WO 2006/071985 A2 || 000 000 000 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 July 2006 (06.07.2006)

(10) International Publication Number

WO 2006/071985 A2

(51) International Patent Classification:
GOGF 11/00 (2006.01)

(21) International Application Number:
PCT/US2005/047419

(22) International Filing Date:
29 December 2005 (29.12.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/639,923 29 December 2004 (29.12.2004) US
(71) Applicant (for all designated States except US): ALERT
LOGIC, INC. [US/US]; 4888 LOOP CENTRAL, Suite

440, Houston, Texas 77081 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHURCH, Christo-
pher, A. [US/US]; One Hermann Park Ct., #424, Houston,
Texas 77021 (US). GOVSHTEYN, Mikhail [US/US]J;
5603 Sylmar, Houston, Texas 77081 (US). BAKER,
Christopher, D. [US/US]; 2909 Veva Drive, Pearland,
Texas 77584 (US). HOLM, Christopher, D. [US/US];
4807 Pin Oak Park, #1715, Pearland, Texas 77584, Hous-
ton, TX 77081 (US).

(74) Agent: SCHUSTER, Katharina, W.; SPRINKLE IP
LAW GROUP, 1301 W. 25th Street, Suite 408, Austin,
Texas 78705 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ,VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: THREAT SCORING SYSTEM AND METHOD FOR INTRUSION DETECTION SECURITY NETWORKS

(57) Abstract: Embodiments of the invention provide a security expert system (SES) that automates intrusion detection analysis
and threat discovery that can use fuzzy logic and forward-chaining inference engines to approximate human reasoning process.
Embodiments of the SES can analyze incoming security events and generate a threat rating that indicates the likelihood of an event
or a series of events being a threat. In one embodiment, the threat rating is determined based on an attacker rating, a target rating, a
valid rating, and, optionally, a negative rating. In one embodiment, the threat rating may be affected by a validation flag. The SES can
analyze the criticality of assets and calibrate/recalibrate the severity of an attack accordingly to allow for triage. The asset criticality
can have a user-defined value. This ability allows the SES to protect and defend critical network resources in a discriminating and
selective manner if necessary (e.g., many attacks).

WO 2006/071985 PCT/US2005/047419

[0001]

[0002]

[0003]

[0004]

1

TITLE OF THE INVENTION
THREAT SCORING SYSTEM AND METHOD FOR
INTRUSION DETECTION SECURITY NETWORKS

CROSS REFERENCE TO RELATED APPLICATION(S)
This application claims priority from U.S. Provisional Patent Application No.
60/639,923, filed 12/29/2004, and entitied “DYNAMIC THREAT RATING SYSTEM
AND PROCESS FOR COMPUTER INTRUSION DETECTION,” which is hereby
fully incorporated herein by reference for all purposes.

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to network security management. More
particularly, embodiments of the present invention relate to a system and method
for automatically, accurately, and dynamically identifying and assessing network
security threats and security incidents.

BACKGROUND OF THE INVENTION

Intrusion techniques (commonly termed “hacking”) present security threats, often
dangerous, to computer systems and data. The danger increases in network
systems that rely on interconnectivity. Thus, today’s network systems generally
employ intrusion management technologies to make their networks more
defensible to attacks. Two types of network-based intrusion management
technologies are known in the art: intrusion detection systems (IDS) and intrusion
prevention systems (IPS).

IDS-based systems are typically standalone appliances designed to look for signs
of intrusions in network traffic and generate security alarms accordingly. They rely
on hard coded threat values and human expertise in analyZing threats, which can
be in the hundreds or even thousands. One significant problem with the hard
codéd threat values approach is that it typically only considers how dangerous an
attack itself is and ignores an enormous amount of information that can
dramatically impact the true level of the security threat. For example, the criticality

or value of a system or business asset that is being targeted by an attack may

determine whether an action needs to be taken and whether a priority relevant to

the action may apply. Another problem is that because it only considers how
dangerous an attack itself is based on hard coded threat values, it does not

discriminate threats against individual systems. As one skilled in the art may

WO 2006/071985 PCT/US2005/047419

[0005]

[0006]

[0007]

2
appreciate, some threats that are dangerous for one network system (i.e., may
cause damages) may not impose a real world threat to another network system.
For example, a UNIX®-based system may be immune to a Windows®-based attack,
so no actions may be necessary.
IDS-based systems typically have no prior network knowledge or target awareness.
To determine whether a network is being targeted by and subject to damage from a
particular threat, many network systems rely on human experts (i.e., security
administrators or analysts) to investigate and analyze security alarms on a manual
and ad-hoc basis. The accuracy and effectiveness of a threat analysis may vary
from system to system and depend on the particular knowledge and abilities of
individual human experts. Moreover, an IDS-based system may continuously
generating hundreds and hundreds of security alarms that must be reviewed by
security administrators or analysts 24 hours a day, seven days a week. In some
cases, due to the complexity and perhaps the number of threats involved, it may
not be viable or even possible to review all security alarms and perform threat
analyses accordingly in a timely manner.
To address some of the drawbacks of IDS-based systems, some prior efforts
offered inline intrusion prevention systems (IPS) that attempt to block attacks
before reaching their targets. Like the IDS, IPS-based systems also typically utilize
hard-coded threat values. Typically, the actual threat vaiue in most existing IPS-
based systems is a hard-coded value associated with an attack type (e.g., “low”,
“med”, or “high”). In other words, threats are ranked by type for human review and
are not scored based on their real ability to intrude a particular network and/or to
cause damages. Typically, each hard coded threat value is associated with an -
event type or a specific event. The meaning of the term “event” may vary from
system to system, dependent upon each system’s underlying technology.
Currently, there are the two primary technologies for network-based intrusion
detection and prevention systems. The first is commonly referred to as "signature-
based", where a signature defines both the meaning of an event (e.g., an attempt
to exploit a vulnerability, a list of reference items, etc.) and a set of patterns by
which to identify such an event on a network (e.g., a string of text to be found in the

'payload of a TCP packet). The second is commonly referred to as "anomaly-

based", wherein events are represented as deviations
from normal behavior, and usually have no indication of a specific attack or any
pre-defined patterns to match in network content.

. Prior network-based intrusion detection and prevention systems (IDS and IPS) are

affected by the same problems and have the same fundamental limitations. For

WO 2006/071985 PCT/US2005/047419
3

example, accuracy in actual threat detection is low and false positives often result
in a denial of network service to valid customers. Consequently, in real world
deployments, the majority of network intrusion detection and prevention systems
operate passively without filtering a single packet, which means that most of the
security alarms must still be analyzed by human experts (i.e., security administers
or analysts) using the same tedious manual process.

[0008] Another limitation is that these existing network intrusion detection and prevention
systems are designed to make binary (e.g., frue/false or yes/no) decisions about
each potential threat based on a limited number of pre-coded questions (e.g., 1-10
questions). If the first answer happens to be false, the decision process stops and
ignores the rest of the questions, making a quick exit out of a binary decision tree.
Due to the binary nature of this decision making process, relevant or event critical
information may not be asked and/or taken into consideration in determining the
relevance and/or severity of a security threat. As a result, having a wrong answer
early on in the decision tree may compromise the security of the system. For

" example, a security system may detect an event which may target a particular host.
The system checks the list of hosts and decides that the event can be dropped
because the target host is not on the list. Unbeknownst to the system, the list of
hosts does not include a newly installed server, which happens to be just what that
particular event targets. Thus, the answer to the first question (i.e., “does this
event target any host known by the system?”) was a wrong answer and the new
server is exposed and vulnerable to that particular attack.

[0009] Yet another limitation is that these existing network intrusion detection and
prevention systems are designed to be fast and efficient, producing no noticeable
degradation to netWork performance. Consequently, they cannot perform the
following tasks in real time:

1) Take the necessary time to learn the protected network;

2) Make complex decisions about attacks that may span more than a limited
number of packets;

3) View intrusions as event scenarios;

4) Correlate attack and vulnerability information;

5) Detect attacks involving numerous steps or network sessions; and

6) Handle spatially and temporally distributed attacks.

[0010] A need exists for a more complete intrusion detection solution to defensible
networks that can provide a real-time correlation, ongoing vulnerability discovery,

. and active intrusion defense, automating the reasoning process performed by

WO 2006/071985 PCT/US2005/047419

[0011]

[0012]

[0013]

[0014]

[0015]

[0016]

[001‘7]

[0018]

[0019]

4
human security experts. Embodiments of the present invention address this need
and more.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide a viable and more complete
intrusion management solution to defensible networks. In one embodiment, the
reasoning process performed by human security experts is automated via a
security expert system (SES). The SES provides automated analyses of incoming
security events and generates a confidence rating that indicates whether an event,
or series of events, constitutes a threat to the network in which the ISES services.
One embodiment of the SES can be deployed as software and hardware
appliances that continuously learn about a network’s vulnerabilities and monitor
attacks on network resources (e.g., firewalls, applications and servers).

One embodiment of the SES utilizes known analysis techniques such as heuristic
data and takes into account user supplied information about the value of resources
on the network. In one embodiment, heuristic data and user supplied information
are stored in a central database server.

One embodiment of the SES can be trained via a knowledge base to learn about
new attack vectors and techniques without human intervention. In one

 embodiment, the SES is trained using a novel Security State Definition Language

(SSDL). In one embodiment, optimized learned data is stored in a central
database server.

In one embodiment, the SES can process incoming security events and generate a
dynamic network threat rating based on attack severity and target specific metrics
(e.g., host criticality, number‘of active services, number of potential exposures and
number of verified vulnerabilities).

in one embodiment, the SES can provide correlation of attacks to vulnerabilities
present on a target host residing in the network protected by the SES.

In one embodiment, the SES can provide validation of successful compromise

based on response analysis, payload analysis, correlated event groups and attack

_patterns.

In one embodiment, the SES can provide invalidation of false positives and false
alarms through advanced packet payload analysis on attacks and responses.

In one embodiment, the SES can provide automated defensive and/or corrective
actions by dynamically configuring existing firewalls and access control devices to
block validated threats. V

WO 2006/071985 PCT/US2005/047419

[0020]

[0021]

[0022]

[0023]

[0024]

[0025]

[0026]

5
In one embodiment, the SES can provide automated containment actions by
shutting down switch ports of compromised or worm infected hosts, thus
dynamically removing them off the network.
One advantage provided by embodiments of the ISES disclosed herein is their
flexibility and ability to be rapidly deployed to add new inference logic as well as
knowledge without requiring the underlying software to be reengineered. The
speed, efficiency and rapid automation of human reasoning and deployment
thereof can be particularly critical in the field of network security where new
problems that must be analyzed differently than before can emerge very fast and
without warning. As an example, according to one embodiment, a new expert
technique necessary to analyze and validate an event involving a new worm can be
deployed to a system implementing an embodiment of the ISES in hours. In
comparison, deployment of traditional network intrusion management systems can
take days or even weeks.
Another advantage pfovided by embodiments of the ISES disclosed herein is that
they resemble human reasoning, unlike fraditional network intrusion management
systems that are designed to make binary decisions which may be based on
fragmented information and incomplete evidence of attacks. Rather than
attempting to provide an absolute result, embodiments of the ISES disclosed herein
can provide the best possible answer and a confidence score (e.g., a threat rating),
substantially reducing or eliminating false positive results and producing more
efficient and effective alarms (e.g., only alarms on security threats that have a high
probability of success).
Other objects and advantages of the present invention will become apparent to one
skilled in the art upon reading and understanding the detailed description of the
preferred embodiments described herein with reference to the following drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention and the advantages
thereof may be acquired by referring to the following description, taken in
conjunction with the accompanying drawings in which like reference numbers
indicate like features and wherein:

FIGURE 1 is a diagrammatic representation of an overall architecture wherein
embodiments of the present invention may be implemented;

FIGURE 2 is a diagrammatic representation of a security expert system capable of
providing automated analysis of all incoming security events and generating threat
rating accordingly, according to embodiments of the present invention;

WO 2006/071985 PCT/US2005/047419

[0027]

[0028]

[0029]

[0030]

[0031]

[0032]

[0033]

[0034]

6
FIGURE 3 is a diagrammatic representation of a security expert system having a
Web interface coupled to a central database, according to embodiments of the
present invention;
FIGURE 4 is a flow diagram illustrating a plurality of processing steps, analyses,
and checks performed by embodiments of a security expert system disclosed
herein; .
I;‘IGURE 5 is a flow diagram illustrating embodiments of Attack Validation of
FIGURE 4 in more details;
FIGURE 6 is a flow diagram illustrating embodiments of Target Exposure Analysis
of FIGURE 4 in more details;
FIGURE 7 is a flow diagram illustrating embodiments of Attack Rating of FIGURE 4
in more details; and
FIGURE 8 is a flow diagram illustrating embodiments of VulnerableToAttack of
FIGURE 5 in more details.

