Office de la Propriete Canadian CA 2543746 A1 2005/05/12

Intellectuelle Intellectual Property
du Canada Office (21) 2 543 746
g,lnngagsifi‘:gaena " ml"j‘gtfy”%ya‘r’]‘; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2004/10/27 (51) CLInt./Int.Cl. GO6F 17/30(2006.01)

(87) Date publication PCT/PCT Publication Date: 2005/05/12 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2006/04/26 ARCHIVAS, INC., US

o ST . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 2004/035633 RODRIGUEZ ANDRES US:

(87) N publication PCT/PCT Publication No.: 2005/043323 ORENSTEIN. JACK A.. US:
(30) Priorité/Priority: 2003/10/27 (US60/514,766) SHAW, DAVID M., US;
BERNHARD, BENJAMIN K. D,

US

(74) Agent. KIRBY EADES GALE BAKER

(54) Titre : GESTION A BASE DE POLITIQUES DE RESEAUX REDONDANTS DE NOEUDS INDEPENDANTS
(54) Title: POLICY-BASED MANAGEMENT OF A REDUNDANT ARRAY OF INDEPENDENT NODES

s -.’}: e =y T - .
~ ‘s H - v o
ATLm e
L
Pt L i S
T
- + TR AL o AEETD
AF L e o) H
L d Wb et @ . e taow ry R
[t AL S L 0 4 oY -
oW e iry . W "
.-a
i IR e T Q»g

Daospment
Management

Gheck lmaglng

NES

s s TR
...........

A L Q*“:‘%ﬁ“"a%
1’5 . 4

«suwk«’ . E°,° &i‘ SETR AT
r5 -wa-ﬁ'%!ﬁ g‘a % ;.-;qgi

i Crctie w..:- wi‘“

Amhwas Oluster
Helorogeneous Hardware

(57) Abréegée/Abstract:

Custom
Application

e,
. .. LY
o lr_ : v.r.

T N P, v'w.'.'. A AR oS

An archive cluster application runs in a distributed manner across a redundant array of independent nodes (Figure 3). Each node
preferably runs a complete archive cluster application instance. A given nodes provides a data repository, which stores up to a

large amount (e.g., a terabyte) of data, while also acting as a portal that enables access to archive files.

—ach symmetric node has a

set of software processes, e.g., a request manager (324), a storage manager (330), a metadata manager (328), and a policy
manager (326). The request manager manages reguests to the node for data (i.e., file data), the storage manager manages data
read/write functions from a disk associated with the node, and the metadata manager facilitates metadata transactions and

recovery across the distributed database. The policy manager implements one or more policies,

which are operations that

determine the behavior of an "archive object” within the cluster. The archive cluster application provides object-based storage.
Preferably, the application permanently associates metadata and policies with the raw archived data, which together comprise an
archive object. Object policies govern the object's behavior In the archive. As a result, the archive manages Iitself independently of

client applications, acting automatically to ensure that all object policies are valid.

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

SR VNN

Pvcn e [/ /4
1777

e B -”-v%‘-‘ Q&tl
SREE wﬁﬁ'ﬁﬁ},

CA 02543746 2006-04-26

(19) World Intellectual Property
Organization

International Bureau

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

12 May 2005 (12.05.2005) PCT WO 2005/043323 A2
(51) International Patent Classification’: GO6F (81) Designated States (unless otherwise indicated, for every
. o kind of national protection available): AE, AG, AL, AM,
(21) International Application Number:

(22)
(25)
(26)

PCT/US2004/035633
International Filing Date: 27 October 2004 (27.10.2004)
Filing Language: English

Publication Language: English

Al, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN;, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

(30) Priority Data: A\
60/514,766 27 October 2003 (27.10.2003) US
(84) Designated States (unless otherwise indicated, for every
(71) Applicant (for all designated States except US):

(72)

(74)

ARCHIVAS, INC. [US/US]; 200 West Street, Waltham,
MA 02451-1121 (US).

Inventors: RODRIGUEZ, Andres; 12 Balcarres Road,
Newton, MA 02465 (US). ORENSTEIN, Jack, A.; 120
Whitman Road, Needham, MA 02492 (US). SHAW,
David, M.; 16 Farina Road, Newton, MA 02459 (US).
BERNHARD, Benjamin, K., D.; 30 Eustis Street, Ar-
lington, MA 02476 (US).

Agent: JUDSON, David, H.; Law Office of David H. Jud-
son, 15455 Dallas Parkway, Suite 600, Addison, TX 75001
(US).

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, ELE, ES, F1,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BEF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i)) for the fol-
lowing designations AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE,
DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM,

[Continued on next page]

(54) Title: POLICY-BASED MANAGEMENT OF A REDUNDANT ARRAY OF INDEPENDENT NODES

- . “b%i
\T.f“; T
] A LR .:'.fq.:; ~
‘ f’ﬁr’ss‘[':l - ;‘:x:'w‘ el
l:- i 1"."--"10":"1 .'.
i R T B
S L] et
Shs rodf G . o
n .3 s g
.- ey .-y -* o Y1 vl . 'El
PRI .';l."\-l" A A
Emali Archilve Dogument Custom
Managemeant Application
TR
e "l‘ Ve
) ek
! i
- ""_ 2'}..-, g o
.'<., ‘{;/“< "“'jl'. ".
:"."“TI.“..; e e T W g ';T‘_.?_;‘ 'ﬁ”“. B ;..‘ ;...l-r' ° " Sy’
- ;f';*_'z;",a,”'«“ N FANERR: 130 \5?",‘:;-'._-,, (RN W% e W afy
W N e B T R AN e e A L e N g,
i Y] " . . - -~
Y

¢

Fixed Gofitont Bile Sy%te
NFS '

LV DENEC WA

=R - R . :
5 R > L -
LRt EE R L R L

Archivas Cluster
Heteroqeneous Hardware

(57) Abstract: An archive cluster application runs in a distributed manner across a redundant array of independent nodes. Each
node preferably runs a complete archive cluster application instance. A given nodes provides a data repository, which stores up to a
large amount (e.g., a terabyte) of data, while also acting as a portal that enables access to archive files. Each symmetric node has a set
of software processes, e.g., a request manager, a storage manager, a metadata manager, and a policy manager. The request manager
manages requests to the node for data (i.e., file data), the storage manager manages data read/write functions from a disk associated
with the node, and the metadata manager facilitates metadata transactions and recovery across the distributed database. The policy
manager implements one or more policies, which are operations that determine the behavior of an "archive object” within the clus-
ter. The archive cluster application provides object-based storage. Preferably, the application permanently associates metadata and
policies with the raw archived data, which together comprise an archive object. Object policies govern the object’s behavior in the
archive. As a result, the archive manages itself independently of client applications, acting automatically to ensure that all object
policies are valid.

2005/043323 A2 I OO O A0 10 0 Y AR AR A

CA 02543746 2006-04-26

WO 2005/043323 A2

HR, HU, ID, IL, IN, 1S, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NA, NI, NO, NZ, OM, PG, PH, PL, PT RO, RU, SC, SD, SE,
SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, V(,
VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE,
LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PL, PT RO, SE, SI, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG)

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, I8,
JP, KE, KG, KP. KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, T,
IM, TN, TR, TT TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
LW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA,
SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,

IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE,
SN, TD, TG)

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for the following desig-
nations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW,
BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID,
IL, IN, 1S, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA,
SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE,
SN, TD, TG)

Published:

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

5

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

' POLICY-BASED MANAGEMENT OF A REDUNDANT ARRAY
OF INDEPENDENT NODES ..

This application is based on and claims priority from Serial No. 60/514,766, filed
October 27, 2003.

BACKGROUND OF THE INVENTION
Technical Field

The present invention relates generally to techniques for hi ghly available, reliable,
and persistent data storage in a distributed computer net\x;ork.
Description of the Related Art

A need has developed for the archival storage of “ﬁxed’content” in a highly available,
reliable and persistent manner that replaces or supplements traditional tape and optical
storage solutions. The term “fixed content” typically refers to any type of digital information
that is expected to be retained without change for reference or other purposes. Examples of
such fixed content include, among many others, e-mail, documents, diagnostic images, check
images, voice recordings, film and video, and the like. The traditional Redundant Array of
Independent Nodes (RAIN) storage approach has emerged as the architecture of choice for
creating large online archives for the storage of such fixed content information assets. By
alldwing nodes to join and exit from a cluster as needed, RAIN architectures insulate a
storage cluster from the failure of one or more nodes. By replicating data on multiple nodes,
RAIN-type archives can automatically compensate for node failure or removal. Typically,
RAIN systems ére largely delivered as hardware appliances designed from identical
components within a closed system.

Managing technological obsolescence of an archive infrastructure 1s a key problem
in preserving digital content. Given the fast pace of technological change, it i1s questionable
whether the devices that are available today for reading tape or optical disk will still be
around in ten years time. Obsolescence occurs at many levels including, without limitation,
the file’s original format, the application that wrote the file, and the media on which the
content was recorded. At first glance, building a large scale archive that keeps pace with the

latest technology while also offering online access at a reasonable cost would appear to be

21 -

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

impossible. The problem is exacerbated because the archive must handle the complete life
cycle of the data it stores. An archive that supports very long retention periods can
accumulate a great deal of data over time. Archive systems must therefore be able to grow
smoothly, e.g., from a few terabytes to several petabytes, and they must provide high
availability, avoid data loss, and be easy to manage.

