wo 2014/185916 A1 ||| W00 T OO0 A A A

(43) International Publication Date
20 November 2014 (20.11.2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2014/185916 A1l

(51

eay)

(22)

(25)
(26)
1

(72

International Patent Classification:
GO6F 17/30 (2006.01) GO6F 12/14 (2006.01)

International Application Number:
PCT/US2013/041369
International Filing Date:
16 May 2013 (16.05.2013)
Filing Language: English
Publication Language: English

Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY, L.P. [US/US]; 11445 Compaq Center Drive
W., Houston, Texas 77070 (US).

Inventors: CHANDRASEKHARAN, Kaushik; Long-
down Avenue, Stoke Gifford, Bristol, Bristol BS34 8QZ
(GB). CAMBLE, Peter Thomas; Longdown Avenue,
Stoke Gitford, Bristol, Bristol BS34 8QZ (GB). TODD,
Andrew; Longdown Avenue, Stoke Gifford, Bristol, Bris-

(74

(8D

tol BS34 8QZ (GB). PELLY, Simon; Longdown Avenue,
Stoke Gifford, Bristol, Bristol BS34 8QZ (GB). BHAG-
WAT, Deepavali Mahendra; 4209 Technology Drive,
Fremont, California 94538 (US).

Agents: ORTEGA, Arthur et al.; Hewlett-Packard Com-
pany, Intellectual Property Administration, Mail Stop 35
3404 E. Harmony Road, Fort Collins, Colorado 80528

(US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

[Continued on next page]

(54) Title: SELECTING A STORE FOR DEDUPLICATED DATA

(57) Abstract: A technique includes communicating signatures of samples of

800

= B

COMMUNICATE SIGNATURES OF SAMPLES | 802 the stores.

OF DATA ASSOCIATED WITH AN OBJECT
TO AT LEAST SOME STORES ON WHICH
THE OBJECT IS DISTRIBUTED

IN RESPONSE TO THE COMMUNICATION, 804

RECEIVE RESPONSES INDICATING NUMBERS
OF THE SAMPLES STORED ON THE
RESPECTIVE STORES

806

%

REGULATE ON WHICH STORE DEDUPLICATED
DATA ASSQCIATED WITH THE DATA ARE
STORED BASED AT LEAST IN PART ON THE
NUMBERS AND A PATTERN OF DATA STORAGE

END

FIG. 8A

first data associated with an object to at least some stores of a plurality of
stores on which the object is distributed, and in response to the communica-
tion, receiving responses indicating numbers of the samples stored on the re-
spective at least some of the plurality of stores and regulating on which store
of the plurality of stores deduplicated data associated with the first data is
stored based at least in part on the numbers and a pattern of data storage on

WO 2014/185916 A1 |IIWAT 00N A0 VA RAF A OO

84)

TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to the identity of the inventor (Rule 4.17(i))

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Published:
— with international search report (Art. 21(3))

WO 2014/185916 PCT/US2013/041369

SELECTING A STORE FOR DEDUPLICATED DATA

BACKGROUND
[0001] A typical computer network may have a backup and recovery system
for purposes of restoring data (data contained in one or multiple files, for
example) on the network to a prior state should the data become corrupted,
be overwritten, subject to a viral attack, etc. The backup and recovery system
typically includes mass storage devices, such as magnetic tape drives and/or
hard drives; and the system may include physical and/or virtual removable
storage devices.

[0002] For example, the backup and recovery system may store backup data
on magnetic tapes, and after a transfer of backup data to a given magnetic
tape, the tape may be removed from its tape drive and stored in a secure
location, such as in a fireproof safe. The backup and recovery system may
alternatively be a virtual tape library-based system that emulates and replaces
the physical magnetic tape drive system. In this manner, with a virtual tape
library-based system, virtual cartridges, instead of magnetic tapes, store the
backup data.

WO 2014/185916 PCT/US2013/041369

2

BRIEF DESCRIPTION OF THE DRAWINGS
[0001] Fig. 1 is a schematic diagram of a computer network according to

an example implementation.

[0002] Fig. 2 is an illustration of a data storage system according to an
example implementation.

[0003] Figs. 3 and 4 are illustrations of a bidding process used by the data
storage system of Fig. 2 to select a team member to receive deduplicated

data according to an example implementation.

[0004] Fig. 5 is an illustration of the storage distribution of a teamed object

across multiple team members according to an example implementation.

[0005] Fig. 6 is a flow diagram depicting a technique to store a teamed
object on a cluster of team members according to an example
implementation.

[0006] Figs. 7, 8A and 8B are flow diagrams depicting techniques to select
team members for storage of deduplicated data according to example
implementations.

[0007] Fig. 9 is a flow diagram depicting a technique to retrieve and report
partial teamed object data according to an example implementation.

[0008] Fig. 10 is a table to illustrate the retrieval of teamed object data

from team members according to an example implementation.

[0009] Fig. 11 is a flow diagram depicting a technique to distribute a
master object manifest among team members according to an example

implementation.

[0010] Fig. 12 is an illustration of the distribution of a master object
manifest according to an example implementation.

WO 2014/185916 PCT/US2013/041369

3

[0011] Fig. 13 is an illustration of team member-controlled replication of
duplicated data according to an example implementation.

[0012] Fig. 14 is an illustration of a non-hydrated replication process

according to an example implementation.

WO 2014/185916 PCT/US2013/041369

4

DETAILED DESCRIPTION
[0013] Referring to Fig. 1, an example computer network 100 may include a
backup and recovery system, which includes backup applications 132 and
affiliated client applications 134 that execute on respective servers 110
(servers 110-1, 110-2. . .110Q), being depicted in Fig. 1 as examples). In this
manner, from time to time, the backup application 132 identifies data to the
affiliated client application 134 to be backed up on backup storage devices of
the network 100. This data, in turn, is partitioned according to data containers
called "objects" herein. From one backup session to the next, given objects
that are stored on backup stores are created, deleted and modified. As
disclosed herein, among its many functions discussed herein, the client
application 134 is constructed to identify changes in the object data; select the
stores on which the updated data are stored; and communicate the updated
data to the selected stores.

[0014] The "stores" may be, as examples, independent computer systems or
independent storage subsystems on the same computer system. For the
specific example of Fig. 1, the stores are formed on respective nodes 150 (P
nodes 150-1, 150-2. . .150P, being depicted in Fig. 1 as examples), which are
coupled to the servers 110 via a network connection 140 (a local area network
(LAN) connection, an Internet-based connection, a wide area network (WAN)
connection, a combination of such connections, and so forth, depending on
the particular implementation).

[0015] As disclosed herein, a given object is stored as a "teamed object” on a
cluster, or group, of the stores. Due to the teamed nature, the "stores" are
also referred to as "team members 170" herein. In this manner, in
accordance with an example implementation, each team member 170 for a
given "teamed object" stores "deduplicated data" for the object, where the
deduplicated data are data formed from an initial set of data, along with data
that represents the changes in the initially stored data. As such, deduplicated
data may be retrieved from the team members 170 for a given teamed object
to "rehydrate," or reconstruct, the object.

