

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada

CA 2408137 C 2011/04/19

(11)(21) 2 408 137

(12) BREVET CANADIEN CANADIAN PATENT

(13) **C**

- (86) Date de dépôt PCT/PCT Filing Date: 2001/05/03
- (87) Date publication PCT/PCT Publication Date: 2001/11/15
- (45) Date de délivrance/Issue Date: 2011/04/19
- (85) Entrée phase nationale/National Entry: 2002/11/04
- (86) N° demande PCT/PCT Application No.: US 2001/014434
- (87) N° publication PCT/PCT Publication No.: 2001/085102
- (30) Priorité/Priority: 2000/05/05 (US09/565,320)

- (51) Cl.Int./Int.Cl. *A61K 8/81* (2006.01), *A61K 8/04* (2006.01), *A61K 8/06* (2006.01), *A61K 8/34* (2006.01), *A61K 8/67* (2006.01), *A61Q 19/02* (2006.01)
- (72) Inventeurs/Inventors:
 SINGH, SANDHYA B., US;
 BEAUSOLEIL, MARIE-HELENE, US;
 SAXENA, SUBHASH J., US
- (73) Propriétaire/Owner: R.P. SCHERER TECHNOLOGIES, INC., US
- (74) Agent: SIM & MCBURNEY
- (54) Titre: FORMULATION D'EMULSION A PHASE CONTINUE AQUEUSE CONTENANT DE L'HYDROQUINONE ET DU RETINOL
- (54) Title: OIL-IN-WATER EMULSION FORMULATION CONTAINING HYDROQUINONE AND RETINOL

(57) Abrégé/Abstract:

An oil-in-water emulsion formulation containing hydroquinone and retinol, which comprises an oil-in-water emulsion containing hydroquinone entrapped in absorbent micro-agglomerates or impregnated in porous microparticles and retinol-impregnated microparticles.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 November 2001 (15.11.2001)

PCT

(10) International Publication Number WO 01/085102 A3

(51) International Patent Classification⁷: A61K 7/00, 7/48

(21) International Application Number: PCT/US01/14434

3 May 2001 (03.05.2001) (22) International Filing Date:

English (25) Filing Language:

(26) Publication Language: English

(30) Priority Data:

5 May 2000 (05.05.2000) 09/565,320 US

(71) Applicant (for all designated States except US): R.P. SCHERER TECHNOLOGIES, INC. [US/US]; 2030 East Flamingo Road, Suite 260, Paradise Valley, NV 89119 (US).

Inventors; and

- (75) Inventors/Applicants (for US only): SINGH, Sandhya, **B.** [IN/US]; 331 Daisy Drive, San Jose, CA 95123 (US). BEAUSOLEIL, Marie-Heléne [FR/US]; 110 Gardenside Drive #402, San Francisco, CA 94131 (US). SAXENA, Subhash, J. [US/US]; 2610 Monte Cresta Drive, Belmont, CA 94002 (US).
- Agents: HEUSCH, Marina, I. et al.; Heller Ehrman White & McAuliffe LLP, 275 Middlefield Road, Menlo Park, CA 94025-3506 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), DE (utility model), DK (utility model), DM, DZ, EE (utility model), ES, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 29 August 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: OIL-IN-WATER EMULSION FORMULATION CONTAINING HYDROQUINONE AND RETINOL

(57) Abstract: An oil-in-water emulsion formulation containing hydroquinone and retinol, which comprises an oil-in-water emulsion containing hydroquinone entrapped in absorbent micro-agglomerates or impregnated in porous microparticles and retinol-impregnated microparticles.

WO 01/85102 PCT/US01/14434

OIL-IN-WATER EMULSION FORMULATION CONTAINING HYDROQUINONE AND RETINOL

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to an oil-in-water emulsion formulation containing hydroquinone and retinol.

Background to the Invention

25

30

Hydroquinone is a reduced quinone, well-recognized as an efficacious skin-lightening agent. When topically applied, it produces a reversible depigmentation of the skin by inhibiting the enzymatic oxidation of tyrosine to 3,4-dihydroxyphenylalanine, as well as suppressing other metabolic processes of melanocytes. In a clinical setting, hydroquinone is employed to treat hypermelanosis. It has likewise been utilized to bleach hyperpigmented skin conditions including chloasma, melasma, freckles, and senile lentigines. Hydroquinone is available in over-the-counter and prescription products. Although hydroquinone is considered a mild irritant, it displays minimal toxicity in humans.

Retinol, along with other retinoids, has enjoyed increasing popularity as an active ingredient in skin care compositions, especially for photoaging and sun damage. However, more so than other retinoids, retinol tends to decompose on exposure to light, heat, and oxygen. The problem of decomposition has been addressed to some extent by formulating retinol with antioxidants and chelating agents, and storing it in opaque or colored containers, and several patents and published applications, for example, PCT International Application Publication No. WO 93/00085 and European Patent Application Publication Nos. 0 440 398 and 0 596 106, all to Johnson & Johnson, describe water-in-oil emulsions containing retinol, which are asserted to be stable. US Patent No. 5,851,538, to Advanced Polymer Systems, discloses an oil-in-water emulsion containing retinol in which the retinol is entrapped within

the pores of solid porous polymeric microparticles.

