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INSTRUCTIONS AND LOGIC FOR BLEND AND PERMUTE OPERATION
SEQUENCES

FIELD OF THE INVENTION

[0001] The present disclosure pertains to the field of processing logic,
microprocessors, and associated instruction set architecture that, when executed by the
processor or other processing logic, perform logical, mathematical, or other functional

operations.

DESCRIPTION OF RELATED ART

[0002] Multiprocessor systems are becoming more and more common.
Applications of multiprocessor systems include dynamic domain partitioning all the
way down to desktop computing. In order to take advantage of multiprocessor systems,
code to be executed may be separated into multiple threads for execution by various
processing entities. Each thread may be executed in parallel with one another.
Instructions as they are received on a processor may be decoded into terms or
instruction words that are native, or more native, for execution on the processor.
Processors may be implemented in a system on chip. Data structures that are organized
in tuples of three to five elements may be used in media applications, High

Performance Computing applications, and molecular dynamics applications.

DESCRIPTION OF THE FIGURES

[0003] Embodiments are illustrated by way of example and not limitation in the
Figures of the accompanying drawings:

[0004] FIGURE 1A is a block diagram of an exemplary computer system formed
with a processor that may include execution units to execute an instruction, in
accordance with embodiments of the present disclosure;

[0005] FIGURE 1B illustrates a data processing system, in accordance with
embodiments of the present disclosure;

[0006] FIGURE 1C illustrates other embodiments of a data processing system for

performing text string comparison operations;
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[0007] FIGURE 2 is a block diagram of the micro-architecture for a processor that
may include logic circuits to perform instructions, in accordance with embodiments of
the present disclosure;

[0008] FIGURE 3A illustrates various packed data type representations in
multimedia registers, in accordance with embodiments of the present disclosure;

[0009] FIGURE 3B illustrates possible in-register data storage formats, in
accordance with embodiments of the present disclosure;

[0010] FIGURE 3C illustrates various signed and unsigned packed data type
representations in multimedia registers, in accordance with embodiments of the present
disclosure;

[0011] FIGURE 3D illustrates an embodiment of an operation encoding format;
[0012] FIGURE 3E illustrates another possible operation encoding format having
forty or more bits, in accordance with embodiments of the present disclosure;

[0013] FIGURE 3F illustrates yet another possible operation encoding format, in
accordance with embodiments of the present disclosure;

[0014] FIGURE 4A is a block diagram illustrating an in-order pipeline and a
register renaming stage, out-of-order issue/execution pipeline, in accordance with
embodiments of the present disclosure;

[0015] FIGURE 4B is a block diagram illustrating an in-order architecture core and
a register renaming logic, out-of-order issue/execution logic to be included in a
processor, in accordance with embodiments of the present disclosure;

[0016] FIGURE S5A is a block diagram of a processor, in accordance with
embodiments of the present disclosure;

[0017] FIGURE 5B is a block diagram of an example implementation of a core, in
accordance with embodiments of the present disclosure;

[0018] FIGURE 6 is a block diagram of a system, in accordance with embodiments
of the present disclosure;

[0019] FIGURE 7 is a block diagram of a second system, in accordance with
embodiments of the present disclosure;

[0020] FIGURE 8 is a block diagram of a third system in accordance with

embodiments of the present disclosure;
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[0021] FIGURE 9 is a block diagram of a system-on-a-chip, in accordance with
embodiments of the present disclosure;

[0022] FIGURE 10 illustrates a processor containing a central processing unit and a
graphics processing unit which may perform at least one instruction, in accordance with
embodiments of the present disclosure;

[0023] FIGURE 11 is a block diagram illustrating the development of IP cores, in
accordance with embodiments of the present disclosure;

[0024] FIGURE 12 illustrates how an instruction of a first type may be emulated by
a processor of a different type, in accordance with embodiments of the present
disclosure;

[0025] FIGURE 13 illustrates a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source instruction set to binary
instructions in a target instruction set, in accordance with embodiments of the present
disclosure;

[0026] FIGURE 14 is a block diagram of an instruction set architecture of a
processor, in accordance with embodiments of the present disclosure;

[0027] FIGURE 15 is a more detailed block diagram of an instruction set
architecture of a processor, in accordance with embodiments of the present disclosure;
[0028] FIGURE 16 is a block diagram of an execution pipeline for an instruction
set architecture of a processor, in accordance with embodiments of the present
disclosure;

[0029] FIGURE 17 is a block diagram of an electronic device for utilizing a
processor, in accordance with embodiments of the present disclosure;

[0030] FIGURE 18 is an illustration of an example system for instructions and
logic for blend and permute sequences of instructions or operations, according to
embodiments of the present disclosure;

[0031] FIGURE 19 illustrates an example processor core of a data processing
system that performs vector operations, in accordance with embodiments of the present
disclosure;

[0032] FIGURE 20 is a block diagram illustrating an example extended vector

register file, in accordance with embodiments of the present disclosure;
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[0033] FIGURE 21 is an illustration of the results of data conversion, according to
embodiments of the present disclosure;

[0034] FIGURE 22 is an illustration of operation of blend and permute instructions,
according to embodiments of the present disclosure;

[0035] FIGURE 23 is an illustration of operation of permute instructions, according
to embodiments of the present disclosure;

[0036] FIGURE 24 is an illustration of operation of data conversion using multiple
gathers for an array of eight structures, according to embodiment of the present
disclosure;

[0037] FIGURE 25 is an illustration of naive operation of data conversion for an
array of eight structures, according to embodiments of the present disclosure;

[0038] FIGURE 26 is an illustration of operation of a system to perform the
conversion using blend and permute operations, in accordance with embodiments of the
present disclosure;

[0039] FIGURE 27 is an illustration of further operation of a system to perform the
conversion using blend and permute operations, in accordance with embodiments of the
present disclosure; and

[0040] FIGURE 28 illustrates an example method for performing blend and
permute operations to fulfill data conversion, according to embodiments of the present

disclosure.

DETAILED DESCRIPTION

[0041] The following description describes embodiments of instructions and
processing logic for performing blend and permute sequences of operation on a
processing apparatus. The blend and permute sequences may be part of a striding
operation, such as Stride-5. Such a processing apparatus may include an out-of-order
processor. In the following description, numerous specific details such as processing
logic, processor types, micro-architectural conditions, events, enablement mechanisms,
and the like are set forth in order to provide a more thorough understanding of
embodiments of the present disclosure. It will be appreciated, however, by one skilled

in the art that the embodiments may be practiced without such specific details.
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Additionally, some well-known structures, circuits, and the like have not been shown in
detail to avoid unnecessarily obscuring embodiments of the present disclosure.

[0042] Although the following embodiments are described with reference to a
processor, other embodiments are applicable to other types of integrated circuits and
logic devices. Similar techniques and teachings of embodiments of the present
disclosure may be applied to other types of circuits or semiconductor devices that may
benefit from higher pipeline throughput and improved performance. The teachings of
embodiments of the present disclosure are applicable to any processor or machine that
performs data manipulations. However, the embodiments are not limited to processors
or machines that perform 512-bit, 256-bit, 128-bit, 64-bit, 32-bit, or 16-bit data
operations and may be applied to any processor and machine in which manipulation or
management of data may be performed. In addition, the following description provides
examples, and the accompanying drawings show various examples for the purposes of
illustration. However, these examples should not be construed in a limiting sense as
they are merely intended to provide examples of embodiments of the present disclosure
rather than to provide an exhaustive list of all possible implementations of
embodiments of the present disclosure.

[0043] Although the below examples describe instruction handling and distribution
in the context of execution units and logic circuits, other embodiments of the present
disclosure may be accomplished by way of a data or instructions stored on a machine-
readable, tangible medium, which when performed by a machine cause the machine to
perform functions consistent with at least one embodiment of the disclosure. In one
embodiment, functions associated with embodiments of the present disclosure are
embodied in machine-executable instructions. The instructions may be used to cause a
general-purpose or special-purpose processor that may be programmed with the
instructions to perform the steps of the present disclosure. Embodiments of the present
disclosure may be provided as a computer program product or software which may
include a machine or computer-readable medium having stored thereon instructions
which may be used to program a computer (or other electronic devices) to perform one
or more operations according to embodiments of the present disclosure. Furthermore,
steps of embodiments of the present disclosure might be performed by specific

hardware components that contain fixed-function logic for performing the steps, or by
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any combination of programmed computer components and fixed-function hardware
components.

[0044] Instructions used to program logic to perform embodiments of the present
disclosure may be stored within a memory in the system, such as DRAM, cache, flash
memory, or other storage. Furthermore, the instructions may be distributed via a
network or by way of other computer-readable media. Thus a machine-readable
medium may include any mechanism for storing or transmitting information in a form
readable by a machine (e.g., a computer), but is not limited to, floppy diskettes, optical
disks, Compact Disc, Read-Only Memory (CD-ROMs), and magneto-optical disks,
Read-Only Memory (ROMs), Random Access Memory (RAM), Erasable
Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission of information over the
Internet via electrical, optical, acoustical or other forms of propagated signals (e.g.,
carrier waves, infrared signals, digital signals, etc.). Accordingly, the computer-
readable medium may include any type of tangible machine-readable medium suitable
for storing or transmitting electronic instructions or information in a form readable by a
machine (e.g., a computer).

[0045] A design may go through various stages, from creation to simulation to
fabrication. Data representing a design may represent the design in a number of
manners. First, as may be useful in simulations, the hardware may be represented using
a hardware description language or another functional description language.
Additionally, a circuit level model with logic and/or transistor gates may be produced at
some stages of the design process. Furthermore, designs, at some stage, may reach a
level of data representing the physical placement of various devices in the hardware
model. In cases wherein some semiconductor fabrication techniques are used, the data
representing the hardware model may be the data specifying the presence or absence of
various features on different mask layers for masks used to produce the integrated
circuit. In any representation of the design, the data may be stored in any form of a
machine-readable medium. A memory or a magnetic or optical storage such as a disc
may be the machine-readable medium to store information transmitted via optical or

electrical wave modulated or otherwise generated to transmit such information. When
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an electrical carrier wave indicating or carrying the code or design is transmitted, to the
extent that copying, buffering, or retransmission of the electrical signal is performed, a
new copy may be made. Thus, a communication provider or a network provider may
store on a tangible, machine-readable medium, at least temporarily, an article, such as
information encoded into a carrier wave, embodying techniques of embodiments of the
present disclosure.

[0046] In modern processors, a number of different execution units may be used to
process and execute a variety of code and instructions. Some instructions may be
quicker to complete while others may take a number of clock cycles to complete. The
faster the throughput of instructions, the better the overall performance of the
processor. Thus it would be advantageous to have as many instructions execute as fast
as possible. However, there may be certain instructions that have greater complexity
and require more in terms of execution time and processor resources, such as floating
point instructions, load/store operations, data moves, etc.

[0047] As more computer systems are used in internet, text, and multimedia
applications, additional processor support has been introduced over time. In one
embodiment, an instruction set may be associated with one or more computer
architectures, including data types, instructions, register architecture, addressing modes,
memory architecture, interrupt and exception handling, and external input and output
(I/0).

[0048] In one embodiment, the instruction set architecture (ISA) may be
implemented by one or more micro-architectures, which may include processor logic
and circuits used to implement one or more instruction sets. Accordingly, processors
with different micro-architectures may share at least a portion of a common instruction
set. For example, Intel® Pentium 4 processors, Intel® Core™ processors, and
processors from Advanced Micro Devices, Inc. of Sunnyvale CA implement nearly
identical versions of the x86 instruction set (with some extensions that have been added
with newer versions), but have different internal designs. Similarly, processors
designed by other processor development companies, such as ARM Holdings, Ltd.,
MIPS, or their licensees or adopters, may share at least a portion of a common
instruction set, but may include different processor designs. For example, the same

register architecture of the ISA may be implemented in different ways in different
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micro-architectures using new or well-known techniques, including dedicated physical
registers, one or more dynamically allocated physical registers using a register
renaming mechanism (e.g., the use of a Register Alias Table (RAT), a Reorder Bufter
(ROB) and a retirement register file. In one embodiment, registers may include one or
more registers, register architectures, register files, or other register sets that may or
may not be addressable by a software programmer.

[0049] An instruction may include one or more instruction formats. In one
embodiment, an instruction format may indicate various fields (number of bits, location
of bits, etc.) to specify, among other things, the operation to be performed and the
operands on which that operation will be performed. In a further embodiment, some
instruction formats may be further defined by instruction templates (or sub-formats).
For example, the instruction templates of a given instruction format may be defined to
have different subsets of the instruction format’s fields and/or defined to have a given
field interpreted differently. In one embodiment, an instruction may be expressed using
an instruction format (and, if defined, in a given one of the instruction templates of that
instruction format) and specifies or indicates the operation and the operands upon
which the operation will operate.

[0050] Scientific, financial, auto-vectorized general purpose, RMS (recognition,
mining, and synthesis), and visual and multimedia applications (e.g., 2D/3D graphics,
image processing, video compression/decompression, voice recognition algorithms and
audio manipulation) may require the same operation to be performed on a large number
of data items. In one embodiment, Single Instruction Multiple Data (SIMD) refers to a
type of instruction that causes a processor to perform an operation on multiple data
elements. SIMD technology may be used in processors that may logically divide the
bits in a register into a number of fixed-sized or variable-sized data elements, each of
which represents a separate value. For example, in one embodiment, the bits in a 64-bit
register may be organized as a source operand containing four separate 16-bit data
elements, each of which represents a separate 16-bit value. This type of data may be
referred to as ‘packed’ data type or ‘vector’ data type, and operands of this data type
may be referred to as packed data operands or vector operands. In one embodiment, a
packed data item or vector may be a sequence of packed data elements stored within a

single register, and a packed data operand or a vector operand may a source or
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destination operand of a SIMD instruction (or ‘packed data instruction’ or a ‘vector
instruction’). In one embodiment, a SIMD instruction specifies a single vector
operation to be performed on two source vector operands to generate a destination
vector operand (also referred to as a result vector operand) of the same or different size,
with the same or different number of data elements, and in the same or different data
element order.

[0051] SIMD technology, such as that employed by the Intel® Core™ processors
having an instruction set including x86, MMX™, Streaming SIMD Extensions (SSE),
SSE2, SSE3, SSE4.1, and SSE4.2 instructions, ARM processors, such as the ARM
Cortex® family of processors having an instruction set including the Vector Floating
Point (VFP) and/or NEON instructions, and MIPS processors, such as the Loongson
family of processors developed by the Institute of Computing Technology (ICT) of the
Chinese Academy of Sciences, has enabled a significant improvement in application
performance (Core™ and MMX™ are registered trademarks or trademarks of Intel
Corporation of Santa Clara, Calif)).

[0052] In one embodiment, destination and source registers/data may be generic
terms to represent the source and destination of the corresponding data or operation. In
some embodiments, they may be implemented by registers, memory, or other storage
areas having other names or functions than those depicted. For example, in one
embodiment, “DEST1” may be a temporary storage register or other storage area,
whereas “SRC1” and “SRC2” may be a first and second source storage register or other
storage area, and so forth. In other embodiments, two or more of the SRC and DEST
storage areas may correspond to different data storage elements within the same storage
area (e.g., a SIMD register). In one embodiment, one of the source registers may also
act as a destination register by, for example, writing back the result of an operation
performed on the first and second source data to one of the two source registers serving
as a destination registers.

[0053] FIGURE 1A is a block diagram of an exemplary computer system formed
with a processor that may include execution units to execute an instruction, in
accordance with embodiments of the present disclosure. System 100 may include a
component, such as a processor 102 to employ execution units including logic to

perform algorithms for process data, in accordance with the present disclosure, such as
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in the embodiment described herein. System 100 may be representative of processing
systems based on the PENTIUM® III, PENTIUM® 4, Xeon™, Ttanium®, XScale™
and/or StrongARM™ microprocessors available from Intel Corporation of Santa Clara,
California, although other systems (including PCs having other microprocessors,
engineering workstations, set-top boxes and the like) may also be used. In one
embodiment, sample system 100 may execute a version of the WINDOWS™ operating
system available from Microsoft Corporation of Redmond, Washington, although other
operating systems (UNIX and Linux for example), embedded software, and/or
graphical user interfaces, may also be used. Thus, embodiments of the present
disclosure are not limited to any specific combination of hardware circuitry and
software.

[0054] Embodiments are not limited to computer systems. Embodiments of the
present disclosure may be used in other devices such as handheld devices and
embedded applications. Some examples of handheld devices include cellular phones,
Internet Protocol devices, digital cameras, personal digital assistants (PDAs), and
handheld PCs. Embedded applications may include a micro controller, a digital signal
processor (DSP), system on a chip, network computers (NetPC), set-top boxes, network
hubs, wide area network (WAN) switches, or any other system that may perform one or
more instructions in accordance with at least one embodiment.

[0055] Computer system 100 may include a processor 102 that may include one or
more execution units 108 to perform an algorithm to perform at least one instruction in
accordance with one embodiment of the present disclosure. One embodiment may be
described in the context of a single processor desktop or server system, but other
embodiments may be included in a multiprocessor system. System 100 may be an
example of a ‘hub’ system architecture. System 100 may include a processor 102 for
processing data signals. Processor 102 may include a complex instruction set computer
(CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a
very long instruction word (VLIW) microprocessor, a processor implementing a
combination of instruction sets, or any other processor device, such as a digital signal
processor, for example. In one embodiment, processor 102 may be coupled to a

processor bus 110 that may transmit data signals between processor 102 and other
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components in system 100. The elements of system 100 may perform conventional
functions that are well known to those familiar with the art.

[0056] In one embodiment, processor 102 may include a Level 1 (L1) internal
cache memory 104. Depending on the architecture, the processor 102 may have a
single internal cache or multiple levels of internal cache. In another embodiment, the
cache memory may reside external to processor 102. Other embodiments may also
include a combination of both internal and external caches depending on the particular
implementation and needs. Register file 106 may store different types of data in
various registers including integer registers, floating point registers, status registers, and
instruction pointer register.

