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DETECTION AND PREDICTION OF PHYSIOLOGICAL EVENTS IN PEOPLE
WITH SLEEP DISORDERED BREATHING USING A LAMSTAR NEURAL
NETWORK

RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Patent Application No.
61/106,027 entitled “Detection and Prediction of Physiological Events in People with Sleep
Disordered Breathing Using a LAMSTAR Neural Network™, filed December 19, 2008, which

is entirely incorporated by reference herein for all purposes.

BACKGROUND OF THE INVENTION

Field of the Invention
This invention relates to medical devices, and more particularly, to prediction and

detection of physiological events.

Background

Many diagnostic and therapeutic medical devices are equipped to detect physiological
events. For example, a widely respected diagnostic test for sleep-related disorders, such as
obstructive sleep apnea syndrome, is polysomnography, in which respiratory, cardiac,
muscular, and neurological parameters are monitored during sleep by a polysomnogram.

The polysomnogram will typically record data from a number of different data
sources requiring a number of wire attachments to the patient -- often more than 20 different
wires are used. These data sources typically include:

e one or more electroencephalogram (EEG) channels to monitor brain activity,

e one or more pressure transducers, thermocouples, and/or thermistors, fitted in
or near the nostrils, for monitoring nasal airflow and/or temperature,

e one or more microphones to monitor breathing sounds, including snoring,

e one or more electromyogram (EMQG) channels for measuring chin and/or leg
movements,

e one or more electrooculogram (EOG) channels to monitor eye movements,
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e one or more electrocardiogram (EKG) channels for detecting heart rate and
rhythm, including heart rate variability (HRV),

e apulse oximeter to measure oxygen saturation of arterial hemoglobin, and/or

e Dbelts placed around the patient to measure chest wall and abdominal wall
movement.

In conjunction with assessment of daytime symptoms, using a polysomnogram to
measure the frequency of sleep-related apnea (cessation of breathing) and/or hypopnea
(marked reduction in tidal volume) represents the standard of care for diagnosing obstructive
sleep apnea (OSA) syndrome.

Obstructive sleep apnea syndrome is the most common sleep-related breathing
disorder, with a prevalence of at least 4% in men and 2% in women aged 20 to 60 years, and
thus is a major public health problem with a societal impact comparable to that of smoking.
Studies have revealed associations with cardiovascular discase, stroke, and diabetes and
people with obstructive sleep apnea syndrome commonly experience excessive daytime
sleepiness and cognitive dysfunction, placing them at risk for motor vehicle accidents and
work related injuries.

The most common therapy for obstructive sleep apnea syndrome is continuous
positive airway pressure (CPAP), which attempts to overcome mechanical collapsing forces
in the airways by continuously blowing air into the nose. Although largely effective, for
many CPAP is cumbersome and difficult to tolerate, resulting in poor long-term compliance.
To reduce pressure exposure, auto-adjusting positive airway pressure (APAP) devices are
used in some cases. APAP devices typically rely on early detection of respiratory events to
make pressure adjustments.

These conventional therapies for obstructive sleep apnea syndrome are largely
effective but suffer from poor patient compliance. In some patients, the conventional
therapies do not fully alleviate all adverse consequences, including obstructive-sleep-apnea-
associated cardiovascular risk factors, daytime sleepiness, and decreased quality of life.
Methods and devices capable of detecting and predicting individual physiological events,
such as apneas and hypopneas, are needed to provide improved treatment, compliance, and

effectiveness of these conventional therapies.
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SUMMARY

This application provides methods and instruments capable of detecting and
predicting individual physiological events, such as apneas and hypopneas, and methods for
providing improved treatment, compliance, and effectiveness of these conventional therapies
directed towards sleep-related disorders.

In one aspect of the application, methods are provided. Physiological data related to a
patient are received at a physiological event processor, and the data gathered from an input
data source of one or more input data sources. The physiological data are segmented at the
physiological event processor into a plurality of segments. The plurality of segments
represent a predetermined duration of data. The data are gathered from an input data source
of the one or more input data sources. At the physiological event processor, the plurality of
segments are transformed into a plurality of transformed segments by using at least one
transformation on the plurality of segments. An exemplary transformation is a wavelet
transformation applied to each segment of the plurality of segments. A physiological event
result based on the plurality of transformed segments is generated at the physiological event
processor. The physiological event result includes information relating to a physiological
event. The physiological event result also includes a significance value for at least one
significant input data source of the one or more input data sources. The physiological event
result is output from the physiological event processor to an output device.

In another aspect of the application, one or more apparatus are provided. The one or
more apparatus includes a processing unit, a source data interface configured to communicate
with one or more input data sources, an output interface, data storage, and machine-language
instructions. The machine-language instructions are stored at least in the data storage. Upon
execution by the processing unit, the machine-language instructions cause the processing unit
to perform functions. The functions include: (a) receiving physiological data related to a
patient via the source data interface, (b) segmenting the physiological data into a plurality of
segments, where one or more segments of the plurality of segments represents a
predetermined duration of data gathered from one or more input data sources, (c)
transforming the plurality of segments into a plurality of transformed segments by using at
least one transformation on the plurality of segments, (d) generating a physiological event
result based on the plurality of transformed segments, where the physiological event result
includes a significance value of at least one significant input data source of the one or more

input data sources, and (¢) outputting the physiological event result via the output interface.
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In yet another aspect of the application, a tangible computer-readable medium is
provided. The tangible computer-readable medium has instructions stored thercon. Upon
execution by a computing device, the instructions cause the computing device to perform
functions. The functions include: (a) receiving, at the computing device, physiological data
related to a patient via one or more input data sources, (b) segmenting, at the computing
device, the physiological data into a plurality of segments, where one or more segments of
the plurality of segments represent a predetermined duration of data gathered from one or
more input data sources, (c) transforming, at the computing device, the plurality of segments
into a plurality of transformed segments by using at least one transformation on the plurality
of segments, (d) generating, at the computing device, a physiological event result based on
the plurality of transformed segments, where the physiological event result includes
information related to a physiological event and also includes a significance value for a
significant input data source of the one or more input data sources, and (e) outputting the
physiological event result from the computing device.

One advantage of this application is that the physiological event processor can predict
and/or detect individual physiological events, such as specific episodes of onset sleep apnea
for a particular patient. A related advantage is a neural network of the physiological event
processor can be effectively trained to recognize patterns in training data sequences related to
physiological events. Once trained, the neural network can advantageously receive patient-
related input data and accurately predict and/or detect individual physiological events for a
patient. Yet another advantage of this application is that the physiological event processor,
configured with an appropriately trained neural network, can enable a number of treatment
and diagnostic applications.

BRIEF DESCRIPTION OF THE DRAWINGS

Various examples of particular embodiments are described herein with reference to
the following drawings, wherein like numerals denote like entities, in which:

Figure 1 is a block diagram of an exemplary physiological event processing system;

Figure 2A is a block diagram of an exemplary data preprocessor;

Figure 2B is a block diagram of an exemplary physiological event
detection/prediction engine;

Figure 3 is a block diagram of an exemplary computing device;

Figure 4 is a block diagram of an exemplary physiological event processing system
with a data preprocessor and a LArge Memory STorage And Retrieval (LAMSTAR) neural

network;
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Figures 5A and 5B provide an expanded illustration of part of the LAMSTAR neural
network;

Figures 6A and 6B show exemplary signals extracted from a polysomnogram (PSG);

Figures 7A and 7B show results of sleep apnea syndrome prediction during Non-
Rapid Eye Movement (NREM) sleep and Rapid Eye Movement (REM) sleep, respectively;

Figures 8A and 8B show results of hypopnea prediction during NREM sleep and
during REM sleep, respectively;

Figures 9A and 9B show results of sleep apnea syndrome prediction for varying
prediction lead times during NREM sleep and REM sleep, respectively;

Figures 10A and 10B show results of hypopnea prediction for varying prediction lead
times during NREM sleep and REM sleep, respectively;

Figure 11A is a graph of sums of LAMSTAR link-weights as a function of prediction
lead time for true positive decisions;

Figure 11B is a graph of sums of LAMSTAR link-weights as a function of prediction
lead time for false negative decisions;

Figure 12A shows results of detection of sleep apnea syndrome events during both
NREM sleep and REM sleep;

Figure 12B shows results of detection of hypopnea events during both NREM sleep
and REM sleep; and

Figure 13 is a flowchart depicting exemplary functional blocks of an exemplary
method for generating physiological event results.

DETAILED DESCRIPTION

Methods and apparatus are described for detecting and predicting physiological events
based on physiological data related to a patient using a physiological event processor. A
physiological event is an episode related to a condition of a patient. For example, if a patient
is suffering from a heart-related condition, a heart attack is a physiological event related to
the heart-related condition. In another example, if a patient is suffering from a sleep-related
condition, an episode of onset sleep apnea is a physiological event related to the sleep-related
condition.