It would be of value to have a stable oil-in-water emulsion formulation containing both hydroquinone and retinol.

5

10

15

BRIEF SUMMARY OF THE INVENTION

In a first aspect, this invention provides an oil-in-water emulsion formulation containing hydroquinone and retinol, comprising:

- (i) an oil-in-water emulsion comprising 10% to 40% by weight oil phase and 60% to 90% by weight water phase; and
 - (ii) separately dispersed within the oil-in-water emulsion,
 - (a) one or both of hydroquinone entrapped in micro-agglomerates and hydroquinone-impregnated porous microparticles; and
 - (b) retinol-impregnated porous microparticles.

In a second aspect, this invention provides a use of the formulation of the first aspect of this invention for the simultaneous application of hydroquinone and retinol to the skin.

20

25

In accordance with another aspect of the present invention, there is provided a process for the preparation of an oil-in-water emulsion formulation containing hydroguinone and retinol, said process comprising separately dispersing one or both of hydroquinone entrapped in micro-agglomerates and hydroquinone-impregnated porous microparticles and retinol-impregnated porous microparticles in an oil-in-water emulsion comprising 10 to 40% by weight oil phase and 60 to 90% by weight water phase.

DETAILED DESCRIPTION OF THE INVENTION

10

According to the first aspect of this invention, there are obtained oil-in-water emulsion formulations for hydroquinone and retinol, in which the hydroquinone is present entrapped in absorbent micro-agglomerates or as hydroquinone-impregnated porous microparticles and the retinol is present as retinol-impregnated porous microparticles. Thus, the invention comprises a formulation in which hydroquinone and retinol are can act in concert upon topical application, but are sequestered from one another in the formulation. Formulations according to this invention are stable and topically cosmetically acceptable, thereby providing attractive forms for the topical delivery of hydroquinone and retinol.

According to the second aspect of this invention, a use of the formulation of the first aspect of this invention for the simultaneous application of hydroquinone and retinol to the skin is provided.

Number ranges given in the specification, such as size ranges and the like, should be considered approximate, unless specifically stated.

Ingredient names are taken from the *International Cosmetic Ingredient Dictionary* and *Handbook*, 8th edition, 2000, Cosmetic, Toiletry, and Fragrance Association, Washington, DC.

The micro-agglomerates

10

15

20

25

30

Suitable micro-agglomerates for this invention are solid, water-insoluble micro-agglomerates of submicron-sized solid polymeric particles. Micro-agglomerates of this type, and methods of their preparation, are disclosed in US Patents Nos. 4,962,133 and 4,962,170 (both to Chromecek et al.) and references cited therein.

The micro-agglomerates of the invention form an ultralight powder that can adsorb liquids without changing the free-flowing nature of the powder as a whole. The powder is composed of a lattice of solid, submicron-sized, generally elliptical or spherical, unit particles ranging from about 0.1 µm to about 0.5 µm, typically about 0.3 µm, in diameter. The powder also consists of micro-agglomerates of fused unit particles of sizes in the range of 10 µm to 80 µm in average diameter, and aggregates of these fused micro-agglomerates of sizes in the range of from about 200 µm to about 1200 µm in average diameter. The unit particles themselves do not have any significant porosity, and the micro-agglomerates absorb liquids primarily through filling of interstitial voids by capillary action. The powder has a bulk density from less than 0.1 g/mL to about 0.3 g/mL. In this form, the powder has the capacity to adsorb several times its own weight of liquids (including melted solids).

The micro-agglomerates are composed of organic polymers and are formed by precipitation polymerization of a mixture of monoethylenically unsaturated and polyethylenically unsaturated monomers in a suitable solvent, as described in the patents listed above. Monoethylenically unsaturated monomers suitable for forming micro-agglomerates for use in this invention include styrene, ethylvinylbenzene, vinyltoluene, acrylic acid and its esters, such as ethyl acrylate, methacrylic acid and its esters, such as methyl methacrylate and lauryl methacrylate, vinyl esters, such as vinyl acetate, vinyl

15

20

25

propionate, vinyl stearate, and vinyl laurate, vinylic ketones, such as vinyl methyl ketone and methyl isopropenyl ketone, and vinyl ethers, such as vinyl methyl ether, and the like. Polyethylenically unsaturated monomers suitable for forming micro-agglomerates for use in this invention include divinylbenzene, divinyl ketone, divinyl sulfone, polyvinyl or polyallyl esters of dibasic or polybasic acids, such as divinyl sebacate, diallyl adipate, diallyl phthalate, diallyl sebacate, polyvinyl or polyallyl ethers of diols or polyols, such as ethylene glycol divinyl ether and diethylene glycol diallyl ether, polyacrylate or polymethacrylate esters of diols or polyols, such as ethylene glycol dimethacrylate, polyethylene glycol diacrylate, trimethylolpropane trimethacrylate, and the like. Typically the monoethylenically unsaturated monomer will be present at from 20% to 80% of the monomer mixture, with the polyethylenically unsaturated monomer forming the remainder of the mixture. Preferred monomer mixtures include styrene/divinylbenzene, vinyl stearate/divinylbenzene, methyl methacrylate/ethylene glycol dimethacrylate, and lauryl methacrylate/ethylene glycol dimethacrylate.