[0057] Execution unit 108, including logic to perform integer and floating point
operations, also resides in processor 102. Processor 102 may also include a microcode
(ucode) ROM that stores microcode for certain macroinstructions. In one embodiment,
execution unit 108 may include logic to handle a packed instruction set 109. By
including the packed instruction set 109 in the instruction set of a general-purpose
processor 102, along with associated circuitry to execute the instructions, the operations
used by many multimedia applications may be performed using packed data in a
general-purpose processor 102.  Thus, many multimedia applications may be
accelerated and executed more efficiently by using the full width of a processor’s data
bus for performing operations on packed data. This may eliminate the need to transfer
smaller units of data across the processor’s data bus to perform one or more operations
one data element at a time.

[0058] Embodiments of an execution unit 108 may also be used in micro
controllers, embedded processors, graphics devices, DSPs, and other types of logic
circuits. System 100 may include a memory 120. Memory 120 may be implemented
as a dynamic random access memory (DRAM) device, a static random access memory
(SRAM) device, flash memory device, or other memory device. Memory 120 may
store instructions 119 and/or data 121 represented by data signals that may be executed
by processor 102.

[0059] A system logic chip 116 may be coupled to processor bus 110 and memory
120. System logic chip 116 may include a memory controller hub (MCH). Processor
102 may communicate with MCH 116 via a processor bus 110. MCH 116 may provide
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a high bandwidth memory path 118 to memory 120 for storage of instructions 119 and
data 121 and for storage of graphics commands, data and textures. MCH 116 may
direct data signals between processor 102, memory 120, and other components in
system 100 and to bridge the data signals between processor bus 110, memory 120, and
system I/O 122. In some embodiments, the system logic chip 116 may provide a
graphics port for coupling to a graphics controller 112. MCH 116 may be coupled to
memory 120 through a memory interface 118. Graphics card 112 may be coupled to
MCH 116 through an Accelerated Graphics Port (AGP) interconnect 114.

[0060] System 100 may use a proprietary hub interface bus 122 to couple MCH
116 to I/O controller hub (ICH) 130. In one embodiment, ICH 130 may provide direct
connections to some I/O devices via a local I/O bus. The local I/O bus may include a
high-speed 1I/O bus for connecting peripherals to memory 120, chipset, and processor
102. Examples may include the audio controller 129, firmware hub (flash BIOS) 128,
wireless transceiver 126, data storage 124, legacy 1/O controller 123 containing user
input interface 125 (which may include a keyboard interface), a serial expansion port
127 such as Universal Serial Bus (USB), and a network controller 134. Data storage
device 124 may comprise a hard disk drive, a floppy disk drive, a CD-ROM device, a
flash memory device, or other mass storage device.

[0061] For another embodiment of a system, an instruction in accordance with one
embodiment may be used with a system on a chip. One embodiment of a system on a
chip comprises of a processor and a memory. The memory for one such system may
include a flash memory. The flash memory may be located on the same die as the
processor and other system components. Additionally, other logic blocks such as a
memory controller or graphics controller may also be located on a system on a chip.
[0062] FIGURE 1B illustrates a data processing system 140 which implements the
principles of embodiments of the present disclosure. It will be readily appreciated by
one of skill in the art that the embodiments described herein may operate with
alternative processing systems without departure from the scope of embodiments of the
disclosure.

[0063] Computer system 140 comprises a processing core 159 for performing at
least one instruction in accordance with one embodiment. In one embodiment,

processing core 159 represents a processing unit of any type of architecture, including
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but not limited to a CISC, a RISC or a VLIW type architecture. Processing core 159
may also be suitable for manufacture in one or more process technologies and by being
represented on a machine-readable media in sufficient detail, may be suitable to
facilitate said manufacture.

[0064] Processing core 159 comprises an execution unit 142, a set of register files
145, and a decoder 144. Processing core 159 may also include additional circuitry (not
shown) which may be unnecessary to the understanding of embodiments of the present
disclosure. Execution unit 142 may execute instructions received by processing core
159. In addition to performing typical processor instructions, execution unit 142 may
perform instructions in packed instruction set 143 for performing operations on packed
data formats. Packed instruction set 143 may include instructions for performing
embodiments of the disclosure and other packed instructions. Execution unit 142 may
be coupled to register file 145 by an internal bus. Register file 145 may represent a
storage area on processing core 159 for storing information, including data. As
previously mentioned, it is understood that the storage area may store the packed data
might not be critical. Execution unit 142 may be coupled to decoder 144. Decoder 144
may decode instructions received by processing core 159 into control signals and/or
microcode entry points. In response to these control signals and/or microcode entry
points, execution unit 142 performs the appropriate operations. In one embodiment, the
decoder may interpret the opcode of the instruction, which will indicate what operation
should be performed on the corresponding data indicated within the instruction.

[0065] Processing core 159 may be coupled with bus 141 for communicating with
various other system devices, which may include but are not limited to, for example,
synchronous dynamic random access memory (SDRAM) control 146, static random
access memory (SRAM) control 147, burst flash memory interface 148, personal
computer memory card international association (PCMCIA)/compact flash (CF) card
control 149, liquid crystal display (LCD) control 150, direct memory access (DMA)
controller 151, and alternative bus master interface 152. In one embodiment, data
processing system 140 may also comprise an I/O bridge 154 for communicating with
various I/O devices via an I/O bus 153. Such I/O devices may include but are not

limited to, for example, universal asynchronous receiver/transmitter (UART) 155,
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universal serial bus (USB) 156, Bluetooth wireless UART 157 and I/O expansion
interface 158.

[0066] One embodiment of data processing system 140 provides for mobile,
network and/or wireless communications and a processing core 159 that may perform
SIMD operations including a text string comparison operation. Processing core 159
may be programmed with wvarious audio, video, imaging and communications
algorithms including discrete transformations such as a Walsh-Hadamard transform, a
fast Fourier transform (FFT), a discrete cosine transform (DCT), and their respective
inverse transforms; compression/decompression techniques such as color space
transformation, video encode motion estimation or video decode motion compensation;
and modulation/demodulation (MODEM) functions such as pulse coded modulation
(PCM).

[0067] FIGURE 1C illustrates other embodiments of a data processing system that
performs SIMD text string comparison operations. In one embodiment, data processing
system 160 may include a main processor 166, a SIMD coprocessor 161, a cache
memory 167, and an input/output system 168. Input/output system 168 may optionally
be coupled to a wireless interface 169. SIMD coprocessor 161 may perform operations
including instructions in accordance with one embodiment. In one embodiment,
processing core 170 may be suitable for manufacture in one or more process
technologies and by being represented on a machine-readable media in sufficient detail,
may be suitable to facilitate the manufacture of all or part of data processing system
160 including processing core 170.

[0068] In one embodiment, SIMD coprocessor 161 comprises an execution unit
162 and a set of register files 164. One embodiment of main processor 166 comprises a
decoder 165 to recognize instructions of instruction set 163 including instructions in
accordance with one embodiment for execution by execution unit 162. In other
embodiments, SIMD coprocessor 161 also comprises at least part of decoder 165
(shown as 165B) to decode instructions of instruction set 163. Processing core 170
may also include additional circuitry (not shown) which may be unnecessary to the
understanding of embodiments of the present disclosure.

[0069] In operation, main processor 166 executes a stream of data processing

instructions that control data processing operations of a general type including
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interactions with cache memory 167, and input/output system 168. Embedded within
the stream of data processing instructions may be SIMD coprocessor instructions.
Decoder 165 of main processor 166 recognizes these SIMD coprocessor instructions as
being of a type that should be executed by an attached SIMD coprocessor 161.
Accordingly, main processor 166 issues these SIMD coprocessor instructions (or
control signals representing SIMD coprocessor instructions) on the coprocessor bus
166. From coprocessor bus 171, these instructions may be received by any attached
SIMD coprocessors. In this case, SIMD coprocessor 161 may accept and execute any
received SIMD coprocessor instructions intended for it.

[0070] Data may be received via wireless interface 169 for processing by the SIMD
coprocessor instructions. For one example, voice communication may be received in
the form of a digital signal, which may be processed by the SIMD coprocessor
instructions to regenerate digital audio samples representative of the voice
communications. For another example, compressed audio and/or video may be
received in the form of a digital bit stream, which may be processed by the SIMD
coprocessor instructions to regenerate digital audio samples and/or motion video
frames. In one embodiment of processing core 170, main processor 166, and a SIMD
coprocessor 161 may be integrated into a single processing core 170 comprising an
execution unit 162, a set of register files 164, and a decoder 165 to recognize
instructions of instruction set 163 including instructions in accordance with one
embodiment.

[0071] FIGURE 2 is a block diagram of the micro-architecture for a processor 200
that may include logic circuits to perform instructions, in accordance with embodiments
of the present disclosure. In some embodiments, an instruction in accordance with one
embodiment may be implemented to operate on data elements having sizes of byte,
word, doubleword, quadword, etc., as well as datatypes, such as single and double
precision integer and floating point datatypes. In one embodiment, in-order front end
201 may implement a part of processor 200 that may fetch instructions to be executed
and prepares the instructions to be used later in the processor pipeline. Front end 201
may include several units. In one embodiment, instruction prefetcher 226 fetches
instructions from memory and feeds the instructions to an instruction decoder 228

which in turn decodes or interprets the instructions. For example, in one embodiment,
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the decoder decodes a received instruction into one or more operations called “micro-
instructions” or “micro-operations” (also called micro op or uops) that the machine may
execute. In other embodiments, the decoder parses the instruction into an opcode and
corresponding data and control fields that may be used by the micro-architecture to
perform operations in accordance with one embodiment. In one embodiment, trace
cache 230 may assemble decoded uops into program ordered sequences or traces in uop
queue 234 for execution. When trace cache 230 encounters a complex instruction,
microcode ROM 232 provides the uops needed to complete the operation.

[0072] Some instructions may be converted into a single micro-op, whereas others
need several micro-ops to complete the full operation. In one embodiment, if more
than four micro-ops are needed to complete an instruction, decoder 228 may access
microcode ROM 232 to perform the instruction. In one embodiment, an instruction
may be decoded into a small number of micro ops for processing at instruction decoder
228. In another embodiment, an instruction may be stored within microcode ROM 232
should a number of micro-ops be needed to accomplish the operation. Trace cache 230
refers to an entry point programmable logic array (PLA) to determine a correct micro-
instruction pointer for reading the micro-code sequences to complete one or more
instructions in accordance with one embodiment from micro-code ROM 232. After
microcode ROM 232 finishes sequencing micro-ops for an instruction, front end 201 of
the machine may resume fetching micro-ops from trace cache 230.

[0073] Out-of-order execution engine 203 may prepare instructions for execution.
The out-of-order execution logic has a number of buffers to smooth out and re-order the
flow of instructions to optimize performance as they go down the pipeline and get
scheduled for execution. The allocator logic in allocator/register renamer 215 allocates
the machine buffers and resources that each uop needs in order to execute. The register
renaming logic in allocator/register renamer 215 renames logic registers onto entries in
a register file. The allocator 215 also allocates an entry for each uop in one of the two
uop queues, one for memory operations (memory uop queue 207) and one for non-
memory operations (integer/floating point uop queue 205), in front of the instruction
schedulers: memory scheduler 209, fast scheduler 202, slow/general floating point
scheduler 204, and simple floating point scheduler 206. Uop schedulers 202, 204, 206,

determine when a uop is ready to execute based on the readiness of their dependent
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input register operand sources and the availability of the execution resources the uops
need to complete their operation. Fast scheduler 202 of one embodiment may schedule
on each half of the main clock cycle while the other schedulers may only schedule once
per main processor clock cycle. The schedulers arbitrate for the dispatch ports to
schedule uops for execution.

[0074] Register files 208, 210 may be arranged between schedulers 202, 204, 206,
and execution units 212, 214, 216, 218, 220, 222, 224 in execution block 211. Each of
register files 208, 210 perform integer and floating point operations, respectively. Each
register file 208, 210, may include a bypass network that may bypass or forward just
completed results that have not yet been written into the register file to new dependent
uops. Integer register file 208 and floating point register file 210 may communicate
data with the other. In one embodiment, integer register file 208 may be split into two
separate register files, one register file for low-order thirty-two bits of data and a
second register file for high order thirty-two bits of data. Floating point register file
210 may include 128-bit wide entries because floating point instructions typically have
operands from 64 to 128 bits in width.

[0075] Execution block 211 may contain execution units 212, 214, 216, 218, 220,
222, 224. Execution units 212, 214, 216, 218, 220, 222, 224 may execute the
instructions. Execution block 211 may include register files 208, 210 that store the
integer and floating point data operand values that the micro-instructions need to
execute. In one embodiment, processor 200 may comprise a number of execution
units: address generation unit (AGU) 212, AGU 214, fast ALU 216, fast ALU 218,
slow ALU 220, floating point ALU 222, floating point move unit 224. In another
embodiment, floating point execution blocks 222, 224, may execute floating point,
MMX, SIMD, and SSE, or other operations. In yet another embodiment, floating point
ALU 222 may include a 64-bit by 64-bit floating point divider to execute divide, square
root, and remainder micro-ops. In various embodiments, instructions involving a
floating point value may be handled with the floating point hardware. In one
embodiment, ALU operations may be passed to high-speed ALU execution units 216,
218. High-speed ALUs 216, 218 may execute fast operations with an effective latency
of half a clock cycle. In one embodiment, most complex integer operations go to slow

ALU 220 as slow ALU 220 may include integer execution hardware for long-latency
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type of operations, such as a multiplier, shifts, flag logic, and branch processing.
Memory load/store operations may be executed by AGUs 212, 214. 1In one
embodiment, integer ALUs 216, 218, 220 may perform integer operations on 64-bit
data operands. In other embodiments, ALUs 216, 218, 220 may be implemented to
support a variety of data bit sizes including sixteen, thirty-two, 128, 256, etc.
Similarly, floating point units 222, 224 may be implemented to support a range of
operands having bits of various widths. In one embodiment, floating point units 222,
224, may operate on 128-bit wide packed data operands in conjunction with SIMD and
multimedia instructions.

[0076] In one embodiment, uops schedulers 202, 204, 206, dispatch dependent
operations before the parent load has finished executing. As uops may be speculatively
scheduled and executed in processor 200, processor 200 may also include logic to
handle memory misses. If a data load misses in the data cache, there may be dependent
operations in flight in the pipeline that have left the scheduler with temporarily
incorrect data. A replay mechanism tracks and re-executes instructions that use
incorrect data. Only the dependent operations might need to be replayed and the
independent ones may be allowed to complete. The schedulers and replay mechanism
of one embodiment of a processor may also be designed to catch instruction sequences
for text string comparison operations.

[0077] The term “registers” may refer to the on-board processor storage locations
that may be used as part of instructions to identify operands. In other words, registers
may be those that may be usable from the outside of the processor (from a
programmer’s perspective). However, in some embodiments registers might not be
limited to a particular type of circuit. Rather, a register may store data, provide data,
and perform the functions described herein. The registers described herein may be
implemented by circuitry within a processor using any number of different techniques,
such as dedicated physical registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynamically allocated physical
registers, etc. In one embodiment, integer registers store 32-bit integer data. A register
file of one embodiment also contains eight multimedia SIMD registers for packed data.
For the discussions below, the registers may be understood to be data registers designed

to hold packed data, such as 64-bit wide MMX™ registers (also referred to as ‘mm’
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registers in some instances) in microprocessors enabled with MMX technology from
Intel Corporation of Santa Clara, California. These MMX registers, available in both
integer and floating point forms, may operate with packed data elements that
accompany SIMD and SSE instructions. Similarly, 128-bit wide XMM registers
relating to SSE2, SSE3, SSE4, or beyond (referred to generically as “SSEx”)
technology may hold such packed data operands. In one embodiment, in storing
packed data and integer data, the registers do not need to differentiate between the two
data types. In one embodiment, integer and floating point data may be contained in the
same register file or different register files. Furthermore, in one embodiment, floating
point and integer data may be stored in different registers or the same registers.

[0078] In the examples of the following figures, a number of data operands may be
described. FIGURE 3A illustrates various packed data type representations in
multimedia registers, in accordance with embodiments of the present disclosure.
FIGURE 3A illustrates data types for a packed byte 310, a packed word 320, and a
packed doubleword (dword) 330 for 128-bit wide operands. Packed byte format 310 of
this example may be 128 bits long and contains sixteen packed byte data elements. A
byte may be defined, for example, as eight bits of data. Information for each byte data
element may be stored in bit 7 through bit O for byte O, bit 15 through bit 8 for byte 1,
bit 23 through bit 16 for byte 2, and finally bit 120 through bit 127 for byte 15. Thus,
all available bits may be used in the register. This storage arrangement increases the
storage efficiency of the processor. As well, with sixteen data elements accessed, one
operation may now be performed on sixteen data elements in parallel.

[0079] Generally, a data element may include an individual piece of data that is
stored in a single register or memory location with other data elements of the same
length. In packed data sequences relating to SSEx technology, the number of data
elements stored in a XMM register may be 128 bits divided by the length in bits of an
individual data element. Similarly, in packed data sequences relating to MMX and SSE
technology, the number of data elements stored in an MMX register may be 64 bits
divided by the length in bits of an individual data element. Although the data types
illustrated in FIGURE 3 A may be 128 bits long, embodiments of the present disclosure
may also operate with 64-bit wide or other sized operands. Packed word format 320 of

this example may be 128 bits long and contains eight packed word data elements. Each
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packed word contains sixteen bits of information. Packed doubleword format 330 of
FIGURE 3A may be 128 bits long and contains four packed doubleword data elements.
Each packed doubleword data element contains thirty-two bits of information. A
packed quadword may be 128 bits long and contain two packed quad-word data
elements.

[0080] FIGURE 3B illustrates possible in-register data storage formats, in
accordance with embodiments of the present disclosure. Each packed data may include
more than one independent data element. Three packed data formats are illustrated;
packed half 341, packed single 342, and packed double 343. One embodiment of
packed half 341, packed single 342, and packed double 343 contain fixed-point data
elements. For another embodiment one or more of packed half 341, packed single 342,
and packed double 343 may contain floating-point data elements. One embodiment of
packed half 341 may be 128 bits long containing eight 16-bit data elements. One
embodiment of packed single 342 may be 128 bits long and contains four 32-bit data
elements. One embodiment of packed double 343 may be 128 bits long and contains
two 64-bit data elements. It will be appreciated that such packed data formats may be
further extended to other register lengths, for example, to 96-bits, 160-bits, 192-bits,
224-bits, 256-bits or more.