DETAILED DESCRIPTION

The present invention and various features and advantageous details thereof will
now be described with reference to the exemplary, and therefore non-limiting,
embodiments that are illustrated in the accompanying drawings. Descriptions of
known programming techniques, computer software, hardware, network
communications, operating platforms and protocols may be omitted so as not to
unnecessarily.obscure the invention in detail. It should be understood, however,
that the detailed description and the specific examples, while indicating preferred
embodiments of the invention, are given by way of illustration only and not by way
of limitation. Various substitutions, modifications, additions and/or rearrangements
within the spirit and/or scope of the underlying inventive concept will become
apparent to those skilled in the art from this disclosure.
As network security threats continue to evolve and become more sophisticated
each and everyday, it has become a constant struggle for security systems to keep
track of what network security threats are dangerous to which machine on what
network. Existing network-based intrusion detection and prevention (referred to
hereinafter as “intrusion management”) systems, whether they are signature-based
or anomaly-based, rely heavily on human experts to analyze potential threats and
take defensive/corrective actions. The problem with information overload cannot
be resolved using a new intrusion detection technique or a more advanced analysis
algorithm. The data generated by today’s intrusion management products is far too

complex, too varied and too fragmented for human experts (i.e., security

WO 2006/071985

[0035]

[0036]

[0037]

PCT/US2005/047419
7

administrators or analysts) to properly and accurately analyze incoming security
threats in a timely and effective manner.

Recently, limited expert system concepts are beginning to be used to manage
enterprise-wide security. Expert systems can be seen as computer systems
programmed to solve problems that generally involve the knowledge of human
experts. Expert systems allow application developers to write programs and
experts to write expert rules. Expert system programs then use these rules to
analyze information. Expert systems rely on expertise expressed exclusively in the
rule base. A basic implementation of an expert system can be as simple as a
series of true/false or yes/no questions.

Expert systems adopted for security analysis typically manage enterprise-wide
security by aggregating and correlating event logs. The most mature expert
systems adopted for security analysis can be found in research labs (e.g., the
EMERALD project and the Correlated Attack Modeling Language (CAML) project
developed by SRI International based in Menlo Park, CA, U.S.A.). These prior
expert systems have several limitations. For example, first, they do not compare
hosts on the network. Second, they.do not consider or analyze historical data.
Third, they determine only whether an attack is valid. They do not analyze a target
host’s response and/or behavior to learn whether an attack was actually
successful. Forth, they do not consider or analyze the aggressiveness of an
attacker. Consequently, these prior expert systems are unable to provide a fully
automated, complete network security management solution to defensible
networks. '

As will be described herein in more details later, embodiments of the present
invention provide an advanced, commercially viable security expert system (SES)
that does not have these limitations. More specifically, embodiments of the SES
can compare exposures of hosts on the network protected by the SES, taking into
consideration historical data (e.g., how many and what attacks to which target
hosts have occurred in the past 48 hours and/or 30 days, how many times and how
often a particular attacker has generated how many attacks, etc.) and user-
supplied security information (e.g., asset criticality, negative rating, etc.).
Accordingly, each threat rating can be tailored to accurately reflect the true severity
of a potential security threat. Further, in addition to attack validation, embodiments
of the SES can analyze responses and behaviors of target hosts to determine
whether the validated attack was actually successful. The SES can then calibrate
or recalibrate the vulnerability of target hosts and apply the calibrated vulnerability
of target hosts accordingly in future decisions. This helps to further ensure the

WO 2006/071985 PCT/US2005/047419

[0038]

[0039]

[0040]

8

accuracy of threat ratings thus generated. Moreover, embodiments of the SES can
analyze the aggression of an attacker (i.e., how aggressive an attacker is) by
monitoring and determining the number of recurrences and velocity of attacks
within a certain time period. The aggressiveness of an attacker may affect the
severity of an attack and hence its threat rating (i.e., the greater the aggression of
the attacker, the more likely that the attacker might succeed in the near future.)
FIGURE 1 is a diagrammatic representation of an overall architecture wherein
embodiments of the SES may be implemented. In the exemplary deployment
shown in FIGURE 1, a security expert system (SES) 100 comprises a SES server
network 101 and a client network 102 connected to SES server network 101
through the Internet 103 via known network communications means. Client
network 102 comprises a plurality of internal networks. Each client internal network
can have a plurality of network resources (e.g., computers, printers, server
machines, etc.) and each client internal network is connected to a client firewall 104
via a network switch (e.g., 112, 114, 116). Other configurations and arrangements
of SES 100 are possible.
According to one embodiment, each switch (e.g., 112, 114, 116) has an intrusion
detection system (IDS) sensor (e.g., 122, 124, 126) operatively coupled thereto or
residing therein. In one embodiment, an IDS sensor is a hardware device or

C appliance programmed to collect information from client network switches (e.g.,
112, 114, 116) and transmit the collected information to SES server network 101.
Unlike conventional intrusion management products which typically connect directly
to or resides at a client firewall for monitoring network traffic coming from the
Internet only, IDS sensors 122, 124, 126 operate to monitor and gather information

from internal network traffic (e.g., by monitoring'interfaces such as a span port of a

. switch) as well as external network traffic coming from the Internet 103. In one

embodiment, all internal network traffic through a switch can be mirrored to an IDS
sensor connected thereto (e.g., using a passive mode). Data collected by an IDS
sensor (e.g., target host responses to an internal broadcast) can be transmitted
through an encrypted connection of the Internet 103 to.a receiving end (e.g.,
receiving servers 130) at SES server network 101. Any number of IDS sensors
may be implemented to suit embodiments of the SES disclosed herein. It should
also be understood that the functionality of the IDS sensor can be incorporated as
software and/or firmware into switches 112, ﬁ14, 116.

In the example shown in FIGURE 1, SES server network 101 comprises a
receiving firewall 105, a plurality of switches (e.g., 110, 111, 113, 115, 117, 119),

and a plurality of groups of servers (e.g., receiving servers 130, database servers

WO 2006/071985 PCT/US2005/047419

[0041]

[0042]

[0043]

[0044]

[0045]

9
131, expert system servers 137, Web servers 135, and management servers 139)
connected to the plurality of switches (e.g., 110, 111, 113, 115, 117, 119). Other
configurations and arrangements of SES server network 101 are possible. For
example, each group of servers may be implemented in one or more machines.
One function of receiving servers 130 is to receive data (e.g., events) transmitted
by any of the IDS sensors located at client network 102. Received data is then
transmitted over to database servers 131 for storage. In one embodiment, a
queuing server may be utilized to improve speed. Another function of receiving
servers 130 is to interface with external units (e.g., IDS sensors 122, 124, 126).
According to embodiments of the invention, the intelligence of the SES 100 resides
at SES server network 101. That is, SES 100 is configured such that commands
from various servers located at SES server network 101 are transmitted to data
collection units (e.g., IDS sensors 122, 124, 126) located at client network 102
through receiving servers 130. In this way, a SES server can control and instruct
an IDS sensor at a client site to take a defense action, upgrade software, reboot
itself, etc.
One function of database servers 131 is to hold permanent data (e.g., events
transmitted by receiving server 130). Another function of database servers 131 is
to serve as a SES state engine by providing events to the state engine and store
temporary data (e.g., learned data) from the state engine. The functionality of
database servers 131 will be described in more details later with reference to
FIGURE 3.
Web servers 135 implement a Web-based user interface through which SES 100
can interact with an end user. For example, through thé user interface, SES 100
can tell the end user what decisions it made (e.g., threat ratings) and how and why
it made those decisions. In.other words, Web servers 135 serve as an interface
between SES 100 and end users who have authorized access to SES 100. The
functionality of Web servers 135 will be described in more details later with
reference to FIGURE 3.
Expert system servers 137 implement the core analysis functionalities of SES 100. '
Embodiments of SES 100 implementing these SES functionalities will be described
in more details below with reference to FIGURES 2-8. Management servers 139
implement the management functionality of SES 100. For example, management
servers 139 can be queried on the status of SES 100 and restart SES 100 if
necessary.
FIGURE 2 is a diagrammatic representation of a security expert system (SES) 200

capable of providing automated analysis of incoming security events and

WO 2006/071985 PCT/US2005/047419

[0046]

[0047]

10

generating threat rating accordingly, according to embodiments of the present
invention. Embodiments of SES 200 can analyze very complex problems through
inference engines and generate a confidence rating about the results using fuzzy
logic reasoning. In one embodiment, the ability of SES 200 to analyze and reason
like 2 human security expert can be achieved by training SES 200 through a
knowiedge base built in a proprietary Security State Definition Language (SSDL)
like, for example, the SSDL developed by Alert Logic, Inc. of Huston, TX, USA.
However, it should be understood that embodiments of the invention disclosed
herein can be implemented using other programming languages. An inference
engine can be of a forward-chaining or backward-chaining type. A forward-
chaining inference engine goes from an unknown state (e.g., “how serious is this
threat to the network?”) through various rules applied to data at hand to reach a
conclusion (e.g., a threat rating that indicates the severity or seriousness of the
attack.) A backward-chaining inference engine does the opposite and starts with a
conclusion (e.g., “this is the most serious threat to the network™) and breaks down
the conclusion by applying rules to available data to ascertain a confidence level of
that conclusion. Preferably, embodiments of the SES utilize forward-chaining
inference engines. Other implementations (e.g., backward-chaining inference
engines) are also possible.

In the embodiment of FIGURE 2, SES 200 implements an expert system 201I
programmed with computer-executable instructions to process and analyze an
event 203 according to expert rules from knowledge base 202 and data from a
central database (e.g., historical data 205 stored at database servers 131). Event
203 may be retrieved from the central database as well. In one embodiment,

expert rules are part of the knowledge base of expert system 201. In one

.embodiment, expert rules are written in SSDL. .

