PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GOG6F 9/44 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/40510

12 August 1999 (12.08.99)

(21) International Application Number: PCT/US99/02708

(22) International Filing Date: 9 February 1999 (09.02.99)

(30) Priority Data:
60/074,144
09/246,989

Us
Us

9 February 1998 (09.02.98)
8 February 1999 (08.02.99)

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
uUs
Filed on

60/074,144 (CON)
9 February 1998 (09.02.98)

(71) Applicant (for all designated States except US): REUTERS,
LTD. [GB/GB]; 85 Fleet Street, Greater London, London
EC4P 4AJ (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): GUNTHER, Carl, E.
[US/US]; 635 Westmount Drive #3, West Hollywood, CA
90069 (US).

(74) Agent: MAXHAM, Lawrence, A.; Baker & Maxham, Suite
3100, 750 "B" Street, San Diego, CA 92101 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
KR, KZ, L.C, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU,
ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Titlee METHOD AND SYSTEM FOR LAYOUT OF OBJECTS WITHIN A PERIMETER USING CONSTRAINED INTERACTIVE

SEARCH

(57) Abstract

A computer-based method and system for guiding a user through START
the process of positioning a set of graphical components within a container ‘
in a manner th.at guarantees that a satisfactory layout will be obtained if ESTABLISH INITIAL
such a layout is possible, no matter what placements are selected by the CONDITIONS OF CONTAINER [~ Step A
user. This method and system provide an interactive and automated page & SEL_F:Té%N P?.i chDJECTS
layout that is generated without trial and error on the part of the user, while
allowing the user to exercise choice when such choice is not in conflict ‘
with the goal of obtaining a satisfactory layout, where a satisfactory SORT THE LIST OF I~ Step B
layout is defined as one for which i) no components overlap, ii) the s&gggg& Q&JEECJSN;‘%NEE
entire area available within the container is occupied by the components,
ili) the constraints on size associated with each individual component l
are sgtisﬁed, and iv) tl}e non—.constraining preferences regarding size and GENERATE UNVALIDATED | c
location that are associated with each component are respected whenever SELECTEQEO%fa(;r &Y‘:llslgaﬂrssmén Step
i i i i i CANDIDA
they are not in conflict with user choices and component constraints. METHOD IN FIG. 7A
ELIMINATE CANDIDATE PAGE -~ Step D
LAYOUTS USING A
“LOOK AHEAD" SEARCH
ALLOW SELECTION OF I~ Step E
PAGE LAYOUT FOR OBJECT
T0 BE PLACED
REPEAT STEPS C-E Step F
IF THERE IS ANOTHER [Step
SELECTED OBJECT
TO BE PLACED
COMPLETION OF I~ G
THE SEARCH PROCESS Step

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
1S
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MwW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
uG
Us
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/40510 PCT/US99/02708

METHOD AND SYSTEM FOR LAYOUT OF OBJECTS WITHIN
A PERIMETER USING CONSTRAINED INTERACTIVE SEARCH

TECHNICAL FIELD

The invention generally concerns a computer-based layout of objects within a

perimeter (viewing area) in a user interactive manner. In particular, the invention relates
to a method of implementation for user interfaces which support concurrent execution of
a plurality of application programs ("objects") in a container application using a page layout

display defined by a user for simultaneous viewing of these applications.

BACKGROUND ART

Search algorithms have been used in the past for layout tasks, such as the

positioning of articles and advertisements on the pages of a newspaper or magazine. These
prior programs start from a fixed set of search criteria and proceed autonomously to a
solution (a satisfactory layout) that satisfies these criteria. In cases for which these criteria
are discovered during the search of the program to be unsatisfiable, users are required to
respecify their search criteria and start the planning process again, in the hope that their
changes will enable a solution (a satisfactory layout) to be found. Conversely, when the
number of possible layouts is very large, users may be confronted with a vast set of
alternative possibilities from which to choose. Furthermore, the exhaustive generation of
all possibilities may be so time-consuming as to render the process impractical without
automated "pruning" (elimination of search paths) of the search tree. Such automated
pruning usually results in the elimination of many potentially desirable layouts.

The dilemma presented is that selecting search criteria that are too specific results
in repeated failures to obtain a satisfactory layout, while choosing search criteria in too
general a manner results in a very large number of possible solutions. The former case
causes inefficiency and frustration, while the latter case results in a large set of layouts that
are difficult to compare, and within which specific desired positions for particular
components are difficult to find.

When setting up search criteria for such a program, users are generally not aware

of how the choice of a position for a particular component will affect the possible positional

10

15

20

25

30

WO 99/40510 PCT/US99/02708

choices for the other components to be placed. If the consequences of such relative
constraints could be made clear in an incremental manner while the user is specifying the
desired positions of components, then the process of searching for and choosing a page
layout could become a completely linear and deterministic one for the user.

Many real-time information data display applications comprise a container that
supports simultaneous execution of several service applications (child objects) concurrently
in a predefined page layout scheme without allowing a user the capability of defining
content and how the page layout appears. This problem induces user inefficiency since
much of the information displayed is distracting and unnecessary to the user. For example,
U.S. patent 5,838,321 illustrates a user interface that displays child objects in a container
application using predefined page layout protocols without automation support for a user
defined page layout capability.

An example of this problem occurs with financial service information applications,
where financial market quote data and other objects are concurrently displayed on one page
wherein the content and layout cannot be modified. These data objects can be any
combination of objects that appear simultaneously on the display. These objects include,
but are not necessarily limited to, real-time quotes, tickers, charts, monitor lists, time and
sales, dynamically updating market data displays covering equities, mutual funds, options,
listed bonds, treasuries and futures. This information is typically displayed by initial
configuration of the application display output by the container application in predefined
areas in the display which cannot be customized by a user.

Thus, there is a need for a user defined page layout capability allowing any
combination of service application objects in a container to be concurrently displayed on
a screen or other system that outputs graphical/text information. In particular, the financial
services industry needs such a capability for custom placement of financial service
application objects for effective decision making purposes. The present invention addresses

these problems.

DISCLOSURE OF INVENTION

The primary advantage of the present invention is to provide a user-interactive and

computer-based page layout method for multiple objects that is user defined. An exemplary

10

15

20

25

30

WO 99/40510 PCT/US99/02708

use of the invention is for the display of multiple service applications (child objects) in a
container that are concurrently displayed on a single screen. The method allows user
flexibility in how the page layout appears by efficiently and automatically sizing objects
that appear on the page by using a search method.

Further advantages of the invention include enablement of the arrangement of a
selected set of graphical components (for example, service object applications) within a
window (for example, a container application in a user interface) in a manner that: a) allows
users to interactively exercise choice in the positioning of components; b) ensures that no
components overlap; c) ensures that all available space within the container is occupied by
components; d) ensures that a set of dimensional constraints associated with each
component is satisfied; and e) ensures that a set of positional preferences associated with
each component is considered.

This invention provides a method that guides a user through the process of
positioning a set of graphical displayed output component objects within a container such
that satisfactory page layouts occur if such a desired page layout is possible, regardless of
what placements are selected by the user. The method provides an interactive and
automated page layout that is generated without trial and error on the part of the user, while
allowing the user to exercise choice when such choice is not in conflict with the goal of
obtaining a satisfactory layout. The criteria defining such a satisfactory page layout are:
a) no components overlap; b) the entire area available within the container is occupied by
the components; c) the constraints on size associated with each individual component are
satisfied; and d) the non-constraining preferences regarding size and location that are
associated with each component are respected whenever they are not in conflict with user
choices and the component object size constraints.

The invention is practiced in an interactive computer system having a keyboard,
mouse or other user specified input device, a display, and an icon/menu driven graphical
user interface capable of initiating execution of one or more object applications and capable
of confining the display of these object applications provided during execution in the output
display of the container application. The invention is preferably used with a container
application that has multiple active objects and includes object editing tools to define a page

layout of the service applications that are concurrently shown on a display screen. The page

10

15

20

25

30

WO 99/40510 PCT/US99/02708

layout method provides a convenient way to create and format document pages containing
a selection of child objects viewable on a screen. The page layout is defined through the
user’s interaction with the method defined herein. This method is preferably included in an
object editor of a container application for the display of muitiple service application
objects. The page layout method provides adaptive definition of the page layout of several

object applications.

