
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0306414 A1

US 201003 06414A1

Ghirardi (43) Pub. Date: Dec. 2, 2010

(54) TRANSFERRING OF SNMP MESSAGES (30) Foreign Application Priority Data
OVER UDP WITH COMPRESSION OF
PERIODICALLY REPEATING SEQUENCES Aug. 13, 2001 (IT) TO2OO1 AOOO813

(75) Inventor: Maurizio Ghirardi, Torino (IT)

Correspondence Address:
BANNER & WITCOFF, LTD.
1100 13th STREET, N.W., SUITE 1200
WASHINGTON, DC 20005-4051 (US)

(73) Assignee: TELECOM ITALIA S.P.A., Milan
(IT)

(21) Appl. No.: 12/791,350

(22) Filed: Jun. 1, 2010

Related U.S. Application Data

(62) Division of application No. 10/486,738, filed on Feb.
10, 2004, now Pat. No. 7,734,825, filed as application
No. PCT/IT02/00533 on Aug. 9, 2002.

MESSAGE
HEADER

1.3.6.1.2.1.13 NULL

1.3.6.2.1.4.22.13 NULL

? 1.3.6.1.2.1.4.22.14 NULL

Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)

(52) U.S. Cl. .. 709/247

(57) ABSTRACT

The transfer of messages using an UDP transport is provided.
A typical example is offered by the SNMP messages, used to
perform the communication (C1, C2) between manager units
(M, M) and agent units (A, A") within a system for the
management of data communication networks, such as inter
net. The payload of messages, for example the messages as a
whole shall undergo a compression operation based on the
recognition of sequences that periodically appear in the mes
Sage.

OD

O405 OO

O6 O926 O1 O2O 043026 O5 OO153a.

1108
OOOOO11OOOOO1OO1 OO101011 OOOOOOO1

US 2010/0306414 A1 Dec. 2, 2010 Sheet 1 of 5 Patent Application Publication

Patent Application Publication Dec. 2, 2010 Sheet 2 of 5 US 2010/0306414 A1

s

Patent Application Publication Dec. 2, 2010 Sheet 3 of 5 US 2010/0306414 A1

1OO MESSAGE 2OO
MESSAGE READING RECONSTRUCTION

ENCODING 102 DECODING 2O2

COMPRESSION 104 DECOMPRESSION 120

DATAREADY FOR 106 2O6
TRANSMISSION DATARECEIVED

FIG. 3A FIG. 3B

READING DATABY 108 208
BYTES COMPRESSEDDATA

ENCODING 110 DECODING 210

WARIABLE BINDING 112 VARIABLE BINDING 212
RECOGNITION

PECULARENCODING 11' 214

UPDEND-1 UPDRECEIVE-1
FIG. 4A FIG. 4B

COMPRESSED DATA COMPRESSEDDATA 1

PAYLOAD OF PDU-UDP PAYLOADEXTRACTION 1220

UPDSENDTOPORTX-114 UPDRECEIVE TOPORTX-1
FIG. 5A FIG. 5B

Patent Application Publication Dec. 2, 2010 Sheet 5 of 5 US 2010/0306414 A1

OD
1.3.6.1.2.1.13 NULL

1.3.6.12.1.4.22.1.3 NULL

1.3.6.12.1.4.22.14 NULL

102N

3O2)3OOb 06072) 06 01 02O1 O1 O305 OO 30 Oc O6092) 06
O1 O2O10416 01 02O5 OO3OOCO8 O920 O6O1 O2O1041601
O4 O5 OO

104-N. U
O6 O926 01 02O10430 2005 OO15.3a

108
116 OOOOO11OOOOO1OOOO101011 OOOOOOO1

MESSAGE
HEADER

US 2010/0306414 A1

TRANSFERRING OF SNMP MESSAGES
OVER UDP WITH COMPRESSION OF

PERIODICALLY REPEATING SEQUENCES

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a divisional application of prior
U.S. application Ser. No. 10/486,738, filed Feb. 10, 2004,
which is a U.S. national stage application of prior interna
tional application no. PCT/IT02/00533, filed Aug. 9, 2002
and published as WO 2003/017618 on Feb. 27, 2003, which
claims priority to IT application no. TO2001 AO00813, filed
Aug. 13, 2001, the entire contents of which are incorporated
herein by reference.

