0 2006/116183 A1 | I)P 0000 000 A0 T

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
2 November 2006 (02.11.2006)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

TR
O 000 OO O

(10) International Publication Number

WO 2006/116183 Al

(51)

21

(22)
(25)
(26)
(30)

(71)

(72)

International Patent Classification:
GOGF 17/30 (2006.01)

International Application Number:
PCT/US2006/015242

International Filing Date: 24 April 2006 (24.04.2006)

Filing Language: English
Publication Language: English
Priority Data:

60/674,641 25 April 2005 (25.04.2005) US

Applicant: NETWORK APPLIANCE, INC. [US/US];
495 East Java Drive, Sunnyvale, California 94089 (US).

Inventors: LANGO, Jason;, 495 East Java Drive,
Sunnyvale, California 94089 (US). QUIRION, Brian,
Mederic; 495 East Java Drive, Sunnyvale, CA 94089
(US). ZHENG, ling; 495 East Java Drive, Sunnyvale, CA
94089 (US). TSAI, Robert, Leih-Yuan; 495 East Java
Drive, Sunnyvale, CA 94089 (US). AMDUR, Matthew,
Benjamin; 495 East Java Drive, Sunnyvale, CA 94089
(US). KESAVAN, Ram; 495 East Java Drive, Sunnyvale,
CA 94089 (US). GRUNWALD, David; 495 East Java
Drive, Sunnyvale, CA 94089 (US). AYYAR, Kartik; 495
East Java Drive, Sunnyvale, CA 94089 (US). ENGLISH,

(74)

(81)

(84)

Robert, M.; 4 East Java Drive, Sunnyvale, CA 94089
(US). WAGNER, Christopher, J.; 495 East Java Drive,
Sunnyvale, CA 94089 (US). EASTHAM, Paul; 495 East
Java Drive, Sunnyvale, CA 94089 (US). ACKAOUY,
Emmanuel; 495 East Java Drive, Sunnyvale, CA 94089
(US). PRAKASH, Ashish; 495 East Java Drive, Sunny-
vale, CA 94089 (US).

Agents: BARBAS, Charles et al.; CESARI AND
MCKENNA, LLP, 88 Black Falcon Avenue, Boston,
Massachusetts 02210 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, T]J, TM, TN, TR, TT, TZ, UA, UG, UZ,
VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: ARCHITECTURE FOR SUPPORTING SPARSE VOLUMES

200

Ut 275

VDISKMODULE 290

WRITE A;_;_ZOCATOR FILE SYSTEM 280

LOAD_INODE () LOAD_BLOCK ()
286 284

DAFS SCSI TARGET
i MODULE
28 | Nes | crs | owrTTe 270
20 | 222 | a2 svoTem
i isCsl NRV
226 228
295 240
TcP | UupP TCP Fe
214 216 214 230
P P
212 212 MEDIA Dg:sléR
ACCESS SYSTEM
MEDIA MEDIA 210
ACCESS ACCESS 250
210 210

| e———————————

(57) Abstract: An architecture, including a file-level protocol, for supporting sparse volumes on a storage system is provided. The
file-level protocol provides coherency checking for use in retrieving data stored on a backing store remote from a storage system.

WO 2006/116183 A1 I} H10 Y A0V0H0 T 000 000 A0

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL,, PL, PT, — before the expiration of the time limit for amending the
RO, SE, SI, SK, TR), OAPI (BF, BJ, CFE, CG, CI, CM, GA, claims and to be republished in the event of receipt of
GN, GQ, GW, ML, MR, NE, SN, TD, TG). amendments

For two-letter codes and other abbreviations, refer to the "Guid-
Published: ance Notes on Codes and Abbreviations" appearing at the begin-
— with international search report ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 2006/116183 PCT/US2006/015242

ARCHITECTURE FOR SUPPORTING SPARSE VOLUMES

FIELD OF THE INVENTION

The present invention relates to file systems and, more specifically, to a protocol
for use with a file system that includes volumes having one or more files with blocks that
require a special operation to retrieve data associated therewith from a remote backing

store.

BACKGROUND OF THE INVENTION

A storage system typically comprises one or more storage devices into which in-
formation may be entered, and from which information may be obtained, as desired. The
storage system includes a storage operating system that functionally organizes the system
by, inter alia, invoking storage operations in support of a storage service implemented by
the system. The storage system may be implemented in accordance with a variety of
storage architectures including, but not limited to, a network-attached storage environ-
ment, a storage area network and a disk assembly directly attached to a client or host
computer. The storage devices are typically disk drives organized as a disk array,
wherein the term "disk" commonly describes a self-contained rotating magnetic media
storage device. The term disk in this context is synonymous with hard disk drive (HDD)

or direct access storage device (DASD).

Storage of information on the disk array is preferably implemented as one or more
storage "volumes" of physical disks, defining an overall logical arrangement of disk
space. The disks within a volume are typically organized as one or more groups, wherein
each group may be operated as a Redundant Array of Independent (or Inexpensive) Disks
(RAID). Most RAID implementations enhance the reliability/integrity of data storage
through the redundant writing of data "stripes" across a given number of physical disks in
the RAID group, and the appropriate storing of redundant information (parity) with re-
spect to the striped data. The physical disks of each RAID group may include disks con-
figure to store striped data (i.e., data disks) and disks configure to store parity for the data

10

20

25

30

WO 2006/116183 PCT/US2006/015242

(i.e., parity disks). The parity may thereafter be retrieved to enable recovery of data lost
when a disk fails. The term “RAID” and its various implementations are well-known and
disclosed in 4 Case for Redundant Arrays of Inexpensive Disks (RAID), by D. A. Patter-
son, G. A. Gibson and R. H. Katz, Proceedings of the International Conference on Man-
agement of Data (SIGMOD), June 1988.

The storage operating system of the storage system may implement a high-level
module, such as a file system, to logically organize the information stored on the disks as
a hierarchical structure of directories, files and blocks. For example, each “on-disk™ file
may be implemented as set of data structures, i.e., disk blocks, configured to store infor-
mation, such as the actual data for the file. These data blocks are organized within a vol-
ume block number (vbn) space. The file system, which controls the use and contents of
blocks within the vbn space, organizes the data blocks within the vbn space as a "logical
volume"; each logical volume may be, although is not necessarily, associated with its
own file system. The file system typically consists of a contiguous range of vbns from

zero to »-1, for a file system of size » blocks.

A known type of file system is a write-anywhere file system that does not over-
write data on disks. If a data block is retrieved (read) from disk into a memory of the
storage system and “dirtied” (i.e., updated or modified) with new data, the data block is
thereafter stored (written) to a new location on disk to optimize write performance. A
write-anywhere file system may also opt to maintain a near optimal layout such that the
data is substantially contiguously arranged on disks. The optimal disk layout results in
efficient access operations, particularly for sequential read operations, directed to the
disks. An example of a write-anywhere file system that is configure to operate on a stor-
age system is the Write Anywhere File Layout (WAFL™) file system available from
Network Appliance, Inc., Sunnyvale, California.

The storage operating system may further implement a storage module, such as a
RAID system, that manages the storage and retrieval of the information to and from the
disks in accordance with input/output (I/O) operations. The RAID system is also respon-
sible for parity operations in the storage system. Note that the file system only "sees" the

data disks within its vbn space; the parity disks are "hidden" from the file system and,

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

thus, are only visible to the RAID system. The RAID system typically organizes the
RAID groups into one large "physical” disk (i.e., a physical volume), such that the disk
blocks are concatenated across all disks of all RAID groups. The logical volume main-
tained by the file system is then “disposed over” (spread over) the physical volume main-
tained by the RAID system.

The storage system may be configure to operate according to a client/server
model of information delivery to thereby allow many clients to access the directories,
files and blocks stored on the system. In this model, the client may comprise an applica-
tion, such as a database application, executing on a computer that “connects” to the stor-
age system over a computer network, such as a point-to-point link, shared local area net-
work, wide area network or virtual private network implemented over a public network,
such as the Internet. Each client may request the services of the file system by issuing
file system protocol messages (in the form of packets) to the storage system over the
network. By supporting a plurality of file system protocols, such as the conventional
Common Internet File System (CIFS) and the Network File System (NFS) protocols, the

utility of the storage system is enhanced.

When accessing a block of a file in response to servicing a client request, the file
system specifies a vbn that is translated at the file system/RAID system boundary into a
disk block number (dbn) location on a particular disk (disk, dbn) within a RAID group of
the physical volume. It should be noted that a client request is typically directed to a spe-
cific file offset, which is then converted by the file system into a file block number (fbn),
which represents an offset into a particular file. For example, if a file system is using 4
KB blocks, fbn 6 of a file represents a block of data starting 24 KB into the file and ex-
tending to 28 KB, where fbn 7 begins. The fbn is converted to an appropriate vbn by the
file system. Each block in the vbn space and in the dbn space is typically fixed, e.g., 4k
bytes (kB), in size; accordingly, there is typically a one-to-one mapping between the in-
formation stored on the disks in the dbn space and the information organized by the file
system in the vbn space. The (disk, dbn) location specified by the RAID system is fur-
ther translated by a disk driver system of the storage operating system into a plurality of
sectors (e.g., a 4kB block with a RAID header translates to 8 or 9 disk sectors of 512 or
520 bytes) on the specified disk.

10

15

20

25

30

WO 2006/116183 , PCT/US2006/015242

The requested block is then retrieved from disk and stored in a buffer cache of the
memory as part of a buffer tree of the file. The buffer tree is an internal representation of
blocks for a file stored in the buffer cache and maintained by the file system. Broadly
stated, the buffer tree has an inode at the root (top-level) of the file. An inode is a data
structure used to store information, such as metadata, about a file, whereas the data
blocks are structures used to store the actual data for the file. The information contained
in an inode may include, e.g., ownership of the file, access permission for the file, size of
the file, file type and references to locations on disk of the data blocks for the file. The
references to the locations of the file data are provided by pointers, which may further
reference indirect blocks that, in turn, reference the data blocks, depending upon the
quantity of data in the file. Each pointer may be embodied as a vbn to facilitate effi-

ciency among the file system and the RAID system when accessing the data on disks.

The RAID system maintains information about the geometry of the underlying
physical disks (e.g., the number of blocks in each disk) in raid labels stored on the disks.
The RAID system provides the disk geometry information to the file system for use when
creating and maintaining the vbn-to-disk,dbn mappings used to perform write allocation
operations and to translate vbns to disk locations for read operations. Block allocation
data structures, such as an active map, a snapmap, a space map and a summary map, are
data structures that describe block usage within the file system, such as the write-
anywhere file system. These mapping data structures are independent of the geometry
and are used by a write allocator of the file system as existing infrastructure for the logi-
cal volume. Examples of the block allocation data structures are described in U.S. Patent
Application Publication No. US2002/0083037 Al, titled Instant Snapshot, by Blake
Lewis et al. and published on June 27, 2002, which application is hereby incorporated by

reference.

The write-anywhere file system typically performs write allocation of blocks in a
logical volume in response to an event in the file system (e.g., dirtying of the blocks in a
file). When write allocating, the file system uses the block allocation data structures to
select free blocks within its vbn space to which to write the dirty blocks. The selected
blocks are generally in the same positions along the disks for each RAID group (i.e.,

within a stripe) so as to optimize use of the parity disks. Stripes of positional blocks may

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

vary among other RAID groups to, e.g., allow overlapping of parity update operations.
When write allocating, the file system traverses a small portion of each disk (correspond-
ing to a few blocks in depth within each disk) to essentially "lay down" a plurality of
stripes per RAID group. In particular, the file system chooses vbns that are on the same
stripe per RAID group during write allocation using the vbn-to-disk,dbn mappings.

During storage system operation, a volume (or other data container, such as a file
or directory) may become corrupted due to, e.g., physical damage to the underlying stor-
age devices, software errors in the storage operating system executing on the storage sys-
tem or an improperly executing application program that modifies data in the volume. In
such situations, an administrator may want to ensure that the volume is promptly
mounted and exported so that it is accessible to clients as quickly as possible; this re-
quires that the data in the volume (which may be substantial) be recovered as soon as
possible. Often, the data in the volume may be recovered by, e.g., reconstructing the data
using stored parity information if the storage devices are utilized in a RAID configura-
tion. Here, reconstruction may occur “on-the-fly”, resulting in virtually no discernable

time where the data is not accessible.

In other situations, reconstruction of the data may not be possible. As a result, the
administrator has several options, one of which is to initiate a direct copy of the volume
from a point-in-time image stored on another storage system. In the general case, all vol-
ume data and metadata must be copied, prior to resuming normal operations, as a guaran-
tee of application consistency. However, such “brute force” data copying is generally
inefficient, as the time required to transfer substantial amounts of data, e.g., terabytes,
may be on the order of days. Similar disadvantages are associated with restoring data
from a tape device or other offline data storage. Another option that enables an adminis-
trator to rapidly mount and export a volume is to generate a hole-filled volume, wherein
the contents of the volume are “holes”. In this context, holes are manifested as entire
blocks of zeros or other predefined pointer values stored within the buffer tree structure
of a volume. An example of the use of such holes is described in the U. S. Patent Appli-
cation Serial No. 10/412,478, entitled WRITABLE READ-ONLY SNAPSHOTS, by Vi-

jayan Rajan, the contents of which are hereby incorporated by reference.