Optionally, expert system 201 can utilize optimized, trained information from
learned data 206, which is a subset of historical data 205 and which can be stored
in a trained data area (e.g., a temporary memory) for optimal performance. In one
embodiment, a threshold is established to facilitate the decision making process in
selecting either historical data 205 or learned data 206. This threshold can be
based on how many decisions need to be made in real time versus how much data
is needed to make those decisions. Leaned data 206 could be useful in isolating
relevant information out of an event. For example, event 203 may have hundreds
of different properties, which may cover from packet headers to lists of target hosts
to a worm scan type. In many cases, only a portion of those properties (e.g., the
scan type and the lists of target hosts) may need to be placed in a trained data

WO 2006/071985 PCT/US2005/047419

[0048]

[0049]

[0050]

11
area for future decisions (e.g., “Has this target host been scanned? If so, by what
type of scan and by whom?”). In this way, expert system 201 can obtain relevant
information in a fast and efficient manner from learned data 206.
In one embodiment, expert system 201 utilizes optimized information from learned
data 206 and applies expert rules from knowledge base 202 against event 203 to
generate a threat rating 204. The functionality of expert system 201 will be further
described in detail with reference to FIGURE 3, which shows an embodiment of
SES 200 having an expert system 301. Within this disclosure, the terms “threat
scoring”, “threat rating”, and “threat confidence” may be used interchangeably. In
one embodiment, a threat rating is a value normalized to have a range between 0
and 100. According to embodiments of the invention, a threat rating indicates the
likelihood of an event being a threat to the network, and the subjective value of loss
if the event is not responded to (i.e., no defensive or corrective action is taken).
For example, threats in the ranges of 0-30 may indicate no fo little threat, whereas
all ranges above 30 may indicate an escalated or elevated level of threat.
Embodiments of the invention can identify false positives and false alarms and give
them appropriately lower threat scores. Through a Web-based user interface as
described above, an end user may elect to view only medium to high threat events,
effectively eliminating the majority of false positives (i.e., false alarms) thus
identified.
One additional advantage provided by embodiments of the invention is the visibility
of events through threat ratings. Unlike prior intrusion management products,
events that do not match any one of a series of checks (e.g., operating system
checks, known vulnerability, etc.) are not necessarily eliminated. In one
embodiment, each incoming event is analyzed and all relevant checks are run
against the event to accurately rate the-threat of the event, and predict the future . .
success of an attacker. Accordingly, users can view false positive events and low-
positive events which are known to provide an understanding about the nature of
traffic on a network and a baseline of activity to compare against potential attacks,
and which can serve as an early-warning system to burgeoning attacks. In this
way, false-positives can be properly reduced in a custom manner by tuning each
IDS sensor to the nature of traffic on a particular client network and by continuing to
do so as the network topology and use changes. Similarly, low-positives can easily
be ignored or sorted out by users utilizing the associated threat ratings.
According to embodiments of the invention, a threat rating for a security event is
determined based on a plurality of factors (e.g., information about the event type or
signature, validity of an attack, severity of the attack, the value of the resources

WO 2006/071985 PCT/US2005/047419

[0051]

[0052]

[0053]

12
targeted, etc.). Within the scope of this invention, the term "signature” has a
special meaning and is typically broader than when the term is used with regards to
"signature-based" intrusion detection and prevention systems. Within this
disclosure, the term “signature” refers to a unique identifier for an event, indicating
its system and/or subcomponent of origin and, when applicable, a specific type of
behavior being represented by the event. In this manner, embodiments of the
invention can process and analyze an event originating from either a signature-
based or anomaly-based detection engine (e.g., IDS sensors 122, 124, 126). In
one embodiment, the term “event” refers to a network packet. Within this
disclosure, an event can be a "signature-based" event or an "anomaly-based"
event.
According to embodiments of the invention, a threat score can be generated by
examining three basic sets of information: the skill and history of the attacker, the
value of a resource being attacked, and the likelihood of the attack succeeding. To
fully realize such a calculation, several important pieces of data besides the event
its self must be collected, including vulnerability data about hosts, assigned
criticality to resources (e.g., given hosts and networks), and, in many cases, all
responses from the target host to the attacker.
FIGURE 3 is a diagrammatic representation of a security expert system 300,
according to one embodiment of the present invention. In the embodiment shown
in FIGURE 3, SES 300 comprises an expert system 301, a Web interface 303, and
a central database 302 in communication with expert system 301 and Web
interface 303. Expert system 301 is capable of retrieving and analyzing evenis
from central database 302 and generating appropriate outputs (e.g., event
information, incidents, threat scores, etc.) for storing at central database 302.
Central database 302 is configured to interact with Web interface 303 (e.g.,
providing incidents, threat scores, etc. to be displayed via Web Interface 303 and
storing action requests and/or configuration changes provided by a user via Web
interface 303). In one embodiment, action requests may be automatically
generated by Defensive/Corrective Action 317. In one embodiment, defensive
and/or corrective actions can be communicated to one or more remote IDS sensors
(see, e.g., 122, 124, 126 of FIGURE 1) located behind a client’s firewall (see, e.g.,
104 of FIGURE 1). Specific examples of this automated defense capability are
provided below.
In the embodiment of FIGURE 3, the knowledge base of SES 300, and more
specifically, expert system 301, comprises the following components: Attack
Validation 311, Target Exposure Analysis 312, Attécker Rating 313, Attack

WO 2006/071985 PCT/US2005/047419

[0054]

13
Negation Analysis 314, Scenario Modeling 315, and Incident Building 316
components. Each component may have a set of security expert rules and/or
functionality as well as user-configurable values associated therewith. In one
embodiment, a forward-chaining inference engine runs these components in
parallel and makes decisions appropriate to each component so that an
appropriate threat rating or threat score can be accordingly generated for each
event. In the example shown in FIGURE 3, a feedback loop exists between Attack
Validation 311 and Scenario Modeling 315. This configuration allows Attack
Validation 311 and Scenario Modeling 315 to draw information from one another.
More generally, although decisions are made in a parallel fashion, one process can
query the other to obtain additional information necessary to make an appropriate
decision. This way, no decision is final until all appropriate questions have been
asked. For example, Attack Validation 311 can query Scenario Modeling 315 on
whether a particular event is part of an attack scenario. If so, that information might
increase a certain rating value within Attack Validation 311. One embodiment of
Attack Validation 311 will be described in more details below with reference to
FIGURE 5. One embodiment of Target Exposure Analysis 312 will be described in
more details below with reference to FIGURE 6. One embodiment of Attacker
Rating 313 will be described in more details below with reference to FIGURE 7.
Attack Negation Analysis 314 is attack-specific and can be optional. Incident
Building 316 and Defensive/Corrective Action 317 are also optional.
FIGURE 4 illustrates a flow diagram 400 illustrating the functionalities of each of
these components, according to one embodiment of the invention. Referring also
to FIGURE 1, flow 400 begins at step 401 when an event is detected by a sensor
(e.g., IDS sensor 122, 124, or 126) located at a client’s site (e.g., client network
102). Because the sensor is configured to monitor both internal traffic and .external
traffic on the client's network, the event can be originated from either an internal
source or an external source. According to one embodiment, an event is anything
that can be monitored in the network traffic (e.g., a network packet) that may be of
interest to the security expert system. An event may or may not be an attack (e.g.,
communications about an attack between two servers on the client network). An
event may be of interest if it matches a signature, meets or causes a defined level
of abnormality (e.g., causes abnormal behavior of the network), or relates to
another event that matches a signature or meets a measure of abnormality (e.g., a
chain of events), and so on. The length of an event is configurable and can range
from 5 to 50 packets, depending Ljpon the level of interest (e.g., 10 packets may be
needed to analyze a response while 50 packets may be needed to analyze a

WO 2006/071985 PCT/US2005/047419

[0055]

[0056]

[0057]

14
payloaaq, etc.) ana other relevant factors (e.g., network performance, capability of

sensors, etc.).

At step 402, the event is communicated to a receiving server (e.g., one of recéiver
servers 130) through an encrypted channel. As illustrated in FIGURE 1, an
encrypted channel may encompass a sensor (e.g., IDS sensor 122), a first switch
(e.g., switch 112), a client firewall (e.g., firewall 104), the Internet (e.g., Internet
103), a receiving firewall (e.g., firewall 105), and a second switch (e.g., switch 110).
At step 403, the receiving server receives the event and stores it at a central
database (e.g., database servers 131) for processing. The receiving server can be
configured to receive events from a plurality of sensors in a parallel fashion. In one
embodiment, events received from a sensor can be processed in the order in which
they are received (e.g., within a chain of events). It is also possible to process
events out of order (e.g., a sensor detects events out of order).

Steps 404, 405, and 406 can be optional. In embodiments of the invention, each
step may be implemented via one or more software modules. In the example
shown in FIGURE 4, at step 404, the event is packaged as an object, which can
have a plurality of properties (e.g., event class, etc.). Step 404 can utilize known
event processing techniques. At step 405, the properties of the event object are
determined. Utilizing, for example, any suitable event classification technique
known in the art, step 405 can process events into groups or clusters to facilitate
optimal decision making with regards to rules at hand. For example, a class may
represent a group of events that are similarly validated. Thus, in determining what
sef(s) of rules or rule base is to be run against a particular event, it may be more
efficient to focus on rules that are relevant to the event’s class or type, rather than

indiscriminately asking all questions and making all possible decisions. At step

- 405, selective information about the event that may be useful in making future

decisions can be discovered (e.g., a list of target hosts of a network scan may be of
interest in making a decision later on whether a new event constitutes a threat). At
step 406, learned data discovered at step 405 is stored based on event type to a
trained data structure for future decisions. As described above with reference to
FIGURE 2, learned data is a subset of historical data that is stored at an optimized
location that can be accessed faster than the full set of historical data. Learned
data can be optionally implemented in embodiments of the SES disclosed herein to
enhance performance.

Step 407 can also be optional. Embodiments of the invention allow for a user to
define rules (e.g., pre-processing, post-processing, etc.) that may affect the final
threat rating for an event. User-defined rules can be tailored to suit various

WO 2006/071985 PCT/US2005/047419

[0058]

[0059]

[0060]

[0061]

[0062]

15

implementations and can differ from system to system. For example, a user-
defined rule regarding the criticality of certain business assets may be run at step
407, before applying Attack Validation 408, Target Exposure Analysis 409, and
Attacker Rating 410.

As exemplified in FIGURE 4, Attack Validation 408, Target Exposure Analysis 409,
and Attacker Rating 410 can operate in parallel and are not dependent upon one
another, although they can provide feedback to each other. Briefly, Attack
Validation 408 can determine whether an attack is an actual attack, what is the
likelihood of success for the attack, whether the target host is vulnerable to the
attack, and whether the attack actually succeeded by examining post-attack
communications between the target host and the attacker. According to one
embodiment of the invention, Attack Validation 408 can generate a validation rating
(e.g., “ValidRating”) and sets a validation flag (e.g., “Validated Flag”). One
embodiment of Attack Validation 408 will be described in more details below with
reference to FIGURE 5. |

Target Exposure Analysis 409 .can determine how likely a target (e.g., a machine)
will be attacked and how likely it will be successfully attacked by an attacker.
According to one embodiment of the invention, Target Exposure Analysis 409 can
generate a target exposure rating (e.g., “TargetRating”). One embodiment of Target
Exposure Analysis 409 will be described in more details below with reference to
FIGURE 6.

Attacker Rating 410 can determine whether the attacker is a returning attacker and
whether the attacker is an aggressive attacker. According to one embodiment of
the invention, Attacker Rating 410 can generate an attacker rating (e.g.,
“AttackerRating”). One embodiment of Attacker Rating 410 will be described in
more details below with reference to FIGURE 7.

