

US011476927B2

(12) United States Patent Ludwig et al.

(54) COMMUNICATIONS IN A MEDICAL DEVICE SYSTEM WITH TEMPORAL OPTIMIZATION

(71) Applicant: **CARDIAC PACEMAKERS, INC.,** St. Paul, MN (US)

(72) Inventors: Jacob M. Ludwig, Isanti, MN (US);
Michael J. Kane, St. Paul, MN (US);
Brendan E. Koop, Ham Lake, MN
(US); William J. Linder, Golden
Valley, MN (US); Keith R. Maile, New
Brighton, MN (US); Jeffrey E.
Stahmann, Ramsey, MN (US)

(73) Assignee: **CARDIAC PACEMAKERS, INC.**, St. Paul, MN (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 513 days.

(21) Appl. No.: 16/033,852

(22) Filed: Jul. 12, 2018

(65) Prior Publication Data

US 2018/0323865 A1 Nov. 8, 2018

Related U.S. Application Data

(63) Continuation of application No. 15/058,412, filed on Mar. 2, 2016, now Pat. No. 10,050,700.(Continued)

(51) **Int. Cl. H04B** 7/24 (2006.01) **A61N** 1/372 (2006.01)

(Continued)

(10) Patent No.: US 11,476,927 B2

(45) **Date of Patent:** O

Oct. 18, 2022

(52) U.S. Cl.

(Continued)

(58) Field of Classification Search

CPC H04B 7/24; H04B 13/005; A61B 5/0028; A61B 2560/0209; A61N 1/3629;

(Continued)

(56) References Cited

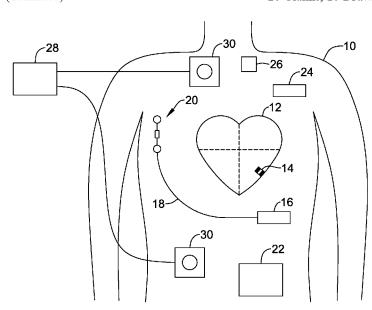
U.S. PATENT DOCUMENTS

3,835,864 A 9/1974 Rasor et al. 3,943,936 A 9/1976 Rasor et al. (Continued)

FOREIGN PATENT DOCUMENTS

AU 2008279789 B2 10/2011 AU 2008329620 B2 5/2014 (Continued)

OTHER PUBLICATIONS


US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn) (Continued)

Primary Examiner — Ankur Jain (74) Attorney, Agent, or Firm — Seager, Tufte & Wickhem LLP

(57) ABSTRACT

Systems and methods for managing communication strategies between implanted medical devices. Methods include temporal optimization relative to one or more identified conditions in the body. A selected characteristic, such as a signal representative or linked to a biological function, is assessed to determine its likely impact on communication capabilities, and one or more communication strategies may be developed to optimize intra-body communication.

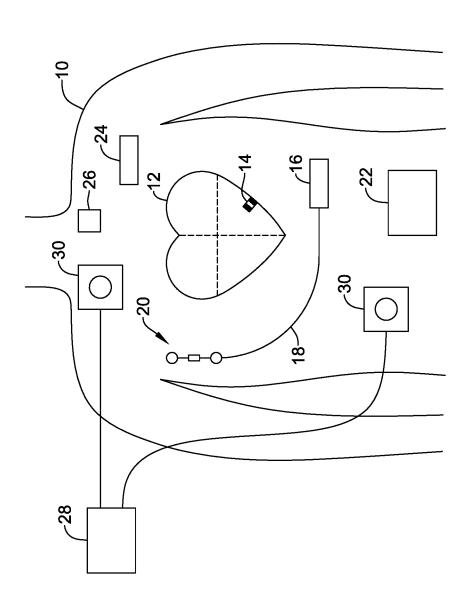
20 Claims, 10 Drawing Sheets

	Relat	ed U.S. A	application Data		5,284,136 5,300,107			Hauck et al. Stokes et al.
(60)		pplication	n No. 62/134,752, filed on Mar	:	5,301,677 5,312,439	A	4/1994 5/1994	Hsung Loeb
	18, 2015.				5,313,953		5/1994 5/1994	Yomtov et al. Swanson et al.
(51)	Int. Cl.				5,314,459 5,318,597		6/1994	
(51)	A61B 5/00		(2006.01)		5,324,316	A	6/1994	Schulman et al.
	H04B 13/00		(2006.01)		5,331,966			Bennett et al.
	A61N 1/362		(2006.01)		5,334,222 5,342,408		8/1994 8/1994	Salo et al. Decoriolis et al.
	H04L 1/12		(2006.01)		5,372,606		12/1994	Lang et al.
(52)	U.S. Cl.				5,376,106			Stahmann et al.
. ,	CPC A	61N 1/37	217 (2013.01); A61N 1/37288	8	5,383,915 5,388,578		1/1995 2/1995	Yomtov et al.
	(20	013.01); <i>E</i>	104B 13/005 (2013.01); H04B	S	5,404,877	A	4/1995	Nolan et al.
			1); A61B 2560/0209 (2013.01))	5,405,367			Schulman et al.
(58)	Field of Cla				5,411,031 5,411,525			Yomtov Swanson et al.
	CPC	. A61N 1	/37217; A61N 1/37288; A61N		5,411,535	A	5/1995	Fujii et al.
	01!4	C1 . C-	1/362; H04L 1/12	2	5,456,691		10/1995	
	See applicati	ion ille io	r complete search history.		5,466,246 5,468,254		11/1995 11/1995	Hahn et al.
(56)		Referen	ces Cited		5,522,866	A	6/1996	Fernald
()					5,540,727 5,545,186			Tockman et al. Olson et al.
	U.S.	PATENT	DOCUMENTS		5,545,202			Dahl et al.
	4,142,530 A	3/1070	Wittkampf		5,591,214	A	1/1997	Lu
	4,151,513 A		Menken et al.		5,620,466 5,634,938		4/1997 6/1997	Haefner et al. Swanson et al.
	4,157,720 A		Greatbatch		5,662,688		9/1997	Haefner et al.
	RE30,366 E 4,250,884 A		Rasor et al. Hartlaub et al.		5,674,259		10/1997	
	4,256,115 A	3/1981			5,683,426 5,683,432		11/1997 11/1997	
	4,263,919 A	4/1981			5,720,770	A	2/1998	Nappholz et al.
	4,310,000 A 4,312,354 A		Lindemans Walters		5,728,154			Crossett et al.
	4,323,081 A	4/1982	Wiebusch		5,741,314 5,741,315			Daly et al. Lee et al.
	4,357,946 A 4,365,639 A		Dutcher et al. Goldreyer		5,752,976	A	5/1998	Duffin et al.
	4,440,173 A		Hudziak et al.		5,752,977 5,755,736			Grevious et al. Gillberg et al.
	4,476,868 A		Thompson		5,759,199			Snell et al.
	4,522,208 A 4,556,063 A	6/1985	Thompson et al.		5,774,501			Halpern et al.
	4,562,841 A		Brockway et al.		5,792,202 5,792,203		8/1998 8/1998	Rueter Schroeppel
	4,593,702 A		Kepski et al.		5,792,205		8/1998	Alt et al.
	4,593,955 A 4,630,611 A	6/1986 12/1986			5,792,208		8/1998	Gray
	4,635,639 A	1/1987	Hakala et al.		5,814,089 5,827,216			Stokes et al. Igo et al.
	4,674,508 A 4,712,554 A	6/1987 12/1987	DeCote Garson		5,836,985	A	11/1998	Goyal et al.
	4,729,376 A		DeCote		5,836,987 5,842,977			Baumann et al. Lesho et al.
	4,754,753 A	7/1988			5,855,593		1/1999	Olson et al.
	4,759,366 A 4,787,389 A	11/1988	Callaghan Tarian		5,873,894		2/1999	Vandegriff et al.
	4,793,353 A	12/1988	Borkan		5,891,184 5,897,586			Lee et al. Molina
	4,819,662 A 4,858,610 A		Heil et al. Callaghan et al.		5,899,876	A	5/1999	Flower
	4,886,064 A		Strandberg		5,899,928 5,919,214		5/1999 7/1999	
	4,928,688 A	5/1990	Mower		5,935,078			Ciciarelli et al. Feierbach
	4,967,746 A 4,987,897 A	11/1990 1/1991	Vandegriff Funke		5,941,906	A	8/1999	Barreras et al.
	4,989,602 A		Sholder et al.		5,954,757 5,978,713		9/1999 11/1999	
	5,012,806 A		De Bellis		5,991,660		11/1999	Goval
	5,036,849 A 5,058,581 A	8/1991 10/1991	Hauck et al. Silvian		5,999,848		12/1999	
	5,078,134 A	1/1992	Heilman et al.		5,999,857 6,026,320		12/1999 2/2000	
	5,109,845 A 5,113,859 A	5/1992 5/1992	Yuuchi et al.		6,044,298	A	3/2000	Salo et al.
	5,117,824 A		Keimel et al.		6,044,300		3/2000	
	5,127,401 A	7/1992	Grevious et al.		6,055,454 6,073,050			Heemels Griffith
	5,133,353 A 5,144,950 A		Hauser Stoop et al.		6,076,016	A	6/2000	Feierbach
	5,170,784 A	12/1992	Ramon et al.		6,080,187			Alt et al.
	5,179,945 A		Van Hofwegen et al.		6,083,248 6,106,551			Thompson Crossett et al.
	5,193,539 A 5,193,540 A		Schulman et al. Schulman et al.		6,115,636		9/2000	
	5,241,961 A	9/1993	Henry		6,141,581	Α	10/2000	Olson et al.
	5,243,977 A 5,269,326 A	9/1993 12/1993	Trabucco et al.		6,141,588 6,141,592		10/2000 10/2000	Cox et al.
	2,202,320 A	14/1223	. 6.11161		0,171,392	2 X	10/2000	1 aury

