
US 2013 0290957A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0290957 A1

Li et al. (43) Pub. Date: Oct. 31, 2013

(54) EFFICIENT EXECUTION OF JOBS INA Publication Classification
SHARED POOL OF RESOURCES

(51) Int. Cl.
(75) Inventors: Min Li, Blacksburg, VA (US); Prasenjit G06F 9/455 (2006.01)

Sarkar, San Jose, CA (US); Dinesh K. (52) U.S. Cl.
Subhraveti, San Jose, CA (US) USPC .. 718/1

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION, (57) ABSTRACT
Armonk, NY (US)

Embodiments of the invention relate to a shared group of
(21) Appl. No.: 13/590,881 resource and efficient processing of one or more jobs in the

share group of resources. Tools are provided in the shared
(22) Filed: Aug. 21, 2012 group of resource to assess and organize a topology of the

O O shared resources, including physical and virtual machines, as
Related U.S. Application Data well as storage devices. fity is stored in a known

(63) Continuation of application No. 13/457,090, filed on location and utilized for efficient assignment of one or more
Apr. 26, 2012. jobs responsive to the hierarchy.

otect Status affiliai i8Cities in he $8 ed co

()
3ather Topology informatiori arid Cornursivate 464

fixiogy inforgiais: to a Server

—
Organize Gathered Eata in a Single .30ation ---006

Assign a Transaction (a Selectivitial viachine (C8
i.everagig the Organiz: pilogy

— —
Returr virtual Topclogica: Listance is Resporise ic of

ansactican Assigfie: it

is
:: i);33&gica:
list2:13: Biyesi

Nwo :: if it:3:
Machines

Create a Shared versary Chanfei for riter.Virilial 1644
facii & Crica in

iii.20; iiia is ?ick
Sick it; ii.fija
achie Cin irica:3:

Effigy vientory Copy fif inter-viriai viaci:re
{C'? EC3: ACQSS $3rd C3.3

-8

US 2013/0290957 A1 Oct. 31, 2013 Sheet 1 of 13 Patent Application Publication

9

US 2013/0290957 A1 Oct. 31, 2013 Sheet 2 of 13 Patent Application Publication

US 2013/0290957 A1 Oct. 31, 2013 Sheet 3 of 13 Patent Application Publication

g

US 2013/0290957 A1

x

...

Oct. 31, 2013 Sheet 4 of 13

3.
g
...
3.

Patent Application Publication

Patent Application Publication Oct. 31, 2013 Sheet 5 of 13 US 2013/0290957 A1

viapréduce ic:) is Shi'ited

eterrié (pia Pagériterst for the
Sei of “ies; vital viacsires Requestes

Wit:3: viacific images Required to
800i is fift: iaiti:8s 3: Selecies
Nodes are Created iron Kespective

viasier images

it. Class Files are Copied into a
Cioned virtual viacie age

Aitaciata Yage to the Wirtia viachines
and viouri Respective Fies within the

filia i3Cie

Patent Application Publication Oct. 31, 2013 Sheet 6 of 13 US 2013/0290957 A1

US 2013/0290957 A1 Oct. 31, 2013 Sheet 7 of 13 Patent Application Publication

Åºpue,
uonezimn (

WA 2, J

Patent Application Publication Oct. 31, 2013 Sheet 8 of 13 US 2013/0290957 A1

3.

3.x:
g

3.

US 2013/0290957 A1 2013 Sheet 9 Of 13 31, Oct ion Patent Application Publica

·

Patent Application Publication Oct. 31, 2013 Sheet 10 of 13 US 2013/0290957 A1

{{

Collect Status of virtual viacities in the Shared Foo-03

3atief opology irration arid Coir: nitiate 34:
fixiogy inforatic: to a Server

Organize Gathered Data in a Singie is cation 3

Assign a Transaction to a Select vitat achine {3
i.everagig the Organizes topology

Retir Virtual Togologica: Distance if RespOrise to it?
fa:nsactic: Assigré:t

is
the ionoiogica
isia: 33:ye:
iO3: kiss. Wits 3

iki3citings?

- (42
s: it;23 finitia -&isik

& Sack if ii-fia
i3Chine C3: Firicati:

Create a Shared veinery Chaire for iter-finitia t
facié on ification

Eriploy viemory Copy for inter-virtua Machine 496
C3: ...ii.23:3: ACQSS the Safe Carine

G.

Patent Application Publication Oct. 31, 2013 Sheet 11 of 13 US 2013/0290957 A1

Desigrate a Wirta vachine to Receive a -
raisactioi for Processing

Ascertain itilization formation of the Physical 44
Biachine .ocal to the Resignated virtua viacise

38:
the Physica

8:8; 8w8 &isis:
ai: (.333i:ity & Stip;Q:

this 3:38ts:

fig facie &S 3: Stificies. 33i:iii. 8:
lose opaiogical list3:3ce to a 3 Block{s}

to Sugg3! tie frarisatia:

G.

US 2013/0290957 A1 Oct. 31, 2013 Sheet 12 of 13

|------ ??Ž |

(No.?--
Patent Application Publication

Patent Application Publication Oct. 31, 2013 Sheet 13 of 13 US 2013/0290957 A1

POC&S$f -3

-34

vain hieriory - 30
38

8: s Display Display

CO:::::ficatio 38- tefface it.
ifasii Eife

(EUS)
-32 Secondary very

higi
isk if:

3:-

re:{yai
Storage Removable Storage

w8

Renovae
Storage

Cortiniaii
interface

US 2013/029.0957 A1

EFFICIENT EXECUTION OF JOBS INA
SHARED POOL OF RESOURCES

CROSS REFERENCE TO RELATED
APPLICATION(S)

0001. This application is a continuation patent application
claiming the benefit of the filing date of U.S. patent applica
tion Ser. No. 13/457,090 filed on Apr. 26, 2012, and titled
“Efficient Execution of Jobs in a Shared Pool of Resources’
now pending, which is hereby incorporated by reference.

BACKGROUND

0002 This invention relates to an efficient approach for
utilization of job processing in a shared pool of resources.
More specifically, the invention relates to assessing the virtual
and physical topology of the shared resources and processing
jobs responsive to the combined topology.
0003. MapReduce is a framework for processing highly
distributable problems across huge datasets using a large
number of computer nodes. In instances where all of the
nodes use the same hardware or a grid if the nodes use dif
ferent hardware, the framework is commonly referred to as a
cluster. Computational processing can occur on data stored
eitherina filesystem or a database. Specifically, a master node
receives a job input and partitions the job into Smaller Sub
jobs, which are distributed to the other nodes in the cluster or
grid. In one embodiment, the nodes in the cluster or grid are
arranged in a hierarchy, and the sub-jobs may be further
partitioned and distributed. The nodes responsible for pro
cessing the Sub-jobs return processed data to the master node.
More specifically, the processed data is collected and com
bined by the master node to form an output. Accordingly,
MapReduce is an algorithmic technique for the distributed
processing of large amounts of data associated with a job.
0004 As described above, MapReduce enables distribu
tion of data processing across a network of nodes. Although
there is a convenience factor associated with use MapReduce,
there is performance issues associated with current uses of
MapReduce for processing jobs.

BRIEF SUMMARY

0005. This invention comprises a method for efficient pro
cessing of jobs in a shared pool of resources.
0006. In one aspect, a computer implemented method is
provided for implementation in a shared pool of resources.
More specifically, the shared pool includes a physical host in
communication with at least one physical machine, with the
physical machine Supporting one or more virtual machines.
Status information associated with the operation of the virtual
machines is collected. In addition, local topology information
associated with the shared pool of resources is gathered. The
aspect of gathering this information includes periodically
communicating with an embedded monitor of the physical
machine. The gathered topology information is organized,
with the topology information including storage topology
underlying a virtual topology of the resources and associated
resource utilization information. Once the storage topology
information is organized, it may be leveraged to facilitate
processing of one or more jobs. More specifically, a job may
be responsively assigned to a select virtual machine in the
shared pool that supports efficient performance of I/O asso
ciated with the job.

