one protocol Specification and 
Said any missing component. 

29. A method according to claim 27, further including the 
Step of protecting Said method of managing protocols using 
at least one Security measure. 

30. A method according to claim 27, wherein the step of 
“agreeing uses at least one of the following approaches: 

a. a manual approach; and 
b. an automatic approach, wherein Said automatic 

approach includes at least one of the following: 
i. a Secure channel; and 
ii. a customized version of the Internet Security ASSO 

ciation and Key Management Protocol (ISAKMP). 
31. A method according to claim 30, wherein Said at least 

one protocol Specification using Said customized version of 
ISAKMP is a bootstrap of said method. 

32. A method according to claim 27, wherein the Step of 
"retrieving and/or distributing further includes using at 
least one directory Service. 

33. A method according to claim 27, wherein the step of 
“retrieving and/or distributing further includes distributing 
at least one digitally signed protocol Specification. 

34. A method according to claim 27, wherein the step of 
“retrieving and/or distributing further includes distributing 
at least one digitally signed component referenced in a 
protocol specification. 

35. A method according to claim 27, wherein the step of 
“retrieving and/or distributing further includes retrieving 
Said at least one protocol Specification from a local cache. 

36. A method according to claim 27, wherein the step of 
“converting further includes producing code that imple 
ments Said at least one protocol Specification automatically 
uSIng: 

a. XML-related technologies, wherein said XML-related 
technologies include XML schema, XSLT transforma 
tions, XSLT processors, XML parsers, and XML edi 
tors, and 

b. a multitude of components referenced in Said at least 
one protocol Specification. 

37. A method according to claim 36, wherein said method 
uses Component-based Software Engineering to build Said 
“multitude of components referenced in Said at least one 
protocol Specification.” 

38. A method according to claim 27, wherein a Single 
XSLT Stylesheet is associated with a Single programming 
language, Said XSLT Stylesheet capable of generating Said at 
least one executable code for a multitude of Said at least one 
protocol Specification, wherein Said at least one executable 
code is an implementation of Said at least one protocol 
Specification. 

39. A method according to 27, wherein the step of 
“converting further includes retrieving at least one execut 
able code associated with at least one protocol Specification 
from a local cache. 

40. A method according to 27, wherein the step of 
"loading and/or running comprises at least one of the 
following Steps: 

a. delivering requests and feedback, and 
b. managing internal affairs. 



US 2006/0036755A1 

41. A method according to claim 27, in which said at least 
one protocol Specification includes at least one XML pro 
tocol Specification. 

42. A method according to claim 27, in which said at least 
one protocol Specification includes a description of a pro 
tocol Specification language specified in an XML Schema. 

43. A tangible computer readable medium comprising 
instructions for a method of managing protocols, Said tan 
gible computer readable medium executable by a machine 
under the control of a program of instructions, in which said 
machine includes a memory Storing Said program, wherein 
Said instructions comprise the Steps of: 

a. agreeing upon at least one protocol Specification; 
b. retrieving and/or distributing Said at least one protocol 

Specification and any missing component; 
c. converting Said at least one protocol Specification and 

Said any missing component into at least one execut 
able code, Said at least one executable code is an 
implementation of Said at least one protocol Specifica 
tion; and 

d. loading and/or running Said at least one executable 
code. 

44. A tangible computer readable medium according to 
claim 43, wherein Said instructions further include the Step 
of Storing Said at least one protocol Specification and Said 
any missing component. 

45. A tangible computer readable medium according to 
claim 43, wherein Said instructions further include the Step 
of protecting Said method of managing protocols using at 
least one Security measure. 

46. A tangible computer readable medium according to 
claim 43, wherein the Step of "agreeing uses at least one of 
the following approaches: 

a. a manual approach; and 
b. an automatic approach, wherein Said automatic 

approach includes at least one of the following: 
i. a Secure channel, and 
ii. a customized version of the Internet Security ASSO 

ciation and Key Management Protocol (ISAKMP). 
47. A tangible computer readable medium according to 

claim 46, wherein Said at least one protocol Specification 
using said customized version of ISAKMP is a bootstrap of 
Said method. 

48. A tangible computer readable medium according to 
claim 43, wherein the step of “retrieving and/or distributing” 
further includes using at least one directory Service. 

49. A tangible computer readable medium according to 
claim 43, wherein the step of “retrieving and/or distributing” 
further includes distributing at least one digitally signed 
protocol Specification. 

23 
Feb. 16, 2006 

50. A tangible computer readable medium according to 
claim 43, wherein the step of “retrieving and/or distributing” 
further includes distributing at least one digitally signed 
component referenced in a protocol Specification. 

51. A tangible computer readable medium according to 
claim 43, wherein the step of “retrieving and/or distributing” 
further includes retrieving Said at least one protocol Speci 
fication from a local cache. 

52. A tangible computer readable medium according to 
claim 43, wherein the step of “converting further includes 
producing code that implements Said at least one protocol 
Specification automatically using: 

a. XML-related technologies, wherein said XML-related 
technologies include XML schema, XSLT transforma 
tions, XSLT processors, XML parsers, and XML edi 
tors, and 

b. a multitude of components referenced in Said at least 
one protocol Specification. 

53. A tangible computer readable medium according to 
claim 52, wherein said method uses Component-based Soft 
ware Engineering to build Said "multitude of components 
referenced in Said at least one protocol Specification.” 

54. A tangible computer readable medium according to 
claim 43, wherein a Single XSLT Stylesheet is associated 
with a single programming language, Said XSLT Stylesheet 
capable of generating said at least one executable code for 
a multitude of Said at least one protocol Specification, 
wherein Said at least one executable code is an implemen 
tation of Said at least one protocol Specification. 

55. A tangible computer readable medium according to 
43, wherein the step of “converting further includes retriev 
ing at least one executable code associated with at least one 
protocol Specification from a local cache. 

56. A tangible computer readable medium according to 
43, wherein the Step of "loading and/or running comprises 
at least one of the following Steps: 

a. delivering requests and feedback, and 

b. managing internal affairs. 
57. A tangible computer readable medium according to 

claim 43, in which Said at least one protocol Specification 
includes at least one XML protocol Specification. 

58. A tangible computer readable medium according to 
claim 43, in which Said at least one protocol Specification 
includes a description of a protocol Specification language 
specified in an XML schema. 