WO 2014/185916 PCT/US2013/041369

5

[0016] In general, the server 110 is a physical machine that is made of actual
hardware 120 and actual machine executable instructions, or "software" 130.
In this regard, a given server 110 may include such hardware 120, as one or
multiple central processing units (CPUs) 122, a memory 124, a network
interface 126, and so forth. In general, the memory 124 is a non-transitory
memory, such as magnetic storage, optical storage, storage formed from
semiconductor devices, and so forth. The memory 124 may store data locally
for the server 110, as well as store instructions that when executed by the
CPU(s) 122 cause the CPU(s) to provide one or more components of the

machine executable instructions 130.

[0017] As illustrated in Fig. 1, the machine executable instructions 130 include
the backup application 132 and the client application 134, as well as other
possibly other applications that create, modify and delete objects.

[0018] A given team member 170 may be formed on a processing node 150
that is also an actual physical machine that is made of actual hardware 158
and actual machine executable instructions 159. The hardware 158 may
include, as examples, one or multiple central processing units (CPUs) 160, a
network interface and a memory 162. The memory 162 is a non-transitory
memory and may be a magnetic storage-based memory, an optical storage-
based memory, a semiconductor storage-based memory, and so forth,
depending on the particular implementation. The node 150 may include
machine executable instructions 159 that include, for example, a team
member client application 168.

[0019] Thus, a cluster, or group, of team members 170 existing on potentially
multiple nodes 150 may form the storage for a given teamed object, in
accordance with an example implementation. Moreover, although described
herein as existing on separate nodes 150, in accordance with further
implementations, a given teamed object may be stored on independent team

members, in which two or more the team members are located on the same

WO 2014/185916 PCT/US2013/041369

6

node 150. Thus, many implementations are contemplated, which are within
the scope of the appended claims.

[0020] Referring to Fig. 2 in conjunction with Fig. 1, in accordance with an
example implementation, a teamed object 208 may be presented as a single
logical object to a given client application 134, although data for the object
208 are distributed over a group, or cluster, of team members 170. This
logical presentation of the teamed object provides applications a single pool of
storage, which spans the otherwise independent pools of storage within the

cluster.

[0021] The client application 134, in accordance with some implementations,
does not store locally any information regarding the contents of a given
teamed object. This allows multiple client applications 134 and therefore,
multiple backup applications 132, to access the same teamed object
simultaneously and also avoid creating dependencies between specific client
applications 134 and the data stored.

[0022] As disclosed further herein, to simplify integration with existing backup
applications, each team member 170 may be aware of the other team
members 170 for a given teamed object and may instruct the client application
134 of their locations. This allows the backup application 132 to connect to
any one of the team members 170 and further allows the client application
134 to silently open up connections with all of the team members 170. This
may help avoid exposing complex configurations and allow management of
teamed objects within the backup applications 132, which may be designed,
for example, with single end point topologies.

[0023] Because a given teamed object involves multiple independently
operating team members 170, in accordance with some implementations, the
client application 134 consolidates information from the multiple team
members 170 into meaningful information that is communicated to the
affiliated backup application 132. In this manner, in accordance with some

implementations, a given team member 170 may store individual lists, data

WO 2014/185916 PCT/US2013/041369

7

job records, copy job records, and so forth, which a given client application
134 may consolidate into meaningful information for the backup application
132. For many of the fields that are returned in the list, the client application
134 provides a summation of all the returned values from across the team
member stores, for example, the amount of user data stored. For other fields,
the client application 134 may "wrap up" the individual statuses into an overall
status, such as the most severe state(s), for example.

[0024] When the client application 134 performs a list operation across each
of the team members 170, the absolute order of the entries in the list is not
guaranteed. For example, two teamed objects may be created virtually
simultaneously, and for a given team member 170, object one may be stored
first, whereas on another given other team member 170 object two may have
been created first. For purposes of providing a single, stable list to the
backup application 132, universal identifications are used and list operations
are used to search across the storage within a reasonable time window
looking for associated records. By having a time-based window over which
the search is run, a situation may be avoided in which the entire database is
searched on each time member 170 looking for entries, which may under
certain circumstances not even exist. As an example, the time window may
be a time window in the range of approximately five minutes, but this window

may vary, depending on the particular configuration and/or implementation.

[0025] As depicted in Fig. 2, although a given distributed teamed object 208
may be distributed among multiple team members 170, a given client
application 134 has the logical view of a single corresponding object, which
allows each team member 170 to potentially be executing a different release
of the application software. This allows users to perform rolling updates to
their software without having to be concerned about maintaining consistent
software versions across all of the team members 170. In cases in which the
capabilities of the software differ among the team members 170, the client
application 134 assumes the least capability from across the team members
170.

WO 2014/185916 PCT/US2013/041369

8

[0026] In accordance with example implementations, for purposes of
achieving acceptable deduplication performance across multiple independent
team members 170, a bidding technique is used, with a goal of sending
similar data to the same team member 170 and load balancing new,
unmatched data across the remaining team members 170. In this bidding
technique, for a given unit of data (a data segment, for example) the client
application 134 requests bids from the team members 170, receives
corresponding bid responses from the team members 170, selects one of the
team members 170 based on the responses and communicates deduplicated
data for the unit of data to the selected team member 170. Moreover, as
further described above, the client application 134 may regulate when bidding
is and is not used.

[0027] As a more specific example, referring to Fig. 3 in conjunction with Fig.
1, in accordance with some implementations, the client application 134
processes incoming data 310 to be backed up for purposes of loading
balancing the storage of the data according to the illustration 300 of Fig. 3.
The client application 134 receives the incoming data 310 in a buffer 312. In
this manner, the buffer 312 stores a given data segment 314 or multiple data
segments 314, depending on the particular implementation. Regardless of
the storage, each data segment 314 is processed in the following manner.

[0028] A chunking (or chunk) module 316 of the client application 134
transforms the data segment 314 into corresponding chunks 318. For
example, in accordance with some implementations, the chunking module
316 may apply a two thresholds to divisors (TTTD) variable chunking
algorithm, which produces an average chunk of approximately four kilobytes
(kB). Other chunking algorithms may be used, in accordance with other
implementations. In general, the chunking algorithm may enhance the
likelihood of isolating identical chunks within successive backups, where the
absolute location of the chunk may have moved.

WO 2014/185916 PCT/US2013/041369

9

[0029] Next, the client application 134 uses a hashing (or hash) module 320 to
determine corresponding digital signatures, or hashes 324, for the chunks
318. As an example, in accordance with example implementations, the
hashing module 320 may generate an SHA-1 hash for each chunk 318,
although other hashes may be used, in accordance with further
implementations. In general, a given hash 324 serves as a reasonably certain
“fingerprint” for the associated chunk 318; and, on average, the size of the
hash 324 may be relatively small, as compared to the size of the chunk 318
(approximately 0.5% of the size of the chunk 318, for example). Therefore,
the hash 324 permits a relatively easy, low bandwidth way to identify an
associated chunk 318. In accordance with example implementations, the
hash module 320 determines hashes 324 for the corresponding chunks 318
and sends or makes available this list of hashes 324 to a bidding (or bid)
module 330 of the client application 134.

[0030] The bidding module 330, in accordance with example implementations,
communicates 334 a sparse index of the hashes to each of the team
members 170 for the teamed object. In other words, in accordance with some
implementations, the bidding module 330 communicates a statistically
representative set of samples of the hashes 324 to the team members 170.
Fig. 3 illustrates one such example for team member 170 that receives a
sparse index of hashes.