Oct. 31, 2013

0007. In another aspect, a computer implemented method
is provided for implementation in a shared pool of resources.
More specifically, the shared pool of resources includes a
physical host in communication with at least one physical
machine Supporting one or more virtual machines. Status
information is collected from one or more of the virtual
machines. Local topology information of a hierarchical orga
nization of a shared pool of resources represented by the
physical and virtual machines is periodically gathered and
organized. More specifically, the organized topology infor
mation is stored in the shared pool of resources. Utilization of
storage resources and virtual machines represented in the
topology are assessed. A job is assigned to one or more select
virtual machines in response to the topology and the assess
ment of the storage resources. Accordingly, the job assign
ment Supports efficient performance responsive to both the
topology and the storage resource utilization assessment.
0008. Other features and advantages of this invention will
become apparent from the following detailed description of
the presently preferred embodiment of the invention, taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0009. The drawings referenced hereinform a part of the
specification. Features shown in the drawings are meant as
illustrative of only some embodiments of the invention, and
not of all embodiments of the invention unless otherwise
explicitly indicated.
0010 FIG. 1 depicts a cloud computing node according to
an embodiment of the present invention.
0011 FIG. 2 depicts a cloud computing environment
according to an embodiment of the present invention.
0012 FIG.3 depicts abstraction model layers according to
an embodiment of the present invention.
0013 FIG. 4 depicts a block diagram illustrating the archi
tecture for using cloud aware MapReduce.
0014 FIG. 5 depicts a flow chart illustrating allocation of
resources and management of data and virtual machine place
ment.

0015 FIG. 6 depicts a flow graph illustrating sample net
work topology for data placement.
0016 FIG. 7 depicts a flow graph for sample data place
ment.

0017 FIG. 8 depicts a flow graph for virtual machine
placement.
0018 FIG. 9 depicts a table with values assigned to the
flow graph for virtual machine placement and node categori
Zation.

0019 FIG. 10 depicts a flow chart illustrating a process for
assessing and leveraging the physical and virtual machine
topology in a shared pool of resources.
0020 FIG. 11 depicts a flow chart illustrating steps to
Support the aspect of leveraging the storage topology of the
shared pool of resources.
0021 FIG. 12 depicts a block diagram illustrating tools
embedded in a computer system to Support a technique
employed for assessment of resource utilization for use in
assignment of a job within a shared pool of resources.
0022 FIG. 13 depicts a block diagram showing a system
for implementing an embodiment of the present invention.

US 2013/0290957 A1

DETAILED DESCRIPTION

0023. It will be readily understood that the components of
the present invention, as generally described and illustrated in
the Figures herein, may be arranged and designed in a wide
variety of different configurations. Thus, the following
detailed description of the embodiments of the apparatus,
system, and method of the present invention, as presented in
the Figures, is not intended to limit the scope of the invention,
as claimed, but is merely representative of selected embodi
ments of the invention.
0024. The functional unit(s) described in this specification
has been labeled with tools in the form of manager(s) and
director(s). A manager or director may be implemented in
programmable hardware devices such as field programmable
gate arrays, programmable array logic, programmable logic
devices, or the like. The manager(s) or director(s) may also be
implemented in software for processing by various types of
processors. An identified manager or director of executable
code may, for instance, comprise one or more physical or
logical blocks of computer instructions which may, for
instance, be organized as an object, procedure, function, or
other construct. Nevertheless, the executable of an identified
manager or director need not be physically located together,
but may comprise disparate instructions stored in different
locations which, when joined logically together, comprise the
managers and directors and achieve the stated purpose of the
managers and directors.
0025 Indeed, a manager or director of executable code
could be a single instruction, or many instructions, and may
even be distributed over several different code segments,
among different applications, and across several memory
devices. Similarly, operational data may be identified and
illustrated herein within the manager or director, and may be
embodied in any suitable form and organized within any
suitable type of data structure. The operational data may be
collected as a single data set, or may be distributed over
different locations including over different storage devices,
and may exist, at least partially, as electronic signals on a
system or network.
0026 Reference throughout this specification to "a select
embodiment,” “one embodiment,” or “an embodiment'
means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at
least one embodiment of the present invention. Thus, appear
ances of the phrases “a select embodiment,” “in one embodi
ment,” or “in an embodiment” in various places throughout
this specification are not necessarily referring to the same
embodiment.
0027. Furthermore, the described features, structures, or
characteristics may be combined in any suitable manner in
one or more embodiments. In the following description,
numerous specific details are provided, such as examples of a
topology manager, a hook manager, a storage topology man
ager, a resource utilization manager, an application manager,
a director, etc., to provide a thorough understanding of
embodiments of the invention. One skilled in the relevant art
will recognize, however, that the invention can be practiced
without one or more of the specific details, or with other
methods, components, materials, etc. In other instances, well
known structures, materials, or operations are not shown or
described in detail to avoid obscuring aspects of the invention.
0028. The illustrated embodiments of the invention will be
best understood by reference to the drawings, wherein like
parts are designated by like numerals throughout. The follow

Oct. 31, 2013

ing description is intended only by way of example, and
simply illustrates certain selected embodiments of devices,
systems, and processes that are consistent with the invention
as claimed herein.

0029. A cloud computing environment is service oriented
with a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes. Referring now to FIG. 1, a schematic of an example of
a cloud computing node is shown. Cloud computing node
(10) is only one example of a suitable cloud computing node
and is not intended to suggest any limitation as to the scope of
use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node (10) is
capable of being implemented and/or performing any of the
functionality set forth hereinabove. In cloud computing node
(10) there is a computer system/server (12), which is opera
tional with numerous other general purpose or special pur
pose computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with com
puter system/server (12) include, but are not limited to, per
sonal computer systems, server computer systems, thin cli
ents, thick clients, hand-held or laptop devices,
multiprocessor systems, microprocessor-based systems, set
top boxes, programmable consumer electronics, network
PCs, minicomputer systems, mainframe computer systems,
and distributed cloud computing environments that include
any of the above systems or devices, and the like.
0030 Computer system/server (12) may be described in
the general context of computer system-executable instruc
tions, such as program modules, being executed by a com
puter system. Generally, program modules may include rou
tines, programs, objects, components, logic, data structures,
and so on that perform particular jobs or implement particular
abstract data types. Computer system/server (12) may be
practiced in distributed cloud computing environments where
jobs are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system Storage
media including memory storage devices.
0031. As shown in FIG. 1, computer system/server (12) in
cloud computing node (10) is shown in the form of a general
purpose computing device. The components of computer Sys
tem/server (12) may include, but are not limited to, one or
more processors or processing units (16), a system memory
(28), and a bus (18) that couples various system components
including system memory (28) to processor (16). Bus (18)
represents one or more of any of several types of bus struc
tures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
or local bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus. Computer
system/server (12) typically includes a variety of computer
system readable media. Such media may be any available
media that is accessible by computer system/server (12), and
it includes both volatile and non-volatile media, removable
and non-removable media.

