wo 2014/159150 A 1[I 0000 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/159150 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

2 October 2014 (02.10.2014) WIPOIPCT
International Patent Classification:
GO6F 9/44 (2006.01)
International Application Number:
PCT/US2014/022232

International Filing Date:
10 March 2014 (10.03.2014)

Filing Language: English
Publication Language: English
Priority Data:

13/828,842 14 March 2013 (14.03.2013) US

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, WA 98052-6399 (US).

Inventors: JUBRAN, Marwan, E.; ¢c/o Microsoft Corpor-
ation, LCA - International Patents, One Microsoft Way,
Redmond, WA 98052-6399 (US). GERSHAFT,
Aleksandr; ¢/o Microsoft Corporation, LCA - Internation-
al Patents, One Microsoft Way, Redmond, WA 98052-
6399 (US). LIBENSON, Maksim; c¢/o0 Microsott Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, WA 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: SOFTWARE RELEASE WORKFLOW MANAGEMENT

FIG. 3

(57) Abstract: A computer-implemented method for managing a release of a

| Authenticalc user |

Definge
permissions 203

Receive release request defining release pipeline
and specifying work low action parametcr data
5

acoess private neowork uer directory

Generate Request Specification UL
206

Confirm authorization

[]

Interpret, validate, and process work Mlow code
210

is met.

L]

Sond notification to approver

Exceute workflow
*{via instructions to cngincering
services/systoms 216
Record action data in
log: gencrate dashboard

Aoces policy schoma
2

ADply ntryicxit critoria.
ey

Monitor systom hoalth
224

Validare environment
state, dependencies 226
Schedule release based

on dependencics 228

software product includes obtaining a request for the release, the request in-
cluding workflow action parameter data to define a release pipeline involving
a plurality of software engineering systems contigured to process data indic-
ative of the software product, and executing, with a processor, a workflow to
implement the release pipeline in accordance with the workflow action para-
meter data. Executing the worktlow includes sending a series of instructions
to the plurality of software engineering systems. A successive instruction in
the series of instructions is sent based on whether a gating rule for the release

WO 2014/1591:50 A1 AT 00T 0000 0 A A

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

SOFTWARE RELEASE WORKFLOW MANAGEMENT

BACKGROUND

Brief Description of Related Technology

[0001] Software development typically involves a build process that compiles source
code files into binary packages for release to a production or delivery environment. Some
software development projects may involve thousands, or even hundreds of thousands, of
source code files having a complex dependency structure. A change in one source code
file may thus cause undesirable conditions or unexpected results and failures for a large
number of other source code files.
[0002] A software release typically includes one or more validation or testing procedures
during which the results of a software build are tested. Software releases of complex
products also usually involve multiple environments in which such testing occurs. For
example, after a development team indicates that the source code development has reached
a certain milestone, the software product is often sent to an integration environment in
which a given component is tested against dependent systems or multiple development
branches are tested. In some cases, after the integration environment, the software product
may be released to a staging environment for further validation before eventually moving
to a production environment.

SUMMARY
[0003] Methods, systems, and computer program products are directed to managing a
software release workflow. One or more gating rules may be used to automate the
management of the software release workflow.
[0004] In accordance with one aspect of the disclosure, successive instructions to a
plurality of software engineering systems are implemented in a release pipeline for a
software product based on whether a gating rule for the software product is met.
[0005] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] For a more complete understanding of the disclosure, reference is made to the
following detailed description and accompanying drawing figures, in which like reference

numerals may be used to identify like elements in the figures.

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

[0007] Figure 1 is a block diagram of an exemplary system configured for software
release workflow management in accordance with one embodiment.

[0008] Figure 2 is a block diagram of a release pipeline orchestrator of the system of
Figure 1 in accordance with one embodiment.

[0009] Figure 3 is a flow diagram of an exemplary computer-implemented method for
software release workflow management in accordance with one embodiment.

[0010] Figure 4 is a block diagram of a computing environment in accordance with one
embodiment for implementation of the disclosed methods and systems or one or more
components or aspects thereof.

[0011] While the disclosed systems and methods are susceptible of embodiments in
various forms, specific embodiments are illustrated in the drawing (and are hereafter
described), with the understanding that the disclosure is intended to be illustrative, and is
not intended to limit the invention to the specific embodiments described and illustrated
herein.

DETAILED DESCRIPTION

[0012] Methods, systems, and computer program products are described for managing a
release of a software product. The management of the release is supported via workflows
directing the operations of multiple software engineering systems involved in the release.
The workflows of the disclosed embodiments establish a release pipeline that integrates
the services of the software engineering systems. Implementation of the release pipeline is
automated by the disclosed embodiments despite the often complex nature of the services
provided by the software engineering systems, which may involve internal workflows of
their own.

[0013] Interaction with the software engineering systems and execution of the workflow
is automated via the application of a number of policy or gating rules. The gating rules
may provide decision logic and other customizations to support an efficient
implementation of the workflow. For example, execution of the workflow may include
automated checks for various compliance parameters, such as whether the correct
individuals have approved the release or a specific step of the workflow. Other automated
checks may involve policies or rules related to quality assurance. The workflow may thus
include, direct, and otherwise control different aspects or phases of the release lifecycle,
such as a build process and a validation process. The disclosed embodiments may also

automate the definition of a release pipeline via a front end or user interface and/or other

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

interfaces (e.g., an application programming interface (API)) through which a release
request is received or obtained to initiate a release.

[0014] The disclosed embodiments may be employed to improve the efficiency of the
entire release process or cycle. The disclosed embodiments automate the release process
beyond automation of the procedures implemented within a specific one of the software
engineering systems (e.g., build automation). The automation of the entire release cycle
provided by the disclosed embodiments may enable software developers to release
software products more quickly and more often without sacrificing other interests, such as
maintaining compliance and security. For example, with the disclosed embodiments,
release transactions and other actions need not be tracked or implemented via emails,
spreadsheets, or other inefficient, manual processes. By removing such manual steps in the
release process, an agile, seamless, or continuous release experience may be provided via
the disclosed embodiments. The efficiency improvements may also be facilitated through
scaling (e.g., cloud-based scaling) and/or higher availability (e.g., protection against local
or regional outages) of the release management services provided by the disclosed
embodiments.

[0015] Notwithstanding references herein to various commercially available software
engineering services managed via the disclosed embodiments, the disclosed embodiments
are not limited to any particular type of engineering service or provider thereof. Although
described in connection with cloud-based services, the disclosed embodiments are not
limited to any specific operating system, environment, platform, or computing
infrastructure. The disclosed embodiments may be used to manage the release of various
types of software products.

[0016] The nature of the releases managed via the disclosed embodiments may vary. For
example, a release need not involve a full or complete release of a software product to
production. Instead, the release may involve a partial release, such as a patch, hotfix or
quick fix update to the software product, or a configuration change. The final stage or
destination of the release need not involve production or deployment. For example, the
release may be an internal release between release environments within the manufacturer,
such as an integration environment and a staging environment.

[0017] Figure 1 depicts a software development environment 100 for development of one
or more software products. The software development environment 100 includes a release
management system 102 or service configured to manage a software release workflow.

The software development environment 100 includes a plurality of software engineering

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

systems used during the software development process. Various combinations of the
software engineering systems may be applied to the software product in a release pipeline
established by the release workflow. The software engineering systems may be discrete
systems or integrated to any desired extent. For example, one or more of the software
engineering systems may be provided as a separate software service. In this example, the
software engineering systems include a source control system 104, a build system 106, a
validation system 108, a project management system 110, a deployment infrastructure
112, and an alert system 114. Additional, fewer, or alternative systems may be provided.
For example, the software engineering systems may include a content distribution service
configured to distribute build outputs (e.g., binary files, configuration data, and other
artifacts) to various distributions (e.g., worldwide) and to provide services, such as a build
directory service, which may discover builds and use validations to ensure the integrity of
content is retained upon delivery. Such content distribution services may be integrated
with the build system 106, the deployment infrastructure 112, or be configured as
standalone services.