BRIEF DESCRIPTION OF THE DRAWING

The foregoing and other objects, aspects, and advantages of the invention will be

better understood from the following detailed description of the preferred embodiment of
the invention with reference to the drawing, in which:

FIG.1 shows a graphical representation of the state of a search process in which
three components are to be placed within a container using the invention, near the
beginning of the process, where three unvalidated candidate placements for the first
component to be placed have been generated,

FIG.2 shows a graphical representation of the state of this same search process in
its next phase, which uses the "look ahead" search aspect to remove an initial component
from a set of selected components;

FIG.3 shows a graphical representation of the state of this same search process,
wherein invalid candidate placements are removed;

FIG.4 shows a graphical representation of the state of this same search process
wherein the user selects a validated positioning for the initial component from the choices
of FIG. 3;

FIG.5 shows a graphical representation of the state of this same search process
wherein the search process is repeated for the second component;

FIG.6 is a flow diagram illustrating the principles of the search process of the
invention;

FIG.7A is a flow diagram illustrating the principles of the candidate component
placement generator of the invention;

FIG.7B is a flow diagram showing a subroutine of the placement generator of FIG.

TA;

el

10

15

20

25

30

WO 99/40510 PCT/US99/02708

FIG.8 is a block diagram illustrating an exemplary environment for using the
invention;

FIG.9 is a block diagram illustrating a terminal as used in FIG.8;

FIG.10 shows an exemplary container application for using the invention in
financial market quote application as shown in FIG. 9;

FIG.11 shows an editing control page for the page layout method of the financial
application shown in FIG. 10;

FIG.12 shows an editing control page following that shown in FIG. 11; and

FIG.13 shows an editing control page following that shown in FIG. 12 at

completion.

BEST MODE FOR CARRYING OUT THE INVENTION

The terminology of "component" is defined as an object to be placed within a
"container" that encompasses the window of viewing of a document. Viewing is preferably
on a screen display in the best mode of carrying out the invention. "Objects" are preferably
defined as applications that appear in the container and typically are ActiveX object
applications when using operating systems sold by Microsoft, Inc.

The method of page layout of the invention builds upon the basic techniques of
breadth-first and depth-first search. Both of these techniques use an upside-down "tree,"
called a "search tree" (as shown in FIGS. 1-5) in which the root represents the state where
no placements have been associated with components, the first set of branches below the
root represents placements for the first component in the list of components to be placed,
the second level of branches (spreading from the tips of the first level branches) represents
placements for the second component to be placed, etc. The terminal, or "leaf" nodes (tips
of branches) in the tree represent states for which either all components have been placed
or no further components can be placed without violating constraints. Breadth-first search
generates all candidate placements at a given level (that is, for a given component) before
descending to explore (make trial placements for) the next level (that is, the one for the next
component to be placed). Depth-first search generates and explores a single candidate
placement of a component for a given level (where a level is a set of alternative placements

for a particular component) at a time, plunging down toward the deepest levels of the

10

15

20

25

30

WO 99/40510 PCT/US99/02708

"search tree" until either a solution (a complete layout) is found or no additional
components can be placed (at which point it "backs up" to a prior level, makes a prior
choice differently, and continues exploring downward from that point).

In the search method, the object of the search process is to arrive at a placement for
each component that satisfies the definition of a satisfactory layout. The method of the
invention provides for a satisfactory page layout satisfying the criteria that a) no
components overlap, b) the entire area available within the container is occupied by the
components, c) the constraints on size associated with each individual component are
satisfied and d) the non-constraining preferences regarding size and location that are
associated with each component are respected whenever they are not in conflict with user
choices and the component object size constraints of item c), above.

This method uses a breadth-first expansion search to generate a list of candidate
placements for a given level. It then uses a depth-first search starting from each candidate
to determine which of these candidates is guaranteed to lead to a satisfactory layout (that
is, a candidate placement for which it is certain that some set of choices for subsequent
components can be made that results in a satisfactory layout). This depth-first search is
halted the moment any single satisfactory layout has been found (since this proves that the
choice is a usable one). Candidates that can never result in a valid layout, no matter what
the subsequent component placements, are eliminated from consideration. The user is then
allowed to select one candidate from among the remaining validated candidates. Because
of the validating depth-first search, all validated placement candidates are guaranteed to
lead to at least one layout for which all components are legally placed. This prevents the
user from making a choice that could never result in a satisfactory layout, while allowing
virtually all other meaningfully distinct choices to be made.

Starting from the most specific user-confirmed "node" (search state) of the search
tree (initially, the root), the search process generates a fairly extensive set of candidate
positions for the placement of the next (initially, the first) component. This constitutes a
breadth-first expansion of the current "search state" (set of placements for preceding
components) to a depth of only one level below the current one in the search tree (that is,

the level representing the choice of the next component).

10

15

20

25

WO 99/40510 PCT/US99/02708

Following this expansion, a depth-first search is performed from each of these initial
candidate placements to see if the remaining components can all be placed on the remaining
open areas of the container in a manner that is consistent with their declared minimum sizes
and which also occupies all of the space in the container without allowing gaps to appear.
As soon as any valid solution is found for a search originating from a given candidate
position, the validating search for that position terminates and the position is considered to
be validated. Any candidate that does not lead to a valid configuration is eliminated. At
this point, the user 1s asked to choose one of the remaining, validated candidates, which
means that the user will see only candidate choices for the placement of the next component
that lead to a satisfactory layout. Once the user makes a commitment to one of the
validated choices, the process (of breadth-first candidate generation and depth-first
candidate validation) repeats for only those branches at the next level of the tree that
emanate from (thus, represent placements that are consistent with) the user-selected
placement. FIG. 6 illustrates the concepts presented above for page layout of a display
window in which multiple selected objects are to be placed within the perimeter of a

container. The steps for implementing the invention are described below in steps A-G.

Page Layout Search Process
Referring to FIG. 6, the steps A-G include:

Step A. Initial Conditions The parameters are established by a user for the desired

page layout configuration. The user selects a set of components (application objects, for
example, ActiveX objects) to be sized and positioned within a container. Associated with
each component is a set of alternative minimum sizes (minimum width/minimum height
pairs) and preferred positions (near to top, near to bottom, near to left, near to right, near
to top-left, near to top-right, near to bottom-left, near to bottom-right). The objects are
rectangles.

Step B. Sorting the Components. The combination of a size and a position, when

applied to a component, is known as a placement. Components which have been associated
with a size and a position are said to have been placed. The set of components to be placed

is sorted into a particular order. The criteria for sorting can vary depending upon the

10

15

20

25

30

WO 99/40510 PCT/US99/02708
-8-

specific implementation, but once the order has been generated it remains fixed throughout
the layout process.

Step C. Generating Unvalidated Candidate Placements for the Next Component

Object to be Placed. Candidate placements are generated for the next (initially, the first)

component in the sorted order. This is done using a routine described below in "Generation
of Candidate Placements of the Components.” This routine prevents components from
overlapping and respects the size constraints of the individual component objects. FIG. 1
shows a graphical representation of a hypothetical search using the invention, wherein a
Component 1 object is to be placed and unvalidated page layout candidate placements are
generated using a breadth-first expansion search. This stage of the search process reflects
that three component objects are to be laid out on the page. The root "search node"
represents (holds) this initial selection of the objects to be placed in the ;;age layout. The
page layout search begins with Component 1 object. The "search process," as discussed
below, generates an initial breadth first expansion of the possible placements for
Component 1 that consists of three proposed placements.

Step D. Eliminating Component Candidates Through a Validating "Look Ahead"

Search. An automated depth-first search is performed starting from each candidate
Component 1 placement as shown in FIG. 1 to determine whether, given that placement,
it will be possible to place each of the remaining components in some manner without
causing components to overlap and without leaving gaps or violating constraints upon
component size. This search process uses the same candidate generation process, as
discussed below, to place successive Components 2 and 3 on a trial basis. Where
constraints on placement and size prevent the placement of the remaining components, this
results in a "dead end" (candidate page layouts where an "X" appears in the search node,
showing that no further object placements can be made starting from them without causing
either overlapped components or violated constraints). The page layout method does a
"back-up" to undo these invalidated candidate object placement choices. Then, the "search
process” begins again at a prior (higher level) search node, generating alternative candidate
object placement choices at this higher level, and continuing its search with a new trial

placement.