The mixture of monomers, together with a low-boiling organic solvent, such as isopropanol, and a polymerization catalyst, such as a peroxide, are stirred to form a solution. On heating and continuous stirring, the monomers polymerize to form solid microparticles, which agglomerate into micro-agglomerates. The micro-agglomerates are then filtered, washed with a volatile organic solvent such as isopropanol to remove unreacted monomers, and, finally, dried under vacuum to afford absorbent micro-agglomerates.

In one method of preparation of the absorbent micro-agglomerates of the invention, lauryl methacrylate and ethylene glycol dimethacrylate are added to heated isopropanol. A catalyst is added under mixing, and the mixture is sparged with nitrogen. The reaction is allowed to complete under heating, and the resultant mixture is filtered and washed with isopropanol. The "wet cake" is blended and dried to a specified residual isopropanol content.

Micro-agglomerates of this type are commercially available under the trademark POLYTRAP® from Advanced Polymer Systems, Inc.

- 5 —

The porous microparticles

10

20

25

30

Suitable porous microparticles for this invention are solid, water-insoluble, polymeric microparticles having a network of interconnected pores open to the particle surface, providing substantially full communication between the internal pore space and the particle exterior surface. Microparticles of this type, and methods for their preparation, are disclosed in US Patents Nos. 4,690,825 (Won), 4,873,091 (Jankower et al.), 5,073,365 (Katz et al.), 5,135,740 (Katz et al.), and 5,145,675 (Won).

The porous microparticles are generally spherical in shape and have a weight average diameter from less than 1 µm to about 500 µm or more, particularly from about 5 µm to about 100µm, more particularly from about 10 µm to about 50 µm, especially about 20 µm. The pore dimensions within the microparticles may vary, with optimum dimensions depending on the polymers used to form the microparticles and the diffusive characteristics of the material to be impregnated. Typical pore volumes are from about 0.01 cm³/g to about 4 cm³/g, particularly from about 0.1 cm³/g to about 2 cm³/g; typical surface areas are from about 1m²/g to about 500 m²/g, particularly from about 20m²/g to about 350 m²/g; and typical pore diameters are from about 0.0001 µm to about 3 µm, particularly from about 0.003 µm to about 1 µm. The average diameter of the microparticles may be determined by sedimentation or by a laser microsizer; the pore volume may be determined by mercury intrusion; and the surface area may be determined by nitrogen adsorption (the BET method).

The porous microparticles are composed of organic polymers and are formed by suspension polymerization of a mixture of monoethylenically unsaturated and polyethylenically unsaturated monomers in the presence of a porogen (a pore-forming agent), as described in the patents listed above. Monoethylenically unsaturated monomers suitable for forming microparticles for use in this invention include styrene, ethylvinylbenzene, vinyltoluene, acrylic acid and its esters, such as ethyl acrylate, methacrylic acid and its esters, such as methyl methacrylate and lauryl methacrylate, vinyl esters, such as vinyl acetate, vinyl propionate, vinyl stearate, and vinyl laurate, vinylic ketones, such as vinyl methyl ketone and methyl isopropenyl ketone, and vinyl ethers, such as vinyl methyl ether, and the like. Polyethylenically unsaturated monomers suitable for forming microparticles for use in this invention include divinylbenzene, divinyl ketone,

15

20

25

30

divinyl sulfone, polyvinyl or polyallyl esters of dibasic or polybasic acids, such as divinyl sebacate, diallyl adipate, diallyl phthalate, diallyl sebacate, polyvinyl or polyallyl ethers of diols or polyols, such as ethylene glycol divinyl ether and diethylene glycol diallyl ether, polyacrylate or polymethacrylate esters of diols or polyols, such as ethylene glycol dimethacrylate, polyethylene glycol diacrylate, trimethylolpropane trimethacrylate, and the like. Typically the monoethylenically unsaturated monomer will be present at from 20% to 80% of the monomer mixture, with the polyethylenically unsaturated monomer forming the remainder of the mixture. Preferred monomer mixtures include styrene/divinylbenzene, vinyl stearate/divinylbenzene, methyl methacrylate/ethylene glycol dimethacrylate, and lauryl methacrylate/ethylene glycol dimethacrylate.

The mixture of monomers, together with the porogen, which is typically a moderately low-boiling hydrocarbon such as heptane or toluene, and a polymerization catalyst, such as a peroxide, are added to an aqueous phase, typically containing a dispersant, and stirred to form a suspension of the organic phase in the aqueous phase with droplets of the desired size of the resulting particles. On heating and continued stirring, the monomers polymerize to form solid porous microparticles having the pores filled with the porogen. The microparticles are filtered, washed with water to remove the dispersants and then with volatile organic solvents such as isopropanol to remove unreacted monomers and the porogen, and then dried under vacuum to afford the porous microparticles.

