
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0183493 A1

Kimpe

US 20070183493A1

(43) Pub. Date: Aug. 9, 2007

(54)

(76)

(21)

(22)

(86)

(60)

METHOD AND DEVICE FOR MAGE AND
VIDEO TRANSMISSION OVER
LOW-BANDWDTH AND HIGH-LATENCY
TRANSMISSION CHANNELS

Inventor: Tom Kimpe, Gent (BE)

Correspondence Address:
BACON & THOMAS, PLLC
625 SLATERS LANE
FOURTH FLOOR
ALEXANDRIA, VA 22314

Appl. No.: 10/567,307

PCT Filed: Nov. 25, 2005

PCT No.: PCT/BEOS/00173

S 371(c)(1),
(2), (4) Date: Mar. 7, 2007

Related U.S. Application Data

Provisional application No. 60/649,576, filed on Feb.
4, 2005.

Publication Classification

(51) Int. Cl.
H04B I/66 (2006.01)
H04N 7/2 (2006.01)

(52) U.S. Cl. 375/240.1; 375/240.26

(57) ABSTRACT

The present invention provides a method for transmission of
a images and/or video over bandwidth limited transmission
channels having varying available bandwidth, which method
comprises the use of a classification algorithm for decom
posing the images and/or video to be transmitted into
multiple spatial areas, each area having a specific image
type; detecting the image type of each of those areas
separately selecting for each of those areas an image and/or
Video encoding algorithm having a compression ratio. The
classification algorithm prioritizes each of the areas, the
classification algorithm increasing the compression ratio of
the image and/or video encoding algorithm dedicated to
spatial areas having lower priority in case of decreasing
bandwidth.

Patent Application Publication Aug. 9, 2007 Sheet 2 of 4 US 2007/0183493 A1

Patent Application Publication Aug. 9, 2007 Sheet 4 of 4 US 2007/0183493 A1

w

CD

O
N

i
s

US 2007/0183493 A1

METHOD AND DEVICE FOR MAGE AND VIDEO
TRANSMISSION OVER LOW-BANDWDTH AND
HIGH-LATENCY TRANSMISSION CHANNELS

TECHNICAL FIELD OF THE INVENTION

0001. The present invention relates to systems and meth
ods for transmission of high quality images and video over
(wireless) bandwidth limited, lossy and high-latency trans
mission channels. With "high quality images and video' is
typically meant "medical images and video'. More particu
larly, the invention relates to Systems and methods for
transmitting images and video over channels such as Wifi,
UWB, Bluetooth, DECT, ZigBee, ... and provides solutions
for typical problems such as overall low image quality at
higher compression ratio and high latency.

BACKGROUND OF THE INVENTION

0002 This invention is in the field of methods and
systems for transmitting images or video over channels
where there is a bandwidth limitation present, where the
channel possibly is lossy or where latency is important. The
general problem to solve is the transport of high-quality
images or video from one point to another. Because of the
bandwidth limitations of the channel used it may be neces
sary to tolerate Some decrease in image or video quality, this
is for instance the case when the image or video data is
compressed in a lossy way before sending it over the
channel. In that case the decompressed image or video
sequence will be of lower quality than the original image or
Video sequence. Frequently used compression schemes are
JPEG, JPEG2000, MPEG-2, ... Each of these compression
schemes has its advantages and disadvantages related to
compression ratio, complexity of the scheme, calculation
power needed, introduced latency, . . . and the best com
pression scheme to use also typically depends on the con
tents of the image or video that is compressed. For example:
a medical image would require another compression scheme
for optimal quality and compression ratio than a clip-art
picture. Especially for demanding applications such as
medical imaging a general decrease in image quality might
not be acceptable so the bandwidth limitations clearly are in
conflict with the need for high quality of at least the medical
image being transmitted.
0003. In case the transmission channel has a significant
bit-error-rate (if the channel introduces errors in the trans
mitted data) then the degradation of the image or video
quality might be totally unacceptable. Especially the com
bination of bit errors and compressed data typically intro
duces large errors in the decompressed data stream. This
problem is referred to as error resilience. One possible
Solution in case of channels with high bit-error-rate is to use
error detection codes or error correcting codes (ECC). These
codes allow for detecting and even correcting bit errors
within certain limitations. Examples of error correcting
codes are CRC (cyclic redundancy codes) and RS (Reed
Solomon codes).
0004 Apart from possible quality degradation compres
sion also adds some extra latency because it takes time to
compress and to decompress the stream. In some applica
tions latency is a big problem. This is in particular the case
if the data traffic is bi-directional. This is for example the
case if a server generates video sequences, this video data is

Aug. 9, 2007

transmitted to the client, and the client has the possibility to
interact with the server (by moving a mouse pointer for
instance). In that case a high latency will immediately be
visible as slow response of the system: it will take an
unacceptable long time before the result of an action (mouse
movement for example) of the client will take effect.
0005 Furthermore, the device that receives the image or
video data will typically be a portable device and therefore
will have a wireless interface to the server. This aspect of
portability results in extra complication what concerns
power consumption, signal integrity (varying signal quality
and possible loss of connection with the server) and security
aspects. Indeed, portable devices are normally battery pow
ered and to reach a useful battery operation time it is
required to minimize the power consumption as much as
possible. This conflicts with the bandwidth limitations of
typical transmission channels (Wifi 802.11.a?b/g/..., DECT,
ZigBee, UWB, ...): because of the low available bandwidth
a high compression ratio is needed and this typically
requires a complex compression Scheme. The complexity of
the compression scheme is directly related to power con
Sumption, as extra calculations require additional power.
Portable devices also suffer from varying signal quality.
With Wifi for instance, moving the device only a few meters
can result in only half the available bandwidth because of
complex reflections and inference of the wireless signal.
Worst case, the signal can even fade away completely (for a
limited time). In such a situation it is of course not desired
that the portable device cannot be used at that moment.
Because the data is transmitted wirelessly it is easier for
other people to receive the data. In case the data is confi
dential (such as medical images or patient data) this will
need extra precautions such as encryption algorithms.

SUMMARY OF THE INVENTION

0006. It is an object of the present invention to provide a
method and device to solve problems that currently exist
with transmission of image- and video transmission over
bandwidth-limited networks, in particular high-quality or
medical image- and video transmission. Such problems are
e.g., but not limited thereto, low overall image/video quality
when only a low bandwidth channel is available, severe
image degradation due to introduction of bit errors on the
channel and the problem of latency when communication is
bidirectional. The present invention will disclose a solution
based on automatic selection of the best codec type depend
ing on spatial location in the image, methods to improve
security and priority signaling in a multi-user environment,
methods to make maximum use of available calculation
power by automatically reconfiguring calculation blocks,
methods to reduce and hide high latency problems, and
methods to reduce power consumption for portable battery
operated devices.
0007. In a first aspect, the present invention provides a
method for transmission of images and/or video, in particu
lar e.g. high quality images and/or video, over bandwidth
limited transmission channels having varying available
bandwidth, between a server and multiple devices. With
“high quality images and/or video' is typically meant
“medical images and/or video'. Available bandwidth may be
varying due to the intrinsic bandwidth being varying e.g. in
case of wireless transmission, or, in case of a fixed band
width being present, due to variable load or variable

US 2007/0183493 A1

throughput. The method according to the present invention
comprises the use of a classification algorithm for each of
the images and/or video to be provided to a device, for:

0008 decomposing the images and/or video to be
transmitted into multiple spatial areas, each area having
a specific image type;

0009 detecting the image type of each of those areas
0010 separately selecting for each of those areas an
image and/or video encoding algorithm having a com
pression ratio.

0011. According to the present invention, each of the
devices are prioritized, and the classification algorithm
increases the compression ratio of the image and/or video
encoding algorithms dedicated to a device having lower
priority in case of decreasing bandwidth.
0012. According to embodiments of the present inven
tion, the prioritizing of the devices may be done based on the
applications accessed through each of the devices. Alterna
tively, according to embodiments of the present invention,
the prioritizing of the devices may be done based on the
identity of users using said devices, e.g. whether the user is
a doctor or an assistant. The method then may include a step
of user log-on to one of the devices. Alternatively, according
to embodiments of the present invention, the prioritizing of
the devices may be done based on location of the devices,
e.g. whether a device is in an emergency room or in a
consultation room.

0013 The method may be used in a hospital environ
ment.

0014. In a second aspect, the present invention provides
a method for securing transmission of data from a server to
a portable imaging device, the method comprising:
0.015 determining the exact position of the portable
imaging device with respect to an authorised area,

0016 based on determined the exact position of the
portable imaging device, determining whether the por
table device is authorized to receive specific data over a
predetermined transmission channel,

0017 transmitting, from the server to the portable imag
ing device, the specific data requested if authorisation is
granted, the portable imaging device having a display
aca.

0018. The method furthermore comprises the step of
removing at least from the display area at least confiden
tial data when the portable imaging device leaves the
authorised area.

0.019 According to embodiments of the present inven
tion, the method furthermore may be adapted for showing at
least on the display area at least confidential data when the
portable imaging device enters the authorised area. Accord
ing to embodiments of the present invention, the method
may furthermore be adapted for removing at least confiden
tial data from volatile and/or non-volatile memory elements
within the portable imaging device when the portable imag
ing device leaves the authorised area.
0020 Possibly, according to embodiments of the present
invention, the method may furthermore comprise encrypting
confidential data when the portable imaging device leaves

Aug. 9, 2007

the authorised area. According to embodiments of the
present invention, the method may comprise a step of
decrypting confidential data when the portable imaging
device enters the authorised area. According to embodi
ments of the present invention, the method may furthermore
comprise the using of a different transmission channel for
transmitting the requested data, the transmission channel
used depending on the determined the exact position of the
portable imaging device. According to embodiments of the
present invention, the portable imaging device may deter
mine which transmission channel to use for transmitting the
requested data. Alternatively, the server may determine
which transmission channel to use for transmitting the
requested data.