[0018] Each of the software engineering systems is configured to process data indicative
of the software product(s) under development. One or more of the software engineering
systems may be provided as a service (e.g., in a client-server framework) or otherwise
involve a distributed computing infrastructure. One or more of the software engineering
systems may thus be provided or supported via a cloud or other networked computing
arrangement. For example, the build system 106 may be configured in accordance with the
teachings of U.S. Patent Publication No. 2013/0055253 entitled “Cloud-based Build
Service”, published on February 28, 2013 (Microsoft Attorney Docket No. 333025.01).
The software engineering systems need not be provided separately as shown in Figure 1.
The software engineering systems may be integrated to any desired extent. For instance,
some or all of the software engineering systems may be coupled in one or more ways. In
some examples, the coupling may involve a shared repository or other resource and/or
involve interaction or communications, such as via an API. For example, one or more
source control services, one or more project management services, and/or other services
may be provided via a common server, such as a server configured in accordance with the
Team Foundation Server platform from Microsoft Corporation, which may be provided as
part of a Visual Studio® system, such as the Visual Studio® Application Lifecycle

Management system.

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

[0019] The source control system 104 may be directed to version or revision control and
other management of the source code for the software product. In one example, the source
control system 104 utilizes the Perforce revision control system (Perforce Software, Inc.),
but any source control system may be used. The source control system 104 may include
one or more repositories for the source code data or files. The repositories may be local or
distributed. For example, the repositories may be located and arranged in a cloud
infrastructure. The source code may be written in any one or more languages, and the
platform or operating system for the source code may also vary.

[0020] The build system 106 may be directed to automating the process of compiling the
source code data into binary code, and packaging the binary code. The build system 106
may include a number of tools and repositories for processing and handling the source
code and binary code files and data. For example, the build system 106 may include,
configure, or access a file server in which the results of a build are stored. Any build
software, tool, and/or infrastructure may be used in the build system 106. In one example,
the build system 106 utilizes the MSBuild build platform (Microsoft Corporation), which
may be available via or in conjunction with the Microsoft® Visual Studio® integrated
development environment. Other build systems and/or integrated development
environments may be used.

[0021] The validation system 108 may be directed to validating the operability of the
binary code, which may include a set of binaries. The validation system 108 may be
configured to execute a number of tests configured to determine whether the binary code
works as intended. For example, one or more tests may be configured to determine
whether the binary code meets a number of specifications for the software product. A
variety of different types of testing may be provided, including, for instance, unit testing,
functional testing, stress testing, fault injection, penetration testing, etc. Other types of
validation processes may be implemented by the validation system 108, including, for
example, compliance validation and security validation.

[0022] The project management system 110 may be directed to gathering, tracking,
and/or storing data indicative of a record of the release process. For example, work item
tracking, incident tracking, deployment tracking, and other item tracking may be
implemented by the project management system 110 to support the execution of the
release pipeline. The project management system 110 may be used to provide a signal or
other data to the release management system 102 to indicate that a particular action is

complete, complete with faults, etc. The project management system 110 may

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

alternatively or additionally be configured to provide logging functionality for the release
management system 102. Such logging may be useful in a variety of ways. For example,
the log data may include, for example, compliance data, such as the identity of a user who
approved a step in the release process. The project management system 110 may include a
repository, such as a persistent store, in which such log and other release process data is
stored. The project management system 110 may include a manager (e.g., a database
manager) and user interface for accessing, handling, or otherwise processing the release
process data (e.g., generating business intelligence reports). The project management
system 110 may include a Microsoft® SQL Server® or SQL Azure™ database
management system from Microsoft Corporation, but other database management systems
or architectures may be used. In some examples, the project management system 110 may
include the above-referenced Team Foundation Server platform from Microsoft
Corporation, but other services may be used.

[0023] The deployment infrastructure 112 may be directed to an automated deployment
of the software product. The deployment infrastructure 112 may include a gateway or
other service configured to support software product updates. For example, if the software
product is configured for cloud-based execution, the deployment infrastructure 112 may
include a service for distributing the software product to one or more data centers, virtual
machines, etc. The software development environment 100 need not include the
deployment infrastructure 112 in some cases, such as when the software product is not
electronically distributed.

[0024] The alert system 114 may include an alert or monitoring service to support
communications with users beyond any dedicated or other user interfaces of the release
management system 102. The communications may include alerts and other messages to
inform users of an event, such as a failure (e.g., a build failure), that occurs during
implementation of a workflow. The messages may utilize a variety of communication
protocols and media, including, for instance, emails and text messages, but other
messaging frameworks may be used. The alert system 114 may be a cloud-based
monitoring service, such as the Windows Azure™ Alert and Incident Monitoring Service
(AIMS) from Microsoft Corporation, but non-cloud monitoring services may be used.
[0025] In some embodiments, one or more functions of the alert system 114 may be
integrated with the release management system 102. For example, monitoring and/or
evaluation of the release process (e.g., to detect events warranting an alert) may be

implemented by a module of the release management system 102. The embodiment of

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

Figure 2 provides some examples of such monitoring. The alert system 114 may then be
instructed to transmit an email or other message regarding the event detected.

[0026] In the embodiment of Figure 1, the release management system 102 includes an
orchestrator 116 (or orchestrator server), a policy engine 118, and a front end system 120
(or front end server). The orchestrator 116 may be configured to direct or otherwise
communicate or interact with a combination of the above-referenced software engineering
systems to establish a release pipeline. The orchestrator 116 may support or facilitate
communications between the software engineering services. The policy engine 118 may
be configured to apply or enforce gating rules or other policies or decision logic during the
release process. The front end system 120 may be configured to support user configuration
of the release management system 102, monitoring of the release process, and other user
interaction with the release management system 102. The components of the release
management system 102 may be implemented on separate computers (e.g., server
computers) or computing systems (e.g., sets of server computers), or on a common
computer or computing system. Each such computer or computing system may be
configured as a virtual machine.

[0027] One or more of the components of the release management system 102, e.g., the
orchestrator 116, may be configured to manage multiple release pipelines for one or more
software products. As described herein, the release management system 102 may be
configured to provide the release management services in a parallel processing
architecture or arrangement. For example, the release management system 102 may
include multiple instances of the orchestrator 116 to orchestrate multiple release pipelines
for one or more software products. Similarly, the release management system 102 may
include multiple instances of the policy engine 118 and/or the front end system 120. The
multiple instances may be arranged in a cloud-based service framework that allows the
number of instances to be scaled in accordance with demand. The components of the
release management system 102 may be integrated to any desired extent. For example, the
policy engine 118 may be an integral part of the orchestrator 116. In some cases, various
combinations of the services provided by the orchestrator 116, the policy engine 118,
and/or the front end system 120 are implemented on a common computer (e.g., server
computer) or computing system.

[0028] The orchestrator 116 may include a workflow engine 122 to implement
workflows involving the above-described software engineering services. The workflow

engine 122 may correspond with the workflow manager provided as a part of the

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

Microsoft® Windows® Workflow Foundation framework from Microsoft Corporation,
although other workflow managers or engines may be used. As described below, the
workflow engine 122 and/or the orchestrator 116 are configured to manage
communications with the software engineering services, process workflow parameter data
to provide a workflow to implement a release pipeline configured in accordance with such
workflow parameter data, and execute the workflow to send instructions to the software
engineering systems. For example, the parameter data may specify that the release pipeline
be configured to include an integration step, a build step, a deployment step, and a code
movement step. In another example, the parameter data may specify that the release
pipeline be configured to include a code movement step, a build step, a validation step
(e.g., for unit testing), a deployment to integration step, a further validation step (e.g., for
functional, stress, and penetration testing for validation of a service), a further code
movement step, and a deploy to production step. The steps and step order in the release
pipeline may vary considerably. For example, other release pipelines may not have code
movement steps due to the absence of a branching architecture. Some steps need not
involve processing of code for the software product. For example, other pipelines may
include instructions for gathering and displaying metrics regarding the release, as
described below.