Microparticles of this type are commercially available from Advanced Polymer Systems, Inc. under the trademark MICROSPONGE[®].

The hydroquinone entrapped in micro-agglomerates

Hydroquinone entrapped in micro-agglomerates suitable for use in this invention may be prepared by mixing micro-agglomerates with a solution containing hydroquinone and subsequently removing the solvent. Typically, the hydroquinone-loaded micro-agglomerates will have a hydroquinone content from 1% to 80%, particularly from 20% to 70%, especially around 60%, by weight of the loaded micro-agglomerates; and may contain an overage of hydroquinone (up to 20%) to ensure adequate potency after storage.

15

20

25

30

The hydroquinone may be entrapped in the micro-agglomerates as a hydroquinone composition containing additional ingredients.

Typical optional additional ingredients in the hydroquinone composition include antioxidants. Both water-soluble and oil-soluble antioxidants may be used. Examples of water-soluble antioxidants include ascorbic acid and its salts, such as sodium ascorbate, isoascorbic acid and its salts, sodium sulfite, sodium metabisulfite, sodium thiosulfite, thiols such as thioglycerol, thiosorbitol, thiourea, thioglycolic acid, and cysteine, and the like. Examples of oil-soluble antioxidants include BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), tocopherol (vitamin E), tocopheryl acetate, ascorbyl palmitate, hydroquinone, di-t-butylhydroquinone, propyl gallate, and the like. The amount of antioxidant may vary, and is not critical to this invention provided that sufficient is present to give the hydroquinone the desired stability. In most applications, an amount ranging from 0.01% to 10% by weight of the hydroquinone composition will be appropriate.

Other optional ingredients in the hydroquinone composition include chelating agents such as EDTA (ethylenediaminetetraacetic acid) and its salts, for example disodium EDTA, trisodium NTA (nitrilotriacetic acid), etidronic acid and its salts, sodium dihydroxyethylglycinate, citric acid and its salts, and the like. The amount of chelating agent may likewise vary and is not critical to this invention; and in most applications, an amount ranging from 0.01% to 1% by weight of the hydroquinone composition is sufficient.

Typically, the hydroquinone and any additional ingredients are dissolved in a volatile organic solvent, such as a lower alcohol or lower ketone, for example isopropanol, and the solution mixed with the micro-agglomerates, so that the solution is absorbed into the interstitices of the lattice. Once the micro-agglomerates have absorbed the solution, the solvent is removed by evaporation, typically under reduced pressure and optionally with mild heating, avoiding excessive temperatures that may speed decomposition or oxidation of the hydroquinone. This process may be repeated one or more times to increase the hydroquinone loading of the micro-agglomerates.

Because of the sensitivity of hydroquinone to oxygen, the hydroquinone and all formulations containing it will typically be handled in an oxygen-free atmosphere, e.g. under nitrogen or other inert gas. Solvents will typically be degassed and/or purged with nitrogen before use, formulations and intermediate formulations degassed, and storage

15

20

25

30

containers purged with nitrogen both before and after filling with a hydroquinone-containing formulation, such as hydroquinone-loaded micro-agglomerates and compositions containing hydroquinone.

The hydroquinone-impregnated porous microparticles

Hydroquinone-impregnated porous microparticles suitable for use in this invention may be prepared by mixing the porous microparticles with a solution containing hydroquinone and subsequently removing the solvent. Typically, the hydroquinone-impregnated porous microparticles will have a hydroquinone content from about 1% to about 80%, particularly from about 20% to about 70%, especially around 60% by weight of the impregnated microparticles; and may contain an overage of hydroquinone (up to about 20%) to ensure adequate potency after storage.

The hydroquinone may be entrapped in the micro-agglomerates as a hydroquinone composition containing additional ingredients, as mentioned above for the micro-agglomerates.

Typically, the hydroquinone (hydroquinone blend) will be dissolved in a volatile organic solvent, such as a lower alcohol or lower ketone, for example isopropanol or acetone, and the solution mixed with the microparticles so that the solution is absorbed into the pores of the microparticles. Once the microparticles have absorbed the solution, the solvent is removed by evaporation, typically under reduced pressure and optionally with mild heating, avoiding excessive temperatures that may speed decomposition or oxidation of the hydroquinone.

Because of the sensitivity of hydroquinone to oxygen, the hydroquinone and all formulations containing it will typically be handled in an oxygen-free atmosphere, e.g. under nitrogen or other inert gas. Solvents will typically be degassed and/or purged with nitrogen before use, emulsions and intermediate formulations degassed, and storage containers purged with nitrogen both before and after filling with a hydroquinone containing formulation, such as the hydroquinone -impregnated porous microspheres and emulsions containing hydroquinone.

15

20

25

30

The retinol-impregnated porous microparticles

Retinol-impregnated porous microparticles suitable for use in this invention may be prepared by mixing the porous microparticles with a solution containing retinol and subsequently removing the solvent. Typically, the retinol-impregnated porous microparticles will have a retinol content from about 1% to about 50%, particularly from about 10% to about 30%, especially around 20% by weight of the impregnated microparticles; and usually contain an overage of retinol (up to about 20%) to ensure adequate potency after storage.