0021. The method may be used in a hospital environ
ment.

0022. In a third aspect, the present invention provides a
method for reducing latency in a client-server computer
system, the server being adapted for generating data at least
dependent on one or more parameter values, the method
comprising the steps of:

0023 predicting possible reachable future parameter
values, predicting possible future parameter values is
performed by the client, after which these predicted
parameter values are sent to the server;

0024 generating data corresponding to the predicted
parameter values, and sending this data to the client,
and

0025 the client caching this generated data corre
sponding to parameter values for future use.

0026. According to embodiments of the present inven
tion, the client may use the cached data when a correspond
ing parameter value is set. According to embodiments of the
present invention, the client may use the cached data when
a parameter value is set which falls within a predetermined
range around the parameter valued for which the cached data
had been generated.

0027. The method may be used in a hospital environ
ment.

0028. In a fourth aspect, the present invention provides a
method for transmission of images and/or video, in particu
lar e.g. high quality images and/or video, over bandwidth
limited transmission channels having varying available
bandwidth. With “high quality images and/or video' is
typically meant “medical images and/or video'. Available
bandwidth may be varying due to the intrinsic bandwidth
being varying e.g. in case of wireless transmission, or, in
case of a fixed bandwidth being present, due to variable load
or variable throughput. The method comprises the use of a
classification algorithm for

0029 decomposing the images and/or video to be
transmitted into multiple spatial areas, each area having
a specific image type;

0030) detecting the image type of each of those areas:

0031 separately selecting for each of those areas an
image and/or video encoding algorithm having a com
pression ratio.

US 2007/0183493 A1

0032. According to the present invention, the classifica
tion algorithm is adapted to prioritize each of the areas, the
classification algorithm increasing the compression ratio of
the image and/or video encoding algorithm dedicated to
spatial areas having lower priority in case of decreasing
bandwidth.

0033 According to embodiments of the present inven
tion, the method may be used in a hospital environment.
0034. In a fifth aspect, the present invention provides a
method for transmission of images and/or video, e.g. high
quality images and/or video, over a transmission channels
from a server to a client. With “high quality images and/or
video' is typically meant “medical images and/or video'.
The method comprises the steps of

0035) decomposing the images and/or video to be
transmitted into multiple spatial areas, each area having
a specific image type;

0036) detecting the image type of each of those areas:
0037 separately selecting for each of those areas an
image and/or video encoding algorithm using a code
for encoding the images and/or video of the area.
According to the embodiments of the invention, the
client is a reconfigurable device. The method further
comprises the step of reconfiguring this reconfigurable
device for decoding the images and/or video of the
aaS.

0038 According to embodiments of the present inven
tion, the method may further comprise the steps of

0039 adaptation of the encoding algorithms used for
the encoding, the adaptation being based on current or
predicted transmission channel properties;

0040 reconfiguring the reconfigurable device for
decoding the images and/or video of the areas, based on
the adapted image and/or video encoding algorithms.

0041 According to embodiments of the present inven
tion, all used image and/or video encoding algorithms may
be available at the reconfigurable device. Alternatively,
according to embodiments of the present invention, only
part of the image and/or video encoding algorithms may be
available at the reconfigurable device, whereas the method
further comprises the step of downloading image and/or
Video encoding algorithms not being available at the recon
figurable device. According to embodiments of the present
invention, the downloaded image and/or video encoding
algorithms may be saved at the reconfigurable device.
0042. According to embodiments of the present inven
tion, the image and/or video encoding algorithms to be
downloaded may be sent over a separate connection between
server and reconfigurable device.
0043. According to embodiments of the present inven
tion, the reconfiguration may be a partial reconfiguration of
the reconfigurable device. The reconfiguration may be done
from server.

0044) The method may be used in a hospital environ
ment.

0045. In a sixth aspect; the present invention provides a
method for transmission of images and/or video, e.g. high
quality images and/or video over bandwidth limited trans

Aug. 9, 2007

mission channels having varying available bandwidth. With
“high quality images and/or video' is typically meant
“medical images and/or video'. Available bandwidth may be
varying due to the intrinsic bandwidth being varying e.g. in
case of wireless transmission, or, in case of a fixed band
width being present, due to variable load or variable
throughput. The method comprises the use of a classification
algorithm for

0046) decomposing the images and/or video to be
transmitted into multiple spatial areas, each area having
a specific image type;

0047 detecting the image type of each of those areas
0048 separately selecting for each of those areas an
image and/or video encoding algorithm having a com
pression ratio.

The method further comprises the steps of
0049 encoding each of the areas by an image and/or
video encoding algorithm

0050 transmitting the encoded images and/or video;
0051 decoding each of the areas by an image and/or
video encoding algorithm;

0052 wherein prior to encoding at least one of the area is
provided with padding pixels, which padding pixels are
replaced by part of one of the other areas during decoding.
0053 According to embodiments of the present inven
tion, the padding pixels represent Zones where at least two
areas overlap.
0054 The method may be used in a hospital environ
ment.

BRIEF DESCRIPTION OF THE DRAWINGS

0055 FIG. 1 schematically shows a desktop comprising
an image and/or video for transmission over bandwidth
limited transmission channels having varying available
bandwidth.

0056 FIG. 2 schematically illustrates the use of a clas
sification algorithm for examination of a total area of an
image and/or video for transmission over bandwidth limited
transmission channels having varying available bandwidth.
0057 FIG. 3 schematically shows two areas overlapping
in an image and/or video for transmission over bandwidth
limited transmission channels having varying available
bandwidth.

0058 FIG. 4 schematically shows a hospital environment
wherein a number of security levels are defined.
0059 FIG. 5 schematically shows a hospital environment
wherein a number of transition Zones are defined

DETAILED DESCRIPTION

0060 According to a first aspect of the present invention,
a method and system are disclosed that allow for higher
overall image quality compared to existing methods, when
only a limited bandwidth is available. This is achieved by
decomposing the image/video to be transmitted into mul
tiple spatial. areas, each having a specific image type, and
detecting the image type of each of those areas and selecting

US 2007/0183493 A1

the optimal image/video codec for those areas. Selecting the
optimal image codec could mean optimizing on image
quality (PSNR, MSE), optimising on compression ratio,
optimizing on latency of the encoding/decoding process,
optimizing to Subjective image quality based on a model of
the human vision system . . . Decomposing the image/video
could mean splitting the image/video stream into rectangular
areas, each area having a specific image type. For example:
if the desktop of a PC is to be replicated somewhere else then
the desktop contents will have to be transmitted over a
channel and the desktop will be displayed again at the
receiving side. In case the channel is bandwidth-limited then
typically encoding (compression) will be performed before
sending the data over the channel and decoding (decom
pression) the data at the receiver side. The typical situation
is that the desktop will consist of multiple areas: for instance
there can be an area containing a taskbar, there can be an
area containing a text document, there can be an area
containing photographs, yet another area can contain a video
sequence and there can also be some part of the desktop
background visible. The present situation is that the desktop
will be compressed as a unit using some particular com
pression scheme. However, according to the present inven
tion, at the transmitter side one will detect that the desktop
100 as shown in FIG. 1 consists of several image types and
for each of those areas a different compression Scheme can
be used. For the taskbar area 101 one could for instance use
a lossy compression algorithm based on JPEG2000, for the
text document 102 one could use a simple run-length
encoding as this will compress text data well at low com
plexity, for the photograph 103 one could use a lossless
JPEG-LS scheme because one wants the photograph to be
displayed correctly and for the video area 104 one could use
a very complex MPEG-4 video compression codec that
achieves very high compression ratio but also introduces
high latency. The background area 105 can be heavily
compressed using JPEG or could even be replaced by a plain
background to save bandwidth. Detection of the image areas
and according types can be done automatically or with help
from the application generating the contents. In the first
situation a classification algorithm will examine the total
area to be transmitted and decompose the area into one or
more objects of specific image type. The classification
algorithm can be for instance a neural network classifier, a
pattern recognition algorithm, a histogram analysis algo
rithm, an algorithm that takes information from the operat
ing system about window locations and types, . . . It is also
possible that the classification algorithm takes the temporal
component into account. In other words: it is much easier to
identify a video/movie stream if one also compares con
secutive frames instead of only examining the data within
individual frames. For instance in FIG. 2 the classification
algorithm 210 discovers that the entire area 200 actually
consisted of 4 objects. A first object is a rectangular window
201 that contains text and that has specific location and
shape. In this particular situation location could be the
coordinates of the upper left corner and the size could be
height and width. However the present invention is in no
way limited by the exact representation method. The second
object is a rectangular window of type photograph 202 at
specific location x' and with size Z. The third object 203
contains a video sequence. The object is of irregular shape
231 but it will be represented as a rectangle 232 with specific
location and shape. In this situation also the pixels 233 that

Aug. 9, 2007

will contain padding will be described, possibly by listing
these pixels 233 or by describing the pixels as a collection
of one or more other objects (for instance the padding area
consists of a number of rectangles with specific location and
size and triangles with specific location and size). In the
same way a last object detected is of type background 204.
The object also is of irregular shape but for the ease of
encoding it will be represented as a rectangle with specific
location and size. Again, also the padding pixels will be
described. The classification algorithm can work on a frame
by-frame basis or can take multiple frames as input. Taking
multiple frames as input makes it for example a lot easier to
detect video sequences. As an alternative to only using a
classification algorithm, the applications generating the
images/video could give a hint to the encoding algorithm (or
alternatively the user of the application could give this
information to the classification algorithm or to the appli
cation that then passes it to the classification algorithm). In
this case the application that generates the text window for
instance can communicate to the classification algorithm
that the application generates a window with image type text
and that this window has rectangular shape with specific
position and size. Of course it is possible that the application
communicates only part of this information (for instance
only image type) or that it communicates more information
(for instance desired compression algorithm, sensitivity to
latency for this application, maximum allowed latency,
confidentiality level of the data or desired encryption algo
rithm, priority level, desired transmission protocol, desired
transmission medium, ...). It is also possible that only some
of the applications communicate information to the classi
fication algorithm, for the other areas of the image/video to
be encoded the classification algorithm will then classify
without the hints.