[0031] It is noted that in accordance with some implementations, the bidding
module 330 may communicate all of the hashes 324 for a given data segment
314 to each team member 170. However, in accordance with an example
implementation, a single, relatively large list of hashes for matching may not
be practical. In this regard, a twenty byte SHA-1 hash for each average size
chunk of 4 kB means 5 gigabytes (GB) of memory for each one terabyte (TB)
of unique data. To the contrary, the sparse hash index 334 contains a
statistically chosen subset of hashes, such that these hashes adequately
represent the chunks 318 while collectively being of a significantly smaller
size (between 1 to 10 percent of the size of all of the hashes, for example).

WO 2014/185916 PCT/US2013/041369

10

When a portion of hashes is communicated to a given team member 170 for
matching, the team member 170 determines the number of corresponding
hashes that match.

[0032] In this manner, in accordance with some implementations, each team
member 170 assesses maiches and responds to the sparse index as follows.
The team member 170 includes a bid matching (or match) module 370 that
compares the sparse index against a list of hashes of the data stored in the
team member 170. A successful sparse index maich may be referred to as a
"hook" because the sparse index is held in random access memory (RAM), for
example, of the team member 170, and as such, the sparse index lookup may
be relatively "cheap," in terms of system resources.

[0033] If the bid matching module 370 identifies one or more hooks in the
sparse index, the module 370 may then, in accordance with example
implementations, perform a more detailed matching, involving reading on-disk
manifests pointed to by the sparse index hooks. Because this latter step
involves disk seeks, which are relatively slow, this may be a relatively
expensive process. To mitigate the use of the disk seeks, in accordance with
example implementations, the on-disk manifests are read in some priority
order based on the expected number of extra matches that will be found, with
some stopping condition applied when there are many hooks, to keep
performance up at the expense of a relatively small reduction in deduplication.

[0034] By providing the client application 134 a method of querying the sparse
hash index, the sparse index hook count may be used to determine the
probability of a given team member 170 matching the chunks 318.

[0035] In addition to the sparse index hook count, other information about the
team member 170, such as the storage capacity and storage utilization (as
two examples) may be communicated back to the client application 134 as
part of the bid response. This information may then be used by the client
application 134 to make a decision about which team member 170 to select

WO 2014/185916 PCT/US2013/041369

11

for purposes of routing all of the remaining hashes and the subsequent
deduplicated data for the segment 314.

[0036] Thus, in accordance with some implementations, the bidding involves
the bidding module 330 of the client application 134 communicating 334 the
sparse index of hashes to the bidding match module 370 of each team
member 170. The bidding match module 370 then communicates a bid
response 374 to a router (or route) module 340 of the client application 134.
As an example, in accordance with example implementations, the router
module 340 may receive 374 one or more matches from the bidding match
module 370. The router module 340 determines, based on the similar
responses from the team members 170, which team member 170 is to receive

the deduplicated chunks 318 of data for the segment 314.

[0037] After the router module 340 has selected the particular team member
170 (assumed for this example to be the team member 170 of Fig. 3), the
router module 340 communicates, or sends 342, all of the remaining hashes
for the chunks 318 of the data segment 314 to a matching (or match) module
380 of the team member 170. The matching module 380 compares all of the
hashes of the chunks 318 to the corresponding hashes of data stored on the
team member 170. The matching module 380 communicates 384 the
matches to a compression (or compress) module 344 of the client application
134. In this manner, the matches inform the compression module 344 as to
the unique chunks 318, i.e., the chunks 318 that are not stored on the team
member 170. In response, the compression module 344 performs
deduplication to communicate, or send 350, the unique chunks (e.g., the
chunks of changed data) to a storage module 390 of the team member 170,
which commits the new chunks to the team member 170.

[0038] The purpose of regular bidding is to route similar data chunks to the
same team member 170. It is noted that each time a decision is made to
change the team member 170, the segments that are routed to the new team
members may have a negative impact on the overall deduplication ratio. This

WO 2014/185916 PCT/US2013/041369

12

is due to the relatively high likelihood that the data segment boundary does
not align with the deduplication segment boundaries, and therefore, some
duplicated data may be stored again. The fragmentation of the data stream
may therefore be something that is controlled in a manner to minimize the
reduction of the deduplication ratio, in a process that is further described
below.

[0039] Fig. 4 depicts an illustration 400 of the communications that occur
when a given team member 170 is not selected in the bidding process. In this
regard, in response to the communication 334 of the sparse hash index, the
bid matching module 370 of the team member 170 communicates a bid
response 374, which for this example is not a winning bid. Therefore, the
router module 340, for this example, sends, or communicates 410, a skip
message to a skip module 420 of the team member 170, thereby informing
the team member 170 of the bypassing of the member 170 for this particular
data segment 314.

[0040] Referring to Fig. 5, in conjunction with Fig. 1, when the backup
application 132 creates a given teamed object 500, the client application 134
causes corresponding objects 520 (objects 520-1, 520-2, 520-3, 520-4, being
depicted in Fig. 5 as examples) to be stored on corresponding team members
170. Data items 318 of the teamed object 500 are distributed among the
team members 170 to form the corresponding objects 520. For example, in
the teamed object 500, a data item 318-A of the teamed object 500
corresponds to data item 318—A of object 520-1, whereas data item 318-F of
the teamed object 500 corresponds data item 318-F of the object 520-4. As
can be seen from Fig. 5, the data for a given teamed object may be
distributed on a given team member 170 in an order different from the order in
which the data appears in the teamed object, as the local ordering is left up to
the individual team members 170, in accordance with an example
implementation. As depicted in Fig. 5, each object 520 may contain data 550
that is not part of the teamed store. Therefore, the team members 170 may

WO 2014/185916 PCT/US2013/041369

13

track regions, which contain data for a given teamed store and regions for
data that are not part of the given teamed store.

[0041] Thus, referring to Fig. 6, in accordance with an example
implementation, a technique 600 includes communicating (block 602) chunk
hashes (a list of chunk hashes, for example) to multiple team members, or
stores, and receiving (block 604) responses from the storage, indicating a
distribution of associated chunks in the stores. As described above, in
example implementations, the list may be a sparse list of hashes. A store is
selected (block 606) based at least in part on the responses, and
deduplicated data are communicated to the selected store, pursuant to block
608.

[0042] In accordance with some implementations, in order for a team member
170 to be considered for a winning bid, the team member 170 first satisfies
the criteria of matching a certain number key hashes above a certain
threshold. In this manner, such a technique defaults to routing data to a
"sticky" team member, i.e., the routing "sticks" to a "sticky team member" until
the threshold is surpassed, in accordance with example implementations. By
remaining, or sticking, with a team member 170 for several data segments
314 when matches are not above a certain threshold, many time contiguous
segments with predominately new data (called "seeding data" herein) are
routed to the same team member 170. Seeding large contiguous regions to
the same team member 170 may help improve the overall deduplication ratio
in a future backup. This is because for a future backup, the backup stream
contents may vary to a degree and hence the segments may be aligned
differently.

[0043] Therefore, if the segments are seeded to a different team member 170
for each data segment 314, segments 314 in a subsequent backup stream
may have chunks straddling two team members 170. With a relatively long
contiguous sticky region, deduplication may be lost at the ends of the region,
not at each segment boundary within the region (as all data in that region was

WO 2014/185916 PCT/US2013/041369

14

stored on the same team member 170). Thus, a high deduplication ratio may
be expected if all the data were routed in a backup to a single team member
170. However, such a technique may not aid in capacity balancing across the
team members 170. Therefore, the sticky threshold may be selected to be
small enough to be able to "stick to" another team member 170 often enough
to seed across all team member 170, but the sticky threshold is large enough
to keep the future deduplication ratio relatively high.