Steps 411 and 412 can be optional. Negation Analysis 411 can determine whether
an attack is a false positive event and whether to reduce the overall threat rating
thus calculated by an amount (e.g., “NegativeRating”). According to one
embodiment of the invention, the maximum amount of negation can be user-
configurable and can be in the form of a pre-set value or user-defined percentage
(e.g., 0, 15%, etc.). At step 412, user-defined post-processing rules may be
applied. As one skilled in the art will appreciate, user-defined rules may differ from
system to system, depending upon implementation.

At step 413, a final threat score (i.e., threat rating) can be determined.
Embodiments of a threat rating will be described later in more details after

components thereof are described with reference to FIGURES 5-8. Referring back

WO 2006/071985 PCT/US2005/047419

[0063]

[0064]

[0065]

16
to FIGURE 4, setting a threat score at step 413 may optionally trigger one or more
steps to be taken. As illustrated in FIGURE 4, based on the threat score of an
event, one or more defensive and/or corrective actions may be automatically taken
(e.g., removing a worm-infected machine from the client’s network). Alternatively,
based on the result of the processing that has been performed so far to analyze a
particular event, an incident pertaining to the event may be automatically built or
created at step 415. The building of the incident having a certain event type, host
type, and/or level of severity (i.e., threat score) may also trigger a defensive action
to be automatically taken at step 414, as exemplified in FIGURE 4. In one
embodiment, the next event is then processed and analyzed according to flow 400
as described above.
FIGURE 5 is a flow diagram 500 illustrating embodiments of Attack Validation 408
of FIGURE 4 in more details. Attack validation is specific to each attack type. In
the example shown in FIGURE 5, attack validation flow 500 operates to check
whether an event is an attack or normal traffic that may resemble closely-to an
attack and whether the attack has what it takes to exploit what it is targeting.
More specifically, at step 501, flow 500 can determine the classification of an event.
To optimize processing, it may be necessary to separate expert system rule bases
into related groups, rather than loading all the rules for processing. In one
embodiment, rule bases are first divided into event classes or grouping of similar
event types, and then into specific rules sets for individual event types. Each class
can have a class rating (e.g., ClassRating) that corresponds to a certain stage of a
certain attack. The class rating can be zero initially and may be setto a
predeterfnined value (e.g., 15, 33, 66, etc.), which can be configured according to
user-defined rules.
At step 502, the event classification is used to find a rule base that applies to the .
event by class. At step 503, a signature associated with the event is used to find a
subset of rules within the classification rule base that applies to the event based on
the event signature. Within this disclosure, the term “signature” refers to a unique
identifier for an event, indicating its system and/or subcomponent of origin and,
when applicable, a specific type of behavior being represented by the event. At
step 504, a vulnerability (e.g., VulnerableToAttack) associated with the target of the
event is determined. VulnerableToAttack will be described in more details later
with reference to FIGURE 8. At step 505, flow 500 can determine whether specific
validation rules associated with the event signature have been found. If so, they
can be loaded at step 507. In the case where there are no specific rules for an

event of a particular type or class, a general set of cases for the classification, or

WO 2006/071985 PCT/US2005/047419

[0066]

[0067]

17
grouping, are loaded at step 506. For example, thousands of Web-based attacks
may be determined via a simple level of validation in the status code that the Web
server returns. Flow 500 next determines at step 508 whether the event is
originating from an attacker or a target host. If the event is originating from an
attacker, attacker-specific checks in the applicable validation rules are loaded at
step 510.
As the system deals with both ‘attack events’ (i.e., those being generated by an
attacker as an integral part of an attack) and ‘response events’ (i.e., those being
generated in response to the attack by either the target or the attacker, but do not
constitute the attack themselves), it can be beneficial to differentiate between these
types of events before applying rules. If it is determined at step 511 that the event
is attack-specific (e.g., an original event or an ‘attack event’ having a particular
signature or abnormality), then the event is examined at step 512 to determine
whether the event constitutes an actual attack (e.g., a wrong payload, etc.). If the
event is not attack-specific (e.g., it is a ‘response event’, which may or may not be
relevant to the attack), a state engine is consulted at step 513 to determine whether
there is a need to further examine the event. This can be implemented by setting a
flag during the examination of an earlier event in an event chain. According to one
embodiment, if there is no need to further examine the event, attack validation flow
500 ends at step 515 and sets ClassRating to zero. An event may drop out early if
it provides no useful information towards the validation of the attack. In this case,
confidence parameters for validation (e.g., ClassRating) will not be altered. As one
skilled in the art will appreciate, confidence parameters can differ for each attack.
In embodiments of the invention, confidence parameters eventually result in a
single numeric value (e.g., between 0 and 100) for attack validation, which can be
independently set for each.event. Depending upon whether a validated flag is.set,
the class rating of an earlier event may alter or affects the class rating of another
event in the chain of events (e.g., an earlier event in the chain may trigger the
validated flag to be set to 1, indicating an actual attack, which causes the class
rating of another event in the chain to be set correspondingly).
At step 513, if the state engine indicates a need to further examine the event, then
the event is examined at step 514 against validation rules (specific or generic rules
for this class of events). At step 516, if it is determined that the event constitutes

" an actual attack, the event is validated and attack validation flow 500 ends at step

517. ClassRating is set to a positive value (e.g., 15). If the event does not
constitute an actual attack, then ClassRating is set to zero and attack validation
flow 500 ends at step 515.

WO 2006/071985 PCT/US2005/047419

[0068]

[0069]

[0070]

18

The ability of attack validation flow 500 to differentiate event types prior to applying
rule can be advantageous. Due to the nature of signature-based intrusion
detection techniques, existing IDS- and IPS-based systems generally are not
capable of differentiating between traffic that is truly malicious and traffic that
merely appears similar or having similar content to malicious traffic. For this
reason, specific case models must be developed in these systems to determine
whether or not the event indicates an actual attempt to attack a target, or matched
on a pattern (signature) without proper context. Also, in these prior systems, some
attacks may not be validated on a single network packet (i.e., an event) as they
may require multiple packets (e.g., fragmented attacks) being re-assembled on the
receiving end. Contrastingly, in embodiments of the invention, rules and checks
can be loaded and applied in the context of a single event. Thus, state properties
may be set during pfocessing to indicate that decisions must span multiple events.
In this way, the underlying expert system can look for those properties to indicate
whether a packet (i.e., an event) that would not normally be processed must be
processed to complete a decision tree that was started with an earlier event.
Referring back to step 508, if the event is originating from a target host, then
checks specific to the target host in the applicable validation rules are loaded at
step 520 in preparation for the following steps. At step 521, it is determined
whether the event is associated with a target-validated attack (e.g., a validated flag
was set by an earlier ‘attack event’ in the chain of events). If so, there is no need
for further processing this event (i.e., a ‘response event’ from the target host) and
attack validation flow ends at step 522. In this case, ClassRating is set to zero. If
the ‘response event’ is not associated with a target-validated attack, the response
from the target host is examined at step 523 to ascertain whether the attack was
successful. .Examining the response from target host(s) can enhance the accuracy
in determining whether an attack has succeeded, after it has been determined that
the initial attack indicated a true attack behavior. This is the primary reason behind
the capture of an entire ‘chains of events’. The extra accuracy provided here more
than makes up for the increase in time that it takes to validate an attack.

If it is determined at step 524 that the attack was not successful, then attack
validation flow 500 ends at step 522 as described above. If the attack was
successful, a validated flag is set and state data is collected for future decisions
(see, e.g., step 514). Attack validation flow 500 then ends at step 526 and
ClassRating is set to a predetermined value (e.g., if an attack was successful, the
class rating for the corresponding event can be set to 100).

WO 2006/071985 PCT/US2005/047419

[Uur1]

[0072]

[0073]

19
Unlike prior network-based instruction detection and prevention systems, attack

validation flow 500 does not make a binary (i.e., “yes or no” or “true or false”)
decision on the validity of an event. Rather, the validity of an event is rated based
on the event’s class rating and the vulnerability of a target host to an attack
associated with the event. In one embodiment, the attack validation rating is
determined as follows:

ValidRating = (ClassRating * Wqass) + (VulnerableToAttack * Wyinerabilty)s

Where Weiass and Wyunerabiity @re weights or modifiers of ClassRating and
VulnerableToAttack, respective. Weights wess and Wuunerabiity CaN have different or
the same predetermined value, which can be any user-defined number n where, for
example, 0 <ns1ornz1. Inone embodiment, ValidRating is normalized to 100.
It should be understood that higher/lower weights or modifiers could be used for
Welass @Nd Wyunerapiity- AS one skilled in the art will appreciate, weights We.ss and
Wuanerabilty C2N vary depending upon implementation, for instance, as a way to weigh
the level of importance of ClassRating and VulnerableToAttack (e.g., if in one
implementation VulnerableToAttack is deemed more important than ClassRating,
then Wyuneraviiy may have a higher value than weaes). Weights Wejass and Wyuinerabiliy
can be optional.

FIGURE 6 is a flow diagram illustrating embodiments of Target Exposure Analysis
409 of FIGURE 4 in more details. Target Exposure flow 600 is designed to analyze
a target host’s exposure and hence vulnerability to attack by examining whether the
operating system (“OS”) of the target host may be affected by a particular attack,
whether the port being attacked known to be open, what is the value of an asset
relative its criticality, what is the target host's exposure rating relative to other hosts
on a network segment and to all hosts on the network (i.e., client network 102), and
so on. Most automated analysis within known IDS- and IPS-based systems would
not perform attacker sophistication or attack validation checks if the host is not — at
the time of analysis — known to be vulnerable to attack. However, as new services
can be installed at any time on boxes — quite often between scans, embodiments of
the invention will simply reduce the value of the host and/or host network exposure
checks if the host is not known to be vulnerable. In this manner, the éystem can
easily detect attacks against hosts which are new to the network, or have changed
between scans. A

In embodiments of the invention, unsuccessful attacks can also be considered. An
unsuccessful attack may be an indicator of a future successful attack and thus
warrants attention. This is useful in cases where a critical host might be under

attack from a skilled attacker in which information about unsuccessful attacks may

WO 2006/071985 PCT/US2005/047419

[0074]

[0075]

20
prevent the attacker from succeeding in future attacks. When an attack has been

validated, the value given to validation checks towards the total threat rating is
increased, and is decreased when the attack can not be validated. This allows for
large jumps in threat ratings between unsuccessful and successful events targeting
the same host, but also allows for a higher threat given to events that target highly
critical resources. Reliance on any bit of data in isolation may result in a false
threat score, either set improperly too high or too low for real world conditions.
Embodiments of the invention disclosed herein take into account numerous factors
to generate an accurate threat rating that truly reflects the nature and severity of
the threat for an event.

In the example shown in FIGURE 6, target exposure rules are loaded at step 601 in
preparation for the following steps. At step 602, Target Exposure flow 600
operates to determine whether the target host is known to the system (e.g., expert
system 301 If no information is known about the target host (e.g., the system has
not scanned client network 102), rather than assuming that the attack has no
impaét, or has the most serious impact, host exposure is set to a predetermined,
default value (e.g., 50%). This allows the system some room to differentiate
between hosts that are known to the system and those that are not when analyzing
attacks. In this way, an attack against an unknown system will not automatically be
a higher threat than an attack against a known and highly critical system.