Physiological data includes any data related to the patient. In particular embodiments,
the physiological data are gathered from a number of sources, such as medical devices (e.g.,
polysomnograms, electrocardiograms (EKGs), electroencephalograms (EEGs), heart rate
monitors, magnetic resonance imaging (MRI) devices, X-ray machines, thermometers and

other temperature measuring devices, blood pressure or blood flow measuring devices, other
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pressure-detecting devices, volume measuring devices, blood chemistry devices, pressure
transducers, thermocouples, thermistors, eclectromyograms, clectrooculograms, pulse
oximeters, other oxygen and/or other gas sensors, movement sensors, scales, devices
configured to provide data related to a patient, diagnostic devices, medical devices, and/or
other devices) and/or patient input devices (e.g., mobile and/or stationary computers). In
particular embodiments, the physiological data includes data related to physiological
parameters, such as, but not limited to, body temperature, EKG activity (e.g., heart rate, heart
rhythm, heart rate variability), EEG activity, galvanic skin response (GSR), movement rates,
breathing data (e.g., nasal pressure, nasal temperature, breathing rates, tidal volume), oxygen
saturation, blood chemistry parameters, drug dosages, blood pressure, blood flow, and
height/weight of a patient. Physiological data are generated locally and/or remotely. If
physiological data are generated remotely, the physiological data are received at the
physiological event processor via one or more networks in some embodiments.

In particular embodiments, the physiological event processor includes a data
preprocessor and a physiological event detection/prediction engine. The data preprocessor
prepares the physiological data for use by the physiological detection/prediction engine,
which then generates physiological event results based on the preprocessed physiological
data. An exemplary physiological detection/prediction engine includes computer hardware
and/or software configured to detect patterns in the preprocessed physiological data, such as
an artificial neural network (or neural network for short). A neural network is computer
hardware and/or software that, through a supervised training procedure, learns to map input
patterns to desired outputs. One such neural network, described in detail below, is an
appropriately trained LArge Memory STorage And Retrieval (LAMSTAR) neural network.

Physiological event results include informative and directive physiological event
results. Informative physiological event results are data or other information about a
physiological event, such as data predicting and/or detecting a physiological event. Directive
physiological event results provide instructions, commands, and/or directions to various
output devices, such as medical treatment and/or diagnostic devices.

The physiological event processor can be configured to predict and/or detect
physiological events. The techniques for preprocessing data and training the LAMSTAR
neural network are applicable to many different physiological conditions affecting one or
more physiological systems of a patient.

Thus, the physiological event processor enables a number of treatment and diagnostic

applications. One such application, described in detail below, is detection and prediction of
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physiological events related to sleep-related conditions, such as obstructive sleep apnea and
hypopnea syndrome. In such an application, predictions of obstructive sleep apnea and/or
hypopnea indicate an impending episode of abnormal breathing, such as a prediction of a
sleep-related physiological event within the next 60 seconds. Once abnormal breathing is
anticipated, the physiological event processor sends commands to one or more therapeutic
devices. Exemplary commands include commands to control air pressure levels generated by
a CPAP or APAP device and commands to a stimulator of an appropriate modality to provide
sensory and/or motor stimuli to the patient to prevent or ameliorate an episode of abnormal
breathing. Finer control of such therapeutic devices leads to better treatment of sleep-related
conditions, including improvement of patient compliance and therapeutic outcomes.

Using the physiological event processor to predict physiological events complements
current detection systems. For a sleep-related example, predictions made by the
physiological event processor can enhance performance of the detection devices used in
current generation APAP devices to reduce the frequency of abnormal breathing events in
patients using such APAP devices. In addition, adjusting pressure levels less frequently and
more gradually allows the average pressure exposure to decrease and is less disruptive to the
sleep process, increasing patient comfort and adherence with APAP treatment. Also,
prediction of physiological events enables earlier responses to more events and complete
avoidance of other events.

A sleep-related physiological event processor improves alternative sleep apnea
therapies, for instance, percutaneous or transcutancous stimulation of various muscles and/or
nerves. In particular embodiments, the prediction of an impending event triggers stimulation,

and an estimate of the proximity to an impending event determines stimulation parameters.

An Exemplary Physiological Event Processing System

Turning to the drawings, Figure 1 is a block diagram of an exemplary physiological
event processing system (PEPS) 100 with input data source(s) 110, data preprocessor 122,
physiological event detection/prediction engine 126, and output device(s) 140. As shown
with a dashed line in Figure 1, data processor 122 and physiological event
detection/prediction engine 126 are configured as components of a physiological event
processor 120.

In operation, input data source(s) 110 can be configured to provide physiological data
112 to data preprocessor 122. Data preprocessor 122 can be configured to generate

preprocessed data 124 upon receiving physiological data 124 and provide preprocessed data

-7-
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124 to physiological event detection/prediction engine 126.  Physiological event
detection/prediction engine 126 can be configured to generate physiological event results 130
based on preprocessed data 124.

Exemplary physiological event results 130 include, but are not limited to, informative
physiological event results and directive physiological event results. In some embodiments,
physiological event results 130 are both informative and directive; e.g., provide informative
text, video, and/or audio concerning a physiological event with a command to output
device(s) 140 to display the informative text, video, and/or audio. In some embodiments,
output device(s) 140 further process physiological event results 130, such as by storing,
formatting, collating, parsing, transmitting, and/or otherwise processing physiological event
results 130. Examples include, but are not limited to, storing a plurality of physiological
event results 130 in a database (including embodiments that involve additional processing),
formatting physiological event results 130 for remote display via the Internet or other
network, and/or parsing physiological event results 130 to generate commands for output
device(s) 140.

In particular embodiments, physiological event results 130 include a significance
value for one or more input data source(s) 110. For example, suppose physiological data 112
are derived from input data sources 1 and 2 (IDS1 and IDS2, for short). To indicate a
significance value, physiological event results 130 can indicate that: IDS1 (or IDS2) was
solely relied upon for physiological event results 130 and/or IDS1 provided more (or less)
significant information for generating physiological event results 130. In some embodiments,
the significance value includes numerical data for a significance of IDS1 and/or IDS2 in
arriving at physiological event results 130. In other scenarios beyond this example,
significance values can be used with more or fewer than two input data sources.

In some embodiments, the output device(s) 140 is configured to act upon
physiological event results 130, such as by formatting and/or displaying part or all of
physiological event results 130, by generating additional notification(s) based on
physiological event results 130, and/or to treat physiological event results 130 as commands
for further action. Exemplary commands include activating or deactivating output device(s)
140, to change behaviors of output device(s) 140, providing alarms or other warning
indication(s), and/or outputting information regarding the commands.

For example, in the context of an adjustable positive airway pressure (APAP) output
device used for treatment of sleep apnea syndrome, commands for further action can instruct

the APAP output device to be activated/deactivated, to increase or decrease airflow to the

-8-
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patient, to alarm that an episode of sleep apnea and/or hypopnea has been predicted or
detected, and/or to provide a notification of the commands provided to the APAP output
device.

Figures 2A and 2B show additional details of physiological event processor 120 of
physiological event processing system 100. Figure 2A shows a block diagram of an
exemplary data preprocessor 122 with data segmenter 210, data transformer 220, and data
encoder 230. Data segmenter 210 can be configured to receive physiological data from one
or more data sources. Figure 2A shows data segmenter 210 receiving data from # input data
sources 110a — 110n.

Data segmenter 210 segments physiological data. In some embodiments, segmenting
data includes dividing the data into “segments” or blocks of data of representing information
from a particular input data source for a pre-determined duration (i.e., amount of time). For
example, data from a medical device, such as an electrocardiograph (EKG) or
electroencephalograph (EEG), are segmented into blocks of data representing 30-second
intervals of EKG or EEG data.

In some embodiments, a segment includes other information along with a block of
data from an input data source. In some embodiments, a segment includes information
identifying a patient monitored by the input data source and/or identifying a particular data
source that generated a corresponding block of data; e.g., an EKG or EEG. In some
scenarios, corresponding timing information (start time, stop time, and/or duration
information) and/or an identifier that uniquely identifies the segment are included with the
segment. An example unique identifier for a segment can be constructed by concatenation of
patient identification, data source, and timing information for the segment.

As shown in Figure 2A, the generated segments are passed as segmented data 212 to
data transformer 220. In particular embodiments, data transformer 220 is configured to apply
onec or more transformations to the segments of segmented data 212.  Example
transformations include application of Fourier transform(s), wavelet transform(s), chirplet
transform(s), and/or other transform(s) to the block of data. In some embodiments, data
transformer 220 gathers statistics of a transformed segment as well; e.g., frequency maxima
and/or minima values. In some scenarios, each transformed segment and/or statistics for
transformed segment(s) are part of transformed data 222.

Figure 2A shows transformed data 222 sent from data transformer 220 to data encoder
230. Data encoder 230 encodes transformed data 222 into a format suitable for use by

physiological event detection/prediction engine 126. Example formats included binary
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formats, textual (alphanumeric) formats, graphical formats, audio formats, and/or other
formats. Figure 2A shows the resulting encoded data sent as preprocessed data 124 to
physiological event detection/prediction engine 126.