[0029] Data indicative of and/or resulting from the workflows, such as temporary or log
data, may be stored in a workflow data store 124. The temporary data may be indicative of
the workflow execution, which may be useful to support recovery in the event of a failure.
The workflow data store 124 may include one or more local data stores or a distributed
data store in communication with one or more processors used to implement the workflow
engine 122.

[0030] Implementation of the release workflow may be initiated via a request received or
otherwise obtained via the front end system 120. The request may specify or otherwise
include workflow action parameters or parameter data to define a release pipeline
involving a combination of the above-described software engineering systems. For
example, the request may specify a software product, one or more source control branches,
file directories or other locations, one or more change lists, one or more release
environments (e.g., a target environment), and a combination of actions (e.g., build,
validate, deploy, validate, etc.) to be implemented in the release. In the embodiment of
Figure 1, the front end system 120 may be configured to generate a user interface 126 to

support the entry of the request and the workflow action parameter data. A workflow

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

action parameter data package 128 may be passed from the front end system 120 to the
orchestrator 116 and/or the workflow engine 122. The workflow action parameter data
package 128 may include parameters or data indicative of or specifying one or more
aspects of the release pipeline or the workflow. The parameters or data may include data
in addition to that provided via the request or the user interface 126. The workflow action
parameter data package 128 may be configured as a release specification. In some cases,
the workflow action parameter data package 128 is received by the orchestrator 116 via an
API end point of the orchestrator 116. Other communication schemes may be used. For
example, the workflow action parameter data package 128 may be derived from a user
interface input process that provides a user an opportunity to reuse or otherwise select a
previously used workflow, workflow action, or other workflow parameter or data.

[0031] The release pipeline and the workflow may be defined by the orchestrator 116
and/or the workflow engine 122 in accordance with the workflow parameter data in the
workflow action parameter data package 128. For example, the orchestrator 116 and/or the
workflow engine 122 may incorporate the workflow parameter data into a workflow
template. The orchestrator 116 and/or the workflow engine 122 may be configured to
select a template from a plurality of templates stored in, e.g., the workflow data store 124.
The selection of the template may be based on one or more aspects of the workflow
parameter data, such as the combination of actions requested. In one embodiment, a
template is provided for each respective release environment (e.g., a test environment, a
production environment, etc.). The front end system 120 may be configured to facilitate
modifications to the workflow templates. In some embodiments, an API may be provided
to facilitate an upload of one or more workflows for selection. Alternatively or
additionally, the workflows may be modified during execution thereof.

[0032] During the implementation of the release workflow, a record of the workflow
actions or steps executed may be stored by the release management system 102 in a
persistent store 130 in communication with the orchestrator 116 and/or the release
management system 102. The persistent store 130 may be provided by a cloud-based
storage service. The persistent store 130 may be configured for durable storage of a variety
of different types of data. For example, data indicative of each workflow action
implemented during the workflow, as well as the results of each action, may be recorded
or stored in the persistent store 130. For instance, the binary files resulting from a build
may be stored in the persistent store 130. The workflow may be configured with one or

more checkpoints at which data indicative of the state of the release is stored in the

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

persistent store 130. If a failure occurs after the checkpoint, the data stored at that time
may be relied upon to restart the workflow from the checkpoint. The data stored at a
checkpoint may also be used to support the execution of multiple instances of the release
pipeline. The data may also be used for scalability. For example, a workflow started on a
first server may be resumed by another server, if, for instance, the first server becomes
overloaded or is taken out of service (e.g., through maintenance or by failure).

[0033] Other types of result data may be stored by the release management system 102 in
the persistent store 130. For example, result data identifying storage locations for the build
results may be recorded in the persistent store 130. In another example, the result data may
be indicative of the status or other operational characteristic of the workflow or release.
The operational characteristic(s) to be recorded or gathered may be identified in the
request received via the front end system 120. The persistent store 130 may provide
storage redundancy for one or more types of data stored in the workflow data store 124.
[0034] Metric data 132 indicative of the release workflow(s) may be returned from the
release management system 102 or the workflow engine 122 to the front end system 120.
The front end system 120 may, in turn, pass the metric data 132 to the persistent store 130.
The metric data 132 may alternatively or additionally be stored directly in the persistent
store 130 or through a different intermediary device or system, such as the above-
referenced monitoring system or other monitoring system or service. The metric data 132
may be alternatively or additionally provided to the user via a dashboard 134 generated by
the front end system 120. The metric data 132 may be indicative of the progress, status, or
other operational characteristic of the release workflows being managed by the release
management service 102. For example, the metric data 132 may be representative of how
long a particular step of a release took to execute, of how many releases are currently
being executed, or of the results of one or more tests at varying levels of specificity (e.g.,
either individual or aggregated test results). One or more characteristics of the metric data
132 may be specified via the user interface 126. For instance, the user requesting a release
may specify the types of metric data 132 to be displayed via the dashboard 134. The front
end system 120 may be configured for telemetric communications with the orchestrator
116 to support the gathering of the metric data 132.

[0035] A request for the metric data 132 may be provided or received at various times.
The metric data 132 may be requested along with the request to initiate a release
workflow. Thus, in some embodiments, the workflow action parameter data package 128

includes data indicative of the types of metric data 132 requested. Alternatively or

10

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

additionally, a request for the metric data 132 may be received via the user interface 126
after the initiation of the workflow. The front end system 120 may then be configured to
send a message to the orchestrator 116 requesting the metric data 132. The message may
include instructions to gather the metric data 132. The request may be received by the
orchestrator by the above-referenced API end point. The metric data 132 may alternatively
or additionally be used to trigger automatic alerts about, e.g., system states. For example,
an alert may be triggered in the event that the metric data 132 indicates that the duration of
a certain process in the system exceeds a predetermined threshold. The data may also be
aggregated and reported at a later time across multiple releases.

[0036] The persistent store 130 may be used by the release management system 102 as a
long term data storage for some or all of the data stored in the workflow data store 124.
The workflow data may include log data. The log data may include data recorded for
compliance purposes, including, for instance, the identity of each person providing
approval during the workflow. The release management system 102 may be configured in
accordance with auditing data of, e.g., a retention or other compliance policy, to maintain
the data in the persistent store 130 for a time period specified via the auditing data. Any
number of stores may be used to provide capacity for the storage of data from a number of
releases. For example, the persistent store 130 may include a varying number of data
stores in a cloud-based framework or other distributed computing architecture. The data
may also be recorded by or as part of the project management system 110, which may be
useful in, for instance, correlating a release with work items, incidents, or other workflow
cvents,

[0037] The front end system 120 may provide functionality beyond requesting releases
and dashboard displays. In the embodiment of Figure 1, the front end system 120 includes
an authentication module 136 and an authorization module 138. The authentication
module 136 is configured to authenticate users of the release management system 102.
The authentication module 136 may be configured to access one or more user directories
(e.g., a corporate user directory) or other databases to confirm user credentials. The
authorization module 138 may be configured to establish or determine user permissions or
roles, and the permissions of such roles, which may then be associated with specific users.
In some embodiments, each authenticated user may be assigned to a user role having a set
of permissions to, ¢.g., approve certain workflow actions, as described further below. User
or user role permissions may be specified via an administrator control interface 140

generated by the front end system 120. Alternatively or additionally, user permissions may

11

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

be specified indirectly, ¢.g., via a remote service. For example, the user permissions may
be specified in accordance with a title (e.g., project manager) indicated via data made
available by the database(s) relied upon for authentication. The user may also have a
different role (e.g., approver, initiator, developer, etc.) based on the origin, scope, or other
aspect of the release, as described herein. The authentication module 136 and the
authorization module 138 may be configured to access a federated database system or
architecture.

[0038] Data indicative of a user who approved a particular workflow action may be
stored in the persistent store 130 and/or the workflow data store 124. A complete record of
the approvals provided during each release workflow may thus be stored, which may be
useful for compliance with corporate, governmental, or other regulations.