0061 The object areas can be rectangular or could take
any shape. It is also possible that one simplifies the detected
area to a less complex shape. When Supposing for instance
that a circular area is detected containing a video sequence,
and then it could allow for more simple compression (if the
compression codec only accepts specific area shapes) if that
circular area is extended to a rectangular area containing the
circle and encoding that rectangular area. In that case
padding of data can be interesting: the pixels in the rectan
gular area that are not within the circular area could be set
to a constant value or any other specific pattern for the
encoding purpose. It is also possible to overlay multiple
areas in this way, as shown in FIG. 3: Suppose there area two
applications, each having a rectangular window, each having
a specific image type, but one part of the first window is
hidden with a part of the second window, then it could be
interesting still to encode window A as a unit, but where the
part 301 of window A that is covered by window B is
replaced by padding pixels. Of course at the decoding side,
one should replace the padding pixels in window A again
with the pixels of window B that are on top of window A.
The advantage of this approach is that since window A
contains one type of image after replacing pixels of window
B, the encoding of window A as a unit will be efficient
without the need to split window A in multiple rectangular
Zones. Indeed, the alternative is to split window A into two
rectangular areas 302, 303 having the same type of image,
and then also encoding window B as a unit In case one
simplifies the detected area to a less complex shape one
should be careful to avoid compression artifacts at the

US 2007/0183493 A1

borders. Indeed: then one particular type of object can be
encoded using two different compression schemes because
the object shape does not match the simplified detected area.
In that situation border/blocking artifacts can be visible. To
avoid this problem one could pick compression algorithms
with same characteristics (quality, type of compression
artifacts. . . .) so that the border will not be visible.
0062 Based on the image types (also called object types)
detected by the classification algorithms and possibly based
on information provided by the applications that generate
the images/video, the individual objects then are encoded
with different image/video compression algorithms. These
encoded data streams are then transmitted over the channel
and at the receiver side they are decoded again and the
objects are regenerated. Finally the complete image/video is
reconstructed based on the composition of the individual
objects where the effect of padding pixels is removed (for
instance in case of overlaying windows or objects repre
sented by other shapes than what the object in reality was).
It is to be noted that the selected encoding algorithm could
also comprise using specific error detecting or correcting
codes, using specific encryption algorithms, using specific
transmission protocols (UDP or TCP for instance), using
specific transmission channels (for instance selection
between Bluetooth or Wifi or UWB), . . .
0063. It is to be noted that the “image type' can be very
specific. In the case of medical imaging for instance (but not
limited to) one could distinct between "monochrome Chest
Image”, “Mammogram”, “colour CT image”, “colour ultra
sound video sequence”, “rendered 3D object' . . . The
present invention is of course not limited to any specific
image types. Also an image type could refer to a particular
type of application (such as a PACS viewing application in
medical imaging) or even to one particular application (or
even version of application) of a specific vendor.

0064 Of course decomposing the image/video stream to
be transmitted is done periodically (can be done for each
individual frame or only once every few frames) so that
changes in object types can be detected and taken into
account. Alternatively the operating system or the applica
tions can give a hint to the classification algorithm if a
change has occurred. In other words: if the operating system
creates, or changes State (position, size . . .) of a window
then it informs the classification algorithm so that a new
object detection pass can be started. Also the application
itself can inform the classification algorithm if its contents
type has changed.

0065 According to another aspect of the present inven
tion, the used encoding algorithms can be adapted in real
time based on the current channel characteristics. Channel
characteristics are for instance but not limited to: currently
available bandwidth, variance on available bandwidth or
statistics (for instance but not limited to min, max, mean,
variance, distribution, time behaviour, . . .) of available
bandwidth, bit error statistics of the channel, statistics of
latency introduced by the transmission channel. . . . This
could mean for instance that if the available bandwidth of
the channel decreases, that then some (for specific object
types) or all of the image/video compression codecs will be
reconfigured in order to have higher compression ratio or
that other codecs are selected for some or all object types.
Alternatively if the number of bit errors introduced by the

Aug. 9, 2007

channel increases, then one could use better error detection
codes or error correcting codes for one or more object types
that will require more bandwidth but will result in higher
quality at the receiver side. One could even measure (or
estimate) the bit error rate at the receiver and then ask the
sending device to change the error correcting code so that at
least a minimum quality level (bit error rate for instance) is
obtained. Also the nature of the bit errors (burst errors, single
bit errors ...) could be used to automatically select the most
suited error correction or error detection code. Alternatively
if the latency on the channel increases, then one could select
compression algorithms with lower latency for one or more
object types in order to have lower overall latency (latency
of encoding/decoding and of the transmission channel).
Alternatively if the variance of the available bandwidth is
rather high then one could increase the compression ratio for
one or more object types in order to avoid temporary
congestion of the network. In this case one could increase
the compression ratio for object types that are considered to
have lower priority (such as text data) or for applications that
communicated “low priority'. One could also assign priority
to specific devices. For instance if a device is a portable
display that receives images from a server through a wireless
network and if there are multiple devices, then it is inter
esting to also assign priority to particular devices. For
instance if in a hospital environment those devices are used
both in the emergency room and also in regular doctor's
offices then it is obvious to give priority to the devices used
in the emergency room if available network bandwidth is
low. Giving priority to a device could mean in this case
assigning more bandwidth to higher-priority devices so that
image quality is higher and user interaction is more fluently
or could mean reducing available bandwidth for lower
priority devices or even disconnect (temporarily) the devices
with lowest priority completely so that more bandwidth is
available for high-priority devices. Deciding whether a
device is high or low priority could be done by assigning
priority to physical devices: for instance, devices intended
for use in emergency room could have built-in higher
priority level. Alternatively it could mean deciding on pri
ority based on the location where the device is being used
(for instance the same device has higher priority if used in
the emergency room than if used in a doctors office).
Alternatively it could mean giving priority based on the user
that is using the device: for instance if a doctor is logged on
to the device (or uses the device, this can be checked through
password, fingerprint reader, iris Scan, Voice recognition,
photo ID, ...) then this device will have higher priority than
if a nurse was logged on to this device (or uses the device).
Determining who uses the device could be by means of a
logon procedure with username and password or by means
of a fingerprint reader or by means of a security token, . . .
Alternatively priority of a device could be determined based
on the applications accessed through that device. For
example: if a device is only used at a particular moment in
time to read email then this device will be assigned lower
priority than same device when used to review medical
images. Of course any combinations of one or more methods
to determine priority as explained above are also possible.
0066. It is to be noted that measuring the total latency of
the system can best be done by actually measuring the time
between an action of the user and the response to this action.
For instance, when the user performs an action (such as for
instance but not limited to, a mouse movement, a keyboard

US 2007/0183493 A1

command, a mouse click, . . .) then a timer can be started
and the time can be measured until the modified image that
is result of the user action is actually displayed at the client
side. This measuring of latency can be done for the multiple
codecs that are Supported, for the available transmission
channels, for the available error detection/correcting codes,
... In this way clear information can be obtained about total
system latency. This information then can be used to con
figure the client-server system optimally. Another way of
measuring latency could be done by embedding signatures
in the images that are transmitted. In this case the client
would send a command to the server to start the latency
measurement procedure. When the server receives this com
mand then the server can embed a (possibly invisible for the
user) bitpattern in the image. The client then can look for this
bit pattern. The time from sending the “measure latency’
command to the server to the time where the bitpattern was
found is also an indication for the total latency of the system.
This method is less accurate however, because the server
performs an abnormal operation (embedding a bit pattern)
that is not necessarily a good indication for the latency of a
normal operation Such as moving a window. . . . Moreover,
at the client side the time when the bit pattern is detected is
not necessarily the time that the bit pattern becomes visible
for the user. Although somewhat less accurate, the second
method still models the codec latency pretty good as the
bitpattern is actually encoded and decoded by the codec that
is used. One has to be aware that the bit pattern can be
altered because of the compression/decompression, so care
should be taken to make sure that the client can even detect
the possibly altered bit pattern.
0067. According to another aspect of the present inven
tion methods are disclosed to increase security in case of
portable devices. With portable devices it is often the case
that information displayed on the devices is only intended to
be used in a specific environment and is not to be distributed
outside that environment. In a hospital environment for
instance the HIPAA regulations protect the privacy of the
patient by stating that medical data (including images) that
can be linked to a specific patient (for instance because the
patient name or ID is shown in the data) should not be
distributed unless it is necessary for treatment or in the
clinical interest of the patient (see the HIPAA regulations for
more details). For example: a mammogram (breast X-ray)
from a patient may only be shown on displays inside the
radiology department and not be distributed outside the
department unless all patient ID data is removed from the
image. In the past this was easy to achieve by making Sure
that only the workstations in the radiology department could
access the server with the medical images. If an image was
to be distributed outside the radiology department (for
instance to be reviewed by a colleague of another hospital)
then all patent ID was first removed before sending the
image. However, with portable devices and wireless net
works the physical barrier between departments cannot be
used anymore to protect patient privacy. Therefore, in one of
its embodiments, the present invention discloses a new
Solution. In each device a method/system is included to
determine the exact position of the device. This can be based
for instance on GPS (outside in open air) or on RFID-tokens
inside a building or any other method such as checking
which access point was used by the device. Yet another
method to obtain position is to check which access points
can reach the device. Typically each wireless access point