Figure 2B shows a block diagram of an exemplary physiological event
detection/prediction engine 126. Physiological event detection/prediction engine 126 applies
input processing 240 to the received preprocessed data 124. In some embodiments, input
processing 240 includes selecting and/or weighting of preprocessed data 124. 1In these
embodiments, the selection and/or weighting is performed by storing input coefficients in an
input weighting matrix and performing a matrix-vector multiplication between the input
weighting matrix and preprocessed data 124 (treated as a vector) to generate a vector to act as
received data 242.

After applying input processing 240 to preprocessed data 124, received data 242 are
provided to event detection/prediction processing 250. Event detection/prediction processing
250 can be configured to examine received data 242 for patterns related to physiological
events. As such, event detection/prediction processing 250 can be performed by a suitably
trained neural network, a genetic algorithm, an expert system, one or more digital signal
processors, and/or other computer software and/or hardware designed to detect and/or predict
physiological events.

After  performing event  detection/prediction  processing 250, event
detection/prediction data 252 is provided to output processing 260. In some embodiments,
the event detection/prediction data 252 is weighted by an output weighting matrix by output
processing 260 using similar techniques to those discussed above with respect to the input
weighting matrix.

Upon performing output processing 260, one or more physiological event results 130a
— 130d are output for each of one or more conditions. Figure 2B shows output processing
260 generating outputs for a number j of conditions, where a number m/ of physiological
event results are output for condition 1 and a number j/ of physiological event results are
generated for condition j. Example physiological event results 130a-130d include, but are
not limited to, informative physiological event results and directive physiological event

results as described above in more detail with respect to Figure 1.

An Exemplary Computing Device
Figure 3 is a block diagram of an exemplary computing device 300, comprising

processing unit 310, data storage 320, user interface 330, network-communication interface
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340, and source data interface 350, in accordance with embodiments of the invention.
Computing device 300 can be a desktop computer, laptop or notebook computer, personal
data assistant (PDA), mobile phone, embedded processor, or any similar device that is
equipped with at least one processing unit capable of executing machine-language
instructions that implement at least part of the herein-described methods, including but not
limited to method 1300 described in more detail below with respect to Figure 13, and/or
herein-described functionality of an input data source, a physiological event processor, a data
preprocessor, a physiological event detection/prediction engine, an output device, a data
segmenter, a data transformer, a data encoder, input processing, event detection/prediction
processing, output processing, a data preprocessor, a segmenter, a wavelet transformer, a
binary encoder, a LAMSTAR neural network, an input layer, a SOM node layer, and/or an
output layer,

Processing unit 310 can include one or more central processing units, computer
processors, mobile processors, digital signal processors (DSPs), microprocessors, computer
chips, and similar processing units configured to execute machine-language instructions and
process data.

Data storage 320 comprises one or more storage devices with at least enough
combined storage capacity to contain machine-language instructions 322 and data structures
324. Data storage 320 can include read-only memory (ROM), random access memory
(RAM), removable-disk-drive memory, hard-disk memory, magnetic-tape memory, flash
memory, and similar storage devices.

Machine-language instructions 322 and data structures 324 contained in data storage
320 include instructions executable by processing unit 310 and any storage required,
respectively, to perform at least part of herein-described methods, including but not limited to
method 1300 described in more detail below with respect to Figure 13, and/or herein-
described functionality of an input data source, a physiological event processor, a data
preprocessor, a physiological event detection/prediction engine, an output device, a data
segmenter, a data transformer, a data encoder, input processing, event detection/prediction
processing, output processing, a data preprocessor, a segmenter, a wavelet transformer, a
binary encoder, a LAMSTAR neural network, an input layer, a SOM node layer, and/or an
output layer,

The terms tangible computer-readable medium and tangible computer-readable media
refer to any tangible medium that can be configured to store instructions, such as machine-

language instructions 322, for execution by a processing unit and/or computing device; e.g.,
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processing unit 310. Such a medium or media can take many forms, including but not limited
to, non-volatile media and volatile media. Non-volatile media includes, for example, read
only memory (ROM), flash memory, magnetic-disk memory, optical-disk memory,
removable-disk memory, magnetic-tape memory, hard drive devices, compact disc ROMs
(CD-ROMs), direct video disc ROMs (DVD-ROMs), computer diskettes, and/or paper cards.
Volatile media include dynamic memory, such as main memory, cache memory, and/or
random access memory (RAM). Many other types of tangible computer-readable media are
possible as well. As such, herein-described data storage 320 can comprise and/or be one or
more tangible computer-readable media.

User interface 330 comprises input unit 332 and/or output unit 334. Input unit 332
can be configured to receive user input from a user of computing device 300. Input unit 332
can comprise a keyboard, a keypad, a touch screen, a computer mouse, a track ball, a
joystick, and/or other similar devices configured to receive user input from a user of the
computing device 300.

Output unit 334 can be configured to provide output to a user of computing device
300. Output unit 334 can comprise a visible output device for generating visual output(s),
such as one or more cathode ray tubes (CRT), liquid crystal displays (LCD), light emitting
diodes (LEDs), displays using digital light processing (DLP) technology, printers, light bulbs,
and/or other similar devices capable of displaying graphical, textual, and/or numerical
information to a user of computing device 300. Output unit 334 alternately or additionally
can comprise one or more aural output devices for generating audible output(s), such as a
speaker, speaker jack, audio output port, audio output device, earphones, and/or other similar
devices configured to convey sound and/or audible information to a user of computing device
300.

Optional network-communication interface 340, shown with dashed lines in Figure 3,
can be configured to send and receive data over a wired-communication interface and/or a
wireless-communication interface. The wired-communication interface, if present, can
comprise a wire, cable, fiber-optic link and/or similar physical connection to a data network,
such as a wide area network (WAN), a local area network (LAN), one or more public data
networks, such as the Internet, one or more private data networks, or any combination of such
networks. The wireless-communication interface, if present, can utilize an air interface, such
as a ZigBee, Wi-Fi, and/or WiMAX interface to a data network, such as a WAN, a LAN, one
or more public data networks (e.g., the Internet), one or more private data networks, or any

combination of public and private data networks. In some embodiments, network-
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communication interface 340 can be configured to send and/or receive data over multiple
communication frequencies, as well as being able to select a communication frequency out of
the multiple communication frequency for utilization.

Optional source data interface 350, shown in Figure 3 with dashed lines, permits
communication with one or more input data source devices. Exemplary input data source
devices include polysomnograms, electrocardiograms (EKGs), electroencephalograms
(EEGs), heart rate monitors, magnetic resonance imaging (MRI) devices, X-ray machines,
thermometers and other temperature measuring devices, blood pressure devices, other
pressure-detecting devices, volume measuring devices, blood chemistry devices, pressure
transducers, thermocouples, electromyograms, eclectrooculograms, pulse oximeters, other
oxygen and/or other gas sensors, movement sensors, scales, devices configured to provide
data related to a patient, diagnostic devices, medical devices, and/or other devices. Many
other types of source data devices are possible as well. In particular embodiments, the source
data devices provide data related to physiological parameters.

Source data interface 350 can include a wired-sensor interface and/or a wireless-
sensor interface. In some embodiments, the wired-sensor interface and the wireless-sensor
interface utilize the technologies described above with respect to the wired-communication
interface of network-communication interface 340 and the wireless-communication interface
of network-communication interface 340, respectively. In other embodiments, one or more

input device(s) communicate with computing device 300 via source data interface 350.

An Exemplary Embodiment of the Physiological Event Processing System

Figure 4 is a block diagram of an exemplary physiological event processing system
400 with a data preprocessor 402 and a LAMSTAR neural network 440. Data preprocessor
402 includes a segmenter 410 and wavelet transformer 420. Data preprocessor 402 may
include an optional binary encoder 430, shown in Figure 4 with dashed lines. LAMSTAR
neural network 440 is shown in Figure 4 with input layer 450, self-organizing map (SOM)
layer 460, and output layer 470.

In particular embodiments, preprocessor 402 is configured to produce a set of inputs
for LAMSTAR neural network 440 that capture the time-frequency spectral dynamics of
physiological data 112. In some embodiments, segmenter 410 segments physiological data
112 based on time. For example, segmenter 410 can segment physiological data into 30, 60,

90, and/or 120 second data segments.
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In particular embodiments, wavelet transformer 420 is configured to generate a set of
statistics using a wavelet transform of segmented data generated by segmenter 410. Some
embodiments of wavelet transformer 420 use a discrete wavelet transform of the Daubechies
4 family of wavelet functions. In other embodiments, wavelet transformer 420 uses another
wavelet transform (e.g., Haar wavelets, higher-level families of wavelet functions, continuous
wavelet transforms) and/or other similar transformation transforms / functions (e.g., short-
time Fourier transforms, other Fourier transforms, Wigner transforms, multiresolution
analysis).