[0039] The administrator control interface 140 may be configured to allow an
administrator or other authorized user to control other aspects of the release management
system 102. In some embodiments, the administrator control interface 140 may provide
various workflow control options. For example, a user may direct the workflow engine
122 to suspend, resume, or cancel one or more releases via the administrator control
interface 140. Suspension of one or more releases may be useful in the event of, for
instance, a failure (e.g., test failure) in one development branch that may have adverse
impacts in other branches. The administrator control interface 140 may alternatively or
additionally be used to override a variety of different actions automated via the release
management system 102. For example, a workflow action specified via a template
workflow may be skipped or otherwise cancelled. An override to lock any further
workflow progress may be useful in certain situations, such as an outage that, until
addressed, may adversely impact subsequent releases for the software product involving
other clusters.

[0040] The policy engine 118 may provide control logic for the release management
system 102. The control logic may be called or otherwise relied upon to determine
whether to proceed with a workflow action in the release workflow. The control logic may
include or be configured as a set of policy or gating rules. In this embodiment, the gating
rules are set forth in a policy schema 142. The policy schema 142 may be configured as a
data file or document, such as an extensible markup language (XML) document. The
format, language, and other characteristics of the policy schema 142 may vary. The policy
engine 118 may access a variety of different policy or configuration specifications to

obtain the gating rules. With a particular gating rule of the policy schema 142 available,

12

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

the policy engine 118 is configured to direct the orchestrator 116 and/or the workflow
engine 122 to send a successive instruction based on whether the gating rule is met.
Alternatively or additionally, such direction of the orchestrator 116 and/or the workflow
engine 122 may follow a request sent to the policy engine 118 from the orchestrator 116
and/or the workflow engine 122 on whether to proceed with a successive step in the
workflow.

[0041] The policy schema 142 and/or the gating rules may be used to customize or
configure the release workflow. Such customization may be at a high level. For example,
the release workflow may be configured as a test workflow (e.g., a test to release
workflow), a release-to-production workflow, or other release workflow. Such high level
customization may be determinative of which software engineering systems are involved
or included in the release pipeline and, in some cases, the order in which such systems are
called upon.

[0042] The policy schema 142 and/or gating rules may customize the release workflow at
an intermediate level in which the operation of the software engineering systems is
configured. For example, the policy schema 142 may specify a test schema or set of tests
to be implemented by the validation system 108. A workflow may be designed to
implement only certain tests (or types of tests) made available by the validation system
108. Alternatively or additionally, the policy schema 142 and/or the gating rules may be
configured to initiate an automated test selection routine, in which the tests (or types of
tests) are selected based on environmental variables or other parameters of the release. For
example, the test selection routine provided in the Team Foundation Server platform from
Microsoft Corporation may be used.

[0043] Even more detailed levels of logic may be specified via the gating rules. For
example, the policy schema 142 may include a gating rule specifying a code coverage
threshold (e.g., 50% pass or 70% pass) to be met during validation. If the code coverage is
below the threshold, then the workflow does not proceed to the next workflow action (e.g.,
a subsequent test, a deployment, etc.). The orchestrator 116 may instead send an
instruction to the alert system 114 regarding the code coverage failure. In another
example, the policy engine 118 may be configured via the policy schema 142 to apply
gating rules regarding a state of a production environment. The policy engine 118 may
instruct the orchestrator 116 to validate that the state of the production environment before
releasing a build of the software product to the production environment. The policy

schema 142 may specify one or more validation criteria as gating rules for the validation

13

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

process. In yet another example, a gating rule may be used to specify a location (e.g., a
specific cluster) to which the software product is to be deployed and/or the circumstances
under which such deployment occurs. A variety of other parameters for the release
workflow and pipeline may be specified via the gating rules, including, for instance,
whether the build results are to be replicated based on which code branch is built, and
when or where to implement forward or reverse integration across branches.

[0044] The policy engine 118 may be directed to verification and quality assurance
enforcement. In some embodiments, the gating rules are used by the policy engine 118
and/or the orchestrator 116 to determine whether a workflow incident occurs. Failure to
meet a gating rule may cause an alert (e.g., a text message, email, or other message) to be
sent to a user(s) authorized to respond to the workflow incident. The user(s) to which the
alert is sent may be determined via the policy schema, the workflow, the workflow action
parameter data package 128, and/or data specified via the authorization module 138. For
example, the authorization module 138 may be used to establish that only users having
project manager or higher roles are authorized to respond to workflow incidents of a
certain level. The policy schema 142 may be relied upon to classify the various workflow
incidents by level. The workflow engine 122 may be configured to resume the workflow
based on a response to the alert from an authorized user.

[0045] The policy schema 142 (or other logic source) may include or specify a variety of
transition criteria for the release workflow. Some transition criteria may be configured or
applied as entry criteria. A gating rule may specify that a certain condition is met before
allowing a workflow action to begin. For example, a condition may specify that a user
having a Security Expert role provides signoff that a release has been reviewed for
compliance with security practices, that appropriate Secure Development Lifecycle (SDL)
tools from Microsoft Corporation (or other security assurances processes) have been run
on the code to verify proper processes, or that code review has been done for the change
by appropriate person(s) as specified by a compliance policy. Other gating rules may be
configured or applied as exit criteria. A gating rule may specify that a certain condition is
met before allowing a workflow action to be completed. For example, a condition may
specify that continuous testing showed proper results (e.g., in accordance with service
level agreement (SLA) restrictions) for all actions, or that no customer-impacting incidents
were created during the time taken to validate the released changes (e.g., bake time), or
that all of the service components entered steady-state and have not resulted in new

failures.

14

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

[0046] The gating rules and, thus, the workflow policy, may be predetermined or
predefined to support the implementation of the release workflow in a variety of ways. For
example, the gating rules need not be specified via a discrete configuration file as shown
in Figure 1. One or more gating rules may instead be specified in a workflow template
and/or the workflow action parameter data package 128. For example, the workflow action
parameter data package 128 (or other source of the gating rules) may specify a code
coverage threshold (e.g., 80%). In another example, the workflow action parameter data
package 128 (or other source of the gating rules) may specify a location of the source code
for processing. The decision logic for the gating rules may alternatively or additionally be
specified via workflow instructions incorporated (e.g., hard-coded) into the workflow
template. For instance, the gating rules may be partially or fully hard-coded into the
workflow template.

[0047] The policy engine 118 may include an interpreter or other data processor
configured to evaluate data indicative of the gate rules. In one embodiment, the data may
be arranged in a set of classes, an object library, or other data structure. The data structure
may be set forth in an XML or other framework in one or more data files. The interpreter
or other data processor of the policy engine 118 may then be configured to read the data
structure to determine or load the gate rules. Alternatively or additionally, data indicative
of the gate rules is set forth in a dynamic link library (DLL) file(s) or other compiled or
processed format. In some cases, the gate rules may be set forth as code, instructions, or
other logic, rather than data used to configure or customize such logic.

[0048] Figure 2 shows the orchestrator 116 and the workflow engine 122 thereof in
greater detail. The orchestrator 116 may include a number of modules directed to
interactions with the software engineering systems to achieve desired workflow results. In
this example, the orchestrator 116 includes a communication manager 150 or other
interface to support communications with the software engineering systems. The
communication manager 150 may include or consult a lookup table or other logic to direct
messages or other data exchanges to the appropriate software engineering system(s). The
format, protocol, and other characteristics of the communications supported by the
communication manager 150 may vary. For example, the communication manager 150
may send instructions to the software engineering systems via data exchanges configured
in accordance with the capabilities of the software engineering systems, such as a
respective API of the software engineering system. In some embodiments, interaction with

an engineering system may be implemented by defining one or more interfaces that

15

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

describe or reflect the capabilities of the engineering system. For example, an interface
may be configured in accordance with the expected capabilities of the above-referenced
source control system. The interface may then be customized or otherwise implemented to
support data exchanges (e.g., data retrieval) with specific instances of the source control
System.

