PCI‘ WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 92/07331
GOG6F 15/40 Al (43) International Publication Date: 30 April 1992 (30.04.92)

(21) International Application Number: PCT/US91/07671 | (81) Designated States: AT, AT (European patent), AU, BB, BE
(European patent), BF (OAPI patent), BG, BJ (OAPI

(22) International Filing Date: 15 October 1991 (15.10.91) patent), BR, CA, CF (OAPI patent), CG (OAPI patent),

CH, CH (European patent), CI (OAPI patent), CM
(OAPI patent), DE, DE (European patent), DK, DK
(30) Priority data: (European patent), ES, ES (European patent), FI, FR

598,078 16 October 1990 (16.10.90) Us (European patent), GA (OAPI patent), GB, GB (Euro-
pean patent), GN (OAPI patent), GR (European pa-
tent), HU, IT (European patent), JP, KP, KR, LK, LU,

(71) Applicant: CONSILIUM, INC. [US/US}; 640 Clyde Ct., LU (European patent), MC, MG, ML (OAPI patent),
Mt. View, CA 94303 (US). MR (OAPI patent), MW, NL, NL (European patent),
NO, PL, RO, SD, SE, SE (European patent), SN (OAPI

(72) Inventors: TANTRY, Subhash, Belman ; 1115 Oregon Ave- patent), SU*,TD (OAPI patent), TG (OAPI patent).

nue, Palo Alto, CA 94303 (US). MASHRUWALA, Ra-
jesh, Unmesh ; 450 Melville Avenue, Palo Alto, CA
94301 (US). LOZIER, Barry, Alexander ; 1225 Vienna | Published

Drive, #95, Sunnyvale, CA 94089 (US). HESS, Richard, With international search report.

Leroy ; 3073 Middlefield Road, #203, Palo Alto, CA Before the expiration of the time limit for amending the

94303 (US). claims and to be republished in the event of the receipt of
amendments.

(74) Agents: BEREZNAK, Bradley, J. et al.; Blakely, Sokoloff,
Taylor & Zafman, 12400 Wilshire Boulevard, 7th Floor,
Los Angeles, CA 90025 (US).

(54) Title: OBJECT-ORIENTED ARCHITECTURE FOR FACTORY FLOOR MANAGEMENT

49 56

(57) Abstract USER - USER -

An object-oriented architecture for a factory floor ma- 57
nagement software system is described in which factory floor 30~
entities are modelled as factory objects within a relational of] Wnow ||||m||||”””|”"" Dot
database (66). The architecture includes X-terminal (50) or 5 s
bar code devices (57) for facilitating user interaction with the
system via one or more of the factory floor entities; applica- PARCODE
tion engines (52, 60) for processing user interaction of events SERVER
and generating application service requests; and application
servers (54, 55, 64) for processing the application service and 52 APPLICATION
generating database service requests in response. These data- ENGINES BRnconE
base service requests are utilized to retrieve, manipulate and e ROUTER
update data stored within the relational database. Communi-
cation managers (53, 61-63) are employed for coordinating 53
interprocess communication between the application engines,
the application ser- »rs and the database servers (65). Each of COMMUNICATION
these major compunents are distributed among computer re- o3 MANAGER

sources that are networked across the factory floor.

2

DISPATCH

SCRIPT
SERVER

SQc
SERVER SERVER

DATABASE
SERVERS

e

*+ See back of page

+ DESIGNATIONS OF “SuU”

Any designation of “SU” has effect in the Russian Federation. It is not yet known whether any such
designation has effect in other States of the former Soviet Union.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT.

AT Austria ES Spain MG Madagascar

AU Australia Fi Finland ML Mali

BB Barbados FR France MN Mongolia

BE Belgium GA Gabon MR Mauritania .
BF Burkina Faso GB United Kingdom MW Malawi ’
BG Bulgaria GN Guinea NL Netherlands

BJ Benin GR Greeee NO Norway

BR Brazil HU Hungary PL Poland

CA Canada IT ~laly RO Romania

CF Central African Republic Je Japan SD Sudan

CC Congo KP Democratic People’s Republic SE Sweden

CH Switzerland of Korca SN Sencgal

Cl Cate d'lvoire KR Republic of Korca SU* Soviet Union

™ Camcroon LI Liechtenstein TO Chad

cs Czechoslovakia LK Sri Lanka TG Togo

DE Germany LU Luxembourg us United States of America

DK Denmark MC Monaco

WO 92/07331 1 PCT/US91/07671

OBJECT-ORIENTED ARCHITECTURE FOR FACTORY FLOOR
MANAGEMENT

FIELD OF THE INVENTION

5 The present invention relates to the field of software system
architecture; in particular, to object-oriented architectures constructed for the

development of complex software systems.

BACKGROUND OF THE INVENTION

10 As the software industry matures and the available computational
power increases, software developers are being challenged with problems
of inescapable complexity. This means that the problems which researchers
are attempting to confront in software are of such complexity that it is
difficult -- if not impossible -- for an individual developer to comprehend

15 all of the subtleties of a particular design. In some cases, the complexity of
such systems exceeds the human intellectual capacity.

Consider the requirements of a software system which must manage
the development and manufacturing process of a multi-engine commercial
aircraft; or the fabrication of a very large scale integrated (VLSI)

20 microprocessor circuit, These problems are typical of those encountered in
the management of work in a factory shop floor. Asis appreciated by
practitioners in the art, the management of a factory floor environment is one
of the more imposing tasks facing computer scientists today. The enormity of
the requirements of a tactory floor software system has prompted

25 researchers to search for alternative architectures aimed at handling and
controlling the vast complexity of the tasks involved.

In the past, factory floor software systems have comprised traditionally
centralized systems. The basic assumption of these prior art approaches is
that all of the functional programs run on one centralized mainframe

30 computer system. According to these architectures, the factory floor machine
functions were embodied in executable subroutines. However, the main

problem inherent with such architectures is that they ignore a basic fact

WO 92/ 0733.1 PCT/US91/07671

10

15

20

2

about the factory floor environment; that is, that the factory floor is distributed
in nature. Distributed in the sense that machines, resources, labor, work
instructions, etc., are all physically located in different areas of the shop floor.
Moreover, the task of manutacturing a product requires complex
coordination of all of the objects listed above. Thus, the nature of the
problem flies in the face of conventional architectural solutions. Because of
the distributed nature of the factory floor environment, execution of software
functions inherently created conflicts in the control of the factory floor
environment in prior art systems.

As will be seen, the present invention provides an object-oriented
process architecture for factor floor management software which is capable
of tracking, monitoring and controliing all aspects of the factory
environment -- not simply the work in progress. Importantly, the
architecture of the present invention is compatible with the distributed nature
of the factory floor since it is itself distributed in make-up. As a result, the
present invention produces a substantial savings in terms of performance
and in the development of a factory floor software system. Furthermore,
because the present invention is implemented in an object-oriented manner,
the architecture provides the ability to model real world events and objects
directly in softwars. Other advantages and methods of the present invention

will become apparent upon a reading of the detailed discussion which

follows.

WO 92/07331 , PCT/US91/07671

SUMMARY OF THE INVENTION

An object-oriented architecture for a factory floor management
software system is described. According to the present invention, factory
floor entities are modelled as factory objects within a relational database.

5 This database includes a library which contains objects that model all factory
elements.

In one embodiment, the present invention comprises an interface
server means for facilitating user interaction with the software system via one
or more of the factory floor entities. These entities include operators,

10 supervisors, or other users. Most often, the interface server means
comprises an X-terminal device or a work station computer running on an
X-server. In other instances, the interface server means may also include a
bar code device coupled to another work station computer which runs a bar
code device server.

15 The present invention further comprises Application Engine means for
processing user interaction of events and generating application service
requests as a result. Application service means are also included for
processing the application service requests and generating a database
service request in response. These database service requests are utilized

20 to retrieve, manipulate and update data stored within the relational
database. A database service means provides indirect access to the
relational database in response to an application service request. Each of
these means bring together information gathered from the factory floor in the
form of user input.

25 Finally, a Communication Manager means is employed for
coordinating interprocess communication between the Application Engine
means, the Application Server means, and the Database Server means.

Importantly, the architecture of the present invention allows for each of
the major components de§cribed above to be distributed among computer

30 resources that are networked across the factory floor and even among

muttiple factory sites.