In the particular embodiments, the wavelet transform used by wavelet transformer
420 is configured to provide information about the frequency content as a function of time for
one or more segments in the segmented data. In the particular embodiments, wavelet
transformer 420 is configured to apply a sliding window of differently scaled wavelet
functions along the given segment. Wavelet transformer 420 can be configured to calculate a
set of wavelet coefficients, or levels, for each scale of wavelet. Each wavelet level conveys
the evolution of the correlation between the wavelet at that scale, or frequency band, and the
given segment.

In particular embodiments, wavelet transformer 420 generates statistics for a given
“raw” (pre-transformation) segment transformed into a transformed segment. Exemplary
statistics include, but are not limited to:

¢ minimum amplitude values of the transformed segment at a given wavelet level,

e times (indices) of the minimum amplitude values at the given wavelet level,

e maximum amplitude values of the transformed segment at the given wavelet level,

e times / indices of the maximum amplitude values at the given wavelet level,

e a ratio between maxima and minima of the transformed segment at the given

wavelet level,

e aroot-mean-square (RMS) of the transformed segment at the given wavelet level,

and/or

e aratio of the RMS of the transformed segment to the RMS of the raw segment.

In these embodiments, binary encoder 430 is configured to encode each statistic in the
set of statistics into binary codes. In the particular embodiments, binary encoder 430
computes histograms for ecach statistic. For example, the Freedman-Diaconis rule can be
used to calculate an optimal bin width:

Bin Width =2 *IQR *n™"” (1)
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where IQR is the inter-quartile range of the data, and » is the total number of data
points. In some circumstances, Equation (1) can produce a zero bin width. In those cases, the
Scott method can be used:

Bin Width = 3.49 *¢ *n''? 2)

where o 18 the standard deviation of the data.

For cach statistic, a common histogram for all segments is constructed. The
histogram for the statistic is divided into a number of subsegments, perhaps after screening
based on a threshold value of the statistic. For example, the area of the histogram in which
all values exceeds a threshold of 10% of the maximum value of the statistic is located and
then divided into five subsegments. Each subsegment boundary for a statistic is assigned a
unique binary code. In particular embodiments, binary segmenter 430 identifies a
subsegment in which a statistical value was located in its respective histogram and outputs
the corresponding binary code for the statistical value. In these particular embodiments,
transformed data 432 are a sequence of binary codes corresponding to histogram subsegments
for cach statistical value that are input to LAMSTAR necural network 440. In other
embodiments, LAMSTAR neural network 440 does not use binary encoded data; in such
embodiments, optional binary encoder 430 is not required to be part of data preprocessor 402.

LAMSTAR neural network 440 can be configured to handle large-scale storage-
retrieval tasks while grossly capturing the input-output relationships of biological neural
networks. In particular embodiments, LAMSTAR neural network 440 can be configured to
learn a mapping between an arbitrary set of inputs, such as transformed data 432, and a set of
outputs, shown in Figures 4, 5A, and 5B as output layer 470, using a supervised training
process.

A portion of the architecture of LAMSTAR neural network 440 for processing
transformed data 432, which includes statistics for each wavelet level of a single signal (i.e.,
input from a single data source) is schematically depicted in Figure 4. In some embodiments,
LAMSTAR neural network 440 contains identical structures for each signal.

As illustrated in Figures 4, 5A, and 5B, LAMSTAR neural network 440 includes three
types of nodes, arranged as layers. Input layer 450 receives input to LAMSTAR neural
network 440 (i.e., transformed data 432) as an input word. Figure 4 shows an input word of
transformed data 432 composed of subwords (SWs) subwords 432a through 432g and
presented to input nodes 452a through 452n in input layer 450. Each subword represents a

separate attribute of transformed data 430. In some embodiments, each subword 432a-432g is
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a binary code corresponding to a histogram subsegment for each statistic for each wavelet
level, generated by wavelet transformer 420, for each signal.

As shown in Figure 4, one or more self-organizing map (SOM) modules 462a through
462n in SOM node layer 460 are associated with each subword. Each of the SOM modules
462a thorough 462n includes one or more SOM nodes. In particular embodiments, the SOM
nodes of SOM modules 462a through 462n are arranged as one or more layers of SOM
nodes.

Figure 4 shows LAMSTAR neural network 440 with output layer 470. Output layer
470 consists of output nodes 472a and 472b. In some embodiments, output nodes 472a and
472b are fully interconnected with the SOM modules 462a — 462n.

Figures 5A and 5B provide an expanded illustration of part of LAMSTAR neural
network 440. For simplicity, only four input subwords 432a, 432b, 432¢, and 432d and
corresponding SOM modules 462a, 462b, 462¢, and 462d are shown in Figures SA and 5B.
Each SOM module 462a, 462b, 462¢, and 462d is shown in Figures 5A and 5B with seven
SOM nodes. The seven SOM nodes are arranged into seven SOM sub-layers. In other
embodiments than shown in Figures 5A and 5B, LAMSTAR neural network 440 includes
SOM modules with fewer than seven SOM nodes or more than seven SOM sub-layers.

The links between input nodes in input layer 450 and SOM nodes in input SOM
modules 462a — 462d in input SOM layer 460 are weighted by the input-weight matrices ;
and the links between input SOM node and output nodes are weighted by the matrices L;.
Figure 5A shows the /#; matrices as input-weight matrices W1 552a, W2 552b, W3 552¢, and
W4 552d and shows the L; matrices as link-weight matrices L1 554a, 1.2 554b, L3 554¢, and
L4 554d. Note that the solid lines in Figure SA represent one or more connections between
individual nodes in input layer 450, input SOM layer 460, and/or output layer 470.

In operation, outputs of input nodes, each related to a subword, are fed into an
associated input SOM module. The input SOM nodes operate using the following winner-

takes-all rules as expressed in Equations (3) and (4) below:

SG.k) = ZW (. k) 3)
SG, k)= S3, k)Vk 4)

Equation 3 indicates that, for each input SOM node & in input SOM sub-layer 7, the
sum S(i, k) of the input-weights ; for input SOM node k is computed, where N; is the
number of nodes in input SOM sub-layer i. Equation 4 indicates that, the input SOM node ;"
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with the highest sum of input-weights over all input SOM nodes & for input SOM sub-layer i
is the winning node for input SOM sub-layer ;. Each winning SOM node represents the
category the network has assigned to the associated subword. The set of all winning nodes
represents the category the network has assigned to the entire input word.

By adjusting or training the input-weight matrices, W;, each input SOM module can
learn to classify its respective subword. In some embodiments, the input sub-words are
predefined; e.g., binary codes generated by binary encoder 430. In such embodiments, the
input-weight matrices W; are predefined to ensure a unique mapping between each input
subword and corresponding input SOM node. In specific embodiments, predefined input-
weight matrices W; are identity matrices of an appropriate size.

The output, or decision D(m’), of the LAMSTAR network is determined using
Equations (5) and (6) below:

D) =3 L,k .m) 5)

D(m") = D(m)Vm (6)

where: M is the number of input SOM modules (layers),

m is an output node in the output (decision) layer, and

Li(k;*m) 1is the link weight between the winning node (denoted 4;*) in the " input
SOM module and the m™ output (decision) node. Hence the output node, denoted by m*, is
the winning output node over all output nodes. Thus, the output node m* represents an
output decision of LAMSTAR neural network 440 based on the input word.

Figure 5B shows the link-weights and links associated with a scenario regarding a
hypothetical set of winning SOM nodes. Upon the presentation of subwords 432a, 432b,
432c¢, and 432d to input nodes 450 of LAMSTAR neural network 440, cach SOM module
462a, 462b, 462¢, and 462d determines a winning node. In this scenario, SOM module 462a
has chosen a third node, depicted in black in Figure 5B, as the winning node. The winning
node is chosen, as described above, based on the input-weight matrix and the link-weight
matrix for each SOM module. As shown in Figure 5B, input-weight matrix entry W1(j,3)
and link-weight matrix entry L1(3,2) are the input-weight and link-weight associated with the
winning node in SOM module 462a.

Similarly, Figure 5B shows that a winning node for SOM module 462b is a fifth node
of SOM module 462b, a winning node for SOM module 462c¢ is a sixth node of SOM module
462c¢, and a winning node for SOM module 462d is a second node of SOM module 462d.
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Figure 5B also shows the related input-weight matrix and link-weight matrix values
associated with the winning nodes of SOM modules 462b, 462¢, and 462d. Further, Figure
5B shows the winning node in output layer 470 is output node 2 472b.

Each node in the output layer indicates a different result. As an example, output node
1 472a can indicate a prediction that a patient will not experience a physiological event and
output node 2 472b can indicate a prediction that a patient will experience the physiological

cvent.

“Most Significant” Nodes of a LAMSTAR Neural Network

As mentioned above, the winning output node has the highest sum of link-weights in
link-weight matrix L that connect that output node to the winning SOM nodes. Therefore, the
link-weight matrix L of interconnections between memory-storing nodes of LAMSTAR
neural network 440 and various layers or modules directly and meaningfully relates to
physiological data 112. The link-weights are configured to be tracked in real-time to indicate
precisely how and why LAMSTAR neural network 440 makes decisions. In some scenarios,
the link-weight matrix L is used to determine the structure of physiological data 112 as
presented to LAMSTAR neural network 440.