[0044] Thus, referring to Fig. 7, in general, a technique 700 may be employed,
in accordance with example implementations. Pursuant to the technique 700,
a list of chunk hashes is communicated (block 702) to multiple team members
170, or stores. Reponses are received (block 704) from the stores, where
each response indicates a number of maiches. The technique includes
selecting (block 706) a store based at least in part on a comparison of a
match of the numbers to a threshold, such as the "sticky threshold" mentioned
above. The deduplicated data are then communicated (block 708) to the
selected store.

[0045] The deduplication may be performed between backups from the same
system rather than between systems, so that when a system is first backed
up, a considerable amount of chunk data may be stored from that system.
The first backup is referred to as "seeding" herein and the initial data are
referred to as "seeding data" herein. For purposes of avoiding excessive
region fragmentation during seeding, a "sticky routing" technique may be
used. In general, sticky routing attempts to stripe seeding data across the
team members 170 in relatively large contiguous regions (regions on the
order of tens of gigabytes (GB), for example), but the technique still routes
data segments to other team members 170, if the team members 170 may
deduplicate them well enough.

[0046] For a given data segment bid, if no team member 170 has a hook
match count above a given threshold (called the "bid threshold" herein), then
there is no "bid winner." This threshold may be a fixed threshold or may be a

WO 2014/185916 PCT/US2013/041369

15

threshold that is varied based on feedback obtained during the backup. If
there is no bid winner, then the corresponding data segment contains seeding
data, so that the data segment is routed to the current seeding team member
170.

[0047] In accordance with some implementations, at the beginning of the
backup, the client application 134 may select the initial seeding team member
170 using a random or pseudo random technique. This may avoid a situation
in which a teamed store is created and all of the first night's backups, starting
at the same time, are seeded to the same team member 170. After a fixed
amount of data is written, a new seeding team member 170 may be selected
based on capacity utilization (the team member 170 having the most free disk
space, for example). This technique levels disk usage across the team
members 170, as the application 134 stores the seeding data.

[0048] Referring to Fig. 8A, a technique 800 in accordance with an example
implementation includes communicating (block 802) signatures of samples of
data associated with an object to at least some stores; and in response to the
communication, receiving (block 804) responses indicating numbers of the
samples stored on the respective stores. The technique 800 further includes
regulating (block 806) on which store deduplicated data associated with the
first data are stored based at least in part on the numbers and a pattern of
data storage on the stores.

[0049] As a more specific example, Fig. 8B depicts a technique 850 in
accordance with an example implementation. Pursuant to the technique 850,
a list of chunk hashes is communicated (block 852) to multiple team
members, or stores; and responses are received (block 854) from the stores,
where each response indicates a number of matches. The technique 850
includes determining (decision block 860) whether the bid threshold has been
exceeded. If not, then the data segment is seeding data, and the data
segment is communicated (block 862) to the current seeding team member
170.

WO 2014/185916 PCT/US2013/041369

16

[0050] Otherwise, if a determination is made (decision block 860) that the bid
threshold has been exceeded, the technique 850 includes determining
(decision block 864) whether the current bid winner is the same bid winner as
the immediate previous bid winner. If so and if the bid winner is a team
member other than the currently selected team member (as determined in
decision block 868), then a re-routing occurs and the data segment is routed
to the current bid winner, pursuant to block 870. Otherwise, if in decision
block 864 a determination is made that the current bid is not the same as the
previous bid winner or if a determination is made, pursuant to decision block
868, that re-routing is not to occur, then the data is communicated to the
currently selected team member without re-routing, pursuant to block 866.

[0051] In accordance with further implementations, the client application 134
may selectively suspend the bidding (and the communication of the hashes)
based at least in part on a prediction of future bidding activity. For example,
the client application 134 may predict when a region of "flux" exists in which
time contiguous data segments 314 would end up being routed to different
team members 170 if bids were made for these data segments 314. The
client application 134 may temporarily suspend the bidding process when the
application 134 predicts a region of flux, in accordance with example
implementations.

[0052] For example, in accordance with example implementations, a region of
flux may be predicted based on the number of measurable factors and/or
statistics in a historic window for the current backup session. The factors may
include measurements of such criteria as the number of times the bid winner
has previously changed, the number of matches seen with the bid losers, the
number of matches seen with the bid winner, and the amount of data written
to the current bid winner. Using a calculated probability derived from these
measurements, the client application 134 may elect not to perform a bid
operation for a certain number of time consecutive data segments 314 and
instead continue to route data segments 314 to the current winner without

performing bidding for these segments 314.

WO 2014/185916 PCT/US2013/041369

17

[0053] In accordance with example implementations, all access to a teamed
object is performed in a command or data session basis using a client-side
code library of the application 134. The client library may be given the
address of any team member 170 in the teamed store, connect to it and find
the addresses of all the other team members 170. The client library may
connect to the other team members 170 as well, thereby establishing the
command or data session. All team members may not, however, be available
for a given session. The team members 170 to which connections were
successfully connected in this session may be reported back to the user of the
client application library, so that the user may decide whether the user wants

to continue with the session.

[0054] The client application 134 serves as an aggregator of information that
is stored in/retrieved from the team members 170. By allowing sessions to be
established with a subset of team members 170, the user of the client
application 134 library is presented with a view (via a graphical user interface
(GUI) 136 (see Fig. 1), for example) detailing a subset of the information that
is available across the team members 170.

[0055] For example, when listing a given teamed object, the teamed object
may have been created (and partitioned) across team members A, B and C,
as those team members may have been, for example, the team members that
were available at the time the command session was opened. |If a list of that
teamed object on a command session open to team members B, C and D is
created, then the information available for the object in team members B and
C are aggregated and presented to the client library, with the information for
team member A not being presented.

[0056] When listing the teamed object, the client application 134 reports which
team members 170 the team member was created on and last modified on. If
the set of team members 170 for which the current command session is
opened is not the same as the set on which the object was created and the
set on which it was last modified, the client application 134 highlights to the

WO 2014/185916 PCT/US2013/041369

18

user that an incomplete view of the object is being presented. With this
information, the user may decide how to interpret the listing.

[0057] Thus, referring to Fig. 9, in accordance with an example
implementation, a technique 900 includes attempting (block 902) to open
communication with all team members 170 that collectively store data for a
given distributed teamed object in response to a request to access the object.
If a decision is made (decision block 904) that all team members 170 are not
present in the session for which the object was created and modified, the
technique 900 includes noting (block 906) the absent team member(s). The
available chunks for the teamed object are then retrieved, pursuant to block
908. If a determination is made (decision block 910) that degraded
information is being reported, then the technique 900 includes reporting (block
912) information about the degraded state of the retrieved data, including
identifying how the object is incomplete. With this degraded information, if
any, the results are reported, pursuant to block 914.

[0058] In accordance with example implementations, the client application 134
also uses this information when aggregating the listing of multiple teamed
objects. The challenge relates to how to present a page of listing results to
the user by stitching together pages of results from the team members 170,
effectively being a windowed multi-way merge. To perform this in an efficient
manner, the client application 134 minimizes the number of pages of results
retrieved from each team member for each page of results presented to the

user.