Prior art techniques do not adequately address these concerns. In particular, it is well-
known that setting up large archive systems is error-prone. Databases, networking; op erating
systems, storagé management systems and Web servers all require teams of experts with a
Iﬁyriad of skills to get them running together. In addittion, storage systems, databases, Web
servers and operating systems all have a vast range of tunable parameters that enable an
administrator to optimize performance. Further, serious problems with large-scale
infrastructure can take weeks to diagnose and fix. Becaﬁse archive systems must be
continuously available, administrators must be able to remove and replace a faulty device
without interrupting ongoing service. Finally, despite the existence of various security
mechanisms, administrators are mostly on their own to decide how to protect an archive from
malicious attacks or inadvertent damage.

These and other problems are addressed by the present invention.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a low-cost scalable disk based archive storage
management system based on the RAIN model. With the present invention, enterprises
and organizations can create permanent storage for fixed content information. The system
1s designed to reduce the complexity of creating and maintaining Veryl large digital
archives. It provides for autonomous administration in that the administrator can set and
forgef policies for day-to-day operations. A rich metadata management layer and a
flexible policy processor enable policy-driven administration. By specifying policy rules,
archive administrators dictate the behavior of the system and how it manages files. Thus,
for example, users can define processes that perform metadata extraction, data encryption,
compression, and replication necessary for long-term preservation of valuable data while
staying compliant with domain-specific policies.

In one embodiment, the present invention is implemented as a redundant array of

independent nodes, which are preferably Linux-based servers. There is no requirement

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

that each machine have the same hardware, however. The nodes support a network-based

- application that manages archive objects. The system is ma:nagedv autonomouély, i.e.,1ina

manner that is substantially self-controlling and functionally independent of manual
intervention. According to a feature of the invention, the system configures itself
automatically (or substantially automatically) as specified by high-level policies. This is
highly advantageous in the content of long-term management of digital assets because
self-configuration, self-healing, and self-optimization are vital to a system that can evolve
With new technofo gy, |

A ccording to the invention, an archive cluster application runs in a distributed
manner across the redundant array of independent nodes. -The application enables the
archive database to be distributed and replicated across multiple nodes. In the illustr,aﬁve

embodiment, each node preferably runs a complete archive cluster application instance.

Each node thus provides a data. repository, which stores up to a large amount (e.g., a

terabyte) of data, while also acting as a portal that enables access to archive files. Because

runtime operations and physical storage of data (and metadata) are distributed among

cluster nodes, a high level of reliability and performance are insured even as capacity
grows. If a node fails, the cluster adapts by simply redirecting processing to other nodes,
so archived data 1s always available to the archive cluster application.

According to a more specific feature, each node has a same set of software processes,
e.g., arequest manager, a storage manager, a metadata manager, and a policy manager.
Thus, with respect to the archive cluster application itself, each node may be considered
symmetric. The request manager manages requests to the node for data (i.e., file data), the
stoi*age manager manages data read/write functions from a disk associated with the node, and
the metadata manager facilitates metadata transactions and recovery across the distributed
database. The policy manager implements one or more policies, which are operations that
determine the behavior within the cluster of an “archive object.” According to the invention,
the archive cluster application provides object-based storage. Preferably, the application
permanently associates metadata and policies with the raw archived data, which together
comprise an archive object. Object policies govern the object’s behavior in the archive. As a
result, the archive manages itself independently of client applications, acting automatically to

ensure that all object policies are valid.

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

In a representative embodiment, fixed content file data is defined atomically when the
application writes a source file to a fixed content file system (FCFS). After the ﬁilez 1s
érchi{fed, preferébly it cannot be modified. Preferably, the file also :canno.t. be deleted before
its retention peridd expires. Metadata is information that identifies an archive object, such as
its author and creation date. According to the invention, metadata also includes policy
settings, such as retention period and file protection, that serve as parameters for the archive
object’s policies. Policies are operations performed by a given policy manager and that
determine the archive object’s behavior during its life cycle within the archive. Preferably,
policies obtain their parameters from the object’s metadata. Because each archive object
éncapsulates its own policies, it is responsible for its own behavior with the archive, e.g.,
detemﬁning whether its content is authentic, or whether its retention pertod is still in force.

The foregoing has outlined some of the more pertinent features of the mvention.
These features should be construed to be merely illustrative. M"?a"ny other beneficial results
can be attained by applying the disclosed invention 1n a different manner or by modifying
the invention as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and the advantages
thereof, reference is now made to the following descriptions taken in conjunction with the
accompanying drawings, 1n which:

Figuare 1 1s a simplified block diagram of a fixed content storage archive in which
the present invention may be implemented;

Figure 2 1s a simplified representation of a redundant array of independent nodes
each of whach 1s symmetric and supports an archive cluster (ArC) application according to
the present invention;

Figure 3 1s a high level representation of the various components of the archive
cluster application executing on a given node;

Figure 4 1s a sitmplified representation of how a given file enters the archive from
an external application;

Figure 5 is a simplified representation of how the cluster 1s rebalanced when a

given node fails; and

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

- Figure 6 illustrates a representation archive cluster page available from the |

administration console on a given node. -
DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

The present invention preferably is implemented in a scalable disk-based archival
storage management system, preferably a system architecture based on a redundant array
of independent nodes. The nodes may comprise different hardware and thus may be
considered “heterogeneous.” In contrast, the archive cluster application (and, optionally,
the underlying operating system on which that application e;;{ecutes) that 1s supported on
each node is the same. Thus, the software stack (which may include the operating system)

on each node is symmetric, whereas the hardware may be heterogeneous. Using the

present invention, as illustrated in Figure 1, enterprises can create permanent storage for

many different types of fixed content information such as documents, e-mail, satellite
images, diagnostic images, check 1mages, voice recordings, video, and the hike, among
others. These types are merely illustrative, of course. High levels of reliability are
achieved by replicating data on independent servefs, or so-called storage nodes.
Preferably, each node is symmetric with its peers. Thus, because preferably any given
node can perform all functions, the failure of any one node has little impact on the
archive’s availability.

In a representative embodiment, the invention 1s implemented 1n a distributed
software application that is sometimes referred to as an archive cluster (ArC) application.
The application captures, preserves, manages, and retrieves digital assets. In an illustrated
embodiment of Figure 2, a physical boundary of an individual archive is referred to herein
as a cluster. Typically, a cluster is not a single device, but rather a collection of devices.
As noted above, devices may be homogeneous or heterogeneous. A typical device1s a
computer or machine running an operating system such as Linux. Clusters of Linux-based
systems hosted on commodity hardware provide an archive that can be scaled from a few
storage node servers to many nodes that store thousands of terabytes of data. This
architecture ensures that storage capacity can always keep pace with an organization’s
increasing archive requirements. Preferably, data is replicated across the cluster so that

the archive is always protected from device failure. If a disk or node fails, the cluster

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

éutomatically fails over to other nodes in the cluster that maintain replicas of the same
data. o

An illustrative cluster preferably comprises the following general categories of
components: nodes 202, a pair of network switches 204, powér distribution units (PDUs)
206, and uninterruptible power supplies (UPSs) 208. A node 202 typically comprises one
or more commodity servers and contains a CPU (e.g., Intel x86, suitable random access
mefnory (RAM), one or more hard drives (e.g., standard IDE/SATA, SCS], or the like),
and two or more network interface (NIC) cards. A typical node is a 2U rack mounted unit
with é 2.4 GHz chip, 512MB RAM, and six (6) 200 GB hard drives. This is not a
limitation, howewver. The netxwdrk switches 204 typically comprise an internal switch 205
that enables peer-to-peer communication between nodes, and an external switch 207 that
allows extra-cluster access to each node. Each switch requires enough ports to handle all
potential nodes in a cluster. Ethernet or GigE switches may be used for this purpose.
PDUs 206 are used to power all nodes and switches, and the UPSs 208 are used tha,t
protect all nodes and switches. Although not meant to be limiting, typically a cluster is
connectable to a network, such as the public Internet, an enterprise intranet, or other wide
area or local area network. In an illustrative embodiment, the cluster is implémented
within an enterprise environment. It may be reached, for example, by navigating through
a site’s corporate domain name system (DNS) name server. Thus, for example, the
cluster's domain may be a new sub-domain of an existing domain. In a representative
implementation; the sub-domain is delegated in the corporate DNS server to the name
servers in the cluster itself. End users access the cluster using any conventional interface
or access tool. Thus, for example, access to the cluster may be carried out over any IP-
based protocol (HTTP, FTP, NFS, AFS, SMB, a Web service, or the like), via an API, or
through any other known or later-developed access method, service, program or tool.

As will be seen below, client applications access the cluster through one or more
types of external gateways such as standard UNIX file protocols, or HTTP APIs.
Preferably, gateways can be enabled or disabled independently via an admimstrative
console. The archive preferably is exposed through a virtual file system that can
optionally sit under any standard UNIX file protocol-oriented facility. These include:
NFS, FTP, SMB/CIFS, or the like. Once properly pointed at the archive via a standard

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

TCP/IP address, file protocols behave as they do on any standard UNIX operating system,

with “/’ being the root directory of the cluster.