The most significant node (MSN) is defined as the SOM node or set of SOM nodes
that have the highest link-weight to a particular output node m. That is, where

L. (k",m) > L,(k,m)Vik (7)

Similarly, the SOM nodes that have the second or third highest link-weights (second
and third MSNs) can be determined. The MSNs indicate which input subwords (i.c., signal
features) were most important for making a particular decision. In particular, the MSNs that
have the largest difference between the link from a SOM node to one output node and the
link from the same SOM node to the other output node are identified. This eliminates nodes
in common between both outputs to choose MSNs most associated with a particular decision.
Determining sets of the most significant nodes (e.g., the set of MSNSs, or the set of first,
second, and third MSNs) allows for identification of important signals and signal features for

physiological events.
LAMSTAR Neural Network Training Examples

In particular embodiments, link-weights in the link-weight matrix L between nodes in

SOM layer 460 and output nodes 470 are adjusted by numerical values representing
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punishments and rewards depending on the response of the network to the input word. For
example, when LAMSTAR neural network 440 produces a desired output, link-weights in the
link-weight matrix L from each winning SOM node to a correct output node are incremented
(rewarded). When LAMSTAR neural network 440 produced an incorrect output, link-weights
in the link-weight matrix L from each winning SOM node to the incorrect output node are
decremented (punished), and link-weights from each winning SOM node to the correct output
node are incremented. In some of the particular embodiments, the increments and
decrements are of the same magnitude; e.g., rewards involve an increment of 1 and
punishments involve a decrement of 1.

Thus, the operation of LAMSTAR neural network 440 includes:

1. Receiving an input word consisting of a set of subwords at LAMSTAR neural
network 440.
2. Determining winning nodes for each SOM module according to winner-take-

all rules; e.g., the rules expressed in Equations (3) and (4) above.

3. Summing the link-weights from the winning SOM nodes to each output node;
e.g., using Equation (5).

4. Determining the output node with the highest sum of SOM-output link-
weights; e.g., using Equation (6).

5. Adjusting the SOM-output link-weights according to the above-mentioned
training rules regarding rewards and punishments.

The order in which inputs are presented to LAMSTAR neural network 440 during
training can affect subsequent performance. This is because, as with biological neural
networks, the order of presentation can favor the reinforcement of certain features and the
degradation of others.

This is particularly true if different output categories share features. For instance,
suppose LAMSTAR neural network 440 is trained on a successive set of inputs of Type A.
By reinforcing some set of link-weights, LAMSTAR neural network 440 will learn to
associate Type A inputs with the output node designated for Type A outputs. Now suppose a
set of Type B inputs are presented to LAMSTAR neural network 440 for Type B prediction.
In some scenarios, the Type B inputs share features with the Type A inputs (i.e., some of the
Type B inputs are uncorrelated with a condition related to the Type B inputs). In such
scenarios, LAMSTAR neural network 440 will, at first, classify Type B inputs as Type A

until the features that differ between the two are sufficiently learned.
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Later, if another set of Type A inputs are presented to LAMSTAR neural network
440, the features common to Types A and B will again be reinforced. If enough Type A
inputs are successively presented, the sum of the link-weights that encode common features
of Types A and B can exceed the sum of the link-weights that encode differing features
between Types A and B. In such scenarios, the “memory” of differences between Type A and
Type B can be degraded, and the performance of LAMSTAR neural network 440 can suffer
in differentiating between Type A and Type B inputs. In this example, one technique to
avoid such memory degradation is to alternately present Type A and Type B inputs during
the training phase of LAMSTAR neural network 440.

To ensure that LAMSTAR neural network 440 is adequately trained, the accuracy of
LAMSTAR neural network 440 is computed based on the number of training inputs used. In
some embodiments, LAMSTAR neural network 440 is considered to be fully trained once the
computed accuracy indicates asymptotic performance was achieved. See Tables 7, 8, 9, and
10 for numbers of segments used to train LAMSTAR neural network 440 in different

scenarios.

Exemplary Use of the Physiological Event Processor to Predict and Detect of
Sleep-Related Physiological Events

Figures 6A through 12B relate to an exemplary use of physiological event processor
400 as applied to sleep-related physiological events. In particular, physiological event
processor 400 can be configured to generate physiological event results including detection
and prediction of sleep apnea syndrome and hypopnea events. The physiological event
processor 400 can be configured to detect and predict sleep-related physiological events in
real time, as well as in near-real time and/or non-real-time scenarios. In some embodiments,
the physiological event processor 400 is configured to detect and/or predict apnea and
hypopnea events 30 to 120 seconds in advance. As part of prediction of sleep apnea
syndrome and hypopnea events, an estimated proximity to an impending event is determined
in some embodiments. Further, examination of LAMSTAR ncural network 440 indicates

which signals were most important for event prediction.

Exemplary Sleep Study Data
Overnight polysomnogram data were collected from 21 women and 53 men (average
+ standard deviation age was 48.1 + 10.8 years) with known or suspected obstructive sleep

apnea syndrome. All subjects were treatment naive or had discontinued CPAP at least 7 days
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prior to polysomnography. None had a history of surgical treatment for obstructive sleep
apnea syndrome, bariatric surgery, or medically-managed weight loss intervention. Subjects
arrived at the Sleep Center at 8 PM and were connected to a standard clinical recording
montage. Subjects went to bed at 11 PM and were awoken at 7 AM. Recording was
performed continuously throughout the night. Polysomnograms were scored by trained
individuals using standard criteria. Apnea severity ranged from mild to severe, with an
average + standard deviation apnea-hypopnea index (abnormal respiratory events per hour) of
36.8 +£30.5.

Figures 6A and 6B show example signals 600a and 600b, respectively extracted from
a polysomnogram. Signals 600a detect an apnea episode during an interval outlined using a
grey bar in Figure 6A. Signals 600b detect a hypopnea episode during an interval outlined
using a grey bar in Figure 6B.

Signals 600a include -electroencephalography signals (EEG) 610a, heart rate
variability (HRV) signals 620a, nasal pressure signals 630a, oronasal temperature signals
640a, submental electromyography (EMQ) signals 650a, and right electrooculography (EOG)
signals 660a. Similarly, signals 600b include EEG signals 610b, HRV signals 620b, nasal
pressure signals 630b, oronasal temperature signals 640b, EMG signals 650b, and right EOG
signals 660b. In particular, right EOG signals 660a and 660b arec measurements of a right

eye of a patient.

Preprocessing of Sleep Study Data

Signals such as example signals 600a and 600b are presented to physiological event
preprocessor 400 and then preprocessed. For testing prediction, segmenter 410 extracted data
segments of 30, 60, 90, and 120 seconds in duration that contained a scored isolated apnea or
hypopnea or the first event in a series. Segments of equal duration preceding each event were
also extracted. Finally, segments of each duration containing normal breathing, defined as the
absence of scored respiratory events regardless of the presence of snoring, were extracted.
Segments containing snoring were chosen as snoring is a common natural context within
which apnea/hypopnea prediction and detection must be performed. For testing detection, all
30-second segments containing a scored apnea or hypopnea were extracted. Segmenter 410
also normalized each signal from each segment by dividing data within a segment by the
mean value of the segment.

Wavelet transformer 420 applied a discrete wavelet transform, such as the Daubechies

4 wavelet transform, to cach segment generated by segmenter 410. The resulting transformed
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segments included a set of new signals, called levels, each of which quantified the frequency
content of the original signal for a different frequency band as a function of time. For each
level, wavelet transformer calculated the amplitude and timing for each of the three minima
and three maxima, the ratio between the mean of the three maximum amplitudes and the
mean of three minimum amplitudes, the root-mean-square value, and the root-mean-square
value relative to that of the original signal.

Binary encoder 430 generated binary codes related to the transformed segments
suitable for use with LAMSTAR neural network 440 as described above with respect to
Figure 4.

Training and Testing

For each segment duration, separate LAMSTAR neural networks 440 were trained to
predict sleep-related physiological events for varying lead times (30, 60, 90, and 120 seconds
into the future) and to detect sleep-related physiological events. To train networks, random
sets containing equal numbers (117 to 583) of apnea/hypopnea segments and normal
segments were constructed. Based on network responses to training inputs, incremental
adjustments were made to the link-weights of each LAMSTAR neural network allowing
convergence to optimal network performance.

Once a network was trained, 50 random test sets of different data segments were
constructed, and average + SD sensitivities, specificities, positive predictive values, and
negative predictive values for event prediction and event detection were determined.

Statistical tests were performed using unequal variance T-tests.

Apnea and Hypopnea Prediction: Varying Segment Duration

Figures 7A and 7B show results of sleep apnea syndrome prediction during Non-
Rapid Eye Movement (NREM) and Rapid Eye Movement (REM), respectively. For apnea
prediction using 30-second segments and a 30-second lead time during NREM sleep, the
sensitivity was 80.6£5.6%, the specificity was 72.78+6.6%, the positive predictive value
(PPV) was 75.1+3.6%, and the negative predictive value (NPV) was 79.4+3.6%. REM apnea
prediction demonstrated a sensitivity of 69.3£10.5%, a specificity of 67.4+10.9%, a PPV of
67.4+5.6%, and a NPV of 68.8+5.8%.