BACKGROUND

0002 This disclosure concerns the transfer of messages
using an UDP (short for User Datagram Protocol) transport,
such as for instance the SNMP (Simple Network Manage
ment Protocol) messages.
0003. These messages are generated and transmitted
within data communication networks, such as the internet.
The architecture of the internet protocols is based on four
logic layers, i.e. application, transport, network, and link.
0004. The SNMP messages perform a simple communi
cation mechanism between a Network Manager System
(NMS) and the nodes being managed. This is made possible
through specific applications located respectively at the NMS
called “Network Manager and at the nodes called "agents’.
The SNMP messages therefore take place at the UDP level,
using it as a transport for Such a purpose.
0005. The application called "agent' (hereinafter: agent)
with its respective network manager over the SNMP mes
sages has associated a database currently called “Manage
ment Information Base' or, short, MIB. Within such a data
base, the information is collected relating to the management
and monitoring of the corresponding node or network ele
ment. In particular Such information includes the following:

0006 MIB variables, that may be read by the Network
Manager to derive information about the network ele
ment;

0007 MIB variables that may be written by the Net
work Manager to cause actions on the network element;
and

0008 events (traps) that the same agent may cause
towards the NetworkManager (manager) with respect to
specific situations.

0009. The communication at SNMP level essentially
includes therefore:

0010) messages required to read/write the above vari
ables (GetRequest, GetNextRequest, SetRequest, Get
Bulk), sent out by the Network Manager, and

0011 response messages (GetResponse) and trap mes
Sages, transmitted by the agent.

0012. The set of all the variables/traps managed by an
agent are bound to the network element and specifically rep
resent the relating MIB, i.e. they show the operation mode and
the intrinsic characteristics of the network element to the
Network Manager.
0013 Each variable or trap is individually identified by a
string in the ASN.1 notation (Abstract Syntax Notation One),
called Object IDentifier or OID.

Dec. 2, 2010

0014. The framework of the string is, for instance, of 1.3.
6.1.2.1.4.21 type, indicative of the fact that ASN.1 notation
allows the representation of objects according to a hierarchi
cal tree structure

00.15 Apart of the MIB has been defined as a standard and
is Supported by any agent, whereas other variables and some
traps are specific for each manufacturer and in Some cases
also characteristic of a particular apparatus typology.
(0016. The SNMP protocol, born in 1988, has undergone
Some evolutions during the years. In particular new messages
typologies have been defined which the agents must be able to
understand. The MIB standard, that each agent must be able
to support, has been extended. On the filing date of this
application, the versions being used are the 1st and the 2nd
versions, whereas the standardization of version3 is currently
under way.
0017. The size of a MIB varies according to the apparatus
type and can even be of the order of some hundred kBytes,
corresponding to Some hundred OIDS.
0018. The diagram in FIG. 1 of the attached drawings
shows the typical components of an SNMP message. The
content of each component is written in ASCII characters and
its maximum permissible size is equal to the maximum size of
an UDP message, the data entity that carries it, equal to
65,507 bytes or octets (of which about 64kbytes are designed
for the information to be carried).
0019. In particular, in the same diagram of FIG. 1 the
presence may be noticed of a message header and of a PDU
(Protocol Data Unit) part, of which the part denoted by 1
collects messages such as GetRequest, GetNextRequest, Set
Request and GetResponse, the part denoted by 2 collects
GetBulk messages, whereas the part denoted by 3 generally
concerns trap type messages.
0020 More specifically, in the header of SNMP messages
the following information is present:

0021 Version Number: number of the SNMP version
used for message composition (V1,V2, V3, . . .), and

0022 Community Name: a kind of password that
allows access through reading and writing to the objects
contained in the MIB module.

