PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 17/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/00906

6 January 2000 (06.01.00)

(21) International Application Number: PCT/US99/14919

(22) International Filing Date: 30 June 1999 (30.06.99)

(30) Priority Data:

09/108,064 30 June 1998 (30.06.98) UsS

(71) Applicant: SUN MICROSYSTEMS, INC. {US/US]J; 901 San
Antonio Road, M/S PAL0O1-521, Palo Alto, CA 94303 (US).

(72) Inventor: DAYNES, Laurent; 1321 Lillian Avenue, Sunnyvale,
CA 94087 (US).

(74) Agents: HECKER, Gary, A. et al.; Hecker & Harriman, Suite
2300, 1925 Century Park East, Los Angeles, CA 90067
(us).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR, KZ, LC, LK, LR, L.S, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: METHOD AND APPARATUS FOR LOCKING

(57) Abstract 12

LOCKING

Method and apparatus for KOCKIS o . o 1'u' s T
locking by sharing lock states. TABLE 1116 = MR
Each resource is associated with (T SWO etc... 1148
a lock state that represents its L e e A [SO
lock. Lock states are made 1100 CODE FOR GLOBAL ICW
of one set of transactions per GET_READ_LOCK T
locking mode. Resources may LOCKED
share the same lock state if the RESOURCES
state of their respective locks SN
: . . / \ 1 TABLE OF
is equal. Locking operations ; \ 1118 1138 EMMUTABLE
change the association between / Y J136 :'(-ﬁfs") STATES
a resource and a lock state to re- B \ LOCKSET | gase 140 WOCTPLE GWNERS \
flect changes to the resource’s /' 1102 ' 1130 LOCKSTATE 1120 146
lock. In one embodiment, a K \ \ 1142 s)
table of immutable lock states ¢/ LOCKINGCONTEXT » | || ., —CO—/—— o E—
(TILS) record the immutable o [THII P e/ T II R
lock states that were created Icw l:l:['.li'.ll]]y I Imw
by lock operations in order to 1118 ~1-LOCK SET 1148 SINGLE OWNER 1134 1192
avoid duplication of lock states 1120 —J-SRO——— LT LOCK STATE) /
with equal value. Locking op- 1122 LSWO J U o ﬁ
erations (acquire and release) UNLOCKED ——————
on a resource R by a trans- RESOURCES 113/2 UID:;;_-;;U]I! R m;;;;:m R
action T compute a new lock IO w NI . w
state value by adding (acquire) UNLOCKED SINGLE OWNER
or removing (release) T from Lock Tate 1124 LOCK STATE

the lock state associated with R,

consult the TILS to retrieve an immutable lock state corresponding to the computed value (and registers one if none was found), and change
R’s association to refer to the lock state returned by the TILS. In one embodiment, lock state computations are cached to avoid both
computation of lock states and look up to the TILS. Each transaction maintains one lock state computations cache per locking operation.
Transactions keep track of resources they obtain a lock for using a lock set (which may be implemented as a tack). Alternatively, lock sets
may be avoided if the TILS is scanned upon transaction completion to determine the lock states that contained the transaction in one of

their sets.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
YAY

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

5

10

15

20

25

WO 00/00906 1 PCT/US99/14919

METHOD AND APPARATUS FOR LOCKING

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

This invention relates to the field of computer software, and, more

specifically, to transaction processing and object or resource locking.

Portions of the disclosure of this patent document contain material
that is subject to copyright protection. The copyright owner has no objection
to the facsimile reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office file or records, but
otherwise reserves all copyright rights whatsoever. Sun, Sun Microsystems,
the Sun logo, Solaris, Java, JavaOS, JavaStation, HotJava Views and all Java-
based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries.

2. BACKGROUND ART

In modern computing environments, it is commonplace to store and
access a variety of diverse information and data. To efficiently utilize the
information, the information is stored in a database and is structured in a
manner that provides a user with the ability to interpret and manipulate the
information (referred to as a "data structure”). One type of database structure
is in the form of a table, where each row of the table contains a record and

each column specifies a field in the record. For example, a table can be used to

10

15

20

25

WO 00/00906 2 PCT/US99/14919

store information regarding a company's inventory where each record is a
specific vitem in the inventory and each field specifies information about the
item (e.g., the name of the product, the price of the product, etc.). Data
structures may vary depending on the application and type of database
utilized. As a result of the diverse types of information being utilized (e.g.,
text, images, sound, video, etc.), data structures have grown increasingly

complex.

Each time a computer system performs an activity, the activity is
referred to as a transaction. For example, when a customer order is entered,
or an inventory item is updated, a transaction for each activity is executed by
the computer system. Thus, when information in a data structure is accessed
or manipulated, a transaction is executed by the computer system. A
transaction may need access to a record in a database or a portion of
information in a database. Alternatively, a transaction may modify the entire
database. When executing transactions, a computer system may execute a
group of transactions at one time (referred to as batch processing), or may
execute each transaction immediately after the transaction is received by the
system (referred to as transaction processing). Transactions contain certain
properties that must be adhered to. For example, transactions must be
isolated such that each transaction must be contained separately from each
other transaction. Additionally, transactions must provide for recoverability
(the ability to establish a previous or new status from which execution can be
resumed in the event of a system or execution failure). Required transaction

properties are also referred to as low level details of a transaction.

In many modern applications, increasingly complex data structures

coupled with transaction processing capabilities is becoming a common

10

15

20

25

WO 00/00906 3 PCT/US99/14919

requirement. The complexity of these applications, in terms of the data
structufes, algorithms, and type of the transactions used, does not fit well in
the framework offered by traditional database systems. Persistent
programming languages (PPL) (programming languages that provide for data
to have a lifetime that persists for a specified amount of time) that support
transaction processing may be utilized by programmers as an alternative or in
combination with traditional database systems. To provide adequate support,
some PPLs automatically enforce required transaction properties. Thus, low
level transaction details (e.g., enforcing a transaction's properties) are

automatically performed without input from a programmer.

One automated low level detail consists of the acquisition and release
of a lock. A lock is a mechanism that restricts use of a resource to the holder
of the lock. By locking a resource, the integrity of the data in the resource is
ensured by preventing more than one user (or transaction) from accessing or
changing the same data or object at the same time. There are several types of

locks that may be used.

One type of lock is a shared lock. A shared lock permits multiple
transactions to read (view) an item simultaneously without any modification
or addition to the item (no writing is permitted). A shared lock is referred to
as permitting concurrent (or concurrency) control by a transaction (i.e.,
multiple transactions are permitted to concurrently access a resource).
Another type of lock is an exclusive lock. An exclusive lock permits one
transaction to read and write to an item while excluding all other transactions

from reading or writing to the item.

10

15

20

25

WO 00/00906 4 PCT/US99/14919

The locking and unlocking of resources must be administered to
ensure fhat any required lock properties are complied with. For example, two
or more different transactions cannot each acquire an exclusive lock at the
same time for the same resource. Additionally, locks must be administered
to provide a queue for transactions that are waiting to acquire a lock, and to
rollback any executed actions if a deadlock results (i.e., when each of two
transactions are waiting for a lock release from the other before continuing).
For example, a deadlock occurs if transaction 1 has a lock on resource A and is
waiting to acquire a lock on resource B, and transaction 2 has a lock on

resource B and is waiting to acquire a lock on resource A.

A locking protocol partially determines the administration of a locking
and unlocking of resources. A locking protocol determines how and when a
transaction is granted (or acquires) a lock for a resource and when the
resource is unlocked (i.e., the lock is released allowing other transactions to
acquire a lock on that resource). A lock manager administers a locking

protocol.

For example, in a two-phase locking protocol, each transaction issues a
lock and unlock request in two phases. In one phase, referred to as the
growing phase, a transaction may obtain locks but may not release any lock.
In the second phase, referred to as the shrinking phase, a transaction may

release locks but may not obtain any new locks.

Another protocol, referred to as a graph-based protocol, a partial
ordering of information in a database is performed. For example, a set R of
resources consisting of R1, R2, R3, ..., Rh is ordered such that Rj --> Rj. In this

manner, any transaction accessihg both Rj and Rj must access Rj before

10

15

20

25

WO 00/00906 5 PCT/US99/14919

accessing Rj. With this ordering, the set R may be viewed as a directed acyclic
graph, éalled a database or resource graph. A directed graph may be viewed as
the tree of figure 2, where each node of the tree is a resource. Each resource
descends from another resource (referred to as a parent resource) up to the
root of the tree that has no parents (resource A 200). In a graph-based
protocol, the following rules are followed: (1) the first lock by a transaction T
may be on any data item, (2) subsequently, a data item or resource R can be
locked by T only if the parent of R is currently locked by T, (3) resources can be
unlocked at any time, and (4) a resource that has been locked and unlocked by
T cannot subsequently be relocked by T. For example, referring to figure 2, if
T needs access to resource C 204, both resource C 204 and resource A 200 must
be locked. Similarly, if T needs access to resource J 218, in addition to locking
resource] 218, all of the parents of resource J 218 must be locked (i.e.,
resources H 214, D 208, B 202, and A 200). Thus, in some cases, a transaction
must lock resources that it does not access (i.e., the parent resources of a

resource being accessed).