The most significant nodes of LAMSTAR neural network 440 were analyzed. Based
on the most significant node analysis, the most important signal for predicting apnea using

30-second segments and distinguishing an impending apnea from normal breathing is a
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submental electromyogram signal. Specifically, the most important feature of the submental
electromyogram signal is a root-mean-square value of a first wavelet level. For predicting
apnea using 60-second segments, nasal pressure was also an important signal. See Tables 1,
2, and 3 below for additional details regarding most significant nodes used for apnea
predictions.

Figures 8A and 8B show results of hypopnea prediction during NREM sleep and
during REM sleep, respectively. During NREM sleep, hypopnea prediction using 30-second
segments and a 30-second lead time had a sensitivity of 74.4+5.9%, a specificity of
68.8+£7.0%, a PPV of 70.8+3.1%, and a NPV of 73.2+3.1%. REM hypopnea prediction had a
sensitivity of 63.4+£9.2%, a specificity of 65.1+9.3%, a PPV of 65.0+4.0%, and a NPV of
64.5+4.0%.

Based on a most significant node analysis of LAMSTAR neural networks, the most
important signals for predicting hypopnea in 30-second segments and distinguishing
hypopnea from normal breathing were determined to be heart rate variability and submental
electromyogram signals. The most important heart rate variability signal feature was a
relative root-mean-square value of a first wavelet level. The most important submental
electromyogram signal feature was a root-mean-square value of a first wavelet level. For
predicting hypopnea in 60-second segments, the most important signal was nasal pressure.
See Tables 4, 5, and 6 below for additional details regarding most significant nodes used for
hypopnea predictions.

Figures 9A and 9B show results of sleep apnea syndrome prediction for varying
prediction lead times during NREM sleep and REM sleep, respectively. As would be
expected, as the lead time increased, performance decreased. Apnea prediction was best for
events occurring in the next 30 seconds.

Figures 10A and 10B show results of hypopnea prediction for varying prediction lead
times during NREM sleep and REM sleep, respectively. For hypopnea prediction, prediction
using 30-second and 60-second lead times performed equally well.

Each most significant node reported in the tables is denoted by its associated signal
name, signal feature name, wavelet level, and winning SOM node. The signals are
electroencephalography (EEG), heart rate variability (HRV), nasal pressure, oronasal
temperature, submental electromyography (EMG), and right electrooculography (EOG). The
signal features are the indices of the maximum and minimum peaks in a signal, the

amplitudes of maximum and minimum peaks in the signal, the root-mean-square (RMS)
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value of a signal, and a “relative RMS” value, which is the RMS value of a signal at a

wavelet level relative to the RMS value of the signal.

The most frequent first, second, and third most significant nodes for apnea and

hypopnea prediction and detection are indicated in Tables 1-6 below. Tables 1 and 2 show

results for LAMSTAR neural networks 440 trained to distinguish normal breathing from

obstructive sleep apnea syndrome and to make apnea predictions using 30-second and 60-

second long segments, respectively. Table 1 also shows results for apnea predictions 30

seconds in the future (“30-Second Lead Times™). Table 3 shows results for apnea predictions

and 60 seconds into the future (“60-Second Lead Times”).

Apnea Prediction Using 30-Second Segments and for 30-Second Lead Times

Output Most Significant Signal Feature for Most Significant | Frequency
Node Node
Normal First EMG RMS, Level 1, Node 1 74%
Breathing
Second EMG, maximum peak amplitudes, 22%
Level 1, Node 2
Third EMG, maximum peak amplitudes, 12%
Level 1, Node 2
Apnea First EMG RMS, Level 1, Node 6 78%
Prediction
Second EMG RMS, Level 2, Node 6 22%
Third EMG RMS, Level 2, Node 6 20%
Table 1
Apnea Prediction Using 60-Second Segments
Output Most Signal Feature for Most Significant Node | Frequency
Significant
Node
Normal First Nasal pressure, indices of maximum peak 78%
Breathing amplitudes, Level 6, Node 5
Second Nasal pressure, indices of maximum peak 38%
amplitudes, Level 6, Node 5
Third Oronasal temperature, indices of maximum 20%
peak amplitudes, Level 6, Node 3
Apnea First EMG RMS, Level 1, Node 6 60%
Prediction
Second Nasal pressure, minimum peak amplitudes, 18%
Level 5, Node 3
Third EMG RMS, Level 1, Node 6 14%
Table 2
Apnea Prediction for 60-Second Lead Times
Output | Most Significant | Signal Feature for Most Significant | Frequency

-24 -




WO 2010/080405 PCT/US2009/068110
Node Node
Normal First EMG RMS, Level 1, Node 1 26%
Breathing
Second EMG RMS, Level 1, Node 1 18%
Third EMG RMS, Level 2, Node 2 16%
Apnea First EMG RMS, Level 1, Node 6 56%
Prediction
Second EMG RMS, Level 2, Node 6 34%
Third EMG RMS, Level 2, Node 6 12%

Table 3

Tables 4 and 5 show results for LAMSTAR necural networks 440 trained to

distinguish normal breathing from hypopnea to make hypopnea predictions using 30-second

and 60-second long segments, respectively. Table 4 also shows results for 30-second lead

time apnea predictions. Table 6 shows results for 60-second lead time apnea predictions.

Hypopnea Prediction for 30-Second Segments and for 30-Second Lead Times

Output Most Significant | Signal Feature for Most Significant Frequency
Node Node
Normal First EMG RMS, Wavelet Level 1, Subword | 92%
Breathing 1, Node 1
Second EMG maximum peak amplitudes, Level | 30%
2, Subword 2, Node 2
Third EEG RMS, Level 1, Subword 1, Node 1 | 32%
Hypopnea First HRYV Relative RMS, Level 1, Subword | 58%
Prediction 1, Node 1
Second HRYV Relative RMS, Level 1, Subword | 28%
1, Node 1
Third EMG Relative RMS, Level 7, Subword | 16%
1, Node 6
Table 4
Hypopnea Prediction Using 60-Second Segments
Output Most Significant | Signal Feature for Most Significant Frequency
Node Node
Normal First Nasal pressure, indices of maximum peak | 94%
Breathing amplitudes, Level 6, Node 5
Second Nasal pressure, indices of maximum peak | 42%
amplitudes, Level 6, Node 5
Third EMG RMS, Level 1, Node 1 34%
Hypopnea First Nasal pressure, indices of minimum peak | 24%
Prediction amplitudes, Level 5, Node 3
Second EMG RMS, Level 1, Node 6 18%
Third Nasal pressure, indices of minimum peak | 14%

amplitudes, Level 5, Node 3

Table 5
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Hypopnea Prediction for 60-Second Lead Times

Output Most Significant Signal Feature for Most Significant | Frequency
Node Node

Normal First EMG RMS, Level 1, Node 1 78%

Breathing
Second EEG RMS, Level 1, Node 1 18%
Third EMG, maximum peak amplitudes, 16%

Level 1, Node 4

Hypopnea First EMG RMS, Level 2, Node 6 32%

Prediction
Second EMG RMS, Level 1, Node 6 22%
Third EEG RMS, Level 1, Node 6 16%

Table 6

Tables 7-10 show total numbers of segments of physiological data used to train and

test LAMSTAR neural network 440 for varying segment durations and lead times. Table 7

shows counts for the number of segments used to train and test LAMSTAR neural network

440 for sleep apnea syndrome prediction ranging over different segment durations.

Segment NREM Apnea | NREM Normal | REM Apnea | REM  Normal
Duration Segment Count | Segment Count | Segment Count | Segment Count
30 454 20811 103 2643
60 322 10413 45 1340
90 250 6937 29 889
120 208 5222 26 667

Table 7

The “NREM Apnea Segment Count” column of data in Table 7 indicates a number of
segments used to train and test LAMSTAR neural network 440 based on physiological data
recorded during non-rapid eye movement (NREM) sleep associated with sleep apnea
syndrome. Similarly, the “NREM Normal Segment Count” column of data in Table 7
indicates a number of segments used to train and test LAMSTAR neural network 440 based
on physiological data recorded during NREM sleep associated with normal breathing.
Further, the “REM Apnea Segment Count” and “REM Normal Segment Count” columns of
data in Table 7 indicate a number of segments used to train and test LAMSTAR neural
network 440 based on physiological data recorded during rapid eye movement (REM) sleep
associated with sleep apnea syndrome and normal breathing, respectively.

For example, Table 7 indicates that 454 30-second NREM apnea segments and 20811
30-second NREM normal segments trained LAMSTAR neural network 440 to predict
obstructive sleep apnea syndrome during NREM sleep. Also, Table 7 indicates that 103 30-
second REM apnea segments and 2643 30-second REM normal segments trained LAMSTAR

neural network 440 to predict obstructive sleep apnea syndrome during REM sleep. Table 7
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also shows counts for 60-second, 90-second, and 120-second long segments used to train
LAMSTAR neural network 440.