(56)	Referen	ces Cited		6,704,602		3/2004	Berg et al. Parry et al.
U	.S. PATENT	DOCUMENTS		6,718,212 6,721,597	B1	4/2004	Bardy et al.
6,144,879 A	11/2000	Gray		6,738,670 6,749,566		6/2004	Almendinger et al. Russ
6,162,195 A	12/2000	Igo et al.		6,758,810	B2		Lebel et al.
6,164,284 A	12/2000	Schulman et al.	A CANTA 1/2/72/52	6,763,269 6,778,860		7/2004 8/2004	Cox Ostroff et al.
0,107,310 A	12/2000	Grevious	607/32	6,788,971	B1	9/2004	Sloman et al.
6,208,894 B		Schulman et al.	001752	6,788,974			Bardy et al.
6,211,799 B 6,221,011 B		Post et al.		6,804,558 6,847,844			Haller et al. Sun et al.
6,240,316 B		Richmond et al.		6,871,095	B2	3/2005	Stahmann et al.
6,240,317 B	5/2001	Villaseca et al.		6,878,112 6,885,889			Linberg et al. Chinchoy
6,256,534 B 6,259,947 B		Olson et al.		6,892,094		5/2005	Ousdigian et al.
6,266,558 B	7/2001	Gozani et al.		6,897,788 6,904,315			Khair et al. Panken et al.
6,266,567 B 6,270,457 B		Ishikawa et al.		6,922,592			Thompson et al.
6,272,377 B		Sweeney et al.		6,931,282		8/2005	
6,277,072 B	8/2001	Bardy		6,934,585 6,957,107			Schloss et al. Rogers et al.
6,280,380 B 6,285,907 B		Kramer et al.		6,978,176	B2	12/2005	Lattouf
6,292,698 B	9/2001	Duffin et al.		6,985,773 7,003,350			Von Arx et al. Denker et al.
6,295,473 B 6,298,271 B		Rosar Weijand		7,005,330			Echt et al.
6,312,378 B	11/2001	Bardy		7,013,178			Reinke et al.
6,315,721 B		Schulman et al.		7,027,871 7,050,849			Burnes et al. Echt et al.
6,336,903 B 6,345,202 B	31 1/2002 32 2/2002	Richmond et al.		7,060,031	B2	6/2006	Webb et al.
6,351,667 B	2/2002	Godie		7,063,693 7,082,336		6/2006	Guenst Ransbury et al.
6,351,669 B 6,353,759 B		Hartley et al. Hartley et al.		7,085,606		8/2006	Flach et al.
6,358,203 B	3/2002	Bardy		7,110,824		9/2006 10/2006	Amundson et al.
6,361,780 B		Ley et al.		7,120,504 7,139,613			Reinke et al.
6,368,284 B 6,371,922 B		Baumann et al.		7,142,912	B2	11/2006	Wagner et al.
6,398,728 B	6/2002	Bardy		7,146,225 7,146,226			Guenst et al. Lau et al.
6,400,982 B 6,400,990 B		Sweeney et al. Silvian		7,149,581			Goedeke
6,409,674 B	6/2002	Brockway et al.		7,149,588		12/2006 1/2007	Lau et al.
6,411,848 B 6,424,865 B		Kramer et al.		7,158,839 7,162,307		1/2007	
6,434,429 B		Kraus et al.		7,164,952			Lau et al.
6,438,410 B		Hsu et al.		7,177,700 7,181,505		2/2007 2/2007	Cox Haller A61B 5/0031
6,438,417 B 6,438,421 B		Rockwell et al. Stahmann et al.					709/219
6,440,066 B	8/2002	Bardy		7,184,830 7,186,214		2/2007 3/2007	Echt et al.
6,441,747 B 6,442,426 B		Khair et al. Kroll		7,191,015	B2	3/2007	Lamson et al.
6,442,432 B	8/2002	Lee		7,200,437			Nabutovsky et al.
6,443,891 B 6,445,953 B		Grevious Bulkes et al.		7,200,439 7,206,423			Zdeblick et al. Feng et al.
6,453,200 B				7,209,790	B2	4/2007	Thompson et al.
6,459,929 B	10/2002	Hopper et al.		7,212,871 7,226,440			Morgan Gelfand et al.
6,470,215 B 6,471,645 B		Kraus et al. Warkentin et al.		7,228,183	B2	6/2007	Sun et al.
6,480,745 B	2 11/2002	Nelson et al.		7,236,821 7,236,829	B2		Cates et al. Farazi et al.
6,487,443 B 6,490,487 B		Olson et al. Kraus et al.		7,254,448	B2		Almendinger et al.
6,507,755 B	1/2003	Gozani et al.		7,260,436	B2	8/2007	Kilgore et al.
6,507,759 B		Prutchi et al.		7,270,669 7,272,448		9/2007 9/2007	Sra Morgan et al.
6,512,940 B 6,522,915 B		Brabec et al. Ceballos et al.		7,277,755	B1	10/2007	Falkenberg et al.
6,526,311 B	2/2003	Begemann		7,280,872	B1 *	10/2007	Mosesov A61N 1/37223
6,542,775 B 6,553,258 B		Ding et al. Stahmann et al.		7,288,096	В2	10/2007	128/903 Chin
6,561,975 B	5/2003	Pool et al.		7,289,847	B1	10/2007	Gill et al.
6,564,807 B 6,574,506 B		Schulman et al. Kramer et al.		7,289,852 7,289,853			Helfinstine et al. Campbell et al.
6,584,352 B		Combs et al.		7,289,855	B2	10/2007	Nghiem et al.
6,597,948 B	7/2003	Rockwell et al.		7,302,294 7,305,266		11/2007 12/2007	Kamath et al.
6,597,951 B 6,622,046 B		Kramer et al. Fraley et al.		7,305,266		12/2007	
6,628,985 B	9/2003	Sweeney et al.		7,319,905	В1	1/2008	Morgan et al.
6,647,292 B		Bardy et al.		7,333,853			Mazar et al.
6,666,844 B 6,689,117 B		Igo et al. Sweeney et al.		7,336,994 7,347,819			Hettrick et al. Lebel et al.
6,690,959 B		Thompson		7,366,572			Heruth et al.

(56)			Referen	ces Cited	7,881,798 B2		Miesel et al.
					7,881,810 B1		Chitre et al.
	J	J.S. I	PATENT	DOCUMENTS	7,890,173 B2		Brisken et al.
			_,	_	7,890,181 B2 *	2/2011	Denzene A61N 1/37276
	7,373,207			Lattouf	7,890,192 B1	2/2011	128/903 Kelsch et al.
	7,384,403 7,386,342			Sherman Falkenberg et al.	7,894,894 B2		Stadler et al.
	7,392,090			Sweeney et al.	7,894,907 B2		Cowan et al.
	7,406,105			DelMain et al.	7,894,910 B2		Cowan et al.
	7,406,349			Seeberger et al.	7,894,915 B1	2/2011	Chitre et al.
	7,410,497		8/2008	Hastings et al.	7,899,537 B1		Kroll et al.
	7,425,200	B2	9/2008	Brockway et al.	7,899,541 B2		Cowan et al.
	7,433,739			Salys et al.	7,899,542 B2		Cowan et al.
	7,496,409			Greenhut et al.	7,899,554 B2 7,901,360 B1		Williams et al. Yang et al.
	7,496,410 7,502,652		2/2009	Gaunt et al.	7,904,170 B2		Harding
	7,502,032			Malick et al.	7,907,993 B2		Ghanem et al.
	7,515,969			Tockman et al.	7,920,928 B1	4/2011	Yang et al.
	7,526,342			Chin et al.	7,925,343 B1		Min et al.
	7,529,589			Williams et al.	7,930,040 B1		Kelsch et al.
	7,532,933			Hastings et al.	7,937,135 B2		Ghanem et al.
	7,536,222			Bardy et al.	7,937,148 B2 7,937,161 B2		Jacobson Hastings et al.
	7,539,541 7,544,197			Quiles et al. Kelsch et al.	7,941,214 B2		Kleckner et al.
	7,558,631			Cowan et al.	7,945,333 B2		Jacobson
	7,565,195			Kroll et al.	7,946,997 B2		Hübinette
	7,584,002			Burnes et al.	7,949,404 B2	5/2011	Hill
	7,590,455		9/2009	Heruth et al.	7,949,405 B2	5/2011	
	7,606,621			Brisker et al.	7,953,493 B2		Fowler et al.
	7,610,088		10/2009	Chinchoy	7,962,202 B2		Bhunia
	7,610,092	B2 *	10/2009	Cowan A61N 1/37205	7,974,702 B1 7,979,136 B2		Fain et al. Young et al.
	7.610.000	D2	10/2000	607/33	7,983,753 B2		Severin
	7,610,099 7,610,104			Almendinger et al. Kaplar et al.	7,991,467 B2*		Markowitz A61N 1/025
	7,616,991			Mann et al.	.,,		607/14
	7,617,001			Penner et al.	7,991,471 B2	8/2011	Ghanem et al.
	7,617,007			Williams et al.	7,996,087 B2		Cowan et al.
	7,630,767	В1		Poore et al.	8,000,791 B2		Sunagawa et al.
	7,634,313			Kroll et al.	8,000,807 B2		Morris et al.
	7,637,867			Zdeblick	8,001,975 B2		DiSilvestro et al.
	7,640,060			Zdeblick	8,002,700 B2*	8/2011	Ferek-Petric A61M 5/14 600/300
	7,647,109 7,650,186			Hastings et al. Hastings et al.	8,010,209 B2	8/2011	Jacobson
	7,657,311			Bardy et al.	8,019,419 B1		Panescu et al.
	7,668,596			Von Arx et al.	8,019,434 B2		Quiles et al.
	7,691,047			Ferrari	8,027,727 B2	9/2011	Freeberg
	7,702,392	B2		Echt et al.	8,027,729 B2		Sunagawa et al.
	7,713,194			Zdeblick	8,032,219 B2		Neumann et al.
	7,713,195			Zdeblick	8,036,743 B2		Savage et al.
	7,729,783 7,734,333	B2 D2		Michels et al. Ghanem et al.	8,046,079 B2 8,046,080 B2		Bange et al. Von Arx et al.
	7,734,333			Ransbury et al.	8,050,297 B2		Delmain et al.
	7,738,958			Zdeblick et al.	8,050,759 B2		Stegemann et al.
	7,738,964		6/2010	Von Arx A61N 1/08	8,050,774 B2		Kveen et al.
	, ,			607/60	8,055,345 B2	11/2011	Li et al.
	7,742,812			Ghanem et al.	8,055,350 B2		Roberts
	7,742,816			Masoud et al.	8,060,212 B1 8,065,018 B2		Rios et al. Haubrich et al.
	7,742,822			Masoud et al.	8,073,542 B2	12/2011	
	7,743,151 7,747,335	B2		Vallapureddy et al. Williams	8,078,278 B2	12/2011	
	7,751,881			Cowan et al.	8,078,283 B2		Cowan et al.
	7,758,521			Morris et al.	8,095,123 B2	1/2012	
	7,761,150			Ghanem et al.	8,102,789 B2	1/2012	Rosar et al.
	7,761,164	B2	7/2010	Verhoef et al.	8,103,359 B2		Reddy
	7,765,001			Echt et al.	8,103,361 B2		Moser
	7,769,452			Ghanem et al.	8,112,148 B2		Giftakis et al. Robertson et al.
	7,792,588			Harding	8,114,021 B2 8,121,680 B2		Falkenberg et al.
	7,797,059 7,801,596			Bornzin et al. Fischell et al.	8,123,684 B2		Zdeblick
	7,801,396			Echt et al.	8,126,545 B2		Flach et al.
	7,840,281			Kveen et al.	8,131,334 B2		Lu et al.
	7,844,348			Swoyer et al.	8,140,161 B2	3/2012	Willerton et al.
	7,846,088		12/2010		8,150,521 B2		Crowley et al.
	7,848,815			Brisken et al.	8,160,672 B2		Kim et al.
	7,848,823			Drasler et al.	8,160,702 B2		Mann et al.
	7,860,455			Fukumoto et al.	8,160,704 B2		Freeberg
	7,871,433			Lattouf	8,160,711 B2*	4/2012	Tehrani A61N 1/3601
	7,877,136 7,877,142			Moffitt et al. Moaddeb et al.	8,165,694 B2	4/2012	607/42 Carbanaru et al.
	1,011,144	. ⊅∠	1/2011	Modules et al.	0,100,09 7 D Z	7/2012	Caroanaru et at.