[0049] The communication manager 150 may also be configured to support interaction
with other components of the release management system 102 (Figure 1), such as the
policy engine 118 (Figure 1) and/or the front end system 120 (Figure 1). For example, the
communication manager 150 may provide an interface for receiving and processing the
workflow action parameter data package 128 (Figure 1) and/or other workflow action
parameter data. Alternatively or additionally, the communication manager 150 may be
configured to receive and process data indicative of the results of the application of the
gating rules by the policy engine 118.

[0050] The workflow engine 122 may be configured to generate the instructions sent by
the communication manager 150 and/or process the messages received by the
communication manager 150. In this embodiment, the workflow engine 122 includes a
workflow interpreter 152, a workflow validator 154, an execution environment 156, and
an event scheduler 158. The workflow interpreter 152 may be configured to interpret
workflow code authored in a workflow language, such as the workflow language
established as part of the Microsoft® Windows® Workflow Foundation framework. Any
workflow language may be used. The workflow language may define a set of primitive
instructions configured to implement basic workflow actions (e.g., skip, cancel, run, run in
a loop, run in parallel, change, etc.). The workflow language may be defined or based
upon code written in the C# language and/or in XML script, although other high-level
languages may be used. The workflow engine 122 may also include a compiler if the
workflow code is presented in an intermediate language for which a compiler is not
already available.

[0051] The workflow validator 154 may be one of several tools provided by the
workflow engine 122 to author, modify, customize, or otherwise prepare a workflow or
workflow template for implementation in the execution environment 156. The workflow
validator 154 may be integrated with the workflow interpreter 152 to any desired extent.
Once a workflow (or workflow template) has been validated, the workflow may be made
available for implementation within the execution environment 156. The execution

environment 156 may be based on or include the Common Language Runtime (CLR)

16

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

environment of the Microsoft® NET framework and/or Microsoft® Windows® operating
system, but other software runtime environments and frameworks may be used.

[0052] In some embodiments, the workflow engine 122 is configured to call the policy
engine 118 (Figure 1) to incorporate the gating rules into the workflow during execution
of the workflow (e.g., in the execution environment 156). The workflow may thus be
configured or customized on the fly. Alternatively or additionally, data indicative of the
gating rules (and/or other parameter data) is incorporated into the workflow before the
execution environment 156 is implemented.

[0053] The workflow engine 122 and/or other components of the orchestrator 116 and
the release management system 102 may be implemented in a cloud-based framework in
which multiple virtual machines are implementing and managing a number of workflows.
The cloud-based framework may be configured in a manner similar to the cloud-based
service described in the above-referenced U.S. Patent Publication. For example, the cloud-
based framework may provide a hosted service, such as a Windows Azure™ hosted
service, with a scalable number of virtual machines providing multiple instances of an
orchestrator role, a policy engine role, and/or a front end role of the release management
system 102. The cloud-based framework may be useful for supporting parallel processing
of one or more steps or actions of the release workflow. For example, virtual machines
within one or more data centers may be used to implement validation testing in parallel.
The workflow engine may be executed across multiple machines (virtual or physical),
which may facilitate transfers of workflows across the machines, e.g., through the above-
referenced persistent store and/or other predetermined persistence points. Such transfers
may provide increased scalability in which many workflows are executed in parallel
and/or increased resiliency to failure (e.g., when a machine executing a particular
workflow fails).

[0054] The orchestrator 116 may include a number of modules directed to monitoring the
execution of the workflows. In this example, the orchestrator 116 includes a system health
monitoring module 160 and a dependency validation module 162. Additional, fewer, or
alternative monitoring modules may be provided. In some cases, one or more of the
modules may be provided as a component of the policy engine 118 (Figure 1) rather than
the orchestrator 116. For example, the policy engine 118 may include the dependency
validation module 162. Either way, the policy schema 142 (Figure 1) may be used to

declare dependencies or other constraints (e.g., an upgrade order) for the software product.

17

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

[0055] The monitoring modules may be configured to detect an event, such as a failure,
during the execution of a workflow that warrants an alert or other action. The system
health monitoring module 160 may be configured to monitor the health or other state of
the computing system implementing the orchestrator 116 (or any one or more components
thereof). The system health monitoring module 160 may thus be configured to detect
improper operating conditions and other conditions that may adversely impact the
execution of the workflow. For example, the system health monitoring module 160 may be
relied upon to detect when the computing resources (€.g., processor or memory capacity)
of the computing system are inadequate for the load provided by the workflow. If a system
health parameter does not meet a threshold, an alert or other message may then be sent to a
user authorized (e.g., via the policy schema 142 (Figure 1)) to respond. In some cases, the
system health monitoring module 160 may be configured to direct the workflow engine
122 to suspend the workflow. The workflow may then resume based on a response to the
user alert or other user instruction.

[0056] Other components or aspects of the release environment may alternatively or
additionally be monitored. The release environment may be an environment in which the
software product is being used and, thus, subject to an SLA prohibiting or limiting
downtime. In this example, the dependency validation module 162 is configured to
validate and otherwise monitor a state of a production environment before releasing a
build of the software product thereto. The validation may be based on one or more
validation criteria specified in the policy schema 142 (Figure 1). For example, the
validation criteria may involve or specify a number of dependencies for the portion of the
software product to be released. The dependency validation module 162 may be
configured to determine a state of each dependency (e.g., determine a version of a
component) and validate the state of the dependency before implementing the release (e.g.,
confirm that the version is compatible with the release). Such validation may avoid
rendering the software product inoperable as a result of the release. The health of the
operating environment governed by the SLA may thus be maintained.

[0057] The orchestrator 116 may include additional modules for supporting the
management of the release workflow. In this embodiment, the orchestrator 116 includes an
authorization module 164 directed to managing the permissions of users and/or user roles.
The functionality of the authorization module 164 may alternatively or additionally be
provided by one or more components of the front end system 120 (Figure 1). The

authorization module 164 may be integrated with such components to any desired extent.

18

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

In some embodiments, the role management functionality described below may thus be
provided by a component of the front end system 120.

[0058] The authorization module 164 may implement a role-based access management
framework for the orchestrator 116 and other components of the disclosed systems. Users
may be assigned roles to define, limit, or otherwise control the workflow actions, events,
or other items with which the user may interact or control. For instance, a user assigned to
a developer role may be prohibited from approving a release or deployment to production.
The set of permissions may vary considerably with the nature of the actions involved in a
release process. Some roles may be capable of initiating a forward integration within a
release workflow, but not deployments. Some roles may initiate a build process, but not
approve the results of a build.

[0059] The policy schema 142 (Figure 1) may be used to establish rules for the roles. For
example, the policy schema 142 may be used to allow only users assigned to a project
manager role to approve a release for a certain software product. In this way, other roles
may be capable of approving a release for other software products. Alternatively or
additionally, the authorization module 164 and/or the authorization module 138 (Figure 1)
of the front end system 120 (Figure 1) may be used to establish permissions for the roles.
In some cases, the permissions may be global (e.g., across all software products,
environments, etc.) or default values that may be customized or overridden by permissions
specified via the policy schema 142,

[0060] A variety of different roles and permissions for such roles may be established via
the authorization module 164. An administrator role may be defined to provide override
and other control capabilities, including, for instance, those referenced above. Some roles
may classify a user in accordance with a team involved in the software release process,
such as an operations team or a testing team.

[0061] The authorization module 164 may include role manager functionality. For
example, the authorization module 164 may be configured to map users to roles and/or
permissions, and/or to map roles to software products. The role manager functionality may
allow the authorization module 164 to apply permissions on a product-by-product basis.
Users may thus be associated with one or more specific products and/or one or more
specific services.

[0062] In some embodiments, the role access framework may include a data structure for
classifying role membership, role access or permissions, and scope definition. The role

membership data may specify which users belong to which role(s). Roles need not

19

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

correspond with a corporate structure (e.g., project manager, etc.), but rather may be
specific to the release process (e.g., approvers, initiators, etc.). Alternatively or
additionally, the role membership data may specify the products or services with which
the user is associated. The role membership data may also specify the scope of such
associations, such as the components of such products or services with which the user is
associated. A user may thus be associated with a team building a portal for the software
product, but not a team building a software development kit for the same product. The role
access data may specify the permissions for each role.