10

15

20

25

30

WO 99/40510 PCT/US99/02708

FIG. 2 shows this continuation of the page layout process with a validating "look
ahead" search using a depth-first validation of component 1 placement starting from each
of the three unvalidated components. "OK" in a candidate node (box) indicates that the
associated placement for the component object associated with the level of that node is
permissible. "Solution" in the bottom row of page layout candidate windows marks viable
candidate page layouts for the three components collectively. If "dead end" search nodes
(boxes with "X") occur on all search paths from a particular page layout placement
candidate, then that layout candidate is eliminated from consideration. Conversely, the
page layout candidates leading to at least one viable placement of all selected component
objects remain in the set of page layout candidates. FIG. 3 shows the continuation of the
page layout search process, wherein non-validated Component 1 candidate page layout
placements are removed. As shown, there are two remaining page layout candidates that
the user can select from.

Step E. Manual Candidate Selection. Referring to FIG. 3, each remaining candidate
placement is "guaranteed" (by the preceding "look ahead" search process) to lead to at least
one valid page layout. These candidate placements are sorted in an order reflecting some
measure of their desirability (this is usually based upon their closeness to one of the
minimum sizes for the component object, and the degree to which they satisfy the positional
preferences for that component object). As shown, the user selects a validated Component
1 placement.

The first of these viable candidates is presented to the user typically by a graphical
screen display that shows the proposed candidate displayed graphically on the screen (along
with rectangles that show the positions of components already placed and confirmed by the
user). The selected component objects are typically shown as rectangles that appear within
a larger rectangle representing the container object. Using a scrollbar within a graphical
user interface as discussed below in the "Method of Use," a user can substitute other
validated placements of the candidate object for the one originally shown to see how they
appear on the simulated page. When one of these page layout placement candidates is
satisfactory to the user, the user can select it. FIG. 4 shows this stage of the page layout

process, wherein one of the two viable candidate solutions is selected by the user as the

10

15

20

25

WO 99/40510 PCT/US99/02708

-10-

desired placement of Component 1 in the page layout being created by the user’s interaction

with the system.

Step F. Repeating Steps C-E. If the most recently placed component object is not

the last component object to be placed in the page layout, then the page layout process
reiterates Step C (Generating Unvalidated Candidate Placements) througl.1 Step E, starting
from the placement (search node) most recently confirmed (selected) by the user until the
last selected component is satisfactorily placed on the page layout and validated by the user.

FIG. 5 shows the page layout process after non-validated candidate generation has
occurred for the next component to be placed (component 2). The page layout box at the
level of Component 1 marked "confirmed" indicates that the corresponding candidate
placement for Component 1 has been selected by the user. The "search process"continues
with a breadth-first expansion of the user’s selected candidate node. The process continues
forward from this point through steps C-E, repeating these steps until a selection has been
made by the user for each selected component to be placed.

Step G. Completion. Ifthe user-selected component object is the last one in the list
to be placed, a complete page layout has been generated and the page layout process ends
with a finished page layout displayed. The user can assign a control execution object (part
of the graphical user interface controls) to this page layout for subsequent execution of this

designated page layout.

Generation of Candidate Placements of the Selected Objects

Referring to FIG. 7A, a flow diagram in block form shows the process for
generating the candidate placements for the next component to be placed in the container.
This process is used not only when the user's most recently selected object placement
choice is expanded, but at each trial placement created during the depth-first search process
required to validate the candidate positions being considered for the next component to be
placed. Each of the candidate page layout placements (rectangles that may be valid), as
shown in FIGS. 1-5, is generated by the candidate generation process shown in FIG. 7A.
Each time the candidate generation process is invoked, it calls a subroutine process for

generating "maximal" rectangles, as discussed below and shown in FIG. 7B. -

10

15

20

25

30

WO 99/40510 PCT/US99/02708

-11-

The steps involved in candidate object placement generation in the container are as
follows after initially selecting the component (application objects) to be placed on the page
layout. They include the following steps:

Step 60. Generate a list of the left, right, top and bottom edges for all components
(services applications) placed so far on the page layout, and the four edges delimiting the
bounds of the layout area (screen) itself.

Step 61. Generate "maximal” rectangles that do not overlap any services already
placed (either by the user or on a trial basis) in the search process up to this point. This step
is the subroutine for generating "maximal" rectangles discussed below. This creates an
initial set of maximal candidate rectangles where the term "maximal" refers to any
non-overlapping (that is, with components already placed) rectangle that cannot be
completely contained within any other single non-overlapping rectangle.

Step 62. Delete any rectangles from the list which are too small (that is, those such
that none of the preferred minimum sizes associated with the current application service
object to be placed can be positioned within them) since they are too small tocontain the
selected object being placed.

Step 63. Take the "maximal" rectangles remaining and break them into smaller
rectangles by using rectangles equal to the various preferred minimum sizes for the current
component object to be placed as "cookie cutters" to cut smaller rectangles from the larger
ones. In so doing, take into account that any space remaining must, if it is to be useful, be
large enough so that at least one of the minimum sizes of one of the remaining component
objects can fit within it. If such residual space exists, extend the area originally
corresponding to the "cookie cutter" either horizontally, vertically, or in both directions, in
order to fill it, so that these useless "leftover" rectangles are eliminated.

Step 64. Delete any of the remaining maximal rectangles from the list which are too
small for any of the preferred minimal sizes associated with the component currently being
placed to fit within it.

Step 65. Sort the remaining rectangles by size to facilitate the finding of and
deleting of duplicates.

Step 66. Delete duplicates from the set of remaining rectangles.

Step 67. Assign ratings to each of the remaining rectangles in accordance with the

10

15

20

25

30

WO 99/40510 PCT/US99/02708

-12-

preselected sizing and positioning preferences for the corresponding component.
Step 68. Sort the rectangles in descending order of the rating assigned in step 67.
This sorted order will be the order in which the rectangles will be presented to the user.

Step 69. Return this list of rectangles to the page layout search process.

Maximal Rectangle Generation Subroutine:

Referring to FIG. 7B, this subroutine is called from step 61 as discussed above and
shown in FIG. 7A. The term "maximal" means any non-overlapping (that is,
non-overlapping with placements already made) rectangle that cannot be completely
contained within any other single non-overlapping rectangle. The steps involved in the
generation of maximal candidate rectangles are as follows:

Step 71. Generate four initial lists of edges (left, right, top and bottom edges) as
follows. First, sort the left and right edges generated in step 61 described above from
leftmost to rightmost, to assist in finding related edges required by step 74 below. Then
sort the top edges from topmost to bottommost, followed by sorting the bottom edges from
bottommost to topmost. Initialize a list of maximal rectangles to empty. Then proceed to
step 72.

Step 72. Determine whether there are more right edges to be processed. If yes,
proceed to step 73. Ifnot, proceed to step 78 that returns the list of maximal rectangles to
the calling routine (step 61 above) to be processed in the candidate rectangles routine.

Step 73. Using the next right edge in the list of right edges, create a "Sweeper" For
the Next Right Edge (SFNRE) and remove this right edge from the list of sorted right edges
determined in step 71. This "sweeper" is a vertical line that includes the edge and extends
up until it touches the nearest bottom edge directly above it, and extends down until it
touches the nearest top edge directly below it. If a sweeper having the exact coordinates
of this one has not already been processed, then add it to a list of sweepers to be processed.

Step 74. Determine if there is at least one sweeper on the sweepers list to be
processed, (that is, if there is a next sweeper (NS) on the sweepers list to be processed). If
yes, the next sweeper (NS) is processed in step 75. If no, proceed to step 72 to determine
whether there are more right edges to be processed.

Step 75. Sweep the next sweeper (NS) line from its starting position to the right

10

15

20

25

30

WO 99/40510 PCT/US99/02708
-13-

until it encounters the Nearest Obstructing Left Edge (NOLE) that obstructs its motion
rightward. Remove this next sweeper (NS) from the sweeper list.

Step 76. Add the rectangle whose top is the top of the new sweeper, whose bottom
is the bottom of the sweeper, whose right edge is the sweeper itself in its new position, and
whose left edge is the sweeper in its original position (the one aligned to the right edge) to
the list of maximal rectangles to be output by this subroutine.

Step 77. If the original sweeper extends above the obstructing left edge, create a
new sweeper aligned to the obstructing left edge that consists of the paﬁ of the original
sweeper that extends above the obstructing left edge and add it to the list of sweepers.
Also, if the original sweeper extends below the obstructing left edge, create a new sweeper
aligned to the obstructing left edge that consists of the part of the original sweeper that
extends below the obstructing left edge, and add it to the list of sweepers. Then, continue

from step 74.