Aug. 9, 2007

can access (roughly) devices in a sphere with a specific
distance as diameter. By checking which access points can
access the specific wireless device and by measuring latency
to these access points one can easily limit the possible
locations where the portable device can be. As a refinement
one could replace the easy model that defines the range of an
access point to real measurement data instead of the easy
“sphere model. The exact method used to determine the
position is of course not relevant for the present invention.
Based on the exact position of the device the server will
determine whether or not a device is authorized to connect
to the server and/or to receive the specific data (for instance
a mammogram with patient ID present) that was asked for.
If authorization is granted then the server transmits the data
to the client over the (wireless) network but encrypted so
that only that particular client is able to decode the data. Of
course it is possible to add extra conditions to give autho
rization to a client to see specific data. Examples are a login
and password, a fingerprint Scan, a particular device ID. . .
. To enhance security it is possible to only transmit confi
dential information through a wireless access point that is
located inside the area where the data can be accessed. In
that way a possible attacker will need to be physically very
close already to the confidential area before having the
ability to attack the security system. Since the device is a
portable device it is required to avoid that the confidential
data is distributed outside the allowed area. This can be done
by automatically removing the confidential data from the
device if the device leaves the authorized area. For instance:
if a mammogram with patient ID data is shown on a portable
display and the radiologists leaves the radiology department
then the device should automatically remove the confidential
data from the display and also clear all cached instances (for
instance in memory or on the hard-disk or other versatile
and/or non-versatile storage). Removing the confidential
data could mean completely clearing the display (and pos
sibly clearing cached instances for instance in memory or on
the hard-disk or other versatile and/or non-versatile storage)
when leaving the authorized area. Alternatively, removing
confidential data could mean removing all confidential parts
from the displayed image (and possibly clearing all cached
instances for instance in memory or on the hard-disk or other
versatile and/or non-versatile storage) so that only non
confidential information is left visible when leaving the
authorized area. In this situation this would mean that the
viewing application is still visible on the display but the
confidential image is removed or replaced by an icon or any
other symbol indicating that this information is not to be
distributed and cannot be viewed now.

0068 Alternatively removing confidential data could
mean related to HIPAA regulation making all medical
images anonymous and removing all data that could link a
specific patient to the image displayed (and possibly also
removing all cached instances for instance in memory or on
the hard-disk or other versatile and/or non-versatile storage).
In practice that would mean that a mammogram that is
viewed in the radiology department and that has a patient ID
visible, would still be visible outside the radiology depart
ment but the patient ID will automatically be removed when
leaving the department. Alternatively removing confidential
data could also mean encrypting confidential data (and
possibly also encrypting all cached instances for instance in
memory or on the hard-disk or other non-versatile storage)
so that it is not accessible anymore or using another encryp

US 2007/0183493 A1

tion algorithm or changing the encryption algorithm
strength. According to HIPAA for instance this could mean
that inside the radiology department images are stored on the
hard-disk of a portable device and encrypted using a par
ticular encryption algorithm. When leaving the radiology
department however this data will be re-encrypted using a
stronger encryption algorithm to comply with HIPAA regu
lations. It is obvious that the number of confidentiality levels
is not a limitation for the present invention. For instance it
is possible to have more than 2 security levels where the
device would display less and less confidential data when
the location where the device is used has lower and lower
security level. On the other hand, the inverse can also take
place: a portable device showing limited data outside an
authorised area, can automatically be adapted to show more
data, e.g. patient's details, when entering the authorised area.
Again, this may be obtained by re-encrypting the data with
another encryption algorithm, or by doing the inverse of the
anonimisation step, i.e. re-load the data for linking the
images to a patient.
0069. Yet another aspect of the present invention is
complying with radiation regulations. If the client device has
multiple transmission channels available (such as for
instance but not limited to Wifi, Bluetooth, Infrared, UWB,
. . .) then it can be that it is not allowed or not interesting
to use specific transmission devices in specific situations.
For instance: in a hospital environment it can be that Wifi is
only allowed in public places in the hospital while it is not
allowed to use Wifi in the intensive-care department
(because of radiation power for instance).
0070 Another, non limitative example is shown in FIG.
4. In a hospital environment, six security levels, being level
0, level 1, level 2, level 3, level 4 and level 5 respectively are
defined. Following definitions of security level are given to
these levels:

0071 Level 5: this is the highest access level, e.g. radi
ology department: Data requested or transmitted to this level
will contain all data.

0072 Level 4: e.g. emergency rooms: Data requested or
transmitted to this level will contain image data being made
anonymous.

0.073 Level 3: e.g. intensive care room: Data requested or
transmitted to this level will contain image data being made
anonymous.

0074 Level 2: e.g. the patient room: Data requested or
transmitted to this level will contain encrypted image data.
0075 Level 1: e.g. the intra-hospital rooms: Data
requested or transmitted to this level will only contain
patient data.
0.076 Level 0: is region outside the hospital: all infor
mation will be removed from data requested or transmitted
to this level, or all information will be encrypted.
0.077 According to the present invention the client device
could autonomously decide which transmission channel to
use based on the present location and the regulations in place
at that location. This could for instance mean that if a doctor
uses a portable device that is currently using the Wifi
transmission channel, and if the doctor goes into the oper
ating room area, that then the device automatically Switches
from Wifi to for instance infrared or DECT transmission

Aug. 9, 2007

mode in order to comply with the radiation regulations in
place in the operating room area. It is to be noted that it is
not necessary that the client Switches to another transmission
channel. The client could for instance also reduce the
radiation power when this is required. With the GSM
standard for instance the client can emit radiation at multiple
power strengths (measured in Watt), so reducing the emitted
signal strength is also part of the present invention. The
exact way how the client determines where it presently is
located and the exact way how the information about
acceptable transmission methods at specific places is stores
is not a limitation of the present invention.
0078. As a non limitative example, a hospital environ
ment is shows, in which 6 Zones are defined.
0079 Zone 1: in this Zone only GSM network is avail
able.

0080 Zone 2: in this Zone, Wifi, DECT and UWB are
available, next to the GSM network. There is no restriction
for use of any of the transmission networks.
0081 Zone 3: in this Zone, Wifi and DECT are available,
next to the GSM network. For the GSM network, only
transmitting with limited power is allowed.
0082 Zone 4: In this Zone, there is infrared (IR) trans
mission available, next to all transmission possibilities of
Zone 3. Only DECT and IR are allowed.
0083 Zone 5: In this Zone, there is Ethernet transmission
available, next to all transmission possibilities of Zone 3.
Only IR and Ethernet are allowed.
0084) Zone 6: in this Zone, Wifi, DECT and GSM are
available; there is no restriction for use of these networks.

0085 Portable devices can only use transmission chan
nels that are both available at the portable device, and in the
Zone where the portable device is located, the portable
device is only allowed to use the allowed channel in the Zone
where it is located. Possibly, the portable device will have to
Switch transmission channel if necessary.
0086 Yet another aspect of the present invention is
minimizing the required calculation power of a client while
still Supporting multiple compression protocols and algo
rithms. Since the present invention will use different image/
video compression algorithms for different parts of the
image, it is required that the receiverside (client) can decode
all these image streams. However, since it is desired to select
the best compression codec for each image type, it is to be
expected that a tremendous amount of compression algo
rithms must be supported both by the server and the client.
Moreover, the codecs used can change over time based on
channel properties resulting in even more codecs to be
supported both at client and server side. At the server side
this is typically not a problem as the server (that generates
the images/video) typically is a powerful workstation with
lots of memory, hard disk storage and processing power. The
client however is designed to be light and portable and
therefore has very limited processing power. The present
invention solves these conflicting requirements by disclos
ing a client at the receiver side that can be reconfigured at
multiple levels. One way to achieve this is by providing a
reconfigurable device (such as a processor, a FPGA, a DSP
a GPU, a CPLD, an ASIC that can be configured to perform
multiple operations, ...) or any combination of such devices

US 2007/0183493 A1

in the receiving client and to configure these reconfigurable
devices based on the compression codec that is currently
required. In other words: if the server sends a JPEG2000
stream to the receiving client then the client logic will be
reconfigured in order to be able to decode this stream.
Reconfiguring the client can be done by means of configu
ration code that is already present in the client device. One
could for instance store configuration bitstreams for each
codec that should be supported on a flash memory in the
client device and the reconfigurable device (processor,
FPGA, . . .) would then be configured with the appropriate
bitstream based on the currently required codecs. In this way
it is not required to have support for all codecs available all
the time at the client side and this of course reduces the
amount of processing power and/or hardware resources that
is required at the receiving client device. While this
approach is useful in an environment where a limited
number of codecs will be used it soon becomes impractical
if a large amount of codecs must be supported because the
configuration code for all these codecs must be available on
the client device. Another limitation is that this method does
not allow using new codecs that were not available at
production time of the receiving client unless the client is
updated. Therefore a better solution is to allow the client to
be reconfigured completely or partly from the server. This
means that the server will send the configuration code for the
required codecs to the client making it possible to use any
new codes that is available at the server side. Of course at
the client side some logic must be present that makes it
possible for the client to reconfigure itself after a new codec
was sent to the client. This could mean for instance that the
initial configuration of the client allows connecting to a
server, downloading some codec, reconfigures the client
functionality, and then connects to this or another server
using this codec. Another alternative is that the client has a
(limited) number of codecs available so that the client
immediately is able to decode the server stream (perhaps
with non-optimal quality). This means of course that in the
beginning the server should send data to the client in Such a
format that the client can decode the data with the codecs
that the client has initially available. The client then starts to
download the new codecs that are needed for optimal
performance while the client is already functional. Once the
required codecs are downloaded then the client can be
reconfigured and the server can use the new codecs. The
exact method of transferring codec configuration data does
not matter for the present invention. One possibility is to
send the codec code through a separate connection between
client and server. Alternatively one could embed the new
codec code into the bitstream of an existing channel. This
could mean for instance embedding the codec code into
spare bits of a compressed video/image stream.