[0063] The front end system 120 (Figure 1) may be used to establish the role access
framework. For example, an administrator user may enter the role membership data, the
role access data, and/or the scope definition data via the authorization module 138.
Alternatively or additionally, such authorization data may be specified and/or managed via
an external service (e.g., a directory service) or system, such as a cloud-based system or a
corporate system.

[0064] Figure 3 depicts an exemplary method for managing a software release. The
method is computer-implemented. For example, one or more server computers of the
release management system 102 shown in Figure 1 may be configured to implement one
or more of the acts of the method. The implementation of each act may be directed by
respective computer-readable instructions executed by a processor of the release
management system 102 and/or another processor or processing system.

[0065] In the embodiment of Figure 3, the method begins with an act 200 in which a user
is authenticated. The user may be authenticated in connection with an attempt to access the
release management system 102 (Figure 1) via the front end system 120 (Figure 1). The
user may be accessing the release management system 102 for various reasons. Given the
appropriate permissions, the user may access the release management system 102, for
instance, to initiate, suspend, or cancel a release, to monitor an ongoing release, to
configure or manage a release workflow, and/or to configure the release management
system 102 (e.g., modify a template workflow). The authentication may be managed by
the authentication module 136 (Figure 1) of the front end system 136 and/or one or more
external authentication systems (¢.g., a federated database system). For example, the
authentication process may include accessing a private network user directory in an act
202.

[0066] In some cases, an administrator user may access the release management system

102 to define the permissions of various user roles in an act 203. Data indicative of the

20

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

permissions may be stored in, for example, the workflow data store 124 (Figure 1) or other
data store for subsequent access by the authorization module 138 (Figure 1) and/or the
authorization module 164 (Figure 2). Additional or alternative authorization data may be
stored. Data indicative of the permissions may be stored at another time, such as during an
initial configuration session.

[0067] In act 204, a request is received or otherwise obtained for a release. The request
specifies or includes workflow action parameter data to define a release pipeline involving
a combination of software engineering systems. For example, a user may specify a
software product to be released (including, e.g., a source code location), a target
environment to which the software is to be released, an order of the software engineering
systems in the pipeline, and/or a selection of a subset of such systems. Additional, fewer,
or alternative workflow parameters may be specified in connection with the release
request. Each software engineering system may be configured to process data indicative of
the software product to be released, as described above.

[0068] The front end system 120 (Figure 1) may facilitate the specification of the
workflow action parameter data by generating the user interface 126 (Figure 1) or other
request specification user interface in an act 206. The layout and other characteristics of
the user interface may vary. In some cases, the user interface may allow the user to create,
modify, or otherwise configure a workflow for execution. The configuration may include
entering workflow code to customize a template workflow to create a new workflow.
[0069] Once the workflow request and/or the workflow parameter action data is
specified, the method may then include confirming that the user is authorized to initiate
the workflow in an act 208. The authorization process may include determining a user role
of the user and determining the permissions of the user role for a given software product.
The permissions may be configured to authorize the user to initiate certain types of
releases or workflow actions, but not others. The authorization process may be
implemented by the authorization module 138 (Figure 1) and/or the authorization module
164 (Figure 2).

[0070] Code and/or data indicative of the workflow may be processed in an act 210. In
some embodiments, the workflow may be based on a template workflow modified in
accordance with the workflow parameter action data. The workflow template may be
processed in preparation for execution once modified in accordance with the workflow
parameter action data. The processing may include code interpretation, workflow

validation, compilation, linking, and other code processing.

21

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

[0071] In some embodiments, an act 212 is implemented to obtain an approval or sign-
off of the initiation of a release workflow before the execution of the workflow begins. For
example, a notification may be sent to a user authorized to approve the release. The
notification may include an email, a text message, or any other transmission. The
notification may specify data indicative of the release workflow, including, for instance,
one or more parameters specified via the workflow action parameter data, such as the
release pipeline. A decision block 214 determines whether the release is approved. If yes,
then control passes to a set of blocks associated with execution of the workflow. If the
release is not approved, then the method ends and the release process is discontinued.
Alternatively, control may pass to a state in which a user is given an opportunity to take a
corrective action (e.g., an update or modification to address a comment from an approver).
[0072] The workflow is executed in an act 216 in which a series of instructions are sent
to the software engineering systems in the release pipeline. The release pipeline is
implemented in accordance with the workflow action parameter data. The execution of the
workflow may include or involve data generation for monitoring, compliance, or other
purposes. At various points in the workflow, further execution of the workflow (e.g., a
next step in the pipeline) may involve obtaining an approval from an authorized user. In
the embodiment of Figure 3, a callback 217 to the act 212 may be implemented to send
another notification to an approver. Further execution of the workflow may then continue
if the decision block 214 determines that the approval is received.

[0073] In this example, data indicative of such approvals, workflow metrics, and/or other
data indicative of actions implemented during workflow execution are recorded in an act
218. For example, such data may be recorded in one or more log files, which may be
stored in one of the above-referenced data stores and/or another data store. Such data may
specify a user who approved a specific action (e.g., the initiation of the workflow), as
described herein. The act 218 may also include the presentation of data indicative of the
workflow execution via a dashboard generated by the front end system 120 (Figure 1). The
dashboard may display workflow metric data as described above. One or more metrics to
be displayed via the dashboard during execution of the workflow may be specified via the
workflow action parameter data provided in connection with the release request.

[0074] A policy schema may be accessed in an act 220 to obtain any gating or other rules
for the workflow. The policy schema may include a configuration file, such as an XML
file, as described above. Alternatively or additionally, data indicative of some or all of the

policy schema (and/or gating rules) may be accessed via another mechanism, such as via a

22

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

user interface generated by the release management system 102 (Figure 1). For example, a
gating rule may be provided via a user interface during the execution of the workflow. In
some embodiments, the policy schema may be accessed to configure an instruction in the
series of instructions provided to the software engineering systems, which may, for
example, involve application of one or more gating rules.

[0075] During execution of the workflow, a successive instruction in the series of
instructions is sent based on whether a transition criterion or other gating rule of the
configuration file or other specification of the policy schema for the release is met. In this
embodiment, an entry criterion or an exit criterion is applied in an act 222. Such transition
criteria may specify, for example, quality assurance rules for entering or exiting a step in
the workflow, as described above. Alternatively, one of the transition criteria may specify
a production environment compliance rule for entering or exiting a step in the workflow,
as also described above. In yet another example, one of the transition criteria may specify
a user role to approve implementation of a successive instruction in the series of
instructions, including, for instance, initiation of the workflow. The transition criteria may
be applied via a policy engine. The policy engine may configure an instruction in the
series of instructions based on the gating rule(s) of the policy schema.

[0076] The embodiment of Figure 3 includes a number of acts that may be implemented
during execution of the workflow. In some cases, the workflow action parameter data
specifies that such acts be implemented. A system health parameter of a computer (e.g., a
server computer) or computing system executing the workflow may be monitored in an act
224. A state of the production environment may be monitored or validated in an act 226 to
ensure that a validation criterion (relating to, ¢.g., a dependency of the software product) is
met before, for instance, a build is released to the production environment. In dependency
validation examples, validating the state of the production environment may thus include
determining a state of the dependency, and validating the state of the dependency before
implementing the release. A release action or other event (e.g., a release to the production
environment) may be scheduled in an act 228 for a later time based on the state of the
production environment (or other state monitored during workflow execution). The
scheduling may include specifying a constraint or condition to be met (relating to, e.g., a
state of the dependency) before allowing the release or workflow action to be
implemented.