Figure 3 demonstrates an example of lock acquisition according to a
traditional protocol. In the traditional protocol, each resource is allocated a
lock data structure. This lock data structure is updated every time a lock
operation changes the state of the resource’s lock. Figure 3 demonstrates a
scenario where two resources, O1 300 and O? 302, have been read by a
transaction Ty, and O 302 is about to be read by transaction T». The state of
the lock of each resource is shown before (304-306) and after (308-310) the
acquisition of the lock on O3 302 by To. When transaction T» requests the lock
on resource Oz 302 in read mode, the lock data structure associated with Oy
302 is updated to reflect the new lock state (i.e., lock owned by Ty and T3 in

read mode).

10

15

20

25

WO 00/00906 6 PCT/US99/14919

Each of the lockable resources may be a record in a database, a field of a
record, an entire database, or in an object oriented system (discussed in detail
below) a single object, for example. The size or level of the lockable resource
is referred to as the granularity of the resource (e.g., the field level v. the

record level v. the table level).

A lock is comprised of a data structure that records the identity of the
transactions that are given the right to execute operations on the resource the
lock protects. Each time a lock is acquired, memory is used for the lock data
structure. The memory utilized by the lock remains unavailable until
released through garbage collection or some other method. Consequently,
one goal in lock administration is to minimize the memory locks consume,

which usually translates in minimizing the number of locks.

The process of creating and manipulating a lock is time consuming.
Thus, another goal in lock processing is to minimize the lock processing cost

for acquiring and releasing a lock.

As resource granularity becomes finer, more resources are available for
transactions. Such resource availability occurs because locks are placed on
smaller resource units, freeing remaining resources that may be locked if the
resource is coarser. Consequently, another objective in lock processing is to

utilize a fine resource granularity.

Locking may be performed manually by programmers who then
explicitly put lock requests in their programs, or automatically at runtime

without input from programmei‘s. When applied in the context of general

WO 00/60906 7 PCT/US99/14919

purpose programing languages, both solutions may result in many
unneceésary redundant lock requests (i.e., a lock request for a lock already
owned) because of the complex data structures and algorithms these
programming languages enable. Consequently, one goal of lock management

is to minimize the processing time spent to process redundant lock requests.

The objective of a lock management implementation is to obtain the
best combination of low memory consumption, low processing costs, and fine

granularity of locking.

10

15

20

25

WO 00/00906 8 PCT/US99/14919

SUMMARY OF THE INVENTION

The present invention provides for low space-overhead locking for
transaction processing systems by sharing lock states. Each resource or object
has an associated lock state. A lock state is comprised of a set of transactions
that own a lock in a specific mode. Among other modes, a locking mode may

comprise a read mode or a write mode.

Resources may share the same lock state if the state of their respective
lock is equal. During its lifetime, a resource may be associated with various
lock states, each lock state being the representation of the lock of that resource
at a given time. Locking operations change the association between a

resource and a lock state, should such a change be necessary.

In one embodiment of the invention, a table of immutable lock states
(TILS) records all of the immutable lock states that were created by lock
operations in order to avoid duplication of lock states with equal value.
Locking operations (e.g., acquire, release) that yield new lock state values

must consult the TILS to retrieve the corresponding immutable lock state.

To acquire a lock on a resource R, after ensuring that there is no
conflicts, the value of a new lock state is computed by adding the current
transaction to the lock state currently associated with R. The computed lock
state value is used to retrieve an immutable lock state from the TILS (if no
such lock state exists, a new one is registered to the TILS and is returned).
The lock acquisition completes by updating the association of the resource to

the new lock states returned by the TILS.

10

15

20

25

WO 00/00906 9 PCT/US99/14919

To release a lock for a specific resource, the transaction determines the
lock stafe value that will result after removing itself from the lock state for
that resource. The computed lock state value is used to retrieve an
immutable lock state from the TILS (if no such lock state exists, a new one is
registered to the TILS and is returned). The lock release completes by
updating the association of the resource to the new lock states returned by the

TILS.

As described, all lock operations perform transitions of lock states that
are both deterministic and independent of the locked resource. If a locking
operation for a transaction T on a lock state S1 yields a state S2, it will always
do so, independently of the resource the operation applies to. For instance,
acquiring a read lock for a transaction T1 on a resource R associated with a
lock state consisting of a read owner set that contains T2 will always yield a
lock state made of a lock owner set that contains T2 and T1, whatever the
resource R is. In one embodiment of the invention, lock state transitions
(e.g., acquire (T1, Read) : Owner(Read) = {T2} — Owner(Read) = {T2,T1}) are
cached to avoid both computation of lock states and look up in the TILS.
Each transaction maintains one lock state transition cache per locking

operation.

When a transaction has completed execution, all resources associated
with the transaction must be released. In one embodiment, the transaction
maintains a lock set that maintains information regarding each resource for
which it has obtained a lock. The transaction then releases each resource in
the lock set as described above. In one embodiment, the lock set is
implemented in a stack where each reference is pushed onto the stack when

the lock is acquired and popped.when the lock is released. In another

WO 00/00906 10 PCT/US99/14919

embodiment, lock sets are not maintained and the TILS is scanned upon
transaction completion to determine which lock states contained the

transaction as an owner.

10

15

20

25

WO 00/00906 11 PCT/US99/14919

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of one embodiment of a computer system
capable of providing a suitable execution environment for an embodiment of

the invention.

Figure 2 demonstrates a tree for a graph based locking protocol.

Figure 3 demonstrates the locks in a traditional protocol before and

after a transaction acquires a lock.

Figure 4 demonstrates sharing of lock states before and after a

transaction acquires a lock.

Figure 5 illustrates the access path of three transactions through a
graph of resources and a history of operations that corresponds to one

possible execution of the three transactions traversing this graph.

Figure 6 demonstrates the sharing of lock states of the resources of

Figure 5 at four time intervals

Figure 7 illustrates the lock acquisition process according to one

embodiment of the invention.

Figure 8 illustrates the lock release process according to one

embodiment of the invention.

10

15

WO 00/00906 12 PCT/US99/14919

Figure 9 illustrates the lock release process without using lock sets

according to one embodiment of the invention.

Figure 10 demonstrates lock states and the TILS and Duplicates table
when lock management is used without lock sets according to one

embodiment of the invention.

Figure 11 demonstrates the lock manager's data structures according to

one embodiment of the invention.

Figure 12 illustrates the use of a stack for a lock set according to one

embodiment of the invention.

Figure 13 demonstrates dispatching to specialized code and non-

blocking synchronizations according to one embodiment of the invention.

10

15

20

25

WO 00/00906 13 PCT/US99/14919

DETAILED DESCRIPTION OF THE INVENTION

The invention is a method and apparatus for low space overhead
locking for transaction systems. In the following description, numerous
specific details are set forth to provide a more thorough description of
embodiments of the invention. It is apparent, however, to one skilled in the
art, that the invention may be practiced without these specific details. In
other instances, well known features have not been described in detail so as

not to obscure the invention.

Embodiment of Computer Execution Environment (Hardware)

An embodiment of the invention can be implemented as computer
software in the form of computer readable code executed on a general
purpose computer such as computer 100 illustrated in Figure 1, or in the form
of bytecode class files running on such a computer. A keyboard 110 and
mouse 111 are coupled to a bi-directional system bus 118. The keyboard and
mouse are for introducing user input to the computer system and
communicating that user input to processor 113. Other suitable input devices
may be used in addition to, or in place of, the mouse 111 and keyboard 110.
I/0 (input/output) unit 119 coupled to bi-directional system bus 118

represents such I/O elements as a printer, A/V (audio/video) I/0, etc.

Computer 100 includes a video memory 114, main memory 115 and
mass storage 112, all coupled to bi-directional system bus 118 along with
keyboard 110, mouse 111 and processor 113. The mass storage 112 may
include both fixed and removable media, such as magnetic, optical or

magnetic optical storage systemé or any other available mass storage

10

15

20

25

WO 00/00906 14 PCT/US99/14919

technology. Bus 118 may contain, for example, thirty-two address lines for
addressing video memory 114 or main memory 115. The system bus 118 also
includes, for example, a 32-bit data bus for transferring data between and
among the components, such as processor 113, main memory 115, video
memory 114 and mass storage 112. Alternatively, multiplex data/address

lines may be used instead of separate data and address lines.

In one embodiment of the invention, the processor 113 is a
microprocessor manufactured by Motorola, such as the 680X0 processor or a
microprocessor manufactured by Intel, such as the 80X86, or Pentium
processor. However, any other suitable microprocessor or microcomputer
may be utilized. Main memory 115 is comprised of dynamic random access
memory (DRAM). Video memory 114 is a dual-ported video random access
memory. One port of the video memory 114 is coupled to video amplifier
116. The video amplifier 116 is used to drive the cathode ray tube (CRT)
raster monitor 117. Video amplifier 116 is well known in the art and may be
implemented by any suitable apparatus. This circuitry converts pixel data
stored in video memory 114 to a raster signal suitable for use by monitor 117.

Monitor 117 is a type of monitor suitable for displaying graphic images.

Computer 100 may also include a communication interface 120
coupled to bus 118. Communication interface 120 provides a two-way data
communication coupling via a network link 121 to a local network 122. For
example, if communication interface 120 is an integrated services digital
network (ISDN) card or a modem, communication interface 120 provides a
data communication connection to the corresponding type of telephone line,
which comprises part of network link 121. If communication interface 120 is

a local area network (LAN) card, communication interface 120 provides a data

10

15

20

25

WO 00/00906 15 PCT/US99/14919

communication connection via network link 121 to a compatible LAN.
Wirelesé links are also possible. In any such implementation,
communication interface 120 sends and receives electrical, electromagnetic or
optical signals which carry digital data streams representing various types of

information.