(56) Referen	nces Cited	8,634,908 B2 8,634,912 B2		Cowan Bornzin et al.
U.S. PATENT	DOCUMENTS	8,634,919 B1	1/2014	Hou et al.
8,175,715 B1 5/2012	Cox	8,639,335 B2 8,644,934 B2*		Peichel et al. Hastings A61N 1/372
8,180,451 B2 5/2012	Hickman et al.	0.640.050 D2		607/32
	Kveen et al. Li et al.	8,649,859 B2 8,670,842 B1		Smith et al. Bornzin et al.
8,204,595 B2 6/2012	Pianca et al.	8,676,319 B2	3/2014	Knoll
	Hastings et al. Doerr	8,676,335 B2 8,700,173 B2		Katoozi et al. Edlund
	Matos	8,700,181 B2	4/2014	Bornzin et al.
	Kim et al. Bulkes et al.	8,705,599 B2 8,718,773 B2		dal Molin et al. Willis et al.
	Liu et al.	8,738,147 B2	5/2014	Hastings et al.
	Mass et al. Haubrich et al.	8,744,572 B1*	6/2014	Greenhut
	Utsi et al.	8,747,314 B2	6/2014	Stahmann et al.
8,290,589 B2 10/2012	Bange et al.	8,755,884 B2 8,758,365 B2		Demmer et al. Bonner et al.
	Boon et al. Hastings et al.	8,774,572 B2		Hamamoto
	Jacobson	8,781,605 B2 8,788,035 B2		Bornzin et al. Jacobson
	Mosesov et al. Cowan et al.	8,788,053 B2 8,788,053 B2		Jacobson
8,315,708 B2 11/2012	Berthelsdorf et al.	8,798,740 B2		Samade et al.
	Kisker et al. Brockway et al.	8,798,745 B2 8,798,762 B2		Jacobson Fain et al.
8,332,036 B2 12/2012	Hastings et al.	8,798,770 B2	8/2014	Reddy
	Stessman Heruth et al.	8,805,505 B1 8,805,528 B2		Roberts Corndorf
8,340,750 B2 12/2012	Prakash et al.	8,812,109 B2	8/2014	Blomqvist et al.
	Hastings et al. Jacobson	8,818,504 B2 8,831,747 B1		Bodner et al. Min et al.
8,352,028 B2 1/2013	Wenger	8,855,789 B2	10/2014	Jacobson
	Mao et al. Lund et al.	8,868,186 B2 8,886,339 B2	10/2014 11/2014	Kroll Faltys et al.
8,364,276 B2 1/2013	Willis	8,903,500 B2	12/2014	Smith et al.
	Meskens Abrahamson		12/2014	Ollivier Bornzin et al.
8,380,320 B2 2/2013	Spital	8,923,795 B2	12/2014	Makdissi et al.
8,386,051 B2 2/2013 8,391,981 B2 3/2013	Rys Mosesov	8,923,963 B2 8,938,300 B2		Bonner et al. Rosero
	Smith et al.	8,942,806 B2	1/2015	Sheldon et al.
	Liu et al. Gaunt et al.	8,954,030 B1 8,958,892 B2		Buchheit Khairkhahan et al.
	Griswold et al.	8,977,358 B2	3/2015	Ewert et al.
8,417,340 B2 4/2013	Goossen Freeberg	8,989,873 B2 8,996,109 B2	3/2015	Locsin Karst et al.
	Hennig	9,002,467 B2	4/2015	Smith et al.
	Verhoef et al. Ruben et al.	9,008,776 B2 9,008,777 B2		Cowan et al. Dianaty et al.
8,433,409 B2 4/2013	Johnson et al.	9,014,818 B2	4/2015	Deterre et al.
	Bange et al.	9,017,341 B2 9,020,611 B2		Bornzin et al. Khairkhahan et al.
8,452,413 B2 5/2013	Dal Molin et al. Young et al.	9,037,262 B2		Regnier et al.
	Osche	9,042,984 B2 9,072,911 B2		Demmer et al. Hastings et al.
	Jacobson Wariar	9,072,913 B2	7/2015	Jacobson
	Demmer et al.		10/2015 10/2015	Grubac et al.
	Hastings et al. Griswold et al.			Greenhut et al.
	Bonner et al.			Jacobson et al. Moore et al.
	Sowder et al. Roberts et al.			Jacobson
8,527,068 B2 9/2013	Ostroff			Khairkhahan et al.
	Griswold Lund et al.			Boling et al. Berthiaume et al.
8,543,205 B2 9/2013	Ostroff	9,216,298 B2		Jacobson
	Zdeblick et al. Ollivier	9,227,077 B2 9,238,144 B2		Jacobson Greene et al.
8,554,333 B2 10/2013	Wu et al.	9,238,145 B2	1/2016	Wenzel et al.
8,565,882 B2 10/2013 8,565,897 B2 10/2013	Matos Regnier et al.	9,242,102 B2 9,242,113 B2		Khairkhahan et al. Smith et al.
8,571,678 B2 10/2013	Wang	9,248,300 B2	2/2016	Rys et al.
	Makdissi et al. Moore et al.	9,265,436 B2 9,265,962 B2		Min et al. Dianaty et al.
	Faltys et al.	9,278,218 B2	3/2016	Karst et al.
8,615,310 B2 12/2013	Khairkhahan et al.	9,278,229 B1*		Reinke A61N 1/3937
8,626,294 B2 1/2014	Sheldon et al.	9,283,381 B2	3/2016	Grubac et al.

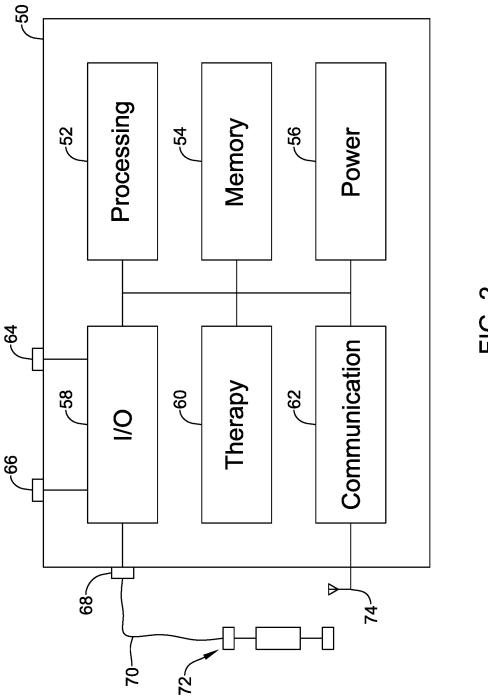
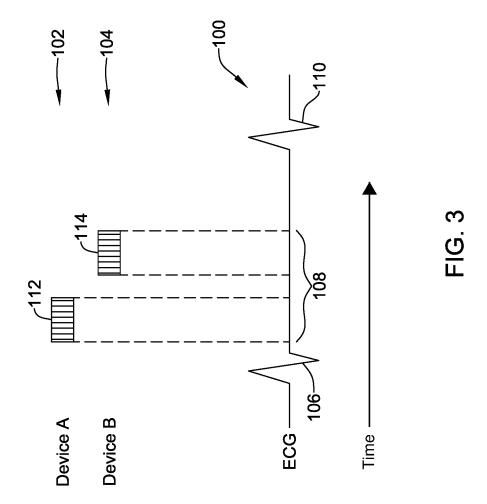
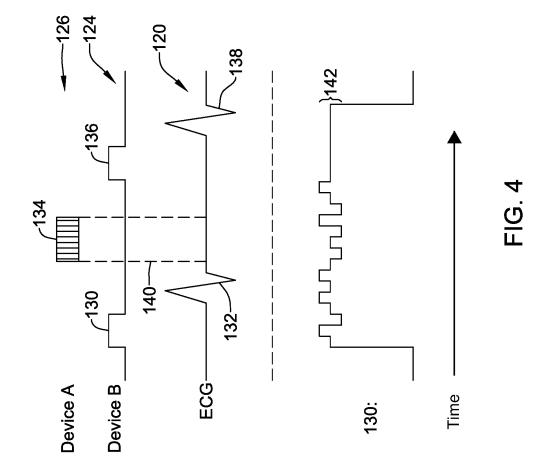
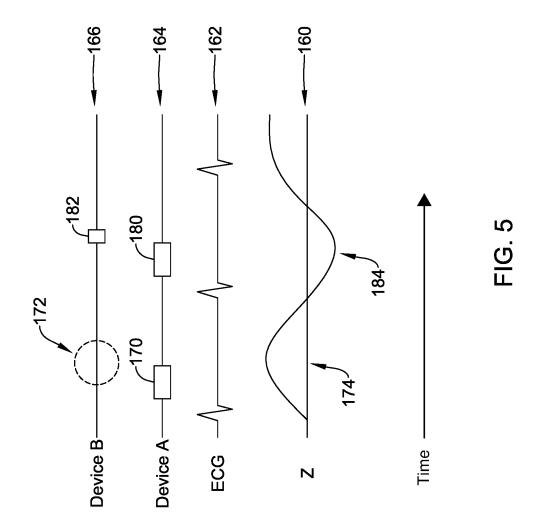
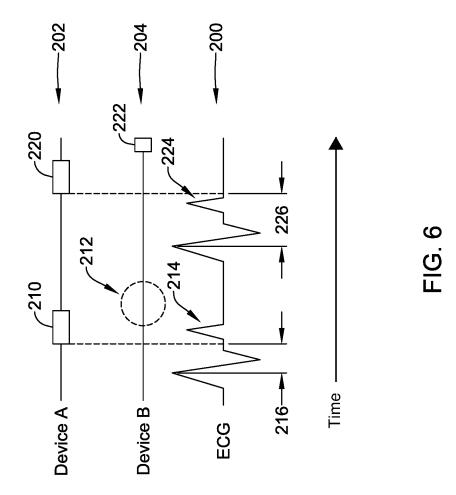

(56)	Referen	nces Cited	2004/0267303 A1	12/2004	
U.S.	PATENT	DOCUMENTS	2005/0061320 A1 2005/0070962 A1	3/2005	Lee et al. Echt et al.
0.202.202.D2	2/2016	Doublesses at al	2005/0102003 A1 2005/0149138 A1		Grabek et al. Min et al.
9,283,382 B2 9,289,612 B1		Berthiaume et al. Sambelashvili et al.	2005/0165466 A1		Morris et al.
9,302,115 B2	4/2016	Molin et al.	2005/0182465 A1	8/2005	
9,333,364 B2		Echt et al.	2005/0203410 A1 2005/0283208 A1		Jenkins Von Arx et al.
9,370,663 B2 9,375,580 B2		Moulder Bonner et al.	2006/0040707 A1		Kish et al.
9,375,581 B2		Baru et al.	2006/0052829 A1		Sun et al.
9,656,091 B2		Huelskamp et al.	2006/0052830 A1 2006/0064135 A1		Spinelli et al. Brockway
9,724,522 B2 9,853,743 B2		Stahmann et al. Schmidt et al.	2006/0064149 A1		Belacazar et al.
2002/0032470 A1		Linberg	2006/0085039 A1		Hastings et al.
2002/0035376 A1		Bardy et al.	2006/0085041 A1 2006/0085042 A1		Hastings et al. Hastings et al.
2002/0035377 A1 2002/0035378 A1		Bardy et al. Bardy et al.	2006/0095078 A1		Tronnes
2002/0035376 A1		Rissmann et al.	2006/0106442 A1		Richardson et al.
2002/0035381 A1		Bardy et al.	2006/0116744 A1*	6/2006	Von Arx A61N 1/08 607/60
2002/0042629 A1 2002/0042630 A1		Bardy et al. Bardy et al.	2006/0116746 A1	6/2006	
2002/0042634 A1	4/2002	Bardy et al.	2006/0135999 A1	6/2006	Bodner et al.
2002/0042636 A1*	4/2002	Koshiol A61N 1/37211	2006/0136004 A1		Cowan et al. Echt et al.
2002/0049475 A1	4/2002	607/59	2006/0161061 A1 2006/0200002 A1	9/2006	
2002/0049473 A1 2002/0052636 A1		Bardy et al. Bardy et al.	2006/0206151 A1	9/2006	
2002/0068958 A1	6/2002	Bardy et al.	2006/0212079 A1 2006/0241701 A1*		Routh et al. Markowitz A61N 1/025
2002/0072773 A1 2002/0082665 A1*		Bardy et al. Haller A61N 1/37264	2000/0241/01 A1	10/2000	607/5
2002/0082003 AT	0/2002	607/60	2006/0241705 A1		Neumann et al.
2002/0091414 A1		Bardy et al.	2006/0247672 A1		Vidlund et al.
2002/0095196 A1 2002/0099423 A1		Linberg Berg et al.	2006/0259088 A1 2006/0265018 A1		Pastore et al. Smith et al.
2002/0099423 A1 2002/0103510 A1		Bardy et al.	2007/0004979 A1	1/2007	Wojciechowicz et al.
2002/0107545 A1	8/2002	Rissmann et al.	2007/0027508 A1		Cowan
2002/0107546 A1 2002/0107547 A1		Ostroff et al. Erlinger et al.	2007/0049992 A1 2007/0078490 A1		Freeberg Cowan et al.
2002/0107547 A1 2002/0107548 A1		Bardy et al.	2007/0088394 A1		Jacobson
2002/0107549 A1		Bardy et al.	2007/0088396 A1 2007/0088397 A1		Jacobson Jacobson
2002/0107559 A1 2002/0120299 A1		Sanders et al. Ostroff et al.	2007/0088397 A1 2007/0088398 A1		Jacobson
2002/0173830 A1	11/2002	Starkweather et al.	2007/0088405 A1		Jacobson
2002/0193846 A1 2003/0009203 A1		Pool et al. Lebel et al.	2007/0135882 A1 2007/0135883 A1		Drasler et al. Drasler et al.
2003/0009203 A1 2003/0028082 A1		Thompson	2007/0150037 A1	6/2007	Hastings et al.
2003/0041866 A1	3/2003	Linberg et al.	2007/0150038 A1 2007/0156190 A1	6/2007 7/2007	Hastings et al.
2003/0088278 A1 2003/0097153 A1		Bardy et al. Bardy et al.	2007/0130190 A1 2007/0219525 A1	9/2007	Gelfand et al.
2003/003/133 A1 2003/0114908 A1	6/2003		2007/0219590 A1		Hastings et al.
2003/0144701 A1		Mehra et al.	2007/0225545 A1 2007/0233206 A1	9/2007	Ferrari Frikart et al.
2003/0187460 A1 2003/0187461 A1	10/2003	Chin et al.	2007/0239244 A1		Morgan et al.
2004/0024435 A1		Leckrone et al.	2007/0255330 A1	11/2007	Lee et al.
2004/0034284 A1*	2/2004	Aversano A61B 5/0006	2007/0255376 A1 2007/0276444 A1		Michels et al. Gelbart et al.
2004/0087938 A1	5/2004	600/300 Leckrone et al.	2007/0293900 A1		Sheldon et al.
2004/0087938 A1 2004/0088035 A1		Guenst et al.	2007/0293904 A1		Gelbart et al.
2004/0102830 A1		Williams	2008/0004663 A1 2008/0021505 A1		Jorgenson Hastings et al.
2004/0127959 A1 2004/0147969 A1		Amundson et al. Mann et al.	2008/0021519 A1		De Geest et al.
2004/0147973 A1		Hauser	2008/0021532 A1		Kveen et al.
2004/0167558 A1		Igo et al.	2008/0065185 A1 2008/0071318 A1		Worley Brooke et al.
2004/0167587 A1 2004/0172071 A1		Thompson Bardy et al.	2008/0109054 A1	5/2008	Hastings et al.
2004/0172077 A1	9/2004	Chinchoy	2008/0119911 A1 2008/0130670 A1		Rosero Kim et al.
2004/0172104 A1 2004/0176817 A1		Berg et al. Wahlstrand et al.	2008/0150070 A1 2008/0154322 A1		Jackson et al.
2004/0176817 A1 2004/0176818 A1		Wahlstrand et al.	2008/0177194 A1		Zhang et al.
2004/0176830 A1	9/2004	Fang	2008/0228234 A1 2008/0234771 A1		Stancer Chinchoy et al.
2004/0186529 A1 2004/0204673 A1		Bardy et al. Flaherty	2008/02347/1 A1 2008/0243217 A1	10/2008	
2004/0210292 A1		Bardy et al.	2008/0269814 A1	10/2008	
2004/0210293 A1	10/2004	Bardy et al.	2008/0269825 A1		Chinchoy et al.
2004/0210294 A1 2004/0215308 A1		Bardy et al. Bardy et al.	2008/0275518 A1 2008/0275519 A1		Ghanem et al. Ghanem et al.
2004/0213308 A1 2004/0220626 A1		Wagner	2008/0288039 A1	11/2008	
2004/0220639 A1	11/2004	Mulligan et al.	2008/0294208 A1		Willis et al.
2004/0249431 A1	12/2004	Ransbury et al.	2008/0294210 A1	11/2008	Kosero