[0081] FIGURE 3C illustrates various signed and unsigned packed data type
representations in multimedia registers, in accordance with embodiments of the present
disclosure. Unsigned packed byte representation 344 illustrates the storage of an
unsigned packed byte in a SIMD register. Information for each byte data element may
be stored in bit 7 through bit O for byte O, bit 15 through bit 8 for byte 1, bit 23 through
bit 16 for byte 2, and finally bit 120 through bit 127 for byte 15. Thus, all available bits
may be used in the register. This storage arrangement may increase the storage
efficiency of the processor. As well, with sixteen data elements accessed, one
operation may now be performed on sixteen data elements in a parallel fashion. Signed
packed byte representation 345 illustrates the storage of a signed packed byte. Note
that the eighth bit of every byte data element may be the sign indicator. Unsigned
packed word representation 346 illustrates how word seven through word zero may be
stored in a SIMD register. Signed packed word representation 347 may be similar to

the unsigned packed word in-register representation 346. Note that the sixteenth bit of



WO 2017/105719 PCT/US2016/061965

10

15

20

25

30

21

each word data element may be the sign indicator. Unsigned packed doubleword
representation 348 shows how doubleword data elements are stored. Signed packed
doubleword representation 349 may be similar to unsigned packed doubleword in-
register representation 348. Note that the necessary sign bit may be the thirty-second
bit of each doubleword data element.

[0082] FIGURE 3D illustrates an embodiment of an operation encoding (opcode).
Furthermore, format 360 may include register/memory operand addressing modes
corresponding with a type of opcode format described in the "IA-32 Intel Architecture
Software Developer’s Manual Volume 2: Instruction Set Reference,” which is available
from Intel Corporation, Santa Clara, CA on the world-wide-web (www) at
intel.com/design/litcentr. In one embodiment, an instruction may be encoded by one or
more of fields 361 and 362. Up to two operand locations per instruction may be
identified, including up to two source operand identifiers 364 and 365. In one
embodiment, destination operand identifier 366 may be the same as source operand
identifier 364, whereas in other embodiments they may be different. In another
embodiment, destination operand identifier 366 may be the same as source operand
identifier 365, whereas in other embodiments they may be different. In one
embodiment, one of the source operands identified by source operand identifiers 364
and 365 may be overwritten by the results of the text string comparison operations,
whereas in other embodiments identifier 364 corresponds to a source register element
and identifier 365 corresponds to a destination register element. In one embodiment,
operand identifiers 364 and 365 may identify 32-bit or 64-bit source and destination
operands.

[0083] FIGURE 3E illustrates another possible operation encoding (opcode) format
370, having forty or more bits, in accordance with embodiments of the present
disclosure. Opcode format 370 corresponds with opcode format 360 and comprises an
optional prefix byte 378. An instruction according to one embodiment may be encoded
by one or more of fields 378, 371, and 372. Up to two operand locations per
instruction may be identified by source operand identifiers 374 and 375 and by prefix
byte 378. In one embodiment, prefix byte 378 may be used to identify 32-bit or 64-bit
source and destination operands. In one embodiment, destination operand identifier

376 may be the same as source operand identifier 374, whereas in other embodiments
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they may be different. For another embodiment, destination operand identifier 376 may
be the same as source operand identifier 375, whereas in other embodiments they may
be different. In one embodiment, an instruction operates on one or more of the
operands identified by operand identifiers 374 and 375 and one or more operands
identified by operand identifiers 374 and 375 may be overwritten by the results of the
instruction, whereas in other embodiments, operands identified by identifiers 374 and
375 may be written to another data element in another register. Opcode formats 360
and 370 allow register to register, memory to register, register by memory, register by
register, register by immediate, register to memory addressing specified in part by
MOD fields 363 and 373 and by optional scale-index-base and displacement bytes.
[0084] FIGURE 3F illustrates yet another possible operation encoding (opcode)
format, in accordance with embodiments of the present disclosure. 64-bit single
instruction multiple data (SIMD) arithmetic operations may be performed through a
coprocessor data processing (CDP) instruction. Operation encoding (opcode) format
380 depicts one such CDP instruction having CDP opcode fields 382 and 389. The
type of CDP instruction, for another embodiment, operations may be encoded by one or
more of fields 383, 384, 387, and 388. Up to three operand locations per instruction
may be identified, including up to two source operand identifiers 385 and 390 and one
destination operand identifier 386. One embodiment of the coprocessor may operate on
eight, sixteen, thirty-two, and 64-bit values. In one embodiment, an instruction may be
performed on integer data elements. In some embodiments, an instruction may be
executed conditionally, using condition field 381. For some embodiments, source data
sizes may be encoded by field 383. In some embodiments, Zero (Z), negative (N),
carry (C), and overflow (V) detection may be done on SIMD fields. For some
instructions, the type of saturation may be encoded by field 384.

[0085] FIGURE 4A is a block diagram illustrating an in-order pipeline and a
register renaming stage, out-of-order issue/execution pipeline, in accordance with
embodiments of the present disclosure. FIGURE 4B is a block diagram illustrating an
in-order architecture core and a register renaming logic, out-of-order issue/execution
logic to be included in a processor, in accordance with embodiments of the present
disclosure. The solid lined boxes in FIGURE 4A illustrate the in-order pipeline, while

the dashed lined boxes illustrates the register renaming, out-of-order issue/execution
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pipeline. Similarly, the solid lined boxes in FIGURE 4B illustrate the in-order
architecture logic, while the dashed lined boxes illustrates the register renaming logic
and out-of-order issue/execution logic.

[0086] In FIGURE 4A, a processor pipeline 400 may include a fetch stage 402, a
length decode stage 404, a decode stage 406, an allocation stage 408, a renaming stage
410, a scheduling (also known as a dispatch or issue) stage 412, a register read/memory
read stage 414, an execute stage 416, a write-back/memory-write stage 418, an
exception handling stage 422, and a commit stage 424.

[0087] In FIGURE 4B, arrows denote a coupling between two or more units and
the direction of the arrow indicates a direction of data flow between those units.
FIGURE 4B shows processor core 490 including a front end unit 430 coupled to an
execution engine unit 450, and both may be coupled to a memory unit 470.

[0088] Core 490 may be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long instruction word (VLIW)
core, or a hybrid or alternative core type. In one embodiment, core 490 may be a
special-purpose core, such as, for example, a network or communication core,
compression engine, graphics core, or the like.

[0089] Front end unit 430 may include a branch prediction unit 432 coupled to an
instruction cache unit 434. Instruction cache unit 434 may be coupled to an instruction
translation lookaside buffer (TLB) 436. TLB 436 may be coupled to an instruction
fetch unit 438, which is coupled to a decode unit 440. Decode unit 440 may decode
instructions, and generate as an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control signals, which may be
decoded from, or which otherwise reflect, or may be derived from, the original
instructions. The decoder may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited to, look-up tables,
hardware implementations, programmable logic arrays (PLAs), microcode read-only
memories (ROMs), etc. In one embodiment, instruction cache unit 434 may be further
coupled to a level 2 (L2) cache unit 476 in memory unit 470. Decode unit 440 may be
coupled to a rename/allocator unit 452 in execution engine unit 450.

[0090] Execution engine unit 450 may include rename/allocator unit 452 coupled to

a retirement unit 454 and a set of one or more scheduler units 456. Scheduler units 456



WO 2017/105719 PCT/US2016/061965

10

15

20

25

30

24

represent any number of different schedulers, including reservations stations, central
instruction window, etc. Scheduler units 456 may be coupled to physical register file
units 458. Each of physical register file units 458 represents one or more physical
register files, different ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed floating point, vector
integer, vector floating point, etc., status (e.g., an instruction pointer that is the address
of the next instruction to be executed), etc. Physical register file units 458 may be
overlapped by retirement unit 454 to illustrate various ways in which register renaming
and out-of-order execution may be implemented (e.g., using one or more reorder
buffers and one or more retirement register files, using one or more future files, one or
more history buffers, and one or more retirement register files; using register maps and
a pool of registers; etc.). Generally, the architectural registers may be visible from the
outside of the processor or from a programmer's perspective. The registers might not be
limited to any known particular type of circuit. Various different types of registers may
be suitable as long as they store and provide data as described herein. Examples of
suitable registers include, but might not be limited to, dedicated physical registers,
dynamically allocated physical registers using register renaming, combinations of
dedicated and dynamically allocated physical registers, etc. Retirement unit 454 and
physical register file units 458 may be coupled to execution clusters 460. Execution
clusters 460 may include a set of one or more execution units 462 and a set of one or
more memory access units 464. Execution units 462 may perform various operations
(e.g., shifts, addition, subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point, vector integer, vector
floating point). While some embodiments may include a number of execution units
dedicated to specific functions or sets of functions, other embodiments may include
only one execution unit or multiple execution units that all perform all functions.
Scheduler units 456, physical register file units 458, and execution clusters 460 are
shown as being possibly plural because certain embodiments create separate pipelines
for certain types of data/operations (e.g., a scalar integer pipeline, a scalar floating
point/packed integer/packed floating point/vector integer/vector floating point pipeline,
and/or a memory access pipeline that each have their own scheduler unit, physical

register file unit, and/or execution cluster — and in the case of a separate memory access
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pipeline, certain embodiments may be implemented in which only the execution cluster
of this pipeline has memory access units 464). It should also be understood that where
separate pipelines are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

[0091] The set of memory access units 464 may be coupled to memory unit 470,
which may include a data TLB unit 472 coupled to a data cache unit 474 coupled to a
level 2 (L2) cache unit 476. In one exemplary embodiment, memory access units 464
may include a load unit, a store address unit, and a store data unit, each of which may
be coupled to data TLB unit 472 in memory unit 470. L2 cache unit 476 may be
coupled to one or more other levels of cache and eventually to a main memory.

[0092] By way of example, the exemplary register renaming, out-of-order
issue/execution core architecture may implement pipeline 400 as follows: 1)
instruction fetch 438 may perform fetch and length decoding stages 402 and 404; 2)
decode unit 440 may perform decode stage 406; 3) rename/allocator unit 452 may
perform allocation stage 408 and renaming stage 410; 4) scheduler units 456 may
perform schedule stage 412; 5) physical register file units 458 and memory unit 470
may perform register read/memory read stage 414; execution cluster 460 may perform
execute stage 416; 6) memory unit 470 and physical register file units 458 may perform
write-back/memory-write stage 418; 7) various units may be involved in the
performance of exception handling stage 422; and 8) retirement unit 454 and physical
register file units 458 may perform commit stage 424.

[0093] Core 490 may support one or more instructions sets (e.g., the x86 instruction
set (with some extensions that have been added with newer versions), the MIPS
instruction set of MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with
optional additional extensions such as NEON) of ARM Holdings of Sunnyvale, CA).
[0094] It should be understood that the core may support multithreading (executing
two or more parallel sets of operations or threads) in a variety of manners.
Multithreading support may be performed by, for example, including time sliced
multithreading, simultaneous multithreading (where a single physical core provides a
logical core for each of the threads that physical core is simultaneously multithreading),

or a combination thereof. Such a combination may include, for example, time sliced
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fetching and decoding and simultaneous multithreading thereafter such as in the Intel®
Hyperthreading technology.

[0095] While register renaming may be described in the context of out-of-order
execution, it should be understood that register renaming may be used in an in-order
architecture. While the illustrated embodiment of the processor may also include a
separate instruction and data cache units 434/474 and a shared L2 cache unit 476, other
embodiments may have a single internal cache for both instructions and data, such as,
for example, a Level 1 (L1) internal cache, or multiple levels of internal cache. In some
embodiments, the system may include a combination of an internal cache and an
external cache that may be external to the core and/or the processor. In other
embodiments, all of the caches may be external to the core and/or the processor.

[0096] FIGURE 5A is a block diagram of a processor 500, in accordance with
embodiments of the present disclosure. In one embodiment, processor S00 may include
a multicore processor. Processor 500 may include a system agent 510
communicatively coupled to one or more cores 502. Furthermore, cores 502 and
system agent 510 may be communicatively coupled to one or more caches 506. Cores
502, system agent 510, and caches 506 may be communicatively coupled via one or
more memory control units 552. Furthermore, cores 502, system agent 510, and caches
506 may be communicatively coupled to a graphics module 560 via memory control
units 552.

[0097] Processor 500 may include any suitable mechanism for interconnecting
cores 502, system agent 510, and caches 506, and graphics module 560. In one
embodiment, processor 500 may include a ring-based interconnect unit 508 to
interconnect cores 502, system agent 510, and caches 506, and graphics module 560.
In other embodiments, processor 500 may include any number of well-known
techniques for interconnecting such units. Ring-based interconnect unit 508 may
utilize memory control units 552 to facilitate interconnections.

[0098] Processor 500 may include a memory hierarchy comprising one or more
levels of caches within the cores, one or more shared cache units such as caches 506, or
external memory (not shown) coupled to the set of integrated memory controller units

552. Caches 506 may include any suitable cache. In one embodiment, caches 506 may
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include one or more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or combinations thereof.

[0099] In various embodiments, one or more of cores 502 may perform multi-
threading. System agent 510 may include components for coordinating and operating
cores 502. System agent unit 510 may include for example a power control unit (PCU).
The PCU may be or include logic and components needed for regulating the power
state of cores 502. System agent 510 may include a display engine 512 for driving one
or more externally connected displays or graphics module 560. System agent 510 may
include an interface 514 for communications busses for graphics. In one embodiment,
interface 514 may be implemented by PCI Express (PCle). In a further embodiment,
interface 514 may be implemented by PCI Express Graphics (PEG). System agent 510
may include a direct media interface (DMI) 516. DMI 516 may provide links between
different bridges on a motherboard or other portion of a computer system. System
agent 510 may include a PCle bridge 518 for providing PCle links to other elements of
a computing system. PCle bridge 518 may be implemented using a memory controller
520 and coherence logic 522.

[00100] Cores 502 may be implemented in any suitable manner. Cores 502 may be
homogenous or heterogeneous in terms of architecture and/or instruction set. In one
embodiment, some of cores 502 may be in-order while others may be out-of-order. In
another embodiment, two or more of cores 502 may execute the same instruction set,
while others may execute only a subset of that instruction set or a different instruction
set.

[00101] Processor 500 may include a general-purpose processor, such as a Core™
13, 15, 17, 2 Duo and Quad, Xeon™, Itanium™, XScale™ or StrongARM™ processor,
which may be available from Intel Corporation, of Santa Clara, Calif. Processor 500
may be provided from another company, such as ARM Holdings, Ltd, MIPS, etc.
Processor 500 may be a special-purpose processor, such as, for example, a network or
communication processor, compression engine, graphiCs processor, CO-processor,
embedded processor, or the like. Processor 500 may be implemented on one or more
chips. Processor 500 may be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies, such as, for example,

BiCMOS, CMOS, or NMOS.
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[00102] In one embodiment, a given one of caches 506 may be shared by multiple
ones of cores 502. In another embodiment, a given one of caches 506 may be dedicated
to one of cores 502. The assignment of caches 506 to cores 502 may be handled by a
cache controller or other suitable mechanism. A given one of caches 506 may be
shared by two or more cores 502 by implementing time-slices of a given cache 506.
[00103] Graphics module 560 may implement an integrated graphics processing
subsystem. In one embodiment, graphics module 560 may include a graphics
processor. Furthermore, graphics module 560 may include a media engine 565. Media
engine 565 may provide media encoding and video decoding.

[00104] FIGURE 5B is a block diagram of an example implementation of a core
502, in accordance with embodiments of the present disclosure. Core 502 may include
a front end 570 communicatively coupled to an out-of-order engine 580. Core 502 may
be communicatively coupled to other portions of processor 500 through cache
hierarchy 503.

[00105] Front end 570 may be implemented in any suitable manner, such as fully or
in part by front end 201 as described above. In one embodiment, front end 570 may
communicate with other portions of processor 500 through cache hierarchy 503. In a
further embodiment, front end 570 may fetch instructions from portions of processor
500 and prepare the instructions to be used later in the processor pipeline as they are
passed to out-of-order execution engine 580.

[00106] Out-of-order execution engine 580 may be implemented in any suitable
manner, such as fully or in part by out-of-order execution engine 203 as described
above. Out-of-order execution engine 580 may prepare instructions received from front
end 570 for execution. Out-of-order execution engine 580 may include an allocate
module 582. In one embodiment, allocate module 582 may allocate resources of
processor 500 or other resources, such as registers or buffers, to execute a given
instruction. Allocate module 582 may make allocations in schedulers, such as a
memory scheduler, fast scheduler, or floating point scheduler. Such schedulers may be
represented in FIGURE 5B by resource schedulers 584. Allocate module 582 may be
implemented fully or in part by the allocation logic described in conjunction with
FIGURE 2. Resource schedulers 584 may determine when an instruction is ready to

execute based on the readiness of a given resource’s sources and the availability of
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execution resources needed to execute an instruction. Resource schedulers 584 may be
implemented by, for example, schedulers 202, 204, 206 as discussed above. Resource
schedulers 584 may schedule the execution of instructions upon one or more resources.
In one embodiment, such resources may be internal to core 502, and may be illustrated,
for example, as resources 586. In another embodiment, such resources may be external
to core 502 and may be accessible by, for example, cache hierarchy 503. Resources
may include, for example, memory, caches, register files, or registers. Resources
internal to core 502 may be represented by resources 586 in FIGURE SB. As
necessary, values written to or read from resources 586 may be coordinated with other
portions of processor 500 through, for example, cache hierarchy 503. As instructions
are assigned resources, they may be placed into a reorder buffer 588. Reorder buffer
588 may track instructions as they are executed and may selectively reorder their
execution based upon any suitable criteria of processor 500. In one embodiment,
reorder buffer 588 may identify instructions or a series of instructions that may be
executed independently. Such instructions or a series of instructions may be executed
in parallel from other such instructions. Parallel execution in core 502 may be
performed by any suitable number of separate execution blocks or virtual processors.
In one embodiment, shared resources—such as memory, registers, and caches—may be
accessible to multiple virtual processors within a given core 502. In other
embodiments, shared resources may be accessible to multiple processing entities within
processor 500.