Network link 121 typically provides data communication through one
or more networks to other data devices. For example, network link 121 may
provide a connection through local network 122 to local server computer 123
or to data equipment operated by an Internet Service Provider (ISP) 124. ISP
124 in turn provides data communication services through the world wide
packet data communication network now commonly referred to as the
"Internet" 125. Local network 122 and Internet 125 both use electrical,
electromagnetic or optical signals which carry digital data streams. The
signals through the various networks and the signals on network link 121
and through communication interface 120, which carry the digital data to and
from computer 100, are exemplary forms of carrier waves transporting the

information.

Computer 100 can send messages and receive data, including program
code, through the network(s), network link 121, and communication
interface 120. In the Internet example, remote server computer 126 might
transmit a requested code for an application program through Internet 125,
ISP 124, local network 122 and communication interface 120. In accord with
the invention, one such application is that of remotely configuring a

computer.

10

15

20

25

WO 00/00906 16 PCT/US99/14919

The received code may be executed by processor 113 as it is received,
and/or stored in mass storage 112, or other non-volatile storage for later

execution. In this manner, computer 100 may obtain application code in the

form of a carrier wave.

Application code may be embodied in any form of computer program
product. A computer program product comprises a medium configured to
store or transport computer readable code, or in which computer readable
code may be embedded. Some examples of computer program products are
CD-ROM disks, ROM cards, floppy disks, magnetic tapes, computer hard

drives, servers on a network, and carrier waves.

The computer systems described above are for purposes of example
only. An embodiment of the invention may be implemented in any type of

computer system or programming or processing environment.

Utilization of Computer Software

Resources and transactions may contain multiple related functions and
data structures. One embodiment of the invention utilizes a standard object
oriented programming (OOP) language to write and encapsulate an
application's transactions, functions, and data structures. To provide an
understanding of encapsulation of related data structures and methods, an

overview of object-oriented programming is provided below.

10

15

20

25

WO 00/00906 17 PCT/US99/14919

Object-Oriented Programming

Object-oriented programming is a method of creating computer
programs by combining certain fundamental building blocks, and creating
relationships among and between the building blocks. The building blocks in
object-oriented programming systems are called "objects." An object is a
programming unit that groups together a data structure (one or more
instance variables) and the operations (methods) that can use or affect that
data. Thus, an object consists of data and one or more operations or
procedures that can be performed on that data. The joining of data and

operations into a unitary building block is called "encapsulation.”

An object can be instructed to perform one of its methods when it
receives a "message." A message is a command or instruction sent to the
object to execute a certain method. A message consists of a method selection
(e.g., method name) and a plurality of arguments. A message tells the

receiving object what operations to perform.

One advantage of object-oriented programming is the way in which
methods are invoked. When a message is sent to an object, it is not necessary
for the message to instruct the object how to perform a certain method. It is
only necessary to request that the object execute the method. This greatly

simplifies program development.

Object-oriented programming languages are predominantly based on a
"class” scheme. The class-based object-oriented programming scheme is

generally described in Lieberman, "Using Prototypical Objects to Implement

10

15

20

25

WO 00/60906 18 PCT/US99/14919

Shared Behavior in Object-Oriented Systems," OOPSLA 86 Proceedings,
September 1986, pp. 214-223.

A class defines a type of object that typically includes both variables and
methods for the class. An object class is used to create a particular instance of
an object. An instance of an object class includes the variables and methods
defined for the class. Multiple instances of the same class can be created from
an object class. Each instance that is created from the object class is said to be

of the same type or class.

To illustrate, an employee object class can include "name" and "salary"
instance variables and a "set_salary" method. Instances of the employee
object class can be created, or instantiated for each employee in an
organization. Each object instance is said to be of type "employee.” Each
employee object instance includes "name" and "salary" instance variables
and the "set_salary” method. The values associated with the "name" and
"salary" variables in each employee object instance contain the name and
salary of an employee in the organization. A message can be sent to an
employee’s employee object instance to invoke the "set_salary" method to
modify the employee’s salary (i.e., the value associated with the "salary"

variable in the employee’s employee object).

A hierarchy of classes can be defined such that an object class definition
has one or more subclasses. A subclass inherits its parent’s (and
grandparent’s etc.) definition. Each subclass in the hierarchy may add to or
modify the behavior specified by its parent class. Some object-oriented
programming languages support multiple inheritance where a subclass may

inherit a class definition from m‘ore than one parent class. Other

10

15

20

25

WO 00/00906 19 PCT/US99/14919

programming languages support only single inheritance, where a subclass is

limited to inheriting the class definition of only one parent class.

An object is a generic term that is used in the object-oriented
programming environment to refer to a module that contains related code
and variables. A software application can be written using an object-oriented
programming language whereby the program's functionality is implemented
using objects. The encapsulation provided by objects in an object-oriented
programming environment may be extended to the notion of resources, locks
and lock states as described below. Object locking provides for the association

of each object with a distinct lock.

Embodiment of Software Apparatus for Lock States

One embodiment of the invention provides for a method and

apparatus for a lock manager to utilize lock states that represent the state of a

lock.

As described above, a lock is a data structure that records the identity of
the transactions that are given the right to execute operations on the resource
the lock protects. The transactions recorded by a lock are called the owners of
that lock. A transaction is recorded by the locking modes (e.g., read or write
mode) the transaction is granted to. There is one locking mode defined per
kind of operation (locking modes and operations are discussed below). As a
result, a lock has one set of owners (transactions that are granted the lock) for
each locking mode that the lock must keep track of. The set of the values of

each of the owners of a lock is referred to as the state of a lock (or lock state).

10

15

20

25

WO 00/00906 20 PCT/US99/14919

As described above, prior art methods provide for the creation of locks
in lock data structures. The present invention does not utilize locks with a
material existence in the form of lock data structures but provides for
immutable lock states (lock states that are not capable of or susceptible to
change). Each lock state represents a particular state of one or more locks.
Resources share the same immutable lock state if the state of their respective
lock is equal. During its lifetime, a resource may be associated with various
lock states, each lock state being the representation of the lock of that resource
at a given time. Locking operations change the association between a
resource and a lock state, should a change of state be necessary. This
association materializes the resource’s lock. Prior to granting a lock, a
determination is made as to whether the lock to be granted conflicts with an

existing lock.

Lock states may also be viewed as follows: a transaction T is granted
the lock | protecting a resource R in a mode M according to some conflict
detection function that determines whether the request <T,M> conflicts with
the current state of the lock 1. When a lock 1 is granted in mode M to a
transaction T, T is added to the owner set that corresponds to M to reflect the
new state of the lock. Inversely, when a transaction releases a lock, it is
removed from all the owner sets in which it appears. Examples of lock states

are discussed below.

The role of the lock manager in a lock state environment is to
maintain the correct association of locked resources and immutable lock
states. For this purpose, the lock manager maintains an associative table of

immutable lock states, we will refer to as the TILS hereafter. The TILS

10

15

20

25

WO 00/00906 21 PCT/US99/14919

contains all of the available immutable lock states. To access an entry in the
TILS, a key that is unique for every lock state in the table is utilized. One key
that may be utilized is the value of the lock state itself since this is the only
information known when changing the state of the lock of a resource. Lock
states are added or removed from the TILS as needed. Garbage collection

techniques determine unused lock states and remove them from the TILS.

As described above, lock states are immutable, and can therefore be
shared between several resources. The association between a resource and a
lock state is changed whenever a locking operation changes the state of a
resource’s lock. The most commonly used locking modes are read and write.
In the description of the invention, only these two modes are considered for
concision though the invention works with additional arbitrary locking
modes. Hence, for the remainder of the description, a lock state is made up of

two owner sets: a read owner set and a write owner set.

Example 1

Figure 4 demonstrates the scenario described above with respect to
Figure 3 using lock states instead of locks. Two resources, O1 400 and O7 402
have been read by a transaction T1, and O2 402 is about to be read by T2.
Before the read by T2, figure 4 demonstrates that both O1 400 and O9 402 are
read by transaction T1 and thus have the same lock state 404, a set consisting
of T1 for a read mode. After T2 has performed a read of O2 402, both
resources O 400 and O3 402 share the same lock state which corresponds to
the state each data structure representing their respective lock would be in.

The acquisition of Oy’s lock by Tj changes Oy’s lock state association 404 to a

10

15

20

25

WO 00/00906 22 PCT/US99/14919

new lock state 408. Since that new lock state does not exist yet in the TILS, a
lock staté 408 with an empty write owner set and a read owner set made of T;
and T is created as the result of the lock operation on O 402. Comparing
Figures 3 and 4, before the execution of T, Figure 3 demonstrates the use of
two locks 304 and 306, compared to the one lock state 404 of Figure 4. After
the execution of T, Figure 3 demonstrates two locks 308 and 310 (that are the
same locks as locks 304 and 306 respectively), and Figure 4 demonstrates two
lock states 406 (the same lock state as lock state 404) and 408. The next time a
resource’s lock changes to the same state, for instance, if Ty acquires a read

lock on O7 400, the lock state will already be available.