0023 The following information is available within the
PDU

0024 PDU type: message typology that in the version 1
contains instructions such as GetRequest, GetNextRe
quest, SetRequest and Request, whereas version 2 may
also contain instructions such as GetBulkRequest and
InformRequest;

0.025 Request id: individual identifier of the message
assigned by the manager and utilized by the agent when
answering, in order that the manager might associate the
requested response with the appropriate reference;

0026. Error status: set to 0 in all message typologies,
except for the response messages, wherein, if set to 1, it
means that an error is present;

0027. Error Index: it indicates which one among the
requested variables (OID) has caused the error, and

0028. Variable Bindings: these are OID/value pairs; the
values are “null” in the case ofrequests, and compiled in
the case of response messages.

0029. In particular, the part just on the left side of FIG. 1
shows a typical structure of the part collecting the above
Variable Bindings.

US 2010/0306414 A1

0030. In the present invention and in the captions appear
ing in some figures of the appended drawings, the choice has
been made of mentioning—for the different elements being
considered—the corresponding acronyms/names/initials in
the English language.
0031. This has been done for the sake of a clear and
straightforward description. The above acronyms, names and
initials are currently used at international level by those
skilled in the art, since no translations into the different
national languages have been developed during the years.
0032. The transmission of the SNMP message, made pos
sible over UDP, allows the data packet exchange between two
computers linked to the network. The UDP message format
namely consists of a header whose main data are the IP
address of the computer transmitting the message, the IP
address of the destination computer and the size of the PDU
being transported. In turn, the PDU format is formed by a
header part and by a data part currently called “Payload” or
“Octet Data”. The header therefore contains the following
data: Source port, destination port, size of the transported unit,
integrity check (CHECKSUM) of the data unit.
0033. The methodology currently adopted for transferring
a SNMP messages over UDP (from the manager to the agent,
and Vice-versa) is based in essence on the fact that the com
plete SNMP message is coded by means of the BER (Basic
Encoding Rules) methodology. This way of operating allows
one to convert the bytes forming the SNMP message into a
hexadecimal structure suitable to be used as a payload of the
UDP message.
0034. The UDP transfer service of the data thus obtained
essentially envisages:

0035 at the transmission stage: reading of the SNMP
message and Subsequent hexadecimal coding (BER
encode) of the message, for its transmission over UDP,
and

0036 at the reception stage: after the reception over
UDP, the hexadecimal decoding (BER decode) of the
DDU and the Subsequent reconstruction of the message.

0037. The current application practice proves that in the
data communication networks such as internet, the need
arises of transferring a bulk of information in terms of
requests/responses conveyed in the form of SNMP messages.
0038. Owing to the total size of the information, the time
required for the relating transfer and network traffic thus
generated, the Solutions conventionally adopted for transfer
ring SNMP messages in a standard format generally exhibit a
rather poor efficiency.
0039. For this reason three IEFT specifications have
already been proposed—at a draft level—to tackle the issue.
0040. The first proposal (known as SNMP Object Identi
fier Compression, rev. April 2001—-draft-ietleos-oidcom
pression-00 txt) is based on the concept that the majority of
the information contained in the MIB is referred to by OID,
formed by a constant and rather large part and by a variable
and very small part. Starting from this principle, the proposal
aim is the encoding, according to analgorithm, of the constant
part of the OID through a shorter numbering. This solution
optimizes only in part the quantity of information being trans
ferred, without considerably reducing its size.
0041. The second proposal (known as “Efficient Transfer
of Bulk SNMP Data, rev. April 2001—draft-ietf-eos-Snmp
bulk-00.txt) faces the issue of the management of the Get
Bulk instruction that allows the simultaneous collection of a
given set of information. The instruction introduced in the