[00107] Cache hierarchy 503 may be implemented in any suitable manner. For
example, cache hierarchy 503 may include one or more lower or mid-level caches, such
as caches 572, 574. In one embodiment, cache hierarchy 503 may include an LLC 595
communicatively coupled to caches 572, 574. In another embodiment, LLC 595 may
be implemented in a module 590 accessible to all processing entities of processor 500.
In a further embodiment, module 590 may be implemented in an uncore module of
processors from Intel, Inc. Module 590 may include portions or subsystems of
processor 500 necessary for the execution of core 502 but might not be implemented
within core 502. Besides LLC 595, Module 590 may include, for example, hardware
interfaces, memory coherency coordinators, interprocessor interconnects, instruction

pipelines, or memory controllers. Access to RAM 599 available to processor 500 may
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be made through module 590 and, more specifically, LLC 595. Furthermore, other
instances of core 502 may similarly access module 590. Coordination of the instances
of core 502 may be facilitated in part through module 590.

[00108] FIGURES 6-8 may illustrate exemplary systems suitable for including
processor 500, while FIGURE 9 may illustrate an exemplary system on a chip (SoC)
that may include one or more of cores 502. Other system designs and implementations
known in the arts for laptops, desktops, handheld PCs, personal digital assistants,
engineering workstations, servers, network devices, network hubs, switches, embedded
processors, digital signal processors (DSPs), graphics devices, video game devices, set-
top boxes, micro controllers, cell phones, portable media players, hand held devices,
and various other electronic devices, may also be suitable. In general, a huge variety of
systems or electronic devices that incorporate a processor and/or other execution logic
as disclosed herein may be generally suitable.

[00109] FIGURE 6 illustrates a block diagram of a system 600, in accordance with
embodiments of the present disclosure. System 600 may include one or more
processors 610, 615, which may be coupled to graphics memory controller hub
(GMCH) 620. The optional nature of additional processors 615 is denoted in FIGURE
6 with broken lines.

[00110] Each processor 610,615 may be some version of processor 500. However, it
should be noted that integrated graphics logic and integrated memory control units
might not exist in processors 610,615. FIGURE 6 illustrates that GMCH 620 may be
coupled to a memory 640 that may be, for example, a dynamic random access memory
(DRAM). The DRAM may, for at least one embodiment, be associated with a non-
volatile cache.

[00111] GMCH 620 may be a chipset, or a portion of a chipset. GMCH 620 may
communicate with processors 610, 615 and control interaction between processors 610,
615 and memory 640. GMCH 620 may also act as an accelerated bus interface
between the processors 610, 615 and other elements of system 600. In one
embodiment, GMCH 620 communicates with processors 610, 615 via a multi-drop bus,
such as a frontside bus (FSB) 695.

[00112] Furthermore, GMCH 620 may be coupled to a display 645 (such as a flat
panel display). In one embodiment, GMCH 620 may include an integrated graphics



WO 2017/105719 PCT/US2016/061965

10

15

20

25

30

31

accelerator. GMCH 620 may be further coupled to an input/output (I/O) controller hub
(ICH) 650, which may be used to couple various peripheral devices to system 600.
External graphics device 660 may include a discrete graphics device coupled to ICH
650 along with another peripheral device 670.

[00113] In other embodiments, additional or different processors may also be present
in system 600. For example, additional processors 610, 615 may include additional
processors that may be the same as processor 610, additional processors that may be
heterogeneous or asymmetric to processor 610, accelerators (such as, e.g., graphics
accelerators or digital signal processing (DSP) units), field programmable gate arrays,
or any other processor. There may be a variety of differences between the physical
resources 610, 615 in terms of a spectrum of metrics of merit including architectural,
micro-architectural, thermal, power consumption characteristics, and the like. These
differences may effectively manifest themselves as asymmetry and heterogeneity
amongst processors 610, 615. For at least one embodiment, various processors 610,
615 may reside in the same die package.

[00114] FIGURE 7 illustrates a block diagram of a second system 700, in
accordance with embodiments of the present disclosure. As shown in FIGURE 7,
multiprocessor system 700 may include a point-to-point interconnect system, and may
include a first processor 770 and a second processor 780 coupled via a point-to-point
interconnect 750. Each of processors 770 and 780 may be some version of processor
500 as one or more of processors 610,615.

[00115] While FIGURE 7 may illustrate two processors 770, 780, it is to be
understood that the scope of the present disclosure is not so limited. In other
embodiments, one or more additional processors may be present in a given processor.
[00116] Processors 770 and 780 are shown including integrated memory controller
units 772 and 782, respectively. Processor 770 may also include as part of its bus
controller units point-to-point (P-P) interfaces 776 and 778; similarly, second processor
780 may include P-P interfaces 786 and 788. Processors 770, 780 may exchange
information via a point-to-point (P-P) interface 750 using P-P interface circuits 778,
788. As shown in FIGURE 7, IMCs 772 and 782 may couple the processors to

respective memories, namely a memory 732 and a memory 734, which in one
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embodiment may be portions of main memory locally attached to the respective
processors.

[00117] Processors 770, 780 may each exchange information with a chipset 790 via
individual P-P interfaces 752, 754 using point to point interface circuits 776, 794, 786,
798. In one embodiment, chipset 790 may also exchange information with a high-
performance graphics circuit 738 via a high-performance graphics interface 739.
[00118] A shared cache (not shown) may be included in either processor or outside
of both processors, yet connected with the processors via P-P interconnect, such that
either or both processors’ local cache information may be stored in the shared cache if a
processor is placed into a low power mode.

[00119] Chipset 790 may be coupled to a first bus 716 via an interface 796. In one
embodiment, first bus 716 may be a Peripheral Component Interconnect (PCI) bus, or a
bus such as a PCI Express bus or another third generation I/O interconnect bus,
although the scope of the present disclosure is not so limited.

[00120] As shown in FIGURE 7, various I/O devices 714 may be coupled to first
bus 716, along with a bus bridge 718 which couples first bus 716 to a second bus 720.
In one embodiment, second bus 720 may be a low pin count (LPC) bus. Various
devices may be coupled to second bus 720 including, for example, a keyboard and/or
mouse 722, communication devices 727 and a storage unit 728 such as a disk drive or
other mass storage device which may include instructions/code and data 730, in one
embodiment. Further, an audio I/O 724 may be coupled to second bus 720. Note that
other architectures may be possible. For example, instead of the point-to-point
architecture of FIGURE 7, a system may implement a multi-drop bus or other such
architecture.

[00121] FIGURE 8 illustrates a block diagram of a third system 800 in accordance
with embodiments of the present disclosure. Like elements in FIGURES 7 and 8 bear
like reference numerals, and certain aspects of FIGURE 7 have been omitted from
FIGURE 8 in order to avoid obscuring other aspects of FIGURE 8.

[00122] FIGURE 8 illustrates that processors 770, 780 may include integrated
memory and I/O control logic (“CL”) 872 and 882, respectively. For at least one
embodiment, CL 872, 882 may include integrated memory controller units such as that

described above in connection with FIGURES 5 and 7. In addition. CL 872, 882 may
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also include I/O control logic. FIGURE 8 illustrates that not only memories 732, 734
may be coupled to CL 872, 882, but also that I/O devices 814 may also be coupled to
control logic 872, 882. Legacy I/O devices 815 may be coupled to chipset 790.

[00123] FIGURE 9 illustrates a block diagram of a SoC 900, in accordance with
embodiments of the present disclosure. Similar elements in FIGURE 5 bear like
reference numerals. Also, dashed lined boxes may represent optional features on more
advanced SoCs. An interconnect units 902 may be coupled to: an application processor
910 which may include a set of one or more cores S02A-N and shared cache units 506;
a system agent unit 510; a bus controller units 916; an integrated memory controller
units 914; a set or one or more media processors 920 which may include integrated
graphics logic 908, an image processor 924 for providing still and/or video camera
functionality, an audio processor 926 for providing hardware audio acceleration, and a
video processor 928 for providing video encode/decode acceleration; an static random
access memory (SRAM) unit 930; a direct memory access (DMA) unit 932; and a
display unit 940 for coupling to one or more external displays.

[00124] FIGURE 10 illustrates a processor containing a central processing unit
(CPU) and a graphics processing unit (GPU), which may perform at least one
instruction, in accordance with embodiments of the present disclosure. In one
embodiment, an instruction to perform operations according to at least one embodiment
could be performed by the CPU. In another embodiment, the instruction could be
performed by the GPU. In still another embodiment, the instruction may be performed
through a combination of operations performed by the GPU and the CPU. For
example, in one embodiment, an instruction in accordance with one embodiment may
be received and decoded for execution on the GPU. However, one or more operations
within the decoded instruction may be performed by a CPU and the result returned to
the GPU for final retirement of the instruction. Conversely, in some embodiments, the
CPU may act as the primary processor and the GPU as the co-processor.

[00125] In some embodiments, instructions that benefit from highly parallel,
throughput processors may be performed by the GPU, while instructions that benefit
from the performance of processors that benefit from deeply pipelined architectures
may be performed by the CPU. For example, graphics, scientific applications, financial

applications and other parallel workloads may benefit from the performance of the
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GPU and be executed accordingly, whereas more sequential applications, such as
operating system kernel or application code may be better suited for the CPU.

[00126] In FIGURE 10, processor 1000 includes a CPU 1005, GPU 1010, image
processor 1015, video processor 1020, USB controller 1025, UART controller 1030,
SPI/SDIO controller 1035, display device 1040, memory interface controller 1045,
MIPI controller 1050, flash memory controller 1055, dual data rate (DDR) controller
1060, security engine 1065, and I*S/I’C controller 1070. Other logic and circuits may
be included in the processor of FIGURE 10, including more CPUs or GPUs and other
peripheral interface controllers.

[00127] One or more aspects of at least one embodiment may be implemented by
representative data stored on a machine-readable medium which represents various
logic within the processor, which when read by a machine causes the machine to
fabricate logic to perform the techniques described herein. Such representations,
known as “IP cores” may be stored on a tangible, machine-readable medium (“tape”)
and supplied to various customers or manufacturing facilities to load into the
fabrication machines that actually make the logic or processor. For example, IP cores,
such as the Cortex™ family of processors developed by ARM Holdings, Ltd. and
Loongson IP cores developed the Institute of Computing Technology (ICT) of the
Chinese Academy of Sciences may be licensed or sold to various customers or
licensees, such as Texas Instruments, Qualcomm, Apple, or Samsung and implemented
in processors produced by these customers or licensees.

[00128] FIGURE 11 illustrates a block diagram illustrating the development of IP
cores, in accordance with embodiments of the present disclosure. Storage 1100 may
include simulation software 1120 and/or hardware or software model 1110. In one
embodiment, the data representing the IP core design may be provided to storage 1100
via memory 1140 (e.g., hard disk), wired connection (e.g., internet) 1150 or wireless
connection 1160. The IP core information generated by the simulation tool and model
may then be transmitted to a fabrication facility 1165 where it may be fabricated by a
3" party to perform at least one instruction in accordance with at least one embodiment.
[00129] In some embodiments, one or more instructions may correspond to a first
type or architecture (e.g., x86) and be translated or emulated on a processor of a

different type or architecture (e.g., ARM). An instruction, according to one
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embodiment, may therefore be performed on any processor or processor type, including
ARM, x86, MIPS, a GPU, or other processor type or architecture.

[00130] FIGURE 12 illustrates how an instruction of a first type may be emulated by
a processor of a different type, in accordance with embodiments of the present
disclosure. In FIGURE 12, program 1205 contains some instructions that may perform
the same or substantially the same function as an instruction according to one
embodiment. However the instructions of program 1205 may be of a type and/or
format that is different from or incompatible with processor 1215, meaning the
instructions of the type in program 1205 may not be able to execute natively by the
processor 1215. However, with the help of emulation logic, 1210, the instructions of
program 1205 may be translated into instructions that may be natively be executed by
the processor 1215. In one embodiment, the emulation logic may be embodied in
hardware. In another embodiment, the emulation logic may be embodied in a tangible,
machine-readable medium containing software to translate instructions of the type in
program 1205 into the type natively executable by processor 1215. In other
embodiments, emulation logic may be a combination of fixed-function or
programmable hardware and a program stored on a tangible, machine-readable
medium. In one embodiment, the processor contains the emulation logic, whereas in
other embodiments, the emulation logic exists outside of the processor and may be
provided by a third party. In one embodiment, the processor may load the emulation
logic embodied in a tangible, machine-readable medium containing software by
executing microcode or firmware contained in or associated with the processor.

[00131] FIGURE 13 illustrates a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source instruction set to binary
instructions in a target instruction set, in accordance with embodiments of the present
disclosure. In the illustrated embodiment, the instruction converter may be a software
instruction converter, although the instruction converter may be implemented in
software, firmware, hardware, or various combinations thereof. FIGURE 13 shows a
program in a high level language 1302 may be compiled using an x86 compiler 1304 to
generate x86 binary code 1306 that may be natively executed by a processor with at
least one x86 instruction set core 1316. The processor with at least one x86 instruction

set core 1316 represents any processor that may perform substantially the same
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functions as an Intel processor with at least one x86 instruction set core by compatibly
executing or otherwise processing (1) a substantial portion of the instruction set of the
Intel x86 instruction set core or (2) object code versions of applications or other
software targeted to run on an Intel processor with at least one x86 instruction set core,
in order to achieve substantially the same result as an Intel processor with at least one
x86 instruction set core. x86 compiler 1304 represents a compiler that may be operable
to generate x86 binary code 1306 (e.g., object code) that may, with or without
additional linkage processing, be executed on the processor with at least one x86
instruction set core 1316. Similarly, FIGURE 13 shows the program in high level
language 1302 may be compiled using an alternative instruction set compiler 1308 to
generate alternative instruction set binary code 1310 that may be natively executed by a
processor without at least one x86 instruction set core 1314 (e.g., a processor with cores
that execute the MIPS instruction set of MIPS Technologies of Sunnyvale, CA and/or
that execute the ARM instruction set of ARM Holdings of Sunnyvale, CA). Instruction
converter 1312 may be used to convert x86 binary code 1306 into code that may be
natively executed by the processor without an x86 instruction set core 1314. This
converted code might not be the same as alternative instruction set binary code 1310;
however, the converted code will accomplish the general operation and be made up of
instructions from the alternative instruction set. Thus, instruction converter 1312
represents software, firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a processor or other electronic
device that does not have an x86 instruction set processor or core to execute x86 binary
code 1306.

[00132] FIGURE 14 is a block diagram of an instruction set architecture 1400 of a
processor, in accordance with embodiments of the present disclosure. Instruction set
architecture 1400 may include any suitable number or kind of components.

[00133] For example, instruction set architecture 1400 may include processing
entities such as one or more cores 1406, 1407 and a graphics processing unit 1415.
Cores 1406, 1407 may be communicatively coupled to the rest of instruction set
architecture 1400 through any suitable mechanism, such as through a bus or cache. In
one embodiment, cores 1406, 1407 may be communicatively coupled through an L2

cache control 1408, which may include a bus interface unit 1409 and an L2 cache 1411.
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Cores 1406, 1407 and graphics processing unit 1415 may be communicatively coupled
to each other and to the remainder of instruction set architecture 1400 through
interconnect 1410. In one embodiment, graphics processing unit 1415 may use a video
code 1420 defining the manner in which particular video signals will be encoded and
decoded for output.

[00134] Instruction set architecture 1400 may also include any number or kind of
interfaces, controllers, or other mechanisms for interfacing or communicating with
other portions of an electronic device or system. Such mechanisms may facilitate
interaction with, for example, peripherals, communications devices, other processors,
or memory. In the example of FIGURE 14, instruction set architecture 1400 may
include a liquid crystal display (LCD) video interface 1425, a subscriber interface
module (SIM) interface 1430, a boot ROM interface 1435, a synchronous dynamic
random access memory (SDRAM) controller 1440, a flash controller 1445, and a serial
peripheral interface (SPI) master unit 1450. LCD video interface 1425 may provide
output of video signals from, for example, GPU 1415 and through, for example, a
mobile industry processor interface (MIPI) 1490 or a high-definition multimedia
interface (HDMI) 1495 to a display. Such a display may include, for example, an LCD.
SIM interface 1430 may provide access to or from a SIM card or device. SDRAM
controller 1440 may provide access to or from memory such as an SDRAM chip or
module 1460. Flash controller 1445 may provide access to or from memory such as
flash memory 1465 or other instances of RAM. SPI master unit 1450 may provide
access to or from communications modules, such as a Bluetooth module 1470, high-
speed 3G modem 1475, global positioning system module 1480, or wireless module
1485 implementing a communications standard such as 802.11.

[00135] FIGURE 15 is a more detailed block diagram of an instruction set
architecture 1500 of a processor, in accordance with embodiments of the present
disclosure. Instruction architecture 1500 may implement one or more aspects of
instruction set architecture 1400. Furthermore, instruction set architecture 1500 may
illustrate modules and mechanisms for the execution of instructions within a processor.

[00136] Instruction architecture 1500 may include a memory system 1540
communicatively coupled to one or more execution entities 1565. Furthermore,

instruction architecture 1500 may include a caching and bus interface unit such as unit
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1510 communicatively coupled to execution entities 1565 and memory system 1540.
In one embodiment, loading of instructions into execution entities 1565 may be
performed by one or more stages of execution. Such stages may include, for example,
instruction prefetch stage 1530, dual instruction decode stage 1550, register rename
stage 1555, issue stage 1560, and writeback stage 1570.

[00137] In one embodiment, memory system 1540 may include an executed
instruction pointer 1580. Executed instruction pointer 1580 may store a value
identifying the oldest, undispatched instruction within a batch of instructions. The
oldest instruction may correspond to the lowest Program Order (PO) value. A PO may
include a unique number of an instruction. Such an instruction may be a single
instruction within a thread represented by multiple strands. A PO may be used in
ordering instructions to ensure correct execution semantics of code. A PO may be
reconstructed by mechanisms such as evaluating increments to PO encoded in the
instruction rather than an absolute value. Such a reconstructed PO may be known as an
“RPO.” Although a PO may be referenced herein, such a PO may be used
interchangeably with an RPO. A strand may include a sequence of instructions that are
data dependent upon each other. The strand may be arranged by a binary translator at
compilation time. Hardware executing a strand may execute the instructions of a given
strand in order according to the PO of the various instructions. A thread may include
multiple strands such that instructions of different strands may depend upon each other.
A PO of a given strand may be the PO of the oldest instruction in the strand which has
not yet been dispatched to execution from an issue stage. Accordingly, given a thread
of multiple strands, each strand including instructions ordered by PO, executed
instruction pointer 1580 may store the oldest—illustrated by the lowest number—PO in
the thread.