In a preferred embodiment, the archive cluster application runs on a redundant array
of independent nodes (H-RAIN) that are networked together (e.g., via Ethernet) as a cluster.
The hardware of given nodes may be heterogeneous. For maximum reliability, however,

preferably each node runs a full instance 300 of the distributed application, which is

comprised of several runtime components as now illustrated in Figure 3. Thus, while

hardware may be heterdgeneous, the software stack on the nodes (at least as it relates to the
present invention) is the same. These software components comprise a gateway profocol
layer 302, an access layer 304, a file transaction and administration layer 306, and a core
components layer 308. The “layer” designation is provided for explanatory purposes, as one
of ordinary skill will appreciate that the functions may be characterized in other meaningful

ways. One or more of the layers (or the components therein) may be integrated or otherwise.

Some components may be shared across layers.

The gateway protocols in the gateway protocol layer 302 provide transparency to
existing applications. In particular, the gateways provide native file services such as NFS
310 and SMB/CIFS 312, as well as a Web services API to build custom applications. HTTP
support 314 is also provided. The access layer 304 provides access to the archive. In
particular, according to the invention, a Fixed Content File System (FCFS) 316 emulates a
native file system to provide full access to archive objects. FCFS gives applications direct
access to the archive contents as if they were ordinary files. Preferably, archived content is
rendered in its original format, while metadata is represented as XML files. FCFS 316
provides conventional views of directories and permissions and routine file-level calls, so
that administrators can provision fixed-content data in a way that 1s familiar to them. File
access calls preferably are intercepted by a user-space daemon and routed to the appropriate
core component (in layer 308), which dynamically creates the appropriate view to the calling
application. As will be described, FCFS calls preferably are constrained by archive policies
to facilitate autonomous archive management according to the present invention. Thus, in
one example, an administrator or application cannot delete an archive object whose retention

period (a given policy) is still 1n force.

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

~ The access layer 304 preferably also includes a Web user interface (UI) 318 and an
SNMP gateway 320. The Web user interface 318 preferably is implemented as an
administrator console that provides interactive access to an administration engine 322 in the
file transaction and administration layer 306. The administrative console 318 preferably is a
password-protected, Web-based GUI that provides a dynamic view of the archive, including
archive objects and individﬁal nodes. The SNMP gateway 320 offers storage management
applications easy access to the administration engine 322, enabling them to securely monitor
and control cluster activity. The administration engine monitors cluster activity, including
system and policy events. The file transaction and administration layer 306 also includes a
request manager process 324. The request manager 324 orchestrates all requests from the
external world (through the access layer 304), as well as internal requests from a policy
manager 326 in the core components layer 308. The operation of the policy manager 326
will be described in more detail below.
| In addition to the policy manager 326, the core components also include a metadata
manager 328, and one or more instances of a storage manager 330. A metadata manager
328 preferably is installed on each node. Collectively, the metadata managers 1n a cluster act
as a distributed database, managing all archive objects. On a given node, the metadata
manager 328 manages a subset of archive objects, where preferably each object maps
between an external file (“EF,” the data that entered the archive for storage) and a set of
internal files (each an “IF”) where the archive data is physically located. The same metadata
manager 328 also manages a set of archive objects replicated from other nodes. Thus, the
current state of every external file is always available to multiple metadata managers on
several nodes. In the event of node failure, the metadata managers on other nodes continue
to provide access to the data previously managed by the failed node. The storage manager
330 provides a file system layer available to all other components in the distributed
épplication. Preferably, it stores the data objects in a node’s local file system. Each drive in
a given node preferably has its own storage manager. This allows the node to remove
individual drives and to optimize throughput. The storage manager 330 also provides system
information, integrity checks on the data, and the ability to traverse local directly structures.
As illustrated in Figure 3, the cluster manages internal and external communication

through a commumnications middleware layer 332 and a DNS manager 334. The

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

infrastructure 332 is an efficient and reliable message-based rrﬁddlew&re layer that enables
communication among archive components. In an illustrated embodiment, the layer supports
multicast and point-to-point communications. The DNS manager 334 runs distributed name
services that conneﬁct all nodes to the enterprise server. The DNS manager preferably load
balances fequests across all nodes to ensure maximum cluster throughput and availability.

In an 1llustrated embodiment, the ArC application instance executes on a base
operating system 336, such as Red Hat Linux 9.0. The com:muniéations middleware may be
based on Spread group communications or any other distributed communication mechanism.
As is well-known, Spread 1s a toolkit that provides a high performance messaging service
that is resilient to faults across external or internal networks. Spreéd functions as a unified
fnesséige bus for distributed applications, and it provides highly tuned application—lével
multicast and group communication support. Other components may include FUSE
(Filesystem in USErspace), which may be used for the Fixed Content File System (FCFS)
316. The NFS gateway 310 may be implemented by Unféd, which 1s a user spé,ce
implementation of the standard nfsd Linux Kernel NFS driver. The database in each node
may be implemented, for example, PostgreSQL, which 1s an object-relational database
management system (ORDBMS). The node may include a Web server, such as Jetty, which
is a Java HTTP server and servlet container. Of course, the above mechanisms are merely
illustrative. |

The storage manager 330 on a given node is responsible for managing the physical
storage devices. Preferably, each storage manager instance is responsible for a single root
directory into ‘which all files are placed according to its placement algorithm. Multiple
storage manager instances can be running on a node at the same time, and each usually
represents a different physical disk in the system. The storage manager abstracts the drive
and iterface technology being used from the rest of the system. When the storage manager
instance is asked to write a file it generates a full path and file name for the representation for
which 1t will be responsible. In a representative embodiment, each object to be stored on a
storage manager 1s received as raw data to be stored, with the storage manager then adding
1ts own metadata to the file as it stores it to keep track of different types of information. By
way of example, this metadata includes: EF length (Iength of external file in bytes), IF

Segment size (size of this piece of the Internal File), EF Protection representation (EF

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

prétection rnode); IF protection role (representation of this internal file), EF Creation
timestamp (external file timestamp), Hash (hash of the internal file at thé time of the write
(PUT), including a hash type) and EF Filename (external file filename). Storing this :
additional metadata with the internal file data provides for additional levels of protection. In
particular, scavenging can create external file records in the database from the metadata
stored in the internal files. Other policies can validate internal file hash against the imnternal
file to validate thé,t the internal file remains intact. Optimizations can be made by avoiding
database lookup for basic parent type information.

As noted above, internal files preferably are the "chunks" of data representing a
portion of the original "file" in the archive object, and preferably they are placed on different
disks to achieve striping and protection blocks. Typically, one external file entry is present
ina metédata manager for each archive object, while there may be many internal file entries
for each external file entry. Typically, internal file layout depends on the system. In a given
implementation, the actual physical format of this data on disk is stored in a series of variable
length records. _

When it store files, the storage manager 330 guarantees that thé files were Written to
the media. The storage manager also responds to requests for various services from the rest
of the system. These services and their behavior include: Exists - checks 1f an internal file
exists; Delete — delete an internal file; Wipe — delete and write over an internal file (secure
delete); Metadata — get storage manager metadata from an internal file; Hash — return hash of
Internal File for an internal file (includes internal file metadata); Listall — return a list of all
the Internal Files for this storage manager; and Deleteall — delete all Internal Files on this
storage manager.

The request manager 324 is responsible for executing the set of operations needed to
perform archive actions by interacting with other components within the system. The request
manager supports many simultaneous actions of different types, 1s able to roll-back any failed
transactions, and supports transactions that can take a long time to execute. The request
manager also ensures that read/write operations in the archive are handled properly and
guarantees all requests are 1n a known state at all times. It also provides transaction control

for coordinating multiple read/write operations across nodes to satisfy a given client request.

- 10 -

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

In addition, the request manager caches metadata managér éntri,es for recently used files and
provides buffering for sessions as well as data blocks. o |

A cluster’s primary responsibility is to store an unlimited number of files on disk
reliably. A given cluster may be thought of as being “unreliable,” in the sense that 1t may be
unreachable or otherwise unavailable for any reason. A goal of the present invention is to
make a collection of such potentially unreliable nodes collaborate to create reliable and
highly available storage. Generally, there are two types of information that need to be stored:
tﬁe files themselves and the metadaté about the files. |

Figure 4 shows how files énter the system. At step 1, files along with a unique key
enter the archive through one of several supported gateways. To protect files, one of several
possible schemes may be used as illustrated at step 2: file mirroring, RAID-5 like schemes
that spread the file contents across multiple nodes using a recovery stripe to recreate any
missiﬁg stripes, variations on RAID-5 schemes (such as Rabin information dispersal
algorithm or IDA) that use multiple recovery stripes to ensure that simultaneous node failures
do not lead to overall system failure. Key value information and other system metadata are
written to the metadata manager, as indicated at step 3. The metadata manager then updates
its distributed databases as illustrated in step 4. This completes the process.

A highly reliable architecture can serve other purposes. When it 1s time to upgrade a
storagé node, the same metadata manager that locates redundant files on other nodes can also
be used to populate a new node. This is illustrated generally in Figure 5, which shows a set
of four nodes 502, 504, 506 and 508. As shown in Figure 5, the metadata manager provides
all the information required to rebalance the cluster after Node 2 fails. When new Node 510
is added, the cluster will use this capacity as part of the rebalancing process. A process for
determining how and when rebalancing takes place 1s provided by a rules-driven policy
manager. In this scenario, as shown in Figure 5, the system performs the following steps.
The existing node 504 1s taken offline. The new node 510 1is identified as its replacement.
The appropriate metadata manager then 1dentifies files 512 to copy and the location of those
files. The reciuest manager then directs files to be copied to the new Node 510. The
metadata manager i1s then updated with the location information.