Dec. 2, 2010

SNMP version 2 does not allow the optimization of the col
lection, since the manager has to declare the number of ele
ments to be collected, without knowing how many elements
form the set of information requested. Amendments to the
UDP protocols have been suggested with a modification of
the encode algorithm of the message (from BER to PER,
which stands for Packet Encoding Rules) or with resort to a
transfer mode of FTP (acronym of File Transfer Protocol)
type. The solution described in the above cited document, is
the introduction of a new instruction at the agent side, called
GetColsRequest, and of relating message at manager side,
capable of recognizing the number of elements to be trans
ferred, identifying the end of the requested set and optimizing
therefore requests and network traffic. However, also this
Solution does not allow one to optimize the management of
sizes and number of messages being sent.
0042. The third solution taken into account (known as
“SNMP Payload Compression rev. April 2001–draft-irtf
nmrg-Snmp-compression-01.txt) is in principle similar to
the first proposal, since it suggests a differential encoding
algorithm called “OID Delta Compression” or ODC. Starting
from an OID root, Such a solution envisages memorizing the
Subsequent OID assigning to the OID a code associated to the
OID root, followed by the varying part of OID. Substantially,
the variations are stored interms of differential increments, as
compared to the root element. This solution has the drawback
of being incompatible with previous versions of the protocol.
Further, it allows an estimated saving by about 30% for par
ticularly recursive OID values, i.e. data arrays, and it is sub
stantially inefficient in the event of a low number of recursive
items.

BRIEF SUMMARY

0043 Aspects of the disclosure provide an alternative
Solution as compared to the Solution set out before, so as to
allow an optimized transfer over UDP of messages such as
SNMP messages, without affecting the protocol and the per
formance at the agent's as well at the manager's side.
0044) The disclosure also concerns, in a separate way, the
relating system and the data processing product, directly
loadable into the internal memory of a computer and incor
porating parts of Software code to implement the method
according to the invention, when the above data processing
product runs on a computer.
0045. The solution according to certain aspects is based on
the compression of the whole message (header and PDU).
0046. In particular two different transfer modes are pro
posed. The first one encapsulates the SNMP message into a
new SNMP message of proprietary type, and sends it in a
standard mode using UDP. The second one directly drives
UDP through a driver providing the result of the SNMP
message compression as Data Octet.
0047. The compression technique is essentially based on
the recognition of sequences appearing periodically within
the message.
0048. In a particularly preferred embodiment, the com
pression technique being used is a variation of the technique
known as LZ77 (see the work by Ziv. J. Lempel A., “A
Universal Algorithm for Sequential Data Compression',
IEEE Transactions on Information Theory, Vol. 23, No. 3, pp.
337-343), well-known in the UNIX environment and called

US 2010/0306414 A1

gzip (gzip format RFC 1952), also used by the more popu
lar PKZIP. The specifications of such a technique are com
monly known, and there are also source libraries available,
that implement and use such a solution for different develop
ment environments and operating systems. Such as HP-UX.
Digital, BeOS, Linux, OS/2, Java, Win32, WinCE.
0049. In particular it is possible to use a porting of the
algorithm on win32 by using a “ZLib’ library. For consulta
tion, reference can be made to the site http://www.info-Zip.
org/pub/infoZip/zlib/. The main feature of this library is to
allow the runtime and on-memory compression of both
binary data structures and strings, this being an important
factor relating to the system performance.

BRIEF DESCRIPTION OF DRAWINGS

0050. The invention will now be described by way of a
non-limiting example, with reference to the attached draw
ings, wherein:
0051 FIG. 1, relating to the prior art, has already been
previously described:
0052 FIG. 2 shows in the form of a general block diagram
a typical applicationarchitecture of the solution according to
the invention;
0053 FIGS. 3 to 5, each subdivided into two parts relating
to transmission (parta) and to reception (part b) respectively,
illustrate different types of embodiments of the solution
according to the invention in the form of a flow chart;
0054 FIG. 6 is an additional flow chart illustrating the
general characteristics of the solution according to the inven
tion; and
0055 FIGS. 7 and 8 depict, according to modalities sub
stantially similar to those adopted in FIG. 1, the embodiment
criteria of the Solution according to the invention, illustrated
in two possible variations.