WO 92/0733i PCT/US91/07671
4

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from the detailed
description given below and from the accompanying drawings of the
preferred embodiments of the invention, which, however should not be taken

5 to limit the invention to these specific embodiment but are for explanation

and understanding only.

Figure 1 depicts a block diagram of a conventional approach to
software organization.
10

Figure 2 is a diagram of an example of a hierarchy of selected

objects commonly found in a factory fioor shop floar environment.

Figure 3 iliustrates the relationship between various factory objects
15 in accordance with the currently preferred embodiment of the present

invention.

Figure 4 illustrates a simple routing example for the manufacture of
a product as a sequence of work-related operations.
20
Figure 5 shows the hierarchy of factory floor objects in accordance

with the currently preferred embodiment of the present invention,

Figure 6 illustrates the distributed nature of the architecture of the

25 currently preferred embodiment of the present invention.

Figure 7 illustrates the architectural layers maintained by the

present invention.

30 Figure 8 is a diagram of the object-oriented process architecture of
the currently preferred embodiment.

WO 92/ 07331 5 PCT/US91/07671

Figure 9 illustrates the levels of functionality incorporated into the
currently preferred embodiment of the present invention.

Figure 10 shows how a group of application nodes are grouped
5 together to form a domain in accordance with the currently preferred
embodiment of the present invention.

WO 92/07331 PCT/US91/07671

10

15

20

25

30

6

DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

An object-oriented architecture finding application in a factory floor
management software system is described. In the following description,
numerous specific details are set forth, such as specific object-types, tasks,
routines, etc., in order to provide a thorough understanding of the preferred
embodiment of the present invention. It will be obvious, however, to one
skilled in the art that the present invention may be practiced without these
specific details. In other instances, well-known elements have not been
shown in detail in order to avoid unnecessarily obscuring the present
invention.

In the course of describing the present invention, frequent reference
will be made to use of the invented architecture in conjunction with a factory
floor management software system. It is appreciated that this
implementation merely reflects the currently preferred embodiment of the
present invention, and should not be taken as a limitation on the scope of
the invented architecture. It should also be understood that the concepts
embodied in the present invention are applicable, or may be extended, to
éncompass other implementations, software systems, applications, etc. That
is, the novel architecture described below is fundamental in nature, having

considerable application beyond the realm of the factory floor environment.

A Brief Overview Of Object-Orientation

A basicassumption underlying prior architectural approaches is that
all of the software code runs on a single mainframe computer. This means
that instructions are executed in a serial manner on one central processing
machine, usually a very large centralized computer. These systems typically
assume a functional approach to the way that programs are implemented.
That is, the functional aspects of the program are identified along with how
the program can access the central database to obtain the data it needs to
perform that particular function. The architectural diagram of Figure 1

illustrates this prior art approach,

WO 92/07331

10

15

20

25

30

PCT/US91/07671
7

Suppose the user wants to represent a machine as an entity
possessing certain attributes. For instance, the machine may have an
attribute called “NAME” which represents the machine’s identification. Other
desirable attributes might include “STATE", i.e., the state of the
machine -- whether the machine is currently idle, in repair, busy, etc. All of
the attributes of the machine represent data. This data is shown being
resident within block 10 of Figure 1.

Also associated with the machine is a set of functions, each denoted
in Figure 1 by blocks 11-13. For example, function Fy, represented by
block 11, might correspond to the function “START THE MACHINE", In
other words, the execution of function F 1 transfers the state of the machine
from idle to busy. Likewise, function F2 might be defined as the function
“STOP THE MACHINE™ and function Fn might correspond to the function
“BRING THE MACHINE DOWN FOR REPAIR".

Essentially, what each of the functions represented by blocks 11-13
does is that, given a particular machine identity (i.e., NAME), the function
operates on the state of the machine (ie., STATE). Thus, according to the
conventional software approaches, each of the functions F1-Fy is embodied
in a separate subroutine.

The main drawback of this approach, however, is that there exists a
potential for any number of these subroutines to be in conflict with one
another at any point in time. Moreover, running such a program on a central
computer ignores the fact that in reality many systems are distributed in
nature and therefore require an architecture capable of assimilating that
distributed characteristic.

Object-oriented software design is the construction of software
systems as structured collections of abstract data type implementations.
importantly, object-oriented software construction allows an entity to be
modeled as an object ha\(ing certain characteristics and certain behaviors,
In accordance with the present invention, machines utilized in a factory floor

environment are modeled by an associated set of characteristics and

WO 92/07331 PCT/US91/07671

10

15

20

25

30

8

functions which it may perform. In this sense, the machine’s characteristics
(corresponding to the data aspects of software) and behavior
(corresponding to the functional aspects of software) are totally
encapsulated about a single concept called “object”. One of the benefits of
object-orientation is that by encapsulating characteristics and behavior into
a concept called “object”, a high level of correspondence between the
software model and reality is preserved. Object-orientation is also ideally
suited to a distributed system architecture which relies upon a number 'of
separate computers (e.g., nodes) all of which are connected through a
common network; and all of which run programs concurrently (depending, of
course, upon the specific functions requested by the user).

A second important concept in object-orientation is the concept of
inheritance. This is demonstrated by the example of Figure 2. In Figure 2,
an object called “EQUIPMENT" is represented by ellipse 15. This object
possesses certain characteristics such as weight, dimension, etc.
Subclassed from the parent object “EQUIPMENT" are objects 16 and 17
labelled “STATIONARY" and “MOBILE", respectively. Basically, the
hierarchy of Figure 2 abstracts the common characteristics from the moving
and stationary classes into the higher, more generalized, class of object
class called “EQUIPMENT".

Note that the “MOBILE” subclass inherits the characteristics and
behavior of the superclass object, but each subclass object includes
additional characteristics which differentiate them from one another. In
essence, the hierarchy of Figure 2 represents a sort of taxonomy of
progressively higher levels of differentiation from top to bottom, and
progressively higher levels of abstraction from bottom to top. For example,
subclassed from the object “MOBILE" are such objects as tools, fixtures, efc.
Similarly a subclass of “STATIONARY" equipment includes machine,
sensor, or other similar ot?jects. Thus, it can be seen how the

object-oriented nature of the present invention helps to reuse some objects

"which were previously defined as a superset. From a software development

WO 92/07331 PCT/US91/07671
9

standpoint, this approach produces substantial savings in performance and
development time.

Observe that the object-oriented scheme represented by the example
of Figure 2 is vastly different from the functional approach typical of the prior

5 art. Ina purely functional approach, each entity is broken into its data in a
set of corresponding functions or subroutines, ignoring the common
characteristics which could be reused in an efficient manner. One of the
other key attributes of the object-oriented approach of the present invention,
as applied to factory floor management software systems, is the ability to

10 dynamically link certain behavior. This means that is, because common
characteristics are subsumed by increasing levels of abstraction in the
object level hierarchy, behaviors that can be commonly applied to various
objects within that grouping can be dynamically linked. For example, the
user could define a behavior called “PRINT" on a parent object. The parent

15 object itself could be subclassed into different types of printers, e.g., laser
printer, line printer, etc. When a command “PRINT” is issued to each device,
the software has the ability to realize that the print command is different for
each of the different printer objects, thereby invoking the appropriate
methods and routines specific to each. |

20 This example points out one of the primary advantages of objects; that
is, their reusability. Combinations of objects and messages to the objects,
allow more general functionality to be constructed. Thus, the object-oriented
nature of the present invention encapsulates functionality at the object
library and Application Engine and Server levels, as will be described in

25 more detail shortly.

For a fuller discussion of object-oriented software construction, see
“Object-Oriented Design With Applications” by Grady Booch, Chapters 1-7,
1891, which is herein incorporated by reference. Other references which
discuss the object-oriente_d paradigm include: “The C++ Programming

30 Language” by Bjarne Stroustrup, _1 986; and “Object-Oriented Software
Construction” by Bertrand Meyer, 1988.

WO 92/07331 PCT/US91/07671
10

The Factory Floor Environment

The present invention is currently embodied in factory floor
management software for discrete and batch manufacturing work. However,
before preceding with a more detailed discussion of this preferred

5 embodiment, it is helpful to briefly describe the organization of a typical
factory floor environment.