0087 To avoid sending the same codec code over and
over to the clients it is possible that the client device locally
saves a copy of the all ore some codec code. In that way the
client can communicate to the server that it already has
available some codec and that there is no need to send the
code again. This also means that at the beginning of a
session the client can communicate a list of available codecs
to the server. The server then can start streaming data to the
client by using one or more codecs out of this list and can
also (if needed and Supported by the client) send new codecs
to the client to further improve the efficiency or quality of
the transmission. Additionally the client could also send a

Aug. 9, 2007

quality-level or performance-level at the client side for
codecs supported by the client. The server then can take this
information into account when deciding which codecs will
be used for the transmission. For instance: a client could
communicate to the server that the client initially has a
JPEG-LS codec available, a raw-data transmission codec
available, and a RLE-codec available. It additionally com
municates to the server that the client is able to reach 10
frames per second for the JPEG-LS codec at resolution
1024x768 and 8 frames per second for the JPEG-LS codec
at resolution 1280x1024, less than 4 frames per second for
the raw-data codec with maximum resolution 1600x1200
and less then 6 frames per second for the RLE-codec with
maximum resolution 1600x1200. Furthermore the client
communicates that can accept from the server the JPEG2000
(with specific version that is compatible with the client
platform) codec and can achieve with maximum framerate
of 2 frames per second and maximum resolution 1280x1024.
All this information then can be used by the server to
determine which are the best codecs to use for communi
cation with this client. Of course the client can also send
other additional information such as but not limited by: the
resolution supported by the client (for instance 1280x1024),
the colour modes Supported (for instance 16 bit grayscale, or
3x8 bit colour or 256 colour palette mode, . . .), the frame
rates supported by the client for different resolutions and
colour modes, the type of network connection of the client,
the battery level of the client (so that the server can decide
to Switch to a less power consuming codec at the client side),
the list of preferred codecs of the client (codecs that will
achieve high-performance and quality at the client side), the
type of hardware available at the client side and the codec
requirements to be compatible with the client hardware. . .
. All this additional information can be used by the server to
determine which set of codecs will give best performance
for the transmitted stream. As an alternative to exchanging
information about predicted performance of codecs, one
could also just test all or a number of codecs and measure
actual performance. In this case the server would send all or
a number of codecs to the client. The client would try to
configure the client device with that codec and if succeeded
the server sends one or a series of test images or video data
to the client using this specific codec that is tested. The client
then tests if the codec has sufficient performance (this can be
in terms of image quality, speed, framerate, latency, ...) and
sends back the results to the server. Then this information
can be used instead of estimates or predictions.
0088. It is also possible to only reconfigure a limited part
of the client. For instance if the client contains an FPGAthen
it is possible to configure a part of the FPGA to support some
standard codecs and also reserve some part of the FPGA to
implement Some custom codecs if needed. In the same way
these custom codecs could be stored in the client device in
(non-volatile) memory or could be retrieved from a server
when needed. For instance a JPEG-LS codec could be
implemented by default in the FPGA and a JPEG2000 codec
and a MPEG2 codec could be implemented temporarily in
the device because they are needed for decoding the current
data stream. Also this allows for parallel decoding of the
streams associated to the different object/image types as
described above. Alternatively if the client device consists of
an FPGA and a processor, then the client device could decide
to (partly) configure the FPGA for acceleration of some (or
all) parts of a codec that takes to much time to execute on

US 2007/0183493 A1

the processor or achieves too low quality on the processor.
For instance: implementing a filter with a lot of taps would
take a very long time to execute on a processor while it can
be executed very efficiently on an FPGA, a DSP or a GPU.
The same principle holds for other types of devices, this
means if a client has multiple devices then the client could
decide to execute parts of or the entire codec algorithm on
specific devices based on performance or quality results/
statistics or measurements.

0089. According to another aspect of the present inven
tion the typical latency problem will be reduced and hidden
for the user. When there is interaction between client and
server latency often is a major problem. For example: an
application runs on a server and the desktop of that server is
transmitted and recreated at a client device connected to the
server using a wireless network. If the total latency between
client and server (this means encoding latency, transmission
latency, decoding latency, application latency at the server
side, and feedback latency from client to server) is very high
then this will result in a system that is perceived by the user
as being slow and non-responsive. For example: if the user
at the client side would click a button then it could take 20
ms to send that button-click message to the server. The
server might need 10 ms to react to the button-click, the
encoding of a modified image could take 20 ms, the trans
mission of the encoded image could take 10 ms, the decod
ing of the encoded image could take 30 ms and displaying
the modified image at the client side could take 15 ms. In
that case the total latency would be 105 ms meaning that
only after 105 ms the user would see the result of clicking
the button. It is obvious that a large latency will result into
a slow and non-responsive system. The present invention
Solves this problem by reducing the latency and by hiding
the latency for the user of the device. Reducing the latency
in the system can be achieved by splitting the data to be
transmitted into latency-critical and non-latency-critical
data. If the data to be transmitted is a typical windows OS
desktop with a spreadsheet, a video window, a taskbar and
a background, then not all of these components are as critical
to latency. Working in a spreadsheet for instance requires
low latency because the user very frequently interacts with
the data and expects rapid response. A video window where
a movie is shown for instance is totally not sensitive to
latency. The user won’t even notice if the movie is actually
delayed 2 seconds. Only in the beginning the video latency
will be visible because the video stream will only start after
2 seconds, but typically this is not considered to be a
problem. Also the desktop background can tolerate large
latency. A desktop background change is often considered as
very low priority and almost nobody will care if it takes 5
seconds to see the effect of the change. In a bandwidth
limited channel it often happens that packets are queued to
be transmitted because the channel is operating at (almost)
maximal bandwidth. In Such a situation one can give priority
to packets that are part of a stream requiring low latency.
Also for the object types (see above) that require low latency
one could select a codec that has low latency compression
and decompression. To know whether or not an object is
sensitive to latency one can detect the object type using the
classification algorithm described earlier or one could
receive hints from the application (or a window/part from
the application) or from the user of the system. Also if
multiple transmission channels are available (for instance

Aug. 9, 2007

but not limited to Wifi, Bluetooth, Infrared connection . . .
) then one can select the low-latency channels for streams
that require low-latency.
0090. As an alternative method to improve the latency
problem the present invention discloses methods to hide the
latency for the users of the system. This can be achieved by
locally performing latency-critical operations on the client.
One example is to locally generate the mouse pointer. The
mouse pointer is a very latency-critical object since it is
extremely visible if the pointer lags behind the movements
of the mouse. To solve the problem the mouse pointer can be
generated locally on the client instead of on the server. This
means that if the user moves the mouse then this message
(“move mouse to coordinate x,y) will be captured by the
client, and the mouse will be rendered at the new position
locally by the client. Of course the location change will also
be forwarded to the server because it is possible that
extra-side effects (such as change of mouse pointer shape or
highlighting of text below the pointer or any other reactions
from the application running at the server because of the
moved mouse pointer) would occur at the server. Of course
these side effects then are transmitted from server to client
and displayed at the client side. Locally rendering of the
keyboard is also interesting since it is very annoying if the
symbols that are typed lag behind hitting the keys. Locally
rendering the keyboard would mean for example that in a
text document the symbols are rendered and displayed
directly at the client and again also forwarded to the server.
Apart from keyboard & mouse it is also possible to perform
other operations locally. One example is using local lookup
tables. In medical imaging for instance one very often uses
lookup-tables to perform window/level operations. Window/
level is a kind of contrast enhancement by applying a
lookup-table to an existing image. Typically the mouse is
used to control the brightness and contrast of the image and
therefore to change the contents of the lookup-table. Each
time sending a new image from server to client when the
window/level settings are changed is not only very band
width consuming, but also the window/level operations
would be very slow due to the latency introduced because of
transmitting images from server to client. Therefore a good
solution is to apply the lookup-table locally at the client side.
Then there are still two alternatives. One could send the
mouse commands to the server who then creates a new
lookup table. This table can be sent to the client and the
client then can locally apply the look-up table to the image
that is already present at the client. The second alternative is
that the client also locally processes the mouse command
and locally creates the new contents of the lookup-table. The
image is then adapted on the client side based on the newly
created lookup table. Of course the mouse command is also
sent to the server and the server will respond with the correct
lookup table. The client then checks if the locally generated
lookup-table was correct and replaces if necessary its lookup
table by the new one received from the server and again
processes the image locally. It is to be noted that the present
invention is not limited to only one lookup table. It is
possible to have multiple lookup-tables for different parts of
the desktop or even to have different lookup tables for
different windows or applications. It is also possible to have
lookup-tables in parallel or in cascade (in series).
0091 An extension (a generalisation) to the approach of
local lookup-tables is using local filters. In this case the
client will locally perform operations that can be handled

US 2007/0183493 A1

efficiently at the client side if these operations can be clearly
defined from the server side. In other words: if the client is
capable of efficiently handling a specific operation locally
and if that operation can be described clearly by the server
to the client then it can be favourable to indeed handle this
operation locally for latency reasons. One example could be
performing specific image processing filters locally. Sup
pose that the same image is shown on the desktop in colour
(define this as image A) and in greyscale (define this as
image B). Then it can be interesting for the server to send the
definition of the transformation that transforms image Ainto
image B to the client. This could be for example: B(x,
y)=RA(x, y)*0.30+GA(x, y)*0.59+BA(x, y)*0.11. Or
in other words: this formula explains how image B can be
created from image A by calculating a pixel-by-pixel
weighted Sum of the red, green and blue Subcomponents of
each colour pixel. This approach will decrease the required
bandwidth between client and server and will also decrease
latency as part of the operations can be handled locally.
Another example would be applying a filter on a part of an
image and where this part of the image is selected by the
mouse. Suppose a medical image is shown on the desktop
and by means of the mouse the user can move a square over
the image. In that square the image is filtered. In this
situation the server could send the description of the filter to
the client and the client could then locally apply the filter to
the image. This will greatly decrease the required bandwidth
and also the perceived latency will be significantly
decreased because the filter is applied locally at the client. It
is to be noted that (part) of the reconfigurable logic of the
client can be perfectly used to perform Such operations.