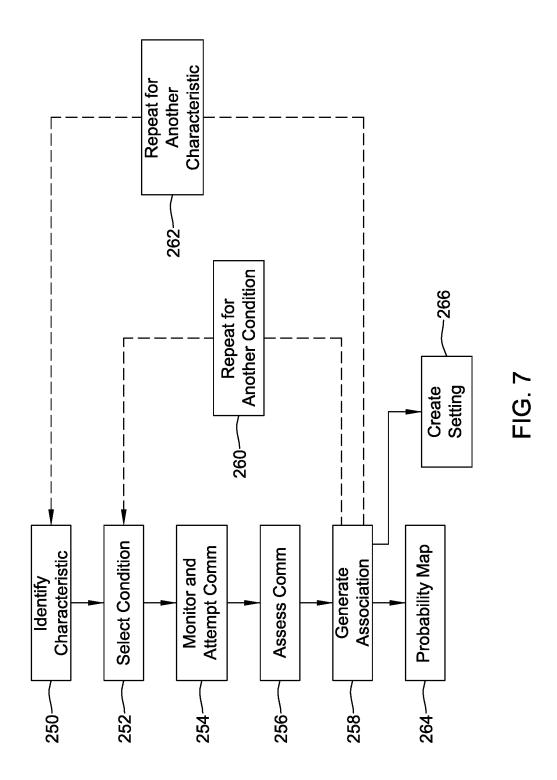
(56)	Referen	nces Cited		2011/0270340		11/2011 11/2011	Pellegrini et al.
U.S.	PATENT	DOCUMENTS		2011/0276102 2011/0282423 2011/0313493	A1	11/2011	Jacobson Keenan et al.
2008/0306359 A1	12/2009	Zdeblick et al.		2012/0004527			Thompson et al.
2009/0018599 A1*		Hastings	A61N 1/372	2012/0029323		2/2012	
2009/0010399 711	1/2003	indstings	607/32	2012/0041508			Rousso et al.
2009/0024180 A1	1/2009	Kisker et al.		2012/0059433			Cowan et al.
2009/0036941 A1		Corbucci		2012/0059436 2012/0078322			Fontaine et al. Dal Molin et al.
2009/0048646 A1		Katoozi et al.		2012/00/8322		4/2012	
2009/0062895 A1 2009/0082827 A1		Stahmann et al. Kveen et al.		2012/0093245			Makdissi et al.
2009/0082828 A1		Ostroff		2012/0095521		4/2012	
2009/0088813 A1		Brockway et al.		2012/0095539 2012/0101540			Khairkhahan et al.
2009/0131907 A1		Chin et al.		2012/0101540		4/2012	O'Brien et al.
2009/0135886 A1 2009/0143835 A1		Robertson et al. Pastore et al.		2012/0101333			Bonner et al.
2009/0143833 A1 2009/0171408 A1		Solem		2012/0109149	A1		Bonner et al.
2009/0171414 A1		Kelly et al.		2012/0109236			Jacobson et al.
2009/0204170 A1		Hastings et al.		2012/0109259 2012/0109260			Bond et al. Stancer et al.
2009/0210024 A1	8/2009			2012/0109200			Khairkhahan et al.
2009/0216292 A1 2009/0234407 A1		Pless et al. Hastings et al.		2012/0150251			Giftakis et al.
2009/0234411 A1		Sambelashvili et al.		2012/0158111			Khairkhahan et al.
2009/0275998 A1		Burnes et al.		2012/0165827			Khairkhahan et al.
2009/0275999 A1		Burnes et al.		2012/0172690 2012/0172891		7/2012	Anderson et al.
2009/0299447 A1		Jensen et al.		2012/0172892			Grubac et al.
2010/0013668 A1 2010/0016911 A1		Kantervik Willis et al.		2012/0172942		7/2012	
2010/0023085 A1		Wu et al.		2012/0197350			Roberts et al.
2010/0030061 A1		Canfield et al.		2012/0197373			Khairkhahan et al.
2010/0030327 A1		Chatel		2012/0215285 2012/0232565			Tahmasian et al. Kveen et al.
2010/0042108 A1		Hibino		2012/0232303			Greenhut
2010/0056871 A1 2010/0063375 A1		Govari et al. Kassab et al.		2012/0277606		11/2012	Ellingson et al.
2010/0063562 A1		Cowan et al.		2012/0283795			Stancer et al.
2010/0094367 A1	4/2010			2012/0283807			Deterre et al.
2010/0114209 A1		Krause et al.		2012/0290025 2012/0296381		11/2012 11/2012	
2010/0125281 A1		Jacobson et al. Kassab et al.		2012/0290301			Dong et al.
2010/0168761 A1 2010/0168819 A1		Freeberg		2012/0316613			Keefe et al.
2010/0198288 A1		Ostroff		2013/0012151			Hankins
2010/0198304 A1	8/2010	Wang		2013/0023975 2013/0035748		1/2013	Locsin Bonner et al.
2010/0217367 A1		Belson		2013/0033748			Jacobson
2010/0228308 A1 2010/0234924 A1		Cowan et al. Willis		2013/0053908			Smith et al.
2010/0234924 A1 2010/0241185 A1		Mahapatra et al.		2013/0053915			Holmstrom et al.
2010/0249729 A1		Morris et al.		2013/0053921			Bonner et al.
2010/0286744 A1		Echt et al.		2013/0066169 2013/0072770			Rys et al. Rao et al.
2010/0312309 A1 2011/0022113 A1*		Harding Zdeblick	A 6 1 D 5/0402	2013/0072778			Tran et al.
2011/0022113 A1	1/2011	Zdeblick	607/30	2013/0079861		3/2013	Reinert et al.
2011/0071586 A1	3/2011	Jacobson	007750	2013/0085350			Schugt et al.
2011/0077708 A1		Ostroff		2013/0085403 2013/0085550			Gunderson et al. Polefko et al.
2011/0112600 A1		Cowan et al.		2013/0085530			Martin et al.
2011/0118588 A1 2011/0118810 A1		Komblau et al. Cowan et al.		2013/0103047		4/2013	Steingisser et al.
2011/0118810 A1 2011/0137187 A1		Yang et al.		2013/0103109			Jacobson
2011/0144720 A1		Cowan et al.		2013/0110008 2013/0110127			Bourget et al. Bornzin et al.
2011/0152970 A1		Jollota et al.		2013/0110127			Tran et al.
2011/0160565 A1 2011/0160602 A1*		Stubbs et al. Stubbs	A61D 5/062	2013/0110219			Bornzin et al.
2011/0100002 A1	0/2011	Stubbs	600/509	2013/0116529			Min et al.
2011/0160801 A1*	6/2011	Markowitz		2013/0116738			Samade et al.
			607/60	2013/0116740 2013/0116741			Bornzin et al. Bornzin et al.
2011/0160806 A1		Lyden et al.		2013/0110741			Bornzin et al.
2011/0166620 A1		Cowan et al.		2013/0123875			Varady et al.
2011/0166621 A1 2011/0184491 A1	7/2011	Cowan et al. Kivi		2013/0131591			Berthiaume et al.
2011/0190835 A1		Brockway et al.		2013/0131693			Berthiaume et al.
2011/0208260 A1	8/2011	Jacobson		2013/0138006 2013/0150695			Bornzin et al. Biela et al.
2011/0218587 A1		Jacobson		2013/0196703			Masoud et al.
2011/0230734 A1 2011/0237967 A1		Fain et al. Moore et al.		2013/0197609			Moore et al.
2011/0237907 A1 2011/0245890 A1		Brisben et al.		2013/0231710		9/2013	Jacobson
2011/0251660 A1	10/2011	Griswold		2013/0234861			Abrahamson
2011/0251662 A1		Griswold et al.		2013/0238072			Deterre et al.
2011/0270099 A1		Ruben et al.		2013/0238073 2013/0253342			Makdissi et al. Griswold et al.
2011/0270339 A1	11/2011	Murray, III et al.		2013/0233342	AI	9/2013	onsword et al.