The vast majority of factories can be modeled using a small number of
basic concepts. The software that models these concepts must be capable
of tracking, monitoring and controlling all of the various activities of the

10 factory floor. The present invention, through its use of an object-oriented
software architecture, implements these concepts as factory objects. From a
standpoint of functionality, the System software is defined by the behavior of
these objects.

In the currently preferred embodiment, the reference model for the

15 factory floor consists of four different layers: the work place, which includes
work centers, work cells and work stations; inventory, which encompasses
both storage and work-in-progress inventory; physical resources, including
machines, labor and operators; and logical resources, which embodies work
instructions, test plans, and part programs. Each of these four layers are

20 linked with the assistance of bills-of-resources (BOR) and bills-of-material
(BOM), which specify the non-consumable resources and materials needed
to perform a given operation. The layers are also linked with the aid of
routing which specifies the sequence of operations a manufactured item
must go through during the production process.

25 The complete relationship of these four layers is shown in Figure 3.
Observe that work-in-progress (WIP) inventory consists of a manufactured
item that has routing and contains a number of operations. Each of the
operations uses one or more BOMs and/or BORs. The resources and
materials are combined a} work stations which are grouped into work cells.

30 Each of the work cells may be further abstracted to work centers, which
fmally' are grouped to comprise the factory itself.

WO 92/07331

10

15

20

25

30

PCT/US91/07671
11

The software system used in conjunction with the present invention
operates as the centerpiece of factory floor management. That is, software
programs manage the three operational centers -- the work center, work
cell and work stations. Altogether, the system interfaces all of the automated
pieces of equipment, cell controllers, and shop floor data collection devices
to provide seamless integration of all devices operating within the factory.

A work station is a stationary location where work is performed. An
assembly work bench, a milling station, and inspection station are examples
of work stations. Work generally implies the processing of material, such as
assembly, fabrication, test or packaging processes. Preferably, the concept
of work is broadened to denote any kind of work, including machine repair,
set-up and operator training. To perform work at a work station, resources
such as machines and labor are allocated to the work station. Once the
work is completed, the resources are deallocated and the work order is
moved to another work station.

A work cell is defined as a conveniently organized group of work
stations. The work cell is formed based on many factors, such as process
flow and shared storage. A synchronized or paced line, a test area, ora
small assembly line are each modeled as a work cell in conjunction with the
currently preferred embodiment of the present invention.

A work center is a conveniently organized group-of work cells. A work
center is generally formed based on the assumption that one particular item
is going to be manufactured in one work center. In a work order
environment, the work order is released and closed within one work center.
When an item requires more than one work center, the routing of the item
goes from one work center to another in a sequential manner.

Figure 4 illustrates an example of a routing path that may be
employed in the manufacture of a certain item. Each node (e.g., 28-34) in
Figure 4 represents a distinct processing point, also referred to as an
operation. Once an operation has been completed, a decision is made on

the disposition of the material. The disposition determines the next

WO 92/07331 PCT/US91/07671

10

15

20

25

12

operation to which the material will be transferred. If an operation has been
successful, the material will pass to the next operation in the routing
sequence. By way of example, the progression from operations A-B-C-D
represents a normal flow for an object manufactured according to Figure 4.

If the disposition was to fail, for instance, at node 31, then rework may
be required. This is represented in the routing diagram by the rework path
from node 31 back to nods 29 (i.e., from D to B). A choice of alternate
paths, such as manual versus automatic assembly, is illustrated in Figure 4
by two separate paths: one directly from node 31 to node 34, and the other
from node 31 to node 34 via nodes 32 and 33.

Reallize that the whole concept of shop floor control utilizing the
architecture of the present invention allows a user to keep track of the entire
manufacturing process. In other words, during the manufacture of say
10,000 widgets, a record is maintained of what machine worked on the
widgets, at what point, what was the state of the environment duﬁng that
work, what were the work instructions followed, etc. The entire history of
events is recorded so that one may retrieve information pertinent to any
operation performed anytime during the manufacturing process.

This information is important for several reasons. Consider the
situation wherein a part fails during normal usage. It may be critical to
understand how and why that part failed and a manufacturing history
becomes invaluable. in other cases, the manufacturing process itself is
unstable and software control of the shop floor environment permits analysis
of the manufacturing process for the purpose of improving consistency and
efficiency. An example of this latter situation often occurs in the fabrication of
semiconductor integrated circuits wherein yields must be improved through

vigorous analysis of a multitude of processing parameters.

' 91/07671
WO 92/07331 13 PCT/US

Architectural Overview

The object-oriented process architecture of the currently preferred
embodiment is based on the factory floor application-dependent
assumptions discussed above. These assumptions are categorized as

5 actions or requirements of the factory floor, work centers, work stations, work
cells, tasks, and users.

Referring now to Figure 5, a hierarchy of factory fioor objects is
shown. By way of example, shop floor block 39 embodies the factory floor
itself. Located within shop floor 39 there are any number of work

10 centers 40. Each work center consists of a specialized, well-defined and
focussed manufacturing function performed in synchronization with other
work centers to meet the manufacturing goals of the factory. Work centers all
have the trait that they must communicate with each other and be capable of
accessing each others’ database.

15 Each of the manufacturing functions within a work center are
hierarchically decomposed into tasks. The beginning of a task, the
completion of a task, and (if the task is decomposable) the start and
completion of the sub-tasks in between, are represented as events.

Every work center 40 consists of a plurality of work cells 41. Work

20 cells 41 are made up of a group of tasks that are performed in a
synchronized and controlled manner. The individual tasks may be
performed asynchronously, but are typically within the control of a work cell
controller in an automated environment, or a group leader/operator in the
case of a manual environment. Work cells, are further broken down into

25 work stations 42 wherein individual tasks are physically performed within
the control of a work cell controller.

Note that in Figure 5, the capital letter “N" indicates that there could
be one or more items at that particular level. For instance, a factory floor is
usually supported by ten or more work centers. (The dots to the sides of

30 each of the blocks 40 thro'ugh 42 represent these “N” itgms which could

exist at a parallel level in the hierarchy.)

WO 92/ 0733.1 PCT/US91/07671
14
The work station is the physical representation of an interactive

*environment that performs a manufacturing task. Typically, the interaction is
limited to factors of production: including materials, operator/supervisor,
tools, work station environment and manufacturing task definitions and work

5 instructions. Tasks are performed by, on, or using any of these factors. For
example, the task of building a product at a manufacturing opération may
require the use of specific piece parts, an operator with a particular skill
level, and machines with particular set-ups involving various tools. Some
manufacturing operations may be sensitive to the work station environment

10 where the operation is performed. Factors of productions get allocated to
work stations to perform a task as defined in the bill-of-resources for the task.

The task definition includes the factors of production required to
perform the task and its decomposition iﬁto subtasks. The tasks to be done
at a work center need to be planned, scheduled, controlled and tracked.

15 Planning can be weekly, daily, or by shifts. Scheduling may have to be
done from one job to the next in real-time. _

It is appreciated that the software system employed in conjunction
with the present invention monitors and controls each of the work stations
involved in the manufacturing process. In this way the architecture of the

20 present invention provides the end user with an integrated view of the
factory floor, which itself can be defined as or modeled as close to reality as
possible. The integration is not limited to the factors of production, but
crosses factory work center boundaries and allows for easy integration to
other software systems.

25 The architectural premise of the present invention is based on user
requirements. These requirements include ease of use, the ability for the
user to configure the system, object orientation, the ability to distribute
components and the ability to port the software to various hardware
platforms. In this way, the architecture of the present invention ensures that

30 the end user interfacs to {he software system is simple, elegant, and rich in

application-dependent functionality relevant to the factory floor.

WO 92/07331 PCT/US91/07671

10

15

20

25

30

15

Hardware/Software Architecture

According to the present invention, the complex environment of the
factory floor is partitioned into smaller pieces which are considered as
factory objects. One of the architectural goals of the present invention is to
identify a familiar set of factory objects and build software functionality, data
representation, and the user interface around the creation, manipulation,
control, data collection, analysis and management of these objects. Factory
objects can be any of the five factors of production previously discussed,
represented as work orders, lots, serial IDs, components,
machine/tools/operator types, etc. Factory objects can also be such things
as concepts, part definitions, BOM, specifications, routing, or even data
display objects, such as quality control charts, etc.