Table 8 shows counts for the number of segments used to train and test LAMSTAR
neural network 440 for sleep apnea syndrome prediction ranging over different lead times.

Lead Time | NREM Apnea | NREM Normal | REM Apnea | REM  Normal

Segment Count | Segment Count | Segment Count | Segment Count

30 454 20811 103 2643
60 322 20811 45 2643
90 250 20811 29 2643
120 208 20811 26 2643
Table 8
5 For example, Table 8 indicates that 322 NREM apnea segments and 20811 NREM

normal segments trained LAMSTAR neural network 440 to make predictions of obstructive
sleep apnea syndrome during NREM sleep 60 seconds in advance.
Table 9 shows counts for the number of segments used to train and test LAMSTAR

neural networks 440 for hypopnea prediction for different segment durations.

Segment NREM NREM Normal | REM Apnea | REM  Normal
Duration Hypopnea Segment Count | Segment Count | Segment Count
Segment Count
30 921 20811 246 2643
60 650 10413 154 1340
90 512 6937 111 889
120 426 5224 82 664
Table 9
10 The “NREM Hypopnea Segment Count” column of data in Table 9 indicates a

number of segments used to train and test LAMSTAR neural network 440 based on
physiological data recorded during NREM sleep associated with hypopnea. Similarly, the
“NREM Normal Segment Count” column of data in Table 9 indicates a number of segments
used to train and test LAMSTAR neural network 440 based on physiological data recorded

15  during NREM sleep associated with normal breathing. Further, the “REM Hypopnea
Segment Count” and “REM Normal Segment Count” columns of data in Table 9 indicate a
number of segments used to train and test LAMSTAR neural network 440 based on
physiological data recorded during REM sleep associated with hypopnea and normal
breathing, respectively.

20 For example, Table 9 indicates that 512 90-second NREM hypopnea segments and
6937 90-second NREM normal segments trained LAMSTAR neural network 440 to predict
hypopnea during NREM sleep. Also, Table 9 indicates that 111 90-second REM apnea
segments and 889 90-second REM normal segments trained LAMSTAR neural network 440
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to predict hypopnea during REM sleep. Table 9 also shows counts for 30-second, 60-second,

and 120-second long segments used to train LAMSTAR neural network 440.

Table 10 shows counts for the number of segments used to train LAMSTAR neural

networks 440 for hypopnea prediction for different lead times.

Lead Time | NREM Apnea | NREM Normal | REM Apnea | REM  Normal
Segment Count | Segment Count | Segment Count | Segment Count
30 921 20811 246 2643
60 650 20811 154 2643
90 512 20811 111 2643
120 426 20811 82 2643
Table 10

For example, Table 10 indicates that 426 NREM apnea segments and 20811 NREM
normal segments trained LAMSTAR neural network 440 to make predictions of obstructive
sleep apnea syndrome during NREM sleep 120 seconds in advance.

Figures 11A and 11B sums of link-weights leading from every winning SOM node of
LAMSTAR neural network 440 to an output node of LAMSTAR neural network 440 as a
function of lead time. Figure 11A is a graph of sums of link-weights of LAMSTAR neural
network 440 as a function of prediction lead time for true positive decisions; that is, decisions
where LAMSTAR neural network 440 correctly predicted apnea or hypopnea. Similarly,
Figure 11B is a graph of sums of link-weights of LAMSTAR necural network 440 as a
function of prediction lead time for false negative decisions; that is, decisions where
LAMSTAR neural network 440 indicated breathing was normal, even though the patient had
an episode of apnea or hypopnea. Both Figures 11A and 11B use open boxes to depict sums
of link weights related to apnea and use filled diamonds to depict sums of link weights related
to hypopnea.

As discussed above for Figures 4, 5A, and 5B, particular embodiments of LAMSTAR
neural network 440 adjust link-weights in the link-weight matrix L between nodes in SOM
layer(s) and the output layer by incrementing link weights during training for desired outputs
and decrementing link weights during training for incorrect outputs. In these particular
embodiments, sums of link weights of LAMSTAR neural network 440 during operation
estimate an “event proximity” or duration of time in the future before an event will occur.

Figure 11A indicates that sums for true positive decisions increase as lead time
decreases. Similarly, Figure 11B indicates that sums of link weights for false negative
decisions increase as lead time decreases.

Since sums of link-weights increase the closer to an impending event, even for false

negative events, the sum of link-weights provides an estimate of event proximity.
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Furthermore, T-tests of the sums of link-weights for true positive results shown in Figure
11A indicates the results within Figure 11A are nearly all statistically distinguishable over all
lead times. That is, the lead times can be statistically differentiated from each other based on
sums of link-weights. Similarly, T-tests indicate the sums of link-weights for false negative
results as shown in Figure 11B are nearly all statistically distinguishable over all lead times.

A duration of event proximity can be estimated by determining a sum of link-weights
and comparing the sum of link-weights to one or more thresholds. For example, for true
positive results, Figure 11A shows sum of link weights for 30-second lead time apnea
prediction 1112 is approximately 47, sum of link weights for apnea prediction for a 60-
second lead time 1120 is approximately 40, sum of link weights for apnea prediction for a 90-
second lead time 1130 is approximately 34, and sum of link weights for apnea prediction for
a 30-second lead time 1140 is approximately 32. Similarly, Figure 11B shows, for false
negative results, sum of link weights for 30-second lead time apnea prediction 1160 is
approximately 45, sum of link weights for apnea prediction for a 60-second lead time 1120 is
approximately 38, sum of link weights for apnea prediction for a 90-second lead time 1130 is
approximately 32, and sum of link weights for apnea prediction for a 30-second lead time
1140 is approximately 30.

Continuing this example, a sum of link weights greater than or equal to 41 indicates
an apnea-cvent proximity of 30 seconds. Similarly, a sum of link weights greater than or
equal to 33 indicates an apnea-event proximity within 60 seconds. In this example, a 30-
second apnea-event-proximity threshold with a value of 41 is used, and a 60-second apnea-
event-proximity threshold with a value of 35 is used.

In an example technique to determine an event proximity, a sum of link weights § is
determined. In this example, an apnea-event proximity of 30 seconds is determined when §
exceeds the 30-second apnea-event-proximity threshold. If § does not exceed the 30-second
apnea-event-proximity threshold but does exceed the 60-second apnea-event-proximity
threshold, an apnea-event proximity of 60 seconds is determined. If S is less than the 60-
second apnea-event-proximity threshold, the event proximity would be undetermined at that
time.

In other scenarios and examples, more or fewer event-proximity thresholds with
different numerical data can be used. In still other scenarios and examples, event proximities
for different events than the example of apnea events can be determined using the technique
mentioned above of determining sums of link weights and comparing those sums to

thresholds.
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In some embodiments, event proximities equal or exceed segment sizes. For
example, if 30-second long segments were used by LAMSTAR neural network 440 to
generate a prediction of sleep apnea syndrome with an apnea-event proximity of 90 seconds,

the apnea-event proximity would exceed the 30-second segment duration.

Apnea and Hypopnea Detection

Figure 12A shows results of detection of sleep apnea syndrome events during both
NREM sleep and REM sleep. Sleep apnea detection was tested during 30-second segments
only, based on experience with sleep apnea prediction. For REM apnea detection, the
sensitivity was 82.7+1.9%, the specificity was 86.1=1.3%, the PPV was 85.6+£1.0%, and the
NPV was 83.3+1.4%. For NREM apnea detection, the sensitivity was 88.6+£1.2%, the
specificity was 85.3+1.2%, the PPV was 85.8£0.9%, and the NPV was 88.3+1.0%.

Figure 12B shows results of detection of hypopnea events during both NREM sleep
and REM sleep. As with sleep apnea events, hypopnea detection was tested during 30-second
segments only, based on hypopnea prediction experiences. NREM hypopnea detection had a
sensitivity of 82.8+£3.5%, a specificity of 77.2+5.2%, a PPV of 78.6£3.3%, and a NPV of
81.9+2.4%. REM hypopnea detection had a sensitivity of 69.846.7%, a specificity of
74.5+5.0%, a PPV of 73.5£2.9%, and a NPV of 71.5£3.8%.

The most significant signals for apnea and hypopnea detection differed from apnea
and hypopnea prediction. For apnea detection, the most important signal was oronasal

temperature. For hypopnea detection, the most important signal was nasal pressure.

An Exemplary Method for Generating Physiological Event Results

Figure 13 is a flowchart depicting exemplary functional blocks of an exemplary
method 1300 for generating physiological event results.