US 2013/029.0957 A1

0032 System memory (28) can include computer system
readable media in the form of Volatile memory, Such as ran
dom access memory (RAM) (30) and/or cache memory (32).
Computer system/server (12) may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage sys
tem (34) can be provided for reading from and writing to a
non-removable, non-volatile magnetic media (not shown and
typically called a “hard drive”). Although not shown, a mag
netic disk drive for reading from and writing to a removable,
non-volatile magnetic disk (e.g., a "floppy disk’), and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In Such instances, each
can be connected to bus (18) by one or more data media
interfaces. As will be further depicted and described below,
memory (28) may include at least one program product hav
ing a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

0033 Program/utility (40), having a set (at least one) of
program modules (42), may be stored in memory (28) by way
of example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating systems, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen
tation of a networking environment. Program modules (42)
generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.
0034 Computer system/server (12) may also communi
cate with one or more external devices (14). Such as a key
board, a pointing device, a display (24), etc.; one or more
devices that enable a user to interact with computer system/
server (12); and/or any devices (e.g., network card, modem,
etc.) that enable computer system/server (12) to communicate
with one or more other computing devices. Such communi
cation can occur via Input/Output (I/O) interfaces (22). Still
yet, computer system/server (12) can communicate with one
or more networks Such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter (20). As depicted,
network adapter (20) communicates with the other compo
nents of computer system/server (12) via bus (18). It should
be understood that although not shown, other hardware and/
or Software components could be used in conjunction with
computer system/server (12). Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.
0035 Referring now to FIG. 2, illustrative cloud comput
ing environment (50) is depicted. As shown, cloud computing
environment (50) comprises one or more cloud computing
nodes (10) with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone (54A), desktop computer (54B),
laptop computer (54C), and/or automobile computer system
(54N) may communicate. Nodes (10) may communicate with
one another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Commu
nity, Public, or Hybrid clouds as described hereinabove, or a
combination thereof. This allows cloud computing environ
ment (50) to offerinfrastructure, platforms and/or software as
services for which a cloud consumer does not need to main

Oct. 31, 2013

tain resources on a local computing device. It is understood
that the types of computing devices (54A)-(54N) shown in
FIG. 2 are intended to be illustrative only and that computing
nodes (10) and cloud computing environment (50) can com
municate with any type of computerized device over any type
of network and/or network addressable connection (e.g.,
using a web browser).
0036 Referring now to FIG.3, a set of functional abstrac
tion layers provided by cloud computing environment (50) is
shown. It should be understood in advance that the compo
nents, layers, and functions shown in FIG.3 are intended to be
illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and corre
sponding functions are provided: hardware and Software
layer (60), Virtualization layer (62), management layer (64),
and workload layer (66). The hardware and software layer
(60) includes hardware and software components. Examples
of hardware components include mainframes, in one example
IBM(R) zSeries(R) systems: RISC (Reduced Instruction Set
Computer) architecture based servers, in one example IBM
pSeries(R systems; IBM xSeries(R systems; IBM Blade
Center(R) systems; storage devices; networks and networking
components. Examples of Software components include net
work application server software, in one example IBM Web
Sphere(R) application server software; and database software,
in one example IBM DB2(R) database software. (IBM,
zSeries, pSeries, xSeries, BladeCenter, WebSphere, and DB2
are trademarks of International Business Machines Corpora
tion registered in many jurisdictions worldwide).
0037 Virtualization layer (62) provides an abstraction
layer from which the following examples of virtual entities
may be provided: virtual servers; virtual storage; virtual net
works, including virtual private networks; virtual applica
tions and operating systems; and virtual clients.
0038. In one example, management layer (64) may pro
vide the following functions: resource provisioning, metering
and pricing, user portal, service level management, and SLA
planning and fulfillment. The functions are described below.
Resource provisioning provides dynamic procurement of
computing resources and other resources that are utilized to
perform jobs within the cloud computing environment.
Metering and pricing provides cost tracking as resources are
utilized within the cloud computing environment, and billing
or invoicing for consumption of these resources. In one
example, these resources may comprise application Software
licenses. Security provides identity verification for cloud con
Sumers and jobs, as well as protection for data and other
resources. User portal provides access to the cloud computing
environment for consumers and system administrators. Ser
Vice level management provides cloud computing resource
allocation and management such that required service levels
are met. Service Level Agreement (SLA) planning and full
fillment provides pre-arrangement for, and procurement of
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.
0039 Workloads layer (66) provides examples of func
tionality for which the cloud computing environment may be
utilized. Examples of workloads and functions which may be
provided from this layer include, but is not limited to: map
ping and navigation, Software development and lifecycle
management, virtual classroom education delivery, data ana
lytics processing, job processing, and processing one or more
jobs responsive to the hierarchy of virtual resources within
the cloud computing environment.

US 2013/029.0957 A1

0040. A virtual machine is a software and/or hardware
implementation of a computer that executes programs similar
to a physical machine. The virtual machine Supports an
instance of an operating system along with one or more appli
cations to run in an isolated partition within the computer. In
one embodiment, the virtual machine enables different oper
ating systems to run in the same computer simultaneously.
One physical machine may support multiple virtual
machines. Multiple operating systems can run in the same
physical machine, and each of the virtual machines may pro
cess jobs with different operating systems. Accordingly, the
use of one more virtual machines associated with a single
physical machine supports efficient use of hardware while
processing multiple jobs.
0041) Efficient use of a virtual machine configuration in a
cloud computing system is challenging due to the distributed
nature of the physical topology of the physical machines, i.e.
nodes. More specifically, the concerns pertain to a assessing
and exposing the physical topology underlying the virtual
topology of the cloud computing system and leveraging job
processing responsive to the physical and virtual topology.
0042. A cloud platform, referred to herein as CAM, is
provided to combine a cluster file system with a resource
schedule. CAM adopts a three level approach to avoid place
ment anomalies, the three levels include data placement, Vir
tual machine-job placement, and job placement. With respect
to data placement, data is placed within the cluster based on
offline profiling of the jobs that most commonly run on the
data. Job placement is affected by CAM selecting the best
possible physical node(s) to place the sets of virtual machines
assigned to a job. In order to further minimize the possibility
of a placement anomaly, CAM exposes otherwise hidden
compute, storage, and network topologies to the job Sched
uler Such that it make optimal job assignments. CAM recon
ciles resource allocation with a variety of other competing
constraints, such as storage utilization, changing CPU load
and network link capacities using a flow-network based algo
rithm that is able to simultaneously reduce the specified con
straints for both initial placement and for readjusting under
virtual machine and data migration.
0043 FIG. 4 is a block diagram (400) illustrating the over

all architecture for using CAM. The physical resources Sup
porting the cloud consist of a cluster of physical nodes with
local storage directly attached to the individual nodes. As
shown, CAM uses a filesystem, which in one embodiment
may be a General Parallel File System-Shared Nothing Clus
ter, (410) to provide its storage layer. GPFS-SNC is designed
to be a cloud storage platform, which Supports timely and
resource-efficient deployment of virtual machines in the
cloud. GPFS-SNC manages the local disks directly attached
to a cluster of commodity physical machines. As shown, the
physical layer (420) is illustrated with three commodity
physical machines (430), (440), and (450). The quantity of
physical machines shown herein is for illustrative purposes.
In one embodiment, the quantity may include a smaller or
larger quantity of commodity physical machines. Each of
these machines has a local disk (432), (442), and (452),
respectively. Filesystem (410) supports co-locating all blocks
of a file at one location, rather than Stripping the file across the
network. This enables a virtual machine I/O request to be
serviced locally from the stored location instead of remotely
from physical hosts across the network. CAM leverages this