0092. Yet another technique to hide latency for the user of
the display is to predict parameters, send predicted param
eters to the server and cache results from the server locally
at the client so that the results are already available when the
parameters are actually valid. Such parameters could include
but are not limited to mouse commands (location, button
operations, . . .), keyboard commands, value of certain
environment variables or program variables, or any combi
nation of Such features, ... The exact method to predict these
parameters is not relevant for the present invention. Some
possibilities are using interpolation of mouse trajectories
(predicting the next position of the mouse by trying to fit the
past mouse trajectory with a curve and then predicting the
new mouse position by means of the fitted curve), just trying
out all or some parameter values in the neighbourhood of the
current value, trying out a limited number of random values
in the neighbourhood of the present parameter values, . . .
For predicting parameter values one can use techniques from
computer architecture. There techniques have been devel
oped (“value prediction') to predict the contents of registers.
As illustration an example is provided: if the user makes a
slow continuous movement with the mouse then the most
likely the future positions of the mouse can be predicted with
rather high confidence. In this situation it is interesting to
send the predicted mouse locations to the server. The server
then will respond with a modified image based on the
predicted mouse position. The client should then cache this
image together with the mouse predicted position that cor
responds to this image, the image itself is not displayed at
this moment. If the predicted mouse positions (or some of
the predicted mouse positions) were correct (in other words
if the user actually moves the mouse to one or more of the
predicted positions), then the client can immediately show

Aug. 9, 2007

the cached images corresponding to the correct predicted
mouse positions instead of having to wait for the response of
the server. If the predicted mouse positions were not correct
then the client can do two things. The first possibility is to
send the actual mouse position to the server and wait for the
image corresponding to this actual mouse position. The
received image then can be displayed on the client together
with this correct mouse position. This approach will result in
higher latency and slower response but the displayed image
will be completely correct. The second possibility is to show
the mouse pointer at the correct location on the client, but to
display a cached image on the client corresponding to a
mouse pointer location that is likely to be very similar to the
actual mouse pointer position. In other words: Suppose that
the mouse pointer is actually at location (10, 10), but there
is no cached image available for mouse pointer location (10.
10). It could then be decided to use the cached image that
corresponds to mouse pointer location (11, 11) because it is
believed that this image will not differ a lot from the image
that corresponds to mouse pointer location (10, 10). The
mouse pointer itself should of course be shown on location
(10, 10) at the client because otherwise there will be
discontinuities in the mouse pointer movement. The deci
sion to use approach 1 (only use correct images) or approach
2 (still use cached images if parameters do not match
completely) can depend on the particular application being
executed on the server, on the object type being shown, on
the user logged in, on the available bandwidth of the
channel, on the preference of the user, or on any other
condition. The exact method used is not a limitation of the
present invention.
0093. The same principle of predicting parameters can be
used for other things such as but not limited to sliders,
selection buttons, drop-down boxes, . . . Also the same
approach of predicting parameters is valid for higher-dimen
sional parameter vectors. In other words: the image rendered
by the server could be a combination of several parameters
or parts of parameters. For instance: the rendered image
could depend on the column-location of the mouse pointer
and the status of a selection button. It is even possible to
actually find correlation using statistical methods between
parameter or parameter vectors and rendered images. Such
an analysis could for instance make clear that the rendered
image is dependent only on the ratio between column
position of the mouse and the value of a parameter field. In
that situation the predicted values send to the server would
be such that only combinations of those parameters that
would render different images will be sent to the server, and
also cached images can be used on the client if the ratio of
predicted column position of the mouse and the predicted
value of a parameter field are the same as the ratio between
current column position of the mouse and the current value
of a parameter field.
0094) Of course, if a cached image corresponding to an
earlier predicted parameter is used on the client, then still the
current parameter is sent to the server. This means that then
the server will respond by sending the new rendered image
corresponding to this new parameter situation. To further
decrease required bandwidth the server could also cache
(some of) the combinations (parameters, rendered image) on
the server side. If the server then detects that the rendered
image is the same as the one that was sent earlier for the
same parameter values, then the server can only send a
message that it is the same image instead of sending the

US 2007/0183493 A1

image itself. This reduces the required bandwidth. Alterna
tively, if the server does not cache the rendered image then
still the server could send a checksum (CRC) of the image
instead of the image itself. Indeed, Suppose the client sends
a predicted parameter value and the server responds with a
rendered image. Some time later the client actually needs the
image for this parameter value. The client uses the cached
image but still sends the parameter value to the server. Since
the server did not cache the image the server does not know
that the image is the same as the image that was sent to the
client earlier (however, the server did keep track of previous
parameter values so that the server knows that an image for
this parameter value was sent to the client earlier) the server
sends a CRC of the image to the client. This CRC is only a
very short message requiring very low bandwidth. The client
now can calculate the CRC of the cached image for this
parameter value to the CRC that the server sent to the server.
If they match then there is a very good probability that the
cached image and the new image rendered by the server are
the same. In the other situation the client asks the client to
send the rendered image for this parameter value anyway
because the images differ.
0.095. It is to be noted that the described method can also
be used for any part of the data to be transmitted from server
to client. In other words: it could be that a parameter value
only has influence on a particular area on the display while
the remaining area of the display is uncorrelated or is
correlated to other parameter values. This means that the
method of sending predicted parameter values to the server
could be done in parallel for multiple areas. An obvious
optimisation in Such a situation is to also send the desired
area to the server. If indeed a particular parameter value only
has influence on one particular area of the total image, then
it has no use that the server each time sends the complete
image while only a part is correlated with the parameter
value. Only sending the parts that the client is interested in
further reduces the required bandwidth.
0096. Of course the method of sending predicted param
eters and then using cached images only works if a clear
correlation can be found between the parameter value and
the images. If for instance a movie is played and the mouse
movements have no effect on the movie then it also has no
use to cache images together with mouse positions. There
are several methods to test whether or not the approach of
predicting parameters and using cached images makes sense
for a specific situation. A first method is to try in advance if
the parameter value is correlated with the image. This can be
done by sending multiple parameter values to the server,
then examining the resulting images and Verifying if exactly
the same images (or Sufficiently similar images) are regen
erated if the same parameter values are sent a second time
to the server. This approach can be repeated if necessary to
verify in time if the correlation between parameter values
and images is still Sufficient. A second method is to just start
using the system of predicted parameter values and cached
images and checking if the system is useful when the images
are verified. Indeed: first predicted parameter values are sent
to the server and the generated images are cached at the
client side. If later on the parameter values equal earlier
predicted values, then the cached images can be compared
(or the checksums of the images) with the new images
generated by the server corresponding to the same parameter
values. Based on the degree of similarity the approach of
using predictions and cached images can be continued or

11
Aug. 9, 2007

stopped. The decision whether or not to use the prediction
method can also be based on any other condition Such as
preference of the user, type of application running at the
server, type of image object, ... This exact decision method
does not limit the present invention. If the client concludes
that there is no or insufficient correlation between param
eters sent to the server and generated images by the server,
then it is best to stop using the prediction scheme to avoid
risk of faulty states at the server side. Indeed, if as a reaction
to a predicted parameter the server enters another not
intended State then this was done unintentionally and cer
tainly not intended by the user. This results in confusion of
the user, as the new server state has to be displayed at the
client side in order to give the user the possibility to get back
to the original server state. For instance if the client would
send as predicted value to the server the combination of
“hold left mouse key” and “new mouse position (x, y) and
as result of this action the server activates another window,
then this state has to be shown on the client because
otherwise the state of the server and the state that is shown
on the client would be inconsistent. By showing this actual
state on the client side the user can correct the problem by
performing the necessary actions to get the server back in the
COrrect State.