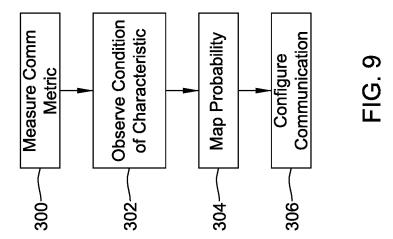
(56)	Referen	ces Cited	2015/005168			Schmidt et al.
U.S.	PATENT	DOCUMENTS	2015/005752 2015/005755	8 A1	2/2015	Foster et al. Stahmann et al.
			2015/005772 2015/008815			Stahmann et al. Stahmann et al.
2013/0253343 A1		Waldhauser et al.	2015/000813			Bonner et al.
2013/0253344 A1 2013/0253345 A1		Griswold et al. Griswold et al.	2015/017361			Takano A61B 5/681
2013/0253346 A1		Griswold et al.				600/301
2013/0253347 A1	9/2013	Griswold et al.	2015/017361	5 A1*	6/2015	Nagasaki A61B 5/002
2013/0261497 A1		Pertijs et al.			- (a.o	600/301
2013/0265144 A1		Banna et al. Trier A61N 1/37229	2015/017365 2015/018054			Demmer et al. Nagasaki H04L 47/34
2013/0268028 A1*	10/2013	607/60	2015/018054	9 A1	0/2013	340/10.51
2013/0268042 A1	10/2013	Hastings et al.	2015/019063	8 A1	7/2015	
2013/0274828 A1	10/2013	Willis	2015/019675			Stahmann et al.
2013/0274847 A1	10/2013		2015/019675			Stahmann et al.
2013/0282070 A1		Cowan et al. Cowan et al.	2015/019675 2015/019676			Stahmann et al. Stahmann et al.
2013/0282073 A1 2013/0296959 A1*		Milbocker A61N 1/36592	2015/019070			Nikolski et al.
2013/0250535 111	11/2013	607/17	2015/022189			Chi et al.
2013/0303872 A1	11/2013	Taff et al.	2015/022431			Stahmann
2013/0324825 A1		Ostroff et al.	2015/022432			Stahmann
2013/0325081 A1		Karst et al.	2015/025834 2015/029046			Smith et al.
2013/0345770 A1		Dianaty et al. Tanaka B25J 9/0006	2015/029040		10/2015	Greenhut et al.
2014/0012164 A1*	1/2014	601/35	2015/029790		10/2015	
2014/0012344 A1	1/2014	Hastings et al.	2015/030563			Greenhut et al.
2014/0018876 A1		Ostroff	2015/030563		10/2015	
2014/0018877 A1		Demmer et al.	2015/030563			Greenhut et al.
2014/0031836 A1		Ollivier	2015/030564 2015/030564			Reinke et al. Stadler et al.
2014/0039570 A1		Carroll et al. Drasler et al.	2015/030564			Reinke et al.
2014/0039591 A1 2014/0043146 A1		Makdissi et al.	2015/030637			Seifert et al.
2014/0046395 A1		Regnier et al.	2015/030637			Marshall et al.
2014/0046420 A1		Moore et al.	2015/030640			Crutchfield et al.
2014/0058240 A1		Mothilal et al.	2015/030640 2015/030640			Crutchfield et al. Greenhut et al.
2014/0058494 A1	2/2014	Ostroff et al. Khairkhahan et al.	2015/032101			O'Brien et al.
2014/0074114 A1 2014/0074186 A1		Faltys et al.	2015/032845			Chin et al.
2014/0094891 A1		Pare et al.	2016/001532		1/2016	Anderson et al.
2014/0100627 A1	4/2014	Min	2016/002300	0 A1	1/2016	Cho et al.
2014/0107723 A1		Hou et al.	2016/003075			Jacobson
2014/0121719 A1 2014/0121720 A1		Bonner et al. Bonner et al.	2016/003874 2016/005902			Stahmann et al. Stahmann A61N 1/37217
2014/0121722 A1		Sheldon et al.	2010/003902	2 A1	3/2010	607/60
2014/0128935 A1		Kumar et al.	2016/012112	7 A1	5/2016	Klimovitch et al.
2014/0135865 A1		Hastings et al.	2016/012112	8 A1		Fishler et al.
2014/0142648 A1 2014/0148675 A1		Smith et al. Nordstrom et al.	2016/012112			Persson et al.
2014/0148815 A1		Wenzel et al.	2017/000712			Kaib A61B 5/0022
2014/0155950 A1	6/2014	Hastings et al.	2017/021661 2017/028196		8/2017 10/2017	
2014/0169162 A1		Romano et al.	2018/018566			Eddy A61B 5/686
2014/0172060 A1 2014/0180306 A1		Bornzin et al. Grubac et al.	2010/010300	0 111	772010	Budy 1101B 5/000
2014/0180366 A1		Edlund	F	OREIG	N PATE	NT DOCUMENTS
2014/0207149 A1		Hastings et al.				
2014/0207210 A1		Willis et al.		2014203		7/2014
2014/0214104 A1*	//2014	Greenhut A61N 1/37288 607/4	CA CN	202933	904 A1	1/1977 5/2013
2014/0222098 A1	8/2014	Baru et al.	EP		611 A1	4/1990
2014/0222109 A1	8/2014	Moulder	EP		823 A2	9/1992
2014/0228913 A1		Molin et al.	EP		648 A2	9/2006
2014/0236172 A1		Hastings et al.	EP EP		166 B1 675 B1	6/2011 1/2013
2014/0243848 A1 2014/0257324 A1	9/2014	Auricchio et al.	EP		491 B1	1/2013
2014/0276929 A1		Foster et al.	EP		721 B1	11/2013
2014/0303704 A1		Suwito et al.	EP		296 B1	1/2014
2014/0309706 A1		Jacobson	EP		113 A3	1/2014
2014/0379041 A1 2015/0025612 A1	1/2014	Foster Haasl et al.	EP EP		452 B1 200 A1	12/2014 12/2014
2015/0025012 A1 2015/0039041 A1		Smith et al.	EP		541 B1	5/2016
2015/0051609 A1	2/2015	Schmidt et al.	EP	2833	966 B1	5/2016
2015/0051610 A1		Schmidt et al.		2000051		2/2000
2015/0051611 A1 2015/0051612 A1	2/2015	Schmidt et al. Schmidt et al.		2002502 2004512		1/2002 4/2004
2015/0051612 A1 2015/0051613 A1		Schmidt et al.		200 4 312 2005508		3/2005
2015/0051614 A1	2/2015	Schmidt et al.	JP	2005245	215 A	9/2005
2015/0051615 A1		Schmidt et al.		2008540		11/2008
2015/0051616 A1	2/2013	Haasl et al.	JP	3199	867 B2	2/2013

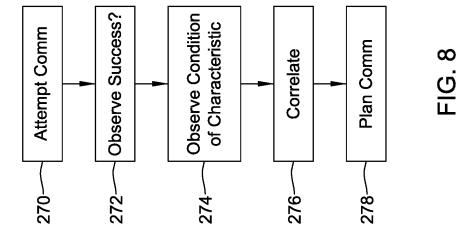
WO 9500202 A1 1/1995 Intra-Body Communication De	at and Performance Analysis of an vice," The 12th International Con-
WO 9826840 A1 6/1998 4A1.3, pp. 1722-1725, 2003. WO 9939767 A1 8/1999 Seyedi et al., "A Survey on In WO WO 0234330 A2 1/2003 Area Network Application," WO 02098282 A2 5/2003 Engineering,vol. 60(8): 2067-2 WO 2005000206 A3 4/2005 Wegmüller, "Intra-Body Com Wegmüller, "Intra-Body Com Networks," Diss. ETH, No. 17 WO 2006086435 A3 8/2006 Networks," Diss. ETH, No. 17 WO 2006113659 A1 10/2006 Spickler et al., "Totally Self-Com Networks," Diss. 2007 WO 2006124833 A3 5/2007 Journal of Electrocardiology, Networks," Diss. 2007 WO 20070755974 A2 7/2007 "Instructions for Use System 1.	nunication for Biomedical Sensor 323, 1-173, 2007. ontained Intracardiac Pacemaker,"

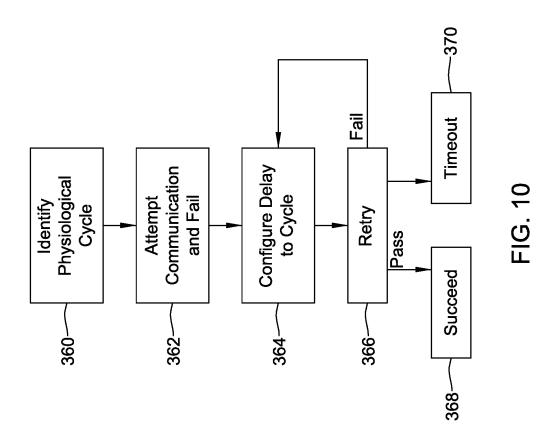
<u>.</u>

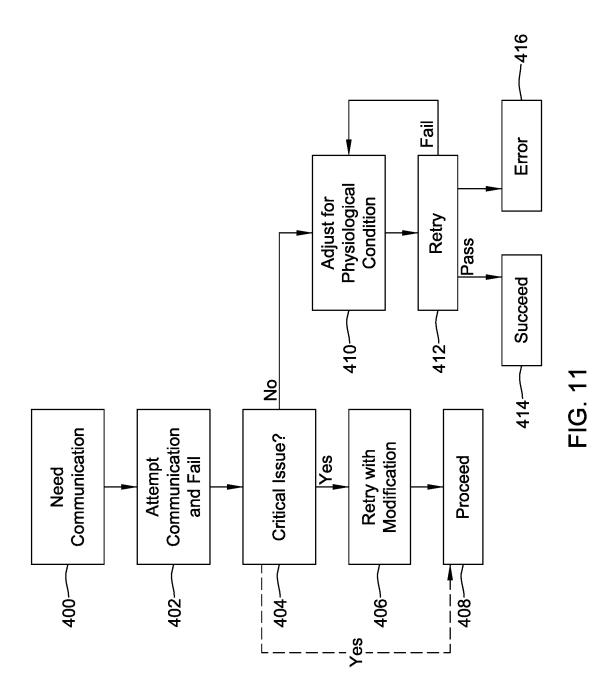







FIG. 2









COMMUNICATIONS IN A MEDICAL DEVICE SYSTEM WITH TEMPORAL OPTIMIZATION

CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/058,412, filed Mar. 2, 2016, which claims the benefit of and priority to U.S. Provisional Patent Application No. 62/134,752, filed Mar. 18, 2015, titled COMMUNICATIONS IN A MEDICAL DEVICE SYSTEM WITH TEMPORAL OPTIMIZATION, the disclosures of which are incorporated herein by reference.

TECHNICAL FIELD

The present disclosure generally relates to medical devices, and more particularly to communications between medical devices in a multi-device system.

BACKGROUND

Various active implantable devices are available or in development for treating and/or diagnosing numerous ail- 25 ments. Some examples include cardiac assist devices, pacemakers, defibrillators, cardiac monitors, neurostimulation and neuromodulation systems, drug and medication pumps, and others. A patient may have multiple implanted devices and may benefit in some circumstances by enabling such 30 devices to communicate with one another. Because these implantable devices are often reliant on battery power, communication between devices should be designed for efficiency and to limit power consumption.

SUMMARY

The present disclosure relates generally to systems and methods for managing communication strategies with temporal optimization relative to one or more identified conditions in the body.

A first example is a first medical device comprising: means for communicating with a second implantable medical device; means for identifying a first characteristic having a possible impact on communication success; means for 45 selecting a first condition of the first characteristic on which to trigger an attempt at communication; means for determining that the first condition of the first characteristic is present and attempting communication with the second implantable medical device; means for assessing whether 50 the attempted communication was successful; and means for associating the first condition and first characteristic with a reduced likelihood of communication success if the attempted communication was not successful.

A second example takes the form of the first medical 55 device of the first example wherein the means for communicating is configured for communication by conducted communication. A third example takes the form of a first medical device as in either of the first two examples wherein the first medical device is configured as an implantable 60 medical device. A fourth example takes the form of a first medical device of any of the first three example, further comprising means for associating the first condition and first characteristic with an improved likelihood of communication success if the attempted communication was successful. 65

A fifth example takes the form of a first medical device of any of the first four examples further comprising optimiza2

tion means for selecting multiple conditions of the first characteristic and repeatedly operating the means for determining, means for assessing and means for associating for each of multiple conditions of the first characteristic to determine whether the first characteristic can be used to determine a likelihood of communication success.

A sixth example takes the form of a first medical device of any of the first to fifth examples further comprising means for identifying a second characteristic, wherein the means for determining, means for assessing and means for assessing are operable to test at least a first condition of the second characteristic to determine whether the second characteristic can be used to determine a likelihood of communication success.

A seventh example takes the form of a first medical device of any of the first to sixth examples wherein the first characteristic is a detected status of a cardiac cycle, and the first condition is the occurrence of one of a cardiac R-wave or a cardiac T-wave. An eighth example takes the form of a first medical device of any of the first to sixth examples wherein the first characteristic is a detected status of a cardiac cycle, and the first condition is the occurrence of a pacing pulse. A ninth example takes the form of a first medical device of any of the first to sixth examples wherein the first characteristic is a detected status of a respiration cycle, and the first condition is the occurrence of one of an exhale or an inhale. A tenth example takes the form of a first medical device of any of the first to sixth examples wherein the first characteristic is a detected a transthoracic impedance, and the first condition is the occurrence of one of a maximum impedance or a minimum impedance. An eleventh example takes the form of a first medical device of any of the first to sixth examples wherein the first characteristic is a cyclic biological phenomenon and the first condition is 35 the occurrence of a recurring event in the cyclic biological phenomenon.

A twelfth example takes the form of an implantable medical device system comprising a first medical device as of any of the first to eleventh examples and a second implantable medical device configured for communication with the first medical device, wherein the first medical device is an intracardiac pacing device, and the second implantable medical device is a subcutaneous defibrillator.

A thirteenth example takes the form of an implantable medical device system comprising a first medical device as in any of the first to eleventh examples, and a second implantable medical device configured for communication with the first medical device, wherein the first medical device is a subcutaneous defibrillator, and the second implantable medical device is an intracardiac pacing device.