Method of Use: A "container" is defined as a display window having multiple
contained applications. As is well known in the art, this container can be associated with
menu bars, optional scrolling view bars and partitioned display areas. Within these latter
display areas, there can be text, graphics, multiple applications, and the like. An example
of this is Microsoft Windows NT (a trademark of Microsoft Corporation).

Within the container, a plurality of application objects may be embedded, that is,
incorporated or contained. As the term is used, an object is defined as an area in a
document that contains information or "content," for example, a real time ActiveX object
application associated with Microsoft Windows. Programs that manipulate object
information are called object editors. Visual representations of objects on a screen or in an
electronic document are called data objects. In typical compound document architectures,
objects may contain other objects in an embedding hierarchy, where the first object present
in a compound document is referred to as the root object. Since the root object is an
embedded object, it delineates the content area within which an intrinsic graphical and text
content associated with the root object is rendered. To render and manipulate intrinsic data
content of the root object, there is associated with the root object a root object editor, also

known as a root editing component, representing the underlying program that manipulates

10

15

20

25

30

WO 99/40510 PCT/US99/02708
-14-

object content. Besides the root object, the container is capable of incorporating other
objects. Each embedded object, whether or not a root object, delineates a discrete, mutually
exclusive content area within the compound document. Content areas are mutually
exclusive because each content area only contains one type of data.

In contrast with the root object, which represents the first level of embedding in the
container, deeper embedded objects can be represented with a deeper level of embedding.
Each embedded object has associated with it an object editor, which is used for rendering
and manipulating the content that is intrinsic to that embedded object. In general, each
object editor has a proprietary user interface, which is typically furnished by the developer
of the application program code underlying that embedded object editor. The user interface
represents, among other things, the overall "look" of the content area with which an object
editor is associated, the manner in which the content is rendered, as well as the manner in
which editing tools are implemented. The portion of the graphical user interface for laying
out the editing tools is referred to as a user interface container since its role (be it a menu
bar, a floating palette, a dialog box, or the like), is to provide an environment for
implementing editing tools.

FIG. 8 illustrates an exemplary and preferred use of the invention, which is part of
a system that provides financial data services to subscribers through desktop terminals from
commercial financial information databases. The terminals can also display other
information received from local connections independent of these commercial databases.
Trading information from various exchanges, news services, and private databases typically
flows into a national computer center 10 over conventional means (not shown). In the
national computer center the information is processed to form a file of transaction and
quotation data. Derived files of statistics on individual securities and markets are also
maintained. Additional files of data useful to a subscriber are maintained, including
dividend, earnings, and forecasting information for a variety of financial instruments, stocks
and bonds.

The national computer center 10 is connected through an information transmission
structure 12 including transmission lines, regional data centers, and concentrator sites (all
not specifically shown). Other services, independent of the financial déta, are provided

from third party services 13 by conventional means of data transmission. At a typical

10

15

20

25

30

WO 99/40510 PCT/US99/02708
-15-

subscriber's site, a subscriber server 14, which can be multiple servers collectively shown
as the server 14, is connected to the information transfer structure 12 and third party
services 13 and through a local area network 15 (or the Internet) to a plurality of branch
terminals 16. Three are shown but there could be any practical number. Preferably, the
server 14 is a SUN or UNIX-based machine executing either NT or UNIX operating
systems with an appropriate application program interface (API) and the terminals have a
Microsoft Windows-based operating system in personal computers (PC) which run a
commercially-available user interface such as the Microsoft Windows NT system. The
architecture of a branch terminal such as a terminal 16 is shown in FIG. 9. SUN and UNIX
are trademarks of their respective corporate entities.

Referring to FIG. 9, the terminal 16 typically includes a commercially-available PC
17, which is capable of supporting concurrent execution of a plurality of application
programs 18, 19, and 20. FIG. 9 indicates that there could be any number of application
programs. The application programs 18-20 are interfaced through a navigator function 22
that is joined conventionally to a graphical user interface 24. The graphical user interface
is a software system which allows a user to directly manipulate the application programs
18, 19, and 20 by means of conventional I/O devices such as a CRT display 25, a keyboard
26, or a mouse 27, or other user specified device, or all of them if desired. A file manager
30 is also provided which opens, maintains, and closes files on behalf of the navigator
function 22 and the graphical user interface 24. The file manager 30 operates in
conjunction with one or more peripheral storage devices such as a direct access storage
device (hard disk drive) 31.

The graphical user interface 24 operates conventionally as a windowing system such
as that described in Chapter 13 of V. J. Mayhew's PRINCIPLES AND GUIDELINES IN
SOFTWARE USER INTERFACE DESIGN (USA: Prentiss-Hall, 1992), pp. 437-457.
Graphical user interfaces, or "GUIs" as they are often designated, have become a popular
feature of computers, especially personal computers (PC). One of the many advantages of
such GUISs is that they provide a quick and easy platform to display frequently used or
required data by selecting and manipulating graphical display elements, such as icons, with
a pointing device, such as a mouse. The icons of a GUI are designed to behave in a manner

similar to the objects they represent. A GUl/operating system of the preferred embodiment

10

15

20

25

30

WO 99/40510 PCT/US99/02708
-16-

reside within a computer-readable media that allows one or more users to initiate the
manipulation of displayed object icons and text on a device. Any suitable
computer-readable media may retain the GUI and operating system. The Apple MacIntosh
operating system, Microsoft Windows 98 or NT operating system, and UNIX X-Windows
are common and very popular examples of GUIS, illustrating the fact that the advantages
of GUIs over conventional text-based user interfaces are widely recognized. As a result of
most PC using GUISs, a variety of different means for organizing and navigating through
various applications have been developed. The operational capability of a user interface
of the windowing system type is fundamental to, but distinct from, the invention. The GUI
24 includes conventional ways for initiating and managing application program execution
and for initiating, managing, activating, and deactivating application windows on the
display 25. Apple and Macintosh are trademarks of Apple Corporation.

Referring to FIG. 9, the GUI 24 of the present invention is shown in connection with
graphical display and control of executing multiple active applications, and in particular,
financial service applications. In the preferred embodiment of the navigator function 22,
the Reuters Plus (a trademark of Reuters Corporation) financial service navigator is used
on a platform operating system with GUI capability, preferably Microsoft Windows 98 or
NT GUI The navigator function 22 and interface 24 manage and control the contents of
the "container" having multiple active applications. Although the preferred embodiment
of the invention has a user interface 24 based on Microsoft Windows operating system, the
container can be implemented in any number of different GUI operating systems.

The navigator function application 22 is a software program written in the
well-known C++ language and is compilable and executable on a PC processor such as the
processor 17. The navigator application function 22 can include macro-instructions called
a keystroke or mouse "hook" which interfaces the navigator function 22 with the keyboard
26 or preferably uses a mouse 27 or other user defined input (for example, voice
recognition). This function can be understood with reference to the Programmer's
Reference: Functions, published by Microsoft Corporation (1987-1998) for the Microsoft
Windows operating system. As an example of a user interface input control, either a
keystroke or mouse control hook function intercepts all input keys or mouse-actions and

passes them to a keyboard hook or mouse processing routine in the navigator function 22

10

15

20

25

30

WO 99/40510 PCT/US99/02708

-17-

for processing before they are passed to the applications. An exemplary form for a
navigator uses the keystroke hook function that enables the navigator function 22 to detect
user specified actions in response to which the navigator function invokes certain actions.
The keystroke hook function is discussed in detail in commonly assigned U.S. patent
5,721,850 entitled, "Method and means for navigating user interfaces which support a
plurality of executing applications." The preferred navigator function 22 is the container
that encompasses multiple applications using Microsoft ActiveX/OCX "object" technology
for implementing these application objects. It is understood, however, that application
objects can be from any application that meets the API specifications of the GUL

Moreover, the method of the invention can be implemented as an "applet" for use
with JAVA (a trademark of Sun Corporation) programming language developed by Sun
Microsystems, Inc. in Mountain View, California. The standard HTML syntax of Web
pages and the standard communications protocol (HTTP) supported by the WWW
guarantee that any Web browser can communicate with any Web server. JAVA
programming language provides architecture independence of programs written in the
JAVA language that allows a user to assemble programs from components that are
distributed on diverse Internet nodes or to download entire program folders from other
Internet nodes and use applets as required.