In general, there may be any given number of metadata managers associated with a

given node depending on the amount of metadata and the degree of concurrency required.

~11 -

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

Each metadata manager is responsible for a subset of the metadata. Preferably, metadata (in
the form of metadata objects) are distributed among the metadata managers in the cluster
through the use of hashing. Each metadata manager is responsible for one or more ranges
412a-n of hash values. Preferably, each metadata object has a name, and the metadata
manager responsible for the object is determined by hashing the name into a given hash
value. When a given application needs to create, retrieve or update a metadata object, the
application hashes the name to determine a hash value, and then the application sends a
request to the metadata manager responsible for the range 412 containing the metadata
object’s hash value. High availability is obtained through the management of metadata
updates in a way that permits one metadata manager to rapidly take over responsibility for
:;nother's region. When a metadata object is updated, the update is sent to the responsible
metadata manager, which applies the update to its local database. Before committing the
update, the update is sent to a randomly selected set of other metadata managers. When a
metadata manager is unavailable for any reason, another metadata manager can assume
control of the affected region and use the laackup copies of metadata, scattered throughout the
cluster, to handle requests to the region.

An advantage of the RAIN architecture of the present invention is that each node
(from a system perspective) need not be identical. Nodes can vary significantly in
performance, capacity, and expected reliability. The design of the H-RAIN system presumes
a large number of nodes that use commodity hardware. Figure 1 illustrates an H-RAIN
cluster built with heterogeneous hardware components 100a-100n. Implementation of a
given system typically involves several potential strategies. Storage capacity can be
increased by adding nodes with the same configuration. It is likely that over time these new
nodes will cost less. The average per-gigabyte cost of the archive overall thus diminishes
over time. Archive capacity and cost are predictably associated. Storage capacity,
performance and reliability can be increased by extending the cluster with new nodes that use
superior hardware. The system exploits these new nodes to enhance the archive’s
performance. For example, new nodes with higher-performance CPUs might be used for
CPU-intensive filtering operations. A relatively small amount of new hardware might
thereby measurably improve “put” performance. Both strategies allow users to upgrade their

technical infrastructure while transparently migrating archive content to more up-to-date

- 12 -

10

15

20

23

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

nodes. Improvements can be made incrementally, leaving the initial installation intact. If
hardware prices fall, users can enhance their archive’s performance with the best price
performance storage nodes then available. An architecture built on heterogeneous nodes
facilitates all of these options. Figure 5 shows only one scenario for upgrading nodes; other
upgrade scenarios are also possible and envisioned by the present invention.

Preferably, adding new nodes preferably is automatic. The system 1s designed to
automate administrative tasks such as upgrading system éapacity. For example, after a user
adds a new node server to the cluster, the application immediately integrates that node into
the overall workflow, without manual intervention. In a representative embodiment, a cluster
can contain up to several hundred nodes, although this is not a limitation. By adding nodes
to the system, a cluster can eventually scale up to thousands of terabytes. ;

The application provides protection from data loss. 1f any node goes out of service,
the request manager automatically redirects storage operations to another node. The
distributed application always replicates a given node’s data elsewhere in the cluster. The
archive’s failover capabilities ensure a transparent transition from the failed node to another
one, so that the failed node’s data 1s always available. As noted above, preferably all files
stored 1n the system are protected by a data protection scheme, which automatically recreates
any lost files.

Digital archives present a special kind of data management challenge because they
are very large and long-lived. Special attention must be given to the long-term cost of
managing these systems. To the degree that archive systems manage themselves and
minimize manual intervention, they can yield significant savings. The present invention
achieves these goals by having each archive object encapsulate its own policies, which
determine the object’s behavior during its life cycle in the archive. Thus, each archive object
1s responsible for its own behavior with the archive. With respect to a given archive object,
the archive cluster application supports enforcement of one or more of the following policies:
protection, authentication, retention, cluster balance, garbage collection, scavenging, and
duplicate elirnination. A protection policy protects the integrity of data objects; thus, e.g.,
initiating repairs after any hardware failure. An authentication policy ensures that the content
of a file matches its digital signature. The policy preferably is set to the specific hash

algorithm that 1s used to generate a digital signature. A retention policy prevents deletion of

-13 -

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

a file before its retention period expires. After the retention period, the data object can be
purged either éutoinatioally by the application, or explicitly by an archive administrator. A
cluster balanée policy ensures that data objects are evenly distributed among all nodes in the
cluster. A garbage collection policy reclaims disk space by pﬁrgiﬁg files that are left behind
by incomplete transactions. It also checks the integrity of system metadata. Preferaﬁly, this
policy is set to a pick-up time, which specifies how long data must be marked for deletion
before it is removed. A scavenging policy ensures against loss of metadata. Internally, the
archive’s storage manager maintains and manages a data file’s content in internal storage
files, which also contain the data file’s metadata. Internal storage files provide a layer of
redundancy that is accessible to the archive’s scavenging policy, if necessary. A duplicate
elimination policy increases effective cluster capacity by discovering data objects that are the
same, and eliminating extra copies.

According to the present iriveﬁtibn, a cluster 1s subject to one or more types of
automated pdlicy management: protection, authentication, retention, cluster balance,
garbage collection, scavenging, duplicate elimination, and the like. Each of these types 1s
now described in detail. A policy manager executes on each node in the system for this
purpose.

Internally, the archive cluster application supports one or more data protection
schemes. A representative scheme 1s a RAID-1 (simple mirroring) protection scheme.
Another representative scheme 1s an information dispersal algorithm. From an
administrator’s perspective, this support preferably 1s exposed as a single tunable protection
parameter for the entire cluster. This is not a Iimitation of the invention, however. Thus, in a
representative embodiment, rather than having "to" worry about particular protection schemes
and their associated parameters, administrators can simply determine the number of
tolerable-points-of-failure (TPOF) they wish to support for files. The archive cluster
application may support TPOF at a node level, although the application may also be aware of
each disk within each node and automatically adjust for both node and disk failures. Given a
particular TPOF, the application then takes advantage of the best protection scheme possible
(out of those available) given the number of nodes currently within the cluster. Where only
RAID-1 data protection is available, even in the simplest case of 2-way mirroring, disk

utilization 1s only 50%. As the number of mirrors increase, the TPOF increases, but disk

- 14 -

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

utilization decreases. For example: 3-way mirroring provides 33% disk utilization, whereas
4-way mirroring provides 25% disk utilization. Preferably, a protection policy 1s set at the
cluster levél énd cannot be overridden at the file level.

in a more specific embodiment, a protection policy is set at the c":luéter level and
canno"t be overridden at the file level. The cluster level default can change but is only applied
to new files stored in the cluster. In an example, the default TPOF at the cluster level 1s 1.
The protection policy run frequency is configurable. A default run frequency is periodic,
such as every 24 hours. In this embodiment, the protection policy on all nodes is
automatically initiated if a disk or a node fails anywhere in the cluster.

The policy manager on a given node supports protection as follows. It iterates
through all external files (EF) owned by the node it runs on. For each external file, the policy
manager iterates through all internal files (IF). It validates that the file an IF points to 1s
reachable and initiates repair as required.

. Authentication prevents data corruption and/or sabotage. Thué, the archive cluster
application supports an authentication policy where a file being mserted into thé cluster is
assigned a digital signature. Preferably, the signature is generated from the actual contents of
the file, or a portion of the actual contents. The archive periodically checks the authenticity
of the stored file's content, for example, by regenerating this signature from the stored
content and comparing it to the original signature. The signatures must match to verify data
authenticity; otherwise, the archive returns an authentication violation exception to the
archive administrator. In an illustrative embodiment, authentication digital signatures are
calculated using the MD5 algorithm, although any convenient cryptographic function (e.g.,
SHA-1, MD4, or the like) may be used. In this illustrated embodiment, a file’s MD5 content
hash is calculated when it is inserted into the archive. For client applications to verify the
content stored in the application is identical to the original, a MD5 hash key can be
calculated outside of the cluster and compared with the hash key the cluster maintains. The
authentication policy run frequency can be configured. A default run frequency (e.g., every 7
days) is then enforced.

The policy manager on a given node supports authentication as follows. It iterates
through all external files (EF) owned by the node it runs on. For each EF, it calculates the
MD)5 hash key of its content on disk and compares it against the MD35 hash key for the

- 15 -

10

15

20

235

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

external file stored at initial write time. For each internal file (IF), the policy manager
validates the content by comparing an MD5 hash for that internal file stored at initial write
time ahd initial repairs as required. As noted above, tﬁe EF hash preferably is derived from
the original content. Preferably, the IF hash is derived from the original content together
with any scavenging information. |

For many data files, corporate and regulatory standards can require retention of data
files for varying periods of time. The archive cluster application provides an optional
retention period attribute for data files to prevent accidental or malicious deletion of files
before their retention periods expire. For example, if a file is stored on 1/1/2004 and has a
retention period of 2 months, attempts to delete that file before 3/1/2004 return an error. On
or after 3/1/2004, the file is flagged as open for deletion. The file remains cin the cluster until
explicitly deleted by the archive administrator.