A fourteenth example is a first medical device comprising means for communicating with a second medical device; means for determining a first condition of a first characteristic is present; and means for modifying communication with the second implantable medical device based on the determination; wherein at least one of the first and second medical devices is implantable. A fifteenth example takes the form of a first medical device as in the fourteenth example wherein the first characteristic is a cyclic biological phenomenon and the first condition is the occurrence of a recurring event in the cyclic biological phenomenon.

A sixteenth example is a first medical device comprising a communication module for communicating with a second implantable medical device and a controller operatively coupled to the communication module for at least one of receiving or transmitting messages, the controller configured to optimize communication by: identifying a first character-

istic having a possible impact on communication success; selecting a first condition of the first characteristic on which to trigger an attempt at communication; determining that the first condition of the first characteristic is present and attempting communication with the second implantable 5 medical device; assessing whether the attempted communication was successful; and if the attempted communication was not successful, associating the first condition and first characteristic with a reduced likelihood of communication success.

3

A seventeenth example takes the form of the first medical device of the sixteenth example wherein the communication module is configured for communication by conducted communication. An eighteenth example takes the form of the first medical device of either the sixteenth or seventeenth examples wherein the first medical device is configured as an implantable medical device. A nineteenth example takes the form of the first medical device of any of the sixteenth to eighteenth examples, wherein the controller is further configured to associate the first condition and first charac- 20 teristic with an improved likelihood of communication success if the attempted communication was successful. A twentieth example takes the form of the first medical device of any of the sixteenth to nineteenth examples, wherein the controller is configured to further optimize communication 25 by selecting multiple conditions of the first characteristic and repeating the determining and assessing steps for each of multiple conditions of the first characteristic to determine whether the first characteristic can be used to determine a likelihood of communication success. A twenty-first 30 example takes the form of the first medical device of any of the sixteenth to twentieth examples, wherein the controller is configured to identify a second characteristic and test at least a first condition of the second characteristic to determine whether the second characteristic can be used to 35 determine a likelihood of communication success.

A twenty-second example takes the form of the first medical device of any of the sixteenth to twenty-first examples wherein the first characteristic is a detected status of a cardiac cycle, and the first condition is the occurrence 40 of one of a cardiac R-wave or a cardiac T-wave. A twentythird example takes the form of the first medical device of any of the sixteenth to twenty-first examples wherein the first characteristic is a detected status of a cardiac cycle, and the first condition is the occurrence of a pacing pulse. A 45 twenty-fourth examples takes the form of the first medical device of any of the sixteenth to twenty-first examples wherein the first characteristic is a detected status of a respiration cycle, and the first condition is the occurrence of one of an exhale or an inhale. A twenty-fifth example takes 50 the form of the first medical device of any of the sixteenth to twenty-first examples wherein the first characteristic is a detected a transthoracic impedance, and the first condition is the occurrence of one of a maximum impedance or a minimum impedance. A twenty-sixth examples takes the 55 form of the first medical device of any of the sixteenth to twenty-first examples wherein the first characteristic is a cyclic biological phenomenon and the first condition is the occurrence of a recurring event in the cyclic biological phenomenon.

A twenty-seventh example takes the form of an implantable medical device system comprising a first medical device as in any of the sixteenth to twenty-sixth examples and a second implantable medical device configured for communication with the first medical device, wherein the 65 first medical device is an intracardiac pacing device, and the second implantable medical device is a subcutaneous defi-

4

brillator. A twenty-eighth example takes the form of an implantable medical device system comprising a first medical device as in any of the sixteenth to twenty-sixth examples, and a second implantable medical device configured for communication with the first medical device, wherein the first medical device is a subcutaneous defibrillator, and the second implantable medical device is an intracardiac pacing device.

A twenty-ninth example is a first medical device comprising a communication module for communicating with a second medical device and a controller operatively coupled to the communication module messages, the controller configured to optimize communication by: determining a first condition of a first characteristic is present; and modifying communication with the second implantable medical device based on the determination; wherein at least one of the first and second medical devices is implantable.

A thirtieth example takes the form of the first medical device of the twenty-ninth example wherein the first characteristic is a cyclic biological phenomenon and the first condition is the occurrence of a recurring event in the cyclic biological phenomenon. A thirty-first example takes the form of the first medical device of the thirtieth example wherein the cyclic biological phenomenon is one of a respiration cycle or a cardiac cycle.

A thirty-second example is a method of communication with an implantable medical device comprising: identifying a characteristic having a possible impact on communication success; selecting a condition of the characteristic on which to trigger an attempt at communication; attempting communication based on the condition of the characteristic occurring; and assessing whether the communication was likely successful.

A thirty-third example takes the form of a method as in the thirty-second example, further comprising: if the communication was successful, associating the characteristic and condition with an improved likelihood of communication success; or if the communication was not successful, associating the characteristic and condition with a reduced likelihood of communication success.

A thirty-fourth example takes the form of a method as in either of the thirty-second or thirty-third examples wherein the characteristic is a cyclic biological phenomenon and the condition is the occurrence of a recurring event in the cyclic biological phenomenon. A thirty-fifth example takes the form of a method as in the thirty-fourth example wherein the cyclic biological phenomenon is one of a respiration cycle or a cardiac cycle.

The above summary is not intended to describe each embodiment or every implementation of the present disclosure. Advantages and attainments, together with a more complete understanding of the disclosure, will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments in connection with the accompanying drawings, in which:

FIG. 1 illustrates a patient having a plurality of implantable medical devices;

FIG. 2 illustrates a block diagram of an implantable medical device;

FIGS. 3-6 are schematic diagrams illustrating communications pulses relative to biological signals;

FIGS. 7-11 are flow diagrams of a several illustrative methods that may be implemented by a medical device or medical device system.

While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular 10 illustrative embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclo-

DESCRIPTION

The following description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The description and the 20 drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.

FIG. 1 illustrates a patient having a plurality of implantable medical devices. A patient, 10 is shown having a 25 leadless cardiac pacemaker (LCP) 14 implanted inside the heart 12. A subcutaneous implantable defibrillator (SICD) 16 having a left axillary canister and lead 18 extending to electrodes 20 is also shown. The patient may also have an insulin pump 22, a pain pump 24 for delivering pain 30 medication to the shoulder, and/or a nerve stimulator 26 having a lead (not shown) extending to the neck or head.

Other devices could be substituted for those shown in FIG. 1, and the positions shown for each device are not examples include other pacemakers or defibrillators such as those with transvenous, intracardiac, epicardial, or substernal leads and/or electrodes, a cardiac monitor, left ventricular assist device, spinal cord stimulator, vagus nerve stimulator, gastric electric stimulator, sacral nerve stimulator, 40 and/or any other implantable medical device.

In some embodiments an implanted device may be in communication with one or more extracorporeal devices. The extracorporeal device(s) may be affixed to the patient in a wearable configuration. The extracorporeal device(s) may 45 provide a therapy, for example a nerve stimulation therapy, muscle simulation therapy and/or respiration therapy (e.g. continuation positive airway pressure therapy). Additionally or alternatively the extracorporeal device may provide a diagnostic function, for example a cardiac monitoring func- 50 tion or/and a respiratory monitoring function. Additionally or alternatively the extracorporeal device may serve as a communication link between an implanted device and a device not in physical contact with the patient (i.e. remote from the body). In some embodiments one or more parts/ 55 elements of a device or system may be implanted and other portions may be extracorporeal (e.g. a drug pump or a continuous glucose monitor).

These various systems may be interrogated by an external device or a "programmer" 28, which may optionally use one 60 or more skin electrodes 30 to assist with communication to an implanted device. Skin electrodes 30 may be used for conducted communication with an implantable device. Conducted communication is communication via electrical signals which propagate via patient tissue and are generated by more or less ordinary electrodes. By using the existing electrodes, conducted communication does not rely on an

antenna and an oscillator/resonant circuit having a tuned center frequency common to both transmitter and receiver.

For other communication approaches such as RF or inductive communication, the programmer 28 may instead use a programming wand or may have an antenna integral with the programmer 28 housing for communication. Though not shown in detail, the programmer 28 may include any suitable user interface, including a screen, buttons, keyboard, touchscreen, speakers, and various other features widely known in the art.

It is unlikely a single patient 10 would have all of the different systems implanted as shown in FIG. 1. For purposes of the present invention, it is assumed that a patient may have at least two implantable systems simultaneously, and it may be beneficial to facilitate communication between the at least two implantable systems. The mode for communication between two implanted systems may be conducted communication, though other approaches (optical, acoustic, inductive or RF, for example) could be used instead.

FIG. 2 illustrates a block diagram of an implantable medical device. The illustration indicates various functional blocks within a device 50, including a processing block 52, memory 54, power supply 56, input/output circuitry 58, therapy circuitry 60, and communication circuitry 62. The I/O circuitry 58 can be coupled to one or more electrodes 64, 66 on the device 50 housing, and may also couple to a header 68 for attachment to one or more leads 70 having additional electrodes 72. The communication circuitry 62 may be coupled to an antenna 74 for radio communication (such as Medradio, ISM, or other RF) and/or may couple via the I/O circuitry 58 to a combination of electrodes 64, 66, 72, for conducted communication.

The processing block **52** will generally control operations intended to be limiting. Some additional or alternative 35 in the device 50 and may include a microprocessor or microcontroller and/or other circuitry and logic suitable to its purpose. Processing block 52 may include dedicated circuits or logic for device functions such as converting analog signals to digital data, processing digital signals, detecting events in a biological signal, etc. The memory block may include RAM, ROM, flash and/or other memory circuits for storing device parameters, programming code, and data related to the use, status, and history of the device 50. The power supply 56 typically includes one to several batteries, which may or may not be rechargeable depending on the device 50. For rechargeable systems there would additionally be charging circuitry for the battery (not shown).

The I/O circuitry 58 may include various switches or multiplexors for selecting inputs and outputs for use. I/O circuitry 58 may also include filtering circuitry and amplifiers for pre-processing input signals. In some applications the I/O circuitry will include an H-Bridge to facilitate high power outputs, though other circuit designs may also be used. Therapy block 60 may include capacitors and charging circuits, modulators, and frequency generators for providing electrical outputs. For devices such as insulin and drug pumps the therapy circuit 60 may include a pump or pump actuator coupled to a delivery system for outputting therapeutic material, rather than using the I/O circuitry 58 as would be typical for systems that generate an electrical therapy output.

Communications circuitry 62 may include a frequency generator/oscillator and mixer for creating output signals to transmit via the antenna 74. Some devices 50 may include a separate ASIC for the communications circuitry 62, for example. For devices using an inductive communication

output, an inductive coil may be included. Devices may also use optical or acoustic communication approaches, and suitable circuits, transducers, generators and receivers may be included for these modes of communication as well or instead of those discussed above.

As those skilled in the art will understand, additional circuits may be provided beyond those shown in FIG. 2. For example, some devices 50 may include a Reed switch or other magnetically reactive element to facilitate magnet wakeup or reset of the device by a user. Some systems may omit one or more blocks, for example, an implantable cardiac monitor can omit therapy block 60, and an LCP may exclude the header 68 for coupling to lead 70.

In several embodiments, the present invention is directed toward the management and optimization of conducted 15 communication between two implanted medical devices. For example, an LCP may communicate with an SICD. The LCP may, for example, provide a detected heartbeat rate to the SICD in order to assist the SICD in making a therapy determination. In another example, the SICD may request 20 status from the LCP or may direct the LCP to deliver pacing pulses.

Other combinations of systems may use conducted communication between devices for various reasons. For example, if a patient has both a drug pump and a spinal cord 25 stimulator, the drug pump may communicate to the spinal cord stimulator that it is in need of servicing, such that both systems may use their internal annunciating mechanisms to alert the patient that the drug pump requires service. As integrated systems develop, it may become possible to 30 develop simplified devices that omit, for example, standard telemetry or annunciator circuits, and instead use conducted communication to another device that includes full telemetry and annunciator circuits. If telemetry and/or annunciator circuits are omitted in one or more devices, the devices may 35 become smaller and power consumption may be reduced. Thus conducted communication optimization may facilitate development of smaller and/or longer lasting devices in addition to facilitating inter-device coordination for therapy

FIGS. 3-6 are schematic diagrams illustrating communications packets relative to biological signals. Conducted communication taking place within the body is subject to interference from various biological functions. Respiration and the cardiac cycle are two particular cyclic biological 45 functions of interest, though any other biological function, cyclic or not, may also be addressed using the methods and devices herein.