0097. It is in most situations relatively easy to link
generation of a new image on the server side to a parameter
value sent by the client. In many situations the image
generated by the server will be static (or at least part of the
image will be static) and will change shortly after the client
sent a parameter value to the server. The client then can
assume that the change of image was due to the parameter
value sent to the server. A more reliable system is that the
server adds a message to the generated image that links the
new image to a particular action of the client. For instance,
the server could add as metadata to an image that the image
was the result of sending parameter value X from client to
server. An additional refinement could be that the server
postpones sending a new rendered image to the client until
the image content of the server again reached a stable
situation (after sending a parameter value from client to
server), or until a maximum time has passed. For example:
if the client sends a mouse location update to the server, and
this mouse location update results in a small animation at the
server side and then results in a new stable condition, then
the server could wait for the stable condition to send an
image update to the client. The advantage is that correlation
between parameter value and image contents will be much
more likely and that required bandwidth is further reduced.
Furthermore it might be likely that indeed the animation is
indeed a transition situation that is of no or low interest for
the user so that not sending these information/images to the
client will not pose a major problem. The disadvantage is
that indeed the animation will not be visible for the user of
the client. The server could additionally label the images
sent to the client with the time that was needed to reach the
stable condition after the parameter value sent from client to
server was processed. Also if no stable condition was
obtained then the server could send this as metadata to the
client, the client then can make use of this information, for
instance by concluding that this parameter or set of param
eters might not be correlated with image contents that were
examined. Also the client could inform the server whether a
parameter value sent to the server is a predicted value or an
actual value. If it is a predicted value then the server could

US 2007/0183493 A1

indeed wait for a stable condition while if an actual value it
might be more interesting to immediately process the param
eter update. Also if the server knows that a parameter sent
to the server is a predicted value, then the server can save its
local state. Indeed: if the parameter value is a prediction then
there is a possibility that if the prediction turns out to be
wrong, the server arrived in a wrong state because of using
the predicted parameter value. If the server first caches its
state before using the predicted parameter value, then it is
always possible to return to the correct state if the prediction
turned out to be wrong, or even by default go back to the
state before the prediction was used. The state of the server
comprises all information that is required to undo the effects
of using a predicted value. For example: the client informs
the server that a prediction of the mouse position needs to be
processed. The server first saves it state (this could include
but is not limited to: window attributes such as in front/back,
minimized, maximized, size, position, important program
variable values. . . .) and then executes the “change mouse
position' command locally. The server then sends back the
result (rendered image) to the client. Then the server restores
its state so that the server remains in the correct state if later
on the predicted mouse position turns out to be wrong. This
by default restoring of the state is in theory not always
required. If using the predicted parameter value does not
change the state then of course it has no use restoring the
state. However, Suppose that because of using the predicted
mouse position another window is activated, and then it is
absolutely required to restore the correct state before pro
cessing any other predicted parameter values from the client.
Indeed, because using a predicted parameter value can result
into another server state it is also possible that because of
this the reaction of the server to a new predicted parameter
value sent by the server will be different compared to the
situation where the first predicted parameter value would not
have been executed by the server.
0098. It is to be noted that in most situations it will not be
a problem if there is a small error on the predicted parameter
value. In other words: in most situations it will not be a
problem to use a predicted parameter value that is not the
same but is close to an available predicted parameter value.
This of course can be dependent from application to appli
cation. Whether one uses these incorrect predicted param
eter values can for example be made dependent on the type
of application or can even be decided on basis of a list of
individual applications. Of course the application could also
communicate to the encoding algorithm whether or not
using wrong predicted parameter values is acceptable or not.
Alternatively the user could select this and give this infor
mation to the encoding algorithm, possibly through the
application.
0099. According to another aspect of the present inven
tion a series of cached images will be stored at the client side
and optionally also at the server side. When the server sends
an image to the client then the client could decide to cache
that image locally if the client believes that this image will
need to be transmitted in the future again. At the server side
the server could also cache this image or could cache a
checksum (for instance CRC or hash) on this image. If the
server then in the future finds out that an image needs to be
sent to the client and that this image was sent before to the
client, then the server can first send the CRC or hash value
of this image. The client then can check whether or not this
image is available at the client side. This can be done by

Aug. 9, 2007

verifying the CRC or hash value that was sent by the server
to the client. If the image was indeed cached at the client side
then the client can immediately use this cached image so
there is no more need to send the entire image over the
transmission channel and this will of course reduce required
bandwidth and reduce latency. If the CRC sent to the client
does not equal any CRC of the images available in the client
cache then the client has to send a request to the server in
order to have the server transmitted the image anyway. At
the server side the server can decide to store the entire image
in the cache or only store the hash or CRC of this image in
the cache. Indeed, to verify if the present image was sent
already before the server can compare completely the
present image with the images in the cache of the server, or
alternatively the server can calculate the hash or CRC of the
present image and compare this hash or CRC with the hash
or CRC values available in the cache of the server. If the
hash or CRC values of the present image to be transmitted
match (equal) with the hash or CRC value of a previously
transmitted image then the probability is extremely high that
the images themselves also match. Only storing the hash or
CRC value furthermore reduces calculation power at the
server side because instead of comparing all images in the
cache of the server with the present image, only the shorter
hash or CRC values of the images have to be compared. Of
course also required cache memory/storage is reduced. To
reduce required calculation power at the client side, the
server could by default also send the calculated hash/CRC
value of the image that is being sent to the client together
with this image. This removes the need for the client to
calculate this hash/CRC value. The client then can imme
diately store the image in the cache together with the
hash/CRC value that was calculated by the server.
0.100 Of course there is no need to store all images in the
cache that are sent to the client. The client could decide to
only store some images in the cache together with the
according hash/CRC value. Alternatively the server could
decide which images should be cached. This can be com
municated to the client for instance by only sending a
hash/CRC value together with the images that should be
cached at the client side. The server could also explicitly
send a command to the client to cache a particular image.
Deciding which images need to be cached can for instance
be done by just looking how many times a specific image
occurred in the past. If this number exceeds a specific
threshold value then the server/client could decide to cache
this image for future use. Alternatively the application could
give hints about key images to the server/encoding algo
rithm. These key images then can be cached. Of course any
combination of the explained strategies for deciding which
images should be cached are also possible.
0101 Instead of using CRC/hash values to identify spe
cific images the server could also just give a unique identifier
to the images. One example is a simple numbering scheme.
The server could for instance label the first image that should
be cached by the client with number 1, the second image to
be cached by number 2, and so on. If an image occurs again
that was already sent before and was cached then the server
can just send this unique identifier to the client. The exact
method of uniquely labelling the images of course does not
limit the present invention.
0102) The server should also have the possibility to clear
one or more entries in the client/server cache. For instance

US 2007/0183493 A1

if the cache at client/server side is only 256 images in size
then the server could send a clear cache command to the
client once the cache is full and a new image needs to be
cached. This command will result in clearing the cache at
both the client and server side so that new images can be
cached in the future. Alternatively the cache clearing can
take place in a round-robin scheme. In other words: if 256
entries out of 256 entries are used then the first entry
(number one) would be overwritten if a new image were to
be cached. If another new image is to be cached then the next
entry (entry two) would be overwritten. Alternatively the
server/client could decide which cached images can be
removed. For instance: if the server has an image cache of
256 images but the client has only an image cache of 16
images then the client could select cached images that are to
be removed if a new image is to be cached based on a
frequently-used statistic. In other words: the client will
remove images from its image cache based on how much
these images were used in the past. If the cache is full then
the client will first remove images that were not/not often
used in the past. In case of a server cache of 256 images and
a client cache of 16 images this could mean that the pairs
(image, CRC) at the client side are extended with a third
value named “usage', that indicates how many times this
cached image was used until now. If an entry has to be
deleted because the cache is full and a new image has to be
cached then the client will first remove the cache entry with
lowest “usage' value. Alternatively, to reduce calculation
power at the client side, the server could manage the cache
at the client side completely or partially. For instance: the
client could keep the usage statistic or could keep track of
the cache status of the client side and decide based on this
information what the best strategy is for the client cache. The
server in this case will control the client cache or would give
hints to the client cache. A very useful application can be in
medical imaging. In CT reconstructed Volumes the user
typically browses through a large number of slices. This is
done by pulling a slider with the mouse. The radiologist
typically browses forward and backward a lot through the
large number of slices. In this situation it is very likely that
images that are displayed will be displayed again in the
future. Indeed, Suppose the radiologist looks at image 1, 2,
3, 4, 5, 6, and then goes backward again to 5, 4, 3, 2. Then
these images can be reused from the cache. The simplest
way of implementing this would be that the server just
numbers the images and sends the images together with the
number to the client. If an image has to be displayed that was
sent in the past then the server can send the unique ID
(number) instead of the image. It would even be better if the
application itself can give hints to the encoding algorithm
about how the images should be numbered. Indeed, the
application itself that generates the images (slices from the
Volume) has the most knowledge about what slices are
viewed and which slices are likely to be viewed in the future
again. Another way of viewing this type of data (browsing
through slices of reconstructed CT Volumes) is by just
looping through the slices. This means that the user hits a
kind of play key and then the slices are shown in order, so
slice 1, slice 2, . . . , the last slice and then the browsing
automatically restarts again with slice 1, slice 2, ... and so
on. In this situation the application perfectly knows which
images will be needed in the future. Therefore the applica
tion itself can also predict a parameter (slice number in this
case), the server can generate the image for the predicted

Aug. 9, 2007

parameter (slice number) and it can already be sent as a
combination (predicted parameter, image) to the client.
Alternatively, the images corresponding to images that will
be likely to be shown in the future can also be sent to the
client as being images that should be stored in the cache but
only if the client does not show/display these images imme
diately but just places them in the cache for possibly future
use. This would mean in the case of going through a series
of slices that the server would render the images (slice 1,
slice 2, slice 3, slice 4) immediately and send these images
to the client as being images corresponding to predicted
parameters or as images to be caches. The images will then
already be available at the client side by the time the images
need to be displayed at the client side. To be more specific:
Suppose that the radiologist looks at the slices (images) in
order (image 1, image 2, image 3. . . .) at a rate of 2
images/second. Then the server could already send as much
images as possible to the client (for instance 4 images/sec.
namely image 1, image 2, image 3, image 4. . . .) so that all
these images already available at the client side by the time
the client needs to display these images. This will reduce in
very low latency (the images are available on-time) and
increased perceived reaction-speed of the client-server
architecture. Of course this system also works if the radi
ologist browses himself through the slices and possibly goes
forward and backwards through the images (for instance by
pulling a slider). If the server generates images in advance
(possibly based on hints by the application) and sends them
already to the client to be cached, then the images will be
available on time even if the image viewing sequence is not
completely regular.