[0077] A decision block 230 may determine whether an incident has occurred during

workflow execution. A workflow incident may occur due to a failure to meet a transition

23

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

criterion or other gating rule. For example, the decision block 230 may determine whether
a system health parameter does not meet a threshold during the monitoring of the act 224,
or whether a dependency of the software product does not meet a validation criterion
during the validation of the act 226. Additional, fewer, or alternative types of incidents
may be monitored. If an incident occurs, an alert is sent in an act 232 to a user authorized
to respond. The authorization of the user to respond to the incident may be established or
specified via the policy schema as described above (e.g., via a user role assignment).
Another decision block 234 determines whether the workflow may be restarted, resumed
(e.g., a workflow action may be retried), or skipped based on a response to the alert (e.g.,
from an authorized user). If a suitable response is received, control may return to the act
216 for further workflow execution. If not, then the execution of the release workflow may
terminate. In some embodiments, the response to the alert may involve or include a gating
rule change (e.g., within the above-referenced decision engine) or other change that
renders the original criterion no longer applicable. In such cases, the workflow may
resume automatically.

[0078] The release workflow may also be terminated via an override or other control
provided by an administrator or other authorized user. For example, the decision block 230
may be configured to suspend the execution of the workflow as shown in Figure 3.

[0079] If the decision block 230 is reached after successful implementation of the series
of instructions in the workflow (e.g., without any incidents or any unaddressed incidents),
then control may pass to an act 236 in which an alert or other message is sent indicating
the successful completion of the release.

[0080] The order of the acts of the method may vary in addition to those variations
identified above. For example, the policy schema may be accessed before the execution of
the workflow and/or the processing of the workflow code. The workflow may thus be
configured in accordance with the policy schema and the workflow action parameter data
before execution. In such cases, one or more gating rules of the policy schema may
alternatively or additionally be specified during execution, as described above.

[0081] With reference to Figure 4, an exemplary computing environment 300 may be
used to implement one or more aspects or elements of the above-described methods and/or
systems. The computing environment 300 may be used by, or incorporated into, one or
more elements of the release management system 102 (Figure 1). For example, the
computing environment 300 may be used to implement the orchestrator 116, the workflow

engine 122, the policy engine 118, and/or the front end system 120. The computing

24

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

environment 300 may be used or included as a client, network server, application server,
or database management system or other data store manager, of any of the aforementioned
elements or system components. The computing environment 300 may be used to
implement one or more of the acts described in connection with Figure 3.

[0082] The computing environment 300 includes a general-purpose computing device in
the form of a computer 310. Components of computer 310 may include, but are not limited
to, a processing unit 320, a system memory 330, and a system bus 321 that couples various
system components including the system memory to the processing unit 320. The system
bus 321 may be any of several types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By
way of example, and not limitation, such architectures include Industry Standard
Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA)
bus, Video Electronics Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus also known as Mezzanine bus. The units, components,
and other hardware of computer 310 may vary from the example shown.

[0083] Computer 310 typically includes a variety of computer readable storage media
configured to store instructions and other data. Such computer readable storage media may
be any available media that may be accessed by computer 310 and includes both volatile
and nonvolatile media, removable and non-removable media. Such computer readable
storage media may include computer storage media as distinguished from communication
media. Computer storage media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules or
other data. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other medium which may be used to
store the desired information and which may accessed by computer 310.

[0084] The system memory 330 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 331 and random access
memory (RAM) 332. A basic input/output system 333 (BIOS), containing the basic
routines that help to transfer information between elements within computer 310, such as
during start-up, is typically stored in ROM 331. RAM 332 typically contains data and/or

program modules that are immediately accessible to and/or presently being operated on by

25

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

processing unit 320. By way of example, and not limitation, Figure 4 illustrates operating
system 334, application programs 335, other program modules 336, and program data 337.
For example, one or more of the application programs 335 may be directed to
implementing one or more components of the orchestrator 116, the workflow engine 122,
the policy engine 118, the front end system 120, and/or any instruction sets of the systems
and methods described above. In this or another example, any one or more the instruction
sets in the above-described memories or data storage devices may be stored as program
data 337.

[0085] Any one or more of the operating system 334, the application programs 335, the
other program modules 336, and the program data 337 may be stored on, and implemented
via, a system on a chip (SOC). Any of the above-described modules may be implemented
via one or more SOC devices. The extent to which the above-described modules are
integrated in a SOC or other device may vary.

[0086] The computer 310 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, Figure 4 illustrates
a hard disk drive 341 that reads from or writes to non-removable, nonvolatile magnetic
media, a magnetic disk drive 351 that reads from or writes to a removable, nonvolatile
magnetic disk 352, and an optical disk drive 355 that reads from or writes to a removable,
nonvolatile optical disk 356 such as a CD ROM or other optical media. Other
removable/non-removable, volatile/nonvolatile computer storage media that may be used
in the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 341 is typically connected to the system
bus 321 through a non-removable memory interface such as interface 340, and magnetic
disk drive 351 and optical disk drive 355 are typically connected to the system bus 321 by
a removable memory interface, such as interface 350.

[0087] The drives and their associated computer storage media discussed above and
illustrated in Figure 4, provide storage of computer readable instructions, data structures,
program modules and other data for the computer 310. For example, hard disk drive 341 is
illustrated as storing operating system 344, application programs 345, other program
modules 346, and program data 347. These components may either be the same as or
different from operating system 334, application programs 335, other program modules
336, and program data 337. Operating system 344, application programs 345, other

program modules 346, and program data 347 are given different numbers here to illustrate

26

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

that, at a minimum, they are different copies. A user may enter commands and information
into the computer 310 through input devices such as a keyboard 362 and pointing device
361, commonly referred to as a mouse, trackball or touch pad. Other input devices (not
shown) may include a microphone (e.g., for voice control), touchscreen (e.g., for touch-
based gestures and other movements), ranger sensor or other camera (e.g., for gestures and
other movements), joystick, game pad, satellite dish, and scanner. These and other input
devices are often connected to the processing unit 320 through a user input interface 360
that is coupled to the system bus, but may be connected by other interface and bus
structures, such as a parallel port, game port or a universal serial bus (USB). In some
implementations of the computer 310, a monitor 391 or other type of display device is also
connected to the system bus 321 via an interface, such as a video interface 390. In addition
to the monitor, computers may also include other peripheral output devices such as printer
396 and speakers 397, which may be connected through an output peripheral interface
395.

[0088] The computer 310 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 380. The remote
computer 380 may be a personal computer, a server, a router, a network PC, a peer device
or other common network node, and typically includes many or all of the elements
described above relative to the computer 310, although only a memory storage device 381
has been illustrated in Figure 4. The logical connections include a local area network
(LAN) 371 and a wide area network (WAN) 373, but may also include other networks.
Such networking environments are commonplace in offices, enterprise-wide computer
networks, intranets and the Internet.

[0089] When used in a LAN networking environment, the computer 310 is connected to
the LAN 371 through a network interface or adapter 370. When used in a WAN
networking environment, the computer 310 typically includes a modem 372 or other
means for establishing communications over the WAN 373, such as the Internet. The
modem 372, which may be internal or external, may be connected to the system bus 321
via the user input interface 360, or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer 310, or portions thereof,
may be stored in the remote memory storage device. Figure 4 illustrates remote
application programs 385 as residing on memory device 381. The network connections
shown are exemplary and other means of establishing a communications link between the

computers may be used.

27

10

15

20

25

30

WO 2014/159150 PCT/US2014/022232

[0090] The computing environment 300 of Figure 4 is only one example of a suitable
computing environment and is not intended to suggest any limitation as to the scope of use
or functionality of the technology herein. Neither should the computing environment 300
be interpreted as having any dependency or requirement relating to any one or
combination of components illustrated in the exemplary operating environment 300.
[0091] The technology described herein is operational with numerous other general
purpose or special purpose computing system environments or configurations. Examples
of well-known computing systems, environments, and/or configurations that may be
suitable for use with the technology herein include, but are not limited to, personal
computers, server computers (including server-client architectures), hand-held or laptop
devices, mobile phones or devices, multiprocessor systems, microprocessor-based
systems, set top boxes, programmable consumer electronics, network PCs, minicomputers,
mainframe computers, distributed computing environments that include any of the above
systems or devices, and the like.