The retinol is preferably impregnated into the porous microparticles as a retinoid composition containing additional ingredients, such as antioxidants and chelating agents. Typically, the retinoid composition will comprise from about 5% to about 95% by weight of retinol, more typically, from about 10% to about 70% by weight of retinol. Frequently, the retinol will be a commercial retinol blend, containing an antioxidant, such as butylated hydroxytoluene, and a dispersant, such as polysorbate 20, in addition to the retinol; and additional ingredients will be added to that retinol blend.

Typical optional additional ingredients in the retinoid composition include antioxidants. Both water-soluble and oil-soluble antioxidants may be used. Examples of water-soluble antioxidants include ascorbic acid and its salts, such as sodium ascorbate, isoascorbic acid and its salts, sodium sulfite, sodium metabisulfite, sodium thiosulfite, thiols such as thioglycerol, thiosorbitol, thiourea, thioglycolic acid, and cysteine, and the like. Examples of oil-soluble antioxidants include BHT, BHA, tocopherol, tocopheryl acetate, ascorbyl palmitate, propyl gallate, and the like. The amount of antioxidant may vary, and is not critical to this invention provided that sufficient is present to give the retinol the desired stability. In most applications, an amount ranging from about 0.0001% to about 10% by weight of the retinoid composition will be appropriate.

Other optional ingredients in the retinoid composition include chelating agents such as EDTA and its salts, for example disodium EDTA, trisodium NTA, etidronic acid and its salts, sodium dihydroxyethylglycinate, citric acid and its salts, and the like. The amount of chelating agent may likewise vary and is not critical to this invention; and in most applications, an amount ranging from about 0.01% to about 1% by weight of the retinoid composition is sufficient.

Typically, the retinol (retinol blend) will be dissolved in a volatile organic solvent, such as a lower alcohol or lower ketone, for example isopropanol or acetone, and the solution mixed with the microparticles so that the solution is absorbed into the pores of the microparticles. Once the microparticles have absorbed the solution, the solvent is removed by evaporation, typically under reduced pressure and optionally with mild heating, avoiding excessive temperatures that may speed decomposition or oxidation of the retinol.

Because of the sensitivity of retinol to light, especially ultraviolet light, heat, and oxygen, the retinol and all formulations containing it will typically be handled under yellow light, and in opaque or colored containers, and an oxygen-free atmosphere, e.g. under nitrogen or other inert gas. Solvents will typically be degassed and/or purged with nitrogen before use, emulsions and intermediate formulations degassed, and storage containers purged with nitrogen both before and after filling with a retinol-containing formulation, such as the retinol-impregnated porous microspheres and emulsions containing retinol.

Oil-in water emulsions

10

20

25

30

The oil-in-water emulsions of the invention comprise lipophilic (oil) droplets in a continuous hydrophilic (water) phase. These emulsions may comprise some 10-40% oil phase and 60-90% water phase. The water phase may contain humectants, which prevent the desiccation and consequent hardening of the emulsions. Oil-in-water emulsions of the invention may typically contain, but are not limited to, polyoxyethylene alcohol (varying in the fatty alcohol and in the degree of polymerization of polyethylene glycol), aryl alcohol, wax, silicone oil, mineral oil, deionized water, glycerol, and additional emulsifying, thickening, and preservative agents. Emulsifiers constitute an important component of the formulations, as they lend to the stability of the emulsion as a whole by coating the oil droplets. Emulsifiers are, essentially, surfactants. These surfactants can be ionic or non-ionic, and they can be used alone or in admixture. They include cetearyl alcohol and sodium cetearyl sulfate, PEG-1000 monocetyl ether, or quaternary ammonium salts such as alkyl trimethyl ammonium bromide; likewise, the polyol ester glycerol monostearate and potassium stearate, sodium lauryl sulfate, and ethoxylated fatty alcohols constitute good coemulsifiers. Fatty acids like stearic acids may be included to regulate the consistency of the

emulsion. Finally, polymers such as carbomers can be included in small amounts to stabilize the emulsion.

The oil-in-water emulsion of the invention contains (1) one or both of hydroquinone entrapped in micro-agglomerates and hydroquinone-impregnated porous microparticles, and (2) retinol-impregnated porous microparticles. Typically, the resulting formulation will have a hydroquinone content of at least 0.01%, particularly at least 0.1%, more particularly at least 1%; and less than 10%, particularly less than 5%; and a retinol content of at least 0.0001%, particularly at least 0.01%, more particularly at least 1%; and less than 10%, particularly less than 5%, more particularly less than 3%; by weight of the formulation. It is a particular advantage of the emulsion formulation of this invention that the hydroquinone and retinol are sequestered from each other, but can act together upon topical application of the formulation.