If the system knows of the target host, at step 604, flow 600 operates to determine
whether there are multiple hosts in a host group to which the target host belongs.
In one embodiment, a user determines how hosts are grouped. In one
embodiment, the size of a host group can be one. If a host group does not apply,
an interim host exposure variable (e.g., InterimHostExp) is set to full or 100% at

- - step 605. If a host group exists, the target eprsure calculation takes into account

the “neighborhood” (i.e., the host group) of the target host. In one embodiment, the
exposure count of the target host (NumHostVulns) is compared against the
average number of exposures (i.e., vulnerabilities) for the group (NumGroupVuins)
at step 606. In one embodiment, the number of exposures (i.e., vulnerabilities) of
each host can be obtained from a database. In one embodiment, the database
contains all user-defined parameters and values associated therewith. In one
embodiment, InterimHostExp = (NumHostVulns / NumGroupVulns) * 100. In this
way, the system can determine whether the target host is well-protected compared

to its neighbors (i.e., how vulnerable it can be as compared to other hosts in the

group).

WO 2006/071985 PCT/US2005/047419

[0076]

[0077]

[0078]

21
In some embodiments, users (e.g., system administrators) may supply a defined
criticality (e.g., TargetCriticality) for a given network resource or asset (e.g., a host
machine may be 25% critical to client network 102). This user-defined criticality is
a subjective value and is used to weigh attacks between different hosts. Asset
criticality enables embodiments of the invention to increase or decrease the threat
of an event based on the value of the target. Thus, those attacks against more
critical assets may receive a higher threat rating than the same attack against a
less critical asset as defined by the user. In other words, the same validated
attack, originated from the same attacker, against a non-critical asset (e.g., a
workstation) and a critical asset (e.g., a billing server), will result in two different
threat scores — the billing server being higher than that of the workstation.
Differentiating the threat score based on target criticality allows embodiments of the
invention to optimize automated defense, triage and allocation of security
resources by focusing first on the higher-valued resources, and then on the lower-
valued resources.
At step 607, the final host exposure (e.g., TargetRating) is calculated, taking into
consideration the user-defined asset criticality and the interim host exposure. In
one embodiment,
TargetRating = (InterimHOStEXP * Wexposure) + (TargetCriticality * Weiticalty),
Where Wexposure @Nd Wegsicality are weights or modifiers having a user-configurable
value, which can be any number n where, for example, 0 <n<1ornz1. Inone
embodiment, InterimHostExp and TargetCriticality are weighed about the same
(€.9., Wexposure = 0.5 and Wesgearry = 0.5). In one embodiment, TargetRating is
normalized to 100. It should be understood that higher/lower weights or modifiers
could be used for Weyposure @8N Weritcairy- AS one skilled in the art will appreciate,
weights Wexposure @Nd Werigealty €@N vVary depending upon implementation, for
instance, as a way to weigh the level of importance of InterimHostExp and
TargetCriticality (e.g., if in one implementation TargetCriticality is deemed more
important than InterimHostExp, then Wescaity may have a higher value than
Wexposure)- WWeIghts Wexposure aNd Woriticalty CaN be optional.

FIGURE 7 is a flow diagram illustrating embodiments of Attack Rating 410 of
FIGURE 4 in more details. According to one embodiment of the invention, the flow
diagram of FIGURE 7 has two components: a flow 710 for determining whether an
attacker is a returning attacker and a flow 720 for determining whether an attacker
is an aggressive attacker. In one embodiment, at step 711, returning attacker rules
are loaded. These rules may be hard-set or hard-coded for all attack types. Steps

712 to 714 operate to determine whether the attacker has attacked before and can

WO 2006/071985 PCT/US2005/047419

[0079]

[0080]

[0081]

22
be implemented in many different ways. For example, one embodiment can track
the number of attacks per an attacker everyday. One embodiment can track the
number of attacks per an attacker within a set period of time. One embodiment can
track the number of attacks per an attacker during two different periods of time
(e.g., whether the attacker has attacked before two days ago). In one embodiment,
at step 712, the number of attacks of any type by an attacker within a first period of
time (e.g., the last 48 hours) is counted. An attacker may be identified by the
source address (e.g., an IP address, user ID, MAC address, etc. from where the
attack is originated.) At step 713, the number of attacks of any type by the same
attacker within a second, longer period of time (e.g., the past 30 days) is counted.
in this case, the attacks for the first period are counted twice. Therefore, the count
of attacks for the first period is subtracted from the count of attacks in the second
period to generate a delta at step 714. The delta is checked at step 715 to
determine whether it has a positive value. If not, flow 710 ends at step 717. In this
case, no flag is set. If the delta has a positive value, it is determined that the
attacker is a returning attacker. Thus, a returning attacker flag is set (e.g.,
ReturningAttacker = 1) and flow 710 ends at step 716. It should be understood that
other thresholds (e.g., other than simply positive) could be used to set the flag.
Steps 721 to 728 of flow 720 operate to determine whether an attacker is an
aggressive attacker and how aggressive the attacker is by examining the
recurrence and velocity of the attacks by the attacker within a window of time and
generate a corresponding attacker rating (e.g., AttackerRating). More specifically,
the attacker history is reviewed to determine the attacker’s success/failure ratio.
Each target attack is analyzed to determine whether the attack is a one-off or part
of a large sweep (e.g., a reconnaissance network scanning activity or ‘recon’) and
whether there was a prior recon to the target host and host network.
In one embodiment, AttackerRating is determined based on three factors: the
severity associated with the event’s signature (e.g., SignatureSeverity), the
aggressiveness of the attacker (e.g., AggressiveAttacker), and the returning
attacker flag (e.9., ReturningAttacker). The returning attacker flag may be set via
flow 710 as described above. The severity of a signature can have a
predetermined or user-defined value (e.g., between 0 and 100), can be a read-only
property, and can be obtained from a database. In one embodiment, the
aggressiveness of an attacker can be determined based on the classification of the
event and perhaps the signature itself.
Again, the term "signature"” is used in this disclosure to specify what an event is
(e.g., what triggers the event). According to embodiments of the invention, an

WO 2006/071985 PCT/US2005/047419

[0082]

[0083]

23
event may or may not be an attack and may or may not have a defined pattern of
behavior. According to embodiments of the invention, an event can be triggered by
a variety of factors, including an anomalous behavior, a suspicious activity, etc.
Thus, within this disclosure, the term “signature” refers to a unique identifier for an
event, indicating its system and/or subcomponent of origin and, when applicable, a
specific type of behavior being represented by the event. In this manner,
embodiments of the invention can process and analyze an event communicated
from both signature-based and anomaly-based network intrusion detection
sensors.
In the example shown in FIGURE 7, at step 722, rules that are specific to the
event's classification are loaded. Next, at step 723, it is determined whether there
exist rules specific to the event’s signature. If not, classification rules apply and
flow 720 defaults to step 724. If so, signature-specific rules are loaded at step 725.
At step 726, either the classification rules or the signature-specific rules are applied
to establish a window-to-look time frame, number of window segments (time
slices), and window segment thresholds. For a specific classification or signature
a window of time is defined that is considered pertinent fo that attack type. At step
727, that window of time is evenly divided to generate a group of window segments
or time slices (e.g., 10) and a corresponding threshold is defined for the number of
attacks that would indicate aggressive behavior for a given window segment or
slice of time. The number of events sourced from the attacker in each window
segment is determined at step 728. At step 729, it is determined what percentage
of the threshold has been attained for each window segment. In one embodiment,
the percentage is limited to 100%. At step 730, all segment values are added and
the overall percentage is calculated. By adding all of these slices together and
then dividing the total count by the number of slices, an aggressivity indicator (e.g.,-
AggressiveAttacker) can be generated at step 731. In one embodiment,
AggressiveAttacker is normalized as a percentage limited to 100%. It should be
understood that such normalization is optional and can vary depending upon
implementation.
In one embodiment,
AttackerRating = ((SignatureSeverity * Wseverity) + (AggressiveAttacker * Waggresivity)) *
w; + (ReturningAttacker * Wiewm) * W2),
WETE Wieveritys Waggresivitys W1, Wreturn, aNd W are user-configurable weights or modifiers
each of which can have a value of any number, including 1. In one embodiment,
Wseverity = 0.5, Waggresiity = 0.5, Wy = 0.85, Wreumn = 0.15, and w, = 100, such that

WO 2006/071985 PCT/US2005/047419

[0084]

24
AttackerRating = ((SignatureSeverity * 0.5) + (AggressiveAttacker * 0.5)) * 0.85 +
(ReturningAttacker * 0.15) * 100). 1t should be understood that higher/iower
weights or modifiers could be used for Wseverity, Waggresivity: W1, Wreturn, @nd Wa. As one
skilled in the art will appreciate, the user-configurable weights or modifiers Wseverity,
Waggresivitys W1, Wreturn, @nd W can vary depending upon implementation, for instance,
as a way to weigh the level of importance of SignatureSeverity,
AggressiveAttacker, and ReturningAttacker. Weights Wseveritys Waggresivitys W1, Wreturns
and w, can be optional.
FIGURE 8 shows a flow diagram 800 illustrating embodiments of step 504 of
FIGURE 5 (i.e., determining a vulnerability value associated with an event) in more
details. Flow 800 begins at step 801, which determines whether the target host is
known to the underlying system (e.g., expert system 301) as being vulnerable. If
the target host is not known to be vulnerable, its vuinerability to attack (e.g.,
VuinerableToAttack) is low. In one embodiment, VulnerableToAttack is set to zero
and flow 800 ends at step 803. If the target host is known to be vulnerable, steps
802 to 810 operate to examine a plurality of factors (e.g., signature, operating
system, port, etc.) associated with the target host and generate an appropriate
Vulnerable ToAttack value accordingly. In the example shown in FIGURE 8, at step
802, it is determined whether there is a vulnerability associated with the event’s
signature. If so, at step 804, it is determined whether the vulnerability associated
with the event's signature can be found on the target host’s list of vulnerabilities,
which, as described above, can be read-only values obtained from a database. If
there is a match, then the target host’s vulnerability is high. In one embodiment,
VulnerableToAttack is then set to 100 at step 806. If the system cannot find any
vulnerability associated with the event’s signature, then, at step 805, it is
determined whether the target host's operating system (OS) is known to be .
vuinerable to attack by the underlying expert system. If OS is not known to be
vulnerable, flow 800 ends at step 803 and VulnerableToAttack is set to low (e.g.,
0). If OS is known to be vulnerable (but no vulnerability associated with the event's
signature can be found at step 802), then a comparison is made at step 807 to
determine whether OS matches the operating system associated with the event’s
signature. If so, the system checks to see whether any port associated with the
attack are open on the target host. If so, at step 810, VulnerableToAttack is set to
a value that indicates an elevated level of vulnerability of the target host (e.g., 75).
If no port associated with the attack is open on the target host, at step 809,
VulnerableToAttack is set to a value that indicates a moderate level of vulnerability
of the target host (e.g., 50).