Importantly, the architecture of the present invention allows for each of
its major components to be distributed among computer resources that are
networked across the factory floor and among multiple factory sites. The
primary motive for this approach is that the process of manufacturing a
product -- as encapsulated within all the work centers on a factory
floor -- demands a distributed environment. Since the architecture of the
present invention allows each major architectural component to be
processed on any appropriate computer resource that is available on a
network, the architecture is characterized as having a distributed processing
capability. By the same token, the architecture of the present invention
provides for a distributed database capability enabling the user to collect
and access data anywhere on the network. Moreover, this distribution is
largely transparent to the user.

Form, function, data and communication are four important aspects of
any software system. Form defines the “look and feel” of user interaction

and helps determine how data is represented and passed to an output

mechanism. The output tﬁechanism usually comprises a bit-mapped work

station, a character cell terminal, or some form of data buffer resident in

WO 92/07331 PCT/US91/07671

10

15

20

25

30

16

memory or on disk.

The functional aspect of software refers to capabilities that are
application dependent. For instance, most of the shop floor control
application code employed in conjunction with the present invention is
concerned with the creation, manipulation, control, data collection, analysis
and management of factory objects. In other cases, the functional aspect of
software represents the actual application running against the user interface.

Within the context of the present specification, data means the
representation and physical storage of data that is collected and used during
the creation, manipulation, analysis and management of factory objects. In
other words, data represents the ability to make persistent entries into the
software system.

Finally, the communication aspect of software establishes a dialog
between each of the form, function, and data aspects of the software.
Communication is embodied in the present invention through a message
passing architecture which allows messages to be sent across the network
from one program or application, to another program or application running
on a remote machine or node. In accordance with the currently preferred
embodiment, the communication component has the primary task of
delivering messages generated by one of the architectural components to
another receiving component.

A key feature of the present invention is the fact that each of the four
aspects of software described above are embodied in the architectural
diagram of Figure 6, which illustrates the distributed architecture of the
currently preferred embodiment. As can be seen, a user, represented by
block 41, interacts with factory floor management software system via a
windowed interface in front of an X-terminal 50. The user may be entering
data, retrieving or manipulating data, or simply monitoring the manufacturing
process. A second user 56 is also shown interacting with a different

terminal -- however, in this case the data entry device is a bar code reader
device 57.

WO 92/07331

10

15

20

25

30

PCT/US91/07671
17

During a normal operating session, user 41 interacts with the display
window which is effectively backed-up by its own X-server program 51,
Program 51 runs on the front-end machine displaying window 50, which
preferably comprises ore node in the network. The same is true of bar code
device 57. That is, there exists a bar code server 58 which runs on a
front-end computer or node. Both of the machines associated with
servers 51 and 58 run software programs that execute a code to accept
inputs from either bar codes device 57 or from X-terminal window 50.
These inputs are passed across the network to various applications which
embody the function of the factory floor management software system. In
this way, the interface services implement the form aspect of software. One
of the primary functions of the interface services is to provide a means of
initiating service requests to the application services which, in turn, can
request services from the database services. Itis appreciated that in the
embodiment of Figure 6, all of the objects (including the Database Servers)
may be distributed across networked computer resources.

Within X-terminal window 50 there are various input means such as
buttons, a keyboard, typed commands, graphics, icons, etc., each of which is
preferably modeled as an object. By way of example, when the “RETURN"
button is depressed on the keyboard, this activity is treated as an object
effectively invoking a method which goes and changes a certain
characteristic. For example, the method may consist of first graying out the
display screen and then executing an application which runsin a
background environment.

It should be understood that each of the elements or objects
illustrated in Figure 6 are distributed as separate processes running on
various computer nodes throughout the network. To insure proper system
performance, it is necessary to have a dedicated interface service and
application service compqnent for each end user. To better understand the
interaction of these services, it is helpful to be introduced to the concept of

Application Engines (AE) which are part of the user interface.

WO 92/07331

10

15

20

25

30

18 PCT/US91/07671

The Application Engine maintains the context of the transaction in
terms of application service requests going to, and completed by,
Application Servers (AS) via the local Communication Manager (CM). An
Application Engine that requires an entry from an end user (via an
X-window) is commonly referred to as an X-Application Engine (XAE).

The application architecture of the present invention supports
interactive and non-interactive (computational) applications. A typical
application consists of an Application Engine and one or more Application
Servers. The primary distinction between an Application Engine and an
Application Server is that Application Engines do not interact directly with
factory objects. Instead, they leverage Application Servers to create or
modify factory objects. Application Engines form the primary interaction with
the end user. Application Servers never interact with users directly.

Each Application Engine comprises a separate process which
contains, at a minimum, an event handler and some application-specific
code. The event handler is a process which responds to event messages
(i.e., requests) delivered from the Communication Manager and to X-window
event signals delivered by the X-interface. Each Application Engine also
contains non-reusable application-specific code that maintains the
application context/state and creates application service requests. These
requests are passed to the Communication Manager, which routes the
request to an appropriate Application Servers.

Basically, Application Engines are the background processes that
process the user interaction further. As such, each Application Engine
normally resides_on a separate node within the network. By way of example,
in Figure 6, Application Engine 52 is dedicated for X-term window 50,
whereas bar code Application Engine (BAE) 60 is dedicated for use with
bar code device 57.

Interactive Application Engines are called X-based Application
Engines (XAEs). (Note, if an Application Engine does not have a user

interface it is simply referred to as an Application Engine). An X-Application

WO 92/07331

10

15

20

25

30

PCT/US91/07671
19

Engine contains X-user interface (XUl) code which provides the complete
user dialog and presentation components of the software system. Currently,
this code is based on the XUI tool kit from Digital Equipment Corporation,
which runs under the DEC windows environment.

The XUI code within an Application Engine creates the application
window(s) and populates it with “widgets™ (the term “widgets” refers to user
interface abstractions, such as buttons, menus, text fields, graphics, etc.)
from the XUl toolkit. The XUI widgets interpret X-events coming in from the
users’ X-server and make calls to the callback routines within the Application
Engine. Callback routines map user interactions from the X-server
(X-events) to specific Application Engine functionality. Thus, Application
Engines bridge the user interface widget library with the factory
services/factory object library (to be discussed further shortly).

The script Application Server shown in Figure 6 by ellipse 54 is an
example of a specialized Application Server. With the script Application
Server, the user selects and runs a specific script code. The script
Application Server generates X-Application Engine requests and passes the
requests to the Communication Manager, such as Communication
Manager 53 in Figure 6. The Communication Manager, in turn, invokes
XAEs. Because other X-Application Engines can be spawned, an
application programmer can use script to provide sequence control over the
execution of a collection of X-Application Engines. In order to invoke an
X-Application Engine, the user must provide an identifier (XID) for the
display.

The first time an X-Application Engine “invocation” request is received
by a Communication Manager, the requested X-Application Engine is
spawned and the process ID is entered in an active process table. The
requested XID (the identifier for the display) is also stored in the active
process table. The X-Application Engine order request is then passed to the
newly spawned X-Applicaiion Engine process event handler. This event

handler opens an X-connection to the requested X-display and creates the

WO 92/07331 PCT/US91/07671
20

appropriate application windows.

Once the transaction has finished, the X-Application Engine process
removes the application windows from the X-display and returns to a
dormant state. When this state is entered, the X-Application Engine

5 generates an X-Application Engine “inactive” event which gets sent to its
local Communication Manager.

In the example of Figure 6, process 53 acts as the local
Communication Manager for processes 52, 54 and 55. When another
X-Application Engine invocation request is received for the same type of

10 X-Application Engine process, the dormant “inactive” process is reactivated.
The Application Engine displays its application windows and is immediately
ready to perform a transaction.

Functionality is achieved using Application Server processes. These
programs bring together information (i.e., user input) gathered from the

15 factory floor. This functionality includes machine and equipment tracking,
labor tracking, work in inventory tracking, short interval resources
scheduling, work and dispatching, user defined alarms and inquiries,
statistical process control, and factory floor mail. Each of these broad areas
consist of transactions that perform specific tasks. Each of these

20 transactions is built form one or more Application Server processes which
provide a well-defined, reusable system level of service. In this context,
system level means that the service is transparent to any user of the system;
with the user only seeing the notation of the transcription. However, the
service is packaged independently, because it is used by many different

25 transactions. In this respect, one can think of Application Servers as
sub-transactions which, when nested together form the basis of the
Application Engine transaction.