Example 2

Figure 5 demonstrates the flow of several transactions T1 - T3 through
various resource objects O1-O (the object graph). Triangles rooted at
resource objects O3, Os and Og represent sub-graphs containing, respectively,

N1, N2 and N3 resource objects.

A history of a possible execution of three transactions, T1, Ty and T3,
that traverse different overlapping portions of the graph is shown as the
history prefix of Figure 5. A curved line corresponding to each transaction

shows the path followed through the object graph by each transaction.

Figure 6 demonstrates the state of each object lock of Figure 5 at four
different times in the history (1, to, t3, and t4). Only the non empty owner

sets of the state of each lock is shown. Each owner set shown is tagged with a

10

15

20

25

WO 00/00906 23 PCT/US99/14919

letter that indicates the corresponding locking mode: R for read mode and W

for write mode.

At time t1, the states of O1’s lock and Oy’s lock are identical, as are the
state of O3’s and O4's locks as indicated by O1 and O2 pointing to the same lock
state and O3 and O4 pointing to the same lock state. All other objects have
their lock in an unlocked state, i.e., all the owner sets of these locks are empty,
and thus point to the same lock state. Conceptually, objects that are not
manipulated by any transactions are given an empty lock, though in one
embodiment, no lock is allocated for such objects. Instead, locks are allocated
on demand whenever a lock request is issued for an unlocked object. The
object is then dynamically associated with that lock. The lock data structure is
freed when the object it protects is unlocked. In the following, we will omit
unlocked states when discussing space overhead but for clarity, we have

represented them in Figure 6.

time # of locks # of lock states
t1 4 2
t2 6 3
t3 6 3
t4 9+ N1+ N2+ N3 6

Table 1: Number of locks vs. number of lock states

Table 1 reports for each given time in the history of Figure 6 the
number of locks and the number of lock states. From this table, one can see
that on average, based on the history prefix, the number of lock states is at
worse 50% smaller than the total number of locks (assuming Nj, Np, N3 are
all greater or equal to 1). The total number of lock states can be as small as 1,

(e.g., when the working sets of all active transactions overlap exactly).

10

15

20

25

WO 00/00906 24 PCT/US99/14919

However, when the working sets of transactions don't overlap at all, the

number of lock states is the number of active transactions.

Assuming that no constraint exists to define what combination is a
valid lock state, and that conflicts never happen, the maximum number of
possible lock states may be computed as follows: Let T(t) be the set of active
transactions at time t. The value of an owner set can be any subset of T(t).
Thus, the number of possible values for one owner set is the cardinality of
p(T(t)), the power set of T(t), which has cardinality |p(T(t)) |=2|T®)!,
Assuming M different locking modes, the total number of possible lock states
is 1 TOYM=MIT® |, With M=2 and 10 active transactions, there are

approximately 1 million possible states for a lock.

In a transaction processing system, two factors may reduce the number

of lock states:

1. Constraints imposed by the transaction model on what
constitutes a valid lock state: transaction models prevent some
lock states from ever happening since they correspond to
situations the locking protocol prevents from happening (e.g.,
two owners in exclusive mode).

2. The regularity of data structures and algorithms prevents some

lock states from ever happening.

As an example, let us assume the ACID transaction model (a system
that utilizes transactions that maintain atomicity, consistency, isolation, and
durability (ACID)) with the two locking modes, read and write. This model
prevents any lock states with more than one transaction in the owner sets

corresponding to the exclusive mode (the isolation property). Thus, a valid

10

15

20

25

30

WO 00/00906 25 PCT/US99/14919

lock state has either its write owner set empty, or its read owner set empty
and a singleton as a write owner set. If such a model is used, then, the total

number of possible lock states is the sum of:

«2/ T, the number of lock states corresponding to locks granted in read
mode only, and

o | T(t) |, the number of lock states corresponding to locks granted in
write mode only,

that is, 2! TO 1+ | T(1)].

As described, the total number of lock states cannot exceed the total

number of locks, should each existing lock be in a distinct state.

Lock Operation

A general description of lock states is set forth above. The detailed
operation of locks including the acquisition and release of locks according to

one embodiment of the invention are described below.

Lock Acquisition

Figure 7 illustrates the lock acquisition process according to one
embodiment of the invention. At step 700, the lock manager determines if
the transaction requesting the lock already owns the lock in the requested
mode. If the transaction already owns the lock in the requested mode, then

there is no change in the lock state and processing continues at step 718.

10

15

20

25

WO 00/00906 26 PCT/US99/14919

If the transaction does not own the requested lock, the lock manager
checks for any conflicts with the existing locks and for the absence of any
pending lock requests (by other transactions) at step 702. If there is a conflict
but no pending lock request (determined at step 704), a new lock state with a
queue is created and entered in the TILS at step 704.a. This new lock state
differs only from the previous lock state that caused the conflict by the
addition of a queue of pending requests. The association between the
requested resource and a lock state is updated accordingly at step 704.b, and
the lock request is added to the queue at step 704.c. If a queue was located for
the lock state (at step 704), the lock manager adds the request to the queue at
step 704.c. In one embodiment, the queue is processed in first-in-first-out
(FIFO) order. At step 706, the lock manager waits for the requested lock to
become available. In one embodiment, a lock may become available when
the conflict is cleared (e.g., when the lock is released by another transaction)
and when transactions that were ahead of the current reqﬁestor in the queue

have been processed.

Once all conflicts have been cleared and the lock manager determines
that the current transaction may be granted the desired lock, the value of the
new lock state is determined at step 708. The new lock state value is
determined by adding the transaction that is granted the lock to the owner set
corresponding to the requested lock mode. This new lock state value (stored
in a temporary variable) is used as a key to lookup if a corresponding
immutable lock state value has already been registered in the TILS at step 710.
If such a lock state does not exist in the TILS, a new one is created with this
value and registered in the TILS and returned at step 712. At step 714, the

association between the resource and the lock state representing its lock is

WO 00/00906 27 PCT/US99/14919

then updated to refer to the lock state retrieved (at step 710) or created (at step
712).

At step 716, the resource is added to the set of locks (referred to as lock

5 set) owned by the requestor.

The above steps are further illustrated by the following pseudo code:

10

15

20

1 acquire_lock(Resource R, LockingMode M, Transaction T)
2 begin
3 LockState 1 « lock(R);
4 if (T € Owner(1,M))
5 return GRANTED
6 endif
7 if (Q(1) = @V IOwner(l,M) & {T})
8 /* wait case */
9 endif
10 LockState 19 « 1
11 Owner (19,M) ¢« Owner(ly,M) U {T}
12 lock(R) « TILS.lookup(l3)
13 lockset (T) « lockset(T) U {R}
14 return GRANTED
15 end
25 In the above pseudo code, the state of a lock is comprised of one owner

set per locking mode. Owner (1,M) is defined as the owner set of lock 1 that
corresponds to the locking mode M. Each owner set records the transactions
that were granted the lock in the corresponding mode. When considering
only read and write locking modes, a lock state is a pair

30 <Owner(1,Read),Owner (1,Write)>. The state of locks with pending lock
requests due to a conflict(s) is augmented with a set Q(l) of pairs <T, M>, where

T is the suspended transaction, and M is the mode requested by T.

10

15

20

25

WO 00/00906 28 PCT/US99/14919

In one embodiment of the invention, a compatibility matrix defines
the compatibility between locking modes. This matrix can be represented as a
function Compatible (M;,M3) that states whether a mode Mj is compatible
with Mp. Using the compatibility matrix, IOwner (1, M) is defined as the set
of transactions that own lock | in a mode incompatible (I) with mode M. This
set is defined as:

IOwner (1,M) = Y Owner (1,M1)
vM; | —Compatible (M, M)

For instance, IOwner (1,Write) = Owner (1l,Write) U Owner (1,Read).
This equation illustrates that if a write lock exists, the set of incompatible
owners consists of the owners of other write locks and read locks (since a read

and write lock on the same resource are incompatible with each other).

The absence of a conflict between a request for a lock 1in a mode M by a

transaction T and the state of 1 is given by:

IOwner (1,M) c {T}
In other words, if the above condition is complied with, then the lock can be

granted.

In addition to updating the lock states as described above, the lock
manager records, for each transaction T, the locks that have been granted to T
in order to release the granted locks upon T’s completion (irrespective of how
T completes). However, since locks have no material existence, in one
embodiment they cannot be recorded and the transactions themselves keep
track of the resources they have a lock on. Releasing a lock on a resource R
operates as a change of the association between R and the lock state that
embodies R’s lock. As described above, lock (R) is defined as the lock state

associated to resource R, and lockset (T) is defined as the set of resources for

10

15

20

25

30

35

WO 00/00906 29 PCT/US99/14919

which transaction T has acquired a lock. Lockset (T) is referred to as the lock

set of the transaction T. The lock set of a transaction is defined as:

lockset (T)={R|VM, V1 :lock(R)= 1AT € Owner(1l,M)}
Lock Release

To release a lock, the lock state of the resource being unlocked must be
updated and the resource must be removed from the lock set of the
transaction that is releasing the lock. This lock release process is illustrated in

Figure 8 and the following pseudo code according to one embodiment of the

invention:
1 release_lock(Resource R, Transaction T)
2 begin
3 LockState 1 « lock(R);
4 LockState 12 « 1
5 for each M
6 if T € Owner(ly,M)
7 Owner (12,M) < Owner(lp,M) 6 {T}
8 endif
9 endfor
10 lock(R) « TILS.lookup(1l2)
11 lockset (T) « lockset(T) © {R}
12 if (Q(1) = @)
13 return
14 endif
15 /* process waiting queue here */
16 end

Referring to step 800 of Figure 8, the value of the new lock state that
the resource will be associated with is computed. The new value is obtained
by removing the transaction from any owner set of the lock state where it
appears in. Referring to the pseudo code, to obtain the new value, the current

value of the lock state is obtained and copied into a local variable (lines 3-4).