WO 2006/071985 PCT/US2005/047419

[0085]

[0086]

[0087]

25
As described above, according to embodiments of the invention, the final threat
rating of an event is determined based on at least three factors or components: the
attacker rating (e.g., AttackerRating), the vulnerability of the target host (e.g.,
TargetRating), and the validity of the attack (e.g., ValidRating). Optionally, the
threat rating can be negated with a user-define value (e.g., NegativeRating). In
one embodiment,
Threat rating = (AttackerRating * Waacker) + (TargetRating * Wiarger) + (ValidRating *

Wyaligation) — NegativeRating,

WhEre Watiacker, Wiarget, @Nd Wyaiidation @re user-configurable weights or modifiers, which
can be any user-defined numbers (e.g., between 0 and 1, 1, 123, etc.). Inone
embodiment, NegativeRating = 0.
According to embodiments of the invention, the scores of individual components of
the threat rating (i.e., ValidRating, TargetRating, and AttackerRating) may weigh
differently depending upon whether the attack has been validated (i.e., whether an
event constitutes a validated attack). In other words, depending upon whether
Validated Flag is set, Wattacker, Wiarget, @Nd Wyaiidation €aN have different predetermined
values. This allows for greater distances (score-wise) between attacks that have
and have not been validated, while allowing for proper variation within each group
of validated attacks and of non-validated attacks.
In one embodiment, if Validated Flag is not set, Wiarget aNd Wyalidation caN have about
the same value, while Wagacker may be about half of either Wiarget OF Wyaiigation. FOr
example, if Wiarget = 0.4, Wyaiigation = 0.4, Watiacker = 0.2, and NegativeRating = 0, then
threat rating = (AttackerRating * 0.2) + (TargetRating * 0.4) + (ValidRating * 0.4), if
Validated Flag is not set. In one embodiment, if Validated Flag is set, Wattacker,
Wiarget, @Nd Wyaiigation €@N have a different set of values such that ValidRating
becomes the majority component (e.g., >50%) of the final threat score and.
AttackerRating and TargetRating together make up the rest (e.g., < 50%). For
example, if Validated Flag is set and NegativeRating = 0, Wyajigation = 0.6, Wiarget =
0.25, and Wagacker = 0.15, then threat rating = (AttackerRating * 0.15) +
(TargetRating * 0.25) + (ValidRating * 0.6). These final weights (i.e., Wattackers Wiargets
and Wyaiigation) Can be any user-defined number, including one (i.e., threat rating =
AttackerRating + TargetRating + ValidRating). One skilled in the art will appreciate
that, so long as a threat rating according to embodiments of the invention includes
an attacker rating, a target rating, and a validation rating, other variables (e.g.,
NegativeRating), weights (€.9., Wattackers Wiargets: @Nd Wyaiigations €1C.) @and/or user-

defined rules may be optionally implemented to suit.

WO 2006/071985 PCT/US2005/047419

[0088]

[0089]

[0090]

26
A specific example of how the final threat rating can be calculated for an initial
‘attack event’ (“Event”) from an attacker (“Attacker”) to a target host (“Target”) will
now be described. Referring back to FIGURE 5, at step 501, the event class
(“Class”) is determined to be ‘attempted-admin’. At step 502, rules appropriate for
the ‘attempted-admin’ class are loaded. At step 503, the event signature
(“Signature”) is determined to be XEXCH50 Overflow’. At step 504,
VulnerableToAttack is calculated as described above with reference to FIGURE 8.
More specifically, it is determined that the target host is known to be vuinerable to
attack (step 801) and there is a vulnerability associated with the event, which is
identified by its signature as described above (step 802). No vulnerability can be
found on the target host (step 804), but the target host’s operating system is known
to be vulnerable (step 805) and matches that associated with the event’s signature
(step 807). Since a port associated with the attack is open on the target host (step
808), Vulnerable ToAttack is set to 75.
Referring back to FIGURE 5, rules specific to the XEXCH50 Overflow’ signature
(step 505) are loaded (step 507). Since Signature identifies that the event is
originated from an attacker (step 508), attacker-specific checks (i.e., conditions) are
loaded (step 510). In this case, the event is attack-specific (step 511) and
constitutes an actual attack (step 512). More specifically, a first condition is met in
which the payload of the event (e.g., a network packet) has content
J(?:META\s+[Ms}{256,})/" and a second condition is also met in which the payload
has content /\x90{3,}/’. Accordingly, the system determines that the event
indicates an actual attack (step 516), sets a state engine flat (e.g.,
has_xex_payload = 1), and sets ClassRating to 85. In this example, Wgass and
Wiuineravity @re equally of interest and are set to 0.75. Therefore, in this example,
ValidRating = (ClassRating * Wepss) + (VulnerableToAttack * Wyuinerabiity) = (85 * 0.75)
+ (75 * 0.75) = 120, which is then normalized to 100.
Referring to FIGURE 6, a target exposure analysis may be run in parallel to the
attack validation process as described above. After loading target exposure rules
(step 601), the system determines that the target host is known to be vulnerable to
attacks (step 602) and there are multiple hosts in the host group to which the target
host belongs (step 604). At step 606, the system then determines, in this example,
the number of vulnerability V of the target host (e.g., V = 5), the number of hosts H
in the host group (e.g., H = 10), the total number of the vulnerabilities T in the host
group (e.g., T = 80), and calculate the average vulnerabilities exhibited by hosts in
the host group (e.g., Avg = (T / H) = 8). A variable indicating the relationship
between V (i.e., the number of vulnerability of the target host) and Avg (i.e., the

WO 2006/071985 PCT/US2005/047419

[0091]

[0092]

27

average vulnerabilities exhibited by hosts in the host group) is calculated (e.g.,
InterimHostExp = (V / Avg) = (5 / 8) = 0.625, which is then normalized to 62.5). To
determine the final host exposure (e.g., TargetRating), user-defined asset criticality
for the target host as well as Wexposure @Nd Weriticaliy @re retrieved from a database
(e.g., TargetCriticality = 30). In this example, Wexposure @Nd Weriticalty are equally of
interest and are set to 0.5. Therefore, in this example, TargetRating =
(InterimHOStEXP * Wexposure) + (TargetCriticality * Wericaiy) = (62.5 * 0.5) + (30 * 0.5) =
46.25.
Referring to FIGURE 7, an attacker rating analysis may be run in parallel to either
or both the attack validation process and the target exposure analysis as described
above. In this example, returning attacker rules are loaded at step 711. The
system operates to determine that the attacker of the current event has made a
total of 5 attacks during the past 48 hours (step 712) and a total of 40 attacks
during the past 30 days (step 713). The delta is thus determined to be 35 (step
714) and flow 710 returns a value of 1 (step 716). Next, rules for aggressive
attacker are loaded at step 721 and rules specific to the classification are loaded at
step 722. Since signature-specific rules apply (step 723), they are loaded at step
725. In this example, at step 726, a window-to-look is established (e.g., 5 minutes)
and thresholds for individual segments thereof are set (e.g., 2). In this case, at
step 727, the window-to-look time is divided into 10 even segments (e.g., 1
segment = 30 seconds). At step 728, the number of events sourced from the
attacker is determined for each segment. For example:

Segment: 1 2 3 4 5 6 7 8 9 10

Attacks: 2 0 0 1 1 0 0 1 0 0

- In this example, at step 729, the percentage of the number of events sourced from

the attacker reaching the established threshold is determined for each segment.
For example:
Segment: 1 2 3 4 5 6 7 8 9 10

% Threshold: 100 0 O 50 &0 O 0 560 O 0

Values from these segments are aggregated and then divided by the number of
segments to obtain an overall percentage, which indicates the aggressiveness of
the attacker (e.g., AggressiveAttacker = (100 + 50 + 50 + 50) / 10 = 25. To
determine AttackerRating, several user-defined values are retrieved from a

database, including SignatureSeverity, Wseveritys Waggresivitys Wreturn, W1, @nd wa. In one

WO 2006/071985 PCT/US2005/047419

[0093]

[0094]

28
embodiment, SignatureSeverity = 50, Wseyerity = 0.5, Waggresivity = 0.5, Wy = 0.83, Wietum
= (0.15, and w, = 100, such that
AttackerRating = ((SignatureSeverity * Wseverity) + (AggressiveAttacker * Waggresivity)) *
w, + (ReturningAttacker * Wewm) * Wa)
= ((50 * 0.5) + (25 * 0.5)) * 0.85 + (1 * 0.15) * 100)
= 46.875
At this point for this example, all major components of the threat rating have been
determined (i.e., ValidRating = 100, TargetRating = 46.25, and AttackerRating =
46.875). As described above, an aftack negation analysis may optionally be
implemented. In this example, an attack negation analysis will be implemented.
More specifically, negation rules for the event's classification are first loaded. If
there are negation rules specific to the event’s signature, they are loaded as well.
The negation rules include a check that determines whether the event is from an
attacker or a target host. In this example, the event is from an attacker, so a
negation value (e.g., NegativeRating) is set to zero, according to the negation
rules. If the event had been sourced from the target host, the system would have
operated to check for an authentication request, which might have indicated that
the target host has been patched and therefore not vulnerable. In that case,
NegativeRating might be set to a default value. In one embodiment, the default
value is 15. Attack negation and user-defined checks are not further described
herein as they are specific to each attack detected and can vary in practice,
depending upon deployment and customer-specific requirements. The attack
negation analysis can be useful in performing checks that are not handled by
checks in the attack validation process or for specific conditions that conflict with
the validation checks. For example, a specific attack may be validated by the
attack validation process because it contains a string “X” in its payload (i.e., a rule
may specify that the string “X” indicates an attack). However, itis a Talse attack’
because it also contains a string “Z” in its payload (i.e., another rule may specify
that the string “Z” indicates a false attack). In other words, the attack negation
analysis can pick up where the attack validation process left off, among others.
In this example, since the event is an initial attack event from the attacker, no
Validated Flag is set. Accordingly, a set of user-defined values including Wattacker:
Wiargets @Nd Wyaidation are retrieved from a database (e.9., Wattacker = 0.2, Wiarget = 0.4,
and Wyaigaton = 0.4) such that ‘
Final threat rating = (AttackerRating * Watacker) + (TargetRating * Wiarget) +
(ValidRating * Wyaiation) = NegétiveRating
=(46.875*0.2) + (46.25 * 0.4) + (100 * 0.4) - 0

WO 2006/071985 PCT/US2005/047419

[0095]

[0096]

- [0097]

29

Embodiments of the invention disciosed herein can be implemented by
programming one or more computer systems (e.g., client and server machines)
and devices (e.g., IDS sensors, switches, firewall appliances, etc.) with computer-
executable instructions embodied in a computer-readable medium. When
executed by a processor, these instructions operate to cause these computer
systems and devices to perform one or more functions particular to embodiments
of the invention disclosed herein (e.g., generate an appropriate threat rating or
threat score for each event.) Programming techniques, computer languages,
devices, and computer-readable media necessary to accomplish this are known in
the art and thus will not be further described herein.

The following four examples illustrate one embodiment of the SES described above
(referred herein as “Invision Security”). In particular, these examples illustrate two
capabilities of the automated defense function of Invision Security: blocking and
containment. More specifically, Invision Security can block malicious traffic by
sending blocking signals to existing Layer 3 control devices (e.g., firewalls and
routers implementing commercially available security products) and/or blocking the
attack traffic at the perimeter of the network based on correlated and validated
threats, reducing the possibility that valid traffic is being blocked. In addition,
invision Security can contain worm infected machines and/or compromised hosts
by disconnecting the affected switch ports, thus removing or isolating them from the
rest of the network. Invision Security may provide automated control over the
network using known network management and discovery tools (e.g., using the
Simple Network Management Protocol Version 3 (SNMPv3) to perform Address
Resolution Protocol (ARP) table discovery, efc.). ' '

Attack Scenario I: MS Blaster Infection

An external host infected with the MS Blaster worm attacks and infects a local
workstation. A typical impact of this threat is an infection of other workstations on
the internal network, gradually causing significant downtime due to the number of
infected workstations attempting to spread the worm. Ability to reconfigure
defenses and contain the infection is critical in preventing serious damage to the
network.