[0059] In particular, the client application 134 uses the following three items of
information it receives from each team member 170, in accordance with
example implementations: 1.) a team-wide unique identification (ID) for each
teamed object (or teamed data job), so that records returned from each team
member 170 relate to the same teamed entity (although the identifier does not
necessarily have any implied time ordering); 2.) a per team member unique

identifier, which is ordered based on the time of creation of the partition of the

WO 2014/185916 PCT/US2013/041369

19

teamed entity created on that team member (a local team member database
row identification, for example); and 3.) a creation timestamp for that partition
of the teamed entity created on that team member. |t is noted that the clocks
on the team members 170 are synchronized, or time-aligned, within a tight
enough tolerance to allow the timestamp to be used. For example, in
accordance with some implementations, Network Time Protocol (NTP)
synchronization of clients may be used.

[0060] The non-ordered team-wide unique identification allows the client
application 134 to identify records, which match across team members 170,
i.e., identify "stitch points." The ordered per team member unique identifier
allows the client application 134 to retrieve the next/previous page of results
from each team member 170 and therefore, implement a forward/reverse
sliding window for each team member 170, which may be used in a multi-
wave merge operation. The creation timestamp allows the client application
134 to decide how far the client application needs to search down each team
member's results to find the stitch points.

[0061] As a more specific example, Fig. 10 depicts pages retrieved from team
member 1 (via pages depicted in column 1010), team member 2 (via pages
depicted in column 1012) and team member 3 (via pages depicted in column
1014). The results from the team members are separated at page boundaries
1030 and 1032. Fig. 10 also depicts a column 1020 of results. For the
following example, the client application 134 retrieves a page of up to two
team member objects that are timed from each team member 170 and returns
a page two teamed objects that are timed to the user in the results column
1020.

[0062] More specifically, in order to return the first page of results (A, B), the
client application 134 reads one page of results from team member 1, which
contains the first two objects (by order of cross-team creation time): A and B;
two pages of results from team member 2; and two pages of results from

team member 3. The teamed objects B and C, for this example, were actually

WO 2014/185916 PCT/US2013/041369

20

created at the same time from two different clients; but due to timing
differences, teamed objects B and C were created in different order on team
member 1 versus team member 2. Because of this, an extra page of results
is read from team member 2 for purposes of determining whether a record for
teamed object B could be found. The client application 134 knew that there
was a record for teamed object B, as the record team member 1 had the
information in it as to which team members the teamed object was created on.
Moreover, the client application 134 knew that the first page of return results
from team member 2 were still around the teamed object was created, so the
client application determined that it was realistic to load an extra page to find
it.

[0063] For the first page of results, the results for team member 3 did not
include a record for teamed object B. In order to return the second page of
results (C, D), the client application reads one further page of results from
team member 1, which contains the next two objects: C and D. Moreover, for
this second page of results, no further pages are read from team member 2, if
two to three pages are cached for each team member 170, as the information
for objects C and D are available in the two pages already cached. From
these cached results, the client application 134 knows that it cannot find a
record for teamed objects C or D for team member 3.

[0064] In order to return the third page of results (E, F), the client application
134 reads one further page of results from team member 1, which contains
the next two objects: E and F. The client application further reads one page
of results from team member 2, which contains the next two objects: E and F.
No further pages of results are retrieved for team member 3, as object E was
in the first page (cached). Moreover, the client application 134 knows that it
would not find a record for team object F from the creation information in the

record for team member 1.

[0065] In order to return the third page of resulis (X, Y), the client application
134 reads the following, no further page resulis are retrieved from team

WO 2014/185916 PCT/US2013/041369

21

member 1 (i.e., the end has been reached); no further pages of resulis are
retrieved for team member 2 (i.e., the end has been reached); and one further
page of results is retrieved from team member 3, which contains the next two
objects: Xand.

[0066] For purposes of returning the fourth page of results (Z), the client
application 134 reads the following. No further page of results from team
member 1 (i.e., the end has been reached); no further pages of results from
team member 2 (i.e., the end is reached); and one further page of results
from team member 3, which contains the next object: Z.

[0067] In accordance with example implementations, a manifest is created
and maintained for each teamed object. In general, the manifest, called an
"object manifest," herein, describes the details of the data for a given teamed
object stored among the team members. In this manner, the manifest allows
the system to track and consolidate the distributed individual data items into
one cohesive teamed object. In accordance with example implementations
that are disclosed herein, the object manifest is distributed among the team
members 170.

[0068] More specifically, referring to Fig. 11, in accordance with an example
implementation, a technique 1100 includes storing (block 1102) deduplicated
data for an object on a plurality of team members 170, or stores, and
distributing (block 1104) a manifest, which describes the storage of the
teamed object among the stores. In this manner, for each store, the
technique 1100 includes storing (block 1106) data for the manifest, which
describes the storage of the chunks on that store.

[0069] Distributing the object manifest among the team members 170, which
is unlike a single master manifest, may help avoid a single point of failure. In
other words, with a single manifest, the manifest may become lost or
corrupted, which may render the teamed object useless, regardless of the
state of the underlying data objects. However, by distributing the object
manifest, each team member's object manifest (part of the overall distributed

WO 2014/185916 PCT/US2013/041369

22

object manifest) is entirely self-describing. In other words, each team

member 170 has knowledge where its chunks of data fit within the larger
teamed object. By storing distributed data in this way, overhead may be
reduced, while robustness, redundancy and flexibility may be increased.

[0070] Referring to Fig. 12, in accordance with an example implementation, a
master manifest 1200 is created by distributing member manifests 1240
(member manifests 1240-1, 1240-2, 1240-3 and 1240-4, being depicted in
Fig. 12 as an example for four respective team members 170), which are
stored on individual team members 170. Each member manifest 1240, in
turn, includes entries, with each describing the chunks for the associated
teamed objects stored on that team member. For example, for team member
1 for the example of Fig. 12, the member manifest 1240-1 contains multiple
entries 1244 (entries 1244-1 and 1244-2, being depicted in Fig. 12, as
examples), which describe the storage of corresponding chunks. Continuing
the example, the team member nodes 2, 3 and 4 store corresponding entries
1246, 1248 and 1250, respectively. Collectively, the entries 1244, 1246, 1248
and 1250 form the entries 1220 of the master manifest 1210.

[0071] Thus, as depicted in Fig. 12, the master manifest 1210 includes various
entries 1220 (entries 1220-1, 1220-2, 1220-3 and 1220-4, being depicted in
Fig. 12 as specific examples), which correspond to the entries that are
distributed across the team members.

[0072] In general, each entry (where "entry" refers to the entries stored on the
team member or collected as part of the member manifest 1240) contains four
fields of information: 1.) afirst field that specifies where the associated chunk
of data resides in the teamed object; 2.) a second field that specifies where
the block of data resides in the member object; 3.) a third field indicating the
size (in bytes, for example) of the chunk; and 4.) a fourth field that contains
data identifying the specific team member on which the associated chunk is
stored.

WO 2014/185916 PCT/US2013/041369

23

[0073] Thus, as depicted in Fig. 12, with the distributed master manifest 1200,
each team member 170 contains a member manifest 1240, which only
describes the chunks, which the member stores locally.