DETAILED DESCRIPTION

0056. Within the general diagram of FIG. 2, reference N
indicates a data communication network (as an immediate
example, one may consider internet) defining the typical
application environment of the solution according to the
invention.
0057 Reference A shows the module currently called
"agent’, that carries out the function of controlling and moni
toring a corresponding element of the network N, operating in
a bi-directional—dialog mode with a corresponding man
ager M.
0058. The latter defines, along with an additional agent A
of a higher hierarchical level, a port or gate G, that in turn
interfaces with an additional manager M of a higher hierar
chical level.
0059. The latter one defines along with a corresponding
application, an observation module or observer O.
0060 References C1 and C2 indicate two bi-directional
communication channels that perform the communication—
at a lower hierarchical level—between agent A and gate G.
and—at a higher hierarchical level—between gate G and
observer O.
0061. The above-cited channels C1, C2 are those over
which the transmission of SNMP messages takes place.
0062 Flow charts of FIG.3 depict the modalities adopted
for the compression (FIG. 3a) and decompression (FIG. 3b)
of the SNMP message.

Dec. 2, 2010

0063 Flow charts of FIG. 4 illustrate (still making refer
ence to transmission—FIG. 4a—and to reception—FIG. 4b)
a first solution which envisages the transfer of the compressed
SNMP message through encapsulation over SNMP.
0064 Flow charts of FIG. 5 refer instead to a transfer
solution through encapsulation over UDP. This still makes
specific reference to transmission (FIG. 5a) and reception
(FIG.5b).
0065. The diagrams of FIGS. 7 and 8 depict in relation to
the OID representation the same formalism of FIG. 1 and
make reference to the set of compression and transmission
operations, exemplified by parta) of FIGS. 3 and 4 (FIG. 7)
and parta) of FIGS. 3 and 5 (FIG. 8), respectively.
0066 By first examining the flow chart of FIG. 3, refer
ence 100 identifies the step during which the whole SNMP
message (header+PDU) is read in order to be then converted
or encoded into a hexadecimal format during a Subsequent
step denoted by 102. This is brought about by applying a
coding of BER encode type.
0067. The message thus encoded is then compressed by
using a compression technique based on the recognition of
recursive sequences. Such as for instance the technique
referred to in the ZLib library, which has already been men
tioned before.

0068. This takes place during a step denoted by 104 so as
to obtain during the step indicated by 106, a compressed Data
Unit, ready for the transmission.
0069. In a fully symmetrical way, the flow chart of part b of
FIG.3 incorporates four steps, namely 206, 204, 202 and 200
(designed to be performed according to the indicated
sequence), wherein the received compressed Data Unit (step
206) is subjected to decompression (step 204) with a view to
the Subsequent hexadecimal decoding (step 202), with a Sub
sequent reconstruction of the entire SNMP message (step
200).
0070 The fact of having assigned to the part b flow chart of
FIG. 3 numerical references sorted in an inverse way with
respect to their performance sequence, has the only purpose
of underlining the symmetrical character with steps 100 to
106 of the compression procedure. Similar choices have been
made with reference to the flow charts of FIGS. 4 and 5.

0071. As already shown, FIGS. 4 and 7 make reference to
a transfer Solution which envisages the encapsulation of the
compressed Data Unit into a standard SNMP message, char
acterized by a proprietary or peculiar “Variable Binding', by
a standard transmission modality over UDP.
0072 The encapsulation modality of the compressed data
Unit obtained during step 106 incorporates an initial step,
denoted by 108, during which the compressed Data Unit is
readby bytes and then converted into the corresponding set of
ASCII characters, during a Subsequent encoding step denoted
by 110.
0073. In the following step, denoted by 112 (which may be
possibly preceded by auxiliary functions such as ACKTAB+
NULL-see block 110a of FIG. 7) the “Variable Binding is
generated of the message formed by a first OID with a pro
prietary or peculiar numbering (for instance 1.3.6.1.4.666.1)
which contains in its value the string ZIP XXXX, wherein
XXXX indicates the size of the original file. In the above cited
example, the peculiar code 666.1 has been indicated which—
at the moment has not been registered at IANA (Internet
Assigned Numbers Authority), but any other code not regis
tered could be used.