10

15

20

25

WO 2006/116183 PCT/US2006/015242

In such a hole-filled environment, the actual data is not retrieved from a backing
store until requested by a client. However, a noted disadvantage of such a hole-based
technique is that repeated write operations are needed to generate the appropriate number
of zero-filled blocks on disk for the volume. That is, the use of holes to implement a data
container that requires additional retrieval operations to retrieve data further requires that
the entire buffer tree of a file and/or volume be written to disk during creation. The time
required to perform the needed write operations may be substantial depending on the size
of the volume or file. Thus, the creation of a hole-filled volume is oftentimes impractical

due to the need for quick data access to a volume.

A storage environment in which there is typically a need to quickly “bring back” a
volume involves the use of a near line storage server. As used herein, the term “near line
storage server” means a secondary storage system adapted to store data forwarded from
one or more primary storage systems, typically for long term archival purposes. The near
line storage server may be utilized in such a storage environment to provide a back up of
data storage (e.g., a volume) served by each primary storage system. As a result, the near
line storage server is typically optimized to perform bulk data restore operations, but suf-
fers reduced performance when serving individual client data access requests. This latter
situation may arise where a primary storage system encounters a failure that damages its
volume in such a manner that a client must send its data access requests to the server in
order to access data in the volume. This situation also forces the clients to reconfigure
with appropriate network addresses associated with the near line storage server to enable

such data access.

SUMMARY OF THE INVENTION

The present invention overcomes the disadvantages of the prior art by providing a
system and method for supporting a sparse volume within a file system of a storage sys-
tem. As used herein, a sparse volume contains one or more files with at least one data
block (i.e., an absent block) that is not stored locally on disk coupled to the storage sys-
tem. By not storing the data block (or a block of zeros as in a hole environment), the

sparse volume may be generated and exported quickly with minimal write operations re-

10

15

20

25

WO 2006/116183 PCT/US2006/015242

quired. The “missing” data of an absent block is stored on an alternate, possibly remote,

source (e.g., a backing store) and is illustratively retrieved using a remote fetch operation.

A storage operating system executing on the storage system includes a novel
NRYV (NetApp Remote Volume) protocol module that implements an NRV protocol. The
NRYV protocol module interfaces with the file system to provide remote retrieval from the
backing store. The NRV protocol module is invoked by an exemplary Load_Block()
function within the file system that determines whether a block is to be retrieved from the

remote backing store.

The Load_Block() function initiates a series of NRV protocol requests to the
backing store to retrieve the data. The NRV protocol module first authenticates the con-
nection and then transmits an initialization request to match the appropriate information
required at the beginning of the connection. Once the NRV protocol connection has been
initialized and authenticated, various types of data may be retrieved from the backing
store including, for example, information relating to volumes, blocks and files or other
data containers stored on the backing store. Additionally, the NRV protocol provides a
mechanism to remotely lock a persistent consistency point image (PCPI) or snapshot (a
lock PCPI request) on the backing store so that the backing store does not modify or de-
lete the PCPI until it is unlocked via an unlock command (an unlock PCPI request). Such
locking may be utilized when the backing store is instantiated within a PCPI that is re-
quired for a long-lived the application on the storage system, such as a restore on demand
application. The novel NRV protocol also includes commands for retrieving status infor-
mation such as volume information, from the backing store. This may be accomplished
by sending a VOLINFO request to the backing store identifying the particular volume of

interest

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the invention may be better understood by
referring to the following description in conjunction with the accompanying drawings in

which like reference numerals indicate identical or functionally similar elements:

WO 2006/116183 PCT/US2006/015242

Fig. 1 is a schematic block diagram of an exemplary network environment in ac-
cordance with an embodiment of the present invention;
Fig. 2 is a schematic block diagram of an exemplary storage operating system in

accordance with an embodiment of the present invention;

5 Fig. 3 is a schematic block diagram of an exemplary inode in accordance with an

embodiment of the present invention;

Fig. 4 is a schematic block diagram of an exemplary buffer tree in accordance

with an embodiment of the present invention;

Fig. 5 is a schematic block diagram of an illustrative embodiment of a buffer tree

10 ofa file that may be advantageously used with the present invention;

Fig. 6 is a schematic block diagram of an exemplary aggregate in accordance with

an embodiment of the present invention;

Fig. 7 is a schematic block diagram of an exemplary on-disk layout in accordance

with an embodiment of the present invention;

15 Fig. 8 is a schematic block diagram of an exemplary fsinfo block in accordance

with an embodiment of the present invention;

Fig. 9 is a schematic block diagram of a protocol header data structure in accor-

dance with an embodiment of the present convention;

Fig. 10 is a schematic block diagram of a protocol request data structure in accor-

20 dance with embodiment of the present convention;

Fig. 11 is a schematic block diagram of a protocol response data structure in ac-

cordance with embodiment of present convention;

Fig. 12 is a schematic block diagram of a file handle data structure in accordance

with an embodiment of the present convention;
\

25 Fig. 13 is a schematic block diagram of a file attribute data structure in accor-

dance with embodiment of the present convention;

Fig. 14 is a schematic block diagram of an initialization (INIT) request data struc-

ture in accordance with embodiment of the present convention;

10

15

20

25

WO 2006/116183 PCT/US2006/015242

Fig. 15 is a schematic block diagram of an initialization (INIT) response data

structure in accordance with embodiment of the present convention,

Fig. 16 is a schematic block diagram of a volume information (VOLINFO) re-

quest data structure in accordance with embodiment of the present convention;

Fig. 17 is a schematic block diagram of a volume information (VOLINFO) re-

sponse data structure in accordance with embodiment of the present convention;

Fig. 18 is a schematic block diagram of a read (READ) request data structure in

accordance with embodiment of the present convention;

Fig. 19 is a schematic block diagram of a read (READ) response data structure in

accordance with embodiment of the present convention;

Fig. 20 is a schematic block diagram of a lock PCPI (LOCK_PCPI) request data

structure in accordance with an embodiment of the present convention;

Fig. 21 is a schematic block diagram of a PCPI information data structure in ac-

cordance with embodiment of the present convention;

Fig. 22 is a schematic block diagram of a lock PCPI (LOCK_PCPI) response data

structure in accordance with an embodiment of the present convention;

Fig. 23 is a schematic block diagram of an unlock PCPI (UNLOCK _PCPI) re-

quest data structure in accordance with embodiment of the present convention;

Fig. 24 is a schematic block diagram of an authentication (AUTH) request data

structure in accordance with embodiment of the present convention;

Fig. 25 is a schematic block diagram of an authentication (AUTH) response data

structure in accordance with an embodiment of the present convention;

Fig. 26 is a schematic block diagram of a get holy bitmap
(GET_HOLY_BITMAP) request data structure in accordance with an embodiment of the

present invention;

Fig. 27 is a schematic block diagram of a get holy bitmap
(GET_HOLY_BITMAP) response data structure in accordance with an embodiment of

the present invention;

10

15

20

25

WO 2006/116183 PCT/US2006/015242

10

Fig. 28 is a schematic block diagram of a indirect block map structure in accor-

dance with an embodiment of the present invention;

Fig. 29 is a schematic block diagram of a remove (REMOVE) request data struc-

ture in accordance with an embodiment of the present invention;

Fig. 30 is a schematic block diagram of a remove (REMOVE) response data

structure in accordance with an embodiment of the present invention;

Fig. 31 is a schematic block diagram of a rename (RENAME) request data struc-

ture in accordance with an embodiment of the present invention;

Fig. 32 is a schematic block diagram of a rename (RENAME) response data struc-

ture in accordance with an embodiment of the present invention;

Fig. 33 is a schematic block diagram of a create (CREATE) request data structure

in accordance with an embodiment of the present invention;

Fig. 34 is a schematic block diagram of a create (CREATE) response data struc-

ture in accordance with an embodiment of the present invention

Fig. 35 is a flow chart detailing the steps of a procedure for retrieving one or more
blocks from a backing store utilizing the NRV protocol in accordance with an embodi-

ment of the present convention; and
Fig. 36 is a flow chart detailing the steps of a procedure showing the use of the

LOCK_PCPI command in accordance with an embodiment of the present convention.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE
EMBODIMENT

A. Network Environment

Fig. 1 is a schematic block diagram of an envirdnment 100 including a storage
system 120 that may be advantageously used with the present invention. The storage sys-
tem is a computer that provides storage service relating to the organization of information
on storage devices, such as disks 130 of a disk array 160. The storage system 120 com-

prises a processor 122, a memory 124, a network adapter 126 and a storage adapter 128

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

11

interconnected by a system bus 125. The storage system 120 also includes a storage op-
erating system 200 that preferably implements a high-level module, such as a file system,
to logically organize the information as a hierarchical structure of directories, files and
special types of files called virtual disks (hereinafter “blocks”) on the disks.

In the illustrative embodiment, the memory 124 comprises storage locations that
are addressable by the processor and adapters for storing software program code. A por-
tion of the memory may be further organized as a “buffer cache” 170 for storing certain
data structures associated with the present invention. The processor and adapters may, in
turn, comprise processing elements and/or logic circuitry configured to execute the soft-
ware code and manipulate the data structures. Storage operating system 200, portions of
which are typically resident in memory and executed by the processing elements, func-
tionally organizes the system 120 by, inter alia, invoking storage operations executed by
the storage system. It will be apparent to those skilled in the art that other processing and
memory means, including various computer readable media, may be used for storing and

executing program instructions pertaining to the invention described herein.

The network adapter 126 comprises the mechanical, electrical and signaling cir-
cuitry needed to connect the storage system 120 to a client 110 over a cbmputer network
140, which may comprise a point-to-point connection or a shared medium, such as a local
area network (LAN) or wide area network (WAN). Illustratively, the computer network
140 may be embodied as an Ethernet network or a Fibre Channel (FC) network. The cli-
ent 110 may communicate with the storage system over network 140 by exchanging dis-
crete frames or packets of data according to pre-defined protocols, such as the Transmis-

sion Control Protocol/Internet Protocol (TCP/IP).

The client 110 may be a general-purpose computer configured to execute applica-
tions 112. Moreover, the client 110 may interact with the storage system 120 in accor-
dance with a client/server model of information delivery. That is, the client may request
the services of the storage system, and the system may return the results of the services
requested by the client, by exchanging packets 150 over the network 140. The clients
may issue packets including file-based access protocols, such as the Common Internet

File System (CIFS) protocol or Network File System (NFS) protocol, over TCP/IP when

10

20

25

30

WO 2006/116183 PCT/US2006/015242

12

accessing information in the form of files and directories. Alternatively, the client may
issue packets including block-based access protocols, such as the Small Computer Sys-
tems Interface (SCSI) protocol encapsulated over TCP (iSCSI) and SCSI encapsulated

over Fibre Channel (FCP), when accessing information in the form of blocks.

The storage adapter 128 cooperates with the storage operating system 200 execut-
ing on the system 120 to access information requested by a user (or client). The informa-
tion may be stored on any type of attached array of writable storage device media such as
video tape, optical, DVD, magnetic tape, bubble memory, electronic random access
memory, micro-electro mechanical and any other similar media adapted to store informa-
tion, including data and parity information. However, as illustratively described herein,
the information is preferably stored on the disks 130, such as HDD and/or DASD, of ar-
ray 160. The storage adapter includes input/output (I/O) interface circuitry that couples
to the disks over an I/O interconnect arrangement, such as a conventional high-

performance, FC serial link topology.

Storage of information on array 160 is preferably implemented as one or more
storage “volumes” that comprise a collection of physical storage disks 130 cooperating to
define an overall logical arrangement of volume block number (vbn) space on the vol-
ume(s). Each logical volume is generally, although not necessarily, associated with its
own file system. The disks within a logical volume/file system are typically organized as
one or more groups, wherein each group may be operated as a Redundant Array of Inde-
pendent (or Inexpensive) Disks (RAID). Most RAID implementations, such as a RAID-4
level implementation, enhance the reliability/integrity of data storage through the redun-
dant writing of data “stripes” across a given number of physical disks in the RAID group,
and the appropriate storing of parity information with respect to the striped data. Anil-
lustrative example of a RAID implementation is a RAID-4 level implementation, al-
though it should be understood that other types and levels of RAID implementations may

be used in accordance with the inventive principles described herein.

Additionally, a second storage system 120b is operatively interconnected with the
network 140. The second storage system 120b may be configured as a remote backing

store server or, illustratively, a near line storage server. The storage system 120b gener-

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

13

ally comprises hardware similar to storage system 120a; however, it may alternatively
execute a modified storage operating system that adapts the storage system for use as a
near line storage server. It should be noted that in alternate embodiments, multiple stor-

age systems 120b may be utilized.

B. Storage Operating System

To facilitate access to the disks 130, the storage operating system 200 implements
a write-anywhere file system that cooperates with virtualization modules to “virtualize”
the storage space provided by disks 130. The file system logically organizes the informa-
tion as a hierarchical structure of named directories and files on the disks. Each “on-
disk” file may be implemented as set of disk blocks configure to store information, such
as data, whereas the directory may be implemented as a specially formatted file in which
names and links to other files and directories are stored. The virtualization modules al-
low the file system to further logically organize information as a hierarchical structure of

blocks on the disks that are exported as named logical unit numbers (luns).