The Application Servers (AS) implement the functional aspects of the
software system and are the only services that can access database

30 services. An Application Server performs an application function at the

request of the user interface, specifically an Application Engine. Each

' 71
WO 92/07331 a1 PCT/US91/076

on-line transaction is under the control of an Application Engine. The
requests are routed by the Communication Manager on the node where the
Application Server is running. Each request is treated by the Application
Server automatically without maintaining any context information between
5 the service request from an Application Engine.

For example, in Figure 6, Application Servers 54 and 55 may
perform application functions at the request of Application Engine 52.
These requests are routed through Communication Manager 53, and, in the
case of a database service request, pass through Communication

10 Manager 62 to Database Server 65. Note that some of the functional
aspects performed by Application Servers are globally required within the
software system. This means that you could have many Application Servers
running on a single node within the network, just like you could have many
Application Engines running on a single node.

15 Each Application Server is a Separate process spawned by the
Communication Manager. The function can be used by many independent
Application Servers or Application Engines. The Application Engine can
also concurrently request services from many Application Servers. The
Application Engine event loop is written to accommodate the return, if any,

20 from multiple Application Servers processes. Independent Application
Servers allow the Communication Manager to prioritize service requests.

To provide reusability and concurrency, each Application Server is
written as a stateless procedure. That is, unlike the Application Engines
which maintain the state of the user dialog and the state of the transaction.

25 each Application Server only provides a single service. This service couu
be a set of values returned, or the successful operation on a set of objects
and writing those changes to the database. To achieve these ends, each
Application Server has a simple event handler which accepts requests for its
services and then packages a return message. After the return, it sits in an

30 idle wait state for the next request. This encapsulation of a multi-object

interaction, provides a single element of functionality. This is useful to many

WO 92/ 07331 7 PCT/US91/07671
22

different transactions and provides the service level of functional granularity.

There are two specially dedicated Application Server processes on
each application node: the remote object server and the script server. The
remote object server process is the single process on each node that

S handles requests for operations on non-persistent shared objects. The
remote object server contains a table of non-persistent shared object IDs
and their locations. Since there is only a single remote object server
process per node, the Communication Manager must queue requests if
more than one request arrives at the same time. In all other aspects, the

10 remote object server is just another Application Server process.

The second dedicated Application Server process is the script
server -- a service that reads and interprets and executes user written
scripts. The script interpreter is able to parse script into object messages,
requests different Application Engines and performs pr'ogramming language

15 operations.
In basic terms, each Application Server contains one or more of the
. following: Application code that performs the transaction-specific integrity
checks among factory objects and makes database updates that make
changes to the factory objects persistent; factory objects that receive
20 messages from the transaction specific application code to query or update
the instance variables of factory objects; or a remote objects service which
provides a read-only access to specific non-persistent objects in its local
shared memory cache at the request of a remote communications manager.

A remote communications manager typically makes such a read

25 request to the local Communication Manager which then routes the request
to its local remote object server. For example, in Figure 6 there may exist
an Application Server 64 to dispatch a lot of material while another
Application Server (not shown) starts a machine. The architecture of the
present invention allows for a complex Application Engine to make

30 application service requeéts that can be processed asynchronously. This

implies that each Application Server runs in its own process space to allow

WO 92/07331 PCT/US91/07671
23

for a multi-threading capability. In this respect, it is possible for an
Application Engine to request that the “START MACHINE" application
service be performed in parallel to that of the dispatch or “MOVE-IN LOT
application service.

5 In the example of Figure 6, Communication Managers 53, 61, 62
and 63, provide for structured location-independent interprocess
communication across nodes. They also incorporate the necessary network
management with heterogeneous network support. Hence, each
Communication Manager runs as a separate process on each node that

10 requires interprocess communication within or across nodes. The flexibility
of the present invention is the separation of responsibilities and
encapsulation of functionality. A great deal of this separation is in the form of
unique processes. Therefore, a central coordinator (e.g., the
Communication Manager) is needed to route service requests and replies

15 between transactions. This central mechanism must also create and
manage the various processes. According to the present invention, the
Communication Manager is a separate process that coordinates data
communication between Application Engine, Application Services, and
database services processes. Only one Communication Manager exists on

20 each application node.

It is appreciated that the inter-relationship and number of processes
available for any transaction is complicated by the distributed architecture of
the present invention. As the possible combinations are increased, the
problems and complexity of the Communication Manager is also increased.

25 To limit this, the architecture of the currently preferred embodiment is
moderately constrained, as depicted by the diagram of Figure 10, so that
each aatabase node serves only a sub-set of application nodes. These
application nodes, in turn, support a sub-set of X-server nodes. A group of
application nodes is referred to as a database domain which is shown by

30 dashed line 90 in Figure 10.

Database Servers interface with the database system on its node and

W092/07331 PCT/US91/07671
24

communication with other Database Servers from other domains, to retrieve
distributed data. Database services do not communication directly with
application nodes served by other databases. Likewise, the application
nodes which it serves can communicate only with other application nodes

5 within their domain. Only by requesting an object message invocation via
the remote object server do application nodes with different database
domains communicate.

With reference once again to Figure 6, the X-Applicatio‘n Engines on
& node communicate with Application Servers through the local

10 Communication Manager, as previously discussed. By way of example,
Barcode Application Engine 60 communicates with Application Server 64
through Communication Managers 61 and 63. There is also a
Communication Manager 62 that runs on the database node that routes
messages to the Database Servers 65 from the Application Servers.

15 Consider now what happens when a normal operating session
commences. When the factory floor software system is started, the first task
of the Communication Manager is to spawn one display manager process
for each X-server physically connected to the node. The Communication
Manager maintains a table, created during the software system’s

20 configuration, which contains the network topology. The X-servers, other
application nodes, and the local database node are listed. This list is both
used at start up and during normal operation. After starting the display
manager processes, the Communication Manager spawns a set of
application services which handle the user log-in. The node is now ready

25 foruse.

As each X-server accepts a log-in, a list of valid transactions is
returned. As these transactions are selected, Application Engine processes
are created by the Communication Manager. As a service is requested, the
Communication Manager spawns a new application service of the type

30 requested.. These proces;es are never terminated, but are reused by the

Application Engine which requests the type of service it has to offer.

WO 92/07331

10

15

20

25

30

PCT/US91/07671
25

The Communication Manager maintains a table relating process ID
with the service type of each Application Server. These services are not
limited to use by only Application Engines. Any Application Server can use
the services of another Application Server. The Communication Manager
makes this service requesting independent of requesting process type. This
provides the basis for the different levels of functionality: the Communication
Manager and Application Engine processes request services from
application services, and provide transaction “start” and “commit” database
services messages. The application services level conducts the object
messaging and writing to the database. The Communication Manager
transparently routes all messages.

Message routing is one of the major functions of the Communication
Manager. At log-in it routes the display manager request to a log-in
Application Server. Thereafter, it routes Application Engine or Application
Server requests to available application services based on the server name.
It then routes the replies back to the requesting Application Engine or server.

The Communication Manager transparently maintains this temporary
process linking. If no Application Server of the type requested is available,
the Communication Manager buffers the request until one is available. The
Communication Manager has a prioritization mechanism that allows priority
messages to be serviced immediately, regardless of the process limit.

In sum, the Communication Managers embody the communication
aspect of software and provide the following: service request queuing and
prioritization; message routing; Application Engine, Application Server and
Database Server processor management and assignment; transaction 1D
generation; start work messages to Database Servers within the context of a
transaction ID; and broadcast requests for services that it cannot provide to
other Communication Managers.

Database Servers implement the data aspects of software and
provide database services which run in their own process context. In the

architecture of the present invention, there are usually a pool of Database

WO 92/07331 | PCT/US91/07671
26

Servers 65 waliting to process messages from the various Application
Servers distributed across the network.

A Database Server includes procedures that process messages from

an Application Server to access a relational database 66, These
5 procedures are methods embodied in data objects. A Database Server

maintains the complete context of a database transaction as defined by a
corresponding Application Engine that it is currently serving. Note that
according to the preferred embodiment, there is only one type of Database
Server, but there could be many instances of the Database Server servicing

10 muitiple Application Servers at the same point in time within a database
node of a work center.