[0074] In contrast to a given entry 1220 of the master manifest 1210, the
corresponding member manifest entry contains less information. For
example, as compared to the master manifest entry 1220, a member manifest
entry does not identify a node as all data stored on the team member has the
same node identifier. Instead, a field is added to the team member's object
store, describing which team members make up the overall team for the
teamed object. This has the added benefit of allowing a team member to be
able to contact any of the other team members to find out which team
members store data for a given teamed object. Additionally, the member
offset in the member manifest entry is not present. In this regard, team
members only use teamed offsets, as it is up to the team member regarding
how to store their data.

[0075] During write operations, each team member 170 records in its member
manifest 1240 the data regions that it possesses and where the
corresponding chunks reside. When reconstructing the team catalyst chunk
for a particular read operation, the corollary to the bidding concept may be
used. Another message may be added to the protocol so that the client
application 134 may retrieve from each team member about the chunks of
data stored for a given teamed object (offset and size, for example).

[0076] Thus, the approach disclosed herein federates out the master manifest
for a given teamed object among the team members along with the user data,
thereby obviating storage of the master manifest at a single location
somewhere else. The federated approach may help use fewer protocol
messages for read operations and, in accordance with example
implementations, no additional messages for writes, as the manifest is tightly
coupled with the data on each team member 170.

WO 2014/185916 PCT/US2013/041369

24

[0077] Moreover, the loss of an object's master manifest may result in the loss
of the entire object, while the loss of an individual member manifest may
result in only a partial loss of the object. Moreover, the approach described
herein avoids adding redundancy, as redundancy may be relatively
complicated. For example, a redundant master manifest would track where
each redundant chunk is stored. Also, if the master manifest was stored in
more than one place, then each manifest would be synchronized with each
other. Considering the case where one of the manifest copies becomes
"damaged,” significant challenges may exist in determining, with certainty,
which of the other copy(ies) is the "good" one. Should a master manifest be
completely lost or damaged, there may be no way to reconstruct it. In
addition, it may be challenging to add or remove team members from an
existing distributed object.

[0078] One way to increase the redundancy of the stored data is to store each
chunk in more than one team member 170. Using the bidding process, the
client application 134 may choose to store the top two bids (as an example)
instead of the top one. This would mean that every region may be stored
more than once and always on more than one server 110, albeit to the
detriment of overall dedupability. Should data be lost on one team member
170, the teamed object may still be reconstructed from the remaining team
member objects. The previous level of redundancy for the object may be
reinstated by reading back the manifests of the remaining team members,
identifying regions, within sufficient redundancy and then writing the amount
to a new team member object. Using this approach, redundancy may be
achieved with relatively little associated system overhead.

[0079] For purposes of migration, an end user may desired to migrate a team
member 170 object to a different node with the ultimate goal being to store the
object on a different set of disks to free up space on the original node 150.
With the distributed member manifest approach, an exact copy of the object
on the team member 170 may be migrated from and stored on the new team
member 170 that is the target of the migration. The next step is to update the

WO 2014/185916 PCT/US2013/041369

25

list of team members 170 participating in the storage of that distributed object
to remove the old team member 170 and add the new team member 170.

[0080] An end user may want to add or remove a particular team member.
These operations may be performed using mechanisms similar to the
migration described above and by running one or more data write jobs from
one or more team members; and furthermore, updating a list of participants

among all of the nodes.

[0081] If the client application 134 stores user data regions in multiple team
member chunks for redundancy, this provides an opportunity for the client
application 134 to select which team member 170 from which the user data
may be read based on each team member 170 returning server loading
information in its response to the "which regions do you own for this extent"

message.

[0082] In accordance with example implementations, the backup application
132 may control the replication of data from one team member 170 to another
team member 170 over a relatively low bandwidth connection. In this manner,
in accordance with example implementations, each team member 170
includes copy job engines 1310 and client applications 1320, as depicted in
Fig. 13. The copy job engine 1310 on each team member 170 is constructed
to access any chunk in the teamed object via its own instance of the client
application 1320. This allows any of the team members 170 to perform copy
operations to another team member 170, without the destination teamed store
having the same number of team members 170 or any of the same team
members as the origin team store, thereby providing replication inoperability
across the product portfolio. Therefore, as depicted in Fig. 13, a given copy
job engine 1310 on a given team member 170 may use a relatively low
bandwidth connection 1350 to replicate a first teamed object 1370 (stored on
team members 170-1, 170-2 and 170-3) to form a corresponding different
team object 1372, which may have, as illustrated in Fig. 13, be stored on a

WO 2014/185916 PCT/US2013/041369

26

different grouping of team members 170 (i.e., two team members 170-4 and
170-5, for this example).

[0083] For purposes of avoiding rehydration the data during the replication
copy, in accordance with some implementations, the client application 134
provides application programming interfaces (APIs) for non-hydrated read and
write data paths. In this manner, a non-hydrated read includes reading
hashes and unique chunk data with the client application internally dealing
with acquiring region information from each team member for purposes of
learning where to read the data from. A non-hydrated write operation includes
matching hashes and storing unique chunks, with the client application 134
internally dealing the bidding and routing.

[0084] Fig. 14 illustrates a non-hydrated copy 1400 involving a source client
application 1410, an associated copy job engine 1420 and a target catalyst
application 1430. For each section of the copy (a ten megabyte (MB)
selection, for example), the copy engine 1420 requests 1440 a manifest of
hashes from the source client application 1400 and sends 1450 these hashes
to a target 1460 to be matched. The target 1460 responds 1470 with a list of
unmatched hashes for which chunk data are requested. The copy engine
1420 then requests 1480 these unique chunks from the source client
application 1435, receivers 1486 the unmatched chunks and then sends 1488
them to the target 1460 to be stored.

[0085] While a limited number of examples have been disclosed herein,
numerous modifications and variations therefrom can be appreciated. It is
intended that the appended claims cover all such modifications and variations.

—_

0 N o 0o~ W N

—_

A~ W N

WO 2014/185916 PCT/US2013/041369

27

What is claimed is:

1. A method comprising:

communicating signatures of samples of first data associated with an object to
at least some stores of a plurality of stores on which the object is distributed;

in response to the communication, receiving responses indicating numbers of
the samples stored on the respective at least some of the plurality of stores; and

regulating on which store of the plurality of stores deduplicated data
associated with the first data is stored based at least in part on the numbers and a
pattern of data storage on the stores.

2. The method of claim 1, wherein the regulating comprises biasing
storage of the deduplicated data to be on one of the stores on which most recently
deduplicated data associated with the object was stored.

3. The method of claim 1, wherein the regulating comprises determining
whether the first data comprises seeding data.

4, The method of claim 3, wherein the regulating further comprises based
at least in part on whether the first data comprises seeding data, determining
whether the one of the numbers exceeds a re-routing threshold.

5. The method of claim 3, wherein the regulating further comprises based
at least in part on whether the first data comprises seeding data, determining
whether one of the numbers indicates a store that is current bid winner and an

immediately previous bid winner.

6. The method of claim 1, wherein the regulating comprises storing the
deduplicated data on a substantially randomly selected store based on whether the
deduplicated data is initially stored backup data for a system.

o~ W N =

O ©OW 0o N o o~ w N =

—_ .
n =

WO 2014/185916 PCT/US2013/041369

28

7. The method of claim 1, further comprising selectively suspending the
communication of the signatures based at least in part on a prediction of future
bidding activity.