FIG. 3 illustrates an ECG signal at 100, and communications by Device A at 102 and Device B at 104. The ECG 50 shows a QRS complex (a heartbeat) at 106 followed by an interval 108, and another beat at 110. In this illustration, Device A sends a data packet 112 during the interval 108 between beats 106, 110, and Device B responds with a packet at 114 during the same interval 108. In another 55 electrical state of the patient's heart, and is a "characteristic" embodiment, Device B may respond after the subsequent

The phrase "data packet" is used for convenience and should be understood as generically including any type of message sent from one device to another. No particular 60 message/frame structure, type of data, size or other meaning should be implied.

In FIG. 3, the data packets are shown as being sent independent of therapy output by either Device A or Device B. FIG. 4 shows a scheme in which Device B is configured 65 to embed communications in a therapy output. The ECG is shown at 120, and the therapy output of Device B is shown

at 124, while the communications from Device A are shown at 126. The therapy output 124 includes pacing pulses 130 and 136, which trigger beats 132 and 138 respectively on the ECG **120**.

A detail view of pacing pulse 130 is shown below, and it is seen at 142 that the shape of the pacing pulse 130 includes amplitude modulation embedding a data packet. Other approaches to embedding information in a pacing pulse can be used; the illustration is simplified in FIG. 4 since the present invention is not limited to embedding data in a therapy output nor is it limited to communicating via therapy output-encoded data. Preferably, the embedded data 142 does not affect the effectiveness of therapy of the pacing pulse 130.

Device A is designed to recognize the data 142 embedded in the pacing pulse 130. In this example, Device A responds with a data packet after some delay such that data packet 134 follows the end of the QRS complex of beat 132. In an alternative, Device A could sent data packet 134 and Device B would respond with a message embedded in pacing pulse

The signals for conducted communication are generally intended to have amplitudes that will not cause cardiac or skeletal muscle contraction, with the exception of the case in which the conducted communication is embedded in a stimulus signal, such as pacing pulse 130 with data 132. The patient should not be aware of the conducted communication signal.

In FIG. 4, the amplitude, duration and/or frequency content of the data packet 134 would be selected to avoid stimulating muscle (skeletal or cardiac). Delivery of the data packet 134 during the QRS complex 132 could cause Device B to miss the signal or interpret it as part of the QRS complex 132. Therefore, as indicated at 140, the data packet 134 is preferably delivered after the conclusion of the QRS complex for beat 132, and preferably ends before delivery of the next pacing pulse 136.

One approach to delivering data packet 134 would be to call for a fixed delay after the conclusion of the pacing pulse 40 130, such as a 300 millisecond delay allowing for the (typically wide) paced QRS complex for beat 132 to be finished. Another approach would be to sense the ECG 120 for termination of the QRS. Each approach has limitations, however. A fixed period may not account for other portions of the ECG, such as the T-wave and/or S-T segment, which can vary in amplitude between patients and even within a patient based on the patient's posture, activity level, etc. Detecting the end of the QRS can be highly dependent on the location of the electrodes used to sense the ECG 120. Moreover, it may be more effective if both Device A and Device B know when the data packet 134 is expected. Thus a temporal optimization may be highly useful to enhance communication reliability.

As used in the present disclosure, the ECG represents the of the patient. The occurrence of a QRS complex, or other event, in the ECG represents a "condition" of the ECG characteristic. Other characteristics and conditions of characteristics are discussed below.

FIG. 5 illustrates another characteristic and an illustrative example of its use. Here, a transthoracic impedance is shown at 160, an ECG is shown at 162, and the communication packets for Device A and Device B are shown at 164 and 166, respectively. The transthoracic impedance 160 may vary with patient movement, such as respiration. In this sequence, the beats of the ECG are avoided by Device A when it sends out data packets 170 and 180. However,

Device B fails to respond at 172 to data packet 170. Reviewing the transthoracic impedance suggests that a high transthoracic impedance at 174 may have negatively affected communication of data packet 170. This may be treated as a "high condition" of the "characteristic" of 5 transthoracic impedance.

As a result, in this embodiment, the method includes delivering the next packet 180, both outside of the QRS complex of ECG 162, but also at a point where the transthoracic impedance 160 is low as shown at 184. This time, the data packet 180 is received by device B, generating an acknowledgement or other responsive output at 182. Analysis of the observed characteristic (impedance), suggests that the condition of low transthoracic impedance at 184 may have positively impacted the success of data packet 180. The illustrative system may record one or both of the success and failure as indicating a likely connection between transthoracic impedance and communication success. Reviewing FIG. 5 alongside FIG. 4 shows that a temporal optimization 20 a spinal cord stimulator (SCS) may use an urgent commumay take into account multiple characteristics.

The QRS complex is not the only condition which may arise within the ECG characteristic; the T-wave and P-wave, for example, or S-T segment elevation, are also potential conditions that may impact communication success. In FIG. 25 6, the ECG is represented at 200, and communications activity of Devices A and B is shown at 202 and 204 respectively.

Device A attempts communication at 210, but the communication fails to be observed by Device B, which does not reply at 212 as expected. Closer review of the ECG 200 indicates that the QRS complex is followed by a prominent T-wave shown at 214. Either of Device A or Device B may assess the ECG and the failed communication attempt and identify a likely relationship, and make an adjustment to the timing of a later communication attempt.

In an alternative example, Device A may not identify whether there is a prominent T-wave; it simply knows that the communication attempt at 210 was not acknowledged. 40 Therefore Device A can adjust the delay after the R-wave detection, shown at 216, by increasing or decreasing the delay. Here, Device A adjusts such that the next attempt in which data packet 220 is sent occurs with a greater delay 226. This time, the T-wave 224 is missed, and the data 45 packet 220 is received and acknowledged by Device B at 222. As illustrated by FIGS. 4-6, not only are there multiple characteristics to be potentially aware of, but also multiple conditions within the characteristics.

For purposes herein, the ECG, transthoracic impedance, 50 and status of the respiration cycle are three possible characteristics. Another characteristic may include posture, which may be determined by use of an accelerometer or through analysis of some other signal such as skeletal muscle activity, the shape or amplitude of a respiration 55 signal, or ECG morphology from one or more sensing vectors. If the patient is exercising, there may be a detectable cycle associated with motion artifacts generated with the patient's stride. For example, at each foot-strike if the patient is running, a monitored biological electrical signal or 60 a monitored accelerometer output, for example, may demonstrate a motion artifact. Testing communication success relative to the detected motion artifact may be useful in determining whether and how communication success can be ensured when the artifact is identified. In some examples, 65 the QRS and to cardiac signal may actually not be of significant importance to communication success, and other

10

factors may be deemed more likely to create marginal or poor communication, such as those non-ECG items just

It should be noted in this context that an implantable medical device communication system may have multiple reasons for communicating. Some communication is not urgent, as for example, a periodic device status check communication. Other communication is urgent, as for example, a request that a device deliver therapy or prepare to have therapy delivered by a second device. A specific example would be the combination of an LCP and SICD, where the SICD may non-urgently request battery status from the LCP periodically (i.e. weekly), and may on occasion urgently request that the LCP provide a beat rate measurement confirmation prior to the SICD delivering a high power defibrillation shock to the patient, where the LCP rate measurement confirmation would be used to prevent inappropriate shocks due to malsensing.

For another example, an SICD used in combination with nication to allow the SICD to warn the SCS that a high energy defibrillation shock, which could overwhelm the SCS sensing circuitry inputs, is about to be delivered so that the SCS can suspend sensing or isolate its sensing circuitry during the shock. Temporal optimization may be performed using the non-urgent communication requests, to give greater confidence that an urgent request will be received successfully.

FIGS. 7-11 are flow diagrams of a several illustrative methods that may be implemented by a medical device or medical device system. Starting with FIG. 7, the illustrative method begins with identifying a characteristic at 250, then selecting a condition at 252 to assess for its potential impact on communication. Next, the condition and characteristic are monitored and an attempt at communication is made, as shown at **254**. The communication effort is then assessed at 256. The assessment at 256 may be a simple pass/fail assessment, or may include a more complex analysis such as review of the signal-to-noise ratio, signal strength, frame or bit error rate, presence or lack of acknowledgement/handshake, presence or lack of an intended response (therapy or other), measurement of link availability or speed, or other feature of the communication attempt, for example as discussed in commonly assigned U.S. Provisional Patent Application 62/134,726, filed Mar. 18, 2015 and titled COMMU-NICATIONS IN A MEDICAL DEVICE SYSTEM WITH LINK OUALITY ASSESSMENT the disclosure of which is incorporated herein by reference.

While several examples rely on electrical signals (myopotential or neuropotential, for example) and potential interference with conducted communication, other combinations are possible. For example, an acoustic communication system may consider heart sounds or respiratory sounds, rather than myopotentials.

Using the assessment at 256, an association can be generated at 258. Steps 252, 254 and 256 may be repeated for other conditions, as indicated at 260, of the same characteristic. In an additional loop indicated at 262, other characteristics may also be assessed. If desired, further combinations of characteristics and conditions may be concatenated for testing as well. Optionally, a probability map may be generated, as indicated at 264. Such a map may include possible communication pathways (such as links and configurations of devices) and sets of probabilities of success given particular parameters, for example. A probability map may be used by an individual device or system to plot out communication strategies, or it may be exported for

diagnostic and system design purposes. In addition, as indicated at 266, settings for the system under test may also be generated, including, for example, if-then type rules for planning communication timing relative to identified conditions and characteristics.

For example, the ECG may be identified as a characteristic at 250, and a condition in which the ECG is above a threshold amplitude may be identified, with testing performed at 254 by attempting to communicate a data packet with the ECG at certain amplitude levels, using a looping approach indicated by block 260. Attempts may be made, for example, with the ECG showing an R-wave as one condition, a T-wave as another condition, and being near baseline during the interval between a T-wave and a subsequent P-wave as yet another condition. The attempts are assessed 15 at 256, and an association is constructed at 258. A probability map can be generated at 264. The system can be appropriately set at 266 to provide temporal optimization such that communication attempts occur at times within the ECG cycle selected to maximize the chance of success. As 20 part of the setting step at 266, or the mapping at 264, data may be communicated to other implanted devices regarding the settings to be applied.

If desired and available, variations on the communication signal may also be applied, for example, if variable output 25 signal amplitude or data rate are available, different communication variations may also be applied to assess their effect on communication success. For example, a system may determine whether reducing the data rate or increasing signal amplitude can affect the likelihood of communication 30 success. The same characteristic and condition can be repeatedly tested with different configurations of the communication signal.

The illustration of FIG. 7 takes a prospective, forward looking approach in which communication ability is 35 assessed under selected conditions. FIG. 8 shows an alternative approach in which, given a particular communication attempt, a backward looking review can be undertaken to troubleshoot failures. In FIG. 8, communication is attempted by sending a data packet from one device to another, as 40 shown at 270. The success, or failure, of the attempt is observed at 272, and then a physiological characteristic and its condition at the time of the communication attempt is observed as noted at 274. A correlation is determined, as shown at 276, and subsequent communication can be 45 planned accordingly by, for example, increasing or reducing a delay relative to an observable phenomenon. The correlation stored at 276 can be tested and retested over time to determine whether it accurately reflects real world conditions.

As an example, with a patient who exercises, there may be a cyclic motion artifact in a detected biological signal associated with the patient's stride, or swim stroke, or other repetitive motion. An attempt at communication is made at 270 and fails at 272. It is then determined at 274 how the 55 failed communication attempt related, in time, to the motion artifact. The motion artifact may be determined by sensing the communication channel or by observing a separately sensed channel. A correlation is presumed at 276 and stored for later reference, and plans are made at 278 to ensure that 60 a subsequent attempt at communication will occur with a different temporal relationship to the motion artifact (if such an artifact is observed). The plan at 278 may then be communicated throughout the system, if desired.

FIG. 9 provides another example. A communication metric, such as amplitude or signal-to-noise ratio, is measured for a given data packet or communication attempt at 300. A

potentially related physiological condition is also observed, as shown at 302. A probability of success given the communication metric is generated at 304. The communication strategy is then configured at 306, using the condition of the physiological characteristic observed at 302.

12

As an example, the respiratory cycle of a patient may be observed by tracking transthoracic impedance over time. A communication attempt may be made and characteristics observed in relation to the communication attempt would be measured in block 300. The status of the respiration cycle is observed using block 302, and mapping of the probability of communication success based on the point in the respiration cycle at which communication is attempted can be generated at 304. Then communication attempts for future use can be configured in block 306.