In the illustrative embodiment, the storage operating system is preferably the
NetApp® Data ONTAP™ operating system available from Network Appliance, Inc.,
Sunnyvale, California that implements a Write Anywhere File Layout (WAFL™) file sys-
tem. However, it is expressly contemplated that any appropriate storage operating system
may be enhanced for use in accordance with the inventive principles described herein.

As such, where the term “WAFL” is employed, it should be taken broadly to refer to any .

file system that is otherwise adaptable to the teachings of this invention.

Fig. 2 is a schematic block diagram of the sforage operating system 200 that may
be advantageously used with the present invention. The storage operating system com-
prises a series of software layers organized to form an integrated network protocol stack
or, more generally, a multi-protocol engine that provides data paths for clients to access
information stored on the storage system using block and file access protocols. The pro-
tocol stack includes a media access layer 210 of network drivers (e.g., gigabit Ethernet
drivers) that interfaces to network protocol layers, such as the IP layer 212 and its sup-
porting transport mechanisms, the TCP layer 214 and the User Datagram Protocol (UDP)

layer 216. A file system protocol layer provides multi-protocol file access and, to that

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

14

end, includes support for the Direct Access File System (DAFS) protocol 218, the NFS
protocol 220, the CIFS protocol 222 and the Hypertext Transfer Protocol (HTTP) proto-
col 224. A VI layer 226 implements the VI architecture to provide direct access transport
(DAT) capabilities, such as RDMA, as required by the DAFS protocol 218.

An iSCSI driver layer 228 provides block protocol access over the TCP/IP net-
work protocol layers, while a FC driver layer 230 receives and transmits block access re-
quests and responses to and from the storage system. The FC and iSCSI drivers provide
FC-specific and iSCSI-specific access control to the blocks and, thus, manage exports of
luns to either iISCSI or FCP or, alternatively, to both iSCSI and FCP when accessing the
blocks on the storage system. In addition, the storage operating system includes a storage
module embodied as a RAID system 240 that manages the storage and retrieval of infor-
mation to and from the volumes/disks in accordance with I/O operations, and a disk

driver system 250 that implements a disk access protocol such as, e.g., the SCSI protocol.

The storage operating system 200 further comprises an NRV protocol layer 295
that interfaces with file system 280. The NRV protocol is generally utilized for remote
fetching of data blocks that are not stored locally on disk. However, as described further
below, the NRV protocol may be further utilized in storage appliance-to-storage appli-
ance communication to fetch absent blocks in a sparse volume in accordance with the

principles of the present invention.

Bridging the disk software layers with the integrated network protocol stack lay-
ers is a virtualization system that is implemented by a file system 280 interacting with
virtualization modules illustratively embodied as, e.g., vdisk module 290 and SCSI target
module 270. The vdisk module 290 is layered on the file system 280 to enable access by
administrative interfaces, such as a user interface (UI) 275, in response to a user (system
administrator) issuing commands to the storage system. The SCSI target module 270 is
disposed between the FC and iSCSI drivers 228, 230 and the file system 280 to provide a
translation layer of the virtualization system between the block (lun) space and the file
system space, where luns are represented as blocks. The UI 275 is disposed over the
storage operating system in a manner that enables administrative or user access to the

various layers and systems.

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

15

The file system is illustratively a message-based system that provides logical vol-
ume management capabilities for use in access to the information stored on the storage
devices, such as disks. That is, in addition to providing file system semantics, the file
system 280 provides functions normally associated with a volume manager. These func-
tions include (i) aggregation of the disks, (ii) aggregation of storage bandwidth of the
disks, and (iii) reliability guarantees, such as mirroring and/or parity (RAID). The file
system 280 illustratively implements the WAFL file system (hereinafter generally the
“write-anywhere file system”) having an on-disk format representation that is block-
based using, e.g., 4 kilobyte (kB) blocks and using index nodes (“inodes”) to identify
files and file attributes (such as creation time, access permissions, size and block loca-
tion). The file system uses files to store metadata describing the layout of its file system;
these metadata files include, among others, an inode file. A file handle, i.e., an identifier

that includes an inode number, is used to retrieve an inode from disk.

Broadly stated, all inodes of the write-anywhere file system are organized into the
inode file. A file system (fs) info block specifies the layout of information in the file sys-
tem and includes an inode of a file that includes all other inodes of the file system. Each
logical volume (file system) has an fsinfo block that is preferably stored at a fixed loca-
tion within, e.g., a RAID group. The inode of the root fsinfo block may directly reference
(point to) blocks of the inode file or may reference indirect blocks of the inode file that,
in turn, reference direct blocks of the inode file. Within each direct block of the inode
file are embedded inodes, each of which may reference indirect blocks that, in turn, refer-
ence data blocks of a file.

Operationally, a request from the client 110 is forwarded as a packet 150 over the
computer network 140 and onto the storage system 120 where it is received at the net-
work adapter 126. A network driver (of layer 210 or layer 230) processes the packet and,
if appropriate, passes it on to a network protocol and file access layer for additional proc-
essing prior to forwarding to the write-anywhere file system 280. Here, the file system
generates operations to load (retrieve) the requested data from disk 130 if it is not resi-
dent “in core”, i.e., in the buffer cache 170. Illustratively this operation may be embodied
as a Load_Block() function 284 of the file system 280. If the information is not in the

cache, the file system 280 indexes into the inode file using the inode number to access an

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

16

appropriate entry and retrieve a logical vbn. The file system then passes a message struc-
ture including the logical vbn to the RAID system 240; the logical vbn is mapped to a
disk identifier and disk block number (disk,dbn) and sent to an appropriate driver (e.g.,
SCSI) of the disk driver system 250. The disk driver accesses the dbn from the specified
disk 130 and loads the requested data block(s) in buffer cache 170 for processing by the
storage system. Upon completion of the request, the storage system (and operating sys-

tem) returns a reply to the client 110 over the network 140.

The file system 280 illustratively provides the Load Block() function 284 to re-

trieve one or more blocks of data from disk. A block may be retrieved in response to a

- read request or may be retrieved in response to an exemplary read ahead algorithm. The

illustrative Load_Block() function 284 attempts to load a requested block of data. The
Load_Block() function 284 initiates transfer of a fetch operation to an appropriate back-
ing store using the illustrative NRV protocol 295 if any blocks require data to be re-
motely retrieved. Once the data has been retrieved, the Load_Block() function 284 re-
turns with the requested data. Sparse volumes and ABSENT block pointers are further
described in the above-referenced U.S. Patent Application, entitled SYSTEM AND
METHOD FOR SPARSE VOLUMES, by Jason Lango et al. It should be noted that the
use of the NRV protocol for remote retrieval of data for sparse volumes is exemplary and
that the novel NRV protocol described herein may be utilized for other types of remote
data retrieval. As such, the illustrative embodiment of utilizing the NRV protocol for re-
trieving sparse volumes data should be taken as exemplary only and should not limit the

scope of the present invention.

Additionally, in the illustrative embodiment, the file system 280 provides a
Load_Inode () function 286 to retrieve an inode from disk. In the illustrative embodi-
ment, the Load_Inode () function 286 is adopted to obtain appropriate file geometry in-
formation, as described further below. In the illustrative embodiment, a sparse configura-
tion metadata file is stored on the storage system. The sparse configuration metadata file
includes appropriate configuration information to enable data retrieval from a backing
store. Such information may include identification information of the remote backing

store along with an identification of what data container(s) on the backing store are to be

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

17

utilized as the backing store. In the illustrative embodiment, a sparse volume may be

supported by a plurality of backing stores.

It should be further noted that the software “path” through the storage operating
system layers described above needed to perform data storage access for the client re-
quest received at the storage system may alternatively be implemented in hardware. That
is, in an alternate embodiment of the invention, a storage access request data path may be
implemented as logic circuitry embodied within a field programmable gate array (FPGA)
or an application specific integrated circuit (ASIC). This type of hardware implementa-
tion increases the performance of the storage service provided by storage system 120 in
response to a request issued by client 110. Moreover, in another alternate embodiment of
the invention, the processing elements of adapters 126, 128 may be configure to offload
some or all of the packet processing and storage access operations, respectively, from
processor 122, to thereby increase the performance of the storage service provided by the
system. It is expressly contemplated that the various processes, architectures and proce-

dures described herein can be implemented in hardware, firmware or software.

As used herein, the term “storage operating system" generally refers to the com-
puter-executable code operable to perform a storage function in a storage system, e.g.,
that manages data access and may, in the case of a file server, implement file system se-
mantics. In this sense, the ONTAP software is an example of such a storage operating
system implemented as a microkernel and including the WAFL layer to implement the
WAFL file system semantics and manage data access. The storage operating system can
also be implemented as an application program operating over a general-purpose operat-
ing system, such as UNIX® or Windows NT®, or as a general-purpose operating system
with configurable functionality, which is configure for storage applications as described

herein.

In addition, it will be understood to those skilled in the art that the inventive tech-
nique described herein may apply to any type of special-purpose (e.g., file server, filer or
multi-protocol storage appliance) or general-purpose computer, including a standalone
computer or portion thereof, embodied as or including a storage system 120. An example

of a multi-protocol storage appliance that may be advantageously used with the present

15

20

25

WO 2006/116183 PCT/US2006/015242

18

invention is described in U.S. Patent Application Serial No. 10/215,917 titled MULTI-
PROTOCOL STORAGE APPLIANCE THAT PROVIDES INTEGRATED SUPPORT
FOR FILE AND BLOCK ACCESS PROTOCOLS, filed on August 8, 2002. Moreover,
the teachings of this invention can be adapted to a variety of storage system architectures
including, but not limited to, a network-attached storage environment, a storage area net-
work and disk assembly directly-attached to a client or host computer. The term “storage
system” should therefore be taken broadly to include such arrangements in addition to
any subsystems configure to perform a storage function and associated with other equip-

ment or systems.

C. File System Organization

In the illustrative embodiment, a file is represented in the write-anywhere file sys-
tem as an inode data structure adapted for storage on the disks 130. Fig. 3 is a schematic
block diagram of an inode 300, which preferably includes a metadata section 310 and a
data section 350. The information stored in the metadata section 310 of each inode 300
describes the file and, as such, includes the type (e.g., regular, directory, virtual disk) 312
of file, the size 314 of the file, time stamps (e.g., access and/or modification) 316 for the
file and ownership, i.e., user identifier (UID 318) and group ID (GID 320), of the file.
The contents of the data section 350 of each inode, however, may be interpreted differ-
ently depending upon the type of file (inode) defined within the type field 312. For ex-
ample, the data section 350 of a directory inode contains metadata controlled by the file
system, whereas the data section of a regular inode contains file system data. In this lat-

ter case, the data section 350 includes a representation of the data associated with the file.

Specifically, the data section 350 of a regular on-disk inode may include file sys-
tem data or pointers, the latter referencing 4 kilobyte (KB) data blocks on disk used to
store the file system data. Each pointer is preferably a logical vbn to facilitate efficiency
among the file system and the RAID system 240 when accessing the data on disks.
Given the restricted size (e.g., 128 bytes) of the inode, file system data having a size that
is less than or equal to 64 bytes is represented, in its entirety, within the data section of

that inode. However, if the file system data is greater than 64 bytes but less than or equal

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

19

to 64 KB, then the data section of the inode (e.g., a first level inode) comprises up to 16

pointers, each of which references a 4 KB block of data on the disk.

Moreover, if the size of the data is greater than 64 KB but less than or equal to 64
megabytes (MB), then each pointer in the data section 350 of the inode (e.g., a second
level inode) references an indirect block (e.g., a first level block) that contains 1024
pointers, each of which references a 4 KB data block on disk. For file system data having
a size greater than 64MB, each pointer in the data section 350 of the inode (e.g., a third
level inode) references a double-indirect block (e.g., a second level block) that contains
1024 pointers, each referencing an indirect (e.g., a first level) block. The indirect block,
in turn, that contains 1024 pointers, each of which references a 4 KB data block on disk.
When accessing a file, each block of the file may be loaded from disk 130 into the buffer
cache 170.

When an on-disk inode (or block) is loaded from disk 130 into buffer cache 170,
its corresponding in core structure embeds the on-disk structure. For example, the dotted
line surrounding the inode 300 (Fig. 3) indicates the in core representation of the on-disk
inode structure. The in core structure is a block of memory that stores the on-disk struc-
ture plus additional information needed to manage data in the memory (but not on disk).
The additional information may include, e.g., a “dirty” bit 360. After data in the inode
(or block) is updated/modified as instructed by, e.g., a write operation, the modified data
is marked “dirty” using the dirty bit 360 so that the inode (block) can be subsequently
“flushed” (stored) to disk. The in core and on-disk format structures of the WAFL file
system, including the inodes and inode file, are disclosed and described in the previously
incorporated U.S. Patent No. 5,819,292 titled METHOD FOR MAINTAINING
CONSISTENT STATES OF A FILE SYSTEM AND FOR CREATING USER-
ACCESSIBLE READ-ONLY COPIES OF A FILE SYSTEM by David Hitz et al., issued
on October 6, 1998.