Preferably, retention periods are stored as number of milliseconds. Files can also be
marked as never being able to be deleted, e.g., by setting a retention period of -1. For the -
retention policy, preferably defaults cén only be set at the individual directory level but can
optionally be overridden for each inserted file when using the HTTP gateway. Once a
retention period has been specified for a file, it can be changed (via any of the available
gateways), but it can only be increased, not decreased. A default file retention setting for an
file 1s “0” indicating that the file can be deleted at any time. In a representative embodiment,
the request manager (RM) on a given node monitors the retention policy. This is not a
requirement, hbwever.

Over time, individual nodes within a cluster may become unbalanced 1n terms of their
storage utilization. The archive cluster application monitors this capacity utilization, for
example, whenever a new node 1s added to the cluster, and it relocates files as required to
bring the cluster back into a balanced state. Preferably, cluster balance 1s a cluster level
policy that does not have any tunable parameters, although thisis not a requirement. While
cluster balance is a proactive algorithm to bring a cluster’s capacity utilization back into
balanée, preferably the request manager with a given node attempts to maintain this balance
on every write via an intelligent selection of nodes on which to place the data

Garbage collection 1s required for the physical deletion of all files marked as logically

deleted in the metadata manager. These entries might occur due to a failure during a file

- 16 -

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

write where partially committed components are not automatically cleaned up by the failed
xﬁite process. Preferably, garbage cpllection is a cluster level policy that does not have any
tunable parameters, although this isnota requirement. The garb ége collection policy run
frequency 1s confi gurable. By way of example, the default run frequeriby 1S every 24 hours.

The policy manager in a given node supports garbage collection as follows. It iterates
through all metadata owned by the node it runs on. For each external file, the policy
manager validates it has all of the associated internal files. The policy manager then cleans
up any remnants from failed inserts to these internal files.

- Scavenging is a safety net for potential catastrophlc loss of metadata. As noted
above, each physical file that is stored (by a storage manager) also contams its metadata
(normally managed by the metadata manager). The scavenging policy preferably traverses
all files to ensure their metadata is intact. If metadata is found to be missing, it will be
recreated as required. Preferably, scavenging is a cluster level policy that does not have any
tunable pérameters, although this is not a requirement. The scavenging policy run frequency
1S conﬁgurablé. A default run frequency 1s every 24 hours. .

The policy manager in a given nodes supports scavenging as follows. It iterates
through all files owned by storage managers running on the node the policy manager runs on.
For each file, the policy manager validates that the cluster has valid metadata for that file. It
initiates metadata repair as required.

As noted above, preferably every node in the archive supports an administration
console, which exports a display interface such as shown in Figure 6. In this example, the
archive cluster summary page 600 is shown. This page includes an indicator 602 that
indicates that the cluster is fully operational as of a given date and time. This indicator
may change color (e.g., from green to yellow to red) depending on current operating
conditions. A Policy Status and Recent Events table 604 preferably includes a Policy tab
606 and an Events tab 608. The Current Policy Status for each of the set of supported
policies (in this example) is shown. A Node List table 610 i1dentifies each Node by its ID,
Status and Node IP Address. A set of Controls are provided to facilitate the management
operations. In particular, preferably the administration console exposes a set of
cluster/node component controls including: controls for node startup, node shutdown,

node restart, cluster startup, cluster shutdown, and cluster restart. One or more cluster

217 -

10

15

20

235

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

metric graphs 612 and 614 are also provided to show (in this example) the Cluster Volume

and Total Files supported in the cluster. The administration console may €Xpose any
desired cluster metric, of course. By selecting various display tabs, the administrator can
also view and set other details. The display tabs include a Cluster Nodes page 616,“ a
Gateways page 618, a System S ettings page 620 and a Cluster Log page 622. The Cluster
Node pége 616 provides seitable properties for each Node in the cluster. The Gateway tab
618 diéplays information about each gateway that is supported. Each gateway has one or

more settable properties along with the ability to enable or disable the gateway. The page

618 lists these gateways and the1r various attributes.

Of course, the display layout in Figure 6 is merely representative. As noted above,
preferably the administration console is a Web based application that resides on evéry |
node. As with all other external requests entering the cluster via a gateway, adnﬁnistration
console requests are processed on a DNS load balancer-selected node.

- The present invention facilitates the provision of an archive management solution
that is designed to.capture, preserve, manage, and retrieve digital assets. The design
addresses numerous requirements: unlimited storage, high reliability, self-management,
regulatory compliance, hardware independence, and ease of integration with existing
applications.

Clusters of commodity hiardware running Linux (for example) according to the
present invention provide a robust platform and a virtually unlimited archive. The system
can scale, e.g., from a few storage node servers to many nodes that store thousands of
terabytes of data. The unique architecture ensures that storage capacity can always keep
pace with an organization’s increasing archive requirements. The system 1s designed
never to lose a file. It replicates data across the cluster so that the archive is always
protected from device failure. If a disk or node fails, the cluster automatically fails over to
other nodes in the cluster that maintain replicas of the same data. The present invention
reduces the cost of archive storage through autonomous processing. For example, as nodes
join or leave the clustered archive, the system automatically adjusts the cluster’s load
balance and optimizes performance by redistributing files across member nodes.

The present invention can help enterprise with government and industry

regulations or the long-term retention of records such as financial documents and medical

_18 -

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

data. This ad\%antage is provided by implementing write-once-read-many (WORM)
guarantees, as well as tiﬁe-starhping, which facilitates compliance with customer-defined
retention poiicies. |

The present invention eliminates hardware dependencies by deploying on an open
platform." As the cost gap between commodity platforms and proprietary storage devices
grows, information technology (IT) buyers no longer want to be locked into relationships
with high-cost appliance vendors. Because a given node typically runs on commodity
hardware and preferably open source (e.g., Linux) operating systém software, preferably
buyers can shop among many hardware options for the best solution.

The present invention offers industry-standard interfaces such as NFS, HTTP,
FTP, and CIFS to store and retrieve files. This ensures that the system can éasily interface
to most standard content management systems, search systems, storage management tools
(such as HSMand backup systems), as well as customized archive applications.

By relying on RAIN-based architecture, the system can guarantee reliability to the
degree specified by its replication policies. The system is self-healing as files on a failed
disk or on a given node are automatically relocated elsewhere. Archives that start small
can be easily expanded simply by adding nodes. The highly symmetric design enables the
system to distribute processing power and storage capacity across a cluster of many nodes,
with little impact on performance.

Creating a large archive typically entails two initial costs: the devices on which the
archive runs, and the software that is bundled with it. Both are typically proprietary. The
present invention lowers this cost in several ways. The system 1s designed to work on
commodity operating systems and hardware, specifically on clusters of Linux systems 1n
the preferred embodiment. Any computer that runs on supported versions of Linux can
act as a system node. By using a hardware-agnostic platform customers are free to seek
the best storage cluster components to suit their individual needs. The system 1s designed
to work with a broad array of applications and supports the most popular file level
interfaces including, without Iimitation, NFS, HTTP and FTP. This means that the system
can easily be made to work with a broad range of applications.

The present invention provides numerous advantages. As described above, setting up

large archive systems is error-prone. Databases, networking, operating systems, storage

- 19 -

10

15

20

25

30

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

management éystems and Web servers all require teams of exp erts with a myriad of skills to
get them running together. The present invention addresses this problem through an
autonomous system that simplifies installation and integration, e. g.,' by setting system
conﬁgur"ation through high-level policies. In addition, it is also known that storage systems,
databases, Web servers and operating systems all have a vast range of tunable parameters
that enable an administrator to optimize performance. The autonomous system of the
present inventioﬁ performs functions such as load balancing automatically as it monitors 1its
own operation. In the prior art, problems with large-scale infrastructure can take weeks to

diagnose and fix. Because archive systems must be continuously available, administrators

‘must be able to remove and replace a faulty device without interrupting ongoing service. An

autonomous system such as provided by the present invention automatically detects |
processes, nodes or other devices that are malfunctioning and safely detaches them from the
archive. Finally, despite the existence of various security mechanisms, administrators are
mostly on their own to decide how to protect an archive from malicious attacks or
madvertent damage. According to the present invention, in contrast, protection policies that
enforce document retention, authentication, and file replication combine to protect an archive
from loss of valuable digital assets.

While the present invention has been described in the context of a method or
process, the présent invention also relates to apparatus for performing the operations
herein. This apparatus may be specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated or recontigured by a computer
program stored in the computer. Such a computer program may be stored in a computer
readable storage medium, such as, but is not limited to, any type of disk including optical
disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random
access memories (RAMSs), magnetic or optical cards, or any type of media suitable for
storing electronic instructions, and each coupled to a computer system bus.

While gi;ven components of the system have been described separately, one of
ordinary skill will appreciate that some of the functions may be combined or shared in
given instructions, program sequences, code portions, and the like.

Having now described our invention, what we now claim is as follows.

-0 -

10

15

20

25

30

CA 02543746 2006-04-26

WO 2005/043323 PCT/US2004/035633
CLAIMS
1. In a redundant array of independent nodes networked together, wherein each

node executes an instance of an application that provides object-based storage, a storage
management method, comprising:

as given fixed content data is written to a given node, generating a data object that
encapsulates the given fixed content data together with metadata that includes policy data;

storing the data object in the given node; and

enforcing a set of one or more policieé against the policy data in the data object’s

metadata during the life cycle of the archive object.