Oct. 31, 2013

feature to ensure that co-located virtual machine images are
stored at one location and can be accessed efficiently.
0044 Filesystem (410) also supports an efficient block
level pipelined replication scheme, which guarantees fast dis
tributed recovery and high I/O throughput through fast par
allel reads. This feature is useful for CAM for achieving
efficient failure recovery. In addition, filesystem (410) speci
fies a user level application program interface, API that can be
used to query the physical location of files. CAM uses this
API to get actual block location information for determining
storage closeness for data and virtual machine placement.
0045 CAM employs three components to provide topol
ogy awareness. As shown, a server (460) is provided in com
munication with the physical layer (420). The server (460),
also referred to herein as the CAM topology server, provides
topology information required to enable a scheduler to make
optimal job assignment. Information exposed by the server
(460) consists of network and storage topologies, and other
dynamic node-level information, such as CPU load. Further
as shown, each of the physical machines (430), (440), and
(450) has an agent (434), (444), and (454), respectively. Each
agent runs on its respective physical machine and periodically
collects and conveys to the server (460) a variety of pieces of
data about the respective machine. Such as utilization of out
bound and inbound network bandwidth, I/O utilization, and
CPU, memory, and storage load. The server (460) consoli
dates dynamic information it receives from the agents (434),
(444), and (454), and serves it along with topology informa
tion about each job running in the cluster. The topology infor
mation is derived from existing virtual machine placement
configuration. A job scheduler (470) interfaces with the
server (460) to obtain accurate and current topology informa
tion. The scheduler (470) readjusts job placement accord
ingly whenever a change in the configuration is observed.
Accordingly, the job Scheduler leverages the storage and
physical host resource utilization in CAM.
0046 Network topology information is represented by a
distance matrix that encodes the distance between each pair
of virtual machines as cross-rack, cross-node, or cross-virtual
machine. When two virtual machines are placed on the same
node, they are connected through a virtual network connec
tion. By virtue of the fact that the virtual machines share the
same node hardware, the virtual network provides a high
speed medium that is significantly faster than the inter-node
or inter-rack links. Network traffic between the virtual
machines on the same node does not have to pass through the
hardware link. The network virtual device forwards the traffic
in-memory through highly optimized ring buffers.
0047 Storage topology information is provided as a map
ping between each virtual device containing the dataset and
the virtual machine to which it is local. In a native hardware
context, a disk attached to a node can be directly accessed
through a PCI bus. In the cloud, however, the physical blocks
belonging to a virtual machine image attached to a virtual
machine could be located on a different node. Even though a
virtual device might appear to be directly connected to the
virtual machine, the image file backing the device could be
across the network, and potentially closer to another virtual
machine in the cluster than the one it is directly attached to.
The server (460) queries the physical image location through
an API and presents the information to the scheduler (470).

US 2013/029.0957 A1

0048 Examples of specific API provided by the server
(460) is described in Table 1 below:

API

Int get VM distance
(string Vm1, string Vm2)
struct block location
get block location
(string Src, long offset,
long length)
int get Vm networking
(string Vm, struct
networkinfo)

TABLE 1.

Description

Returns the distance between two virtual
machines
Returns the actual location of blocks

Returns the network utilization
information of physical host on which the
virtual machine is running

int get Vm diskinfo Returns disk utilization information
(string Vm, string device,
struct diskinfo)
int get Vm cpuinfo
(string Vm, struct cpuinfo)

Returns CPU utilization information of
he physical host on which the virtual
machine is running

The instruction get Vm distance, provides job to the job
scheduler (470) with hints of the network distance between
two virtual machines. The distance is estimated based on
observed data transfer rates between the virtual machines,
and in one embodiment is expressed in units of bandwidth.
The instruction get block location, Supports getting the
actual block location instead of the location of a virtual
machine, thereby guaranteeing locality. The instructions get
Vm networkinfo, get Vm diskinfo, and get Vm cpuinfo
facilitate the job scheduler (470) with respect to querying the
I/O and CPU contention information related to network and
disk utilization. In one embodiment, the scheduler (470) can
leverage this additional information to make Smarter deci
sions, including in one embodiment placing I/O intensive
jobs on physical hosts that have idle I/O resources.
0049 FIG. 5 is a flow chart (500) illustrating allocation of
resources and management of data and virtual machine place
ment. As described, CAM is a cloud platform with specific
interfaces and Support for running MapReduce jobs. A dataset
to be processed is initially placed on a general purpose file
system (GPFS). More specifically, storage and compute
resources are not segregated. A MapReduce job is Submitted
by providing the application, e.g. relevant java class files,
indicating a previously uploaded dataset corresponding to the
job, and the number and type of virtual machines to be used
for the job (502). In one embodiment, each virtual machine
Supports several MapReduce jobs slots depending on the
number of virtual CPUs and virtual RAM allocated to the
virtual machine. The greater the number of virtual machines
assigned to a job, the faster the job is completed.
0050 CAM determines an optimal placement for the set of
new virtual machines requested (504) by considering factors
including, but not limited to, current workload distribution
among cluster node, distribution of the input datasets required
by the job, and the physical locations of the required master
virtual machine images. The virtual machine images required
to boot the virtual machines on the selected nodes are created
from the respective master images (506). In one embodiment,
a copy-on-write mechanism provided by the general purpose
filesystem is utilized for creating the virtual machine, as this
allows quickly provisioning a virtual machine image instance
without requiring a data copy of a master image. Following
step (506), job class files are copied into a cloned virtual
machine image (508). In one embodiment, the copying at Step

Oct. 31, 2013

(508) takes place by mounting the image as a loop-back file
system. Finally, the data images are attached to the virtual
machines and the respective files are mounted within the
virtual machine (510), as this enables jobs to access data
contained therein.
0051. In relationship to FIG. 4, each physical machine
(430), (440), and (450) is equipped with local disks (432),
(442), and (452), respectively. A distributed file system (410)
also referred to hereinas GPFS-SNC, is installed on top of the
physical machines (430), (440), and (450). The virtual
machine images (436), (446), and (456) are stored in the
distributed file system (410). In one embodiment, a cloud
manager allocates resources to jobs and manages data place
ment and virtual machine placement.
0.052 Placement of both data and virtual machines are
aspects to be considered with respect to cost. Specifically,
placement includes guaranteeing virtual machine closeness,
avoiding hotspots, and balancing physical storage utilization
according to different job types. Virtual machine closeness
expresses cost of accessing data and captures how data should
be placed with respect to its associated virtual machines to
minimize access times. The hotspot factor expresses the
expected load on a machine and identifies machines that do
not have enough computational resource(s) to support the
assigned virtual machines. To avoid a hotspot, data needs to
be placed on the least loaded machine. This can be determined
by measuring currently allocated computational resources to
the machine and adding to it the expected allocation require
ment of the virtual machines that would work with the data to
be placed on the machine. Finally, storage utilization
expresses a percentage of total physical machine storage
space that is in use.
0053. The following table, Table 2, illustrates a table
showing the significance of three factors outlined above that
affect performance of different workload.