Fig. 4 is a schematic block diagram of an embodiment of a buffer tree of a file
that may be advantageously used with the present invention. The buffer tree is an inter-
nal representation of blocks for a file (e.g., file 400) loaded into the buffer cache 170 and
maintained by the write-anywhere file system 280. A root (top-level) inode 402, such as

10

20

25

30

WO 2006/116183 PCT/US2006/015242

20

an embedded inode, references indirect (e.g., level 1) blocks 404. Note that there may be
additional levels of indirect blocks (e.g., level 2, level 3) depending upon the size of the
file. The indirect blocks (and inode) contain pointers 405 that ultimately reference data
blocks 406 used to store the actual data of the file. That is, the data of file 400 are con-
tained in data blocks and the locations of these blocks are stored in the indirect blocks of
the file. Each level 1 indirect block 404 may contain pointers to as many as 1024 data
blocks. According to the “write anywhere” nature of the file system, these blocks may be

located anywhere on the disks 130.

A file system layout is provided that apportions an underlying physical volume
into one or more virtual volumes (vvols) of a storage system. An example of such a file
system layout is described in U.S. Patent Application Serial No. 112056-0153 titled
EXTENSION OF WRITE ANYWHERE FILE SYSTEM LAYOUT, by John K. Ed-
wards et al. The underlying physical volume is an aggregate comprising one or more
groups of disks, such as RAID groups, of the storage system. The aggregate has its own
physical volume block number (pvbn) space and maintains metadata, such as block allo-
cation structures, within that pvbn space. Each vvol has its own virtual volume block
number (vvbn) space and maintains metadata, such as block allocation structures, within
that vvbn space. Each vvol is a file system that is associated with a container file; the
container file is a file in the aggregate that contains all blocks used by the vvol. More-
over, each vvol comprises data blocks and indirect blocks that contain block pointers that

point at either other indirect blocks or data blocks.

In one embodiment, pvbns are used as block pointers within buffer trees of files
(such as file 400) stored in a vvol. This "hybrid" vvol embodiment involves the insertion
of only the pvbn in the parent indirect block (e.g., inode or indirect block). On a read
path of a logical volume, a “logical” volume (vol) info block has one or more pdinters
that reference one or more fsinfo blocks, each of which, in turn, “points to” an inode file
and its corresponding inode buffer tree. The read path on a vvol is generally the same,
following pvbns (instead of vvbns) to find appropriate locations of blocks; in this context,
the read path (and corresponding read performance) of a vvol is substantially similar to
that of a physical volume. Translation from pvbn-to-disk,dbn occurs at the file sys-

tem/RAID system boundary of the storage operating system 200.

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

21

In an illustrative "dual vbn” hybrid (“flexible”) vvol embodiment, both a pvbn
and its corresponding vvbn are inserted in the parent indirect blocks in the buffer tree of a
file. That is, the pvbn and vvbn are stored as a pair for each block pointer in most buffer
tree structures that have pointers to other blocks, e.g., level 1(L1) indirect blocks, inode
file level 0 (LO) blocks. Fig. 5 is a schematic block diagram of an illustrative embodi-
ment of a buffer tree of a file 500 that may be advantageously used with the present in-
vention. A root (top-level) inode 502, such as an embedded inode, references indirect
(e.g., level 1) blocks 504. Note that there may be additional levels of indirect blocks
(e.g., level 2, level 3) depending upon the size of the file. The indirect blocks (and inode)
contain pvbn/vvbn pointer pair structures 508 that ultimately reference data blocks 506
used to store the actual data of the file.

The pvbns reference locations on disks of the aggregate, whereas the vvbns refer-
ence locations within files of the vvol. The use of pvbns as block pointers 508 in the in-
direct blocks 504 provides efficiencies in the read paths, while the use of vvbn block
pointers provide efficient access to required metadata. That is, when freeing a block of a
file, the parent indirect block in the file contains readily available vvbn block pointers, '
which avoids the latency associated with accessing an owner map to perform pvbn-to-

vvbn translations; yet, on the read path, the pvbn is available.

As noted, each inode has 64 bytes in its data section that, depending upon the size
of the inode file (e.g., greater than 64 bytes of data), function as block pointers to other
blocks. For traditional and hybrid volumes, those 64 bytes are embodied as 16 block
pointers, i.e., sixteen (16) 4 byte block pointers. For the illustrative dual vbn flexible
volume, the 64 bytes of an inode are embodied as eight (8) pairs of 4 byte block pointers,
wherein each pair is a vvbn/pvbn pair. In addition, each indirect block of a traditional or
hybrid volume may contain up to 1024 (pvbn) pointers; each indirect block of a dual vbn

flexible volume, however, has a maximum of 510 (pvbn/vvbn) pairs of pointers.

Moreover, one or more of pointers 508 may contain a special ABSENT value to
signify that the object(s) (e.g., an indirect block or data block) referenced by the
pointer(s) is not locally stored (e.g., on the volume) and, thus, must be fetched (retrieved)

from an alternate backing store. In the illustrative embodiment, the Load_Block () func-

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

22

tion interprets the content of the each pointer and, if a requested block is ABSENT, initi-
ates transmission of an appropriate request (e.g., a remote fetch operation) for the data to

a backing store using, e.g. the novel NRV protocol of the present invention.

Fig. 6 is a schematic block diagram of an embodiment of an aggregate 600 that
may be advantageously used with the present invention. Luns (blocks) 602, directories
604, gtrees 606 and files 608 may be contained within vvols 610, such as dual vbn flexi-
ble vvols, that, in turn, are contained within the aggregate 600. The aggregate 600 is il-
lustratively layered on top of the RAID system, which is represented by at least one
RAID plex 650 (depending upon whether the storage configuration is mirrored), wherein
each plex 650 comprises at least one RAID group 660. Each RAID group further com-
prises a plurality of disks 630, e.g., one or more data (D) disks and at least one (P) parity
disk.

Whereas the aggregate 600 is analogous to a physical volume of a conventional
storage system, a vvol is analogous to a file within that physical volume. That is, the ag-
gregate 600 may include one or more files, wherein each file contains a vvol 610 and
wherein the sum of the storage space consumed by the vvols is physically smaller than
(or equal to) the size of the overall physical volume. The aggregate utilizes a “physical”
pvbn space that defines a storage space of blocks provided by the disks of the physical
volume, while each embedded vvol (within a file) utilizes a “logical” vvbn space to or-
ganize those blocks, e.g., as files. Each vvbn space is an independent set of numbers that
corresponds to locations within the file, which locations are then translated to dbns on
disks. Since the vvol 610 is also a logical volume, it has its own block allocation struc-

tures (e.g., active, space and summary maps) in its vvbn space.

A container file is a file in the aggregate that contains all blocks used by a vvol.
The container file is an internal (to the aggregate) feature that supports a vvol; illustra-
tively, there is one container file per vvol. Similar to a pure logical volume in a file ap-
proach, the container file is a hidden file (not accessible to a user) in the aggregate that
holds every block in use by the vvol. The aggregate includes an illustrative hidden meta-

data root directory that contains subdirectories of vvols:

WAFL/fsid/filesystem file, storage label file

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

23

Specifically, a “physical” file system (WAFL) directory includes a subdirectory
for each vvol in the aggregate, with the name of subdirectory being a file system identi-
fier (fsid) of the vvol. Each fsid subdirectory (vvol) contains at least two files, a filesys-
tem file and a storage label file. The storage label file is illustratively a 4kB file that con-
tains metadata similar to that stored in'a conventional raid label. In other words, the stor-
age label file is the analog of a raid label and, as such, contains information about the
state of the vvol such as, e.g., the name of the vvol, a universal unique identifier (uuid)

and fsid of the vvol, whether it is online, being created or being destroyed, etc.

Fig. 7 is a schematic block diagram of an on-disk representation of an aggregate
700. The storage operating system 200, e.g., the RAID system 240, assembles a physical
volume of pvbns to create the aggregate 700, with pvbns 1 and 2 comprising a “physical”
volinfo block 702 for the aggregate. The volinfo block 702 contains block pointers to
fsinfo blocks 704, each of which may represent a snapshot of the aggregate. Each fsinfo
block 704 includes a block pointer to an inode file 706 that contains inodes of a plurality
of files, including an owner map 710, an active map 712, a summary map 714 and a
space map 716, as well as other special metadata files. The inode file 706 further in-
cludes a root directory 720 and a “hidden” metadata root directory 730, the latter of
which includes a namespace having files related to a vvol in which users cannot "see" the
files. The hidden metadata root directory also includes the WAFL/fsid/ directory structure
that contains filesystem file 740 and storage label file 790. Note that root directory 720
in the aggregate is empty; all files related to the aggregate are organized within the hid-
den metadata root directory 730. The hidden metadata root directory 730 also illustra-
tively includes a sparse configuration file 732 that contains appropriate configuration
metadata for use with a sparse volume. Such metadata includes, e.g., the identification

of the backing store associated with a particular sparse volume.

In addition to being embodied as a container file having level 1 blocks organized
as a container map, the filesystem file 740 includes block pointers that reference various
file systems embodied as vvols 750. The aggregate 700 maintains these vvols 750 at spe-
cial reserved inode numbers. Each vvol 750 also has special reserved inode numbers

within its vvol space that are used for, among other things, the block allocation bitmap

10

15

20

25

WO 2006/116183 PCT/US2006/015242

24

structures. As noted, the block allocation bitmap structures, e.g., active map 762, sum-

mary map 764 and space map 766, are located in each vvol.

Specifically, each vvol 750 has the same inode file structure/content as the aggre-
gate, with the exception that there is no owner map and no WAFL/fsid/filesystem file,
storage label file directory structure in a hidden metadata root directory 780. To that end,
each vvol 750 has a volinfo block 752 that points to one or more fsinfo blocks 800, each
of which may represent a snapshot, along with the active file system of the vvol. Each
fsinfo block, in turn, points to an inode file 760 that, as noted, has the same inode struc-
ture/content as the aggregate with the exceptions noted above. Each vvol 750 has its own
inode file 760 and distinct inode space with corresponding inode numbers, as well as its
own root (fsid) directory 770 and subdirectories of files that can be exported separately

from other vvols.

The storage label file 790 contained within the hidden metadata root directory 730
of the aggregate is a small file that functions as an analog to a conventional raid label. A
raid label includes "physical" information about the storage system, such as the volume
name; that information is loaded into the storage label file 790. Illustratively, the storage
label file 790 includes the name 792 of the associated vvol 750, the online/offline status
794 of the vvol, and other identity and state information 796 of the associated vvol

(whether it is in the process of being created or destroyed).

A sparse volume is identified by a special marking of an on-disk structure of the
volume (vvol) to denote the inclusion of a file with an absent block. Fig. 8 is a schematic
block diagram of the on-disk structure, which illustratively is an exemplary fsinfo block
800. The fsinfo block 800 includes a set of PCPI pointers 805, a sparse volume flag field
810, an inode for the inode file 815 and, in alternate embodiments, additional fields 820.
The PCIP pointers 805 are "dual vbn" (vvbn/pvbn) pairs of pointers to PCPIs associated
with the file system. The sparse volume flag field 810 identifies whether the vvol de-
scribed by the fsinfo block is sparse. In the illustrative embodiment, a flag is asserted in
field 810 to identify the volume as sparse. The sparse volume flag field 810 may be em-
bodied as a type field identifying the type of a vvol associated with the fsinfo block. The

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

25

inode for the inode file 815 includes the inode containing the root-level pointers to the

inode file 760 (Fig. 7) of the file system associated with the fsinfo block.

Appropriate block pointer(s) of the file are marked (labeled) with special
ABSENT value(s) to identify that certain block(s), including data and/or indirect blocks,
within the sparse volume are not physically located on the storage system serving the
volume. The special value further alerts the file system that the data is to be obtained
from the alternate source, namely a remote backing store, which is illustratively near line
storage server 120b. In response to a data access request, the Load_Block() function 284
of the file system 280 detects whether an appropriate block pointer of a file is marked as
ABSENT and, if so, transmits a remote fetch (e.g., read) operation from the storage sys-
tem to the remote backing store to fetch the required data. The fetch operation illustra-

tively requests one or more file block numbers of the file stored on the backing store.

The backing store retrieves the requested data from its storage devices and returns
the requested data to the storage system, which processes the data access request and
stores the returned data in its memory. Subsequently, the file system "flushes" (writes)
the data stored in memory to local disk during a write allocation procedure. In accor-
dance with an illustrative write anywhere policy of the procedure, the file system assigns
pointer values (other than ABSENT values) to indirect block(s) of the file to thereby
identify location(s) of the data stored locally within the volume. Thus, the remote fetch

operation is no longer needed to access the data.