2. The method as described in claim 1 wherein the set of one or more policies

includes a data protection policy.

3. The method as described 1n claim 1 wherein the set of one or more policies

includes an authentication policy.

4. The method as described in claim 1 wherein the set of one or more policies

includes a retention policy.

5. The method as described in claim 1 wherein the set of one or more policies

includes a cluster balance policy.

6. The method as described in claim 1 wherein the set of one or more policies

includes a garbage collection policy.

7. The method as described in claim 1 wherein the set of one or more policies

includes a scavenging policy.

8. The method as described in claim 1 wherein the set of one or more policies

includes a duplication elimination policy.

-1 -

10

15

20

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

9. In a redundant array of independent nodes, wherein each node comprises

given hardware on which a given operating system executes, the given hardware including a

local file system, the improvement comprising:

a set of data objects, wherein a given data object 1s associated with given fixed
content data that has been written to the local file system of the node, the given data object
encapsulating the given fixed content data together with metadata that includes policy data;
and

an application instance executing on the given hardware on the given node,
comprising: | | |

file system code that provides access to data objects stored 1n the local file
system of the given node;

request manager code that processes requests associated with a given data
object;

storage manager code that stores the data objects in the local file system of the
node;

metadata manager code that manages the data objects across a set of
cooperating nodes including the given node; and

policy manager code that enforces a set of one or more policies against the

policy data in the data object’s metadata during a life cycle of the archive object.

-29 .

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

10. A system comprising a redundant array of independent nodes, wherein each
node comprises given hardware on which a given operating system executes, the given
hardware including a local file s&stem, comprising:

é set of data objects, wherein a given data object 1s associated with given fixed

5 content data that has been written to the local file system of the node, the given data object

encapsulating the given fixed content data together with metadata that includes policy data;

and

an application instance executing on the given hardware on the given node,
éomprising:
10 file system code that provides access to data objects stored in the local file
system of the given node;
request manager code that processes requests associated with a giVen data
object; |
storage manager code that stores the data objects in the local file system of the

15 liode;

metadata manager code that manages the data objects across a set of
cooperating nodes including the given node; and
policy manager code that enforces a set of one or more policies against the
policy data in the data object’s metadata during a life cycle of the data object.
20

11. The system as described in claim 10 wherein the given hardware on first

and second nodes 1s heterogeneous.

12. The system as described in claim 10 wherein the application instance

25 further includes an administration interface through an entity manages the given node.

13. The system as described in claim 10 wherein the set of one or more policies

includes a data protection policy.

30 14. The system as described in claim 10 wherein the set of one or more policies

includes an authentication policy.

-23 .

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

15. The system as described in claim 10 wherein the set of one or more policies

includes a retention policy.

5 16. The system as described in claim 10 wherein the set of one or more policies

includes a cluster balance policy.

- 17. The system as described in claim 10 wherein the set of one or more policies
inCIudes a garbage collection policy.
10
18. The system as described in claim 10 wherein the set of one or more policies

includes a scavenging policy.

19. The system as described in claim 10 wherein the set of one or more policies

15 includes a duplication elimination policy.

20. The system as described in claim 10 wherein the application instance
executing on any given node is the same application instance executing on all other nodes,

and wherein given hardware on first and second of the given nodes 1s heterogeneous.
20

-24 -

WO 2005/043323

> 0 K e 1 ' -,
2> N ., al (oY \.
3" .
r . T
-" v
33Ytupat e Tl et
AR AR S A St it fra g o S
b e ST]
- ' -
o Rt - JRRERRR |
» s 3 “ k”ﬁ?.a,.‘.c T S
AL ?‘ 3 - o NN -
SMa¥i i i b TN 3 T e W
> 'Il“ v -V’ -‘ . I“' AAS ~ -
(3l M Lol - g A
N e T Rt Tttt R At
vy A ey B ' j |
- e L
. . ‘~ql .32 :;!afg . g
X P] TP i i,
wAhga b g AT RS avn " A
4 4Ny “ 132 3 Lo e
L k] » e - P W,
- 1.0l P B
N ’ - ' Y -
Rl MU PR s STl PR o 0 ,:I{‘ G
bty
o i~
. L a . £ t"". '?"’“'
' >4

*

P

WFS

o

A N
Fixed . Coiri

3y

s :i !F-:‘

1
n, v
AT g

. = (oL-;-

Tom pk I

'!'; = T ..

: -~ .
'

LI g gt e
S ' 1:'. :’\ R
&-"" > ol R
s . " - N

HE] "
'<-l 1i:

T - . *¥
o 'J{"r{"‘zf"l.?W 5 «
B RSSUNETS UL T

.-. ‘. !.'

>

L

w .,.:u‘,wu ‘\--.nvoﬁef'r“wtr N LTI

”mwm :

tont Bile Systent

-

/

R “b“-s?u‘.s\

RARTRE R i

..')_‘ i

-~

1,
Y % ‘3-"5 .
DREIR A UIE S P2

PRt Rl

'5,1-_.9..':,‘

- r-o-c--o’
N - - holde

A
]

am?

o CoaTAL
s RN 4
<

ﬁ: -?' + Y. > I;

: B [-9
w ol A

Archivas Cluster

v
W
HYE .

Vg b <
Ya %S [3
PRGED 2k
> .

rt

?‘) byt oo
Apvane 5.

. . -
..

LT S

CA

. 1
15 wn™

Hetorogeneous Hardware

- s Sy

Lavand A e A

02543746 2006-04-26

SN
oy e

-v:9~ Y, Ne P el
4}&3;\-’,{51 .;_,&‘ r),’.‘

%

Ve p

! g, A
-N:,fv“ﬁ'\;\ 4
- W)

Sy g
N”“p‘;t}' TR CoprlibhT

PCT/US2004/035633

[z —

o
kg &7

1oy 2013

i
)

-
<

.
-
DI S
=,
By

-~

"o
-

o 4
WrEs

A
Y v

<¥"’."<'
oy
. °
¢«
<
T SO
£ -,

=3

-

D

v aRar T A w - 2 " v
IR N TIT At e AE R

e —— Sy
3F TN ;“ SRS A YIS
oF il < ANIEY IR P

Y

s L ey A

'
L rals Y .

£ fﬁ

"y

&

ot A s e R R

Custom
Application

i Dogument
Management

Ld '3‘.:3 " '..; |]“‘-':'P EEE S L "
" ., oo T “ - e " 4 >,
te, :
» = 1 N

- ~ ‘*' . s = v ‘G
v
‘
’,I I I !! n

-)

CE

N
'
IEPIANIRE PV S R R T TR LAY p N IR Y T L e TRV ST

. et Aty Lrapt VT aa aae D han B] m P SAL Lt LULES TTN DAY
,}c Tx?}‘ ty-; ; AT i : w7 T**'} D - LY ':."}"‘:f' b - T

f. RO S ._'..J, A ", AT - el o ;-'3& W %

,g/r A - 0 2 LAl - 4", . : "

: m' ey v

ot

L Redundant array of independent nedes form: & olustes

Figure 2

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

l' :;. .!"i‘; I“ 3
t< ’ca z 1

".h -
T \f"'OY

!ll\- Yy
EEaSty - . - " = A ~::1{ -m f:

3

g
S
)

¥ -
W .

= iy ’
oI
sy

. 2
ot i L fe Ay b}

”
5 7

304 AC&GSSIaye r
216

sFile tlansactioh and'adminlstr""'ﬁij,fl’i
-rih PR ¢

-’ . W "‘
.;I:'El..l{\: Q.‘-“ a - qu

Cﬁreznystem“eorii f nent orage:Manadggraiih
: " R “ :..:.'_’{.1.\:-, '_,i‘ it o | “‘_ LS B ,:
o:) ‘ : |= L | ! ’)E },I z‘ Jg{ t ;‘\7} j{\) g"

T i X r ! e AL
."' h-; ARt g o -U - q .r’:f 22t PRI BZC
. Jlg "&fiv s RN s ? x " L
o 'j;f- SOHGARET S k* e

leed Qonp,tmy}tvﬁg”
T
11 R

14

R st i A mffgtn‘ﬁ VolEkaime el .
f-qu!e fré\iusactm, f P "ys gcong jiira t”!¥ ! 122

’ N -t ‘ b l
i ‘k X uIJ 'hi 1Y ;fh!::’.l‘l & %"ﬂd‘,hh bFﬂi i "&[F& Qs;gi{g’l& "-153

. 1(‘ f"
,‘- “s. “, ;’; " u:'d t

q.a

P
\:.K.'i oy

‘.s F,

N 33(‘,

i
.%.’;
‘

Linux Operating System

. ’ - ’? rlJ' \' ‘ .' "‘ ' ~“’ r q'f.“ m‘t * . . -'- - 1 i - . o ‘ 3R e . r- .t r f LN o Y/ - ,l”
R %:z A SRR b T VSRS TR S e s mw
" i. 'r' l&ﬁl