[00138] In another embodiment, memory system 1540 may include a retirement
pointer 1582. Retirement pointer 1582 may store a value identifying the PO of the last
retired instruction. Retirement pointer 1582 may be set by, for example, retirement unit
454. 1If no instructions have yet been retired, retirement pointer 1582 may include a
null value.

[00139] Execution entities 1565 may include any suitable number and kind of

mechanisms by which a processor may execute instructions. In the example of
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FIGURE 15, execution entities 1565 may include ALU/multiplication units (MUL)
1566, ALUs 1567, and floating point units (FPU) 1568. In one embodiment, such
entities may make use of information contained within a given address 1569.
Execution entities 1565 in combination with stages 1530, 1550, 1555, 1560, 1570 may
collectively form an execution unit.

[00140] Unit 1510 may be implemented in any suitable manner. In one
embodiment, unit 1510 may perform cache control. In such an embodiment, unit 1510
may thus include a cache 1525. Cache 1525 may be implemented, in a further
embodiment, as an L2 unified cache with any suitable size, such as zero, 128k, 256k,
512k, 1M, or 2M bytes of memory. In another, further embodiment, cache 1525 may
be implemented in error-correcting code memory. In another embodiment, unit 1510
may perform bus interfacing to other portions of a processor or electronic device. In
such an embodiment, unit 1510 may thus include a bus interface unit 1520 for
communicating over an interconnect, intraprocessor bus, interprocessor bus, or other
communication bus, port, or line. Bus interface unit 1520 may provide interfacing in
order to perform, for example, generation of the memory and input/output addresses for
the transfer of data between execution entities 1565 and the portions of a system
external to instruction architecture 1500.

[00141] To further facilitate its functions, bus interface unit 1520 may include an
interrupt control and distribution unit 1511 for generating interrupts and other
communications to other portions of a processor or electronic device. In one
embodiment, bus interface unit 1520 may include a snoop control unit 1512 that
handles cache access and coherency for multiple processing cores. In a further
embodiment, to provide such functionality, snoop control unit 1512 may include a
cache-to-cache transfer unit that handles information exchanges between different
caches. In another, further embodiment, snoop control unit 1512 may include one or
more snoop filters 1514 that monitors the coherency of other caches (not shown) so that
a cache controller, such as unit 1510, does not have to perform such monitoring
directly. Unit 1510 may include any suitable number of timers 1515 for synchronizing
the actions of instruction architecture 1500. Also, unit 1510 may include an AC port

1516.
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[00142] Memory system 1540 may include any suitable number and kind of
mechanisms for storing information for the processing needs of instruction architecture
1500. In one embodiment, memory system 1540 may include a load store unit 1546 for
storing information such as buffers written to or read back from memory or registers.
In another embodiment, memory system 1540 may include a translation lookaside
buffer (TLB) 1545 that provides look-up of address values between physical and virtual
addresses. In yet another embodiment, memory system 1540 may include a memory
management unit (MMU) 1544 for facilitating access to virtual memory. In still yet
another embodiment, memory system 1540 may include a prefetcher 1543 for
requesting instructions from memory before such instructions are actually needed to be
executed, in order to reduce latency.

[00143] The operation of instruction architecture 1500 to execute an instruction may
be performed through different stages. For example, using unit 1510 instruction
prefetch stage 1530 may access an instruction through prefetcher 1543. Instructions
retrieved may be stored in instruction cache 1532. Prefetch stage 1530 may enable an
option 1531 for fast-loop mode, wherein a series of instructions forming a loop that is
small enough to fit within a given cache are executed. In one embodiment, such an
execution may be performed without needing to access additional instructions from, for
example, instruction cache 1532. Determination of what instructions to prefetch may
be made by, for example, branch prediction unit 1535, which may access indications of
execution in global history 1536, indications of target addresses 1537, or contents of a
return stack 1538 to determine which of branches 1557 of code will be executed next.
Such branches may be possibly prefetched as a result. Branches 1557 may be produced
through other stages of operation as described below. Instruction prefetch stage 1530
may provide instructions as well as any predictions about future instructions to dual
instruction decode stage 1550.

[00144] Dual instruction decode stage 1550 may translate a received instruction into
microcode-based instructions that may be executed. Dual instruction decode stage
1550 may simultaneously decode two instructions per clock cycle. Furthermore, dual
instruction decode stage 1550 may pass its results to register rename stage 1555. In

addition, dual instruction decode stage 1550 may determine any resulting branches
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from its decoding and eventual execution of the microcode. Such results may be input
into branches 1557.

[00145] Register rename stage 1555 may translate references to virtual registers or
other resources into references to physical registers or resources. Register rename stage
1555 may include indications of such mapping in a register pool 1556. Register
rename stage 1555 may alter the instructions as received and send the result to issue
stage 1560.

[00146] Issue stage 1560 may issue or dispatch commands to execution entities
1565. Such issuance may be performed in an out-of-order fashion. In one
embodiment, multiple instructions may be held at issue stage 1560 before being
executed. Issue stage 1560 may include an instruction queue 1561 for holding such
multiple commands. Instructions may be issued by issue stage 1560 to a particular
processing entity 1565 based upon any acceptable criteria, such as availability or
suitability of resources for execution of a given instruction. In one embodiment, issue
stage 1560 may reorder the instructions within instruction queue 1561 such that the first
instructions received might not be the first instructions executed. Based upon the
ordering of instruction queue 1561, additional branching information may be provided
to branches 1557. Issue stage 1560 may pass instructions to executing entities 1565 for
execution.

[00147] Upon execution, writeback stage 1570 may write data into registers, queues,
or other structures of instruction set architecture 1500 to communicate the completion
of a given command. Depending upon the order of instructions arranged in issue stage
1560, the operation of writeback stage 1570 may enable additional instructions to be
executed. Performance of instruction set architecture 1500 may be monitored or
debugged by trace unit 1575.

[00148] FIGURE 16 is a block diagram of an execution pipeline 1600 for an
instruction set architecture of a processor, in accordance with embodiments of the
present disclosure. Execution pipeline 1600 may illustrate operation of, for example,
instruction architecture 1500 of FIGURE 15.

[00149] Execution pipeline 1600 may include any suitable combination of steps or
operations. In 1605, predictions of the branch that is to be executed next may be made.

In one embodiment, such predictions may be based upon previous executions of
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instructions and the results thereof. In 1610, instructions corresponding to the
predicted branch of execution may be loaded into an instruction cache. In 1615, one or
more such instructions in the instruction cache may be fetched for execution. In 1620,
the instructions that have been fetched may be decoded into microcode or more specific
machine language. In one embodiment, multiple instructions may be simultaneously
decoded. In 1625, references to registers or other resources within the decoded
instructions may be reassigned. For example, references to virtual registers may be
replaced with references to corresponding physical registers. In 1630, the instructions
may be dispatched to queues for execution. In 1640, the instructions may be executed.
Such execution may be performed in any suitable manner. In 1650, the instructions
may be issued to a suitable execution entity. The manner in which the instruction is
executed may depend upon the specific entity executing the instruction. For example,
at 1655, an ALU may perform arithmetic functions. The ALU may utilize a single
clock cycle for its operation, as well as two shifters. In one embodiment, two ALUs
may be employed, and thus two instructions may be executed at 1655. At 1660, a
determination of a resulting branch may be made. A program counter may be used to
designate the destination to which the branch will be made. 1660 may be executed
within a single clock cycle. At 1665, floating point arithmetic may be performed by
one or more FPUs. The floating point operation may require multiple clock cycles to
execute, such as two to ten cycles. At 1670, multiplication and division operations may
be performed. Such operations may be performed in four clock cycles. At 1675,
loading and storing operations to registers or other portions of pipeline 1600 may be
performed. The operations may include loading and storing addresses. Such
operations may be performed in four clock cycles. At 1680, write-back operations may
be performed as required by the resulting operations of 1655-1675.

[00150] FIGURE 17 is a block diagram of an electronic device 1700 for utilizing a
processor 1710, in accordance with embodiments of the present disclosure. Electronic
device 1700 may include, for example, a notebook, an ultrabook, a computer, a tower
server, a rack server, a blade server, a laptop, a desktop, a tablet, a mobile device, a
phone, an embedded computer, or any other suitable electronic device.

[00151] Electronic device 1700 may include processor 1710 communicatively

coupled to any suitable number or kind of components, peripherals, modules, or
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devices. Such coupling may be accomplished by any suitable kind of bus or interface,
such as I’C bus, system management bus (SMBus), low pin count (LPC) bus, SPI, high
definition audio (HDA) bus, Serial Advance Technology Attachment (SATA) bus,
USB bus (versions 1, 2, 3), or Universal Asynchronous Receiver/Transmitter (UART)
bus.

[00152] Such components may include, for example, a display 1724, a touch screen
1725, a touch pad 1730, a near field communications (NFC) unit 1745, a sensor hub
1740, a thermal sensor 1746, an express chipset (EC) 1735, a trusted platform module
(TPM) 1738, BIOS/firmware/flash memory 1722, a digital signal processor 1760, a
drive 1720 such as a solid state disk (SSD) or a hard disk drive (HDD), a wireless local
area network (WLAN) unit 1750, a Bluetooth unit 1752, a wireless wide area network
(WWAN) unit 1756, a global positioning system (GPS) 1775, a camera 1754 such as a
USB 3.0 camera, or a low power double data rate (LPDDR) memory unit 1715
implemented in, for example, the LPDDR3 standard. These components may each be
implemented in any suitable manner.

[00153] Furthermore, in various embodiments other components may be
communicatively coupled to processor 1710 through the components discussed above.
For example, an accelerometer 1741, ambient light sensor (ALS) 1742, compass 1743,
and gyroscope 1744 may be communicatively coupled to sensor hub 1740. A thermal
sensor 1739, fan 1737, keyboard 1736, and touch pad 1730 may be communicatively
coupled to EC 1735. Speakers 1763, headphones 1764, and a microphone 1765 may be
communicatively coupled to an audio unit 1762, which may in turn be
communicatively coupled to DSP 1760. Audio unit 1762 may include, for example, an
audio codec and a class D amplifier. A SIM card 1757 may be communicatively
coupled to WWAN unit 1756. Components such as WLAN unit 1750 and Bluetooth
unit 1752, as well as WWAN unit 1756 may be implemented in a next generation form
factor (NGFF).

[00154] Embodiments of the present disclosure involve instructions and processing
logic for executing one or more vector operations for blending and permuting
operations. FIGURE 18 is an illustration of an example system 1800 for instructions
and logic for blend and permute sequences of instructions or operations, according to

embodiments of the present disclosure. The operations may implement instruction
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striding, wherein multiple operations are applied to different elements of a structure
simultaneously. For example, the operations may implement in part a Stride-5
operation, although the principles of the present disclosure may be applied to stride
operations on a different number of elements. In one embodiment, the operations
might be made on five elements of the same type. Each different structure within the
array may be denoted by a different shading or color, and each element within a given
structure may be shown by its number (0...4).

[00155] More specifically, the need to implement striding operations may arise when
converting an array-of-structures (AOS) data format into a structure-of-arrays (SOA)
data format. Such operations are shown briefly in FIGURE 21. Given an array 2102 in
memory or in cache, data for five separate structures may be contiguously (whether
physically or virtually) arranged in memory. In one embodiment, each structure
(Structurel...Structure8) may have the same format as one another. The eight
structures may each be, for example, a five-element structure, wherein each element is,
for example, a double. In other examples, each element of the structure could be a
float, single, or other data type. Each element may be of a same data type. Array 2102
may be referenced by a base location 7 in its memory.

[00156] The process of converting AOS to SOA may be performed. System 1800
may perform such a conversion in an efficient manner.

[00157] As a result, a structure of arrays 2104 may result. Each array
(Arrayl...Array4) may be loaded into a different destination, such as a register or
memory or cache location. Each array may include, for example, all the first elements
from the structures, all the second elements from the structures, all the third elements
from the structures, all the fourth elements from the structures, or all the fifth elements
from the structure.

[00158] By arranging the structure of arrays 2104 into different registers, each with
all of the particularly indexed elements from all of the structures of the array of
structures 2102, additional operations may be performed on each register with
increased efficiency. For example, in a loop of executing code, the first element of
each structure might be added to a second element of each structure, or the third
element of each structure might be analyzed. By isolating all such elements into a

single register or other location, vector operations can be performed. Such vector
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operations, using SIMD techniques, could perform the addition, analysis, or other
execution upon all elements of the array at a single time, in a clock cycle.
Transformation of AOS to SOA format may allow vectorized operations such as these.
[00159] Returning to FIGURE 18, system 1800 may perform the AOS-SOA
conversion shown in FIGURE 21. In one embodiment, system 1800 may utilize blend
and permute operations in order to perform the AOS-SOA conversion.

[00160] The AOS-SOA conversion may be made upon any suitable trigger. In one
embodiment, system 1800 may perform AOS-SOA conversion upon a specific
instruction in instruction stream 1802 that such conversion is to be performed. In
another embodiment, system 1800 may infer that AOS-SOA conversion should be
performed based upon the proposed execution of another instruction from instruction
stream 1802. For example, upon determination that a stride operation, a vector
operation, or an operation upon strided data is to be performed, system 1800 may
recognize that such execution will be more efficiently executed with data that is
converted to strided data and perform AOS-SOA conversion. Any suitable portion of
system 1800 may determine that AOS-SOA conversion is to be performed, such as a
front end, a decoder, a dynamic translator, or other suitable portions, such as a just-in-
time interpreter or compiler.

[00161] In some systems, an AOS-SOA conversion may be performed by gather
instructions. In other systems, an AOS-SOA conversion may be performed by permute
instructions. However, in one embodiment system 1800 may perform the AOS-SOA
conversion using load, blend, and permute instructions. System 1800 may, as a
consequence, more efficiently perform the AOS-SOA conversion. Blend instructions
used by system 1800 to implement the AOS-SOA conversion may have a lower latency
than permute or gather operations. Furthermore, blend instructions used by system
1800 to implement the AOS-SOA conversion may be able to execute on multiple
execution ports of an execution units, as opposed to permute operations which might
execute on a single execution port.

[00162] System 1800 may include a processor, SoC, integrated circuit, or other
mechanism. For example, system 1800 may include processor 1804. Although
processor 1804 is shown and described as an example in FIGURE 18, any suitable

mechanism may be used. Processor 1804 may include any suitable mechanisms for
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executing vector operations that target vector registers, including those that operate on
structures stored in the vector registers that contain multiple elements. In one
embodiment, such mechanisms may be implemented in hardware. Processor 1804 may
be implemented fully or in part by the elements described in FIGURES 1-17.

[00163] Instructions to be executed on processor 1804 may be included in
instruction stream 1802. Instruction stream 1802 may be generated by, for example, a
compiler, just-in-time interpreter, or other suitable mechanism (which might or might
not be included in system 1800), or may be designated by a drafter of code resulting in
instruction stream 1802. For example, a compiler may take application code and
generate executable code in the form of instruction stream 1802. Instructions may be
received by processor 1804 from instruction stream 1802. Instruction stream 1802 may
be loaded to processor 1804 in any suitable manner. For example, instructions to be
executed by processor 1804 may be loaded from storage, from other machines, or from
other memory, such as memory system 1830. The instructions may arrive and be
available in resident memory, such as RAM, wherein instructions are fetched from
storage to be executed by processor 1804. The instructions may be fetched from
resident memory by, for example. In one embodiment, instruction stream 1802 may
include an instruction 1822 that will trigger AOS-SOA conversion.

[00164] Processor 1804 may include a front end 1806, which may include an
instruction fetch pipeline stage and a decode pipeline stage. Front end 1806 may
receive instructions with fetch unit 1808 and decode instructions from instruction
stream 1802 using decode unit 1810. The decoded instructions may be dispatched,
allocated, and scheduled for execution by an allocation stage of a pipeline (such as
allocator 1814) and allocated to specific execution units 1816 for execution. One or
more specific instructions to be executed by processor 1804 may be included in a
library defined for execution by processor 1804. In another embodiment, specific
instructions may be targeted by particular portions of processor 1804. For example,
processor 1804 may recognize an attempt in instruction stream 1802 to execute a vector
operation in software and may issue the instruction to a particular one of execution
units 1816.

[00165] During execution, access to data or additional instructions (including data or

instructions resident in memory system 1830) may be made through memory
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subsystem 1820. Moreover, results from execution may be stored in memory
subsystem 1820 and may subsequently be flushed to other portions of memory.
Memory subsystem 1820 may include, for example, memory, RAM, or a cache
hierarchy, which may include one or more Level 1 (L1) caches or Level 2 (L2) caches,
some of which may be shared by multiple cores 1812 or processors 1804. After
execution by execution units 1816, instructions may be retired by a writeback stage or
retirement stage in retirement unit 1818. Various portions of such execution pipelining
may be performed by one or more cores 1812.

[00166] An execution unit 1816 that executes vector instructions may be
implemented in any suitable manner. In one embodiment, an execution unit 1816 may
include or may be communicatively coupled to memory elements to store information
necessary to perform one or more vector operations. In one embodiment, an execution
unit 1816 may include circuitry to perform strided operations upon strideS or other
data. For example, an execution unit 1816 may include circuitry to implement an
instruction upon multiple elements of data simultaneously within a given clock cycle.
[00167] In embodiments of the present disclosure, the instruction set architecture of
processor 1804 may implement one or more extended vector instructions that are
defined as Intel® Advanced Vector Extensions 512 (Intel® AVX-512) instructions.
Processor 1804 may recognize, either implicitly or through decoding and execution of
specific instructions, that one of these extended vector operations is to be performed.
In such cases, the extended vector operation may be directed to a particular one of the
execution units 1816 for execution of the instruction. In one embodiment, the
instruction set architecture may include support for 512-bit SIMD operations. For
example, the instruction set architecture implemented by an execution unit 1816 may
include 32 vector registers, each of which is 512 bits wide, and support for vectors that
are up to 512 bits wide. The instruction set architecture implemented by an execution
unit 1816 may include eight dedicated mask registers for conditional execution and
efficient merging of destination operands. At least some extended vector instructions
may include support for broadcasting. At least some extended vector instructions may
include support for embedded masking to enable predication.