An example of a write allocation procedure that may be advantageously used with
the present invention is described in U.S. Patent Application Serial No. (Attorney Docket
No. 112056-0154) titled, Extension of Write Anywhere File Layout Write Allocation, by
John K. Edwards and assigned to Network Appliance, Inc., which application is hereby
incorporated by reference. Broadly stated, block allocation proceeds in parallel on the
flexible vvol and aggregate when write allocating a block within the vvol, with a write
allocator process 282 selecting an actual pvbn in the aggregate and a vvbn in the vvol.
The write allocator adjusts block allocation bitmap structures, such an active map and
space map, of the aggregate to record the selected pvbn and adjusts similar structures of

the vvol to record the selected vvbn. A vvid of the vvol and the vvbn are inserted into

10

20

25

30

WO 2006/116183 PCT/US2006/015242

26

owner map 710 of the aggregate at an entry defined by the selected pvbn. The selected
pvbn is also inserted into a container map (not shown) of the destination vvol. Finally, an
indirect block or inode file parent of the allocated block is updated with one or more
block pointers to the allocated block. The content of the update operation depends on the
vvol embodiment. For the dual vbn hybrid vvol embodiment, both the pvbn and vvbn are

inserted in the indirect block or inode as block pointers.
D. NRV Protocol

In the illustrative embodiment, the storage operating system utilizes the novel
NRYV protocol to retrieve ABSENT blocks from a remote storage system configured to
act as a backing store for a sparse volume. It should be noted that the novel NRV proto-
col may also be utilized to retrieve non-ABSENT 'blocks from the backing store. Thus,
the NRV protocol may be utilized to retrieve data in a file system that utilizes holes as
described above. The NRV protocol typically utilizes the TCP/IP protocol as a transport
protocol and all NRV messages (both requests and responses) are prefixed with a framing
header identifying the length of the NRV message in bytes (exclusive of this length of the
initial length header itself).

Fig. 9 is a schematic block diagram of an NRV protocol header data structure 900
in accordance with an embodiment of the present invention. The header data structure
900 includes a transaction identifier (ID) field 905, a checksum field 910, a call field 915
and, in alternate embodiments, additional fields 920. The transaction ID field 905 con-
tains a unique transaction ID utilized by the protocol to pair requests and responses. Thus
a NRYV response from the backing store will identify which NRV request it is associated
with by including the transaction ID of the request. The transaction ID is unique per re-
quest per connection. In the illustrative embodiment, the first transaction ID utilized per
connection is a random value, which is thereafter incremented with each transaction. The
checksum field 910 is utilized for storing checksum information to ensure that the re-

sponse/request has not been corrupted.

Fig. 10 is a schematic block diagram of an exemplary protocol request data struc-
ture 1000 in accordance with embodiment of the present invention. The request data

structure 1000 includes protocol header 900, a type field 1005 and, in alternate embodi-

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

27

ments, additional fields 1010. The type field 1005 identifies one of the remote file sys-
tem operations supported by the protocol. These types include, inter alia, INIT,
VOLINFO, READ, LOCK_PCPI, UNLOCK_PCPI and AUTH, each of which is de-
scribed in detail further below in reference to type-specific data structures. Each of these
types of requests has a data structure associated therewith. The type-specific data struc-
ture is appended to the request data structure 1000 when transmitted to the backing store.

A response to the protocol request is in the format of a protocol response data
structure 1100, which is illustratively shown as a schematic block diagram in Fig. 11.
The response data structure 1100 includes header 900, a NRV_Status field 1105, a proto-
col status field 1110 and, in alternate embodiments, additional fields 1115. The
NRYV_Status field 1105 may include one of the protocol specific status indicators such as
OK, NOINIT, VERSION, CANTSEND, LS, and FS_VERSION. It should be noted that
in alternate embodiments, other and/or differing status indicators may be utilized. The
OK status indicator signifies that the request was successful and that there is no error
condition. The NOINIT indicator is sent in response to a request being transferred prior
to beginning a session. In the illustrative embodiment, an INIT request, described further
below, must be the first request in a session after any authentication (AUTH) requests.
The VERSION indicator is utilized when there are mismatched versions of the NRV pro-
tocol, e.g., the storage system and backing store are utilizing incompatible versions of the
NRYV protocol. The CANTSEND indicator indicates a failure of the underlying transport
protocol in transmitting a particular request or response. The LS status indicator is used
by the backing store to indicate that a PCPI was not able to be locked in response to a
LOCK_PCPI request, described further below. The FS_VERSION indicator means that
the storage system and the backing store are utilizing incompatible versions of a file sys-

tem so that data may not be retrieved from the backing store.

The protocol status field 1110 includes a file system error value. Thus, the pro-
tocol status field 1110 may be utilized to transfer a WAFL file system or other file system
error value between the backing store and the storage appliance. Each of the NRV proto-
col operations that includes a response data structure includes a type-specific data struc-

ture that is appended to the end of a protocol response data structure 1100.

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

28

Many NRV protocol requests and/or responses include a file handle identifying a
file to which an operation is directed. Fig. 12 is a schematic block diagram of a file han-
dle data structure 1200 in accordance with an embodiment of the present invention. The
file handle data structure 1200 includes a file system ID field 1205, a PCPI ID field 1210,
a file ID field 1215, a generation field 1220 and, in alternate embodiments, additional
fields 1225. The file system ID field 1205 identifies the particular file system containing
the file of interest. This may be a particular virtual volume or physical volume associated
with the backing store. This field 1205 typically contains the fsid of the desired volume
The PCPI ID field 1210 identifies the appropriate PCPI associated with the file. Thus,
the NRV protocol permits access to a file stored within a particular PCPI. File ID field
1215 identifies the unique file ID associated with the file. The generation field 1220 con-

tains a value identifying a particular generation of the inode associated with the file.

| Additionally, many NRV requests and responses contain a set of file attributes
that are contained within an exemplary file attribute data structure 1300 as shown in a
schematic block diagram of Fig. 13. The file attribute data structure 1300 includes a
blocks field 1305, a size field 1310, a type field 1315, a subtype field 1320, a generation
field 1325, a user identifier (UID) field 1330, a group identifier field (GID) 1335, a crea-
tion time field 1340 and, in alternate embodiments, additional fields 1345. The blocks
field 1305 identifies the number of blocks utilized by the file. The size field 1310 con-
tains the size of the file in bytes. The type and subtype fields 1315, 1320 identify the
type and, if necessary, a subtype of the file. The generation field 1325 identifies the cur-
rent generation number associated with the inode of the file. The UID field 1330 identi-
fies the owner of the file, whereas the GID field 1335 identifies the current group that is

associated with the file.

In accordance with the illustrative embodiment of the protocol, the first request
sent over a connection, after any authentication requests described further below, is an
initialization request. This initialization request (i.e. an INIT type of type field 1005)
comprises an initialization data structure 1400, which is exemplary shown as a schematic
block diagram in Fig. 14. The initialization data structure 1400 includes a protocol re-
quest data structure 1000, a protocol version field 1405, an application field 1410, a byte
order field 1415 and, in alternate embodiments, additional fields 1420. The request data

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

29

structure 1000 is described above in reference to Fig. 10. The protocol version field 1405
contains a protocol “minor” version in use at the client (storage appliance initiating the
connection) that identifies clients utilizing different versions of the protocol. The appli-
cation field 1410 identifies the application utilizing the NRV protocol; such applications
may include restore on demand (ROD) or proxy file system (PFS). Restore on demand
techniques are further described in U.S. Patent Application Serial No. 112056-0168 enti-
tled SYSTEM AND METHOD FOR RESTORING DATA ON DEMAN FOR
INSTANT VOLUME RESTORATION by Jason Lango et al., and proxy file systems are
further described in U.S. Patent Application Serial No. 112056-0200 entitled SYSTEM
AND METHOD FOR CACHING NETWORK FILE SYSTEMS by Jason Lango et al.
The byte order field 1415 identifies the client’s native byte order, e.g., big or little endian.

In response to the initialization request data structure 1400, the backing store

transmits an initialization response data structure 1500, which is illustratively shown in a

" schematic block diagram of Fig. 15. The initialization response data structure 1500 in-

cludes a protocol repsonce data structure 1100, a file system version field 1505, a byte
order field 1510 and, in alternate embodiments, additional fields 1515. The response data
structure 1100 is described above in reference to Fig. 11. The file system version field
1505 identifies the maximum file system version supported by the backing store. The
byte order field 1510 identifies the backing store’s native byte order. In the protocol
specification, if the storage system’s and backing store’s byte orders differ, all future

communication occurs using the backing store’s of byte order as defined in field 1510.

To retrieve information pertaining to a particular volume, the storage appliance
may transmit a volume information (VOLINFO) request data structure 1600, which is
shown as a schematic block diagram of Fig. 16. The volume information data struéture
1600 includes a protocol request data structure 1000, a name length field 1605, a volume
name field at 1610 and, in alternate embodiments, additional fields 1615. The name
length field 1605 identifies length of the volume name field while the volume name field
1610 comprises a text string of the volume name. The VOLINFO request is utilized to
obtain volume information, which may be used to, e.g., ensure that a volume on the stor-
age system is sufficiently sized to accommodate all data located on a volume on the back-

ing store.

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

30

In response to a volume information request, the backing store will issue a volume
information response data structure 1700, of which an exemplary schematic block dia-
gram is shown in Fig. 17. The volume information response data structure 1700 com-
prises a protocol response data structure 1100, a root file handle field 1705, a maximum
volume block number field 1710, a number of inodes used field 1715, a number of inodes
field 1720 and, in alternate embodiments, additional fields 1725. The root file handle
field 1705 contains a conventional file handle for the root directory of the specified vol-
ume. The maximum volume block number field 1710 is set to the greatest allowable vol-
ume block number in the file system of the specified volume. The value of this field plus
one is the size of the volume in blocks as, in the illustrative embodiment, volume block
numbers begin with vbn 0. Thus, in the illustrative embodiment of the WAFL file sys-
tem, which utilizes 4 KB blocks, the value of this field plus one is the size of the volume
in 4 KB blocks. The number of inodes used field 1715 contains number of inodes in use
in the active file system of the specified volume, whereas the number of inodes field 1720
holds the total number of allocable inodes in the active file system of the specified vol-

ume.

Fig. 18 is a schematic block diagram of an exemplary read (i.e.; a READ type of
field 1005) request 1800 in accordance with an embodiment of the present intention. The
read request data structure 1800 includes protocol request data structure 1000, file handle
1200, a file block number field 1805, a number of blocks field 1810 and, in alternate em-
bodiments, additional fields 1815. The request data structure 1000 is described above in
reference to Fig. 10, whereas the file handle data structure 1200 is described above in ref-
erence to Fig. 12. The file block number field 18035 identifies the first file block to be
read. The file block number represents an offset of 4 KB blocks into the file. In alternate
embodiments, where the file system utilizes differing sizes for file blocks, the file block
number is the offset in the appropriate block size into the file. The number of blocks
field 1810 identifies the number of file blocks to be read.

A read request response data structure 1900 is illustratively shown in Fig. 19. The
read response data structure 1900 includes response data structure 1100, an end of file
field 1905, a data field 1910 and, in alternate embodiments, additional fields 1915. The
response structure 1100 is described above in reference to Fig. 11. The end of file field

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

31

1905 identifies whether there is additional data to be read from the file and, if not, its
content may be set to a FALSE value. Alternatively, the field 1905 may be set to a TRUE
value if the end of the file has been reached by the requested read operation. The data
field 1910 is a variable number of bytes of data from the file, starting at the requested file

block number.

Another type of remote file system operation supported by the novel NRV proto-
col is the lock PCPI operation (i.e., a LOCK_PCPI type field 1005) that is used to prevent
a PCPI from being deleted on the backing store. The Lock PCPI operation is typically
utilized when the PCPI is necessary for a “long-lived” application, such as restore on de-
mand. In the illustrative embodiment, the locked PCPI command is an inherently stateful
request that instructs the backing store to prevent deletion of the PCPI until either the cli-
ent disconnects or unlocks the PCPI (the latter with the unlocked PCPI command de-
scribed further below). An exemplary LOCK_PCPI request data structure 2000 is illus-
tratively shown as a schematic block diagram in Fig. 20. The LOCK_PCPI request data
structure 2000 includes a request data structure, a file system ID ﬁéld 2005, a lock default
PCPI field 2010, a checked PCPI configuration field 2015, a PCPI name length field
2020, a PCPI information field 2100, a PCPI name field 2030 and, in alternate embodi-
ments, additional fields 2035. The request data structure 1000 is described above in con-
junction with Fig. 10. The file system ID field 2005 identifies the volume containing the
PCPI to be locked. The lock default PCPI field 2010 may be set to a value of TRUE or
FALSE. Ifit is set to TRUE, then the backing store locks the default PCPI for the vol-
ume identified and ignores the name and information fields 2030, 2100. If the value if
FALSE then the values of these fields 2030, 2100 are utilized in identifying the PCPL. In
certain embodiments, the backing store may be configured to have a default PCPI for use
in serving NRV protocols. This default PCPI may be selected by the use of the lock de-
fault PCPI field 2010. The check PCPI configuration field 2015 may also be set to a
value of TRUE or FALSE. If TRUE then the server verifies that the specified volume is
an acceptable secondary volume for use in a sparse volume application. The PCPI name
length field 2020 is set to the length of the PCPI name field, which holds a string com-
prising the name of the PCPI to be locked.