(H P 1 ' l" - h
W ,u‘-d} J.tnﬁhd Y -\‘-é..-.-.-' Y ByX A ﬁ WHH{P . "1‘ i "*"""’ e nt Ay ot ’““‘Mi’f

e -
. "REETS ; AN DI T TN W AN A
Y, L &y g, 3oty 10 0 ey Lk PR g Yy ‘ Fraeepoast sty 1
-ﬂm ‘ | : -4 H -
P 32 R I & 5 f'ki 3 N R TR “, bely 2 MR . ..1 TR U . ‘ .) @ T £ St were TPRIS P 4o

Y‘“*ﬁ"‘:i’?'ui LA LES B £ G ":5\"-“ J"‘" {0 nf 1 X P Al E I .f“:,*"l ”‘"“E‘ %?* A BN | B [1 ‘-%Waz-,n‘] Sy ,

. A ‘?(iy \L‘ 1 i l b | ! }Ad "1 ..1 4f{ J '._é\ ‘ ?\'[J ’!’ {h '*0 ") e d v" l'él'ﬂ . -‘=..‘lj . 5"5"’1 $‘) l. , > b $¢ ':l J;'J.'.v ‘I'; ;
L S T o R VL s "“. prap R, “““" ol ks] 3 FL L4 x*#;':‘s‘r i, 0 ShATLE sl -eiti
R P T C) R o 3 mh.:rxmmvrpzn Rine :u;;g}'- 2 L mﬁ..mw&?m ol m Tpen BEA I PN . Fres J

ik S - Pati ¢ X 3 ; b .' AL e d T T1; a~ " Ao o .
i SL R R T e e e
P TP Ll Y S ¥ e, : "' sl K3 Xe P2 B B A n' - 11 &% : i e’

.-'I'li s e d 3 5 G’ /4 "ﬂk? JC "_} ' (427 n“""‘t ,;:’. \-‘\'r hi k TR R T I|'. "
' AP I g : (4" ;1’-..§-w1 R Ll”m&' L RAR SR il

L RN L e W1 Nyie £ \?ﬁ‘ﬂh“blun;mﬁgm&g l'?";‘: e or v o i ‘j!

i '™ AL, A v hf‘ ';T iJJl \’ "" LT 6> “‘l ','\(

H e 1 | L] B :.a‘i:f'a AR R L1 R zx.m?‘m :m h,,a S,

11 r g 10 'P" 4 ») ..' — " LS 's']l. l": ‘4 "¢ 1 el O it ﬂ_ 1
1 \,'l'i 4 f"‘s\‘l.ﬁi ‘i t “ ?} : g SRRLY t !.3" A u e F'.L; : ' 0 i] A Ll o

R BT ENG T D o s AR (P el LRI ity M

LB, b' j;! '4 ii }}. [.%,o Jt Q'f"{]‘r" ! * {l?t 1'4. v‘t‘l’>’-.:zl l,. u'l e v %@.3-{'1 1 2‘ "\ 'J‘ ’ ‘l'“ 2 :‘ AT .“':"‘ "" 4 " f{qt”l T :

\\ u P : o

Figure 3

2/4

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

@

Any Node
NFS @ " " t A N1 gt el v o

- ‘ L W ". ’ L% " .
A E ."‘ 1 . ‘4._-\}. .A.'z _}. “:- J‘l ‘}
AT ! T.' X AL ~¢il il‘
.

1 e !\3'.* .u'
1 “gﬂz. {f!“- -.: .'J
AR ol L1
RN SRR
¥ ‘

ﬁ‘éﬂ ‘3‘*&?"

-’

*m

s
w2

el ‘Eé":* NG

%’1% 1Y "“: fffin ' .
s Node X files
e copied from
other nodes.

$~ A I Aipy
u‘%?‘qfqu gtl{}%
; : z‘\ﬂ bﬁ ?

‘.

133
'-i'kh

%&iﬁ&n&mmﬂggy k/? e 5

W@%
G‘B C

g*%&% ‘%{mé

’3"?3«3 L‘in FL

i

3/4

CA 02543746 2006-04-26
WO 2005/043323 PCT/US2004/035633

bl 2 1

§ YN0 g TR AL TR 19 g DS PRI 2 PO (TS SERTICLCEA 12 FUETVED BT Iroc Porwriat L REREDERMEL Y o) B Py Vs s M i 4 7 7T LU PRSI D AR e (7 y(EUSTS IR anatel AT mg A el SR e ""’“” 7 "*’ ’i AT
- - » - for ¥ e 1 A o

A ™ }-o o

- B f"v "'? L&) ll@‘*‘ﬁw ,f} -Uj 1 B

..41"0\ " \)) v & ; i :I:-H ;’h& Mql-ﬂt Ai", 11\‘5‘; {71-11&“&“ ‘uﬁ&ti‘t

v ¥ a1 y . - s
-;""J f \u.’ . ‘-

(J"“\ 31 1 “u tinﬁ

: -‘-.'.. - | P - -0} Y A -|v ' 'w _.. ‘ r A S . At%- R o e " o — . e | é‘z’z
;. _-;fnrehw !us‘ler < cmatar’llodea DA Gﬂtow -1 T CM‘st‘er Loy ._

MR A

P LA A N Y R T T R CE T - ;e --‘-' R S AR

. . l
v M
ST :tw{,,’"(f:.'« e Sﬂ.s?;;n:r.,ﬁfﬁ;u;%ﬁ': ?Ef i; B .?, 6 s‘:*“; m,,,,, ,‘"%-?‘?" RS Qﬂ’ SR N wv} L
2 y:”rv “ T N
(A

j.',""':f’fff':;-r.;-\ 4.»‘«:(3;3“ mz g T r,z» . f»fi.-"" W?,)“:'f“s" R ’““-‘-Lﬁ';“ -t'\f Bhl‘:f? C'USfE’ffS fU"')’ QDBf 3110!‘181
(,Wehwe ;! f Q ’ﬂ!‘ﬂ L2 IR ’ﬁj"w Thu Jul 22 14:27:41 EDT 2004

" F (A rk’\ n,.:: Qe
t ws{azi alust g t ﬁluster] ,
et 1‘ -' ¢ . ’.I c'[‘¢ ‘: o7 . ‘.u - M W'Q’%‘“Wﬁa‘”\géﬂﬂ“’&"'ﬂﬁmi ?I«@QW”\»-}Q}‘,[%W«QTJ%?\;;# 3‘[‘%’5»{5&1'&‘!!}?&'#:"““”!% ‘-pm.yumﬂ %vgoppwwna Irh)vmp \“W@J,}l 1]
! ;"‘ : 1 * P i|¢‘; , *. A - 1 '.~. . o+ <o a_';'} racy :"""”5...7. '.‘ 'i- " g ’t ": _’ '_‘ w'er ¢ " P
palicy S{aiusmul RecenbEvems . X l Cltwtet anume in GB { I‘zst m aaaaa)
- oAb AL P < B TS R ETE Tl L EF LT & b ft il — e bt]
é a é PO““QS EY mts” p E,W .»F"f ‘ig u;:mw:?"s;a @"111 I ,ﬁfgq_"i’_‘g‘jw& J‘”J'J‘{t}";*’*kif_‘igf"ilﬁ:‘i T — — - 1
- L& . 0~ "'"1?'4'""*!4 AL PN IARCE ot iy G e) REEEADRALET By R e]
e -cunmn po’lcy sr-““s e : . ' f"”.. 175 ,:’:é‘:“ 82 t“i‘:‘?f:{?‘;: .‘,11‘1": 1?‘ "_: .,;,:-',1'4‘ ‘ "'-a'=:_ ;.g‘.’o’; . DR . !
=0 e .) ¢ . ‘:",‘".; 3 ; * ” '{ “1*1- ’ ‘:. “.r*l“’- :’j} o n.‘ ,.‘-.."'."',,"0 ."".*.. i 'i" a- . + ’ ‘i:
ﬂ ¥ Status TimeiDate. . | T T 1mnq BRSO S s ' é /2
' ‘ J FETVES sl .. . {E%.‘"ﬁ'-"«; .'i_,'kﬁ-‘ !,'3_' ~ i L:.“':’-.‘";i"'j N b '-"‘7 " .';Jf.:’“:‘; . :;,"."“ﬁ"}.;"%‘,! _:“;f‘.) ‘-"f-'f‘“ ?: A
[Completed | 4:43 P 741972004 Autheniltaﬁan o JERRCT] asgd [RGB 1 e BT
0 T R M o= e T AT PP B A AT PR o z‘ . :"-::3 ’Th "::'f:‘"::“t? '?h i “I?‘z ."u; i ',fﬂ'e'": L e ’".: ety
e Seigpty AL RS R 8 e i WL AT g el ey T K -
Waitmg % 227 B 702202004 ‘Clueter Balange S ,;%E,,i.ii;»;;;};;r i h{‘;‘r e ,:,:..‘q“ri.ih-’»-tz.;i% Al b
VLTS ¥ 10 APy 1 PN AP 4 7173 L DATLETA LS M T M A Ly il T AT MM £ 3 VA5 VT i -“WMI‘W‘WM&W&WWH ?."fr: :'3 . 1 000 y e "I.(}‘ .af,l t::-;" LE‘ ’w ':;a_:l }’ f-f : .\ : f, * 'ES ';EE.E._'I;‘,? 5_.‘13.'; :i(;;l;f.‘s:':‘i ,i’“[‘-{F ;
Completgd g 10 3 Nﬁ‘i ?I?EQGO 4 Gat’bage CUHQG“O“ --[1.5.?‘,.}:; e *}i 1t 1"{"" "'r' REEC I g o e '
e o ey e s it i 10 it . B o - I T WAL (0 B AV Bt WMW:'_": ".. 33 " 750 '}'-?::l;; :t’t';é}""’. l’l. *I l):t;‘ , Jﬂ?k 2 st A vy -;, ;s L ';'l‘:“'i}j . '}
b I PR R AP RRR N S
._1 1 0 U? Mﬁ ?!2212094 ‘ prme gli Gn) : t-':“ "';;.,'- ??3;;" 'f}f:'fﬁfj ;‘i" } A .',:E: ,‘;:1;; ‘—:? by y :":,:_-I.-; f'-li':’,"‘-i*'";ggtﬂi
& " SIS w'wmmm‘“ . T ' mr_‘;',";?':i) *“:"’ijl!i::fﬁgtvq\‘t" }” r‘iﬁl‘i W *t,}:f -;-‘ 1,47 §at o F :”-':'. :«.'l:.o;";.u;}“« "\1! ¢
2 27 F’M 7!2 ?fz 004 i Eatenhe n 4 {‘.I;{a}i San g ,éu.:r ?2.’4"; 540 ;1::. ;3{,“'#:‘! tr, b A ,13\;.1; :v ;5;1 “E]-;;J-: : ;: ;‘,"qf,‘-fr]‘;":‘v' A aery ¢ X
S o s e wmfwwwwmsm-mmmm.“fiié . fii,ri :gti:,,,{ *43 F:m'tk % ;-:‘.‘b, izl’:!a' : 0 E‘l‘:“;’z."‘ ';"I- el liﬁ;“ltf;é '
. 1 X .ji" RN M2 e T e -~'.~ e e
| 1 0. 01 Al ”32{ 2B04 .1 Scavenging B Sl 250+ '-5’;%{""'!-‘{&‘?15’ i ié.f;ﬂ**;ffm NG T A
" ' 5 ' ' "y ' ﬁg%{fﬁfuj:‘*'ﬂi;’i{‘,?j‘fff[i‘};u‘ut it ;f ERT s .,lr,! ok "' "‘“ ‘l"**"‘ ’:[t)i‘ 4 .i, ‘j *
| TimelDale: .ol .f&ol}.ax@i}lamg 3 o LR e i |