[00168] At least some extended vector instructions may apply the same operation to

each element of a vector stored in a vector register at the same time. Other extended
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vector instructions may apply the same operation to corresponding elements in multiple
source vector registers. For example, the same operation may be applied to each of the
individual data elements of a packed data item stored in a vector register by an
extended vector instruction. In another example, an extended vector instruction may
specify a single vector operation to be performed on the respective data elements of two
source vector operands to generate a destination vector operand.

[00169] In embodiments of the present disclosure, at least some extended vector
instructions may be executed by a SIMD coprocessor within a processor core. For
example, one or more of execution units 1816 within a core 1812 may implement the
functionality of a SIMD coprocessor. The SIMD coprocessor may be implemented
fully or in part by the elements described in FIGURES 1-17. In one embodiment,
extended vector instructions that are received by processor 1804 within instruction
stream 1802 may be directed to an execution unit 1816 that implements the
functionality of a SIMD coprocessor.

[00170] During execution, in response to an operation that may benefit from strided
data, system 1800 may execute an instruction that causes AOS-SOA conversion 1830.
Example operation of such conversion may be shown in the figures below.

[00171] Some aspects of AOS-SOA conversion may utilize permute instructions.
Permute instructions may selectively identify any combination of the elements of two
or more source vectors to be stored in a destination vector. Moreover, the combination
of the elements may be stored in any desired order. In order to perform such an
operation, an index vector may be specified, wherein each element of the index vector
specifies, for an element of the destination vector, which element among the combined
sources will be stored in the destination vector.

[00172] Several forms of permute instructions may be used. For example, a two-
source permute instruction such as VPERMT2D may include a mask and three other
operators or parameters. VPERMT2D may be called using, for example, VPERMT2D
{mask} sourcel, index, source 2, although the order of parameters may be in any
suitable arrangement. Sourcel, index, and source2 may all be vectors of the same size.
The mask may be used to selective write to the destination. Thus, if mask is all 1’s, all
results will be written, but the binary mask may be set so as to selectively write a subset

of the permutation. The permute operation will select values from the combination of
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sourcel and source2 to write to the destination. Either source or the index may also
serve as the destination of the permutation. For example, sourcel may be used as the
destination. In other examples, VPERMT2 may overwrite results on source registers,
while VPERMI2 may overwrite results on index registers. The elements of the index
may specify which elements of sourcel and source2 are to be written to the destination.
A given element of the index at a given position may specify which of sourcel and
source2 are to be written to the destination at a location in the destination at the given
position. The element of the index may specify an offset within a combination of
sourcel and source2 that will be written to the destination.

[00173] For example, consider a call to VPERMT2D {mask = 01111111} {sourcel
=zmmO={abcdefgh} {index=zmm31={-11161 15105 0} {source2 =zmml
=1] k1l mnop} The first seven elements of sourcel (zmmO) will be written
according to the mask. Furthermore, index may specify offsets (from right to left)
within the combination of sourcel and source2 that will be written to the destination.
The combination may include the concatenation of source2 to sourcel, or {ijklmno
pabcdefgh}. Thus, index may specify that the zeroth element of the destination
will be written with the zeroth element of the combination of source2 and sourcel, or
“h”. The index may specify that the first element (of the destination will be written
with the fifth element of the combination of source2 and sourcel, or “c”. The index
may specify (zero-based numbering) that the second element of the destination will be
written with the tenth element of the combination of source2 and sourcel, or “n”. The
index may specify (zero-based numbering) that the third element of the destination will
be written with the fifteenth element of the combination of source2 and sourcel, or “i”.
The index may specify (zero-based numbering) that the fourth element of the
destination will be written with the first element of the combination of source2 and
sourcel, or “g”. The index may specify (zero-based numbering) that the fifth element
of the destination will be written with the sixth element of the combination of source2
and sourcel, or “b”. The index may specify (zero-based numbering) that the sixth
element of the destination will be written with the eleventh element of the combination

of source2 and sourcel, or “m”. The index may specify (zero-based numbering) that

the seventh element of the destination will not be written, as it is specified with a “-17.
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Thus, as a result, the permute will yield { m b gin ¢ h} stored in sourcel, the zmmO
register.

[00174] Different permute operations provide significant flexibility. For example,
different permute operations shown in FIGURE 22 can be used to selectively the same
element (the “x” element) from different registers, wherein the locations of such an
element across the sources is known.

[00175] Some aspects of AOS-SOA conversion may utilize blend instructions.
Blend instructions may selectively identify a combination of the elements of two or
more source vectors to be stored in a destination vector. However, in contrast to
permute instructions, blend instructions do not arbitrarily combine any subset of the
combination of the source vectors in any order into the destination vector. Blend
instructions may select, for a given position in the destination vector, which element
from the source vectors at the same position are to be selected and stored. Blend
instructions may make use of an index. For a two-source blend operation, the index
may be a bit array that specifies which of the two sources will contribute their element
to the destination vector. Each bit at a given position may specify whether the
corresponding position within the destination vector will be written with a first or a
second source.

[00176] Several forms of blend instructions may be used. For example, a two-
source permute instruction such as VBLENDMPD may include a mask and three other
operators or parameters. VBLENDMPD may be called using, for example,
VBLENDMPD {mask} destination, sourcel, source2, although the order of parameters
may be in any suitable arrangement. Sourcel, destination, and source2 may all be
vectors of the same size. The mask may be used to identify, for a given bit, whether the
corresponding value in sourcel or source2 will be written to destination. In other cases,
one of the sources might also be the destination.

[00177] For example, consider a call to VBLENDMPD {mask = 11001110}
{destination = zmm3} {sourcel =zmmO = {abcdefgh} {source2=zmml =1jkl
m n o p}. The resulting destination vector zmm3 may be setto {abijefgp}.

[00178] In the present disclosure, example pseudocode, instructions, and parameters

may be shown. However, other pseudocode, instructions, and parameters may be
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substituted and used as appropriate. The instructions may include Intel ® instructions
that are used for example purposes.

[00179] FIGURE 19 illustrates an example processor core 1900 of a data processing
system that performs SIMD operations, in accordance with embodiments of the present
disclosure. Processor 1900 may be implemented fully or in part by the elements
described in FIGURES 1-18. In one embodiment, processor core 1900 may include a
main processor 1920 and a SIMD coprocessor 1910. SIMD coprocessor 1910 may be
implemented fully or in part by the elements described in FIGURES 1-17. In one
embodiment, SIMD coprocessor 1910 may implement at least a portion of one of the
execution units 1816 illustrated in FIGURE 18. In one embodiment, SIMD
coprocessor 1910 may include a SIMD execution unit 1912 and an extended vector
register file 1914. SIMD coprocessor 1910 may perform operations of extended SIMD
instruction set 1916. Extended SIMD instruction set 1916 may include one or more
extended vector instructions. These extended vector instructions may control data
processing operations that include interactions with data resident in extended vector
register file 1914,

[00180] In one embodiment, main processor 1920 may include a decoder 1922 to
recognize instructions of extended SIMD instruction set 1916 for execution by SIMD
coprocessor 1910. In other embodiments, SIMD coprocessor 1910 may include at least
part of decoder (not shown) to decode instructions of extended SIMD instruction set
1916. Processor core 1900 may also include additional circuitry (not shown) which
may be unnecessary to the understanding of embodiments of the present disclosure.
[00181] In embodiments of the present disclosure, main processor 1920 may execute
a stream of data processing instructions that control data processing operations of a
general type, including interactions with cache(s) 1924 and/or register file 1926.
Embedded within the stream of data processing instructions may be SIMD coprocessor
instructions of extended SIMD instruction set 1916. Decoder 1922 of main processor
1920 may recognize these SIMD coprocessor instructions as being of a type that should
be executed by an attached SIMD coprocessor 1910. Accordingly, main processor
1920 may issue these SIMD coprocessor instructions (or control signals representing
SIMD coprocessor instructions) on the coprocessor bus 1915. From coprocessor bus

1915, these instructions may be received by any attached SIMD coprocessor. In the
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example embodiment illustrated in FIGURE 19, SIMD coprocessor 1910 may accept
and execute any received SIMD coprocessor instructions intended for execution on
SIMD coprocessor 1910.

[00182] In one embodiment, main processor 1920 and SIMD coprocessor 1920 may
be integrated into a single processor core 1900 that includes an execution unit, a set of
register files, and a decoder to recognize instructions of extended SIMD instruction set
1916.

[00183] The example implementations depicted in FIGURES 18 and 19 are merely
illustrative and are not meant to be limiting on the implementation of the mechanisms
described herein for performing extended vector operations.

[00184] FIGURE 20 is a block diagram illustrating an example extended vector
register file 1914, in accordance with embodiments of the present disclosure. Extended
vector register file 1914 may include 32 SIMD registers (ZMMO - ZMM31), each of
which is 512-bit wide. The lower 256 bits of each of the ZMM registers are aliased to a
respective 256-bit YMM register. The lower 128 bits of each of the YMM registers are
aliased to a respective 128-bit XMM register. For example, bits 255 to O of register
ZMMO (shown as 2001) are aliased to register YMMO, and bits 127 to O of register
ZMMO are aliased to register XMMO. Similarly, bits 255 to 0 of register ZMMI
(shown as 2002) are aliased to register YMMI, bits 127 to O of register ZMMI1 are
aliased to register XMMI, bits 255 to O of register ZMM?2 (shown as 2003) are aliased
to register YMM?2, bits 127 to O of the register ZMM2 are aliased to register XMM?2,
and so on.

[00185] In one embodiment, extended vector instructions in extended SIMD
instruction set 1916 may operate on any of the registers in extended vector register file
1914, including registers ZMMO - ZMM31, registers YMMO - YMMI15, and registers
XMMO - XMM?7. In another embodiment, legacy SIMD instructions implemented
prior to the development of the Intel® AVX-512 instruction set architecture may
operate on a subset of the YMM or XMM registers in extended vector register file
1914. For example, access by some legacy SIMD instructions may be limited to
registers YMMO - YMMI15 or to registers XMMO - XMM?7, in some embodiments.
[00186] In embodiments of the present disclosure, the instruction set architecture

may support extended vector instructions that access up to four instruction operands.
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For example, in at least some embodiments, the extended vector instructions may
access any of 32 extended vector registers ZMMO - ZMM31 shown in FIGURE 20 as
source or destination operands. In some embodiments, the extended vector instructions
may access any one of eight dedicated mask registers. In some embodiments, the
extended vector instructions may access any of sixteen general-purpose registers as
source or destination operands.

[00187] In embodiments of the present disclosure, encodings of the extended vector
instructions may include an opcode specifying a particular vector operation to be
performed. Encodings of the extended vector instructions may include an encoding
identifying any of eight dedicated mask registers, kO - k7. Each bit of the identified
mask register may govern the behavior of a vector operation as it is applied to a
respective source vector element or destination vector element. For example, in one
embodiment, seven of these mask registers (k1 - k7) may be used to conditionally
govern the per-data-element computational operation of an extended vector instruction.
In this example, the operation is not performed for a given vector element if the
corresponding mask bit is not set. In another embodiment, mask registers k1 - k7 may
be used to conditionally govern the per-element updates to the destination operand of
an extended vector instruction. In this example, a given destination element is not
updated with the result of the operation if the corresponding mask bit is not set.

[00188] In one embodiment, encodings of the extended vector instructions may
include an encoding specifying the type of masking to be applied to the destination
(result) vector of an extended vector instruction. For example, this encoding may
specify whether merging-masking or zero-masking is applied to the execution of a
vector operation. If this encoding specifies merging-masking, the value of any
destination vector element whose corresponding bit in the mask register is not set may
be preserved in the destination vector. If this encoding specifies zero-masking, the
value of any destination vector element whose corresponding bit in the mask register is
not set may be replaced with a value of zero in the destination vector. In one example
embodiment, mask register kO is not used as a predicate operand for a vector operation.
In this example, the encoding value that would otherwise select mask kO may instead

select an implicit mask value of all ones, thereby effectively disabling masking. In this
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example, mask register kO may be used for any instruction that takes one or more mask
registers as a source or destination operand.
[00189] One example of the use and syntax of an extended vector instruction is
shown below:

VADDPS zmm1, zmm2, zmm3
[00190] In one embodiment, the instruction shown above would apply a vector
addition operation to all of the elements of the source vector registers zmm?2 and zmm3.
In one embodiment, the instruction shown above would store the result vector in
destination vector register zmm1. Alternatively, an instruction to conditionally apply a
vector operation is shown below:

VADDPS zmm1 {k1} {z}, zmm2, zmm3
[00191] In this example, the instruction would apply a vector addition operation to
the elements of the source vector registers zmm2 and zmm3 for which the
corresponding bit in mask register k1 is set. In this example, if the {z} modifier is set,
the values of the elements of the result vector stored in destination vector register
zmm]1 corresponding to bits in mask register k1 that are not set may be replaced with a
value of zero. Otherwise, if the {z} modifier is not set, or if no {z} modifier is
specified, the values of the elements of the result vector stored in destination vector
register zmm1 corresponding to bits in mask register k1 that are not set may be
preserved.
[00192] In one embodiment, encodings of some extended vector instructions may
include an encoding to specify the use of embedded broadcast. If an encoding
specifying the use of embedded broadcast is included for an instruction that loads data
from memory and performs some computational or data movement operation, a single
source element from memory may be broadcast across all elements of the effective
source operand. For example, embedded broadcast may be specified for a vector
instruction when the same scalar operand is to be used in a computation that is applied
to all of the elements of a source vector. In one embodiment, encodings of the
extended vector instructions may include an encoding specifying the size of the data
elements that are packed into a source vector register or that are to be packed into a
destination vector register. For example, the encoding may specify that each data

element is a byte, word, doubleword, or quadword, etc. In another embodiment,
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encodings of the extended vector instructions may include an encoding specifying the
data type of the data elements that are packed into a source vector register or that are to
be packed into a destination vector register. For example, the encoding may specify
that the data represents single or double precision integers, or any of multiple supported
floating point data types.

[00193] In one embodiment, encodings of the extended vector instructions may
include an encoding specifying a memory address or memory addressing mode with
which to access a source or destination operand. In another embodiment, encodings of
the extended vector instructions may include an encoding specifying a scalar integer or
a scalar floating point number that is an operand of the instruction. While several
specific extended vector instructions and their encodings are described herein, these are
merely examples of the extended vector instructions that may be implemented in
embodiments of the present disclosure. In other embodiments, more fewer, or different
extended vector instructions may be implemented in the instruction set architecture and
their encodings may include more, less, or different information to control their
execution.

[00194] Data structures that are organized in tuples of three to five elements that can
be accessed individually may be used in various applications. For examples, RGB
(Red-Green-Blue) is a common format in many encoding schemes used in media
applications. A data structure storing this type of information may consist of three data
elements (an R component, a G component, and a B component), which are stored
contiguously and are the same size (for example, they may all be 32-bit integers). A
format that is common for encoding data in High Performance Computing applications
includes two or more coordinate values that collectively represent a position within a
multidimensional space. For example, a data structure may store X and Y coordinates
representing a position within a 2D space or may store X, Y, and Z coordinates
representing a position within a 3D space. Other common data structures having a
higher number of elements may appear in these and other types of applications.

[00195] In some cases, these types of data structures may be organized as arrays. In
embodiments of the present disclosure, multiple ones of these data structures may be
stored in a single vector register, such as one of the XMM, YMM, or ZMM vector

registers described above. In one embodiment, the individual data elements within
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such data structures may be re-organized into vectors of like elements that can then be
used in SIMD loops, as these elements might not be stored next to each other in the
data structures themselves. An application may include instructions to operate on all of
the data elements of one type in the same way and instructions to operate on all of the
data elements of a different type in a different way. In one example, for an array of
data structures that each include an R component, a G components, and a B component
in an RGB color space, a different computational operation may be applied to the R
components in each of the rows of the array (each data structures) than a computational
operation that is applied to the G components or the B components in each of the rows
of the array.

[00196] In yet another example, many molecular dynamics applications operate on
neighbor lists consisting of an array of XYZW data structures. In this example, each of
the data structures may include an X component, a Y component, a Z component, and a
W component. In embodiments of the present disclosure, in order to operate on
individual ones of these types of components, one or more even or odd vector GET
instructions may be used to extract the X values, Y values, Z values, and W values
from the array of XYZW data structures into separate vectors that contain elements of
the same type. As a result, one of the vectors may include all of the X values, one may
include all of the Y values, one may include all of the Z values, and one may include all
of the W values. In some cases, after operating on at least some of the data elements
within these separate vectors, an application may include instructions that operate on
the XYZW data structures as a whole. For example, after updating at least some of the
X, Y, Z, or W values in the separate vectors, the application may include instructions
that access one of the data structures to retrieve or operate on an XYZW data structure
as a whole. In this case, one or more other instructions may be called in order to store
the XYZW values back in their original format.

[00197] In embodiments of the present disclosure, the instructions that may cause
AOS to SOA conversion may be implemented by a processor core (such as core 1812
in system 1800) or by a SIMD coprocessor (such as SIMD coprocessor 1910) may
include an instruction to perform an even vector GET operation or an odd vector GET
operation. The instructions may store the extracted data elements into respective

vectors containing the different data elements of a data structure in memory. In one
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embodiment, these instructions may be used to extract data elements from data
structures whose data elements are stored together in contiguous locations within one
or more source vector registers. In one embodiment, each of the multiple-element data
structures may represent a row of an array.

[00198] In embodiments of the present disclosure, different “lanes” within a vector
register may be used to hold data elements of different types. In one embodiment, each
lane may hold multiple data elements of a single type. In another embodiment, the data
elements held in a single lane may not be of the same type, but they may be operated on
by an application in the same way. For example, one lane may hold X values, one lane
may hold Y values, and so on. In this context, the term “lane” may refer to a portion of
the vector register that holds multiple data elements that are to be treated in the same
way, rather than to a portion of the vector register that holds a single data element. In
another embodiment, different “lanes” within a vector register may be used to hold the
data elements of different data structures. In this context, the term “lane” may refer to a
portion of the vector register that holds multiple data elements of a single data
structure. In this example, the data elements stored in each lane may be of two or more
different types. In one embodiment in which the vector registers are 512 bits wide,
there may be four 128-bit lanes. For example, the lowest-order 128 bits within a 512-
bit vector register may be referred as the first lane, the next 128 bits may be referred to
as the second lane, and so on. In this example, each of the 128-bit lanes may store two
64-bit data elements, four 32-bit data elements, eight 16-bit data elements, or four 8-bit
data elements. In another embodiment in which the vector registers are 512 bits wide,
there may be two 256-bit lanes, each of which stores data elements of a respective data
structure. In this example, each of the 256-bit lanes may store multiple data elements of
up to 128 bits each.