The terminals 16 can include a market quote application which is a container for
displaying multiple service applications (objects). In the preferred embodiment of the
navigator function 22, the Reuters Plus financial service navigator 22 is used on a platform
operating system with GUI capability, preferably a Microsoft Windows 98 or NT GUL
These multiple financial service application objects are ActiveX object designs using the
API of Microsoft Windows operating system, which are linked to databases over the LAN
15. These objects can include multiple financial information services from sources such
as Dow Jones News, EDGAR SEC Filings and the like and Internet Web sites such as
Yahoo (EDGAR and Yahoo are trademarks of the Securities Exchange Commission and
Yahoo, Inc.). These applications are listed in the application table of the navigator function
22. Other services available from third parties may be provided to the terminals either
through the system structure 10, 12 of FIG. 8 or by the third party services 13: These third

party services are supported by third party applications, such as the application 20, that

10

15

20

25

30

WO 99/40510 PCT/US99/02708

-18-

co-executes with the navigator function 22 in a terminal. Third party programs may
include, for example, the Microsoft WORD and EXCEL programs (WORD and EXCEL
are trademarks of Microsoft Corporation). The navigator function 22 also maintains a
system configuration file. The system file is maintained for the purpose of establishing a
set of window characteristics definitive of a set of system windows and is used as a point
of reference in navigating through window configurations. In addition, each application
(including the navigator function) maintains its own window configuration buffer which
is used, when the application executes, to keep the current parameter values definitive of
the current configuration of the application's window. Such buffers include window
configuration buffers and are maintained in real memory. Various methods and apparatus
currently exist for allowing a GUI to support many different applications. Furthermore,
portions of data, or objects, can be shared between the different applications. For example,
the third party services as illustrated in FIG. 8 can be applications that interface with other
applications such as a Microsoft EXCEL spreadsheet application as well as word
processing application such as Microsoft WORD. Using Microsoft Windows, a selection
of spreadsheet cells of a Microsoft EXCEL spreadsheet can be placed inside a WORD
document. In this example, the EXCEL spreadsheet is an "object server" document, the
selection of spreadsheet cells is an "object," and the WORD document is an "object
container” document. The WORD container document is a conventional document, except
that it provides a "client" window for the object. As a result, the object is either linked or
embedded into the container. When an object is linked from the server document to the
container document, a user may edit the object by making changes to the server document.
When the object is embedded from the server document to the container document, the user
may edit the object inside the container document by accessing features of the server
document's application.

Referring to FIG. 10, a financial service navigator application window 100 is
shown, and in particular, the Reuters Plus (a trademark of Reuters America.) application
made by Reuters America Inc., New York, NY. This application provides current market
quote data to financial service professionals. This window typically could appear on a
terminal display 25. The navigator window 100 includes a menu bar 102, an application

object execution button bar 104, and a display areas of multiple financial application

10

15

20

25

30

WO 99/40510 PCT/US99/02708

-19-

objects 106, 108, and 110 on a display screen. Exemplary application objects 106, 108 and
110 contain research, market data news fundamentals and analytics in one window. An
Internet Web browser 116 can be incorporated in the container as one of the application
objects and shown in part of the display as the Yahoo Web display object 108 as shown.
Each of the buttons in the bar 104 represents particular object window viewing for a
selected financial service application. Adjacent the top of the application object display are
button tabs 112 for control of the container, each of which identifies a functionality such
as printing, searching services and the like within an one of application object programs.
In exemplary form, the invention page layout method can be executed by activation of the
tab 120 by clicking thereon by action motions of a mouse or other user specified input
device.

The service application objects 106, 108 and 110 are controllable objects using the
Microsoft NT OCX container-type programming. These applications include a Web
browser capability with an array of third-party information sources, combined with
real-time news and market quote data package that reflect several segments-of the US
equity market. This application allows a user to integrate their own proprietary functions
with Reuters Plus application. By combining market data and third party information
providers with a customer's intranet and the Internet, a user can access all this information
simultaneous on a single screen. A number of different third-party providers include:
fundamental data on US stocks from Market Guide, mutual fund data from
CDA/Wiesenberger, CDA/Spectruminstitutional holdings data, earnings estimate data from
IBES and Disclosure's EDGAR service. Other features of the Reuters Plus application can
include 32-bit-type container applications that support client and third party applications
such as Microsoft EXCEL spread sheet application and WORD word processor application,
Reuters News and Dow Jones News Service commingled and searchable with Reuters news
Internet browser included in the Reuters Plus application to allow seamless integration of
company intranet and Internet information with market quote data.

The Reuters Plus application containing financial market quote data provides
personalized page layouts created by the user by creating unique pages for tracking different
markets or portfolios. These customized page layout displays consist of any combination

of service application objects. Using the invention allows generation of multiple unique

10

15

20

25

30

WO 99/40510 PCT/US99/02708

-20-

customized windows, each consisting of selected service application objects from a master
list of applications that include financial news headlines, ticker, chart, dynamic time &
sales, monitor list and quote data. Each page layout generated is assigned a name that
subsequently appears as a button in the activation bar 104. To initiate execution of the page
layout method, a user clicks on the control button 120. The sequence of user assist
windows in the Reuters Plus application for using the invention is shown in FIGS. 11-13.

Initially, a user selects the service objects desired to be presented in the page layout
as shown in FIG. 11 in the window 130. These services, as shown, are Chart-History,
Monitor and Quote-Consolidated. Using a mouse, the user typically selects these services
by pointing and clicking on them accordingly. The number to the left of these services
represents the number of times the object is placed on the page layout window for that
service object.

Then the user validates the placement of these service objects in the positions by
confirming sequentially their choice as shown in FIG. 12 in the window 140. The invention
optimizes the space used by each service application, so no screen space is unused. The
simulated PC screen to the left shows the placements of all components thus far (144 and
146), with the component object 142 to be placed being highlighted. In the window shown,
all components have been placed except for the last service. Ifthe screen showed an earlier
state where fewer components had been placed, then the scroll bar 148 below the simulated
PC screen can be used to move the component object to be placed through each permissible
candidate location. This corresponds to possible page layout solution candidates. If a user
is not satisfied with the page layout, the user can go back and restart the page layout method
for another possible page layout selection. When the current object being placed is
validated, the user selects the "Next" button 149 at the bottom of the display. Finally, in
the last window display 150 as shown in FIG. 13, a page name is assigned to the newly
created page layout window. The user can subsequently open this page layout with a click
on the page name button in the button execution bar 104 by a user specified input device
such as a mouse, an assigned hotkey usage and executing this assigned named page 152
accordingly.

Although the invention has described "component objects" in a preferred use for

implementing screen display of application objects within a container application using a

WO 99/40510 PCT/US99/02708
21-

computer system, an object can be any distinct rectangular object (or defining a rectangular
object framing a non-orthogonal object such as a circular object within a rectangle). Other
applications of the invention can include display multiple distinct graphical objects as used
in desk-top publishing or print-type applications.

While several preferred embodiments of the page layout function have been
described, it should be evident that modifications and adaptations thereof will occur to
persons skilled in the art. Therefore, the protection afforded the invention should only be
limited in accordance with the spirit and scope of the following claims and their

equivalents.

10

15

20

25

WO 99/40510 PCT/US99/02708

22-

CLAIMS

1. In a computer system having a container with a display area that includes at
least two objects from a set of multiple objects, the system including a digital data
processor, a display coupled to the processor, and a user interface coupled to the processor,

a method for user-defined page layout for output display of the display area comprising the

steps of:
a) selecting objects from a set including the multiple objects;
b) generating candidate placements for the "next selected object to be paced"

using the computer system by:
generating a first set of candidate placements for the "next selected object
to be placed," thereby creating a breadth-first expansion of a current search state
representing all objects whose placements have been validated; then
generating a second set of candidate page layouts that is a subset of the first
set by using a "depth-first search process" starting from each object in the first set that
determines if the remaining selected objects can be placed in unused areas of the container
consistent with criteria that: i) no selected objects overlap; ii) the entire area within the
container is occupied by the selected objects; and iii) size constraints of each selected object
are satisfied, and eliminating any candidate placement that does not lead to a complete
layout that satisfies these criteria;
allowing selection by the user of the "next object to be placed" from the second set
of candidate page layouts; and
c) repeating step b) and step c) for as long as there is another selected object

to be placed in the page layout.

2. The method of claim 1, wherein step a) further includes sorting of the

selected objects by a user specified criteria.

3. The method of claim 1, wherein for step b), if any of the candidates in the
first set have an area that is not large enough for any of the required minimum sizes of the

next object to be placed, then that candidate is eliminated from the set.