10

20

25

30

WO 2006/116183 PCT/US2006/015242

32

The PCPI information field 2100 comprises a PCPI information data structure
2100 illustratively shown as a schematic block diagram of Fig. 21. The PCPI information
data structure 2100 includes an identifier field 2105, a consistency point count field 2110,
a PCPI creation time field 2115, a PCPI creation time in microseconds field 2120 and, in
alternate embodiments additional fields 2125. The identifier field 2105 is a PCPI identi-
fier that uniquely identifies a particular PCPI. The consistency point count field 2110
identifies a particular CP count associated with the PCPL Illustrétively, at each CP, the .
CP count is incremented, thereby providing a unique label for the PCPI created at that
point in time. Similarly, the PCPI creation time fields 2115, 2120 are utilized to
uniquely identify the particular PCPI by identifying its creation time in seconds and mi-

croseconds, respectively.

In response the server sends a lock PCPI response data structure 2200, of which a
schematic block diagram of which s shown in Fig. 22. The lock PCPI response data
structure 2200 includes a response data structure 1100, PCPI information data structure
2100, a blocks used field 2210, a blocks_holes field 2215, a blocks_overwrite field 2220,
a blocks_holes_CIFS field 2225, an inodes used field 2230, a total number of inodes field
2235 and, in alternate embodiments, additional fields 2240. The response data structure
1100 is described above in reference to Fig. 11. The PCPI information data structure
2100 is described above in reference to Fig. 21. The blocks used field 2210 contains a
value identifying the number of blocks that are utilized by the PCPI on the backing store.
The blocks_holes field 2215 identifies the number of blocks in the PCPI that are reserved
for holes within the PCPI. The blocks_overwrite field 2220 contains a value identifying
the number of blocks that are reserved for overwriting in the PCPI. The inodes field
2230 contains a value identifying the number of inodes used in the PCPI and the total
number of inodes field 2235 contains a value identifying the total number of allocable
inodes in the PCPI.

Once a client no longer requires a PCPI to be locked, it may issue an unlock PCPI
command (of type UNLOCK_PCPI in field 1005) to the backing store. The client issues
such a command by sending an unlock PCPI request data structure 2300 as illustratively
shown in Fig. 23. The unlock PCPI command data structure 2300 includes a request data
structure 1000, a file system ID field 2305, a PCPI ID field 2310 and, in alternate em-

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

33

bodiments additional fields 2315. The requested data structure 1000 is described above
in conjunction with Fig. 10. The file system identifier field 2305 identifies the volume
containing the PCPI to the unlocked. The PCPI identifier field 2310 identifies the PCPI
previously locked using LOCK_PCPI request. In accordance with the protocol, the
server must unlocked the PCPI prior to responding to this command. The response to an

unlock PCPI request is illustratively a zero length message body.

As noted above, the first request issued over a protocol connection is a series of
authentication requests (i.e., a AUTH type of field 1005). The authentication request is
utilized for NRV session authentication and, in the illustrative embodiment, is preferably
the first request issued over an NRV connection. The backing store and storage appli-

ance may negotiate with any number of authentication request/response pairs. An illus-

trative schematic block diagram of an authentication request data structure 2400 is shown

in Fig. 24. The AUTH request data structure 2400 includes a request data structure 1000,
a length field 2405, a type field 2410, an application field 2415, a data field 2420 and, in
alternate embodiments, additional fields 2425. The requested data structure 1000 is de-
scribed above in conjunction with Fig. 10. The length field 2405 identifies the number of
bytes contained within the data field 2420. Type field 2410 identifies a type of authenti-
cation to be utilized. The application field 2415 identifies one of a plurality of applica-
tions that utilizes the protocol. The application utilizing the protocol is identified so that,
for example, the backing store may impose higher or lower authentication and standards
depending on the type of application utilizing the protocol. The data field 2420 contains

authentication data.

In response, the backing store sends an authentication response data structure
2500 as shown in Fig. 25. The authentication response data structure 2500 includes re-
sponse data structure 1100, a status field 2505, a data field 2510 and, in alternate em-
bodiments, additional fields 2515. The response data structure 1100 is described above
in reference to Fig. 11. The status field 2505 identifies the current status of the authenti-
cation e.g., OK, signifying that authentication is complete, or
NEED_AUTHENTICATION, signifying that the backing store requests that the storage
system transmit a higher level of authentication. The status field 2505 may also hold a

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

34

value of CONTINUE, which may be utilized if multiple exchanges are required to au-

thenticate the session. The data field 2510 contains the authentication response data.

The NRV protocol also supports a get holy bitmap function (i.e.,a
GET_HOLY_BITMAP type of field 1005) that identifies which, if any, blocks on a back-
ing store are not present, e.g., either absent or a hole. Fig. 26 is a schematic block dia-
gram of an exemplary GET_HOLY_BITMAP request data structure 2600 in accordance
with an embodiment of the present invention. The request 2600 includes a protocol re-
quest data structure 1000, a file handle 2605, a cookie value 2610 and, in alternate em-
bodiments, additional field 2615. The protocol request data structure 1000 is described
above in reference to Fig. 10. The file handle field 2605 contains a protocol file handle
that identifies the file system ID, snapshot ID and file ID of the file for which the bitmap
is to be obtained. The cookie field 2610 contains one of two values. The first value is a
predetermined value utilized for an initial request. The second value is the value of the
last cookie value received from the backing store to be utilized for continued retrieval of

bitmaps.

Fig. 27 is a schematic block diagram of an exemplary GET HOLY BITMAP re-
sponse data structure 2700 in accordance with an embodiment of the present invention.
The response data structure 2700 includes a protocol response data structure 1100, and
attributes field 2705, a cookie field 2710, an array of maps 2715 and, in alternate em-
bodiments, additional fields 2720. The protocol response data structure 1100 is described
above in reference to Fig. 11. The attributes of field 2705 contains the most up to date
file attributes of the identified file at the time the GET_HOLY_BITMAP request is proc-
essed. The cookie field 2710 contains a cookie that is of one of two values. The first
value is a predefined value utilized for the final response. The second value is a new
cookie value to be utilized by the storage system for continued retrieval operations. The

maps array 2715 it is a variable length array of indirect block map structures 2800..

Fig. 28 is a schematic block diagram of an exemplary indirect block map structure
2800. The indirect block map structure 2800 comprises of a file block number field to a
2805, a level field 2810, a map field 2815, and, in alternate embodiments, additional
fields 2820. The file block number field 2805 in conjunction with the level field 2810

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

35

identifies an indirect block in a buffer tree of the specified file. The map field 2815 is a
bitmap wherein every bit that is set in the bitmap represents a missing block (absent or
hole) at the index in the indirect block. That is, for any block that is missing (absent or a
hole) in the identified indirect block, a bit will be set. In the illustrative embodiment, the
response from the request is utilized to ensure that appropriate space reservations are

made when first accessing a file.
E. Pre/Post Operation Attributes

Network file system protocols typically provide information within the protocol
so that clients may cache data to provide an accurate and consistent view of the file sys-
tem. For example, in the Network File System (NFS) Version 2, file attributes are some-
times returned along with operations, thereby permitting clients to cache data as long as
the attributes have not been modified. This was further improved in version 3 of NFS
where many operations that modify the file system return attributes from before the op-
eration as well as after the operation. This feature allows a client to recognize if its
cached content was up-to-date before the operation was executed. If the cache content
was accurate, the client may update its cache by doing the update locally without invali-

date its own cached content. This technique is known as pre/post operation attributes.

Most file systems cache content based on a file's unique file handle. While most
network operations in protocols that modify the file system have the necessary file handle
in attributes allow the client to correctly update its cache, there are some operations that
do not include sufficient information. These operations typically reference files using a
directory file handle and a file name, which results in the client receiving a response from
which it cannot determine which file was referenced and potentially modified. As a cli-
ent cannot determine which file was referenced and/or modified, it is unable to ensure
that its cache is consistent with the state of the file system. One advantage of the present
invention is that the novel NRV protocol provides sufficient information to permit proper

caching of any object modified on the origin server using any of these operations.

Fig. 29 is a schematic block diagram of a remove request data structure 2900 (i.e.,
a REMOVE type of field 1005) in accordance with an embodiment of the present inven-

tion. The remove request data structure 2900 includes a protocol request data structure

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

36

1000, a directory file handle field 2905, a filename field 2910 and, in alternate embodi-
ments, additional fields 2915. The request data structure 1000 is described above in ref-
erence to Fig. 10. The directory file handle field 2905 comprises a file handle associated
with a particular directory within the file system. The filename field 2910 contains the

filename of the file to be removed.

A remove response data structure 3000 is illustratively shown in Fig. 30. The re-
move response data structure 3000 illustratively includes a protocol response data struc-
ture 1100, a directory pre/post attributes field 3005, a removed file handle field 3010, a
removed file pre/post attributes field 3015 and, in alternate embodiments, additional
fields 3020. The protocol response data structure 1100 is described above in reference to
Fig. 11. The directory pre/post attributes field 3005 contains the attributes for the direc-
tory both before and after the removal. These attributes permit clients to properly main-
tain their caches. The removed file handle field 3010 contains the file handle for the file
that was removed while processing the remove operation. The removed file pre/post at-

tributes contains the attributes for the file prior to and following the removal operation.

Fig. 31 is a schematic block diagram of an exemplary rename request 3100 (i.e., a
RENAME type of field 1005) in accordance with an embodiment of the present inven-
tion. The rename request data structure 3100 includes a protocol request data structure
1000, a source directory file handle 3105, a source file name field 3110, a destination di-
rectory file handle field 3115, a destination file name field 3120, and in alternate em-
bodiments additional fields 3125. The protocol request data structure 1000 is described
above in reference to Fig. 10. The source directory file handle field 3105 contains the file
handle identifying the source directory of the file to be renamed. The source filename
field 3110 contains the filename of a file within the source directory identified by the
source directory file handle field 31051. The destination directory file handle field 3115
contains a file handle for the directory to which she file is to be renamed. The destination

file name field 3120 contains the filename of the resulting file.

Fig. 32 is a schematic block diagram of an exemplary of a rename response data
structure 3200 in accordance with an embodiment of the present invention. The rename

response data structure 3200 includes a protocol response data structure 1100, a source

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

37

directory pre-post attributes field 3205, a source file handle field 3210, a source file
pre/post attributes field 3215, a destination directory pre/post attributes field 3220, a des-
tination file handle field 3225, a destination file pre/post attributes field 3230 and, in al-
ternate embodiments additional fields 3235. The protocol response data structure 1100 is
described above in reference to Fig. 11. The source directory pre/post attributes field
3205 contains the attributes for the source directory before and after the rename opera-
tion. The source file handle field 3210 coﬁtains a file handle associated with the file prior
to the rename operation. The source file pre/post attributes field 3215 contains the attrib-
utes associated with the file prior to and immediately following the rename operation.
The destination directory pre/post attributes field contains the attributes associated with
the directory of the directory in which the file is being renamed. The destination file
handle field 3225 contains the file handle for the newly renamed file, while the destina-
tion file pre-/post attributes field 3230 contains the file attributes for the destination file

both before and after the rename operation.

Fig. 33 is a schematic block diagram of an exemplary create request 3300 in ac-
cordance with an embodiment of the present invention. The create request data structure
3300 includes a protocol request data structure 1000, a directory file handle field 3305, a
file name field 3310 and, in alternate embodiments additional fields 3315. The protocol
request data structure 1000 is described above in reference to Fig. 10. The directory file
handle field 3305 contains a file handle identifying the directory in which the file is to be
created. The filename field 3310 identifies the name to be utilized for the creation of the
file.

Fig. 34 is a schematic block diagram of a create response data structure 3400 in
accordance with an embodiment of the present invention. The create response data struc-
ture 3400 includes a protocol response data structure 1100, a directory pre/post attributes
field 3405, a created file handle field 3410, a created pre/post attributes field 3415 and, in
alternate embodiments, additional fields 3420. The protocol response data structure 1100
is described above in relation to Fig. 11. The directory pre/post attributes field 3405 con-
tains the attributes for the directory containing the newly created file both before and af-
ter the creation of the file. The created file handle field 3410 contains the file handle for

10

20

25

30

WO 2006/116183 PCT/US2006/015242

38

the newly created file. The created file pre/post attributes field 3415 contains the attrib-

utes for the file prior to and following the file creation.

E. Retrieval of Data Using The NRV Protocol

Fig. 35 is a flow chart detailing the steps of a procedure 3500 for retrieving one or
more blocks from a backing store utilizing the novel NRV protocol in accordance with an
embodiment of the present invention. The procedure begins in step 3502 and continues
to step 3504 where a storage appliance identifies one or more blocks to be retrieved from
a backing store. This identification may be made by determining that the blocks are
marked ABSENT, as in the case of a sparse volume, or may be determined by other, al-
terpate means. In response, the storage system sends an AUTH request to the backing
store to authenticate the connection in step 3506. The backing store responds with an
AUTH response in step 3508 and in step 3510, a the storage system determines whether
the connection has been authenticated. If it has not been authenticated, the procedure
branches back to step 3506 and the storage appliance sends another AUTH request to the
backing store. However, if the connection has been authenticated in step 3510, the pro-
cedure continues to step 3512 where the storage appliance sends an INIT request to the
backing store. In response, the backing store sends an INIT reply to the storage appliance
in step 3514. At this point, the protocol connection between the storage appliance and
backing store has been initialized and authenticated, thereby enabling issuance of addi-

tional commands including, for example a VOLINFO command.