TABLE 2

Virtual Machine Hotspot Storage
Job Type Closeness Factor Utilization

Map and Reduce Yes Yes Yes
Intensive
Map Intensive No Yes Yes
Reduce Intensive No No Yes

For workloads that are both Map and Reduce intensive,
related data should be placed close together and on the least
loaded machine. For Map intensive workloads, the data
should be placed on the least loaded machine, but does not
necessarily need to be placed close together due to the light
shuffle traffic in such workload. For Reduce intensive work
loads, the only concern is the storage utilization of the
machine on which the virtual machine is to be placed. For all
types of workloads, it is desirable to place data evenly across
racks to minimize the need to rearrange data over time for
Supporting migrating virtual machines.
0054 The factors organized in Table 2 are used in con
structing a min-cost flow graph that encodes the factors. FIG.
6 is an illustrating of a flow graph (600) illustrating sample
network topology for data placement. More specifically, the
sample network topology consists of six physical nodes (p.
p, p. p. ps, pe) identified as (610), (612), (614), (616),
(618), and (620). The physical nodes are organized into three
racks (r, r, r) identified as (630), (632), and (634). A master

US 2013/029.0957 A1

rack r, e.g. Switch, identified as (650) connects the racks. In
one embodiment, the topology shown here can Support any
topology where network traffic can be estimated. The unit of
data placement is a virtual machine image to ensure that an
entire image is available at one location.
0055 Based on the flow graph of FIG. 6, a second flow
(700) graph is illustrated in FIG.7 for sample data placement.
Two data items d, (702), and d. (704), with requests for 5
and 2 virtual machine images, respectively, are submitted to
the cloud, e.g. share pool of resources. The number of virtual
machine images requested by a data item is denoted as the
data items supply for the flow graph. A sink node, S (790), is
added to the graph to Support the virtual machines. The num
ber of virtual machines that a sink node can handle is assigned
as a demand value. In the example shown herein, sink node
(790) has a demand of seven and is the only place that can
receive all of the flows. Each flow graph edge has two param
eters attached, including the capacity of the edge and the cost
for a flow to go through the edge. The data nodes, d (702) and
d (704), have outgoing links to each rack with virtual
machine closeness as costs. As shown, data noded (702) has
link (712) going to rack r (722), data noded (702) has link
(714) going to rackr (724), data noded (702) has link (716)
going to rackr (726), data noded (702) has link (718) going
to rack ra (728), data noded (704) has link (732) going to
rack r (722), data noded (704) has link (734) going to rack
r (724), data noded (704) has link (736) going to rack r.
(726), and data noded (704) has link (738) going to rack ra
(728). Six physical nodes are shown herein, specifically p
(740), p (742), p (744), p (746), p (748), and p (750). The
hotspot factor is encoded in the links (750), (752), (754),
(756), (758), and (760) from the racks to each physical node
p within its range. Even though ra (728) serves as a switch
between the racks, it is shown as directly connected to all the
physical nodes to ensure that the least loaded machine can be
chosen for Map intensive jobs without being constrained by
the network topology.
0056 All the physical nodes p (740), p (742), p (744),
p (746), ps (748), and p (750) are linked to the sink node
(790) with storage utilization as link costs. There is no direct
link from data item noded, to the associated physical host p,
This is to support Scaling up the system. The following table,
Table 3 shows the values assigned to the flow graph for data
placement.

TABLE 3

Data set d, Rack r. Physical host Sink

Supply X(Nd) O O —X(Nd)
Incoming link N. Nd, Rack r. Physical host
from
Outgoing link To rack To Physical To sink NA
(capacity, cost) (Nd, c) host (Cap. Y.)

(Capi, f.)

(0057. As shown, Nd, is the number of virtual machine
images requested by dataset de C. capture virtual machine
closeness. The cost, C. of outgoing link from the datasetd, to
physical host p, on which the data is placed on rack r is
estimated conservatively by the traffic in the shuffle phase as
follows:

Oct. 31, 2013

- a -l a ji = sizentenediated 8 numRducer * distancemanum Reducer

where distance, is the network distance between any two
nodes in the rack r.
The hotspot factor is captured using B, for physical node p,
and is estimated by the current and expected load as follows:

f, a (load+load-load.) exa

, where load and load represent the current load and
minimum current load, respectively, and a is a parameter that
acts as a knob to tune the weight of the hotspot factor with
respect to other costs. The expected load, load, is as fol exps
lows:

loads, (p/(1-p)*CRes(d.)

, where p ?u, and , represents the number of d’s associ
ated jobs that arrive within a given time interval, and Ll,
represents the mean time for each virtual machine to process
a block.
0058 Storage utilization of a physical node p, is captured
by Y, which is determined by the current storage utilization
compared with minimum storage utilization of all p.s. as
follows:

Y;=b*(storageUtilization p-storageUtilization.)

, where b is a parameter used to fine tune the weight of storage
utilization with respect to other factors. Finally with respect
to capacity, the following formula is employed as an estimate
of capacity for each physical host:

Cap-freespace/sizepart

0059. To enable the graph to capture the correlation
between virtual machine image placements for one data
request, a split factor parameter is provided to specify
whether flows from a node are allowed to be split across
different link. In one embodiment, the value of this parameter
is defined as true or false. For example, if the split factor for all
the links from d and d are trues, all flows from data nodes
will in whole go through one of ther, r2, rs, ra, but will not be
split between the racks. Once a new data upload request is
received, the cloud server updates the graph and computes a
global optimal solution based on the computed Solution for
the newly updated data. Accordingly, the scheduler is peri
odically updated based on the new Solution and can accom
modate varying loads.
0060. The goal of virtual machine placement is to maxi
mize global data locality and job throughput. Our model
considers both virtual machine migration and delayed sched
uling of a job as part of the optimal solution. Delaying a job is
used to explore better data locality opportunities that can arise
in the near future, while minimizing time wasted during the
waiting. Migrating a virtual machine belonging to a job
enables the scheduler to make room for other suitable jobs or
to explore better location opportunity.
0061 FIG. 8 is an illustration of a flow graph (800) for
virtual machine placement. Each job v, (802) and (804), is
submitted to the system at the source node with the number of
requested virtual machines, N, as the Supply value. The goal
of the virtual machine allocator is to maintain the job as
unscheduled, e.g. allocate 0, or allocate N. virtual machines
for each request. There is a single sink node S (890) with
demand equal to minus the Sum of the Supply. The request
from each job acts as a flow that goes either through the rack

US 2013/029.0957 A1

nodes (810), (812), (814), and (816), or through the unsched
uled nodes (820), (822), and (824), and finally to the sink
node (890). If a job is unscheduled, none of its virtual
machines are allocated. Otherwise, the flow goes through the
physical nodes (830), (832), (834), (836), (838), and (840).
Based on the min-cost solution, an allocation scheme with
min-cost can be derived. If the virtual machines are allocated
to the highest level rack, it implies that the virtual machines
can be allocated arbitrarily to any set of nodes in the virtual
machines under the rack.

0062. The job type information is modeled as the cost of
the edge from each job to the rack nodes in the flow based
graph. The higher level rack has higher cost than the lower
level rack in terms of reduced traffic. In one embodiment, the
cost of the highest level rack is estimated by a worst case
virtual machine arrangement with regard to the map and
reduced traffic. The cost of the edges to the unscheduled
nodes is set to be increased over time so that delayed jobs get
allocated sooner than recently submitted jobs. That cost also
controls when a job stops waiting for better locality and
therefore offers a knob to tune the trade-off between data
locality and latency. The aggregated unscheduled nodes con
trol how many virtual machines can remain unscheduled to
control system resource utilization and data locality trade-off.
The cost of the edges to running nodes set is increased over
time and job-progress aware.
0063 FIG. 9 is illustrates a table (900) with values
assigned to the flow graph for virtual machine placement and
node categorization. Various nodes in the graph are catego
rized into different types as shown in the table. A preferred
node set (pr.) (910) is a set of graph nodes that point to a set of
physical node p, that have a job, V, associated dataset stored
on them. An edge from a preferred node to physical node p,
has the cost of 0 and the capacity of the number of virtual
machine disk images stored on physical nodes p. A running
node set (ru) (920) is a set of dynamically added node that
point to physical nodes (p,s) that are currently hosting the jobs
(V) virtual machines. An edge from ru, top, has a cost of 0 and
the capacity of the number of virtual machines running on
physical nodes p. An unscheduled node set, u, (930) is a set
of nodes that provide information about currently unsched
uled jobs. The unscheduled node set, u, has an outgoing edge
with capacity N, and code of 0 to an unscheduled aggregator.
An unscheduled aggregator node, u, (940) has an outgoing
edge with cost 0 to the sink with capacity defined as:

zaaseized

where M is the total number of virtual machines that the
cluster can Support and M. denotes the number of idle
virtual machine slots allowed in the cluster.