10

15

20

25

WO 99/40510 PCT/US99/02708

-23-

4, The method of claim 1, wherein for step c), a user interface is provided for
enabling a simulated display of the candidate page layout showing placement of the "next

object to be placed" from the second set of candidate page layouts for user selection.

5. The method of claim 4, wherein the providing of the user interface includes

a window for displaying an identifier for the component being placed.

6. The method of claim 1, wherein the generating of candidate placements for
the "next selected object to be placed"of step b) comprises:

1) generating a list of left, right, top and bottom edges of the selected objects
that have been placed and the edges delimiting the bounds of the container in the page
layout;

i1) generating a list of maximal rectangles that do not overlap the "selected
objects that have been placed" using a subroutine for generating the list of maximal
rectangles;

1i1) deleting any rectangles from the list of maximal rectangles that are smaller
than any of the required minimum sizes of the next object to be placed;

1v) adding more rectangles to the list of maximal rectangles only when one or
more of the minimum sizes of the next object to be placed can fit within any of the
rectangles in the list of maximal rectangles with room to spare;

V) deleting any remaining rectangles from the list of maximal rectangles that
are smaller than the required minimal size of any of the next object to be placed;

vi) deleting any duplicate rectangles in the list of maximal rectangles; and

vil) assigning a rating to each of the rectangles in the list of maximal rectangles
according to a sizing preference for that selected object, and sorting the list of maximal

rectangles based upon this rating, and generating a final list of maximal rectangles.

7. The method of claim 6, wherein step ii) of generating the list of maximal
rectangles subroutine comprises:
aa) generating lists of edges by sorting the left and right edges generated in step

1) from leftmost to rightmost and sorting the top edges from topmost to bottommost,

10

15

20

25

30

WO 99/40510 PCT/US99/02708

4.

followed by sorting the bottom edges from bottommost to topmost and creating a list of
sorted right edges;

bb) generating a "sweepers" list, if there are more right edges to process in the
list of sorted right edges, such that the sweepers list includes a "sweeper" for a next right
edge (SFNRE) such that this next right edge is removed from the list of sorted right edges,
thereby creating a candidate "sweeper" that is a vertical line that includes the removed right
edge and extends upward until it touches the nearest bottom edge directly above it, and
extends downward until it touches the nearest top edge directly below it, and if no other
sweeper has already been generated that has the exact coordinates of the one being
generated, then it is added to the sweepers list, and if there are no more of the right edges
to process, then step ii) of using the subroutine for generating the list of maximal rectangles
is complete, and the list of maximal rectangles that has been generated is returned;

cc) determining if there is a next sweeper (NS) on the sweepers list to process
and if there are none, go to step bb);

dd) generating a rectangle formed by the area encompassed by a sweeper from
the sweepers list in the course of sweeping the next sweeper (NS) line from the starting
position of the NS, to the right until the NS encounters the nearest left obstructing edge
(NOLE) in the container, then deleting the next sweeper (NS) line from the sweeper list;

ee) adding the formed rectangle generated during step dd) to the list of maximal
rectangles; and

fH if the NS protrudes either above or below the NOLE, adding to the sweeper
list at least one new sweeper for each such protrusion beyond the NOLE and repeating step

cc) through this step.

8. A method for configuring a page layout display for a navigator-type
container application for use in an interactive computer system with a keyboard, a video
display, and a user interface, means for supporting execution of multiple application objects
in the container application, and means for configuring the multiple application objects
displayed in the container application on the video display, the method comprising;

a) selecting application objects from a set including the multiple application

objects;

10

15

20

25

WO 99/40510 PCT/US99/02708

225

b) generating candidate placements for the "next selected application object to
be placed" using the computer system by:
generating a first set of candidate placements for the "next selected
application object to be placed," thereby creating a breadth-first expansion of a current
search state representing all application objects whose placements have been validated; then
generating a second set of candidate page layouts that is a subset of the first
set by using a "depth-first search process" starting from each application object in the first
set that determines if the remaining selected application objects can be placed in unused
areas of the container application consistent with criteria that: i) no selected application
objects overlap; ii) the entire area within the container application is occupied by the
selected application objects; and iii) size constraints of each selected application object are
satisfied, and eliminating any candidate placement that does not lead to a complete layout
that satisfies these criteria,
) allowing selection by the user of the "next application object to be placed"
from the second set of candidate page layouts; and
d) repeating step b) and step c) for as long as there is another selected

application object to be placed in the page layout.

9. The method of claim 8, wherein the providing of a computer system having -
a container application that comprises a financial information service application and the

multiple application objects comprise real-time market quote data from multiple sources.

10. The method of claim 8, wherein the providing of the computer system with
the user interface, and the means for configuring the multiple application objects further
includes means for enabling simulation of a display of the candidate page layout showing
placement of the "next application object to be placed" from the second set of candidate

page layouts.

11. Themethod of claim 10, wherein the providing of the user interface includes

a window for displaying an identifier for the component application object being placed.

10

15

20

25

WO 99/40510 PCT/US99/02708

26-

12. A computer system comprising:
a video screen;
a user interface; and
a digital data processor coupled to the video screen and user interface, the
processor having programming means for controlling page layout of a container application
having multiple application objects, the programming means including instructions for:
a) selecting application objects from a set including the multiple application
objects;
b) generating candidate placements for the "next selected application object to
be placed" using the computer system by:
generating a first set of candidate placements for the "next selected
application object to be placed," thereby creating a breadth-first expansion of a current
search state representing all application objects whose placements have been validated; then
generating a second set of candidate page layouts that is a subset of the first
set by using a "depth-first search process" starting from each application object in the first
set that determines if the remaining selected application objects can be placed in unused
areas of the container application consistent with criteria that: i) no selected application
objects overlap; ii) the entire area within the container application is occupied by the
selected application objects; and iii) size constraints of each selected application object are
satisfied, and eliminating any candidate placement that does not lead to a complete layout
that satisfies these criteria;
C) allowing selection by the user of the "next application object to be placed"
from the second set of candidate page layouts; and
d) repeating instruction b) and instruction ¢) for as long as there is another

selected application object to be placed in the page layout.

13, The system of claim 12, wherein the container application comprises a
financial information service application and the multiple object applications comprise real-

time market quote data from multiple sources.

10

15

20

WO 99/40510 PCT/US99/02708
27-

14. The system of claim 12, wherein the programming means for controlling
page layout of the container application further includes means for enabling simulation of
a display of the candidate page layout showing selection and placement of the "next

application object to be placed" from the second set of candidate page layouts.

15. The system of claim 12, wherein the programming means for controlling
page layout of a container application includes a display window with means for assigning
an identifier to the selected page layout that can be opened and controlled by the user

interface.

16. The system of claim 12, wherein the computer system comprises a local area
network (LAN) coupled to a terminal that encompasses the digital data processor, the LAN

attaches to a service provider.

17. The system of claim 16, wherein the service provider includes multiple

financial data bases that provide real-time financial market quote data.

18. The system of claim 17, wherein the container application comprises a
navigator financial information service container application and the multiple object

applications comprise real-time market quote data transmitted from the service provider.

19. The system of claim 18, wherein third party applications are incorporated

with the container application.

20. The system of claim 12, wherein instruction b) of the programming means
comprises:

i) generating a list of left, right, top and bottom edges of the selected objects
that have been placed and the edges delimiting the bounds of the container in the page

layout;

WO 99/40510 PCT/US99/02708
28-

i) generating a list of maximal rectangles that do not overlap the "selected
objects that have been placed" using a subroutine for generating the list of maximal
rectangles;

1i1) deleting any rectangles from the list of maximal rectangles that are smaller

5 than any of the required minimum sizes of the next object to be placed,

v) adding more rectangles to the list of maximal rectangles only when one or
more of the minimum sizes of the next object to be placed can fit within any of the
rectangles in the list of maximal rectangles with room to spare;

V) deleting any remaining rectangles from the list of maximal rectangles that

10 are smaller than the required minimal size of any of the next object to be placed,;

Vi) deleting any duplicate rectangles in the list of maximal rectangles; and

vii) assigning a rating to each of the rectangles in the list of maximal rectangles
according to a sizing preference for that selected object, and sorting the list of maximal

rectangles based upon this rating, and generating a final list of maximal rectangles.