10

15

20

25

WO 00/60906 30 PCT/US99/14919

The new value is obtained by removing the transaction from the owner sets
(of the ldck states indicated in the local variable) (lines 5-9 of the pseudo
code). At step 802 and line 10 of the pseudo code, the new lock state is
obtained from the TILS. At step 804 and line 11, the resource's association
with the TILS is updated to reflect the retrieved lock state. Transactions
waiting in the queue for the lock release are then processed at step 806 and
line 15 of the pseudocode. These waiting transactions will resume at step 708

of Figure 7.

Lock Set Elimination

As described above, each transaction maintains a lock set containing
the locks that each transaction has acquired. In one embodiment of the
invention, transactions don't keep track of the resources they have locked
and the lock manager does not maintain any lock sets. In such an
embodiment, lock acquisition proceeds as described above without the

addition or modification of a lock set.

Figure 9 demonstrates the release of a lock without using lock sets. At
step 900 the transaction ends. At step 902, the TILS is scanned to find all of
the lock states in which the transaction appears. At step 904, for each lock
state found, the transaction is removed from all owner sets where it appears.
By removing the transaction from the owner set, the value of the lock state is
modified. Since TILS's keys are based on the value of a lock state, this
modification necessitates reentry in the TILS as a new lock state. At step 906,
a determination is made regarding whether the TILS already has a lock state

with a value equal to that of the modified lock state. If so, the modified lock

10

15

20

25

WO 00/00906 31 PCT/US99/14919

state is not re-entered in the TILS but put instead in a duplicate table at step
910. Thé associations between the resources and the lock states that are
updated after a lock release do not need to be changed (the lock state of the
association may now belong to the duplicate table). If the modified lock state
is not in the TILS, it is registered to the TILS at step 908. Processing then
continues. Eventually, garbage collection is initiated (which may be
asynchronous) at step 912. During garbage collection, the duplicates in the

duplicate table are removed and the associations with the TILS are updated.

Using the above lock release method, the table of duplicates are
updated in addition to the TILS when other transactions release their locks.
Figure 10 demonstrates lock release without lock sets. The Figure shows
resources (small circles) and the lock states that represent their lock. Before
the end of transaction Tq, there are two lock states that represent locks owned
by T1 (lock states 11 and 1p). When T; completes, it is taken out of the owner
sets of these two lock states. However, the new updated value of these lock
states is already represented in the TILS, so these lock states will remain out
of the TILS and will not be used for updating the association of a resource
upon a lock operation. After release of T1’s locks, 1y duplicates 13, and 1p
duplicates l4. The duplicates must be recorded in a table of duplicates in order
to update them too when other transactions subsequently release their locks.
For instance, after T1’s termination, both the TILS and the table of duplicates
contains lock states that represent locks owned by To. When T terminates
and releases its locks, it will create two additional duplicates of the
“unlocked” lock state (i.e., 13): 14 will turn into a duplicate of 13 and will be
taken out of the TILS and recorded in the table of duplicates, and 1y will also
turn into another duplicate of 13 but no table management will be necessary

since 17 is already in the table of vduplicates.

10

15

20

25

WO 00/00906 32 PCT/US99/14919

Implementation of Lock Manager

In one embodiment of the invention, lock owner sets are represented
as bitmaps. A bitmap is an array of binary digits (either a 1 or 0 in the binary
number system; also referred to as bits). Additionally, each transaction is

assigned a locking context that uniquely identifies the transaction.

Bitmaps are used to map specific bits to a locking context. All bitmaps
use the same mapping from locking contexts to bit numbers, i.e. the ith bit
always represents the same locking context. Bits that are set to 1 in a bitmap
indicate the membership of the owner set that the bitmap represents. Figure
11 illustrates an overview of the data structure of the lock manager and will

be discussed below.

Locking Context

Transactions request services to the lock manager using their locking
context. A locking context is associated with a unique bit number (in a

bitmap) that identifies it, and so its transaction, within the lock manager.
Referring to Figure 11, a locking context is comprised of the following.

(1) The bit number 1102 that currently identifies it. This number is
also an index to a table of locking contexts 1100. When changing the
locking context’s identifier (i.e., its bit number), the locking context

location in the locking context table is changed accordingly.

10

15

20

25

WO 00/00906 33 PCT/US99/14919

(2) Links to other locking contexts 1112-1116.

(3) A lock set 1118. The present description assumes a variant of the
lock manager than maintains lock sets to keep track of locks acquired
by transactions. If lock sets are not utilized (as described above), the
lock set reference in the locking context may be eliminated.

(4) References to specific exclusive lock states 1122 that were solely
acquired using the present locking context (referred to as single-owner
lock states). There is one single-owner lock state per locking mode.
Single-owner lock states are used to avoid looking up the lock state in
the TILS when acquiring a lock on an unlocked resource. With two
lock modes, each locking context maintains two single-owner lock
states, called single-read owner (SRO) 1120 and single-write owner

(SWO) 1122.

As described above, the reference to an SRO 1120 or SWO 1122 is
present to denote a lock state for the one transaction identified by the locking
context. Thus, if a resource has no associated locks (i.e., it is unlocked), the
reference in the locking context may be utilized instead of looking up the lock

state in the TILS.
Lock States

Each lock state 1120-1126 is made of a header 1128-1134 that contains
information, such as a type tag (type tags are discussed in detail below) and
other extra data used for the maintenance of the TILS. Each lock state also
contains an array of bitmaps, each bitmap representing an owner set for a

given locking mode. When only read and write locking modes are used, a

10

15

20

25

WO 00/00906 34 PCT/US99/14919

lock state contains two such bitmaps only (a Read bitmap and a Write

bitmap).

Lock Set

A lock set 1118 identifies the locks that a current transaction owns. In
one embodiment lock sets are maintained in a linked list. A linked list is a

list of elements (e.g., a reference to a resource) and a link pointing to another

element.

In another embodiment, lock sets are implemented as segmented
stacks of references to resources. A stack is a data structure such that
information added or pushed onto the stack is the last to be moved or popped
off of the stack (referred to as First-In-Last-Out or FILO). In one embodiment,
each element pushed onto the lock set stack 1136 is comprised of a reference
to a resource 1138-1144. When a transaction acquires a new lock, the resource
must be added to the stack 1136. Figure 12 demonstrates the addition of a
resource to a lock set. At step 1200, the top of the current stack segment is
incremented, and at step 1202 a boundary check is conducted to determine
whether the end of the current segment is reached (i.e., whether there is
enough room in the current segment to add the resource's reference). If the
check succeeds (i.e., there is enough room), the reference to the resource is
stored on top of the stack (at the location where the stack pointer points) at
step 1208. Otherwise, a new segment is allocated at step 1204. At step 1206,
the first location of the new segment is used to link to the previous current

segment of the stack, and the new segment becomes the new current

10

15

20

25

WO 00/00906 35 PCT/US99/14919

segment. The top of the stack is then incremented at step 1206 and the

reference of the resource is put at that location at step 1208.

When a transaction is complete, each element of the stack (which
contains a reference to a resource) is popped off of the stack and the associated
resource is unlocked. Each element is popped off of the stack in this manner

until the transaction's stack is empty.

Table of Immutable Lock States (TILS)

The lock manager maintains an associative table of immutable lock
states 1146, the TILS. In one embodiment, the TILS can be implemented as a
hash table. A hash table is a table of information that is indexed by a unique
number (referred to as a hash code) that is obtained by a hash function. A
hash function takes known information as input, and numerically
manipulates the information to produce the hash code as output. In one
embodiment, the input for the hash function consists of the lock state

information (e.g., the bitmaps of each lock state).

Lock Manager Execution

The lock manager cooperates with a resource manager (a utility that
manages all resources) to initialize associations between resources and lock
states, and to garbage collect unused lock states. Unlocked resources are

associated with a lock state that represents the unlocked state. In one

10

15

20

25

WO 00/00906 36 PCT/US99/14919

embodiment, upon encountering an unlocked object or resource, a direct

pointer to the “unlocked” lock state is stored in the object.

Locking Operations

In one embodiment, locking operations may make use of two
techniques to improve performance: dispatching to specialized code

according to lock state type, and non-blocking synchronizations.

Dispatch to_Specialized Code

Dispatching to specialized code comprises executing specific or
specialized code depending on the type of lock state encountered. The lock
manager assigns to each lock state a type that corresponds to one of the six

following categories:

1. unlocked (U): the lock state type that represents the lock of an

unlocked resource. There is only one lock state of this type.

2. single read owner (SRO): the lock state type that represents
ownership by a single owner in read mode only. There is one lock state of

this type per active transaction.

3. single write owner (SRO): the lock state type that represents
ownership by a single owner in write mode. There is one lock state of this

type per active transaction.

10

15

20

25

WO 00/00906 37 PCT/US99/14919

4, multiple read owner (MRO): the lock state type that represents

ownership by multiple owners in read mode only.