0103). It is a goal of the present invention to make it
possible to replicate the desktop of a server anywhere else by
connecting to it from a (wireless, portable) client device. The
starting point is that all applications should be running at the
server end and this to limit the maintenance cost of the
client/server architecture. Indeed, if all applications are
installed and run on the server then only the server needs to
be updated if an application update is required. Also if better
hardware/processing capabilities become available (Such as
faster GPUs or CPUs) then only the server needs to be
updated and the performance of all the clients will increase
as well. Therefore the conceptual design involves replicating
the desktop contents of the server to a remote client display
and allowing feedback from the client so that for the user of
the client it appears as if the user was working locally on the
server. In practice this could be implemented by using
'screen-scraper” technology that just grabs the screen con
tent of the server at any moment and encodes and transmits
this screen contents to the client. The client then decodes this
encoded data stream and regenerates the images at the client
side. Any inputs from the user at the client side are sent to
the server and the server (application(s) running on the
server) processes these inputs. To allow the user to interact
with the server at least a keyboard and mouse connection
should be available. This can be done for instance by
converting the analogue PS/2 signals of mouse and keyboard
at the client side into digitally sampled signals and trans
mitting these digital samples to the server side. At the server
side the sampled PS/2 signals are reconverted into an
analogue signal again and are connected with the PS/2 input
of the server. In this way the system will behave as if the
keyboard and mouse were directly connected to the server.
An alternative is that the keyboard and mouse at the client

US 2007/0183493 A1

side are also processed locally in order to reduce latency.
These techniques have been described above. It is also
possible to support a USB connection at the client side. Here
the problem is somewhat more difficult because the USB
protocol requires strict timings and converting the USB
signals to digital samples and reconstructing the analogue
signal at the server side could take too much time and result
into protocol problems. Also the USB is a bi-directional
protocol. To overcome this problem solutions exist Such as
the “extreme USB solution that handles a part of the USB
protocol locally to overcome the strict timing requirements
of the USB protocol.
0104. Of course it should also be possible to connect with
multiple clients to the same server. This can be done by
using a multi-user operating system (such as Windows 2000
server or linux) where multiple user sessions can take place
in parallel. In this case for each user that wants to connect
to the server a session (having its own framebuffer) can be
created. Each of these sessions then can be treated as a
desktop that must be transmitted to a particular client.
Another possibility in case there is no multiple-user Support
from the operating system is to create virtual windows. This
could mean for example that for each client a window is
created with the application that the client wants to run. All
these applications however run in one user space of the
single-user operating system. However, only the windows
belonging to each specific client are transmitted to that
client. For example: if a server is intended to run a specific
application that requires high processing power, and it is the
intention that multiple users can use that application at the
same time. Then for each user an instance of that application
would be started and only the windows belonging to the
instance of each specific user will be sent to that specific
user. Alternatively, one could provide support for multiple
users in the application itself. In that case the application
would handle serving multiple users at the same time and
only the windows/parts of the application that belong to the
session of a particular user would be sent to that particular
USC.

0105. Of course, all aspects of the invention that are
described earlier in this text can be applied in this particular
implementation. For instance but not limited to: locally
handling some parts such as keyboard or mouse, locally
executing some parts of the application to reduce latency,
using the mechanism of predicting parameters and using
images associated with these predicted parameters, caching
images locally at client/server and uniquely identifying these
images and sending the identifier instead of the image itself
if the image must be sent again,

1. A method for transmission of images and/or video over
bandwidth limited transmission channels having varying
available bandwidth between a server and multiple devices,
the method comprising the use of a classification algorithm
for each of the images and/or video to be provided to a
device, for:

decomposing the images and/or video to be transmitted
into multiple spatial areas, each area having a specific
image type;

detecting the image type of each of those areas

Aug. 9, 2007

separately selecting for each of those areas an image
and/or video encoding algorithm having a compression
ratio:

wherein each of said devices are prioritized, said classi
fication algorithm increasing the compression ratio of
the image and/or video encoding algorithms dedicated
to a device having lower priority in case of decreasing
bandwidth.

2. A method according to claim 1, wherein said prioritiz
ing of the devices is done based on the applications accessed
through each of said devices.

3. A method according to claim 1, wherein said prioritiz
ing of the devices is done based on the identity of users using
said devices.

4. A method according to claim 3, wherein said method
includes a step of user log-on to one of said devices.

5. A method according to claim 1, wherein said prioritiz
ing of the devices is done based on location of said devices.

6. A method for securing transmission of data from a
server to a portable imaging device, the method comprising:

determining the exact position of the portable imaging
device with respect to an authorised area,

based on the determined exact position of the portable
imaging device, determining whether the portable
device is authorized to receive specific data over a
predetermined transmission channel,

transmitting, from the server to the portable imaging
device, the specific data requested if authorisation is
granted, the portable imaging device having a display
area, the method furthermore being adapted for remov
ing at least from the display area at least confidential
data when the portable imaging device leaves the
authorised area.

7. A method according to claim 6, the method furthermore
being adapted for showing at least on the display area at least
confidential data when the portable imaging device enters
the authorised area.

8. A method according to claim 6, the method furthermore
being adapted for removing at least confidential data from
volatile and/or non-volatile memory elements in the portable
imaging device when the portable imaging device leaves the
authorised area.

9. A method according to claim 6, the method furthermore
comprising encrypting confidential data when the portable
imaging device leaves the authorised area.

10. A method according to claim 9, the method further
more comprising decrypting confidential data when the
portable imaging device enters the authorised area.

11. A method according to claim 6, the method further
more comprising using a different transmission channel for
transmitting the requested data, the transmission channel
used depending on the determined exact position of the
portable imaging device.

12. A method according to claim 11, the portable imaging
device determining which transmission channel to use for
transmitting the requested data.

13. A method according to claim 11, the server determin
ing which transmission channel to use for transmitting the
requested data.

14. A method for reducing latency in a client-server
computer system, the server being adapted for generating
data at least dependent on one or more parameter values, the
method comprising:

US 2007/0183493 A1

predicting possible reachable future parameter values,
predicting possible future parameter values being per
formed by the client, after which these predicted
parameter values are sent to the server,

generating data corresponding to the predicted parameter
values, and sending this data to the client, and

the client caching this generated data corresponding to
parameter values for future use.

15. A method according to claim 14, wherein the client
uses the cached data when a corresponding parameter value
is set.

16. A method according to claim 14, wherein the client
uses the cached data when a parameter value is set which
falls within a predetermined range around the parameter
valued for which the cached data had been generated.

17. A method for transmission of images and/or video
over bandwidth limited transmission channels having vary
ing available bandwidth, the method comprising the use of
a classification algorithm for

decomposing the images and/or video to be transmitted
into multiple spatial areas, each area having a specific
image type;

detecting the image type of each of those areas
separately selecting for each of those areas an image

and/or video encoding algorithm having a compression
ratio:

wherein said classification algorithm prioritizes each of
said areas, said classification algorithm increasing the
compression ratio of the image and/or video encoding
algorithm dedicated to spatial areas having lower pri
ority in case of decreasing bandwidth.

18. A method for transmission of images and/or video
over a transmission channel from a server to a client, the
method comprising the steps of

decomposing the images and/or video to be transmitted
into multiple spatial areas, each area having a specific
image type;

detecting the image type of each of those areas:
separately selecting for each of those areas an image

and/or video encoding algorithm using a code for
encoding said images and/or video of said area;

wherein said client is a reconfigurable device, said
method further comprising the step of reconfiguring
said reconfigurable device for decoding said images
and/or video of said areas.

19. A method as in claim 18, further comprising the steps
of

adaptation of said encoding algorithms used for the
encoding, the adaptation being based on current or
predicted transmission channel properties;

reconfiguring said reconfigurable device for decoding
said images and/or video of said areas, based on the
adapted image and/or video encoding algorithms.

Aug. 9, 2007

20. A method as in claim 18, wherein all used image
and/or video encoding algorithms are available at said
reconfigurable device.

21. A method as in claim 18, wherein only part of said
image and/or video encoding algorithms are available at said
reconfigurable device, said method further comprising the
step of downloading image and/or video encoding algo
rithms not being available at said reconfigurable device.

22. A method as in claim 21, wherein downloaded image
and/or video encoding algorithms are saved at said recon
figurable device.

23. A method as in claim 21, wherein said image and/or
Video encoding algorithms to be downloaded are sent over
a separate connection between server and reconfigurable
device.

24. A method as in claim 19, wherein said reconfiguring
is a partial reconfiguring of said reconfigurable device.

25. A method as in claim 18, wherein said reconfiguring
is done from a server.

26. A method for transmission of images and/or video
over bandwidth limited transmission channels having vary
ing available bandwidth, the method comprising the use of
a classification algorithm for

decomposing the images and/or video to be transmitted
into multiple spatial areas, each area having a specific
image type;

detecting the image type of each of those areas
separately selecting for each of those areas an image

and/or video encoding algorithm having a compression
ratio:

said method further comprising the steps of
encoding each of said areas by an image and/or video

encoding algorithm;
transmitting said encoded images and/or video;
decoding each of said areas by an image and/or video

encoding algorithm;
wherein prior to encoding at least one of said area being

provided with padding pixels, said padding pixels
being replaced by part of one of the other areas during
decoding.

27. A method as in claim 26, wherein said padding pixels
represent Zones where at least two areas overlap.

28. A method as in claim 1, wherein said method is used
in a hospital environment.

29. A method as in claim 6, wherein said method is used
in a hospital environment.

30. A method as in claim 14, wherein said method is used
in a hospital environment.

31. A method as in claim 16, wherein said method is used
in a hospital environment.

32. A method as in claim 18, wherein said method is used
in a hospital environment.

33. A method as in claim 26, wherein said method is used
in a hospital environment.

k k k k k