0064. The rack node set, r, (950) represents a rack in the
topology of the cluster. It has outgoing links with cost 0 to its
sub-racks, or if it is at the lowest level, to physical nodes. The
links have capacity N that is the total number of virtual
machine slots that can be serviced by its underlying nodes.
The physical host node set, p, (960) has an outgoing link to
the sink with capacity being the number of virtual machines
that can be accommodated on the physical host N, and cost
0. The graph has a sink node (970) with demand represented
as X(N). The job node set, V (980) represents each job node
V, with supply N. It has multiple outgoing edges correspond
ing to the potential virtual machine allocation decisions for
the job set.

Oct. 31, 2013

0065. The edges include, a rack node set, a preferred node
set, a running node set, and an unscheduled node set. The rack
node set, r, has an edge to r that indicates that r can accom
modate V. The cost of the edge is p, that is calculated by the
map and reduce traffic cost. If the capacity of the edge is
greater than N, it implies that the virtual machines of v, will
be allocated on some preferred nodes on the rack. The pre
ferred node set, p. has an edge from job v, to the job wide
preferred nodes set, p, has capacity N and cost 0 The cost is
estimated by only the reduce phase traffic because in this case
map traffic is assumed to be zero. The running node set, r.
has a link from job v, capacity N and cost (p=cT, where T
is the time the job has been executing on the set of machines
and c is a constant used to adjust the cost relative to other
costs. The unscheduled node set, u, has an edge to the job
wide unscheduled nodeu, with capacity N, and coste, which
corresponds to the penalty of leaving job v, unscheduled.
e, dT, where T is the time that job v, is left unscheduled and
d is a constant used to adjust the cost relative to other costs.
The split factor for this link is marked as true, which means
the allocation of all the virtual machines are either satisfied or
delayed until the next round.
0.066 Based on an output of a min-cost flow solution, the
virtual machine allocation assignment can be obtained from
the graph by locating where the associated flow leads to for
each virtual machine request V. Flow to an unscheduled node
indicates that the virtual machine request is skipped for the
current round. If the flow leads to a preferred node set, the
virtual machine request is scheduled on that set of nodes. If
the flow foes to a rack node, it implies that the virtual
machines from the job are assigned to arbitrary hosts in that
rack.

0067. The number of flows set to a physical host through
rack nodes or preferred nodes set is lower than the number of
available virtual machines of each physical host. This is guar
anteed by the specified link capacity from physical host to
sink. Accordingly, all virtual machine requests that are allo
cated will be matched to a corresponding physical host.
0068 FIG. 10 is a flow chart (1000) illustrating a process
for assessing and leveraging the physical and virtual machine
topology in a shared pool of resources. The status of the
virtual machines in the shared pool is collected (1002). It is
recognized that one or more virtual machines may be
assigned to a single physical host, thereby Supporting the
virtualization of an underlying physical machine. Based upon
the collected data, associated topology information is gath
ered and communicated to a server at a root node of the
hierarchical organization of physical and virtual machines
(1004).
0069. Each virtual machine is provided with an embedded
agent, and each physical machine to which the virtual
machines are assigned is provided with an embedded moni
tor. A server machine is provided in communication with each
of the physical machines and functions to periodically collect
information from the embedded monitors of the underlying
physical machines. The embedded monitors function to sense
local topology, disk, and network information. In one
embodiment, the embedded monitors are in the form of soft
ware that runs on the physical machine to collect status data of
the related virtual machines. Similarly, the embedded agent
of each virtual machine communicates actual topology and
system utilization information to the server machine. Accord
ingly, each virtual and physical machine includes embedded

US 2013/029.0957 A1

tools to gather topology associated utilization information
and to convey the gathered information to the server machine.
0070 Following the step of gathering the topological data
at step (1004), the gathered data is organized in a single
location (1006). In one embodiment, the single location may
be a root node representing a physical server that is in com
munication with each of the virtual machines and their asso
ciated physical machine. As shown at step (1004), data com
municated from the embedded agents of the virtual machines
includes actual topology and system utilization information.
The data gathered at step (1004) includes a storage topology
underlying a virtual topology of the shared pool of resources
together with the associated resource utilization information.
With the knowledge of the gathered data, a job is assigned to
a select virtual machine in the shared pool with the assign
ment leveraging the organized storage topology information
(1008). In one embodiment, the job assignment at step (1008)
is designed to Support efficient performance of job associated
I/O. Accordingly, the process of gathering and organizing
local topology information enables jobs to be intelligently
assigned to a select virtual machine.
0071. The job assignment at step (1008) may be to one
virtual machine or to multiple virtual machines. Similarly, the
job may be a read job or a write job. With respect to both
scenarios, a virtual topological distance is returned in
response to the job assignment (1010). The virtual topologi
cal distance may be a distance between two or more virtual
machines when the job is assigned to multiple machines, or
the virtual topological distance may be between a virtual
machine and a block of data when the job is Supporting a
single virtual machine for a read or write job. Following step
(1010), it is determined if the returned topological distance is
between at least two virtual machines (1012). A positive
response to the determination at step (1012) is followed by
creating a shared memory channel for inter-virtual machine
data communication between two virtual machines local to
the same physical machine (1014). The creation of the shared
memory channel supports efficient data transfer between the
two virtual machines. More specifically, memory copy may
be employed for communication between the virtual
machines, thereby avoiding communication across a virtual
network stack (1016). Conversely, a negative response to the
determination at step (1012) is followed by utilization of the
virtual network stack for communication between the virtual
machines Supporting the assigned job (1018). Accordingly,
the physical proximity of virtual machines may lend itself to
efficient transfer of inter-virtual machine communication.
0072 A physical machine supports the virtual machine
and data blocks support the job. The location of the data
blocks within the shared pool affects the assignment of the job
to the physical machine and associated virtual machine(s).
More specifically, an efficient use of resources in the shared
pool ensures a physical proximity of the physical machine to
the data blocks. In one embodiment, the job is assigned to a
physical machine in the same physical data center as the
Subject data blocks. Accordingly, part of the process of
assignment of the job at Step (1008) includes ascertaining a
physical location of the data blocks in the shared pool Sup
porting the job.
0073. In addition to the location of the blocks, the band
width of the underlying physical machine to Support the job is
critical. The step of leveraging the storage topology informa
tion at step (1008) may require one or more additional steps.
FIG. 11 is a flow chart (1100) illustrating the additional steps