It should be apparent that because the architecture of the present
invention distributes components across networked computing resources,
there is a requirement for a database subsystem that can support a

15 networked connection to client applications. Thus, the concept of
distribution extends to the data itself. Within the network, multiple dedicated
database central processing units (CPUs) store different subsets of data
within a framework. This is known as horizontal fragmentation. The
database services layer transparently manages the subsets and acts as

20 other database nodes as required to fulfill an application request.

With the database services, the user can adg database elements to
the standard framework. Application level Support, such as scripting
language and special objects, incorporates these new data items into the
workings of the applications. With Database Services, the user can define

25 these new entities ang add them to the framework definition in a controlled
and supportable way. The user may also dynamically define derived
attributes. These values are derived from calculations, tables, or look-ups,
and express relationships betwesn attributes that the user may want to
monitor. These values may also be made accessible to the applications

30 through the scripting langﬁage.

Because the currently preferred embodiment of the present invention

WO 92/07331 PCT/US91/07671
27
is designed for a work-order and repetitive manufacturing environment, the
amount of data maintained and updated in this environment for an individual
item is relatively small. The objective is to maximize the run rate of the
production line. As a result, there is a high proportion of query transactions
5 inthe applications, such as status screens and alarm condition checks. To
maintain database integrity, a number of database reads are involved in a
given update transaction. For example, a read performed to verify the
existence of related data may rely heavily on the speed of query processing.
Embedded systems, such as sensors, bar code readers are not dependent
10 on the completion of a database transaction before they clear their buffers to
accept the next input. These factors indicate the emphasis in tuning should
be on query performance.
Another purpose of the database services is to provide a transparent
translation between the relational database model and the object-oriented
15 applications model. For efficiency, certain parallels are necessary. For
example, each factory object corresponds as much as possible to a single
data relation, to minimize data access involved in instantiating (i.e., building)
the object. Some situations require modeling differences, such as
translating memory pointers between related objects in the applications
20 realm, into references to primary and foreign key fields and database
entities. Thus, one of the software systems' primary objectives is to
automate the process of building factory objects from the contents of the
database.
In its simplest form, each Database Server can be thought of
25 managing persistent objects permanently stored within the database. Of
course, the Database Server also supports distributed access of data. This
approach is advantageous since the reality of the factory environment is that
there are many factory objects located at different areas across the factory
floor. Thus, it becomes necessary to store object data close to where the
30 objects physically reside. This requires the Database Server to provide
distributed access to data across different databases, and preferably a

WO 92/07331 ‘ PCI/US91/07671

10

15

20

25

30

28

distributed update of data.

It is interesting to note that according to the architecture of the present
invention, any one of the four aspects of software (e.g., form, function,
communication and data) can be running on any given node, or only on one
node at any point in time -- depending on how the user wants to configure
his system. For instance, one scenario might be to have all of the
Application Engines, Application Servers, one Communication Manager and
a database reside on one large back-end computer with a plurality of
smaller capacity display devices for user interaction. A more common
scenario is to distribute everything within the factory floor environment. That
is, Database Servers would reside on one machine, Application Servers on
others, and front-end Application Engines would be running on still other
Separate nodes. In this way, the system is never totally dependent on one
computer. In other instances, it may be desirable to distribute databases
across multiple nodes because of its large size. Obviously, the idea of
distributing the four aspects of software in this way revolves about the fact
that the factory floor is distributed by nature.

In accordance with the currently preferred embodiment of the present
invention, Application Engines normally run on a VAX-3100 computer, which
together with its associated server, constitute one node of the network. A
VAX-4000 computer is preferably employed as the Database Server with the
Application Servers are residing in another VAX-3100 machine.

In implementing the hardware architecture, it is assumed that a factory
wide network with high bandwidth and baud rate is available. Of course,
there could be other computers that meet corporate information system
needs on the same network, or there may be a computer on the same
network that acts as a corporate gateway to a corporate wide network. A
typical network is DECnet and/or Transport Control Protocol/Internet
Protocol (TCP/IP) compatible.

Each work center is: normally supported through a network of super

minicomputers, super microcomputers, work station computers and

WO 92/07331 PCT/US91/07671
29

industrial PCs. The super minicomputer can act as a corporate gateway.
Furthermore, each work center preferably has a super microcomputer that
acts as a central database machine and which can also function as a boot
node for the work center. All computers that belong to a work center are

5 commonly local area networked.

Preferably, each work station in a work center is supported by a bar
code device or work station computer. All bar code devices are usually
connected to an industrial PC that acts as a data collection concentrator for
the work center. Obviously, a supervisor may need to have a work station

10 computer dedicated to his/her own needs.

Note that the foundational architecture discussed so far could be
supported by any number of application software systems. Since the
architecture of the present invention incorporates features that are both
flexible and extensible it is ideally suited for factory floor management,

15 control and automation. However, it should be understood that other
applications could also take advantage of the architecture described thus
far.

Referring now to Figure 7, the taxonomy of the various architectural
layers of the currently preferred embodiment of the present invention are

20 shown. The majority of the on-line and/or real-time application software is
embodied in the Application Engines that may or may not require the
services of an X-server, Conceivably, an event scheduler or application may
not require the services of an X-server. On the other hand, there could be
Application Engines that might leverage off of a bar code service. To repeat,

25 Application Engines that require the services of an X-server are known as
X-Application Engines. These Application Engines maintain the context to
the transaction in terms of application service requests made to and
completed by Application Servers via the Communication Manager.

Synopsizing up to this point, the distributed, object-oriented

30 architecture of the present. invention follows a message passing paradigm.

The architecture is characterized as being distributed over three types of

WO 92/0733.1 | PCT/US91/07671
30

computer nodes -- the interface server node, the application node, and the
database node. The Application Engines, the Application Servers, the
Communication Manager, and other remote servers or managers (e.g.,
display managers) all run on the application node. The interface server

5 node is typically an X-terminal device, such as a work station computer that
runs an X-server. Bar code devices may also be connected to a work station
computer that runs a bar code device server. Finally, database nodes
contain Database Servers which provide access to a relational database
storing a library of factory floor entitles modelled as factory objects.

10 To better comprehend the present invention consider the following
architecture interaction example. Assume that a user wishes to start a
session by entering a command on an X-terminal or work station. The
start-up message is sent to the Communication Manager on the application
node that is associated with the user's X-server. (Itis assumed that the

16 X-serveris running at an interface server node.) Assoon as the
Communication Manager receives this message, it establishes a connection
with the X-server and presents a log-on window to the user. The log-on
window is a special application that requires the user to enter a user name
and password to acquire access to the system. The log-on

20 application -- like other Application Engines -- generates application
service requests to the Communication Manager to process the user log-on.
With a successiul log-on, the user is presented with a menu of appropriate
applications which he can now invoke. Each on-line transaction represents
a specific application.

25 Once an application is invoked, the Communication Manager
receives a request for a specific application. In response, the
Communication Manager spawns an Application Engine then process that
embodies the evoked application. The Application Engine then requests an
open database service at the database node, displays the application

30 window, and waits for the hser response. After that, the Application Engine

continues to process subsequent user interaction events from input devices

WO 92/07331

10

15

20

25

30

PCT/US91/07671
31

and generate application service requests to the Communication Manager.
The Application Engine also issues the open and commit database service
requests when required.

Hence, each on-line transaction is within the control of an Application
Engine. Additionally, the Application Engine controls when the database is
opened and when changes are committed. It may open and commit a
database any number of times. Between an open and commit of a
database, the Application Engine makes application service requests that
are processed by Application Servers.

As the user interacts with the application window, the X-server
continues to generate X-events. The X-events are shipped over the network
by the X-server to the Application Engine. Each X-event received by an
Application Engine is either ignored or processed. Relevant events are
processed by evoking C language functions known as callbacks. Each
relevant X-event is tied to a callback. If a callback requires the services of an
Application Server, the Application Engine sends an application service
request to the Communication Manager. The Application Engine may then
block itself, and wait for a reply to the request.