PCT/US99/02708 -

WO 99/40510

1/13

I "Old

¢ = 90e[{ 01 spuouodwo)) [e10], :9JON

syudwdoR| | depipue) | jusuodwo))

Sjuoudde|[J ON _ j00d _

SJUSUIdOR]J 9)BpIpPUR)
pajepijeAu() [juouodwio) :yoIeoq

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02708

WO 99/40510

2/13

¢ "Old

¢ = 2908[{ 03 sjusuodwoy) [e10], :9JON

yusuodwo)) 1XaN 10, S010YD) pI[EA ON :PUF pea(d=X

Sjuswade|d [eld], € HCQCOQEOU uonnjog

|

sjuswade|d [er], ¢ Jusuodwo) (| ()

X

1

sjuswiade|] depipue)) | jusuodwo))

20

SIUSWAIE|J ON

uonnjog

SjudWRde]d | jusuodwio)) Jo uonepreA Isij-yudo(] :yoIesas

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02708

WO 99/40510

3/13

€ "old

€ = 9de|{ 01 syuduodwo)) [e10], 910N |

jusuoduwo)) IXaN 10,] S9910Y)) pIfEA ON :PUf pea(J=X

sjuswade|d [el1], ¢ yueuodwo))

sjuawdde| | [ei}, 7 Jusuodwo))

sjuswade] depipue) | jusuodwo)) — MO A0

HoBmOs | onnos |
| H
Aol X 30

1 1

syuswaoe|J ON 100y

sjuswiaoe|J | jusuoduwo))
PI[EA-UON] JO [EAOWIDY :YOIBoS

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02708

WO 99/40510

4/13

¥ "Old

€ = 90g|{ 01 sjuauodwo)) [e10], :9JON

yusuodwo)) 1XaN 10, SI910YD) PIJEA ON :Pus pesa(=X

sjuewode|{ [eii], ¢ jusuodwon) uoyn|og
sjuawade|j [el], ¢ yusuodwoy) MO
JusWadR|J pawjuo)) | Jusuodwo)) pauLyuoy
SIUQWIdR|J ON 100y

Jusuwoe|[d | yuauodwo)
PaJepI[B A JO UOIDI[OS JIS[] :YdIBag

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02708

WO 99/40510

5/13

S "Old

€ = 08| 0} spusuodwio)) [e10], 90N

psuodwo)) 1XaN 10, S9210YD) PI[EA ON :pUf pea(=X

syusweoe(jell], € Jusuodwo)) uonnjog
sjuswade| ajepipue)) g jusuodwo)) VHO
JusWIddR|J pawajuo) | jusuodwo)) pouwLIjuo))
SjuSWooR[J ON 100

(s18aday 9]04D) sjuawade|J 7 1uauoduwo))
Pajepi[e A-UON JO UOIIBIOUIL) :[OIBIS

SUBSTITUTE SHEET (RULE 26)

WO 99/40510

6/13

FIG. 6

START

|

PCT/US99/02708

ESTABLISH INITIAL
CONDITIONS OF CONTAINER
& SELECTION OF OBJECTS

TO BE PLACED

—~ Step A

'

SORT THE LIST OF
SELECTED OBJECTS TO BE
PLACED IN THE CONTAINER

—~~ Step B

4

GENERATE UNVALIDATED
SELECTED OBJECT PLACEMENTS IN
CANDIDATE PAGE LAYOUTS USING

METHOD IN FIG. 7A

—~ Step C

Y

ELIMINATE CANDIDATE PAGE
LAYOUTS USING A
"LOOK AHEAD" SEARCH

'~ Step D

!

ALLOW SELECTION OF
PAGE LAYOUT FOR OBJECT
TO BE PLACED

r—~ Step E

$

REPEAT STEPS C-E
IF THERE IS ANOTHER
SELECTED OBJECT
TO BE PLACED

—~~— Step F

%

COMPLETION OF
THE SEARCH PROCESS

"~ Step G

SUBSTITUTE SHEET (RULE 26)

WO 99/40510

7/13

FIG. 7A

START

!

PCT/US99/02708

GENERATE LIST
OF EDGES

—~ 60

{

GENERATE MAXIMAL
RECTANGLES

—~ 61

!

REMOVE RECTANGLES
THAT ARE TOO SMALL

62

!

BREAK-UP RECTANGLES
THAT ARE TOO LARGE

—— 63

!

REMOVE RECTANGLES
THAT ARE TOO SMALL

—~ 64

!

SORT REMAINING
RECTANGLES

— 65

Y

DELETE DUPLICATE
RECTANGLES

|

ASSIGN RATINGS TO
THE RECTANGLES

Y

SORT RECTANGLES
BY RATING

Y

RETURN LIST OF
CANDIDATE RECTANGLES
TO PAGE LAYOUT METHOD

SUBSTITUTE SHEET (RULE 26)

WO 99/40510

8/13

FIG. 7B

FROM
STEP 61

Y

PCT/US99/02708

COLLECT LIST
OF RIGHT EDGES

—~ 71

RETURN MAXIMAL
RECTANGLES
AT STEP 61

INITIALIZE SWEEPERS
LIST WITH SWEEPER FOR
NEXT RIGHT EDGE (SNFRE) &
REMOVE RIGHT EDGE

—~ 73

74
MORE

SWEEPERS

75—

REMOVE NEXT SWEEPER (NS)
& SWEEP RIGHT TO NEAREST
OBSTRUCTING LEFT EDGE (NOLE)

!

76—

ADD RECTANGLE FORMED
BETWEEN THE ORIGINAL AND
FINAL POSITIONS FOR NS TO

MAXIMAL RECTANGLE LIST

!

77—

ADD ENDS OF NS
PROTRUDING BEYOND
NOLE TO SWEEPERS

SUBSTITUTE SHEET (RULE 26)

WO 99/40510 PCT/US99/02708 -

9/13
NEWS,
QUOTES, AND g
¢ MARKET DATA
THIRD
PARTY 12
SERVICES
- ! FIG. 8
SERVER ~—14
(15
TERMINAL | | TERMINAL TERMINAL
16 15 16
<
16~
17| |APPLICATION APPLICATION| +++ |APPLICATION
\18 \ \19/ \29
30 22
< ¢
FILE NAVIGATOR
MANAGER FUNCTION
USER INTERFACE [™—24

4

31 1 (25 1 §25 1 §27
DISPLAY KEYBOARD MOUSE

" FIG. 9

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02708

WO 99/40510

10/13

| PaIoaes 61 WeuD
0l 'OI4 k- 1l
= 66/20 03 E9LHHOZ 44 Y81 A 91'E6 00N 91VPOSS Y 05A
_aomioa . _asie3d BEALZL/OOX VEBOOSN PPSIBLLLSA BLGIIZOW 00KOVBSKO00dSO |
v2'0 EFVZLON 0Z00ZZ91OIA 000'Z99°LOS JHOD TALNIW | B
b) HA S o01'ze1'sie 0001AL 00c'c0g'1zn | @
/€L K $octv 66'ZEIMA L1°9-0d 8- 1oci+1 /ﬁ
] heLo Y g-%0ci-a 10y 0 9INI L /
m 2 ~ /pojaqo (posutiuy b o 801
mu 5
| | OO2N22 T ,~ 10, g..ww by ﬁw - n-__ﬁm. 4 au
| 't 59¢- 12- Y18+ W9 &
| 62 62 TR aa| [
|| 054 + TOUQVXXR - F33Y] - WpUNTs - ey ') 69z 2 gt wol 3
Bord] ; i T ST
= oG5 || K232 105 Bupyiauwos - SN TOOYER = a
—{| _$#ea 10z LISW_NZWY | 0INI id 9 _af) NG)
I TE o] 5 [V e oo o oo R sl eve] v
z ~14+1% _ _ _ _ | _@_d oy o prewasayy | [FL|__O2E€| Fe* vsi-| Hoer ﬁ
All=! g IRT: T Y =R R | 0 L1'9-] ¥8-toet+| OIN|
................. T o ['_\[A. . _ o's] 60| ¥s-4z0| mq & [>90}
9t Iy il TR FaN IV [ir] _ave| fi-%99¢] Hos| &
Jawell @ O @ ¢\ @ O | |Buydiuag 1seq wis | »
560040 Jif wijusay o @l‘lﬂ% "
_,S,ag.mmm € [M Rrvimerele
© 9oUdLI3 I ———————] -.
: ¢ J8101dx3 loys T IO TTvaUovU]
m._.mn—u Oy YT L \ e CQ ._w:. = m_ommm ¢sald ho_o&__nm,_mmm”_-i = Nesoe fi| ®
. asodebuig vy 586°p6 18 Buipel) SiejopoIng yarely 02002
10958901d [lIHniURd Jeul 3yl =N 7 A - LND 0080 12 S8IINb3 - JONVIO... WY622 ﬂ/
1 D 62 VBT IB Ujq 0'62$ S3AIS1 UIaI0) 12y | WHS6Z2
=X (&4 2= 8661 IRV onssi) esioW Weeez || 13 |\
ch_m_c Buo.g sigajy :Z syueg jeuoibay assueder/jpy ueder 4812 N
bunndwos sseuisnge Bupndwod awoy e J // s90ud uogone 83) BoUjy Iseq - 37GV) WUL622 OH
ST PREOd ¢ (EEER T RN N 1od 08 dn 1joid g6 JHBSSI Bes esiepy Q31036H0D wyssez || B
puewIap 4Se:) 0U ‘alqe]s J2qqNI UBISBUOPY] L6622 &
L4 159j01d Jo ubts ou *Aep4 uo jainb sowi) 1583 WHOOEZ &
XEr) —“c.ao._a:.__.; (=] — SMBN yoe] M_ 2IWOoU0I] mv_ SMap iy @— &
qm__sg SUNSEAIL 'S SSABUY NS MY SIS W WvDa3 Bukeus sbeduen | v () 9 | df=]] i [€]] ¢ &b cli
/ dpH dmag o5 uesu] meA Wp3 eng
e | AVN' 201 isRizue+y - snid sieinay H/ 201
ed [
001 0¢!}