8. The method of claim 1, further comprising:

basing the determination on at least one of the following: a number of times
the store having the largest number changes, the numbers provided by stores that
did not have the highest numbers, the highest number, and an amount of data
communicated to the store having the highest number.

9. A system compirising:

a backup application comprising a processor to designate first data
associated with an object to be backed up, the object being stored on a plurality of
stores in a distributed fashion; and

a client application to:

in response to the first data, communicate signatures of samples of the
first data to a plurality of stores on which the object is distributely stored;

receive responses from the plurality of stores indicating numbers of the
samples stored on the respective at least some of the plurality of stores; and

regulate on which store of the plurality of stores deduplicated data
associated with the first data is stored based at least in part on the numbers and a
pattern of data storage on the stores.

10. The system of claim 9, wherein the client application is to bias storage
of the deduplicated data to be on one of the stores on which most recently
deduplicated data associated with the object was stored.

11. The system of claim 9, wherein the client application is to regulate
which store of the plurality of stores the first data is stored based at least in part on
whether the first data comprises seeding data.

O ©OW 0o N o o~ w N =

—_
—_ =

A W0 N

WO 2014/185916 PCT/US2013/041369

29

12. The system of claim 11, wherein the client application is to compare
the numbers to a bid threshold to determine whether the first data comprises seeding
data.

13. An article comprising a computer readable non-transitory storage
medium to stored instructions that when executed by the computer cause the
computer to:

communicate signatures of samples of first data associated with an object to
at least some stores of a plurality of stores on which the object is distributed;

in response to the communication, receive responses indicating numbers of
the samples stored on the respective at least some of the plurality of stores; and

regulate on which store of the plurality of stores deduplicated data associated
with the first data is stored based at least in part on the numbers and a pattern of
data storage on the stores.

14, The article of claim 13, the storage medium storing instructions that
when executed by the computer cause the computer to regulate which store of the
plurality of stores the first data is stored based at least in part on whether the first
data comprises seeding data.

15. The article of claim 14, the storage medium storing instructions that
when executed by the computer cause the computer to compare the numbers to a
bid threshold to determine whether the first data comprises seeding data.

WO 2014/185916 PCT/US2013/041369

1/11
/—100 15015E_1 15?:P 15?_2
7

134 110- e

M0 110 | 136 11027 | 160~/ 162 o
m 1 | :| I:
[]_58—‘:1 CPUI I

—___I2_4_':@_1]_59\':HARDWARE :I

i T @ !
llihl i ‘?j§:>ﬁ168 e

=== L______u [y ey :' M. EXEC. INSTR.
132 130 SERVER

M. EXEC. INSTR.

BACKUP
132 — ﬂ
N
CLIENT 110
134 —

140W SERVER

DISTRIBUTED
TEAMED OBJECT

PCT/US2013/041369

WO 2014/185916

2 /11

d4OVNVYIN V4L

€ Ol4

NOILYOIddY IN3ITI

A,gz:_é TOINT ONTS
0661~ 3w0ls SSIMdINOD | TTE
L pel
~ove
08—~ Horvw 31N0Y
yze y1g
—— i) 0IE
HSVH l TNIWDIS
/el IMP_M_\,_ ais _Iq SYNNHO viva VIV
STASYH T0vdS NS / HSYH wnHo [\ u3sane
7 yes] ! ! !
O/ 0€E 0ce 91€ 21e N oo¢

PCT/US2013/041369

3/11

WO 2014/185916

i I N i [—] #1090
607G —_r== BIE~____ 068~ ___8I€~ 099~ 8TE~ 8IE 085~
Ocs—~—L___|__ LI I 2 --------m_-----------------.mw-h.o.mmm_
2075 089~ 098~ _____ BIE—~ 098—~\8T€~ _________________
G 9l 06— 1 r 3 8] ¢ Suao_
T ——— - - - - - == = ——————————= e
ozs 81— 066~ —8IE 086~ 8l 085 045
026 — | 9 v Jﬁm T# an_
_—-———r—————————————————————————————=""—"—=""—"= e
81~ BIE~SIE78IE~ ¢ 8IE—~ SIE—~ 8lE—~ Vg€
006 —[1 v_ r _ H [9] 4 [3]a o g < | 1o3re0 a_\,_ﬁr
e ———————g=—="——————= —— e e ————— D
g1s— T g1e—~ 8¢ gre— gIE— 8Is— v~
ere V81
NECTENEN NOILVOTTddv ISAVIV)
0zt~ 4ivis anoy —O0ve — V€T
ﬂm
ININDIS OIE
oLe——{ HOLYW aig HovH [|LRNDEO VI v 1va (K vIva
aig
SIASYH T50vdS N , , miro [\ sine
(y€€ 1 1 | |
o/ 0gE 0z€ 0 AR N 00%

WO 2014/185916

4 /11

(START)

PCT/US2013/041369

COMMUNICATE PLURALITY OF CHUNK
HASHES TO MULTIPLE STORES

RECEIVE RESPONSES FROM STORES
INDICATING DISTRIBUTION OF

~— 604

ASSOCIATED CHUNKS IN STORES

SELECT STORE BASED AT LEAST

IN_PART ON RESPONSES

~— 606

COMMUNICATE DEDUPLICATED

~— 608

DATA TO SELECTED STORE

END

FIG. 6

(START)

COMMUNICATE LIST OF CHUNK
HASHES TO MULTIPLE STORES

RECEIVE RESPONSES FROM STORES,
WHERE EACH RESPONSE

~—704

INDICATES NUMBER OF MATCHES

SELECT STORE BASED AT LEAST IN
PART ON COMPARISON OF MATCH
NUMBERS TO A THRESHOLD

~—706

COMMUNICATE DEDUPLICATED

DATA TO SELECTED STORE

~—708

END

FIG. 7

WO 2014/185916 PCT/US2013/041369

5 /11

800

(" START)

Y

COMMUNICATE SIGNATURES OF SAMPLES 802

OF DATA ASSOCIATED WITH AN OBJECT J

TO AT LEAST SOME STORES ON WHICH
THE OBJECT IS DISTRIBUTED

Y
IN RESPONSE TO THE COMMUNICATION, 804
RECEIVE RESPONSES INDICATING NUMBERS J
OF THE SAMPLES STORED ON THE
RESPECTIVE STORES

Y
REGULATE ON WHICH STORE DEDUPLICATED | 899

DATA ASSOCIATED WITH THE DATA ARE |/
STORED BASED AT LEAST IN PART ON THE
NUMBERS AND A PATTERN OF DATA STORAGE

(N)

FIG. 8A

WO 2014/185916 PCT/US2013/041369

6 /11

(START) /— 850

COMMUNICATE LIST OF CHUNK
HASHES TO MULTIPLE TEAM MEMBERS |~ 852

RECEIVE RESPONSES FROM TEAM
MEMBERS, WHERE EACH RESPONSE h_gg,
INDICATES NUMBER OF MATCHES

THRESHOLD 862
EXCEEDED '
?
' COMMUNICATE
DATA SEGMENT
TO CURRENT

SEEDING TEAM
® E

f

e (N)

COMMUNICATE DATA
SEGMENT TO
CURRENTLY SELECTED
TEAM MEMBER
WITHOUT RE-ROUTING

BID WINNER
FOR CURRENT
AND PREVIOUS

DATA SE?GEMENTS

RE-ROUTING

CANDIDATE AND

RE-ROUTING

THRESHOLD

EXCEEDED
?