[00199] FIGURE 21 is an illustration of the results of AOS-SOA conversion 1830,
according to embodiments of the present disclosure. As described above, given an
array 2102 in memory or in cache, data for five separate structures may be contiguously
(whether physically or virtually) arranged in memory. In one embodiment, each
structure (Structurel ... Structure8) may have the same format as one another. The eight
structures may each be, for example, a five-element structure, wherein each element is,

for example, a double. In other examples, each element of the structure could be a
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float, single, or other data type. Each element may be of a same data type. Array 2102
may be referenced by a base location 7 in its memory.

[00200] The process of converting AOS to SOA may be performed. System 1800
may perform such a conversion in an efficient manner.

[00201] As a result, a structure of arrays 2104 may result. Each array
(Arrayl...Array4) may be loaded into a different destination, such as a register or
memory or cache location. Each array may include, for example, all the first elements
from the structures, all the second elements from the structures, all the third elements
from the structures, all the fourth elements from the structures, or all the fifth elements
from the structure.

[00202] By arranging the structure of arrays 2104 into different registers, each with
all of the particularly indexed elements from all of the structures of the array of
structures 2102, additional operations may be performed on each register with
increased efficiency. For example, in a loop of executing code, the first element of
each structure might be added to a second element of each structure, or the third
element of each structure might be analyzed. By isolating all such elements into a
single register or other location, vector operations can be performed. Such vector
operations, using SIMD techniques, could perform the addition, analysis, or other
execution upon all elements of the array at a single time, in a clock cycle.
Transformation of AOS to SOA format may allow vectorized operations such as these.
[00203] FIGURE 22 is an illustration of operation of blend and permute instructions,
according to embodiments of the present disclosure. The blend and permute
instructions may be used to perform various aspects of AOS to SOA conversion.
[00204] For example, given sources zmml and zmmO, each with register elements
identified as x-, y-, z-, and w-coordinate elements, a permute instruction may be used to
permute the x-coordinate and y-coordinate elements into a destination register. The
destination register may include the source zmmO. As only seven x-coordinate and y-
coordinate elements exist in the sources, a write to the last element of the destination
may be masked off (mask = 0x7F). An index (stored in zmm31) may define which of
the elements from the combination of zmm1 and zmmO are to be stored in zmmO, and
in what order. For example, the index vector may include corresponding positions for

the x-coordinate elements, to be stored in the least significant positions of the
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destination register, and the y-coordinate elements, to be stored in the next significant
portions of the destination register. As a result VPERMT2D {0x7F} zmmO, zmm31
zmm1 may be called, resulting in zmmO storing the results as shown in FIGURE 22.
[00205] In another example, given sources zmml and zmmO, each with register
elements identified as x-, y-, z-, and w-coordinate elements, a permute instruction may
be used to permute elements into a destination register. However, the order of the
elements might not be arbitrarily selectable. For each relative position in the sources,
an element from the source must be chosen to be written to the destination. The mask
may define, for a given relative position in the sources, which source will be written to
the destination. As a result VBLENDMPD {0x9c} zmm?2, zmmO, zmm]1 may be
called, resulting in zmm?2 storing the results as shown in FIGURE 22.

[00206] Blend and permute operations may be used together to perform portions or
all of the AOS-SOA conversion. These are described in more complete detail in
subsequent figures. FIGURE 22 illustrates such operation on a smaller scale.

[00207] Suppose it is a goal to obtain the x-coordinates stored in the registers zmmO,
zmml, zmm2, and zmm3. Each register might include contents loaded from memory
and may contain more than one x-coordinate, as each register includes contents from
more than one structure. The contents of each register may include an x-coordinate
(albeit an x-coordinate from various structures) in the same relative position in each
register. These positions may be, for example, the zeroth and fifth locations in a given
index. Accordingly, given the flexibility of different permute functions, a single index
vector (stored in zmm4) may be used to perform various permute operations. The
index vector may define that x values are located, for a combination of any two of the
sources, in the same locations (indices 0, 5, 8, 13). The index vector may repeat these
values and rely upon selective usage of permute operation (through masking) to arrive
at the correct composition of the destination vector.

[00208] For example, VPERMT2D may be called to permute zmm?2 and zmm3 into
zmm?2 using the index zmm4. Furthermore, as these two source registers are the left-
half of the source, their results may be stored in the left-half of the eventual destination.
Accordingly, the permute operation may be masked with {OxFO0} so that the left-half of
zmm?2 is filled with the x-coordinates from zmm?2 and zmm3. VPERMI2D may be

called to permute zmmO and zmm1 into zmm4 using the index zmm4. As these two
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source registers are the right-half of the source, their results may be stored in the right-
half of the eventual destination. Accordingly, the permute operation may be masked
with {OxOF} so that the right-half of zmm4 is filled with the x-coordinates from zmmO
and zmm1. Notably, each of the results in zmm2 and zmm4 include x-coordinates from
their respective sources in-order. Two results in zmm?2 and zmm4 may be blended. A
blend operation such as VLENDMPD may be called to blend zmm4 and zmm2 into
zmm5. The blend may use a mask of {OxFO} to indicate that, for the right-half, zmm4
values should be used, and for the left-half, zmm2 values should be used. The result
may be a collection of the x-coordinates from the sources ordered in zmmS5.

[00209]

[00210] FIGURE 23 is an illustration of operation of permute instructions, according
to embodiments of the present disclosure. The permute instructions may be used to
perform various aspects of AOS to SOA conversion. The operation of permute
instructions may be improve the operation of blend and permute instructions shown in
FIGURE 22 such that the same task may be accomplished using two permute
instructions, instead of two permute instructions and a blend instruction.

[00211] In one embodiment, operation of permute instructions to perform aspects of
AOS to SOA conversion may rely upon a feature of permute instructions to reuse the
index vector to store results. By selectively storing results in only part of the index
vector and preserving the remainder of the index vector, an operation may be saved.
As discussed above, as the same relative position of a given coordinate (such as the x-
coordinate) may exist across multiple sources, reflecting portions of an AOS to convert,
an index vector might repeat part of itself (such as {13 8 50 13 8 5 0}) and the permute
operation may be masked (such as with OxOF or OxFO} to arrive a destination vector
with all x-coordinates. In such cases, the part of the index vector that repeats may be
eliminated, and a permute operation masked for the remaining portion may be used.
Conversely, data elements that are not needed may be overwritten with index values
using a mask. The same write mask may be used with the permute instruction, which
overwrites the index register as a destination, preserving some data values and
overwriting unneeded index values with data combine from the other source registers.
Consequently, the particular variant of permute instructions denoted by the “i” in

VPERMI instructions may allow merging of writes that depositing of data values
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mixed with index control values, converting the two-source instruction effectively into
a three-source permute instruction.

[00212] For example, given the same source vectors zmmO-zmm3 of FIGURE 22,
and a similar index vector {13 8 50 13 8 5 0}, a call may be made to VPERM2I with
zmmO and zmm1 as the sources, and zmm4 as the index. This permute instruction may
write the results of the permute to the index vector as the destination. The permute
operation may be masked (with 0xOF) to write only to the four least significant
elements of the index vector zmm4, preserving the existing values. As zmm4 includes
a repeat of its indices, indicating the zeroth, fifth, eighth, and thirteenth locations of any
combination of the sources will include x-coordinates, half of the index vector zmm4
will be sufficient for subsequent permute operations. Thus, zmm4 could be used again
with the knowledge that half of it will be usable. The permute operation may thus copy
the zeroth, fifth, eighth, and thirteenth elements of the combination of zmmO and
zmm l—specifically, the x-coordinates from these source registers—into the least
significant four locations of zmm4, the index vector. The most four significant
locations of zmm4 will be preserved, as they have been masked off in the permute
operation.

[00213] The resulting zmm4 register will serve as the index vector source for
another call to VPERM2I. The zmm4 register will also be the destination of the
permute operation. The other sources, zmm2 and zmm3, may be permuted according
to the values of the left-half of zmm4, as the permute operation is masked with OxFO.
Thus, the lowest significant four locations in zmm4, which store the x-coordinates from
zmmO and zmm4, will be preserved. The additional elements (the x-coordinates) from
zmm?2 and zmm3 will be stored as the index values in the most significant four
locations in zmm4 are overwritten. As a result, zmm4 will include the x-coordinates
from all four sources, in-order. This result may be the same as that in FIGURE 22, but
conducted with two permute operations rather than two permutes and a blend operation.
[00214] The principles of this operation may be applied in the operations discussed
further below.

[00215] FIGURE 24 is an illustration of operation of AOS to SOA conversion using
multiple gathers for an array of eight structures, wherein each structure includes five

elements such as doubles, using gather operations.
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[00216] The conversion shown in FIGURE 24 may show a traditional sequence to
perform the conversion with gather instructions. As with FIGURE 21, the top row may
show the layout of the structure in memory where the enumeration of 0...4 may identify
equivalent elements of each vector. Different colors or shading may indicate different
structures laid out consecutively in memory. Each structure element may be five
doubles, yielding forty bytes. Eight such elements may be considered, for a total of
320 bytes of data. The final result will have all Oth elements in a first register, all 1st
components in a second register, and so on.

[00217] The AOS may be loaded into the registers through the use of five gather
instructions. Five KNORB operations may be used to set masks.

[00218] First, gather indices may be created. They may be created with the

pseudocode:

__declspec (align(32)) const __ int32 gatherO index[8] = {0, 5, 10, 15, 20, 25,
30, 35};
__declspec (align(32)) const __ int32 gather]l index[8] = {1, 6, 11, 16, 21, 26,
31, 36};
__declspec (align(32)) const __ int32 gather2 index[8] = {2, 7, 12, 17, 22, 27,
32,37};
__declspec (align(32)) const __ int32 gather3 index[8] = {3, 8, 13, 18, 23, 28,
33,38};
__declspec (align(32)) const __ int32 gather4 index[8] = {4, 9, 14, 19, 24, 29,
34, 39%;

[00219] The index for gatherO may identify, in the AOS, the relative location of
each “0” element. The index for gatherl may identify, in the AOS, the relative
location of each “1” element. The index for gather2 may identify, in the AOS, the
relative location of each “2” element. The index for gather3 may identify, in the
AOS, the relative location of each “3” element. The index for gatherS may identify,
in the AOS, the relative location of each “4” element.

[00220] Given these, KNORW may be called to generate masks, followed by five
calls to VGATHERDPD. Each call to VGATHERDPD may gather packed values (in



WO 2017/105719 PCT/US2016/061965

10

15

20

25

30

63

this case, of doubles) based upon the indices supplied to each call. The indices
provided (r8+[ymm5->ymm9]*8) may be used to identify particular locations in
memory (from a base address 78, scaled by the size of the doubles) from where the
values will be gathered and loaded into respective registers. The calls may be
expressed in the following pseudocode:

kxnorw k1, kO, kO

kxnorw k2, k0, kO

kxnorw k3, kO, kO

kxnorw k4, k0, kO

kxnorw k35, kO, kO

vgatherdpd zmm4{k1}, zmmword ptr [r8+ymm9*8]

vgatherdpd zmm3{k2}, zmmword ptr [r8+ymm8*8]

vgatherdpd zmm2{k3}, zmmword ptr [r8+ymm7*8]

vgatherdpd zmm1{k4}, zmmword ptr [r8+ymm6*8]

vgatherdpd zmmO{kS}, zmmword ptr [r8+ymm5*8]
[00221] FIGURE 25 is an illustration of operation of AOS to SOA conversion for an
array of eight structures, wherein each structure includes five elements such as doubles,
using gather operations. The conversion shown in FIGURE 25 may be referred to as a
naive implementation with gather operations, as such a conversion might not be as
efficient as other conversions shown in later figures. The operation in FIGURE 25
may implement the conversion shown in FIGURE 24.
[00222] Given the AOS of eight doubles in memory, five load operations may be
made to load data into registers. While each structure might include five elements, a
load operation may be made in multiples of eight. Consequently, rather than load the
eight structures into five registers wherein each register includes unused space, the
eight structures may be loaded into five registers. Some structures may be broken up
across multiple registers. The AOS to SOA conversion may then attempt to sort the
contents of these eight registers so that all (eight) of the first elements of the structures
are in a common register, all (eight) of the second elements of the structures are in a
common register, and so on. In other examples, where structures with another number
of elements (such as four) will be processed, four registers might be needed to be to

store the results.
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[00223] Five additional loads may be performed to load data from the memory into
the registers. However, these loads may be performed with masks so that only some of
the contents of a given memory section are loaded into the respective registers. The
specific masks may be selected according to those that are needed to filter the correct
element (such as the first, second, third, fourth, or fifth) from a given segment into the
register. As a given register will only contain the same indexed element (that is, all
first elements, all second elements, etc.), the mask is selected to filter only that element
into a corresponding register. In some cases, such as in the present figure, the same
mask might be used in all of these load operations. For example, it may be observed
that for these particular structures, a mask of {01000010} may uniquely identify a
different indexed element (first elements, second elements, etc.) for different memory
segments. Thus, applying this same mask to the original memory segments that were
loaded from memory will yield the application of indexed elements. Applying the
mask, then, to the appropriate register may copy the required elements (that is, the first,
second, or other elements).

[00224] The same process may be repeated for different masks and combination of
sources, until the registers are each filled with respective elements (first elements, or
second elements, and so on). The process may be repeated with five loads with a
second mask, five loads with a third mask, and five loads with a fourth mask to
accomplish the correct loading combinations. The result may be that each register is
filled only with respective ones of first elements, second elements, third elements,
fourth elements, or fifth elements of the original array of structures. However, the
elements within a given register might not be ordered in the same way that they were
ordered in the original array.

[00225]  Accordingly, a number of permute operations may be performed to reorder
the contents of the registers to match the original order of the array of structures. For
example, five permute operations may be performed. Interim registers may be used as
needed. A separate index vector may be needed for each permute to provide the order
of the original array. As a result, the contents of each register may be reordered
according to the order of the original array. The result may be the converted AOS
resulting in a SOA. The arrays may be represented in each respective register. The

structure may be the combination of the arrays.
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[00226] In total, the operations of FIGURE 25 may include twenty-five move or
load operations, along with five permutes. Example pseudocode for FIGURE 25 is
shown below.

vmovups zmm35, zmmword ptr [18]

5 vmovups zmm11, zmmword ptr [r8+0x40]
vmovups zmm7, zmmword ptr [r8+0x80]
vmovups zmm 13, zmmword ptr [r8+0xc0]
vmovups zmm9, zmmword ptr [r8+0x100]
vmovapd zmmS5{k4}, zmmword ptr [r8+0xc0]

10 vmovapd zmm11{k4}, zmmword ptr [r8+0x100]
vmovapd zmm7{k4}, zmmword ptr [r8]
vmovapd zmm13{k4}, zmmword ptr [r8+0x40]
vmovapd zmm9{k4}, zmmword ptr [r8+0x80]
vmovapd zmm5{k3}, zmmword ptr [r8+0x40]

15 vmovapd zmm11{k3}, zmmword ptr [r8+0x80]
vmovapd zmm7{k3}, zmmword ptr [r8+0xc0]
vmovapd zmm13{k3}, zmmword ptr [r8+0x100]
vmovapd zmm9{k3}, zmmword ptr [r8]
vmovapd zmm5{k2}, zmmword ptr [r8+0x100]

20 vmovapd zmm11{k2}, zmmword ptr [r8]
vmovapd zmm7{k2}, zmmword ptr [r8+0x40]
vmovapd zmm13{k2}, zmmword ptr [r8+0x80]
vmovapd zmm9{k2}, zmmword ptr [r8+0xc0]
vmovapd zmm5{k1} , zmmword ptr [r8+0x80]

25 vmovapd zmm11{k1}, zmmword ptr [r8+0xcO]
vmovapd zmm7{k1}, zmmword ptr [r8+0x100]
vmovapd zmm13{k1}, zmmword ptr [r8]
vmovapd zmm9{k1}, zmmword ptr [r8+0x40]
vpermpd zmm6, zmm4, zmmS5

30 vpermpd zmm38, zmm3, zmm?7
vpermpd zmm10, zmm?2, zmm9

vpermpd zmm12, zmm1, zmm11
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vpermpd zmm14, zmmO, zmm13

[00227] FIGURE 26 is an illustration of operation of system 1800 to perform the
conversion using blend and permute operations, in accordance with embodiments of the
present disclosure. The same AOS source may be used.

[00228] First, the eight structures of the array may be loaded, unaligned, into five
registers as previously shown. Second, a series of blend operations may be performed
on the registers to distill each register down to its intended contents. A total of fifteen
blend operations may be performed. The masks used in the blend operations may be
based upon the relative position in the registers of the same element (such as the 0’s,
I’s, etc.). For example, comparing mmO and mm1, the “0” element appear in mmO at
positions zero and five, and in mm1 at positions two and seven. The other elements
can be ignored. Thus, a blend operation with mmO and mm1 as the sources might be
blended using a mask of {I n 0 nn O n 1}, where “0” denotes mmO, “1” denotes mm1
and “n” denotes elements that can be ignored. The result may be stored to an interim
register, but eventually copied back to mmO. The result may be {01043 010}. In
other words, mmO has been half-populated. Notably, the same mask—{1 n Onn On
1}——could be used in a blend operation to blend mm1 and mm2 with respect to the “3”
elements. Moreover, the same mask could be used in a blend operation to blend mm3
and mm4 with respect to the “4” elements. The same mask could be used in a blend
operation to blend mm4 and mmO with respect to the “2” elements. The same mask
could be used in a blend operation to blend mm2 and mm3 with respect to the “1”
elements. Accordingly, because the same mask can be used in each of these blend
operations, execution may be simplified.