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02708

WO 99/40510

11/13

L 'OId
{gouen) < XaN yoeg > ,
MOt MANNBIH MaN [$S390Y 1S0H [anuIUOY 0} IXaN Xl
Rrewuing - | joAa bepsey] X00 stencoq 7]
Jayep 1xiep - || jana bepseN [uoynisu| Aq sBuipio [
sonAjeuy uondo smopuim [ueyg - || jere bepseN [sauop mo(- sujpeay [
1 [spung fenin [} PHOM elelodiod - auljpesH)
aping [oquiAg 7] SIS ishelg - Jojuoy [oujpesy 7]
soido) gs - hois [] sdnosg) Anisnpu) ds - Jojuo [JojejnofeD awoauj pexid (7] , o>m%nwﬁw%v_ﬂ_=mn %
SIEIS ds - Aois] suoidg - Jopuo [X00 sionDise4] noA jey) m.mo_amw
sauopr mog - Aiois [abejuop - Joyuow [1efp3] 9y} 109]9S aseald
PHom ajesedio] - Aiojs] $80|pu| - JOJUOW [T] Sajonym sajes pue awi] dwevAq [
hois suopdQ sainind - Jojiuoyy [sa|eg pue aw) oweukq [_H_
sqe) saomes 7] sainjn4 - 10JUoN [sajonp pue swi} oweukq [] °
saujpeay Buyjong] Iojuol [A] m_ abeqd oweuig] _] _
000 slaneY [sqe| SMIIA JEN [Aeydsig sse|Q soppowwo) [
1%ep Jolew - ejonD] SMAIA losieN [KoisiH - veyy [A] @v
jeug/papuedx3 - ojony [joquig Aq suonmsuy [Waung - peyd [
PojEpljosuoy - 810nD [A] m_ sBuipjoH jeuonminsu) 7 pieoqiig]
Aeydsiq ssej) suopdo [Yoreag swen vonnysy| [o1uay| [}

L

abed Joj suoijedijddy 10918S

\

el

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02708

WO 99/40510

12/13

6v} ¢l "Oid

N\ .

joouen V< xeN yoeq >

BNURUOD 0} IXBN Ol 8IAI8S Siy) 4o Uoilisod a|qejieA. BUo AUo Si 813y} 'pajoajes Sa9IAIaS 8lj) USAIE)

"Jeq|joios

ay) Buisn) Joj suoiisod ajqejee woJ} Joajes Aew

noA ‘uaaib s| paoeyd Buiag aowes auy §| *paibiybiy s)
Buioeid Apuaung are noA aoes ay) pue ‘Aeib uj umoys
aJe paoejd Apeasje Saainas ‘Ys] ay) O} UBBIIS Dd aYj UQ

AoisiH - beyd .
10}JIUOW
pajepljosuoy - sjonp

'pade|d aq 0} Liewal Jf M0j3q UMOYS
$801M9S pUE ‘paoed uaaq aney } aaoqe Bupeadde
S9IMIBS "MOLIR UE)M paysew st pue ‘pajybiybiy

S1 uaa10s 8y uo Buioeyd Ajuaiing ale noA jey) solnles
ay] 'pa}oajas aAey noA jey Sa0IAIBS JO ISIf B S| Mojag

Kl

=ilf

pajepijosuoy - ajonp)

hiojsiH
- Hey)

JO)IUON

L

il

- 9yl

— byl

abed uo suoneayddy aoeid

\

14!

< T

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02708

WO 99/40510

13/13

¢Sl

€1 "Old

[gaue) ysiut-4 yoeg >

A\

/ —
}a_ﬁm@@%oz ‘awep abed

"X0q 9y} Ul Ji 10} BWweu
e Buidhy Aq abied inof aAeg “uojjEISHIOM
inoA 1o} abed mau e pajeaIo aARY NOA

isuorjejnesbuo))

"PIEZIM

SIY} pua 0} YSIUL 10 ‘Su01)23]as INOA MaIABI 0} oBg YOIID

pajepijosuo) - ajont)

KojsiH
-Heyd

IONUOW

abed aweN

051

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

int tional Application No

PCT/US 99/02708

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F9/44

According to Intemational Patent Classification (IPC) or to both national classification and iPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the internationai search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ¢ | Citation of document, with indication, where appropriate, of the relevant passages

LAYOUTS BY EXAMPLE"

claim 1

BRIDGES BETWEEN WORLDS, AMSTERDAM, APR. 24
- 29, 1993,24 April 1993, pages 285-292,

see column 2, line 36 - column 3, line 49

A HUDSON S E ET AL: "A SYNERGISTIC APPROACH 1,8,12
TO SPECIFYING SIMPLE NUMBER INDEPENDENT

XP000473775
ASHLUND S;MULLET K; HENDERSON A; HOLLNAGEL
E; WHITE T
A EP 0 622 728 A (IBM) 2 November 1994 1,8,12

A EP 0 689 134 A (IBM) 27 December 1995 1,8,12
see column 2, line 32 - column 3, line 10;

-/

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which ig cited to establish the publication date of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the intemational filing date but
later than the priority date claimed

"T" later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* documant of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

“&" document membaer of the same patent family

Date of the actual completion of the intemational search

7 July 1999

Date of mailing of the intemational search report

22/07/1999

Name and mailing address of the ISA

European Patent Qffice, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Bijn, K

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Int tional Application No

PCT/US 99/02708

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

geometric modeling of general objects
using teaching trees"

PROCEEDINGS. 1995 IEEE/RSJ INTERNATIONAL
CONFERENCE ON INTELLIGENT ROBOTS AND
SYSTEMS. HUMAN ROBOT INTERACTION AND
COOPERATIVE ROBOTS (CAT. NO.95CB35836),
PROCEEDINGS 1995 IEEE/RSJ INTERNATIONAL
CONFERENCE ON INTELLIGENT ROBOTS AND
SYSTEMS. HUMAN ROB, pages 341-347 vol.2,
XP002108074

ISBN 0-8186-7108-4, 1995, Los Alamitos,
CA, USA, IEEE Comput. Soc. Press, USA

see page 341, right-hand column, Tine 8 -
line 34)

see page 344, left-hand column, line 12 -
page 345, left-hand column, line 22

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to ctaim No.
A US 5 669 006 A (JOSKOWICZ LEO ET AL) 1,8,12
16 September 1997
see column 1, Tine 27 - column 2, line 17
A NAKAMURA A ET AL: "Surface-based 1,8,12

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int .tionai Application No

PCT/US 99/02708

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0622728 A 02-11-1994 JP 2547964 B 30-10-1996
JP 6332656 A 02-12-1994
EP 0689134 A 27-12-1995 us 5642490 A 24-06-1997
JP 8016355 A 19-01-1996
US 5669006 A 16-09-1997 JP 8320939 A 03-12-1996

Fom PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