In this illustrated example, the storage appliance sends a READ request to the
backing store in step 3516. In response the backing store retrieves the requested data
from its storage devices in step 3518 by, for example, retrieving the data from disk. The
backing store then sends a READ response including the requested data to the storage to
appliance in step 3520. Upon receiving the requested data, the storage appliance proc-

esses the retrieved data in step 3522. The process then completes in step 3524.

Fig. 36 is a flow chart detailing the steps of a procedure 3600 for using the lock
PCPI command with a long-lived application. The procedure begins in step 2702 and

continues to step 3604 were the storage system initiates a long-lived application that re-

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

39

quires one or more blocks to be retrieved from the backing store. The long-live applica-
tion may comprise a restore on demand application or any other application that may re-
quire continued use of a particular file or PCPI on the backing store. The storage appli-
ance then sends an AUTH request (step 3606) to the backing store to authenticate the
connection. In response, the backing store transmits an AUTH response to the storage
appliance in step 3608. In step 3610, a determination is made as to whether the connec-
tion is authenticated. If not, the procedure loops back to step 3606. Otherwise, the pro-
cedure continues to step 3612 where the storage system transmits an INIT request to the
backing store, which responds (in step 3614) by sending an INIT response. Once the
communication has been authenticated and initialized, the storage system sends a lock
PCPI request to the backing store in step 3616 that identifies the appropriate PCPI to be
locked. In response, the backing store locks the requested PCPI and send a lock PCPI
reply to the storage appliance in step 3618.

The storage appliance may then send a READ request to the backing store in step
3620. In response, the backing store retrieves the requested data from its storage devices
in step 3622 and a sends a READ reply, including the requested data, to the storage ap-
pliance in step 3624. It should be noted that during the course of the long-lived applica-
tion, steps to 3620-3624 may be repeated a plurality of times. Additionally, alternate
commands other than a READ request may be issued by the storage appliance to the
backing store. In response to such alternate commands, the backing store processes the
received commands in accordance with the protocol specification as described above. At
some point in time, when the long-lived application no longer requires the use of the par-
ticular PCPI, the storage appliance sends an unlock PCPI request to the backing store
(step 3626). In response, the backing store unlocks the identified PCPI and sends an un-
lock PCPI reply to the storage appliance in step 3628. The procedure then completes in
step 3630.

To again summarize, the present invention is directed to system and method for
supporting a sparse volume within a file system of a storage system. In accordance with
the illustrative embodiment a storage operating system executing on a storage appliance
includes a novel NRV protocol module that implements the NRV protocol. The NRV

protocol module interfaces with the file system to provide remote retrieval of data from a

10

15

20

25

30

WO 2006/116183 PCT/US2006/015242

40

backing store. The NRV protocol illustratively utilizes the TCP/IP protocol as a transport
protocol. The NRV protocol module is invoked by an exemplary Load Block() finction
within a file system that determines whether a block is to be retrieved from the remote
backing store. If so, the Load_Block() function initiates a series of NRV protocol re-

quests to the backing store to retrieve the data.

The NRV protocol module first authenticates the connection and then transmits an
initialization request to match the appropriate information required at the beginning of the
connection. Once the NRV protocol connection has been initialized and authenticated,
various types of data may be retrieved from the backing store including, for example, in-
formation relating to volumes, blocks and files or other data containers stored on the
backing store. Additionally, the NRV protocol provides a mechanism to remotely lock a
PCPI (a lock PCPI request) on the backing store so that the backing store does not mod-
ify or delete the PCPI until it is unlocked via an unlock command (an unlock PCPI re-
quest) sent via the NRV protocol.. Such locking may be utilized when the backing store
is instantiated within a PCPI that is required for a long-lived the application on the stor-
age appliance, such as a restore on demand application. The novel NRV protocol also in-
cludes commands for retrieving status information such as volume information, from the
backing store. This may be accomplished by sending a VOLINFO request to the backing

store identifying the particular volume of interest.

The present invention provides a NRV protocol that provides several noted ad-
vantages over using conventional open protocols. One noted advantage is the transpar-
ency of operations. Existing open protocols such as the network file system protocol
(NFS) do not expose side effects file system operations, such as that generated a rename
operation, which implicitly deletes a target file. Conventional protocols do not inform a
client that the file handle of the file that has been deleted. However, certain applications
of the NRV protocol, such as that described in United States Patent Application Serial
No. 112056-0200, entitled Proxy File System, by Jason Lango, or other file caching
mechanisms is interested in such information to ensure that cache contents can be invali-
dated at the appropriate times. A second noted advantage is that the novel NRV protocol
of the present invention exposes file system metadata. Conventional protocols, such as

NFS. do not expose file system-specific metadata, but rather normalizes the information

10

15

20

WO 2006/116183 PCT/US2006/015242

41

into a standard format, which may be lossy in that it does not convey some file system
specific information. In oné alternate embodiment of the present invention, certain fea-
tures of the NRV protocol may be implemented using a conventional open protocol cou-
pled with an extension protocol that provides the desired functionality necessary for im-
plementing sparse volumes. In such an environment, an open protocol, such as the NFS
protocol would be coupled to the NRV protocol. In such an environment the NRV 295
would be configured to utilize the NFS protocol for certain file system operations di-

rected to a backing store.

The foregoing description has been directed to specific embodiments of this in-
vention. It will be apparent, however, that other variations and modifications may be
made to the described embodiments, with the attainment of sorﬁe or all of their advan-
tages. For instance, it is expressly contemplated that the teachings of this invention can
be implemented as software, including a computer-readable medium having program in-
structions executing on a computer, hardware, firmware, or a combination thereof, Ac-
cordingly this description is to be taken only by way of example and not to otherwise
limit the scope of the invention. Therefore, it is the object of the appended claims to
cover all such variations and modifications as come within the true spirit and scope of the

invention.

What is claimed is:

10

11

WO 2006/116183 PCT/US2006/015242

42

CLAIMS

1. A storage system that supports remote retrieval of data, the storage system com-
prising:

a file system adapted to support data that requires remote retrieval from a backing
store, the file system including a function adapted to identify data that is not stored on the
storage system and further adapted to retrieve the data using a protocol adapted for re-
mote retrieval of data from the backing store;

a protocol module operatively interconnected with the file system and implement-
ing a protocol adapted for remote retrieval of data from the backing store in response to a
determination that the data is not stored on the storage system, the protocol module fur-
ther adapted to return the data to the file system once the data has been retrieved from the

backing store

2. The storage system of claim 1 wherein the function comprises a function to load a
block of the file system.
3. The storage system of claim 1 wherein the protocol utilizes a transport control

protocol/internet protocol for a transport layer.
4. The storage system of claim 1 wherein the protocol comprises a read request.
5. The storage system of claim 4 wherein the read request comprises a file handle

field, a file block number field and a number of blocks to be read field.

6. The storage system of claim 1 wherein the protocol comprises an authentication

request.

WO 2006/116183 PCT/US2006/015242

43

7. The storage system of claim 6 wherein the authentication request comprises an

application field, a type field and a data field.

8. The storage system of claim 1 wherein the protocol comprises an authentication
response.
9. The storage system of claim 8 wherein the authentication response comprises

status field and a data field.

10. The storage system of claim 1 wherein the protocol comprises a request to lock a

persistent consistency point image (PCPI).

11. The storage system of claim 10 wherein the request comprises a file system iden-
tifier field and a PCPI name field.

12. The storage system of claim 1 wherein the protocol comprises an initialize re-

quest.

13. The storage system of claim 12 wherein the initialize request comprises a protocol

version field, an application field and a byte order field.

14. The storage system of claim 1 wherein the protocol comprises an initialize re-

sponse.

15. The storage system of claim 14 wherein the initialize response comprises a file

system version field and a byte order field.

16. The storage system of claim 1 wherein the backing store comprises one or more

storage systems.

WO 2006/116183 PCT/US2006/015242

44

17. The storage system of claim 1 wherein the protocol comprises a set of operations

that return attributes of a data container prior to and following the operation.

18. The storage system of claim 17 wherein the set of operations comprises a remove

operation.

19. The storage system of claim 17 wherein the set of operations comprises a rename

operation.

20. The storage system of claim 17 wherein the set of operations comprises a create

operation.

21. A method for remotely retrieving data by a storage system from a backing store
using a protocol, the method comprising the steps of:

initializing a connection between the storage system and the backing store;

sending one or more read requests to the backing store;

in response to the one or more read requests, retrieving requested data from the
one or more read requests by the backing store; and

sending one or more read responses to the storage system.

22. The method of claim 21 further comprising the step of sending a lock PCPI com-

mand to the storage system.

23. The method of claim 21 wherein the step of initializing a connection between the
storage system and the backing store further comprising the steps of:
(a) sending an authentication request to the backing store;
(b) sending an authentication response to the storage system by the backing store;
(c) repeating steps (a)-(b) until a connection is authenticated;
(d) sending an initialization request to the backing store; and

(e) sending an initialization response to the storage system.

WO 2006/116183 PCT/US2006/015242

45

24. The method of claim 21 wherein the backing store comprises one or more storage

systems.

25. A computer readable medium for remotely retrieving data from a backing store
using a protocol adapted to remotely retrieve data from a backing store, the computer

readable medium including program instructions for performing the steps of:

initializing a connection between the storage system and the backing store;

sending one or more read requests to the backing store;

in response to the one or more read requests, retrieving requested data from the
one or more read requests by the backing store; and

sending one or more read responses to the storage system.

26. The computer readable medium of claim 25 wherein the backing store comprises

one or more storage systems.

27. The computer readable medium of claim 25 wherein the step of initializing a con-

nection between the storage system and the backing store further comprises the steps of:

(a) sending an authentication request to the backing store;

(b) sending an authentication response to the storage system by the backing store;
(c) repeating steps (a)-(b) until a connection is authenticated;

(d) sending an initialization request to the backing store; and

(e) sending an initialization response to the storage system

PCT/US2006/015242

WO 2006/116183

1/23

g

0¢l 09L Avddv Ysid

l OId

q0¢i
W3LSAS
AOVHOLS

git
NOLLYOINddY

j orl

gel 57T
¥3ldvay y3Ldvay
39VHOLS MHOMLAN
mﬁd
|
00z
o IW3LSAS 37
3HOVD ONILYHILO d
¥3d4ng JOVHOLS ¥0SSs300
1742 B0Z1
pel AMOWINW W3LSAS FOVHOLS

OIT IN3D

13X0vd
0st

00}

PCT/US2006/015242

WO 2006/116183

2/23

05¢

W3LSAS
H3IAIKEA
Msia

ore

WALSAS
amd

¥82_
(O)o018-avol

¢ Old

o0
SS300V SS3JV
VIg3an vIa3an

yic T4 Pz
do1l dan dOoLl

4
ISOS!

02
JINAON
139YVL ISOS

(744 744 0ze
diiH | sdID S4N

8ic
Sava

582

() 3aoNIravol 082 W3LSAS T4

(44
HYOLVYOO0TIV 2LIHM

062 FTNAOW MSIAA

00e

WO 2006/116183 PCT/US2006/015242

3/23

SIZE 14

I
[
!
I
|
TIME STAMPS 16 I
I
I
!
I
I
|

UiD 318

GID 320
gy M S S [
'l DaTA 350 |
! !
|
| DRTYBIT 360 |
|

WO 2006/116183

LEVEL
1
‘BLOCKS

LEVEL
0
BLOCKS

LEVEL
1

BLOCKS

LEVEL
0

BLOCKS

PCT/US2006/015242

4/23
INODE 402
POINTER POINTER

=

RN

INDIRECT BLOCK 404 INDIRECT BLOCK 404
POINTER POINTER POINTER POINTER
DATA DATA DATA DATA
BLOCK coe BLOCK BLOCK cee BLOCK
406 406 406 406

F I G 4 FILE 400
INODE 502
PVBN/VVBN PVBN/VVBN
POINTER PAIR | e« | POINTER PAIR
508 508
S

/

o\

INDIRECT BLOCK 504 INDIRECT BLOCK 504
PVBN/VVBN PVBN/VVBN PVBN/VVBN PVBN/VVBN
POINTER POINTER POINTER POINTER
PAIR eoe PAIR PAIR ese PAIR
508 508 508 508