Each application service request is processed by an application
service process. The Communication Manager determines which of the
Application Servers can satisfy the application service requests. If the
corresponding Application Server already exists, the Communication
Manager routes the application service request to the Application Server.
The Communication Manager spawns an Application Server process if the
Application Server does not exist. Next, the Application Server processes
the application service request and sends the appropriate completion/error
message to the Communication Manager which, in turn, routes it back to the
Application Engine that made the original request.

Note that the Application Server, while processing an application
service request, may instantiate the data segments of factory objects it needs

which are stored in a shared memory cache (shared across the network).

WO 92/07331 | PCT/US91/07671

10

15

20

25

30

32

After the factory object has been instantiated in the shared memory, the
Application Server manipulates the data segments of the object by evoking
factory object methods. Each Application Server makes database service
requests to retrieve data it needs from the database, manipulate the data,
and, prior to the completion of the application service, make a database
service request to update that data in the database. When an Application
Server completes a service, an update data service request is sent to the
Database Server. This request includes all factory object data segment
changes made by the Application Server that need to be made persistent in
the relational database.

The database node runs its own Communication Manager in a set of
Database Servers. Each Database Server can be active or idle. Active
Database Servers are dedicated to an Application Engine until a commit
service request from the Application Engine is processed. Once processed,
the Database Server changes to an idle state. The Database Server
changes from idle to active when it receives an open database service
request from an Application Engine through its Communication Manager.
As mentioned, the database node can be a work station computer, a mini
computer, or a cluster of many computers. The Database Servers on the
database node receive database service requests made by the Appiication
Servers on the application node. These service requests are routed to a
Database Server through the Communication Manager on the database
node. Thus, the Database Servers physically update the database and
commit the update at the request of the Application Engine.

It should be appreciated that each Database Server stores a plurality
of database objects. Each database object is modelled after a relation or
view in the underlying relational database. Each factory object's data
segment corresponds to a database object. Each service request made to
the Database Server is decomposed into invocations of database methods,
depending on which factory objects were changed, created or deleted by an

Application Server that made the database service request. Embedded in

WO 92/07331

10

15

20

25

30

33 PCT/US91/07671

database object methods are statements that manipulate relations in the
underlying relational database. All changes to the database are not

committed until the corresponding Application Engine requests a commit,

Process Architecture (Object-Oriented)

Since the presently invented architecture is distributed in nature, each
of the four aspects of software described previously are preferably modelled
as separate processes. For instance, Application Engines are objects which
correspond to the form aspect of software, Application Servers model the
functional aspect, and Communication Managers and Database Servers are
modelled as separate processes corresponding to the communication and
data aspects of the software system, respectively.

Certain characteristics of all of these four types of processes are then
abstracted into a superset process called “PROCESS”. This superset
process is shown in Figure 8 as object 70. From there, all of the other
objects within the system (such as Application Engines, Application Servers,
Database Servers, etc.) can be effectively subclassed because they all
share the common attributes of “PROCESS".

By way of example, in Figure 8 objects 71-74 (corresponding to
Event Handler, Application Server, Database Server and Application
Engine, respectively) are shown subclassed from object 70. (Note that
Application Server 75 is shown subclassed from Application Server 72.)
The characteristics and behavior which are encapsulated in object 70
include the ability to be able to create a process and execute it, along with
the ability to send messages through event handler object 71, and the
ability to receive replies. In this respect, process 70 has the capability of
creating event 85, or any subclass of events 86-89, all of which are
subclassed from object 84.

Appreciate that in ‘the object-oriented process diagram of Figure 8, a
network message is modelled as an event object, which is handled by event

handler 71. A user inteﬁace in @ software system which is X-window based

WO 92/ 07331 PCT/US91/07671
34

has the ability to react to events generated by the X-server. This means that
there is a need for special event handling capability that is typical of
Application Engines. For this reason, event handler object 71 is shown
subclassed from object 70, while Application Engine 74 is shown

5 subclassed from event handler object 71. From there, objects 76-78 are
subclassed from object 74 corresponding to window-based Application
Engines (XAE), bar-code Application Engines (BAE) and non-display types
of interfaces. (A non-display interface might simply go and read a file and

reactto it.) X-applications 79 & 80 and transactions 81-83 are shown being
10 further subclassed from object 76.

Levels Of Functionality
Recall that the software Systems supported by the present architecture
consists of four levels of functionality. The structure of thess functional levels

15 is shown in Figure 9. The user or session level is initiated by user log-on
and encompasses all other levels from the users perspective. On the other
hand, the transaction level is concerned with the performance of a specific
task. Transactions can be user defined (script) or built-in functions. Beyond
the transaction leval, the service function level is composed of single,

20 well-defined, reusable building blocks which can be assembled into
transactions. Usually, these building blocks comprise application services,
or an application script server which allows the user to write transactions as
script. Finally, the object level provides the finest level of granularity of
functionality.

25 Objects are abstractions of the factory floor entities and are modelied
by the data stored within the database. Within the software system, an
object library typically exists which uses objects to model the factory. Datais
found in the data structure of these objects (i.e., the instance variables).
These objects also contain the associated executable code (i.e., methods)

30 which can be called on to act on the structures (i.e., messaging). This data

can only be manipulated by messages sent to the objects; that is, the

WO 92/07331 PCT/US91/07671
35

database itself is never directly accessed. A partial list of factory objects

included in the currently preferred embodiment is given in Table 1.

WO 92/07331

PCT/US91/07671

36
Table 1
Object Classes
Machine
. Queus (storage)
Stationary Sensor
. Store
Equipment
. Production Too!
Mobile Carrier
Fixture
Operator
Personnel
Supervisor
Route (Process Spac)
Temporal Equipment Reservation Schedule
Equipment Maintenance Schedule
Work
Instructions
» Bill of Materials
Compositional Bill of Resources
Repetitive
Lot Workorder
Serial
Intermediate Kit
Product Batch
. Scrap
Biproduct Waste
Consumable
Material
- Raw
Consitiuent External
Fabricated
Workorder
Procedure Operation
Engineering Parameters

WO 92/07331 PCT/US91/07671
37

Building an application is a process of sending appropriate
messages. These objects are written to provide the most basic level of
functionality in the system. Obviously, the primary advantage of objects is
their reusability. Combinations of objects and messages to the objects,

5 allow more general functionality to be constructed. This functionality is
encapsulated according to the present invention at the object library and
Application Server levels. Although the objects form the basis of the
hard-coded application services functions, they can also be messaged
directed by script.

10 Although the present invention has been described in conjunction
with an application towards a factory floor management software system, it
bears repeating that the present invention may be implemented in a great
variety of applications and systems. Therefore, it is to be understood that the
particular embodiments shown and described by way of illustration are in no

15 way intended to be limiting. Reference 1o the details of the preferred

embodiment are not intended to limit the scope of the claims.

Thus, an object-oriented architecture for use with a complex software
system has been described.

WO 92/ 07331 7 PCT/US91/07671

38

CLAIMS
What is Claimed is:

1. An object-oriented architecture for a factory floor management
software system wherein factory floor entities are modelled as factory objects
within a relational database, said architecture comprising:

interface server means for facilitating user interaction with said
system;

application engine means for processing user interaction events and
for generating application service requests therefrom;

application service means for processing said application service
requests and generating database service requests to retrieve, manipulate
and update data from said relational database;

database service means for providing access to said relational
database in response to said application service requests; and

communication manager means for coordinating interprocess

communication between said application engine, application service and

database service means.

2. The architecture of Claim 1 wherein said interface server,
application engine, application service, database service and
communication manager means are distributed across networked

computing resources.

3. The architecture of Claim 2 wherein said application service
means comprises a plurality of application servers, each of which comprises
a separate process spawned by said communication manager means to

provide a single application service.

4, The architecture of Claim 3 wherein said plurality of

application servers comprise a remote object server process for handling

WO 92/ 07331 PCT/US91/07671
39

said application service requests for operations on non-persistent objects.

5. The architecture of Claim 2 wherein said networked

computing resources comprises a plurality of application nodes.

6. The architecture of Claim 5 wherein there exists only one

remote object server process per said application node.

7. The architecture of Claim 5 wherein said communication
manager means comprises a plurality of communication managers, each of

which is a separate process.

8. The architecture of Claim 7 wherein only one communication

manager exists on each of said application nodes.