5. multiple write owner (MWO): the lock state type that represents
ownership by multiple owners in write mode. Lock states in this category

exist only when conflicts with other transactions are ignored.

6. non-empty queue (Q): the lock state type that represents a lock
with a non empty set of pending lock requests, irrespective of the value of the

lock’s owner sets.

The type of a lock state is assigned at the time the lock state is created. The
type indicates the data structure and representation of the lock states. For
instance, lock states of type Q have additional data structures related to the
management of the pending queue of waiting lock requests, that lock states of

any other types do not have.

The type also determines the implementation of each locking
operation that may be used. In other words, the type specifies the
implementation of the locking operation for that lock state (e.g., lock
acquisition or lock release). The implementations of the operations are
stored in memory with a specific starting point and ending point. It is
possible to jump to a certain location within the memory by specifying an
offset (a number that tells how far from a starting point a particular item is
located). Thus, the type specifies the desired implementation by storing a
vector (a variable that has both distance and direction) of offsets, with one

offset per locking operation (e.g., lock acquisitions and release).

10

15

20

25

WO 00/00906 38 PCT/US99/14919

By storing the offset, a locking operation Op on a resource R may use a
specific‘implementation of the lock operation. The locking operation uses
the desired implementation by loading the offset corresponding to Op from
the type of the lock state currently associated with R. The lock manager then
dispatches the execution of the locking operation Op to additional code that
specializes in handling lock states of that type. The lock manager dispatches
the execution by adding the offset from the Op type to Op’s starting point

(referred to as a base address) and jumping to the resulting location.

The code for this dispatching mechanism, in the case of a read lock
acquisition, is shown on the first six lines of the code illustrated in Figure 13.
The code for dispatching according to a lock state’s type takes 3 instructions
(lines 2, 4 and 5 of Figure 13). By dispatching the execution of the locking
operation in this manner (i.e., using offsets and jumping to the appropriate
location), there is no need to use conditions at the beginning of each
specialized code sequence to determine whether the specialized code is the
appropriate code. For example, if the lock state type is “unlocked”, then there
is no need to find out in what mode the lock is owned, or testing for
ownership, or to do conflict detection. All that is required is to change the
resource’s lock state for the lock state corresponding to a single ownership by

the current transaction.

The number of lock state types may be extended to allow for varying
bitmap sizes, and to dispatch operations to code specialized in handling
bitmaps made of a single word, or two words or an arbitrary number of
words. (The size of a word in this context is the size of one machine register,
either 32 bits or 64 bits on more recent 64-bit processors such as the

UltraSparcT™. The space consumed by each lock state is adjusted to the

10

15

20

25

WO 00/00906 39 PCT/US99/14919

minimal number of words required to represent the owner sets of that lock
state. Fbr instance, if a transaction whose locking context is assigned a bit
number smaller than 63 executes a locking operation on a lock state made of
64-bit bitmaps, the dispatching mechanism would jump to a version of the
code that requires only one 64-bit register (a register is a named region in
memory that is required and used to hold information during the execution

of instructions) per bitmap to execute set operations.

Non-blocking Synchronizations

In one embodiment, lock state sharing enables the usage of non-
blocking synchronizations to change the lock state of a resource. A non-
blocking synchronization requires an implementation using an atomic
compare and swap operation (such as the cas instruction of the Sparc V9
processor, or the cmpxchg instruction of the Intel486 and Pentium family of

processors).

Figure 13 shows how non-blocking synchronizations are used on a case
of lock acquisition, namely, read lock acquisition on an unlocked resource. A
lock operation starts by reading the lock state associated with a resource (line
3). The header of the resource’s lock state is used to dispatch to the execution
code specialized for handling that type of lock state. Assuming the lock state
was of type “unlocked”, the lock manager then jumps to the code starting at
line 7. Since the lock state associated with the resource was found to be the
“unlocked” state, the lock manager uses the SRO lock state of the caller’s
locking context as the new lock state for that resource (the SRO is pre-loaded

on line 6). The cas instruction is then used to test if the resource’s lock state is

10

15

20

25

WO 00/00906 40 PCT/US99/14919

the “unlocked” lock state and to swap it with the locking context’s SRO if it is
the casé. If the compare-and-swap fails (given by a test at line 9), it means that
at least one other transaction has managed to set its own lock while the
transaction was executing instructions at lines 3 to 8. The lock manager must
then retry the lock acquisition with the new lock state (lines 13 and 14 initiate
the retry and jump to line 4 to re-dispatch to specialized code best suited to
handle the type of the new lock state returned by the compare-and-swap
instructions). Otherwise, if the compare-and-swap succeeds, the lock
manager completes the lock acquisition by recording the locked resource in its

lock set.

In the more general case of lock acquisition, such as when the current
lock state is of type MRO or MWO, the lock manager performs ownership
testing on the lock state first. If the test succeeds, nothing needs to be done
because even if a lock state transition is performed by a concurrent

transaction, it will not remove the ownership of the lock for this transaction.

If the ownership test fails, conflict detection may be required,
depending on the type of the locking mode requested and the type of the lock
state (e.g., conflict detection is not required for a read-lock request on a MRO
lock state). If the request can be granted, a new lock state value is built and
used to retrieve the corresponding lock state from the TILS. The resource’s
lock state is then changed using the cas instruction in a similar way to that
described earlier. If the cas instruction fails to swap the two lock states, the
lock manager retries the operation with the more recent lock state returned

by the cas instruction.

10

15

20

25

WO 00/00906 41 PCT/US99/14919

If a conflict is detected, a new lock state of type Q is created and the cas
instrucfion is used again to install it. In one embodiment, to guarantee that
scheduling decisions are taken in an indivisible manner, all operations on a
lock state of type Q are required to take a latch on the lock state to manipulate

the queue of pending request.

Conflict Detection

Before granting a lock to a transaction, a determination is made as to
whether the granting of the lock would conflict with an existing lock. A
conflict may arise when a transaction owns an exclusive type of lock (e.g., a
SWO), for example. Conflict detection may occur by viewing the type of lock

that is held by a resource (which is stored in the lock state).

In one embodiment, upon completion of a transaction T, instead of
releasing T's locks and updating associations between all of the resources
locked by T and their lock states, the transaction T notifies each active
transaction AT that it no longer conflicts with AT. Thus, when an AT has a
conflict with a resource's lock because of a terminated transaction T that
didn't change the lock states representing its locks, AT can ignore the conflict
with T. Referring to Figure 11, for this to work, the lock manager maintains
in a global variable a set ICW 1148 of ignore-conflict-with transactions. When
a transaction T completes, all it has to do is add its bit number in the global

ICW set 1148.

In addition to the above, each locking context maintains its private

copy of the set ICW 1148, and updates this copy only if a conflict with a lock

10

15

20

25

WO 00/00906 42 PCT/US99/14919

can't be resolved. This changes conflict detection so that an absence of

contflict for a transaction T for a lock 1 in a mode M is given now by:
IOwner(LM) c T U ICW(T)
If after the update, the conflict still can't be resolved, it means that the conflict

is not due to a terminated transaction and that the lock request must wait

until the conflict is clear (as described earlier, and in Figure 7).

Memory Management

Lock states are data structures and therefore occupy memory. The
memory area used for lock states is divided into three spaces: a static space, a
from-space and a to-space. The static space is used to hold lock states that are
always required, such as the lock state representing the lock of “unlocked”
resources, or the single-owner lock states of each locking context. The static
space is occupied at the startup of the lock manager. The from-space and to-
space are used for memory allocation and garbage collection. Any garbage
collection routine may be used. Garbage collection routines accumulate

unused objects or memory and free up the space.

The lock manager provides each locking context with a private area of
memory for allocating lock states. Lock states are allocated linearly with a
private memory area. When an area becomes full, a new area is allocated
from the current from-space. Synchronizations are required only around

allocation of an area to a locking context.

10

15

20

25

WO 00/00906 43 PCT/US99/14919

Garbage collections use the locking contexts of active transactions as
roots. When garbage collection completes, the TILS is scanned to remove any
references to lock states left in the from-space. The triggering of garbage

collections is correlated to the recycling of bit numbers (discussed below).

Recycling of Bit Numbers

To avoid exhaustion of bit numbers (which are used to identify locking
contexts), one embodiment of the invention provides for the recycling of
inactive bit numbers (inactive bits are discussed below). By recycling inactive
bit numbers, the size of the bitmap (and the number of lock states) may be
maintained as small as possible. Further, operations may be performed more
quickly using a small bitmap compared to operations performed on a large

bitmap.

A locking context is active if it is allocated to an active transaction. A
lock state may potentially be used as long as all the bit numbers that appear in
its owner sets are used by active locking contexts. A bit number is active if it
used to identify an active locking context, and inactive if it does not identify

an active locking context.

In one embodiment, the recycling of bit numbers is performed during
garbage collection. During garbage collection, the garbage collector checks if
any owner sets of the lock state (to be copied to another location) contains
inactive bit numbers (e.g., bits that mapped to locking contexts of terminated
transactions (as described above) that did not delete their bits from the lock

states representing the locks these transactions owned upon their

10

15

20

25

WO 00/00906 44 PCT/US99/14919

completion). If no inactive bit numbers are found, garbage collection

proceeds as usual.