WO 2006/071985 PCT/US2005/047419
30
Step Description Automated Intrusion
Threat Defense and
Analysis Containment

1 Invision Security detects an attempt to
exploit the DCERPC services on a local
workstation from an external host.

1.1 | Invision Security correlates the target Event
address to the vulnerability scanning data | severity is
and is able to determine that the target host | increased.
is running a version of Windows that is
likely to be vulnerable to this attack.

1.2 | Invision Security payload analysis validates | Event Block action
that the attempt contains MS Blaster exploit | severity is is sent to the
payload. increased. firewall to

block
Customer’s profile indicates that external Infection is incoming
attacks of this sort should be blocked at the | possible. access from
firewall. Incoming attacks from the the attacker.
offending IP are blocked across the
enterprise.

1.3 | Invision Security correlates the source Event
address of the event o the destination severity is
address of any other related DCERPC, MS | unaffected.

Blaster, TFTP events and ICMP scan
events.
No matching events are found.

2 An outgoing TFTP request for the MS
Blaster executable is detected originating
from the local target host.

2.1 | Invision Security correlates the source Event Block action
address to any related DCERPC exploit severity is is sent to the
events destined for that address. increased. firewall to

Possibility of | block
Invision Security finds the incoming infection is outgoing
DCERPC attack from step 1. increased to | access from
probable. the infected
-| The customer’s profile indicates that Security host.
validated outgoing attempts of this sort incident is
should result in the local host being created. All
blocked from external access to eliminate related
the possibility that a worm infected attack
workstation attacks other networks. events are
automatically
Although it is possible for infection to have | attached to
occurred, the customer’s profile requires the incident.
that the possibility of infection be absolute
before this host can be removed from the
network.

3 Numerous ICMP requests are generated
by the local target host attempting to detect
other workstations that can be infected with
the worm.

3.1 | Invision Security correlates the ICMP Event

WO 2006/071985 PCT/US2005/047419
31
requests to any outgoing TFTP requests severity is
and any incoming DCERPC exploit increased.
attempts.
Invision Security finds both the incoming Possibility of
DCERPC exploit and the outgoing TFTP infection is
request from previous infections. increased to
The previously created incident is updated, | highly
but the possibility of infection is still not probable.
absolute. No containment actions are
taken.
4 A DCERPC exploit attempt is detected
originating from the previously infected host
targeting a new workstation.
4.1 | Invision Security correlates the target Event
address to the vulnerability scanning data severity is
and is able to determine that the target host | increased.
is running a version of Windows that is
likely to be vulnerable to this attack.
4.2 | Invision Security payload analysis validates | Event
that the attempt contains MS Blaster exploit | severity is
payload. increased.
Infection is
possible.
4.3 | Invision Security correlates the source Event The worm
address of the event to the destination severity is infected host
| address of any other related DCERPC increased. is contained.
events, the source address of any MS Possibility of
Blaster TFTP events, and to the source infection is The switch
address of any ICMP scan events from increased to | port serving
previous infections. absolute. the host is
Previously shut down.
An incoming DCERPC event, an outgoing | created
TFTP event, and several ICMP scan incident is
events are found. updated.
The customer’s profile indicates that
validated worm infections should result in
the local host being removed from the
network.

[0098] Attack Scenario Il: Targeted Web Server Attack

An external attacker sweeps the network, looking for [IS web servers and attempts

to exploit known flaws in 1IS software packages to access cmd.exe and execute

arbitrary commands.

Step Description Automated Intrusion
Threat Defense and
Analysis Containment
1 Invision Security detects numerous NMAP ‘
ICMP requests from an external host.
1.1 Invision Security correlates the source Event

WO 2006/071985 PCT/US2005/047419
32
address of the attack to any previously severity is
detected attempts. unaffected.
None are found.

1.2 | Invision Security determines the number of An incident
unigue hosts targeted in the sweep. indicating
The severity of the events are increased ona | that recon
sliding scale as the number of hosts increases | activity is
towards and exceeds a threshold which occurring is
defines a likely network sweep. generated.

2 Invision Security detects a CMD.EXE access
attempt destined towards an internal web
server from the previous external host.

2.1 Invision Security correlates the target address
to the vulnerability scanning data and is able
to determine that the target host is running a
version of windows that is likely to be
vulnerable to this attack.

2.2 Invision Security also finds that the host has a | Event Block action is
known vuinerability in IS that could be severity is | sent to firewall
exploited in this manner. greatly to block

increased. | incoming
The customer’s profile indicates that atiempts access from
to exploit access from the known the attacker.
vulnerabilities must be blocked. Block action is
sent to the
firewall to
block outgoing
access from
target host.
2.3 | Invision Security correlates the source Event
address of the attacker to the source address | severity is
of any recon events. increased.
An incident

The previously detected NMAP ICMP events is created,

are found, and the attack is determined to be a | indicating

targeted attack. an external
attacker
attempted
to exploit a
known flaw
on the host
through
1S.

[0099]

Attack Scenario lll: Yes Advertising Spybot Banking Trojan

A local user unintentionally becomes infected with the Yes Advertising Spybot

Banking Trojan by accessing a malicious website.

Step Description Automated Intrusion
Threat Defense and
Analysis Containment
1 Invision Security detects an HTML document
with an MHTML/CHM vulnerability exploit

WO 2006/071985

[0100]

PCT/US2005/047419
33
attempt being delivered to a local host.

1.1 Invision Security correlates the target address | Event
to the vulnerability scanning data and is able severity is
to determine that the target host is running increased.

Windows.

invision Security determines that the host is
likely to be running Internet Explorer, which is
vulnerable to this exploit.

1.2 | SSDL Payload Analysis indicates that the Event
content of the webpage contains an actual severity is
exploit attempt. increased.

2 Invision Security detects an outgoing request
to get a GIF file associated with the Yes Ad.

Trojan sourced from the previous target host.

2.1 Invision Security correlates the source Event Block action
address to the destination address of any severity is | is sent to the
attempts to transmit a document with an increased. | firewall to
MHTML/CHM vulinerability exploit. block
The previous event is found. An incident | outgoing
According to the customer’s blocking profile, is created. | access from
any hosts compromised as such should be compromised
blocked from making further outgoing access host.
attempts.

Attack Scenario IV: Attacker Utilizing Multiple Entry Points

An attacker performs a sweep of a distributed network covered by several Invision

Security Engine appliances, and then attempts several different brute-force

attempts on hosts monitored by different sensors.

Step Description Automated Intrusion
Threat Defense and
Analysis Containment

1 Several sensors detect numerous NMAP

ICMP events from an external host.
1.1 Invision Security correlates the source address | Event

of the attack to any previously detected severity is

attempts. increased

Several are found from different sensors. for all

correlated
events.

1.2 Invision Security determines the number of An incident

unique hosts targeted in the sweep. is created,

The severity of the events is increased on a linking all

sliding scale as the number of hosts increases | of the

towards and exceeds a threshold which recon

defines a likely network sweep. evenis.
2 One sensor detects a number of SSH Brute

"| Force attempts directed towards an internal

host from the previous attacker.

2.1 Invision Security correlates the target address | Event

WO 2006/071985 PCT/US2005/047419
34
to the vulnerability scanning data and is able severity is
to determine that the target host is running an | increased.
SSH server.

2.2 Invision Security correlates the source Event Block action
address of the attack to the source address of | severity is | is sent to the
any reconnaissance events. increased. | firewall to
Previously detected NMAP events are found, | Previously | block
from all sensors. created incoming
Customer’s policy indicates that these sorts of | incidentis | access from
attacks should be blocked at the firewall, and | updated the attacker.
a shun request is sent to all firewalls known to | with a new :
each sensor. summary;

new events
are added.

3 At the same time as step 2, another sensor
detects a humber of 1IS WEBDAYV exploit
attempts from the external source.

3.1 Invision Security correlates the target address | Event
to the vulnerability scanning data and is able severity is
to determine that the target host is running an | increased
[IS Webserver, and is vulnerable to this attack. | for all

correlated
gvents.

3.2 Invision Security correlates the source Event Block action
address of the attack to the source address of | severityis | is sent to the
any reconnaissance events. increased. | firewall to
Previously detected NMAP events are found, | Previously | block
from all sensors. created incoming
Customer’s policy indicates that these sorts of | incidentis | access from
attacks should be blocked at the firewall, and | updated the attacker.
a blocking request is sent to all firewalls with a new
known to each sensor. summary;

new events
are added.

4 At the same time as step 2 and step 3, a third
sensor detects a number of Samba brute-force
login attempts from the external source.

4.1 Invision Security correlates the target address | Event
to the vulnerability scanning data and is able severity is
to determine that the target host is running increased
Windows and is listening for incoming Samba | for all
connections. correlated

gvents.

4.2 - | Invision Security correlates the source Event Block action
address of attack to the source address of any | severity is | is sent to the
reconnaissance events. increased. | firewall to
Previously detected NMAP events are found, | Previously | block
from all sensors. created incoming
Customer’s policy indicates that these sorts of | incidentis | access from
attacks should be blocked at the firewall, and | updated the attacker.
a shun request is sent to all firewalls known to | with a new
each sensor. summary;

new events
are added.

WO 2006/071985 PCT/US2005/047419

[0101]

35

Although the present invention has been described in detail herein with reference
to the iliustrative embodiments, it should be understood that the description is by

‘way of example only and is not to be construed in a limiting sense. Itis to be

further understood, therefore, that numerous changes in the details of the
embodiments of this invention and additional embodiments of this invention will be
apparent to, and may be made by, persons of ordinary skill in the art having
reference to this description. Accordingly, the scope of the invention should be
determined by the following claims and their legal equivalents.

WO 2006/071985 PCT/US2005/047419
36

WHAT IS CLAIMED I[S:
1. A method of analyzing an event detected in a distributed computer system,
comprising:
determining an attack validation value associated with said event;
determining a target exposure value associated with a host targeted by said event;
determining an attacker rating value associated with an attacker originating said
event; and
determining a threat rating for said event utilizing said attack validation value, said

target exposure value, and said attacker rating value.

2. The method according to claim 1, wherein the step of determining a threat rating for
said event further comprises utilizing a negation value.

3. The method according to claim 1, further comprising performing user-defined pre-

processing checks, user-defined post-processing checks, or a combination thereof.

4. The method according to claim 1, further comprising creating an incident based on
said event and said threat rating.

5. The method according to claim 1, further comprising taking a defensive action, a
corrective action, or a combination thereof, based on said threat rating.

6. The method according to claim 1, wherein the step of determining an attack
validation value further comprises determining whether an attack associated with said event
was successful.

7. The method according to claim 6, in which said attack associated with said event was
successful, further comprises setting a validated flag.

8. The method according to claim 1, wherein the step of determining an attack
validation value further comprises:

determining a class rating value;

determining a vulnerability to attack value for said host; and

utilizing said class rating value and said vulnerability to attack value to calculate said
attack validation value.

WO 2006/071985 PCT/US2005/047419
37

9. The method according to claim 8, wherein the step of determining a class rating
value further comprises:
determining whether said event is from said attacker or from said host; and
applying attacker-specific rules if said event is from said attacker or

target-specific rules if said event is from said host.

10. The method according to claim 9, wherein the step of determining a class rating
value further comprises determining an event signature and applying validation rules

associated with said event signature to calculate said class rating value.