S. An object-oriented architecture for managing a factory floor
software system wherein factory floor entities are modelled as factory objects
within a relational database, said architecture being distributed across a
plurality of networked computer nodes, said nodes including interface
service nodes, application nodes and database nodes, wherein

said interface service nodes provide a means for interaction with said
system by a user;

said application nodes comprise:

application engine means for controlling each on-line transaction by
said user, said application engine means generating application service
requests in response to user interaction events:

application server means for processing said application service
requests by instantiating and manipulating data segments of said factory
objects, said application server means issuing database service requests to
retrieve, manipulate and update data in said relational database;

communication manager means for coordinating communication

WO 92/07331

PCT/US91/07671
40

between said interface service, said application and said database nodes:
and

said database nodes providing database service means for physically
updating said database in response to said database service requests made

by said application server means on said application nodes.

10. The architecture of Claim 9 wherein said interaction means

comprises an X-terminal or work station running an X-server.

11. The architecture of Claim 10 wherein said interaction means

further comprises a barcode device coupled to a barcode server.

12. The architecture of Claim 9 wherein said application server
means also sends update data service requests to said database service
means, said update data service requests including all changes to said data

segments made by said application server means to be made persistent in
said database.

13. The architecturs of Claim 12 wherein each of said data

segments associated with said factory objects corresponds to a database
object.

14. The architecture of Claim 9 wherein said communication
manager means route said application service requests to said application
server means, and send an appropriate completion/error message to said

application engine means from said application server means.

15. The architecture of Claim 14 whersin said application engine
means controls when said database is opened and when changes to said
database are committed, between an open and commit of said database,

said application engine means issuing said application service request to be

WO 92/073Bi PCT/US91/07671
41

processed by said application server means.

16. The architecture of Claim 9 wherein said database service
request is routed to said database service means through said

communication manager means on said database node.

17. The architecture of Claim 13 wherein said database service
means stores a plurality of database objects, each of said database objects
being modelled after a relation in said relational database, and wherein said
database service requests are decomposed into invocations of database
methods, depending on which of said factory objects have changed,

created, or deleted by said application server means.

WO 92/07331 PCT/US91/07671

177
ETE= B (rrioraRT)

DATA

Fils_ <2

STATIONARY

SUBSTITUTE SHEET

WO 92/07331

CONSISTS

WIiP
INVENTORY

IS HELD
IN

STORAGE

BILL OF MATERIAL

CONTAINS
LISTS OF

Y
COMPONENTS

ARE
IN

Y

STORAGE
INVENTORY

IS

HELD
IN

STORAGE

PCT/US91/07671

TOOL
ENVIRONMENT

Fil= <&

277
MANUFACTURED
ITEM
HAS
ROUTING
CONTAINS
LIST OF
Y IS DONE AT
OPERATION » WORK STATION
USES IS GROUPED
INTO
WORK CELL
IS GROUPED
INTO
BILL OF RESOURCE \
WORK CENTER
CONTAINS IS GROUPED
LISTS OF INTO
Y
PHYSICAL LoGICAL FACTORY
RESOURCES RE SOURCES
ARE ARE
MACHINE WORK INSTRUCTION
LABOR TEST PLAN

PAST PROGRAM

32 33

SUBSTITUTE

SHEET

WO 92/07331

PCT/US91/07671
Il == 3/7
39
SHOPFLOOR e
1
N /40
¢« o o WORKCENTER o o e
1
N /4'
. . . WORK CELL ¢ ¢ .
1
N /42
o o e WORKSTATION o o e
1
N N N N
TOOL MACHINE MATERIAL PEOPLE ENVIRONMENT
43 44 45 46 47
APPLICATION ENGINE
INTERFACE APPLICATION DATABASE
SERVICES SERVICES SERVICES

SYSTE SOFTWARE

HARDWARE

SUBSTITUTE SHEET

WO 92/07331

PCT/US91/07671
477
49
/56
USER USER
pi
50 ~——
X-TERM BARCODE
ol | winDOW DEVICE
[] []
S BARCODE
X-SERVER S8 SERVER
52
APPLICATION BARCODE
ENGINES
*ee AD e 60 @ g%YJITCEER
6l
53

v)

COMMUNICATION
MANAGER

APPLICATION/ 54 63 64

SERVERS

[1,

SCRIPT sqQc . DISPATCH
SERVER SERVER 5 SERVER
DATABASE
DBS SERVERS
. 66
DATABASE

SUBSTITUTE SHEET

WO 92/07331

PCT/US91/07671

€8 28

MHOM 1LYV1S
-NX1

MHOM dO1S
=NX1
P ~

v
LINI-LdIYOS

SUBSTITUTE SHEET

5 - =IN-0

WO 92/07331

PCT/US91/07671

677

i __ 4

SOFTWARE SYSTEM

/

SESSION

N

N

SESSION * o

SESSION

/ \ LEVEL

N\

[

TRANS. TRANS, e o o
USER
VIEW
TRANSACTION
f LEVEL
SYSTEM ¢
VIEW
APP. APP.
SERVER SERVER XAPP.
SERVICE
LEVEL

u OBJECT
O \) <e¢—— FACTORY OBJECTS LEVEL

SUBSTITUTE SHEET

WO 92/07331

PCT/US91/07671
7/7
jo
CTT TS }
| |
I X-SERVER '
: CATABASE APPLICATION |
| NODE NODE Y-SERVER :
l |
I X-SERVER I
I |
I I
| APPLICATION |
| NODE :
X-SERVER

| APPLICATION |
| NODE |
: X-SERVER I

|
I X-SERVER |
| X-SERVER |
| |
U J

DATABASE
NODE

SUBSTITUTE SHEET

DATABASE
NODE

@ = COMMUNICATION MANAGER

INTERNATIONAL SEARCH REPORT
International Appiication Ne. PCT/ US91/ 07671

|. CLASSIFICATION OF SUBJECT MATTER (it several ciassificaon sympols a0ply, indicate ail) ¢
ccoraing to International Patent Classification (IPC) or to 0oth Nanonal Classification and 1PC

IPC(S) U.S. CL. 395/600 GO6F 15/40

‘I FIELDS SEARCHED

Minimum Qocumentation Searched ?

C.ass."caton System Ciassification Symoots

U.S. 345/600, 364/Dig. 1, 364/Dig. 2, 364/401

Documentation Searched other than Mimimum Documentation
to the Extent that such Documents are inciuded in the Fields Searched ¢

11l DOCUMENTS CONSIDERED TO BE RELEVANT Y

Category * f Citation of Document, !! with indication. where apporooriate. of the relevant passages 12 Relevant to Claim No. 1
X |Us, A, 4,831,582 (Miller et. al.) 16 MAY 1989, 1-9, 12-17
Y ISee Flg 3 Coltmms 2-3. 10-11
Y Us, A, 4,811,207 (Hikita et. al.) 07 MARCH 1989 1-17
lSee Flg 3 and 4, Colum 4
X Us, A, 4,751,635 (Kyet) 14 JUNE 1988 1,9
|See Figs. 3 and 4, Col. 9 Line 46 - Col. 12, Line 58. j

¢ Special categones of cited documents: ¢
"A" gocument defining the general state of the art which i3 not
considered to de of particular relevance

“E” earher document but published on or after the internationai
filing date

“L" dotumaent which may throw doubdts on prionty claim(s) or
which 13 Cited to establiish the pudblication date of another
citation or other special reason (as specified)

“Q" documant refernng to an oral disclosurs, use. sxhibition or
other means

“P" documaent pubiished prior 1o the international filing date but
ister than tne prionity date claimed

“T 1ater aocumaent pubhished after the international fiing oate
or pnority dite ang not in conflict with the appiication but
cited to understand the principie or theory underiying the
inventicn

“X" document of particular relevance: the claimed invention

cannot be considered novel or cannot be conmdered to
1NVoive an inventive step

Y* document of particular reievance: the claimed invention
cannot be considered to iNvoive an inventive step when the
document 1§ comeined with one or more othar such docu-
ments, such COMBINALION DEING ObYIOUS tO & person skiiled
n the ant.

‘4" gocument member of the same patent family

IV, CERTIFICATION

Date of the Actual Comptetion of the international Search

Oate of Mailing of this International Search Report

8 JANUARY 1992 C ,20FEB]
internationai Searching Authornty Smnnun 9 ulnonxod Oﬂlnf
4

Form PCTASA10 (sscend shaed) (Rev.11-47)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