10

15

20

25

30

The formulation may also contain additional ingredients such as antioxidants, chelating agents, colorants, fragrances, preservatives, and the like, as necessary or desired, typically in amounts less than 1% by weight of the formulation, as well as suitable thickening agents. Suitable antioxidants and chelating agents are those previously mentioned; with a water-soluble antioxidant for the aqueous phase (especially sodium metabisulfite), and an oil-soluble antioxidant for the organic phase. Suitable preservatives include the parabens, such as methylparaben, propylparaben, isopropylparaben, butylparaben, and isobutylparaben, and their salts such as sodium butylparaben, benzoic acid and its salts and esters, benzyl alcohol, urea derivatives such as diazolidinyl urea, imidazolidinyl urea, and DMDM hydantoin, sorbic acid and its salts, and the like. Suitable colorants and fragrances will be a matter of choice, provided only that they should be compatible with the formulation and the dispensing container.

The oil-in-water emulsion may be prepared by methods well known to the art, typically by mixing the aqueous phase ingredients and the dispersant with heating until a uniform solution or dispersion is obtained (optionally in several stages), mixing the organic phase ingredients with heating until a uniform solution or dispersion is obtained (also optionally in several stages), then adding the aqueous phase to the organic phase with agitation (e.g. stirring or other shearing technique) to form an oil-in-water emulsion of the two phases. These and all other processing steps are typically performed under an inert

atmosphere, for example of nitrogen, and all steps involving retinol are performed under yellow light to protect the retinol from exposure to ultraviolet light. The emulsion is cooled with stirring. Once the emulsion is sufficiently cooled, it may be homogenized if necessary. The hydroquinone component (micro-agglomerates and/or porous microparticles) and retinol-impregnated porous microparticles, as well as the temperature-sensitive or volatile ingredients, such as any fragrance, are added and uniformly dispersed in the emulsion, which may be degassed. Finally, storage or dispensing containers are filled with the oil-inwater emulsion.

Suitable creams for this invention are semi-solid oil-in-water emulsions and are generally higher in oil content. They are typified by a relatively heavy consistency. Creams are attractive in that a small amount can be used to cover a comparatively large surface area. Furthermore, creams are easily applied but not easily washed off and, thus, are frequently employed as treatment and protective products. Creams of a heavier variety are formulated for more intensive moisturizing. Such creams are characterized by augmented levels of absorbent and humectant materials.

Creams can be prepared by methods well known in the art (*Chemistry and Technology of the Cosmetics and Toiletries Industry*, 2nd edition, Blackie Academic & Professional (Chapman & Hall), 1996, ch. 1 and 3). They are usually sold in tubes or jars.

20

10

15

Suitable lotions for this invention are oil-in-water emulsions typically containing about 10-15% oil phase and about 85-90% water phase — a higher water phase content than that found in creams. Lotions are attractive formulations in that they flow easily and rub in quickly without leaving behind a feeling of stickiness. They thus provide the ability to hydrate dry skin quickly.

Lotions can be prepared by methods well known in the art (*Chemistry and Technology of the Cosmetics and Toiletries Industry*, 2nd edition, Blackie Academic & Professional (Chapman & Hall), 1996, ch. 1 and 3). Lotions are typically sold in tubes and bottles.

25

15

20

25

30

Dispensing containers

The term "dispensing container" refers to a container suitable for containing the formulations of the first aspect of this invention. Dispensing containers are well known in the packaging art; and suitable containers include tubes (of the kind widely used to hold topical formulations, cosmetics, and the like), airless pumps, sachets or pouches, and the like. Such containers are desirably "barrier containers", which are dispensing containers constructed of materials such that, when filled with the formulation and sealed, they effectively prevent contact of the formulation with atmospheric oxygen and light, and thereby prevent or minimize oxidative or photocatalyzed degradation of the formulation. Desirably, any free space within the dispensing container after it is filled with the desired content of the formulation is filled with an inert gas, such as nitrogen or the rare gases, e.g. argon. A preferred inert gas is nitrogen. Filling a dispensing container with inert gas and sealing it implies that the oxygen is so sufficiently removed and excluded from the container that oxidative degradation of the formulation is minimized.

Barrier containers are well known in the packaging art; and are widely used for the storage of prepackaged materials subject to oxidative or photocatalyzed degradation. Such containers are typically prepared from polymeric co-extrusions in which one or more of the polymer layers is a "barrier polymer", customarily defined as a polymer having an oxygen permeability of less than about 40 cm³-\mum/(m²-d-kPa) at 23°C. Barrier polymers and their uses are described, for example, in the article entitled "Barrier Polymers" in *The Wiley Encyclopedia of Packaging Technology*, M. Baker, Ed., John Wiley and Sons, New York, 1986. Such containers are also typically prepared from foil laminates (polymeric laminates in which one or more of the layers is a metal foil, especially an aluminum foil, or a metallized polymeric layer); and may also contain other non-polymeric layers. Barrier containers may be made in many forms, but those forms particularly applicable to this invention are preformed or form-fill-and-seal sachets or pouches, tubes, airless pumps, and the like. They are fillable and sealable by methods well known to the packaging art; for example, already capped or sealed and capped tubes open at the bottom end are filled from the open end and sealed by any suitable means, typically by heat sealing (heating either by

direct conduction, applicable to all materials, or by inductive heating, applicable if a metal foil or foil laminate is present in the area of the container to be sealed).