Oct. 31, 2013

to Support the aspect of leveraging the storage topology of the
shared pool of resources. As described above, in response to
the storage topology, a virtual machine is designated to
receive the job for processing (1102). Prior to actual job
processing, utilization information of the physical machine
local to the virtual machine is ascertained (1104). The utili
Zation information includes, but is not limited to the process
ing unit and network utilization information. It is determined
if the underlying physical machine has the bandwidth and
capability to support the job (1106). A negative response to
the determination at step (1106) is followed by returned to
selection and assignment of a different virtual machine in the
shared pool. Conversely, a positive response to the determi
nation at step (1106) is an indication that the selected virtual
machine has both sufficient bandwidth to support the job and
a close topological distance to the physical location of the
data block(s) to support the job (1108). In one embodiment,
the close topological distance includes, but is not limited to,
data residing in the same data center as the virtual machine.
Accordingly, the aspect of leveraging the storage topology
includes an assessment of the operation of the machine
together with location of data to Support the job.
(0074 As shown in FIGS. 10-11, a method is provided to
employ the topological organization of the machines,
together with the location of data blocks to support the job, for
intelligent assignment of a job. The job is assigned to a
machine that has been assessed to Support efficient process
ing. FIG. 12 is a block diagram (1200) illustrating tools
embedded in a computer system to support a technique
employed for assessment of resource utilization for use in
assignment of a job within a shared pool of resources. Spe
cifically, a shared pool of configurable computer resources is
shown with a first data center (1210), a second data center
(1230), and a third data center (1250). Although three data
centers are shown in the example herein, the invention should
not be limited to this quantity of data centers in the computer
system. Each of the data centers represents a computing
resource. Accordingly, one or more data centers may be
employed to Support efficient and intelligent assignment of
jobs with respect to resource utilization and proximity to data
blocks in support of the job(s).
0075 Each of the data centers in the system is provided
with at least one server in communication with data storage.
More specifically, the first data center (1210) is provided with
a first server (1220) having a processing unit (1222), in com
munication with memory (1224) across a bus (1226), and in
communication with data storage (1228); the second data
center (1230) is provided with a second server (1240) having
a processing unit (1242), in communication with memory
(1244) across a bus (1246), and in communication with sec
ond local storage (1248); and the third data center (1250) is
provided with a third server (1260) having a processing unit
(1262), in communication with memory (1264) across a bus
(1266), and in communication with third local storage (1268).
The first server (1220) is also referred to herein as a physical
host. Communication among the data centers is Supported
across one or more network connections (1205).
(0076. The second server (1240) includes two virtual
machines (1232) and (1236). The first virtual machine (1232)
has an embedded agent (1232a) and the second virtual
machine (1236) has an embedded agent (1236a). In addition,
the second server (1240) includes a monitor (1234) to facili
tate communication with the first and second virtual
machines (1232) and (1236), respectively. The third server

US 2013/029.0957 A1

(1260) includes two virtual machines (1252) and (1256). The
first virtual machine (1252) has an embedded agent (1252a)
and the second virtual machine (1256) has an embedded
agent (1256a). In addition, the third server (1260) includes a
monitor (1254) to facilitate communication with the first and
second virtual machines (1252) and (1256), respectively.
Although only two virtual machines (1232) and (1236) are
shown in communication with the second server (1240) and
only two virtual machines (1252) and (1256) are shown in
communication with the third server (1260), the invention
should not be limited to these quantities, as these quantities
are merely for illustrative purposes. The quantity of the vir
tual machines in communication with the second and third
servers (1240) and (1260), respectively, may be increased or
decreased.

0077. As shown herein, each of the second and third serv
ers (1240) and (1260), respectively, supports two virtual
machines (1232), (1236) and (1252), (1256), respectively.
The monitor (1234) of the server (1230) collects status data
from each of the virtual machines (1232) and (1236). Monitor
(1234) communicates with embedded agents (1232a) and
(1236a) to collect virtual machine status from virtual
machines (1232) and (1236), respectively. Similarly, monitor
(1254) collects status data from each of the virtual machines
(1252) and (1256), and specifically embedded agents (1252a)
and (1256a), respectively.
0078. The first server (1220) is provided with a functional
unit (1270) having one or more tools to support intelligent
assignment of one or more jobs in the shared pool of
resources. The functional unit (1270) is shown local to the
first data center (1210), and specifically in communication
with memory (1224). In one embodiment, the functional unit
(1270) may be local to any of the data centers in the shared
pool of resources. The tools embedded in the functional unit
(1270) include, but are not limited to, a director (1272), a
topology manager (1274), a hook manager (1276), a storage
topology manager (1278), a resource utilization manager
(1280), and an application manager (1282).
0079. The director (1272) is provided in the shared pool to
periodically communicate with monitors (1234) and (1254)
to organize and retain in a single location a storage topology
underlying a virtual topology of the shared pool of resource,
together with associated resource utilization information.
More specifically, the communication of the director (1272)
with the monitors (1234) and (1254) supports gathering and
organization of the topology of the shared pool of resources.
By organizing and understanding the topology data, the direc
tor (1272) may leverage the resource utilization information
to intelligently assign a job to one or more of the shared
resources in the pool, and in a manner that Support efficient
performance of job associated I/O. Accordingly, the director
(1272) both gathers and leverages the topology to Support
efficient processing of read and write jobs in the shared pool
of resources.

0080. As described above, several managers are provided
to support the functionality of the director (1272). The topol
ogy manager (1274), which is in communication with the
director (1272), functions to return a virtual topological dis
tance data to the director (1272). Virtual topological distance
data includes, but is not limited to, a distance between two
virtual machines or a distance between a virtual machine and
a block of data. For example, two virtual machines in com
munication with the same server are considered in relatively
close proximity. However, a second virtual machine in com

Oct. 31, 2013

munication with a second server and a third virtual machine in
communication with a third server are considered relatively
distant in comparison to the two virtual machines in commu
nication with the same server. The storage topology manager
(1278), which is in communication with the director (1272),
functions to return a physical location of one or more data
blocks in support of a job in the shared pool of resource. In
one embodiment, the storage topology manager (1278)
returns the physical location of the data blocks to the director
(1272), thereby enabling the director to intelligently assign a
job to a virtual machine in response to the location of the
Subject data block(s). Accordingly, the topology manager
(1274) functions to address distances within the hierarchy
with respect to efficient job processing, and the storage topol
ogy manager (1278) functions to address the location of the
data block Supporting the job.
I0081. Three other managers are also provided, including a
resource utilization manager (1280), an application manager
(1282), and a hook manager (1274). The resource utilization
manager (1280) functions to address utilization of one or
more physical or virtual resources. Each resource has innate
limitations. The resource utilization manager (1280) returns
utilization information of a processing unit and network uti
lization information associated with the underlying physical
and virtual machines to the director (1272). The application
manager (1282), which is in communication with the
resource utilization manager (1280), assigns the job to a
virtual machine responsive to the resource utilization infor
mation. More specifically, the application manager (1282)
ensures that the job assignment to a machine in the topology
ensures the machine has a sufficient bandwidth to support the
job, as well as a sufficiently close topological distance to data
blocks to Support the job. Accordingly, both utilization and
bandwidth are accounted for by the resource utilization man
ager (1280) and the application manager (682), respectively.
I0082 In addition to the managers described in detail
above, the hook manager (674) functions to facilitate com
munication among virtual machines. More specifically, the
hook manager (674), which is in communication with the
director (672), is provided to create a shared memory channel
for inter-virtual machine communication. The shared
memory channel facilitates communication between two Vir
tual machines sitting on the same physical machine by
enabling data transfer between two Such virtual machines to
take place on the same memory stack, e.g. across the memory
channel. Accordingly, the shared memory channel created by
the hook manager (674) supports efficient communication of
data within the hierarchical structure of the shared pool of
SOUCS.