If inactive bit numbers are found, a new lock state value is built in a
temporary area. This lock state value is obtained by removing all inactive bit
numbers (i.e., setting the corresponding bits the owner set bitmaps to 0).
Then, the TILS is searched for an existing lock state with that value. If the
lookup fails, a new lock state with that value is created in the to-space and
acts as the copy of the original lock state. Otherwise, the lock state retrieved
from the TILS is promoted to the to-space (if it wasn’t already). In both cases,
the pointer to original lock state is set to refer to the copy of the equivalent
lock state, cleaned from inactive bit numbers. Once garbage collection has
completed, inactive bit numbers are removed from any active locking
contexts where they appear, and recycled for allocation to incoming

transactions.

In one embodiment, garbage collection is triggered when the number

of active bit numbers has decreased significantly.

TILS Lookup Elimination

As described above, to access a lock state in the TILS, a lock state value
that will be used as a key to retrieve the corresponding immutable lock state
must be constructed (through a hash function). The performance of lookups
depends highly on the quality of the lock state hashing functions. A poor
hash function increases the size of the collision chain (a collision chain

contains elements with hashcodes of equal value, i.e., when the hash

10

15

20

25

WO 00/00906 45 PCT/US99/14919

function takes two different inputs and produces the same output which is
supposed to be unique). Long collision chains degrade the performance of
TILS lookup because a collision chain may be entirely scanned to determine

whether a lock state is in the TILS.

In one embodiment, caching is used. Caching provides for the storage
of information in a special location that may be used for quick access by future
operations. Caching may store the most frequently used information or the
information that was used last. By utilizing caching for lock states, the lock
manager is provided with rapid access to frequently used or previously used
lock states. If it can be determined that a specific lock state is used or likely to

be used, by storing the lock state in cache, a TILS look up may be avoided.

To utilize caching, each locking context is augmented with a lock state
transition cache. The lock state transition cache has one entry per type of lock
state (e.g., U, SRO, SWO, MRO, MWO, and Q) and per locking operation (e.g.,
lock acquire or release). Each entry is comprised of the last lock state of each
type that was used during a locking operation. Additionally, each entry stores
the new lock state resulting from the execution of the locking operation. The
last lock state is used for a comparison with the current lock state of a
resource (to quickly locate the lock state). The new lock state is used to avoid

building a new state and looking up in the TILS.

Cache entries corresponding to SRO and SWO lock states are
immutable and used only for acquiring the lock of an unlocked resource
(since both SRO and SWO are single owner lock states). Each of these cache
entries is comprised of the unlocked lock state and the single-owner lock state

corresponding to the transaction this cache belongs to.

10

15

20

25

WO 00/00906 46 PCT/US99/14919

The cache of a transaction T for a non-single-owner lock state (e.g.,
MRO) is solicited if and only if the working set of T overlaps with those of
another transaction. In such a situation, it is likely that successive locking
operations performed by T will perform the same lock state transition as
another transaction. This likelihood results because the overlapping of the
transaction’s working sets correspond to shared paths in an object graph. If
two transactions follow the same path but not at the same time, then the
second will meet the same lock state, installed by the previous transaction, for
all of the objects on that path. Figure 5 illustrates overlapping of similar
transaction paths for the three transactions T1, T and T3. On the portion of
the path that overlaps, each transaction will have a hit on their lock state
transition cache if they follow the overlapping portion of the path in
sequential order. The same heuristic applies when releasing the locks of a

transaction.

In another embodiment, use of the TILS is avoided when performing
lock operations. Assuming the caching mechanism just described, a new lock
state is allocated whenever there is a cache miss (i.e., the lock state is not in
the cache). The TILS is used at garbage collection time only, to eliminate

redundant lock states.

Thus, a method and apparatus for locking for transaction processing
systems is described in conjunction with one or more specific embodiments.

The invention is defined by the claims and their full scope of equivalents.

WO 00/00906 47 PCT/US99/14919

CLAIMS

1. A method configured to manage access to a resource comprising:
obtaining a first set of zero or more transactions that access said

5 resource; and

obtaining an association between said first set and said resource.

2. The method of claim 1 further comprising
denying a transaction access to said resource if said transaction conflicts
10 with one or more of said transactions in said first set of transactions

associated with said resource.

3. The method of claim 1 wherein said step of obtaining a first set
of zero or more transactions comprises:
15 a first transaction requesting access to said resource;
obtaining a second set of zero or more transactions associated with said
resource; and
obtaining a first set of transactions, said first set comprising the
addition of said first transaction to said second set of transactions.

20

4, The method of claim 1 wherein said first set is stored in a table

of sets.

10

15

20

25

WO 00/60906 48 PCT/US99/14919

5. The method of claim 1 wherein said step of obtaining a first set
comprises:

obtaining a second set of transactions, wherein one or more of said
transactions in said second set is releasing said resource; and

obtaining a first set of zero or more transactions, said first set
comprising the subtraction of said transaction that is releasing said resource

from said second set of transactions.

6. The method of claim 5 wherein said second set is stored in a

table of sets.

7. The method of claim 1 wherein said resource is within a set of

resources for a first transaction.

8. The method of claim 7 wherein said set of resources is

implemented in a stack.

9. The method of claim 1 wherein said step of obtaining a first set
of zero or more transactions comprises:

obtaining a second set of zero or more transactions;

performing an operation using said second set;

obtaining a first set of zero or more transactions based on said second
set and said operation; and

storing a reference to said first set, a reference to said second set, and

said operation in cache.

5

10

15

20

25

WO 00/00906 49 PCT/US99/14919

10. A system comprising
a processor;
a memory coupled to said processor;
code executed by said processor configured to manage access to a
resource;
said code comprising:
a method obtaining a first set of zero or more transactions that
access said resource; and
a method obtaining an association between said first set and said

resource.

11. The system of claim 10 wherein said code further comprises:
a method denying a transaction access to said resource if said
transaction conflicts with one or more of said transactions in said first set of

transactions associated with said resource.

12, The system of claim 10 wherein said code for a method
obtaining a first set of zero or more transactions comprises:

a method for a first transaction to request access to said resource;

a method obtaining a second set of zero or more transactions associated
with said resource; and

a method obtaining a first set of transactions, said first set comprising

the addition of said first transaction to said second set of transactions.

13. The system of claim 10 wherein said first set is stored in a table

of sets.

10

15

20

25

WO 00/00906 50 PCT/US99/14919

14. The system of claim 10 wherein said code for a method
obtaining a first set comprises:

a method obtaining a second set of transactions, wherein one or more
of said transactions in said second set is releasing said resource; and

a method obtaining a first set of zero or more transactions, said first set
comprising the subtraction of said transaction that is releasing said resource

from said second set of transactions.

15. The system of claim 14 wherein said second set is stored in a

table of sets.

16. The system of claim 10 wherein said resource is within a set of

resources for a first transaction.

17. The system of claim 16 wherein said set of resources is

implemented in a stack.

18. The system of claim 10 wherein said code for said method
obtaining a first set of zero or more transactions comprises:

a method obtaining a second set of zero or more transactions;

performing an operation using said second set;

obtaining a first set of zero or more transactions based on said second
set and said operation; and

storing a reference to said first set, a reference to said second set, and

said operation in cache.

10

15

20

25

WO 00/00906 51 PCT/US99/14919

19. A computer program product comprising

a‘ computer usable medium having computer readable program code
embodied therein configured to manage access to a resource, said computer
program product comprising:

computer readable code configured to cause a computer to obtain a first
set of zero or more transactions that access said resource; and

computer readable code configured to cause a computer to obtain an

association between said first set and said resource.

20. The computer program product of claim 19 further comprising

computer readable code configured to cause a computer to deny a
transaction access to said resource if said transaction conflicts with one or
more of said transactions in said first set of transactions associated with said

resource.

21. The computer program product of claim 19 wherein said
computer readable code configured to cause a computer to obtain a first set of
zero or more transactions comprises:

computer readable code configured to cause a computer to request
access to said resource by a first transaction;

computer readable code configured to cause a computer to obtain a
second set of zero or more transactions associated with said resource; and

computer readable code configured to cause a computer to obtain a first
set of transactions, said first set comprising the addition of said first

transaction to said second set of transactions.

22. The computer program product of claim 19 wherein said first set

is stored in a table of sets.

10

15

20

WO 00/00906 52 PCT/US99/14919

23. The computer program product of claim 19 wherein said
computer readable code configured to cause a computer to obtain a first set
comprises:

computer readable code configured to cause a computer to obtain a
second set of transactions, wherein one or more of said transactions in said
second set is releasing said resource; and

computer readable code configured to cause a computer to obtain a first
set of zero or more transactions, said first set comprising the subtraction of
said transaction that is releasing said resource from said second set of

transactions.

24. The computer program product of claim 23 wherein said second

set is stored in a table of sets.

25. The computer program product of claim 19 wherein said

resource is within a set of resources for a first transaction.

26. The computer program product of claim 25 wherein said set of

resources is implemented in a stack.

10

WO 00/00906 53 PCT/US99/14919

27. The computer program product of claim 19 wherein said
computer readable code configured to cause a computer to obtain a first set of
zero more transactions comprises:

computer readable code configured to cause a computer to obtain a
second set of zero or more transactions;

computer readable code configured to cause a computer to perform an
operation using said second set;

computer readable code configured to cause a computer to obtain a first
set of zero or more transactions based on said second set and said operation;
and

computer readable code configured to cause a computer to store a
reference to said first set, a reference to said second set, and said operation in

cache.