\ / A
DATA DATA DATA DATA
BLOCK Y BLOCK BLOCK vee BLOCK
506 506 508 506
FILE 500

FIG. 5

WO 2006/116183 PCT/US2006/015242

5/23

660

0
.\._ RAID GROUP

O

VVOL 61
FILE
608

RAID PLEX 650

FIG. 6

AGGREGATE 600
QTREE
606

L
DIR
604

LUN
602

660

RAID GROUP _/‘

PCT/US2006/015242

WO 2006/116183

6/23

96/ 3LV1S ONY ALILNAQK-
$6Z SNLVLS INIMT4I0/ANINO-

114 139V FOVHOLS

23

00L

267 FNVNTOAA Al
14 WALSASTI OI4NOD
3SUVdS
aIS3riavm -
p— 05Z TOAA p—
08Z 0€Z
AMOLOIMIA AHOLOZHIa i
100¥ 1ooy
viva viva
VIIN g viaW g
N3aaH N3CaIH N. mv_ ||._
0ZZ 02z
A¥OLO3MIa A¥OLONIA
1004 [€= 100y [
99z 91z
dYIN dvi
F0vds Fovas [
008 ¥0Z
30018 30014
757 O4Nisd FiZ O4NISd
dviN . dYN g .
AMVNANNS . AYYWNNS .
[] ®
lﬁu 09Z 008 473 Ziz | =1 oz $0Z 20Z
dvi ‘ ExE %001d %0018 dvi ELE %0074 30078
3ALLOV | 3aoNI O:NISH [¢f==q ONITOA INLOV |Gy TAONI (@==f ONISH =] ONITON
L]
. 0HZ
dvi J
— UINMO _Al
05Z OAA

WO 2006/116183

PCT/US2006/015242

7123

800
PCPI POINTERS 805 -
SPARSE VOLUME FLAG 810
INODE FOR INODE FILE 815
. 820
900
TRANSACTION ID 905 —
CHECKSUM 910
CALL 915
. 920
e

FIG. 9

WO 2006/116183

PCT/US2006/015242

8/23

1000

HEADER 900 —

TYPE 1005

FIG. 10

1100

HEADER 900 o

NRV_STATUS 1105
PROTOCOL STATUS 110
1115

FIG. 11

WO 2006/116183 PCT/US2006/015242
9/23

FILE SYSTEM ID 1205 — 1200
PCPI D 1210
FILE ID 1215
GENERATION 1220

. 1225

:

FIG. 12

BLOCKS 1305 o e
SIZE 1310
TYPE 1315
SUB TYPE 1320
GENERATION 1325
uID 1330
GID 1335
CREATION TIME 1340

. 1345

FIG. 13

PCT/US2006/015242

1400

1500

WO 2006/116183
10/23
PROTOCOL REQUEST
DATA STRUCTURE 1000
PROTOCOL VERSION 1405
APPLICATION 1410
BYTE ORDER 1415
: 1420
PROTOCOL RESPONSE
DATA STRUCTURE 1100
FILE SYSTEM VERSION 1505
BYTE ORDER 1510
: 1515

FIG. 15

WO 2006/116183 PCT/US2006/015242

11/23
/ 1600
PROTOCOL REQUEST
DATA STRUCTURE 1000
NAME LENGTH 1605
VOLUME NAME 1610
FIG. 16
PROTOCOL RESPONSE / e
DATA STRUCTURE 1100
ROOT FILE HANDLE 1705
MAXIMUM VOLUME BLOCK NO. 1710
NUMBER OF INODES USED 1715
NUMBER OF INODES 1720
. 1725

FIG. 17

WO 2006/116183 PCT/US2006/015242

12/23
PROTOCOL REQUEST L 1800
DATA STRUCTURE 1000
FILE HANDLE 1205
FILE BLOCK NUMBER 1805
NUMBER OF BLOCKS 1810
: 1815
1900
PROTOCOL RESPONSE e
DATA STRUCTURE 1100
END OF FILE 1905
DATA 1910
. 1915

FIG. 19

WO 2006/116183

PCT/US2006/015242

2000

2100
o

13/23
PROTOCOL REQUEST
DATA STRUCTURE 1000
FILE SYSTEM ID 2005
LOCK DEFAULT PCPI 2010
CHECK PCPI CONFIGURATION 2015
PCPI NAME LENGTH 2020
" PCPI INFORMATION 2025
PCPI NAME 2030
2035
FIG. 20
IDENTIFIER 2105
CP COUNT 2110
PCPI CREATION TIME (SECONDS) 2115
PCPI CREATION TIME (MICROSECONDS) 2120
2125

FIG. 21

WO 2006/116183 PCT/US2006/015242

14/23

PROTOCOL RESPONSE
DATA STRUCTURE 1100 / 2200
PCP! INFORMATION 2100
BLOCKS USED 2210
BLOCKS_HOLES 2215
BLOCKS_OVERWRITE 2220
BLOCKS_HOLES_CIFS 2225
INODES USED 2230
TOTAL NO. OF INODES 2235

. 2240

2300

PROTOCOL REQUEST e
DATA STRUCTURE 1000
FILE SYSTEM ID 2305
PCPI ID 2310

. 2315

FIG. 23

WO 2006/116183 PCT/US2006/015242

15/23

PROTOCOL REQUEST
DATA STRUCTURE 1000 / 2400
LENGTH 2405
TYPE 2410
APPLICATION 2415
DATA 2420

. 2425

2500

PROTOCOL RESPONSE o
DATA STRUCTURE 1100
STATUS 2505
DATA 2510

. 2515

FIG. 25

WO 2006/116183 PCT/US2006/015242

16/23
2600
PROTOCOL REQUEST e
DATA STRUCTURE 1000
FILE HANDLE 2605
COOKIE 2610
. 2615
2700
PROTOCOL RESPONSE
DATA STRUCTURE 1100 /
ATTRIBUTES 2705
COOKIE 2710
MAPS [] 2715
. 2720

FIG. 27

WO 2006/116183

17/23

PCT/US2006/015242

FILE BLOCK NUMBER

2800

2805

LEVEL 2810
MAP 2815
2820

FIG. 28

PCT/US2006/015242

WO 2006/116183
18/23
/ 2900
PROTOCOL REQUEST
DATA STRUCTURE 1000
DIRECTORY FILEHANDLE 2905
FILENAME 910
. 2915
PROTOCOL RESPONSE 3000
DATA STRUCTURE 1100 /
DIRECTORY PREPOST
ATTRIBUTE 3005
REMOVED FILEHANDLE 3010
REMOVED FILE
PREPOST ATTRIBUTES 301
3020

FIG. 30

WO 2006/116183 PCT/US2006/015242

19/23
3100
PROTOCOL RESQUEST /
DATA STRUCTURE 1000
SOURCE DIRECTORY FILEHANDLE 3105
SOURCE FILENAME 3110

DESTINATION DIRECTORY

FILEHANDLE 3115
DESTINATION FILENAME 3120
3125

o000

FIG. 31 f

WO 2006/116183 PCT/US2006/015242

20/23
3200

PROTOCOL RESPONSE /
DATA STRUCTURE 1100
SOURCE DIRECTORY
PREPOST ATTRIBUTES 3205
SOURCE FILE FILEHANDLE 210
SOURCE FILE
PREPOST ATTRIBUTES 215
DESTINATION DIRECTORY
PREPOST ATTRIBUTES 3220
DESTINATION FILE FILEHANDLE 3225

DESTINATION FILE
PREPOST ATTRIBUTES 3230

XX
‘%
[
3]

FIG. 32

WO 2006/116183 PCT/US2006/015242

21/23
3300
PROTOCOL REQUEST e
DATA STRUCTURE 1000
DIRECTORY FILEHANDLE 3305
FILENAME 3310
: 3315

FIG. 33

PROTOCOL RESPONSE

DATA STRUCTURE 1000 e 3400

DIRECTORY PREPOST ATTRIBUTES 3405

CREATED FILEHANDLE 3410
CREATED PREPOST ATTRIBUTES 3415
. 3420

FIG. 34

WO 2006/116183

PCT/US2006/015242

22/23

3500

rd

3502

3504
/
STORAGE SYSTEM IDENTIFIES ONE OR MORE BLOCKS TO BE
RETRIEVED FROM A BACKING STORE
b _— 3506
STORAGE SYSTEM SENDS AUTH REQUEST TO BACKING STORE
TO AUTHENTICATE CONNECTION
* _—3508
BACKING STORE SENDS AUTH RESPONSE TO STORAGE SYSTEM
3510
NO
AUTHENTICATED ?
3512
| STORAGE SYSTEM SENDS INIT REQUEST TO BACKING STORE r
* _—~3514
| BACKING STORE SENDS INIT REPLY TO STORAGE SYSTEM
* _—3516
| STORAGE SYSTEM SENDS READ REQUEST TO BACKING STORE
¢ _—3518
I BACKING STORE RETRIEVES REQUESTED DATA FROM STORAGE DEVICES
| BACKING STORE SENDS READ RESPONSE TO STORAGE SYSTEM
* _—3522
| STORAGE SYSTEM PROCESSES RETRIEVED DATA

3524

CooweTe
FIG. 35

WO 2006/116183 PCT/US2006/015242

23/23

3600

3602 /

3604
/

STORAGE SYSTEM INTIATES LONG-LIVED APPLICATION THAT REQUIRES ONE
OR MORE BLOCKS TO BE RETRIEVED FROM BACKING STORE

&

~— 3606

STORAGE SYSTEM SENDS AUTH REQUEST TO BACKING STORE
TO AUTHENTICATE CONNECTION

v

~— 3608

BACKING STORE SENDS AUTH RESPONSE TO STORAGE SYSTEM

3610

AUTHENTICATED ? NO

_—3612

I STORAGE SYSTEM SENDS INIT REQUEST TO BACKING STORE

v

_—3614

I BACKING STORE SENDS INIT REPLY TO STORAGE SYSTEM

v

_—3616

| STORAGE SYSTEM SENDS LOCK_PCPI REQUEST TO BACKING STORE

v

3618

l BACKING STORE SENDS LOCK_PCPI REPLY TO STORAGE SYSTEM

ooy

_—3620

| STORAGE SYSTEM SENDS READ REQUEST TO BACKING STORE

v

_—3622

I BACKING STORE RETRIEVES REQUESTED DATA FROM STORAGE DEVICES

_—3624

I BACKING STORE SENDS READ REPLY TO STORAGE SYSTEM

|
1
I
1
, v
I

_— 3626

I STORAGE SYSTEM SENDS UNLOCK_PCPI REQUEST TO BACKING STORE

v

_—3628

l BACKING STORE SENDS UNLOCK_PCPI REPLY TO STORAGE SYSTEM

3630

C_commieTe 3
FIG. 36

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/015242

CLASSIFICATION OF SUBJECT MATTER

N G06F 17730

According 1o International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classificalion symbols)

GO6F

Documentation searched other than minimum documentation to the extent thal such documents are included in the fields searched

Electronic data base consulted during the international search (name of dala base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, IBM-TDB, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X M. KACZMARSKI, T. JIANG, D.A. PEASE:
"Beyond Backup Toward Storage Management"
IBM SYSTEMS JOURNAL, [Online] 2003, pages
322-337, XP002393989

USA

Retrieved from the Internet:
URL:http://www.research.ibm.com/journal/s
/422/kaczmarski.pdf>

[retrieved on 2006-08-08]

the whole document

X EP 1 349 089 A (NETWORK APPLIANCE, INC)

1 October 2003 (2003-10-01)

column 3, paragraph 10 - column 4,
paragraph 20

A column 5, paragraph 14 - column 16,
paragraph 52

-/

1-27

1-4,21,
25,26

5-20,
22-24,27

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

‘A" document defining the general stale of the an which is not
considered to be of particular relevance

'E" earlier document but published on or after the international
filing date

'L* document which may throw doubls on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or
other means

'P* document published pricr to the infernational filing date but
later than the priority date claimed

'T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered 1o
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
menits, such combination being obvious {o a person skilled
in the art.

*&" document member of the same patent family

Dale of the actual completion of the international search

8 August 2006

Date of mailing of the intemational search repori

28/08/2006

Name and mailing address of the 1SA/
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Warry, L

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/015242

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indicafion, where appropriate, of the relevant passages

Relevant to claim No,

X

NICHOLAS WILHELM-OLSEN, JAY DESAI, GRANT
MELVIN, MIKE FEDERWISCH: "Data Protection
Strategies for Network Appliance Storage
Systems"

NETWORK APPLIANCE, INC., [OnTinel

25 April 2003 (2003-04-25), pages 1-26,
XP002393990

Retrieved from the Internet:
URL:http://www.netapp.com/1ibrary/tr/3066.
pdf> [retrieved on 2006-08-08]

the whole document

US 2003/182389 Al (EDWARDS JOHN K)

25 September 2003 (2003-09-25)

page 2, left-hand column, paragraph 13 -
page 6, right-hand column, paragraph 61
"Storage Virtualization — Definition Why,
What, Where, and How?"

SNS EUROPE, [Online]

1 November 2004 (2004-11-01), XP002393991
Retrieved from the Internet:
URL:http://www.snseurope.com/sns1ink/magaz
ine/features—full.php?id=22368magazine=Nov
ember%202004> [retrieved on 2006-08-08]
the whole document

SUKWOO KANG, A.L. NARASIMHA REDDY:
"Improving Storage System Flexibility
Through Virtual Allocation"

DEPT. OF ELECTRICAL ENGINEERING, A & M
UNIVERSITY, 2004, XP002393992

Texas, USA

the whole document

1,21,25,
26

2-20,
22-24,27

1-27

1-27

1-27

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2006/015242
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 1349089 A 01-10-2003 JP 2004038929 A 05-02-2004
US 2003182301 Al 25-09-2003
US 2003182389 Al 25-09-2003 US 2005114297 Al 26-05-2005
US 2005038803 Al 17-02-2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