US 2010/0306414 A1

0074 The subsequent elements of the Variable Binding
containing the compressed Data Unit, duly converted into
ASCII characters, are formed by OID/value pairs. The value
contains parts of the compressed Data Unit, converted into
ASCII, having a maximum size of 255 characters.
0075. Then the header information of the SNMP message

is reconstructed. All this takes place during step 112, that is
followed by a step denoted by 114, where an additional
encoding according to the BER methodology is performed
for generating a PDU payload of the UDP message (payload
of PDU-UDP) to be used for data transmission (step 116).
0076 Also in this case, steps denoted by 216, 214, 212,
210 and 208, reproduced in part b) of FIG. 4 and designed to
be performed according to the order by which they have been
previously cited, represent the dual functions—to be carried
out at the receiving side—of steps 108 to 116 relating to the
transmission operation.
0077. By adoption of the solution to which FIGS. 4 and 7
are referred, the compressed SNMP message has therefore a
standard logic SNMP format, but a proprietary or peculiar
content. Thus, it requires a functional extension—albeit mini
mal—of the agent's manager, Such as to allow its recognition
and encoding/decoding.
0078. The experiments conducted by the Applicant prove
that such a solution is fully feasible, without affecting the
network architecture.

007.9 The alternative solution to which FIGS. 5 and 8
make reference, envisages the preparation of the compressed
Data Unit starting from the SNMP message, according to the
modalities shown in FIG. 3, followed by the direct encapsu
lating of said Data Unit into the payload of PDU-UDP.
0080. Obviously for a correct operation, this solution
requires the use of a dedicated transmitter and receiver, for
instance under conditions which ensure the availability of a
UDP port different from the standard one. The transmitter
must therefore know the UDP port used by the receiver, and
vice versa. The information about the ports being used may be
exchanged at a higher level by means of a synchronization
message in a standard SNMP format, according to criteria to
be better explained in the sequel.
I0081. When the alternative solution depicted in FIGS. 5
and 8 is adopted, the compressed Data Unit, made available
during step 108 and designed to replace the BER of the
message, becomes the payload of the PDU-UDP message.
0082. The relating operation is shown by the steps denoted
by 118 and 120 in FIGS. 5 and 8, said steps preceding trans
mission step 122, designed for the respective dedicated port
(generally called port X) of the receiver.
0083. Also in this case, the complementary operation
incorporates three steps, denoted by 222 (reception at port Y
of the module acting at that moment as a receiver), 220
(extraction of the payload of PDU-UDP), and 218 (getting of
the received compressed Data Unit, designed to be trans
ferred toward step 206 of the part b) flow chart of FIG. 3),
respectively.
0084. Also in this case steps 222, 220 and 218 are carried
out according to the order by which they have been men
tioned.
0085. The synchronization message referred to previously

is sent out by the manager to the SNMP agent according to a
general principle 'application-to-application using the stan
dard SNMP format containing a proprietary or peculiar “Vari
able Binding.