A particularly convenient dispensing container is a sachet or pouch formed from a foil laminate, as these containers are already widely used as single-dose or sample containers for topical medications or cosmetics and may be conveniently filled with the formulation and sealed by automated packaging machinery.

The invention is illustrated by the following non-limiting Examples.

Example 1. Hydroquinone entrapped in micro-agglomerates

Hydroquinone entrapped in micro-agglomerates was prepared to the following formulation:

Ingredient	Weight percent		
Hydroquinone	60.00		
Micro-agglomerates ¹	36.00		
Ascorbic acid	2.00		
Sodium metabisulfite	2.00		

¹ The micro-agglomerates used were POLYTRAP® P020A (Advanced Polymer Systems, Inc.), lauryl methacrylate/ethylene glycol dimethacrylate crosspolymer micro-agglomerates.

One half of the total hydroquinone was dissolved in ethanol with mixing. A solution
of one half of the sodium metabisulfite and one half of the ascorbic acid in deionized water
was prepared and added to the hydroquinone solution with mixing. The micro-agglomerates
were stirred and purged with nitrogen. The hydroquinone/ascorbic acid/sodium
metabisulfite solution was blended in under a nitrogen blanket, and the resulting mixture
was dried under vacuum. The second half of the hydroquinone/ascorbic acid/sodium
metabisulfite solution was then prepared, added to the dried product, and blended under a
nitrogen blanket. The final product was dried under vacuum to specified volatile and ethanol

content. The hydroquinone-loaded micro-agglomerates were stored under a nitrogen atmosphere.

Example 2. Retinol-impregnated Microparticles, 22.5%.

5

Retinol-impregnated microparticles were prepared to the following formulation:

Ingredient	Weight percent		
Retinol blend ¹	47.000		
Microparticles ²	51.931		
Tocopheryl acetate	1.000		
Ascorbic acid	0.023		
Disodium EDTA	0.023		
Propyl gallate	0.023		

The retinol blend contained approximately 45.0% retinol, 51.25% polysorbate 20, 3.0% BHT, and 0.75% BHA.

15

20

10

Under yellow light, the retinol blend, tocopheryl acetate, ascorbic acid, disodium EDTA, and propyl gallate were dissolved in isopropanol, using 50 g isopropanol per 50 g of retinol blend. The resulting solution was purged with nitrogen and was mixed with the microparticles, agitating until the solution was absorbed. Once the solution had been fully absorbed by the microparticles, the solvent was removed under vacuum, and the impregnated microparticles were stored in brown glass jars or opaque packets under a nitrogen atmosphere.

 $^{^2}$ The microparticles used were Microsponge® (Advanced Polymer Systems, Inc.), porous methyl methacrylate/ethylene glycol dimethacrylate crosspolymer microparticles, having a weight average particle diameter of 20 μm , a surface area of 225 m^2/g , and a pore volume of 1 cm $^3/g$.

Example 3. Formulation Containing Hydroquinone, 2% (entrapped in micro-agglomerates) and Retinol, 0.3% (impregnated in microparticles, 20% overage) in an Oil-in-water Emulsion

An oil-in-water formulation of the invention was prepared with the following ingredients:

Ingredient	Weight percent
Part I	,
DI water	61.127
Magnesium Aluminum Silicate (Veegum Regular)	0.50
Glycerin 99.7%	3.00
Methylparaben NF (Methylparaben)	0.40
Sodium Metabisulfite	1.00
Edetate Disodium, USP (Sequestrene NA2)	0.20
Triethanolamine 99%	0.30
Part II	
Cetyl Ricinoleate (Naturchem CR)	2.00
C ₁₀ -C ₃₀ Cholesterol/Lanosterol Esters (Super Sterol Ester)-	2.50
Cetyl Alcohol NF (Crodacol C95)	2.00
Emulsifying wax, NF (Polawax)	4.50
Dimethicone (DC 200, 350 cst)	. 2.00
Vitamin E, USP (acetate)	0.10
PEG-10 Soya Sterol (Generol 122E-10)	0.50
Stearic Acid, NF (Emersol 132)	0.50
Butylated Hydroxy Toluene, NF	0.10
Cyclomethicone (DC 345 Fluid)	1.00
Caprylic/Capric Triglyceride (Myritol 318)	6.00
DEA-Cetyl Phosphate (Amphisol)	1.00
Ascorbyl palmitate	0.05
Part III	:
Hydroquinone entrapment, 60% (from Example 1)	3.34
Part IV	и р
DI water	2.55
Retinol-impregnated microparticles, 22.5% (from Example 2)	1.80
Part V	
Alpha-bisabolol	0.083
Part VI	•
Benzyl Alcohol, NF	1.00
Phenoxyethanol	0.50
Polyacrylamide (and) C ₁₃₋₁₄ isoparaffin (and) laureth 7 (Sepigel 305)	1.95

The water of Part I was weighed in a suitable container and heated while mixing; the remaining ingredients of Part I were then added, forming the aqueous phase. In a separate container, all of the ingredients of Part II were weighed and heated until the solution became clear, forming the oil phase. Part II was added to Part I with good mixing, forming an oil-in-water emulsion. The heat was then shut off, and Part III, the premix of Part IV, Part V, and the ingredients of Part VI were added sequentially with good mixing. Purging with nitrogen occurred throughout the manufacturing process. The formulation was packaged in Glaminate tubes.