11. The method according to claim 8, wherein the step of determining a vulnerability to
attack value for said host further comprises:

determining a plurality of factors associated with said host, said plurality of factors
including whether said host is known to be vulnerable, whether a vulnerability associated
with an event signature can be found on said host, whether said host is running an operating
system known to be vulnerable, whether said operating system matches that associated with
said event signature, and whether a port is open on said host.

12. The method according to claim 8, further comprising:
applying a first weight factor to said class rating value; and

applying a second weight factor to vulnerability to attack value for said host.

13. The method according to claim 1, wherein the step of determining a target exposure
value associated with a host targeted by said event further comprises:

determining an interim host exposure value;

determining a target criticality value associated with said host; and

utilizing said interim host exposure value and said target criticality value associated
with said host to calculate said target exposure value associated with said host.

14. The method according to claim 13, further comprising:

applying a third weight factor to said interim host exposure value; and

applying a fourth weight factor to said target criticality value associated with said
host.

15. The method according to claim 13, wherein the step of determining an interim host
exposure value further comprises dividing a total number of exposures associated with said

WO 2006/071985 PCT/US2005/047419
38

host by a number of average exposures exhibited by one or more hosts in a host group to
which said host belongs.

16. The method according to claim 15, wherein the step of determining a target criticality
value associated with said host further comprises searching an asset criticality table having

user-specified assets and corresponding user-defined asset criticality values.

17. The method according to claim 1, wherein the step of determining an attacker rating
value associated with an attacker originating said event further comprises:

determining at least two factors from a plurality of actors, said plurality of factors
including a signature severity value, an aggressive attacker value, and a returning attacker
value; and

utilizing said at least two factors to calculate said attacker rating value.

18. The method according to claim 17, further comprising:
applying a fifth weight factor to said signature severity value;
applying a sixth weight factor to said aggressive attacker value; and
applying a seventh weight factor to said returning attacker value.

19. The method according to claim 18, further comprising:
obtaining said signature severity value from a table of severity values for signatures
stored in a database.

20. The method according to claim 19, the step of determining said aggressive attacker
value further comprises:

applying aggressive attacker rules to a window of time and number of events within .
the window; and

applying an eighth weight factor to said signature severity value and said aggressive
attacker value.

21. The method according to claim 20, wherein the step of determining said returning
attacker value further comprises:

determining whether said attacker has attacked before within a predetermined time
period; and

applying a ninth weight factor to said returning attacker value.

22. The method according to claim 1, further comprising:

WO 2006/071985 PCT/US2005/047419
39

applying one or more weighting factors to one or more of said attack validation value
associated with said event, said target exposure value associated with said host targeted by

said event, and said attacker rating value associated with said attacker.

23. The method according to claim 22, in which if a validated flag is set, a weighting
factor is applied to said attack validation value associated with said event such that said
attack validation value has majority over said target exposure value and said attacker rating
value.

24, The method according to claim 22, in which if a validated flag is set, said threat rating =
(said attacker rating value * 0.15) + (said target exposure value * 0.25) + (said attack validation
value * 0.6) — (a negation value); and, if a validated flag is not set, said threat rating = (said
attacker rating value * 0.2) + (said target exposure value * 0.4) + (said attack validation value *
0.4) —.(a negation value).

25. A computer-readable medium carrying program instructions executable by a central
processing unit of a computer system programmed to implement the method according to

claim 1.

26. A computer system programmed to implement the method according to claim 1.

WO 2006/071985

PCT/US2005/047419

1/8

IDS Sensor -
126

Servers -
139

Management

2 Client Firewall

Database

Receiving Firewall

Receiving
Servers
130

FIG. 1

PCT/US2005/047419

WO 2006/071985

2/8

|

o
o
(a\

02
Buney 1eaiy .

A

F N

¢ 9l

g0z | 50T
| eleq “ Ble(]
| pouiean) | [EOLIOISIH
o _
IH H Y

L0g

weisAg padxg -
A
20z

aseg abpajmou|

€0¢

JusAq

3/8 PCT/US2005/047419

WO 2006/071985

|

o
o
o

€ old

A

sabueyn uopeinbyuon
/ sisanbay uonoy

L0€
FARS
S/senbay] Tofoy UOlOY 8AjoslI0)/aAIsusla(]
ole 4
Bulpjing uapioy
gle
= Buljapojy olleussg
€0¢g
SOEHSUL g3/ " siskeuy uoneBaN >oeny
y _
ele i
Joeqpae- Bugey 1eoeny
zle
sisAjeuy sinsodx3 1ebie|
gl HHE uol
eplieA Joeny
sbuges jeasyl
sjuspiou| .
ndino pedxg——— sisAjeuy wa)sAg padx3 AjLnoeg
20¢
aseqele(JUSAT
[eljue)n

WO 2006/071985

Detect event

4/8

401

Y

Transport event
via encrypted
channel

402

Y

. |Store data based

on event type

406

v

Perform user-
defined pre-
processing

checks 407

PCT/US2005/047419

Receive and
store event for
processing

403

Attack Validation

408

Target Exposure
Analysis

409

Attacker Rating

410

Package event
for processing

404

Process event

4056

N
()
o

|
h 4

Take defensive/
corrective action

414

FIG. 4

Attack Negation
Analysis

411

v

Perform user-
defined post-
processing

checks 412

Calculate final
threat score

413

€ — —— —optional

————optional——— ——-—— optional— — - =

v

Build incidents

415

PCT/US2005/047419

WO 2006/071985

5/8

G olid

|

O
(@]
L0

Z18 an|eA aalysod
e 0} Bupeysseln
18§ pue juang
SIU} Jo uUonep|(eA puz

ON

3)oENE |EnjoR Ug
SO}E0IpU| JUBA]

BJEp 9)B)S
Buisn Jusas yoeye
1ayjiea Buyepiea
1oy sajnt jsuiefe
JUSAT SUILUEXT

2cs
0 0} Buneysse|n
188 pue JusAy
SIU 4o uaheplea pug

<——ON

vis A

SBA

£ 0

i} Wm,.mmwm_o 188
pugjuLAT siy}
jo mBREPIEA PUZ

|

oy
[

€Lg
Ziuaag sujwEX

aulfius sjelg

MO[UolepijeA oeny

SOBYE [BNJOE STINJISU0D
MIEL=RETNENN
Buiuisyap 1o sajni
jsuiebe juang aujwexg

0] paail B sajealpuy

ZLG »

saA

L9
2o10ads’
~joejE
jusnz s|

+

SBA

Zhajepien-jabiie
Apeale yoepy

ON-—P+

ves
épasaans
Hoepy

£es
YOENE [n4ssaaans

S8jeajpui asuodsal

10} sa|nt jsulebe
JUBAT auexsy

layjeym Buinwisjsp

016
SYoayo aloads

-~1joejje peo

1ayoElRY

0cs
syoayn oyoads
-jebiey peo

1SMOENY WO}
jusAg

809

SSE|Q) JUBAg 10} SajNd
uojzepiiea oysuab peot

205

ainjeubig
jusAg o} pajejal
sa|nt uolepiea pea

JUBAT J0§
S9Nt UoieplieA
ayvadg

6Zq
Ejep

SA—P» BlE}S AlBSSE0BY pue

Gey pajepiien jog

y

9cg enjea anysod
e 0} Buijeysse|n
18S pUE JuaAg
Siy} jo uogeplen puy

y0S juang
UM pajeloosse
anjeA Ajligelauina
g sujuelaqg

T
£0g

sa|ni Jo (shesqns
sjqeoyjdde puy 0]
ainjeubis Jusag asn

T
<08

S8[f UojeplBA
a[qeojdde puy
0} ssB[) 1uans asf)

%

105

ssej0)
UaAg ausjaq

PCT/US2005/047419

WO 2006/071985

6/8

9 9Ol

£09
aInsodxa jsoy wiejul pue

¥ Alleonuo paulysp-lesn Bupepisuos
‘ainsadxa 3soy feuy sjejnojen

y

909
1soy Aq paqiyxe seniiqesuna
abelane Jo sbejusoiad e
SE ainsodxa jsoy wisjul sjejnojen

G09
(%001

“B-8) (jn4 01 ainsodxs
1soy wisiu 108

¢.dnoub isoy
ul sisoy aydpin

SO

€08 (%05 “B°9) anjea

pauiwigiepald e o)
ainsodxa jsoy (euy jog

209
umounj
1SOH 18b6.1E]

4—ON

MO|4 ainsodx7 19ble |

l

o
jan]
O

0
109 sojn

alnsodxs
1eb1e)} peoT

PCT/US2005/047419

WO 2006/071985

7/8

/ 9Old

gzl uatubas 6¢L wauBas yoes ommwum usotad
! ul payoeal pjoysaiy !
UoES U] 19%0BlY s 100 Buiysigelss |lEJ2A0 B)E[NDJED
W01} Pa0INOS SJUBAD d fq mn_:_m» E.m whas pue sanjea
40 Jaquinu aujwR}eQ yoBa suwISlaq juswbas jje ppy
A
1Zl 9z. S GZL
(04 _.m.mwmucmEmwM P juswiBos mopuim | sa|nl oytoads
wo.%_,_mﬁ_:_m,wz_ﬁ_o | pue %oo|-0} -~ -ainjeubis peo
MOPLIM SPING -MOPUIM YSI|qEIST
y
vel
sajn
5SB|0 0} JInBjeq
9l
Bey 1ayoeje
buiuinial 188
syjaayo Iaxoee ‘
fuuinia) dojg

LLL

S}0ayo IayDe)e
fujuingal dojg

[—ON

SaA

£aN|EA BNISO

4

el)
: anjea
1MoEyaAIssalbby
188
celL Vel
LOHEOYISSED
SoERE 0} < sajn 1ayoeye

oyjoads sajni peo]

aAssal6be peo

127

Jsquinu puooss
ay} Wwoy Jaguinu
1siy sy} JoeNans

1473
(sAep gg 1sed
“f-a) pouad puooss

e Buunp Jayoeny 4q
SHOEJE J0 Jequunu
pucoas e auiaiag

Mol bupey 1exyoepy

(474
(sinoy gy jsed
“B'8) pouad 1siy B

Buunp 1exoenRy Aq
SYOERE JO Jaquinu
181y B suiwIsiaq

A

LEL

S9N JaYOENE
Sujuinal peo

o

N~

|

o
N~

PCT/US2005/047419

WO 2006/071985

8/8

8 Old

olL8
(g2 “68) pajersie 0]

008 S10ENVOL8|qRISUINA J8S
7Y
SOA
608 - 908
(0G “"B'8) sjelopol 0) ﬁmcr jebieL (001 “B8) ybiy 0y
«—ON uo usdo yoepe auyt Lim JOBRVO B|qRIBUINA 188
JOENYOL S|qEBIBUINA 88 hSIRIN0SSE 1Og
SOA
SeA
- ¢)s0H yebiel
¢RINEUDIS i 0 punoy ainjeubis
pajeloosse WweysAs Buneledo
LIIM PBIBIDOSSE
sayojeLl wes)sAs Bujeiado
finqessuin
1SOH 1861}
ON
SOA SOA
508
Lumous| solnjeubls
waysAs Bupelado >« ON UM psjeioosse
ON soH 1ebie Agelsuln

€08

(0 “6°8) mo| 0}

SBA

108
JumoLn|

JOERVOLS|JEISUINA 188

ON

Mo| Xoepvoa|delsuinp

1soH 1obiey

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