Initially, as shown at block 1310, physiological data are received at a physiological
event processor from one or more input data sources. In some embodiments, the
physiological event processor is a computing device, such as described above with respect to
Figure 3, and includes the functionality of a physiological event processor as described with
respect to Figures 1, 2A, and 2B and/or the functionality of the data preprocessor and
LAMSTAR neural network described above with respect to Figures 4, SA, and 5B. In some
scenarios, the physiological data are related to a patient. The physiological data are gathered

from one or more input data sources.
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As shown at block 1320, the physiological data are segmented at the physiological
event processor into a plurality of segments. In some embodiments, each segment represents
a predetermined duration of physiological data. The physiological data in each given
segment of the plurality of segments are gathered from an input data source of the one or
more input data sources. In some embodiments, the given segment includes an identification
of an input data source for the given segment. Example segmentations of data are discussed
above with respect to Figures 2A and 4.

As shown at block 1330, a plurality of segments are transformed into a plurality of
transformed segments by using a transformation at the physiological event processor. In
some embodiments, the plurality of segments are transformed using at least one
transformation on the plurality of segments. Examples of generating segments and
transformations are discussed above with respect to Figures 2A, 4, and 6A-6B.

As shown at block 1340, a physiological event result is generated at the physiological
event processor based on the plurality of transformed segments. In some embodiments, the
physiological event result includes information related to a physiological event. In particular
embodiments, the physiological event result comprises a significance value of a significant
input data source of the one or more input data sources. Significance values are discussed
above in more detail with respect to Figure 1. In other embodiments, physiological event
result comprises an event proximity. Event proximities are discussed above in more detail
with respect to Figures 11A and 11B.

Example physiological event results, such as predictions of physiological events and
detection of physiological events, are discussed above with respect to Figures 1, 2B, 4, 5A,
and 5B. A specific example of generating physiological event results for sleep-related
physiological events is discussed above with respect to Figures 6A through 12B, inclusive.

As shown at block 1350, the physiological event result is output from the
physiological event processor to an output device. Example outputs are discussed above with
respect to Figures 1, 2B, 4, 5A, and 5B.

Thus, physiological event results are generated and subsequently output. The output
physiological event results are suitable for use in patient diagnosis, treatment (including but
not limited to the control of medical devices), therapy, and/or monitoring.

It should be understood that the programs, processes, methods and systems described
herein are not related or limited to any particular type of computer or network system

(hardware or software), unless indicated otherwise. Various types of general purpose or
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specialized computer systems can be used with or perform operations in accordance with the
teachings described herein.

It should be further understood that this and other arrangements described herein are
for purposes of example only. As such, those skilled in the art will appreciate that other
arrangements and other elements (e.g., machines, interfaces, functions, orders, and groupings
of functions, etc.) can be used instead, and some elements can be omitted altogether
according to the desired results. Further, many of the elements that are described are
functional entities that can be implemented as discrete or distributed components or in
conjunction with other components, in any suitable combination and location.

In view of the wide variety of embodiments to which the principles of the present
application can be applied, it should be understood that the illustrated embodiments are
examples only, and should not be taken as limiting the scope of the present application. For
example, the steps of the flow diagrams can be taken in sequences other than those described,
and more or fewer elements can be used in the block diagrams. While various elements of
embodiments have been described as being implemented in software, in other embodiments
hardware or firmware implementations can alternatively be used, and vice-versa.

The claims should not be read as limited to the described order or elements unless
stated to that effect. Therefore, all embodiments that come within the scope and spirit of the

following claims and equivalents thereto are claimed.
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CLAIMS

What is claimed is:

1. A method, comprising:

receiving, at a physiological event processor, physiological data related to a patient,
the physiological data received from one or more input data sources;

segmenting, at the physiological event processor, the physiological data into a
plurality of segments, wherein one or more segments of the plurality of segments represent a
predetermined duration of physiological data gathered from an input data source of the one or
more input data sources;

transforming, at the physiological event processor, the plurality of segments into a
plurality of transformed segments by using at least one transformation on the plurality of
segments;

generating, at the physiological event processor, a physiological event result based on
the plurality of transformed segments, wherein the physiological event result comprises
information related to a physiological event, and wherein the physiological event result
further comprises a significance value of a significant input data source of the one or more
input data sources; and

outputting the physiological event result from the physiological event processor to an

output device.

2. The method of claim 1, wherein generating the physiological event result
based on the plurality of transformed segments comprises generating the physiological event
result based on the plurality of transformed segments using a system selected from the group

consisting of a neural network, a digital signal processor, and/or an expert system.

3. The method of claim 1, wherein the physiological event processor comprises a

neural network.

4. The method of claim 3, wherein the physiological event processor comprises a

LArge Memory STorage And Retrieval (LAMSTAR) neural network.
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5. The method of claim 1, wherein transforming the plurality of segments into
the plurality of transformed segments comprises generating a statistic of a segment of the

plurality of transformed segments.

6. The method of claim 1, wherein the at least one transformation comprises a

wavelet transformation.

7. The method of claim 1, wherein generating, at the physiological event
processor, the physiological event result comprises predicting or detecting, at the

physiological event processor, an occurrence of the physiological event.

8. The method of claim 7, wherein the physiological event processor comprises a
neural network, and wherein predicting or detecting, at the physiological event processor, the
occurrence of the physiological event comprises predicting the occurrence of the

physiological event using the neural network.

9. The method of claim &, wherein the neural network comprises a LAMSTAR
neural network, and wherein predicting the occurrence of the physiological event using the
neural network comprises generating a prediction of the occurrence of the physiological event

using the LAMSTAR neural network.

10.  The method of claim 9, wherein generating the prediction of the occurrence of
the physiological event using the LAMSTAR neural network comprises determining the

significance of the significant input data source via the LAMSTAR neural network.

11.  The method of claim 9, wherein the prediction of the occurrence of the

physiological event is an output decision of the LAMSTAR neural network.

12.  The method of claim 1, wherein the physiological event processor comprises a
data preprocessor, the data preprocessor comprising a digital signal processor, and wherein
generating the plurality of transformed segments by using at least one transformation on the
plurality of segments comprises generating the plurality of transformed segments using the

data preprocessor.
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13.  The method of claim 12, wherein the data preprocessor comprises a wavelet
transformer.
14.  The method of claim 12, wherein transforming the plurality of segments into

the plurality of transformed segments comprises generating parameters of individual

frequency bands of a wavelet transform using the wavelet transformer.

15.  The method of claim 1, wherein generating the physiological event result

comprises detecting an occurrence of the physiological event.

16.  The method of claim 1, wherein outputting the physiological event result

comprises displaying the physiological event result.

17. The method of claim 1, wherein outputting the physiological event result
comprises sending a command to an output device, the command based on the physiological

event result.

18.  An apparatus, comprising:
a processing unit;
a source data interface, configured to communicate with one or more input data
sources;
an output interface;
data storage; and
machine-language instructions, stored in the data storage, that upon execution by the
processing unit cause the processing unit to perform functions comprising:
receiving physiological data related to a patient via the source data interface,
segmenting the data into a plurality of segments, wherein one or more
segments of the plurality of segments represent a predetermined duration of
physiological data gathered from an input data source of the one or more input data
sources,
transforming the plurality of segments into a plurality of transformed segments

by using at least one transformation on the plurality of segments,
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generating a physiological event result based on the plurality of transformed
segments, wherein the physiological event result comprises a significance value of a
significant input data source of the one or more input data sources, and

outputting the physiological event result via the output interface.
19.  The apparatus of claim 18, wherein the physiological event result comprises
an event proximity comprising an event-proximity duration, wherein the event-proximity

duration is greater than or equal to the predetermined duration.

20.  The apparatus of claim 19, wherein the event-proximity duration is a multiple

of 30 seconds.

21.  The apparatus of claim 19, wherein the physiological data are associated with

a physiological condition related to sleep of the patient.

22.  The apparatus of claim 21, wherein the physiological condition is a sleep

apnea syndrome.

23.  The apparatus of claim 22, wherein the physiological event result comprises a

prediction of a sleep-apnea-syndrome event.

24.  The apparatus of claim 22, wherein the physiological event result comprises a

detection of a sleep-apnea-syndrome event.

25.  The apparatus of claim 22, wherein the physiological event result comprises a

prediction of a hypopnea event.

26.  The apparatus of claim 22, wherein the physiological event result comprises a

detection of a hypopnea event.

27.  The apparatus of claim 18, wherein the at least one transformation is a wavelet

transformation.
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28.  The apparatus of claim 18, further comprising a network-communication
device, wherein receiving physiological data related to a patient further comprises receiving

the physiological data via the network-communication device.

29. A tangible computer-readable medium having instructions stored thereon that,
upon execution by a computing device, cause the computing device to perform functions
comprising:

receiving, at the computing device, physiological data related to a patient, the
physiological data received from one or more input data sources;

segmenting, at the computing device, the data into a plurality of segments, wherein a
segment of the plurality of segments represents a predetermined duration of physiological
data gathered from an input data source of the one or more input data sources;

transforming, at the computing device, the plurality of segments into a plurality of
transformed segments by using at least one transformation on the plurality of segments;

generating, at the computing device, a physiological event result based on the
plurality of transformed segments, wherein the physiological event result comprises
information related to a physiological event, and wherein the physiological event result
further comprises a significance value of a significant input data source of the one or more
input data sources; and

outputting the physiological event result from the computing device.
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