Example 4. Stability data of entrapped vs. "free" hydroquinone formulations

To demonstrate the benefits of the invention, the formulation of Example 3 was compared to a similar formulation in which the 2% hydroquinone was present "free" in the emulsion rather than entrapped in micro-agglomerates. The two formulations were packaged in Glaminate tubes, and samples were taken for analysis after storage under defined conditions.

15

20

10

Storage conditions	Active Ingredient Content, %				
	Example 3		Comparative formulation		
	Hydroquinone entrapped	Retinol impregnated	Hydroquinone free	Retinol impregnated	
Initial .	2.00	0.37	2.02	0.35	
One month at 40 °C	2.03	0.32	1.80	0.34	
One month at 45 °C	2.07	0.31	1.80	033	
Two months at 40 °C	2.00	0.33			
Three months at 40 °C	2.10	0.31	·	• •	

The formulation with "free" hydroquinone showed approximately 10% loss of hydroquinone potency and slight physical separation at 40 °C, and very bad separation at 45 °C after one month, whereas the formulation of the invention was physically and chemically stable after three months at 40 °C.

While this invention has been described in conjunction with specific embodiments and examples, it will be evident to one of ordinary skill in the art, having regard to this disclosure, that equivalents of the specifically disclosed materials and techniques will also be applicable to this invention; and such equivalents are intended to be included within the following claims.

CLAIMS:

- 1. An oil-in-water emulsion formulation containing hydroquinone and retinol, comprising:
- (i) an oil-in-water emulsion comprising 10% to 40% by weight oil phase and 60% to 90% by weight water phase; and
 - (ii) separately dispersed within the oil-in-water emulsion,
- (a) one or both of hydroquinone entrapped in micro-agglomerates and hydroquinone-impregnated porous microparticles; and
 - (b) retinol-impregnated porous microparticles.
- 2. The formulation of claim 1, wherein the emulsion has a total hydroquinone content of the emulsion from about 0.01% to about 10% by weight.
- 3. The formulation of claim 2, wherein the total hydroquinone content of the emulsion is from about 0.1% to about 5% by weight.
- 4. The formulation of claim 1, wherein at least a part of the hydroquinone is present entrapped in micro-agglomerates.
- 5. The formulation of any one of claims 1 to 4, wherein the micro-agglomerates comprise a cross-linked polymer selected from the group consisting of a styrene/divinylbenzene crosspolymer, a vinyl stearate/divinylbenzene crosspolymer, a methyl methacrylate/ethylene glycol dimethacrylate crosspolymer, and a lauryl methacrylate/ethylene glycol dimethacrylate crosspolymer.
- 6. The formulation of claim 5, wherein the micro-agglomerates comprise a lauryl methacrylate/ethylene glycol dimethacrylate crosspolymer.
- 7. The formulation of claim 1, wherein at least a part of the hydroquinone is present in hydroquinone-impregnated porous microparticles.
- 8. The formulation of claim 1, wherein the retinol content of the emulsion is from about 0.0001% to about 10% by weight.

- 9. The formulation of claim 8, wherein the retinol content is from about 0.001% to about 5% by weight.
- 10. The formulation of claim 1, wherein the porous microparticles have a weight average diameter of less than 50 μm .
- 11. The formulation of claim 10, wherein the porous microparticles have a weight average diameter of about 20 µm.
- 12. The formulation of claim 1, wherein the porous microparticles comprise a cross-linked polymer selected from the group consisting of a styrene/divinylbenzene crosspolymer, a vinyl stearate/divinylbenzene crosspolymer, a methyl methacrylate/ethylene glycol dimethacrylate crosspolymer, and a lauryl methacrylate/ethylene glycol dimethacrylate crosspolymer.
- 13. The formulation of claim 12, wherein the porous microparticles comprise a methyl methacrylate/ethylene glycol dimethacrylate crosspolymer.
- 14. The formulation of claim 1, further comprising at least one additional component selected from the group consisting of an antioxidant, a chelating agent, a colorant, a fragrance, and a preservative.
- 15. The use of the formulation of any one of claims 1 to 14 for application to the skin.
- 16. The use of a formulation of any one of claims 1 to 14, for the manufacture of a medicament for simultaneously applying hydroquinone and retinol to the skin.
- 17. The use of claim 16, wherein said composition is for topical use.

18. A process for the preparation of an oil-in-water emulsion formulation containing hydroguinone and retinol, said process comprising separately dispersing one or both of hydroquinone entrapped in micro-agglomerates and hydroquinone-impregnated porous microparticles and retinol-impregnated porous microparticles in an oil-in-water emulsion comprising 10% to 40% by weight oil phase and 60% to 90% by weight water phase.