Dec. 2, 2010

I0086. The information being transferred may be of the
type:

OID Value

1.3.6.1.4.666.2 <UDP TX Ports
1.3.6.14.666.3 <UDP RX Ports

I0087. The manager sends to the SNMP manager a propri
etary message compiling the value <UDP TX Port with the
number of the port designed to be used for the UDP transmis
sion (for instance 1024) as well as a value <UDP RX Port
with the number of the port that it uses for the UDP reception
(for instance 1224).
I0088. The agent replies to the manager sending a similar
message containing its own information. This method
reduces the processing time by improving the solution effi
ciency.
I0089. The block diagram of FIG. 6 additionally shows
how the described solution may be generalized so as to be
applied to any message typology using UDP as a transport
(for instance SNMP, PING, etc.). This generalization makes it
possible to implement an UDP driver capable of replacing
those presently used.
0090 This solution is capable of evaluating the size of the
payload to be transferred, and further proceeding (provided
the size is adequate (for instance: more than 20 Bytes) by
using the method herein described. To declare the compact
nature of the UDP message to the receiver, use can be made of
the 8 bits included from bit 62 to bit 69 of the header of the
UDP message (at present such bits are not used and are set by
default to 0) setting to 1 for instance one or more of such bits.
(0091. In particular, in the diagram of FIG. 6, reference 300
indicates any step wherein the need arises of sending a mes
sage capable of being transported over UDP, followed by a
compression step 302 of the payload, performed according to
the modalities described in FIG. 3.
0092. A subsequent step 304 envisages the generation of
the UDP message header according to the above-recalled
terms, while a subsequent step denoted by 306 corresponds to
the creation of the entire UDP message, with a view to its IP
transmission, to be performed during a step denoted by 308.
0093. The described methodology allows the implemen
tation of a general purpose solution, capable of Supporting
any type of application which makes use of the UDP-IP
protocol stack.
0094. This solution is particularly suitable for the imple
mentation of hardware or “on chip” solutions.
0.095 A functional extension of the described solution,
applicable independently of the methodology being used for
the data transfer, and the encoding of the message or its
equivalent BER or Data Octet UDP. In this regard a safe and
effective method appears to be the one currently termed as
“block cipher Rijndael, also called “AES’.
0096. The solution described herein has the advantage of
allowing the compression of SNMP messages—beyond the
drawbacks described in the introduction of this description—
making reference to a flexible compression technique, in a
consolidated way, but also to other compression techniques
(such as MPEG). Such a technique and its algorithm can be
used in several operating systems, making Such a solution a
re-usable and re-implementable solution. Further, said solu
tion has a minimum impact both on the manager and the
agent, since it requires the set-up of a simple SuperStructure
for compression and decompression of messages.

US 2010/0306414 A1

0097. The solution also proves efficient, since it allows the
optimization of the network traffic, by transferring, time
intervals being equal, a larger quantity of information or the
same quantity of information through a lower number of
messages. It is also a safe Solution, since being compressed
and encoded the information travels within the network in a
clear text.
0098. Obviously, while the principle of the invention
remains unchanged, the details of the implementation of the
invention and its embodiments might be varied considerably
with respect to what has been herein described and illustrated,
without departing from the spirit and scope of the invention as
defined by the appended claims.

1. A method of transferring User Datagram Protocol (UDP)
messages, comprising:

compressing a data unit from a first UDP message;
configuring the compressed data unit as a Protocol Data

Unit payload of a second UDP message; and
transmitting the second UDP message according to UDP,

wherein the second UDP message includes an indication
of the compression.

2. The method of claim 1, wherein the compression is gzip
compression.

Dec. 2, 2010

3. The method of claim 1, further comprising using a bit
field of the UDP header of the second UDP message to indi
cate execution of the compression step.

4. The method of claim3, wherein the bits from bit 62 to bit
69 of the UDP header of the second UDP message are used as
the bit field to indicate execution of the compression step.

5. The method of claim 3, further comprising setting a
compression indication bit of the UDP header of the second
UDP message to a value of one, wherein the compression
indication bit is one of the bits from bit 62 to bit 69 of the UDP
header.

6. The method of claim 1, further comprising transferring
the second UDP message from an identified transmission port
of a transmitter to an identified reception port of a receiver.

7. The method of claim 6, further comprising:
receiving said second UDP message at the reception port;
extracting said Protocol Data Unit payload from said sec

ond UDP message; and
decompressing said Protocol Data Unit payload so as to

obtain the data unit of the original message.
c c c c c