\

(e)

NO RE-ROUTE DATA

SEGMENT TO

CURRENT BID
WINNER

870

\

FIG. 8B

WO 2014/185916 PCT/US2013/041369

7 /11

(START) /— 900

ATTEMPT TO OPEN COMMUNICATION

SESSION WITH ALL TEAM N— 002

MEMBERS THAT COLLECTIVELY STORE

DATA FOR A DISTRIBUTED TEAMED

OBJECT IN RESPONSE TO REQUEST
TO ACCESS OBJECT

ALL TEAM

MEMBERS PRESENT

IN SESSION FOR WHICH OBJECT

WAS CREATED AND

MODIFIED
?

YES

|_NOTE ABSENT TEAM MEMBER(S) L906

RETRIEVE AVAILABLE CHUNKS
FOR TEAMED OBJECT ~—908
910

DEGRADED INFORMATION
?

REPORT INFORMATION ABOUT
DEGRADED STATE OF RETRIEVED [912
DATA, INCLUDING IDENTIFYING
HOW OBJECT IS INCOMPLETE

I REPORT RESULTS N—o14

END

FIG. 9

WO 2014/185916 PCT/US2013/041369

8 /11

1000
1010—, 1012— 10l4— :
TEAM TEAM TEAM
MEMBER 1 | MEMBER 2 | MEMBER 3 | ResuLts~ 1020
A A A)
1030— B C E
PAGE BOUNDARY
c B X B C
1032— D D Y o
PAGE BOUNDARY
: : Z E
: : : FXYZ
FIG. 10

(START) /— 1100

STORE DEDUPLICATED DATA FOR
AN OBJECT ON A SYSTEM THAT
INCLUDES A PLURALITY OF STORES

DISTRIBUTE MANIFEST DESCRIBING
STORAGE OF OBJECT N— 1104
ON STORES AMONG STORES

FOR EACH STORE, STORE DATA FOR
MANIFEST DESCRIBING STORAGE N_ 1106
OF DATA ON THAT STORE

END

FIG. 11

PCT/US2013/041369

WO 2014/185916

9/11

G-0221

70221 —

¢l Ol

£-0221

2-rvel —

[-07el —
oVl ——

-0Vel —u
oVl —~——

E-0VeTl —u
oVl —~——

COVeT —
oVl ——

W T+321S
W 1135440 QInvaL

06521/

W T+321S
8N 0°135440 QInviL

A

g 13215
8N 7135440 QInviL

VAT

-7l —

W T+3215
N €:135410 QINviL

g T+3215
8N ¢:135440 QInviL

20221 ~

a2

P rAY

10221~

¢ ‘0l 300N

W T+321S

0°13540 H3AWIN
8 7:135440 QIAVAL

101 30N

N T-375

1135440 43NN
W €:135440 QINVAL

1+qI 00N

N 13218

0°135440 HIAWIN
8N ¢:135440 QINVAL

7+dl 00N

W 13218

0°13540 ¥3AWIN
8 T:135440 Q3nvaL

€dl 300N

W T+321S

0°135440 H3AWIN
W 0:135440 QIAVAL

0zz1—/

00¢T _/

0ze1—

0ze1—

0zz1—/

0ze1—

0ze1—

0ze1—/

PCT/US2013/041369

WO 2014/185916

10 /11

HIANIN WYAL HIGNIN WYAL
1 | oie0 | ——— m
| Sl EINVEN SW3ALl |,
'l 103rdo 103rg€0 |,
“-N- —
NOLLYOddV
2LET B
IN3TO Ocel
)
INION3
q0r Adod [T~ OLel
O)2 4 o1 Yoo

€l Ol

d3GWIN W4l

NAERL
133r40

e-o01” o/1”

uIgNIN wvaL] [¥3anan wval
T mao |l "
ECEN NEN SWal |,
....... _ 193rg0 103rgo ||
|
——eeeeee e d e mV//mQ@m@m/m—m—— 1V /———————4
4 A
NOILYDddV
) 0LET
Ocel INITO
y
INIONI
OIET~1 gor Ad09
o o 1-0c1” or1”

ommTk

PCT/US2013/041369

WO 2014/185916

11/11

SMNNHD

3NDINN

1S34INVIN
NOIL33S
JH01S

[S3HSVH |

1S34INVIN
NOIL33S
HOLVIN

IN3IMO
1SATVLVI
1404v1

omi.\

1 Ol

SMNNHD
3NDINN

SMNNHI
Q3HOLVAINN

[SIHSVH |

S3HSVYH
Q3IHJILYIAINN

[S3HSVH |

S3HSVH
NOILJ3S

NOILI3S
AdQD

ANIONA
gor Ad0J

SMNNHJ
ANDINN

SUNNHO
NOIL33S 1319

[S3HSVH |

1S3HINVIA
NOILJ3S 1399

IN3IMO
334N0S

ONE.\

ooE.\

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/041369

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 17/30(2006.01)i, GO6F 12/14(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOO6F 17/30; GO6F 12/02; GOGF 12/16; GO6F 12/14

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: deduplicate, file, data, object, signature, store, storage

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2013-0046944 A1 (SEIICHI DOMYO et al.) 21 February 2013 1-15
See paragraphs [0008]-[0010], [0032]-[0034], [0037]-10041], [0073]-10075];
and figures 1-4B.

A US 2012-0084519 A1 (MANOJ KUMAR VIJAYAN et al.) 05 April 2012 1-15
See paragraphs [0005]-[0011], [0024]1-[0038], [0050]-[0052]; and figures 1-2.

A US 2012-0271798 A1l (MICHAEL HIRSCH) 25 October 2012 1-15
See paragraphs [0013]-[0028]; and figures 1, 4.

A US 2012-0159098 A1l (CHUN HO CHEUNG et al.) 21 June 2012 1-15
See paragraphs [0052]-[0063]; and figure 1.

A US 2012-0109894 Al (GREGORY TAD KISHI) 03 May 2012 1-15
See paragraphs [0010]-[0026], [0043]-[0054]; and figure 1.

|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
18 February 2014 (18.022014) 20 February 2014 (20.02.2014)
Name and mailing address of the [ISA/KR Authorized officer

International Application Division

+ Korean Intellectual Property Office

g

189 Cheongsa-to, Seo-gu, Dagjeon Metropolitan City, 302-701, KIM, Seong Woo
Republic of Korea

Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-3348
Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/041369
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013-0046944 Al 21/02/2013 US 8627026 B2 07/01/2014
WO 2013-027231 Al 28/02/2013
US 2012-0084519 Al 05/04/2012 US 2012-0084518 Al 05/04/2012
US 8572340 B2 29/10/2013
US 8578109 B2 05/11/2013
WO 2012-044367 Al 05/04/2012
US 2012-0271798 Al 25/10/2012 US 2012-158660 Al 21/06/2012
US 8364641 B2 29/01/2013
US 8458132 B2 04/06/2013
US 2012-0159098 Al 21/06/2012 CN 102567218 A 11/07/2012
WO 2012-083267 A2 21/06/2012
WO 2012-083267 A3 27/12/2012
US 2012-0109894 Al 03/05/2012 CN 102308288 A 04/01/2012
EP 2353091 Al 10/08/2011
US 2010-205389 Al 12/08/2010
US 8108638 B2 31/01/2012
US 8281099 B2 02/10/2012
WO 2010-089187 Al 12/08/2010

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report