PCT/US99/14919

WO 00/00906

1/13

H3AH3S ezl

AHOMLIN
VOO0

174}
dSli

13INY3INI

9l
H3Ad3sS

I Ol

001
N
49VHO1S
43! SSYIN —mm:o_z — ayvogA3I 7
\ 'y \]
1 LLE oLl -
INI 4
WWOO
A ¥ v
0ct
AHOWIN AHOW3W
Gl NIVIN O3aIA HOSS300Hd
v:\ m:\
14O dNY o] .

LI}

611

SUBSTITUTE SHEET (RULE 26)

WO 00/00906 PCT/US99/14919

2/13

FIG. 2

(V]
-~
(9]

SUBSTITUTE SHEET (RULE 26)

PCT/US99/14919

WO 00/00906

3/13

01€

80¢

€ 0l

{el 11}

¢0g

00¢

(pesy ‘20 ‘z1) %00| si0jeg

{ri} e

90€

¢0€

v0E \

00€

(peay ‘20 ‘21) %o0| alojeg

SUBSTITUTE SHEET (RULE 26)

PCT/US99/14919

WO 00/00906

4/13

(Qv3d ‘20 ‘2L) MO0 4LV

¥ 'Ol

S3IVLIS MO0
AgVLNNINI
40 37avl

(Qv3ad ‘20 ‘21) X001 340439

SUBSTITUTE SHEET (RULE 26)

PCT/US99/14919

WO 00/00906

5/13

ol " PL——\

/ / (20 e M ‘(AO ‘210" '(xO ‘1Y

(S0 ‘21" (60 ‘LM ‘(90 ‘€)Y ‘(SO ‘€M (O ‘€LY €0'ed ‘(co'eLy

(10 ‘e ‘(O ‘21)d (€0 ‘214 (20 ‘204 (20104 (101 LY

\ Xiai4 Aiojs.
n jedd AIOJSIH

G Old

ydeis 1alqo

e al 1

SUBSTITUTE SHEET (RULE 26)

WO 00/00906 PCT/US99/14919

TIME T1 TIME T2
OBJECTS STATE OF THEIR LOCKS OBJECTS STATE OF THEIR LOCKS
o1 > R{T1,T2) o1 > R{T1,72,T3)
2 — 02 —
03 > R{T2) 03 > R{T2,T3)
o4 — 04 —
05 05 > RT3
06 l 6 ——

\

07 - 07 -~
N1 OBJECTS ———» |) N1 OBJECTS ——» { |
OX A~ OX ~ .
neosects— /" T N2 OBJECTS — /" T
oY | oy
N3 OBJECTS N3 OBJECTS
0z 0z

TIME T3 TIME T4
OBJECTS STATE OF THEIR LOCKS OBJECTS STATE OF THEIR LOCKS
O > Ri{T1,72,73) Of ; R{T1, T2, T3}
02 —/}4 02 /
03 03
04 > R(T2, T3 04 > R{T2,T3)
05 A 05 <
06 > R:{T3) 06 > R(T3
07 ~ 07 >)
N1 OBJECTS ——p () N1 OBJECTS ——mp RI{TT}
oX ~ OX o
N2 OBJECTS———/T N2 OBJECTS —— Ri(T2)
oy oY /
N3 OBJECTS N3 OBJECTS ———» RT3}
0z 0z > W:{T3)

SUBSTITUTE SHEET (RULE 26)

WO 00/00906

7113

DETERMINE
IF REQUESTOR ALREADY
OWNS LOCK IN REQUESTED
MODE?

NO

704 702

ANY PENDING
LOCK REQUESTS
OR CONFLICTS?

LOCK STATE
HAS A
QUEUE?

-YE YES

704A

NO
v

NEW LOCK STATE WITH QUEUE
CREATED AND PUT IN THE TILS 704B

\ 4

UPDATE ASSOCIATION BETWEEN NO
RESOURCE AND LOCK STATE 204G

v 4

—™|PLACE LOCK REQUEST IN QUEUE

Y 706 708

L[

VALUE OF NEW
LOCK STATE COMPUTED

REQUESTED
LOCK
AVAILABLE?

LNO

710

NO-»

YES

UPDATE ASSOCIATION
BETWEEN RESOURCE |

v Ve

700

PCT/US99/14919

712
-

CREATE LOCK
STATE AND
REGISTER
IN THE TILS

AND LOCK STATE

FIG. 7 ;

ADD RESOURCE TO
LOCK STATE OF

REQUESTOR

SUBSTITUTE SHEET (RULE 26)

WO 00/00906

8/13

800

COMPUTE VALUE OF
NEW LOCK STATE
(REMOVE REQUESTOR
FROM ANY OWNER SET)

802~

RETRIEVE LOCK STATE
FROMTILS USING
NEW LOCK STATE

804~

806

UPDATE RESOURCE’S
ASSOCIATION TO
NEW LOCK STATE

PROCESS WAITING
TRANSACTIONS

FIG. 8

SUBSTITUTE SHEET (RULE 26)

PCT/US99/14919

WO 00/00906 PCT/US99/14919

913

500 TRANSACTION

ENDS

902
N

SCANTILS TO FIND ALL
LOCK STATES IN WHICH
TRANSACTION APPEARS

904
N

REMOVE TRANSACTION
FROM ALL OWNER SETS

910
/

NEW ADD TO
VALUE Cl)hf_lflggg(STATE YES—{ DUPLICATE TABLE

RE-ENTER
LOCK STATE TO TILS

GARBAGE COLLECTION:
UPDATE ASSOCIATION AND
ELIMINATE DUPLICATES

o DONE FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 00/00906 PCT/US99/14919
10/13
BEFORE RELEASE OF T1'S LOCKS AFTER RELEASE OF T1'S LOCKS
i DUPLICATES " DUPLICATES
~ 1 IR O\)
TIES
— —
COoO— T TR o—
O 0 |w -
O\ o o~
TN L I L
G - {} W o () W
O\ 4 Q\ 4
Y (T2 R T2 R
g/ 0w o W
FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/US99/14919

WO 00/00906

1113

L Ol

OMS— Ccti

oHs- 0¢li

3LV1S 007 bzl 3VIS 00T
HINMO FTONIS ~__a3HO0INN
m T T m [T T .
4 [T d [T $30HN0S3H
1/ aIHOOTNN
> OMS . n
zel P\ ﬁ - JIVIS 5001 TAA—] _
veLl HINMO JIONIS :
m [T —
o [0
o . Ot m
P J T
143 S 0ctl A1VLS %001
: ' 13S ¥001
YTV N N PV —— v)
SIS Y00 mi 9t g
VIOWN ——— |, rer
40 Tavl ¢ (T T sew
—> OHW K.WUA!
7 « S30HNOSIY
RINT oot ¥OOT QvaH 139 o
MOI V801D HO4 3009 —
\ lllllllllllll
8P Tweoms| |]
HW . .
b Psiaf

-
A)

-13S MO0 8L
MOl

at
4

' 1X3JINOD

ONIMOOT

4

wZ_V_QS ,

oL

00H

)

318Vl
1X31NOD
ONIMOON

clit

SUBSTITUTE SHEET (RULE 26)

WO 00/00906 PCT/US99/14919

INCREMENT TOP
OF cURReNT | 1200
STACK SEGMENT
1204
/// 1206
1202 /
ALLOCATE LINK PREVIOUS STACK

END OF SEGMENT
REACHED?

YES—{ NEW STACK SEGMENT AND INCREMENT
SEGMENT TOP OF NEW SEGMENT

Y

RESOURCE ON
TOP OF
CURRENT
SEGMENT

1210

DONE

FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 00/00906 PCT/US99/14919

1
2
3

4
5
6

13/13

| %10 : resource on which a read lock is requested

I %11 : Execution environment (EE) of the current thread. Contains locking context
| %10 : location of the lock state pointer in the resource

| %11 : presumed current lock state of the resource

add %10, OFFSET_TO (BOTHandle, fock), %10 !' load location of lock state
set READ_LOCK_FN_BASE_ADDRESS, %13 I' load base for dispatch
1d [%10], %11 ! load the lock, is never null
redispatch:
1d [%11 + OFFSET_ID (LockState, readop_type)], %03 I load offset from lock state’s type
jmp %13 + %03 ! dispatch
1d [%i1 + OFFSET_ID (EE, sro_lock_state)], %12 I' load this transaction's SRO lock state.
|

unlocked_state:

7

10
11
12
13
14

1d [%i1 + OFFSET_TO (EE, unlocked_lock_state)], %02 I load the unlocked state for comparison
I According to dispatching, we are here because the lock state that was read is the unloced state.

I A non-blocking synchronization scheme is used to set the SRO lock state of the current locking context.
I The atomic test and set instruction cas should set %12 to %02 for the operation to succeed.

I It something different from %02 to stored in %12, it means another transaction has set its

I own lock in the meantime, so we must retry the operation and re-dispatch

| to the case that corresponds to the new lock state (stored in %12).

case [%10], %02, %12

amp %02, %12

be lockset_update I Branch if lock is acquired

1d {%i1, OFFSET_IO (ee, LOCKSET_TOP)}, %12

I Otherwise, move new lock state value in register %!1 for re-dispatch.

be redispatch

or %2, %g0, %1

lockset_update:

FIG. 13

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