[0092] The technology herein may be described in the general context of computer-
executable instructions, such as program modules, being executed by a computer.
Generally, program modules include routines, programs, objects, components, data
structures, and so forth that perform particular tasks or implement particular abstract data
types. The technology herein may also be practiced in distributed computing environments
where tasks are performed by remote processing devices that are linked through a
communications network. In a distributed computing environment, program modules may
be located in both local and remote computer storage media including memory storage
devices.

[0093] While the present invention has been described with reference to specific
examples, which are intended to be illustrative only and not to be limiting of the invention,
it will be apparent to those of ordinary skill in the art that changes, additions and/or
deletions may be made to the disclosed embodiments without departing from the spirit and
scope of the invention.

[0094] The foregoing description is given for clearness of understanding only, and no
unnecessary limitations should be understood therefrom, as modifications within the scope

of the invention may be apparent to those having ordinary skill in the art.

28

WO 2014/159150 PCT/US2014/022232

CLAIMS

1. A computer-implemented method for managing a release of a software
product, the method comprising:

obtaining a request for the release, the request comprising workflow action
parameter data to define a release pipeline involving a plurality of software engineering
systems configured to process data indicative of the software product; and

executing, with a processor, a workflow to implement the release pipeline in
accordance with the workflow action parameter data;

wherein executing the workflow comprises sending a series of instructions to the
plurality of software engineering systems; and

wherein a successive instruction in the series of instructions is sent based on

whether a gating rule for the release is met.

2. The computer-implemented method of claim 1, further comprising

accessing a configuration file that comprises data indicative of the gating rule.

3. The computer-implemented method of claim 1, wherein the gating rule

specifies a quality assurance rule for entering or exiting a step in the workflow.

4. The computer-implemented method of claim 1, wherein executing the

workflow comprises resuming the workflow if the gating rule is no longer applicable.

5. The computer-implemented method of claim 1, wherein executing the
workflow comprises accessing a policy schema to determine the gating rule and to

configure an instruction in the series of instructions.

6. The computer-implemented method of claim 1, wherein the gating rule
specifies a user role to approve implementation of a successive instruction in the series of

instructions.

7. The computer-implemented method of claim 1, wherein executing the
workflow comprises:
determining whether a workflow incident occurs due to failure to meet the gating

rule;

29

WO 2014/159150 PCT/US2014/022232

sending an alert to a user authorized via a policy schema to respond to the
workflow incident; and

resuming the workflow based on a response to the alert from the user.

8. The computer-implemented method of claim 1, wherein executing the
workflow comprises recording, in a data store, data indicative of an action implemented
during the workflow and a user who approved the action, the user being assigned to a user

role having a permission via a policy schema to approve the action.

9. The computer-implemented method of claim 1, wherein:

executing the workflow comprises monitoring a system health parameter of a
computer comprising the processor;

sending an alert to a user authorized via a policy schema to respond if the system
health parameter does not meet a threshold; and

resuming the workflow based on a response to the alert from the user.

10. The computer-implemented method of claim 1, further comprising
validating a state of a production environment before releasing a build of the software
product to the production environment based on a validation criterion specified in a policy

schema.

30

WO 2014/159150

1/4

PCT/US2014/022232

y 100

Source Control 104

Release Management System 102

Build System 106

Validation System
108

Project
Management
System 110

Release Pipeline Orchestrator Server 116

Workflow Engine 122

Workflow
Data Store

124

Deployment
Infrastructure 112

Alert/Monitoring
Service 114

WEF action
parameter
data
package 128
Policy Front End Server 120
Engine -
118 Authentication 136 |Request Ul
— 126
Authorization
@ Administrator
trol
Dashboard 134 C?Z(go
T
Policy R ——
Schema
142 Persistent Store(s)
130
_/

FIG. 1

WO 2014/159150 PCT/US2014/022232

2/4

Release Pipeline Orchestrator Server 116

Workflow Engine 122
WEF Interpreter 152 Execution Environment 156
WF Validator 154 Event Scheduler 158
Communication System Health
Manager/Interface Monitoring Module
150 160
Depgndgncy Role Manager
Validation .
Authorization Module
Module 164
162 -

FIG. 2

WO 2014/159150

3/4

Authenticate user

200

Define
permissions 203

Access private network user directory
202

Receive release request defining release pipeline
and specifying workflow action parameter data

204

Generate Request Specification Ul

206

Confirm authorization

208

L]

Interpret, validate, and process workflow code

210

L]

Send notification to approver

212

YES

214

Execute workflow

1 via instructions to engineering

services/systems 216

Record action data in
log; generate dashboard
218

Access policy schema
220

Apply entry/exit criteria
222

Monitor system health
224

Validate environment
state, dependencies 226

Schedule release based

on dependencies 228

Approved?

YES

FIG. 3

Send alert re event
232

etry/restart’
234

NO

END

PCT/US2014/022232

Send alert
236

PCT/US2014/022232

WO 2014/159150

4/4

suesboldg .
uoyeoddy .—u UHrm—
a10WIeN
P 4N G8e SBNOW B m;mmm%%m sweifoid WsIsAg
7 18€ wieiboid o uoneoddy | Buneiadn
08¢ Hi0 ,
N pe N ope - gpe N ppe
wyndwion] sEmmmmmememmms b 008 b e e T ———— -
sowey | ¢/ —E Jee .
mt” %
Lge H Lpe o€
pomppN ¥ TR = s m e/ — — — —alg f m m mm — — — -
eOlY OPIM — ¥
B0BLIBIL] ERINENT EREIVESIN .
v wwmmMmm indy AJOWIBly JOA-UON| [AIOWBK JOA-UCN weiboid ..,zmx
/ i oS BIGBADLISY SIQBRAOLIOM-UON T | :
Al |
e | \%r 0.8 $f 09¢ $ﬁ 05¢ ?f 07 || wesboig w0 N
L2 “ SPALRIG V swesbos |
siaesdg p—= N id
| yonesyddy N
£ 96¢ soepewy] ¢t | i1
JoHId w mmhmrm:wmw 2aepsiu] LWIISAS i
w nding OBRIA 5 wn Bunelsdn N
WISSB00Id i ,
P— | . gee i 06¢ I {Nvd) - M
mhoxceﬁm m . oze s0ig ;4.
— | vee A _wod) |}
168 | Aiowdpy wiaysAg | W
o e e e e e e e e e e e o — — — — — — — — — — — — o —— U |
. ~ 0l¢
/I 0o¢

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/022232

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/44
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

process: a case study",

14-21, XP010585334,
ISBN: 978-0-7695-1456-7
the whole document

SOFTWARE ENGINEERING WORKSHOP, 2001.
PROCEEDINGS. 26TH ANNUAL NASA GOD DARD
27-29 NOV. 2001, PISCATAWAY, NJ, USA,IEEE,
27 November 2001 (2001-11-27), pages

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 1 881 447 Al (MICROSOFT CORP [US]) 1-10

23 January 2008 (2008-01-23)

abstract

paragraphs [0006], [0007], [0010]

paragraphs [0035], [0038], [0043],

[0044]

paragraph [0057]
A MOORE R J: "Evolving to a lighter softwar 1-10

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

30 June 2014

Date of mailing of the international search report

08/07/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

UhTmann, Nikolay

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/022232
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2007/162904 Al (KIMMERLY RANDY S [US]) 1-10

12 July 2007 (2007-07-12)
the whole document

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/022232
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 1881447 Al 23-01-2008 NONE
US 2007162904 Al 12-07-2007 CN 101361053 A 04-02-2009
EP 1971931 Al 24-09-2008
JP 5147724 B2 20-02-2013
JP 2009524129 A 25-06-2009
KR 20080087812 A 01-10-2008
US 2007162904 Al 12-07-2007
WO 2007081508 Al 19-07-2007

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report