If, for example, the phase of respiration at which the transthoracic impedance is at a minimum shows better communication metrics than the point of maximum transthoracic impedance, then the map of probability at 304 would be used to configure communications to occur while minimum transthoracic impedance is occurring. On the other hand, the probability mapping at 304 may determine from the observed communication metrics that the respiration cycle is not likely to impact communication success or failure. If that is the case, then a different characteristic and condition may instead be assessed, and the system would record data indicating that a configuration based on respiration cycle may not be helpful.

FIG. 10 shows another example. A physiological cycle is identified at 360. Communication is attempted and fails at 362. (Steps 360 and 362 may be reversed with the physiological cycle identified in response to or after failure). A delay relative to an event within the observed cycle is then configured at 364, and a retry scheduled at 366. If the retry fails, the method returns to 364 and configures a different delay relative to the cycle. Multiple retries may be attempted. A retry limit may be enforced, for example, with no more than 3-10 retries (or more or fewer, as desired). Eventually the system either retries to success at 368, or reaches a timeout 370 in which case an alert may be set relative to communication difficulty.

FIG. 11 shows another example in which different treatment is given to critical and non-critical issues. Here, beginning with a need for communication at 400, an attempt is made at 402 and fails. It is then determined whether a critical or urgent issue has arisen at 404. For some urgent issues, the method may execute one or more retries at 406 and then proceed regardless of success, or the retry may be bypassed entirely as indicated by the dashed line.

For example, if an SICD is attempting to cause an LCP to deliver antitachycardia pacing (ATP) because the SICD is about to prepare for defibrillation therapy, no retries may be called if the retry interrupts therapy preparation, as the patient may be suffering a life-threatening situation. On the other hand, if the SICD can attempt to call for ATP without interrupting therapy preparations (which may take several seconds as capacitors are charged to therapy levels), one or several retries 406 may be attempted during therapy preparation

If a non-critical issue is occurring at 404, then an adjustment is made for a physiological condition at 410 and a number of retries may be attempted in a loop between 410 and 412. Upon success, the parameters 414 of a successful communication attempt would be stored for later use. If the number of retries is limited at 412 and the maximum retry limit is reached, then the system may set an error flag or annunciate an error condition 416.

A first non-limiting example takes the form of a first medical device comprising: means for communicating with a second implantable medical device; means for identifying a first characteristic having a possible impact on communication success; means for selecting a first condition of the first characteristic on which to trigger an attempt at communication; means for determining that the first condition of the first characteristic is present and attempting communication with the second implantable medical device; means for assessing whether the attempted communication was successful; and means for associating the first condition and first characteristic with a reduced likelihood of communication success if the attempted communication was not successful.

In this first non-limiting example, the means for communicating may take the form of, for example, the communication subsystem 62 in FIG. 2, optionally including the antenna 74 or, alternatively, for a conducted communication system, the I/O subsystem 58 of FIG. 2 and one or more of 20 electrodes 64, 66 or 72. The means for identifying a first characteristic condition may include an instruction set or sets for performing a step or steps as described in association with block 250 of FIG. 7, which may be stored in memory 54 of FIG. 2 or which can be performed by a processing 25 circuitry 52, or such means may include dedicated circuitry, for example, of the processing circuitry 52.

Further in the first non-limiting example, the means for selecting a first condition of the first characteristic on which to trigger an attempt at communication may include an 30 instruction set stored in memory 54 for operation by processing circuitry 52 of FIG. 2, instructions embedded in processing circuitry 52 of FIG. 2, or dedicated circuitry of the processing circuitry 52 of FIG. 2, which are configured to perform a step as described in association with block 252 35 of FIG. 7. Also in the first non-limiting example, the means for determining that the first condition of the first characteristic is present and attempting communication with the second implantable medical device may include an instruction set stored in memory 54 for operation by processing 40 circuitry 52 of FIG. 2, instructions embedded in processing circuitry 52 of FIG. 2, or dedicated circuitry of the processing circuitry 52 of FIG. 2, which are configured to perform a step as described in association with block 255 of FIG. 7, in which the processing circuitry is further configured to 45 direct and/or make use of the communications circuitry 62 and antenna 74 and/or the I/O circuitry 58 and one or more of electrodes 64, 66 or 72.

In the first non-limiting example, the noted means for assessing whether the attempted communication was suc- 50 cessful may include an instruction set stored in memory 54 for operation by processing circuitry 52 of FIG. 2, instructions embedded in processing circuitry 52 of FIG. 2, or dedicated circuitry of the processing circuitry 52 of FIG. 2, which are configured to perform a step as described in 55 association with block 256 of FIG. 7. Finally in the first non-limiting example, the means for associating the first condition and first characteristic with a reduced likelihood of communication success if the attempted communication was not successful may include an instruction set stored in 60 memory 54 for operation by processing circuitry 52 of FIG. 2, instructions embedded in processing circuitry 52 of FIG. 2, or dedicated circuitry of the processing circuitry 52 of FIG. 2, which are configured to perform a step as described in association with block 258 of FIG. 7, which is configured 65 for operation in the event the attempted communication is not successful.

14

An extension of this first non-limiting example may further comprise a means for associating the first condition and first characteristic with an improved likelihood of communication success if the attempted communication was successful, which may include an instruction set stored in memory 54 for operation by processing circuitry 52 of FIG. 2, instructions embedded in processing circuitry 52 of FIG. 2, or dedicated circuitry of the processing circuitry 52 of FIG. 2, which are configured to perform a step as described in association with block 258 of FIG. 7, which is configured for operation in the event the attempted communication is not successful.

Another extension of this first non-limiting example further comprises optimization means for selecting multiple conditions of the first characteristic and repeatedly operating the means for determining, means for assessing and means for associating for each of multiple conditions of the first characteristic to determine whether the first characteristic can be used to determine a likelihood of communication success, wherein the optimization means may include an instruction set stored in memory 54 for operation by processing circuitry 52 of FIG. 2, instructions embedded in processing circuitry 52 of FIG. 2, or dedicated circuitry of the processing circuitry 52 of FIG. 2, which are configured to perform a step as described in association with block 260 of FIG. 7.

Still another extension of this first non-limiting example further comprises a means for identifying a second characteristic, wherein the means for determining, means for assessing and means for assessing are operable to test at least a first condition of the second characteristic to determine whether the second characteristic can be used to determine a likelihood of communication success, wherein the means for identifying a second characteristic may include an instruction set stored in memory 54 for operation by processing circuitry 52 of FIG. 2, instructions embedded in processing circuitry 52 of FIG. 2, which are configured to perform a step as described in association with block 262 of FIG. 7.

A second non-limiting example takes the form of a first medical device comprising means for communicating with a second medical device; means for determining a first condition of a first characteristic is present; and means for modifying communication with the second implantable medical device based on the determination; wherein at least one of the first and second medical devices is implantable.

In this second non-limiting example, the means for communicating may take the form of, for example, the communication subsystem 62 in FIG. 2, optionally including the antenna 74 or, alternatively, for a conducted communication system, the I/O subsystem 58 of FIG. 2 and one or more of electrodes 64, 66 or 72.

Also in this second non-limiting example, the means for determining a first condition of a first characteristic is present may include an instruction set stored in memory 54 for operation by processing circuitry 52 of FIG. 2, instructions embedded in processing circuitry 52 of FIG. 2, or dedicated circuitry of the processing circuitry 52 of FIG. 2, which are configured to obtain information regarding one or more of the state of the patient's ECG, the patient's measurable impedance, a biological cycle, or other measurable element such as the output of an accelerometer to determine a condition of a first characteristic.

Finally in the second non-limiting example, the means for modifying may include an instruction set stored in memory 54 for operation by processing circuitry 52 of FIG. 2,

instructions embedded in processing circuitry **52** of FIG. **2**, or dedicated circuitry of the processing circuitry **52** of FIG. **2**, which are configured to adjust one or more parameters of a communication subsystem **62** in FIG. **2**, optionally including the antenna **74** or, alternatively, for a conducted communication system, the I/O subsystem of FIG. **2**.

Those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific examples described and contemplated herein. For instance, as described herein, various examples 10 include one or more modules described as performing various functions. However, other examples may include additional modules that split the described functions up over more modules than that described herein. Additionally, other examples may consolidate the described functions into 15 fewer modules. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.

What is claimed is:

- 1. A first medical device comprising a communication 20 module for communicating with a second medical device and a controller operatively coupled to the communication module, the controller configured to optimize communication by:
 - determining a recurring event in a cyclic biological phe- 25 nomenon is present;
 - selecting timing for issuing a data packet relative to the recurring event for communication with the second medical device based on the determination that the recurring event in the cyclic biological phenomenon is 30 present; and
 - attempting communication, triggered by the recurring event in the cyclic biological phenomenon, with the second medical device using the selected timing;
 - wherein at least one of the first and second medical 35 devices is implantable.
- 2. The first medical device of claim 1, wherein the communication module is configured for communication by conducted communication.
- **3**. The first medical device of claim **1**, wherein the first 40 medical device is configured as an implantable medical device.
- 4. The first medical device of claim 1, wherein the controller is configured to further optimize communication by sequentially modifying communication with the second 45 medical device based on the determination that the recurring event in the cyclic biological phenomenon is present in a plurality of communication attempts, thereby adjusting the selected timing.
- **5**. The first medical device of claim **1**, wherein the cyclic 50 biological phenomenon is a cardiac cycle, and the recurring event is one of a cardiac R-wave or a cardiac T-wave.
- **6**. The first medical device of claim **1**, wherein the cyclic biological phenomenon is a cardiac cycle, and the recurring event is a pacing pulse.
- 7. The first medical device of claim 1, wherein the cyclic biological phenomenon is a repetitive patient movement.
- **8**. The first medical device of claim **1**, wherein the cyclic biological phenomenon is a respiration cycle, and the recurring event is the occurrence of one of an exhale or an inhale. 60
- 9. The first medical device of claim 1, wherein the cyclic biological phenomenon is a detected a transthoracic imped-

16

ance, and the recurring event is the occurrence of one of a maximum impedance or a minimum impedance.

- 10. The first implantable medical device of claim 1 further comprising a plurality of electrodes coupled to sensing circuitry adapted to sense the cyclic biological phenomenon and detect the recurring event.
- 11. An implantable medical device system comprising a first medical device as recited in claim 1 and a second implantable medical device configured for communication with the first medical device, wherein the first medical device is an intracardiac pacing device, and the second implantable medical device is a subcutaneous defibrillator.
- 12. An implantable medical device system comprising a first medical device as recited in claim 1, and a second implantable medical device configured for communication with the first medical device, wherein the first medical device is a subcutaneous defibrillator, and the second implantable medical device is an intracardiac pacing device.
- 13. A method of operation in a first implantable medical device having a communication module for communicating with a second medical device and a controller operatively coupled to the communication module, the method comprising:
 - determining a recurring event in a cyclic biological phenomenon is present;
 - selecting timing for issuing a data packet relative to the recurring event for communication with the second medical device based on the determination that the recurring event in the cyclic biological phenomenon is present; and
 - attempting communication, triggered by the recurring event in the cyclic biological phenomenon, with the second medical device using the selected timing;
 - wherein at least one of the first and second medical devices is implantable.
- 14. The method of claim 13, wherein the communication module is configured for communication by conducted communication and the attempted communication is by conducted communication.
- 15. The method of claim 13 further comprising sequentially modifying communication with the second implantable device based on the determination that the recurring event in the cyclic biological phenomenon is present in a plurality of communication attempts, thereby adjusting the selected timing.
- **16.** The method of claim **13**, wherein the cyclic biological phenomenon is a cardiac cycle, and the recurring event is one of a cardiac R-wave or a cardiac T-wave.
- 17. The method of claim 13, wherein the cyclic biological phenomenon is a cardiac cycle, and the recurring event is a pacing pulse.
- 18. The method of claim 13, wherein the cyclic biological phenomenon is a repetitive patient movement.
- 19. The method of claim 13, wherein the cyclic biological phenomenon is a respiration cycle, and the recurring event is the occurrence of one of an exhale or an inhale.
- 20. The method of claim 13, wherein the cyclic biological phenomenon is a transthoracic impedance, and the recurring event is the occurrence of one of a maximum impedance or a minimum impedance.

* * * * *