LD 7120 7421 7122

| 18 total storage capacily (1,767.875 OF) i
{1 & used storage volume (0.002 GB)
& raw file volume .000 GBY

Y S

192.168.104.93

m“\wmwwmpwﬂwmq « YW TSR LA AW tuuﬁu. w‘m El SO T WL S PR LU LY % P T At AN L L TG P YRV U L P s e YRR) e G el

- d4 ,.mi 3‘1"““9? . 119?153”14 94 pnmom - |
a5 | Running | 192,168.104. 95 R — — , i _—
N P soma aiog 20m vin o oot e n e enwt ma[es 3 3{) $ r

" o8 {Running 119216810498 I3 T e LT days | — |

0 & o A L]t P a1 4 ¢ AV BA5ve A p b BN I PR e e g b T

o et 27 o ar e ‘E.E.«@!Bgmmm'l %2,,?581 U‘I;Q? . i, §S T TS ' é {l./
@@@ (95 | Runiing ﬁ}’z_.iié;i'éli%;iil;i:‘;if;':"i?3’ 01 w“;? W’“’” 1y

{@@@ o8 [Ruming 16218810498 i |) e

(OO 1100 |Ruaning | 192.968.404100 B | 5.

(OO 101 |Running | 1AL16BI04A00 1 Tl

257

mvr FLLE] MWW -y {‘mvm R T L, TN g W ..:...M‘c iy dooowAd araperip s ma e iy Ve SN A0 e P raminrno MR = DagRs § Adh_ 4 PO

"o - w-\,ﬂ-w' 'hd'-. Py o me—— Ry iy i 2 S

| SSH®® 102 . Running | 192,168.104.102 ”i %

nw‘?' 1 $
i}.‘* s]}m
f[th ﬁfi

®
S A e m i -,‘E.’a’iﬁ“f 53\\5,"{ lf:??}“‘i

. G ‘
| 120 7121
Eéa file colint (53 ﬁles}

PO T Po—

|
1
|
]

ot AP i i L gk s, MgVt dutbete, . ol - e ———_——— e ra VWS

A"—-v-"—‘ -
L PtV LA NIVO A g, e
—
[
-
-
- .]
-
- :
s -
- e . .
- -
.)
-
o N
: D mg @ -

o w 4= :
R T -
- mw;wsmq-pt*
. . tr -

o
a . -
-
°
.
id -
3
“a " -
oL -
3
A
a - .
-
-~

*Last updaled: 12:649 PM 712212004

>
ﬁ*ﬁ='—'

Controle [NodelD [Stalus, Node 1P Address '*

Ll on ek 1 Sebn A bl o de b o dd e aaddrade may T Y PP

4/4

AR VW wrerylivrvviraiy e AL A

N

NSRS ’ T e S R SR

s ;._,,:’\‘_.*\“&‘- . ? 7.,-.2-&u ‘1=-\~,A‘r'
207t 0y iy P

K " aha N ‘E'q_ . T -
':.'ﬂ F! w\ C'rv.-' ’:‘;-‘: "-r '
. h - -:0)& :-
i '
o~

. . .. 4
T V-4 2w R T . on 4

~~H] A =L '
AR NI SN PIS

b e i 4

Audlo/Video CheckImaging

} Document I Cusfom

: Emall Archlve
Management Application

2R U AR LA S

[H L
s oz 4hA
17 ‘1.'3'" L
[l & g
L
' o l.':n, u 5-
-?~ r - ¥ \ o
.~ “ES £ _.:. '{- VLA WA G Ty Y AR A AT L e
‘2 Loy 12 S e m g gy ottt LAV IR, AR, " UL TR IS SR S K. K4 CR
- - . .= . .. N PR v L P N N LI M T
, . { Py ’.'O"'LJ-" ? : Vo Can? ,.p;-'\?‘ T -.",;;l v,
1 IG T s L. '7!. - L . 4 FRIEA Pegg. . = * e - B b R TR L :‘%f‘l o .f{ = =y
. TR e wrh, r_-. , . h| - “ IREXT I R LN " 5 1 LI T3, s s oAy . A \.’.5%:.'};"‘ -
N T |y R VAT I IR LTI LN 2 O P y % L T R L T RAVER e A R A,
' uv & dy Se 1 I AL - d . Brphet © tha” ST G B TR IR
)) I PRI S . . O e A | el . \ 1t .l e P b TR iR e ‘ . [
I G o R ’ . 1 - s o, PR v iy i gt T e Siane ST SN) e a
. ’ 0 -4 & T . 4 s A - “~ Z R T T 2 e - Nf%
ey . s M - T by 24" -, - era? =
Tarl AL SN o PSR ANT-AY. T L * 'f\a Xy ﬂ\?.st.i.'ﬁ-ﬂi"-("- IFFrwns® o s Iﬁ cilme tsi tﬁ:ﬂ"ﬂw
e A ol e TR R] S P Fofronporta rimgrie 4 woadd s iwiat o e F . s Fh L
a2t ST S VAR S P S B O o R T, A R RPN HECERE AT S T e
A e ? ‘.‘))l LS = ["". 1_0_- :. 2 L B Y < - ’ 4. > - : : T . ' - . fatm it v - B T - .
PR e g - 1 ' v &b bk 2 $h g ¢ , L1 ST . WM L e R N R AL T, Y
o y X ¥ F Aty - s . - : : - .
g - . ‘:.'I : - "‘ in- L >

R o W EE] i]

KFS

- e TV VN t.\"".'

A L o -
'..\rﬁ!’:-f P

gt i e

cnequbvasle LEAESATWII b e) b gy a

\
el -~ } < - £ 2 v 5~
“ . - '
. ALY 1 1"“‘ oy : N & K3 \'} .

[
Ev . ‘0
¥ * el s,y 1 e ade ;
¥ o} ey R DA
, N.\-?:-Ié\.,'s_\}., N e o - v - %:é l"P‘/ - .g 't f’E.T't
‘&/(V “ 5 # g % -\ﬁ ?‘ 01
v i

wess gamy Moy AT m p ol [l {11
<‘5‘.’5“:g'_;,' : 'xﬁvﬁ T e
LY T b)) “r
AR - U lTH TN C

L P '.;{:-‘.'} 4

Rty ;r :-,a:‘ 27
..ﬁn—(éi{é“ g%lc
e gy ¥R

(] ' o Py

.

sy _.g}r."-"-\';‘("\"}«/
> o Poos i o,

w

Yo
: *dgg.g'_. il#ﬁg"{ I;?a.; , vt ;n 5

bpreip O L

1 "

T a 2ot [? O T :‘:O'}f;2$3'§\ AN L

PR A . HUis ! [e . GNP Mo

et 8 Rt R e A e
s % .

AL . A Rl N e % o Y o " e - - v
wrk e W g at i AN : L &% : - .) w*«r‘%{’“" 3
M. 2 P . P ? 4 - LY Ar R " .2 g . . s L A . - ; A

Archivas Cluster
Heterogeneous Hardware

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