I0083. As identified above, the director (1272), topology
manager (1274), hook manager (1276), storage topology
manager (1278), resource utilization manager (1280), and
application manager (1282) are shown residing in the func
tional unit (1270) of the server (1220) local to the first data
center (1210). Although in one embodiment, the functional
unit (1270) and associated director and managers, respec
tively, may reside as hardware tools external to the memory
(1224) of server (1220) of the first data center (1210), they
may be implemented as a combination of hardware and soft
ware, or may reside local to the second data center (1230) or
the third data center (1250) in the shared pool of resources.
Similarly, in one embodiment, the director and managers may
be combined into a single functional item that incorporates
the functionality of the separate items. As shown herein, each

US 2013/029.0957 A1

of the director and manager(s) are shown local to one data
center. However, in one embodiment they may be collectively
or individually distributed across the shared pool of config
urable computer resources and function as a unit to assess the
topology of processing units and data storage in the shared
pool, and to process one or more jobs responsive to the hier
archy. Accordingly, the managers may be implemented as
software tools, hardware tools, or a combination of software
and hardware tools.
0084 As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident Software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0085. Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.
I0086 A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0087 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0088 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may

Oct. 31, 2013

execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
I0089 Aspects of the present invention are described above
with reference to flowchart illustrations and/or block dia
grams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0090 These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0091. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0092 Referring now to FIG. 13 is a block diagram (1300)
showing a system for implementing an embodiment of the
present invention. The computer system includes one or more
processors, such as a processor (1302). The processor (1302)
is connected to a communication infrastructure (1304) (e.g., a
communications bus, cross-over bar, or network). The com
puter system can include a display interface (1306) that for
wards graphics, text, and other data from the communication
infrastructure (1304) (or from a frame buffer not shown) for
display on a display unit (1308). The computer system also
includes a main memory (1310), preferably random access
memory (RAM), and may also include a secondary memory
(1312). The secondary memory (1312) may include, for
example, a hard disk drive (1314) and/or a removable storage
drive (1316), representing, for example, a floppy disk drive, a
magnetic tape drive, or an optical disk drive. The removable
storage drive (1316) reads from and/or writes to a removable
storage unit (1318) in a manner well known to those having
ordinary skill in the art. Removable storage unit (1318) rep
resents, for example, a floppy disk, a compact disc, a mag
netic tape, oran optical disk, etc., which is read by and written
to by removable storage drive (1316). As will be appreciated,

US 2013/029.0957 A1

the removable storage unit (1318) includes a computer read
able medium having stored therein computer software and/or
data.
0093. In alternative embodiments, the secondary memory
(1312) may include other similar means for allowing com
puter programs or other instructions to be loaded into the
computer system. Such means may include, for example, a
removable storage unit (1320) and an interface (1322).
Examples of such means may include a program package and
package interface (such as that found in video game devices),
a removable memory chip (such as an EPROM, or PROM)
and associated Socket, and other removable storage units
(1320) and interfaces (1322) which allow software and data to
be transferred from the removable storage unit (1320) to the
computer system.
0094. The computer system may also include a communi
cations interface (1324). Communications interface (1324)
allows software and data to be transferred between the com
puter system and external devices. Examples of communica
tions interface (1324) may include a modem, a network inter
face (Such as an Ethernet card), a communications port, or a
PCMCIA slot and card, etc. Software and data transferred via
communications interface (1324) are in the form of signals
which may be, for example, electronic, electromagnetic, opti
cal, or other signals capable of being received by communi
cations interface (1324). These signals are provided to com
munications interface (1324) via a communications path (i.e.,
channel) (1326). This communications path (1326) carries
signals and may be implemented using wire or cable, fiber
optics, a phone line, a cellular phone link, a radio frequency
(RF) link, and/or other communication channels.
0095. In this document, the terms “computer program
medium.” “computer usable medium, and “computer read
able medium' are used to generally refer to media Such as
main memory (1310) and secondary memory (1312), remov
able storage drive (1316), and a hard disk installed in hard
disk drive (1314).
0096 Computer programs (also called computer control
logic) are stored in main memory (1310) and/or secondary
memory (1312). Computer programs may also be received
via a communication interface (1324). Such computer pro
grams, when run, enable the computer system to perform the
features of the present invention as discussed herein. In par
ticular, the computer programs, when run, enable the proces
sor (1302) to perform the features of the computer system.
Accordingly, such computer programs represent controllers
of the computer system.
0097. The flowcharts and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowcharts
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented

Oct. 31, 2013

by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0098. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises' and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
0099. The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated. Accordingly, the enhanced
cloud computing model Supports flexibility with respect to
application processing and disaster recovery, including, but
not limited to, Supporting separation of the location of the
data from the application location and selection of an appro
priate recovery site.
0100. As described herein a platform is provided with a
resource scheduler to address performance degradation of
MapReduce jobs when running in the cloud environment.
Cloud aware MapReduce adopts a three level approach to
avoid placement anomalies due to inefficient resource allo
cation, including: placing data within the cluster that run jobs
that most commonly operate on the data, selecting the mode
appropriate physical nodes to place the set of virtual machines
assigned to a job, and exposing compute, storage, and net
work topologies to the scheduler. CAM uses a flow network
based algorithm that is able to reconcile resource allocation
with a variety of other competing constraints, such as storage
utilization, changing processor load and network link capaci
ties.

Alternative Embodiment

0101. It will be appreciated that, although specific
embodiments of the invention have been described hereinfor
purposes of illustration, various modifications may be made
without departing from the spirit and scope of the invention.
Accordingly, the scope of protection of this invention is lim
ited only by the following claims and their equivalents.
We claim:
1. A method comprising:
in a shared pool of resources, including a physical host in

communication with at least one physical machine Sup
porting one or more virtual machines, collecting virtual
machine status from one or more of the virtual
machines;

US 2013/029.0957 A1

gathering local topology information of the shared pool of
resources, including periodically communicating with
an embedded monitor of the physical machine;

organizing the gathered local topology information,
including a storage topology underlying a virtual topol
ogy and associated resource utilization information;

leveraging the organized topology information, including
responsively assigning a job to a select virtual machine
in the shared pool, including the job assignment Support
ing efficient performance of job associated I/O.

2. The method of claim 1, further comprising returning a
virtual topological distance associated with the job, the Vir
tual topological distance selected from the group consisting
of a distance between two virtual machines, and a distance
between a virtual machine and a block of data.

3. The method of claim 2, further comprising creating a
shared memory channel to support the job, the channel Sup
porting inter-virtual machine data communication between a
first virtual machine and a second virtual machine sitting on a
same physical machine.

4. The method of claim 3, wherein the shared memory
channel supports efficient data transfer for both the first and
second virtual machines.

5. The method of claim 1, wherein the step of leveraging
the organized storage topology information includes return
ing a physical location of one or more data blocks to Support
the job in the shared pool.

6. The method of claim 5, further comprising returning
utilization information of a processing unit and network uti
lization information of the physical machine local to the
virtual machine.

Oct. 31, 2013

7. The method of claim 6, wherein the step of assigning the
job to a virtual machine includes selecting a virtual machine
having Sufficient bandwidth and a close topological distance
to the physical location of the one or more data blocks to
Support the job.

8. A computer implemented method comprising:
in a shared pool of resources, including a physical host in

communication with at least one physical machine Sup
porting one or more virtual machines, collecting virtual
machine status from one or more of the virtual
machines;

periodically gathering local topology information of a hier
archical organization of resources represented by the
physical and virtual machines;

organizing the topology information;
assessing utilization of storage resources and virtual

machines represented in the topology; and
assigning a job to one or more select virtual machines in the

shared pool, with the job assignment Supporting efficient
performance responsive to the topology and resource
utilization assessment.

9. The method of claim 8, further comprising ascertaining
atopological distance associated with the job, the topological
distance selected from the group consisting of a distance
between two virtual machines, and a distance between a vir
tual machine and a block of data.

10. The method of claim 9, further comprising creating a
shared memory channel to support the job between a first
virtual machine and a second virtual machine sitting on a
same physical machine.

k k k k k