[00229]  After these first five blend operations have been performed to consolidate
elements to pairs of registers, five more blend operations may be performed to further
consolidate elements to other pairs of registers. These five blend operations may also
share a same mask, based upon elements resident within similar locations in different
pairs. For example, the combination of mmO and mm1 have “1” elements located at
the same indices that the combination of mm1 and mm2 have “4” elements. Thus,
mmO and mm1 could be blended with a mask of {n 1 nO0nn 1 n} to consolidate the “1”
elements and mm1 and mm?2 could be blended with the same mask to consolidate the

“4” elements therein. The registers mm2 and mm3 could be blended with a mask of {n
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1 n0nnln} to consolidate the “0” elements. This may be repeated for respective
other combinations of the sources.

After the ten blend operations, the results of the ten blend operations may themselves
be blended with five additional blend operations, each using the same, third mask. For
example, in the first five blend operations, mmO and mm1 were blended with the mask
{1n0nnOn 1} to consolidate “0” values. In the second five blend operations, mm2
and mm3 were blended with the mask {n 1 n O n n 1 n} to consolidate the “0” values
from these registers. Accordingly, the results these two blend operations may
themselves be blended. Suppose (blend {In0nnOn 1} mmO, mm1) yields {e7 n/a e5
n/a n/a e2 n/a e0} stored in, for example, mmX, wherein the “e” elements are the “0”
elements denoted by current position. Suppose also that (blend {n I1nOnn 1 n} mm2,
mm3) yields {n/a e6 n/a e4 n/a n/a el n/a} stored in, for example, mmY, wherein the
“e” elements are the “0” elements denoted by current position. Thus, a nearly-filled
register mmO may be created by a blend of mmX and mmY with amaskof {01 01n0
1 0} (0 indicating mmX, 1 indicating mmY). The result may be {e7 €6 e5 e4 n/a e2 el
e0}. There may be a gap for the third element. This may be repeated for resulting pairs
for the other elements.

[00230] The result may be that registers mmO. . .mm4 are filled with all but one
element from respective structures. This may arise from the fact that there are an odd
number of registers, and blend operations require even inputs to a single, third output.
Notably, the missing element may be within the same index in each register—index
three. The masks may be chosen so that the same element is always missing from the
registers at this stage of the conversion.

[00231] In order to correct the missing element, the individual missing element may
be loaded from a register wherein it was previously stored. Thus, five load operations
may be performed. The loads may each be masked to insert the value at the same
index, and thus may share the same mask. Each register may now be a structure with a
full complement of respective elements, converted from the array of structures.
However, the elements within a given register might be out of order.

[00232] Accordingly, in order to fix the elements within their correct order, a
permute operation might be called for each register. The permute may take as its input

the single source of the register (or, if the contents of two registers need to be swapped,
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the original array. As each register is jumbled in a different order from each other, a
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values may be in the correct order.

[00233] Pseudocode to perform these operations may include:

vmovups zmm 18, zmmword ptr [r8]

vmovups zmm 16, zmmword ptr [r8+0x40]
vmovups zmm19, zmmword ptr [r8+0x80]
vmovups zmm17, zmmword ptr [r8+0xc0]

vmovups zmm15, zmmword ptr [r8+0x100]

vblendmpd zmm5{k4}, zmm18, zmm16 //
vblendmpd zmm11{k4}, zmm16, zmm19//
vblendmpd zmm7{k4}, zmm19, zmm17 //
vblendmpd zmm13{k4}, zmm17, zmm15//
vblendmpd zmm9{k4}, zmm15, zmm18//

vblendmpd zmm14{k3}, zmm18, zmm16//
vblendmpd zmm10{k3}, zmm16, zmm19//
vblendmpd zmm6{k3}, zmm19, zmm17//
vblendmpd zmm12{k3}, zmm17, zmm15//
vblendmpd zmm8{k3}, zmm15, zmm18//

vblendmpd zmm24{k2}, zmm9, zmm10

/! load mmO
/! load mm1
/! load mm?2
/! load mm3
/! load mm4

blend mmO+mm1 to zmm5
blend mmI+mm?2 to zmm11
blend mm2+mm3 to zmm7
blend mm3+mm4 to zmm15

blend mm4+mmoO to zmm9

blend mmO+mm1 to zmm5
blend mmI1+mm?2 to zmm11
blend mm2+mm3 to zmm?7
blend mm3+mm4 to zmm15

blend mm4+mmoO to zmm9

/! blend (mm4+mmO result)+(mm1+mm3 result) to zmm?24

vblendmpd zmm?20{k2}, zmm5, zmm6

/! blend (mmO+mm1 result)+(mm2+mm3 result) to zmm?20

vblendmpd zmm26{k2}, zmm11, zmm12

/! blend (mm1+mm?2 result)+(mm3+mm4 result) to zmm?26

vblendmpd zmm22{k2}, zmm?7, zmm38

/! blend (mm2+mm3 result)+(mm4+mmoO result) to zmm?22

vblendmpd zmm?28{k2}, zmm13, zmm14
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/! blend (mm3+mm4 result)H(mmO+mm]1 result) to zmm?28

vmovapd zmm20{k1}, zmm15 // plug the missing third element for each
register

vmovapd zmm22{kl1}, zmm16

vmovapd zmm?24{kl1}, zmm17

vmovapd zmm26{kl}, zmm18

vmovapd zmm28{kl1}, zmm19

vpermpd zmm21, zmm4, zmm?20 // reorganize each register according to original
order

vpermpd zmm?23, zmm3, zmm?22

vpermpd zmm?25, zmm?2, zmm?24

vpermpd zmm?27, zmm1, zmm26

vpermpd zmm?29, zmmO, zmm28

// copy to original registers mmO... mm4, if needed

[00234] FIGURE 27 is an illustration of further operation of system 1800 to perform
the conversion using blend and permute operations, in accordance with embodiments of
the present disclosure.  The operation of FIGURE 27 may be improved over the
operation shown in FIGURE 26 with respect to a reduced number of blend operations.
However, it may require additional masks. Accordingly, a decision may be made by
system 1800 of which scheme to use based upon available resources during execution.
[00235] The operation in FIGURE 26 uses blend operations so that after the fifteen
blend operations, all registers (mmO0..mm4) have a gap in the same index location.
Specifically, they each have a gap at index three. As a result, a single index for the five
load instructions can be used.

[00236] However, if the location of the gap in the index is allowed to float—able to
appear in various indices among different registers—then the blend operations used to
yield nearly complete registers may be used more flexibly. Specifically, the number of
blend operations may be reduced. However, given that the location of the gap may

change, then additional masks may be required to perform the load operations.
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[00237] For example, the AOS-SOA conversion may be performed using eleven
blend operations. The conversion may use a total of seven different masks.
[00238] The data may be loaded in a similar way as was performed in FIGURE 26.
Registers mmO.. mm4 may include unaligned portions of the structures in the original
array.
[00239] For the first six of the eleven blend operations, two different masks may be
used—ko6, and k5. As the registers are permuted with each other on a first round, rather
than all using the same blend mask, the two different masks may be used. As the
results of the first round are permuted with each other in a second round, two additional
masks may also be used—k4 and k3.
[00240] Masks may be selected so as to allow two different gaps in the resulting
interim registers—gaps at index two and index three. Specifically, mm1 and mm2 may
have the gap at the fourth index, rather than the third index as in mmO, mm3, and mm4.
[00241] Example values of the masks may be, for example:

k6: 0x8C

kS: 0xC6

k4: 0x52

k3: Ox4A
[00242] Accordingly, two masks (rather than one, as performed in Figure 26) may
be used to appropriately load the missing element. Furthermore, the permute
operations may be called to reorder the contents of each respective register to match the
original order from the array.

[00243] Pseudocode for this operation may include:

vmovups zmm35, zmmword ptr [18] // load mmO
vmovups zmm6, zmmword ptr [r8+0x40]  // load mm1
vmovups zmm15, zmmword ptr [r8+0x80] // load mm2
vmovups zmm 14, zmmword ptr [r8+0xc0] // load mm3
vmovups zmm 13, zmmword ptr [r8+0x100] // load mm4
vblendmpd zmm10{k6}, zmm5, zmm6 // blend mmO and mm1

vblendmpd zmm11{k5}, zmm6, zmm15 // blend mm1 and mm?2

vblendmpd zmm9{k5}, zmm15, zmm14 // blend mm2 and mm3
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vblendmpd zmm12{k6}, zmm13, zmm5 // blend mm4 and mmO
vblendmpd zmm7{k6}, zmm14, zmm13 // blend mm3 and mm4

vblendmpd zmm8{kS}, zmm5, zmm6 // blend mmO and mm1

vblendmpd zmm16{k4}, zmm10, zmm9

// blend (mmO+mm]1 result with k6 mask)+(mm2+mm3 result with k5
mask)
vblendmpd zmm18{k3}, zmm9, zmm10

// blend (mm2+mm3 result with k5 mask)+ (mmO+mm1 result with k6
mask)
vblendmpd zmm20{k4}, zmm12, zmm11

// blend (mm3+mm4 result with k6 mask)+(mmI+mm?2 result with k5
mask)
vblendmpd zmm24{k4}, zmm?7, zmm38

// blend (mm3+mm4 result with k6 mask)+(mmO+mm1 result with k5

vblendmpd zmm?22{k3}, zmm11, zmm12
// blend (mm1+mm?2 result with kS mask)*+(mm3+mm4 result with k6

mask)

vmovapd zmm16{k2}, zmm13 // plug each register with missing element.
vmovapd zmm18{kl1}, zmm13
vmovapd zmm20{k2}, zmm14
vmovapd zmm22{k1}, zmm14

vmovapd zmm?24{k2}, zmm15

vpermpd zmm17, zmm4, zmm16  // reorganize each register
vpermpd zmm19, zmm3, zmm18
vpermpd zmm21, zmm?2, zmm20
vpermpd zmm?23, zmm1, zmm22

vpermpd zmm?25, zmmO, zmm?24
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[00244] FIGURE 28 illustrates an example method 2800 for performing blend and
permute operations to fulfill AOS to SOA conversion, according to embodiments of the
present disclosure. Method 2800 may be implemented by any suitable elements shown
in FIGURES 1-27. Method 2800 may be initiated by any suitable criteria and may
initiate operation at any suitable point. In one embodiment, method 2800 may initiate
operation at 2805. Method 2800 may include greater or fewer steps than those
illustrated. Moreover, method 2800 may execute its steps in an order different than
those illustrated below. Method 2800 may terminate at any suitable step. Moreover,
method 2800 may repeat operation at any suitable step. Method 2800 may perform any
of its steps in parallel with other steps of method 2800, or in parallel with steps of other
methods. Furthermore, method 2800 may be executed multiple times to perform
multiple operations requiring strided data that needs to be converted.

[00245] At 2805, in one embodiment, an instruction may be loaded and at 2810 the
instruction may be decoded.

[00246] At 2815, it may be determined that the instruction requires AOS-SOA
conversion of data. Such data may include strided data. In one embodiment, the stride
data may include Stride5 data. The instruction may be determined to require such data
because vector operations on the data are to be performed. The data conversion may
result in the data being in an appropriate format so that a vectorized operation may be
applied simultaneously, in a clock cycle, to each element of a bank of data. The
instruction may specifically identify that the AOS-SOA conversion is to be performed
or it may be inferred from the desire to execute an instruction that the AOS-SOA is
needed.

[00247] At 2817, an array to be converted may be loaded into registers. The result
of the loading may be unaligned data, wherein individual structures from the array are
not evenly distributed among the registers. Method 2800 may convert such data so that
the registers each include a single array of information from the structures.

[00248] At 2820, it may be determined what manner of AOS-SOA conversion is to
be used. In one embodiment, a system performing method 2800 may have a preferred
conversion technique. In another embodiment, a system performing method 2800 may

determine which of several conversion techniques is to be used. In such an
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embodiment, it may be determined which technique best fits current operating
conditions. For example, if computing resources needed to execute blend instructions
are relatively scarce, method 2800 may proceed to 2835 to execute the conversion with
relatively fewer blend operations. However, such a choice may incur the use of an
increased number of masks. If computing resources needed to implement masks are
relatively scarce, method 2800 may proceed to 2825 to execute the conversion with
fewer masks, but more blend operations.

[00249] At 2825, data may be blended as shown in FIGURE 26. Data may be
blended with operations sufficient to leave a single gap in resulting registers.
Moreover, the single gap might be in a consistent index across the registers. The
number of blend operations may be fifteen for five registers, each to include
corresponding portions of eight structures. The blend operations may be executed in
three rounds of five blend operations, wherein each round includes a different mask,
but the same mask is to be used in all five blend operations within the given round.
Thus, three masks may be used to perform these blend operations.

[00250] At 2830, a single mask may be used to fill the missing element in each
register when applied to a different load operation. Method 2800 may proceed to 2845.
[00251] At 2835, data may be blended as shown in FIGURE 27. Data may be
blended with operations sufficient to leave a single gap in resulting registers.
Moreover, the single gap might be in one of several different places. The gap might be
located in one of two locations. The number of blend operations may be eleven for five
registers, each to include corresponding portions of eight structures. Several more
masks may be used to perform these blend operations when compared with, for
example, 2825.

[00252] At 2840, two masks may be needed to fill the missing elements in each
register when applied to a different load operation. Method 2800 may proceed to 2845.

[00253] At 2845, the contents of each register may be permuted to restore the
elements to their original relative order as presented in the array.

[00254] At 2850, the execution upon the different registers may be performed. As a
given register is to be used with the vector instruction for execution, each element may
be executed-upon in parallel. Results may be stored as necessary. At 2855, it may be

determined if subsequent vector execution is to be performed on the same converted
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data. If so, method 2800 may return to 2850. Otherwise, method 2800 may proceed to
2860.

[00255] At 2860, it may be determined whether additional execution is needed for
other stride5 data. If so, method 2800 may proceed to 2817. Otherwise, at 2865 the
instruction may be retired. Method 2800 may optionally repeat or terminate.

[00256] Embodiments of the mechanisms disclosed herein may be implemented in
hardware, software, firmware, or a combination of such implementation approaches.
Embodiments of the disclosure may be implemented as computer programs or program
code executing on programmable systems comprising at least one processor, a storage
system (including volatile and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

[00257] Program code may be applied to input instructions to perform the functions
described herein and generate output information. The output information may be
applied to one or more output devices, in known fashion. For purposes of this
application, a processing system may include any system that has a processor, such as,
for example; a digital signal processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[00258] The program code may be implemented in a high level procedural or object
oriented programming language to communicate with a processing system. The
program code may also be implemented in assembly or machine language, if desired. In
fact, the mechanisms described herein are not limited in scope to any particular
programming language. In any case, the language may be a compiled or interpreted
language.

[00259] One or more aspects of at least one embodiment may be implemented by
representative instructions stored on a machine-readable medium which represents
various logic within the processor, which when read by a machine causes the machine
to fabricate logic to perform the techniques described herein. Such representations,
known as “IP cores” may be stored on a tangible, machine-readable medium and
supplied to various customers or manufacturing facilities to load into the fabrication
machines that actually make the logic or processor.

[00260] Such machine-readable storage media may include, without limitation, non-

transitory, tangible arrangements of articles manufactured or formed by a machine or



WO 2017/105719 PCT/US2016/061965

10

15

20

25

30

75

device, including storage media such as hard disks, any other type of disk including
floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact
disk rewritables (CD-RWs), and magneto-optical disks, semiconductor devices such as
read-only memories (ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMs), static random access memories (SRAMs), erasable
programmable read-only memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instructions.

[00261] Accordingly, embodiments of the disclosure may also include non-
transitory, tangible machine-readable media containing instructions or containing
design data, such as Hardware Description Language (HDL), which defines structures,
circuits, apparatuses, processors and/or system features described herein. Such
embodiments may also be referred to as program products.

[00262] In some cases, an instruction converter may be used to convert an
instruction from a source instruction set to a target instruction set. For example, the
instruction converter may translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate, or otherwise convert an
instruction to one or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hardware, firmware, or a
combination thereof. The instruction converter may be on processor, off processor, or
part-on and part-off processor.

[00263] Thus, techniques for performing one or more instructions according to at
least one embodiment are disclosed. While certain exemplary embodiments have been
described and shown in the accompanying drawings, it is to be understood that such
embodiments are merely illustrative of and not restrictive on other embodiments, and
that such embodiments not be limited to the specific constructions and arrangements
shown and described, since various other modifications may occur to those ordinarily
skilled in the art upon studying this disclosure. In an area of technology such as this,
where growth is fast and further advancements are not easily foreseen, the disclosed
embodiments may be readily modifiable in arrangement and detail as facilitated by
enabling technological advancements without departing from the principles of the

present disclosure or the scope of the accompanying claims.
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[00264] Some embodiments of the present disclosure include a processor. The
processor may include a front end to receive an instruction, a decoder to decode the
instruction, a core to execute the instruction, and a retirement unit to retire the
instruction. The processor may include logic to determine that the instruction will
require strided data converted from source data in memory. In combination with any of
the above embodiments, the strided data is to include corresponding indexed elements
from a plurality of structures in the source data to be loaded into a same register to be
used to execute the instruction. In combination with any of the above embodiments,
the core includes logic to load source data into a plurality of preliminary vector
registers. In combination with any of the above embodiments, the source data is to be
unaligned as resident in the vector registers. In combination with any of the above
embodiments, the core includes logic to apply blend instructions to contents of the
preliminary vector registers to cause corresponding indexed elements from the plurality
of structures to be loaded into respective interim vector registers. In combination with
any of the above embodiments, the core includes logic to apply further blend
instructions to contents of the interim vector registers to cause further corresponding
indexed elements from the plurality of structures to be loaded into respective source
vector registers. In combination with any of the above embodiments, the core further
includes logic to execute the instruction upon one or more source vector registers upon
completion of conversion of source data to strided data. In combination with any of the
above embodiments, the core further includes a logic to perform permute operations
upon each respective source vector register to rearrange contents to match an original
relative order in the source data. In combination with any of the above embodiments,
each source vector register is to include a missing element from the source data. In
combination with any of the above embodiments, the core further includes logic to
perform a load for each source vector register from the source data to provide the
missing element. In combination with any of the above embodiments, the strided data is
to include eight registers of vectors, each vector to include five elements that
correspond with the other vectors. In combination with any of the above embodiments,
eleven blend operations are to be applied to contents of the preliminary vector registers
and the interim vector registers to yield contents of the respective source vector

registers. In combination with any of the above embodiments, the strided data is to
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include eight registers of vectors, each vector to include five elements that correspond
with the other vectors. In combination with any of the above embodiments, fifteen
blend operations are to be applied to contents of the preliminary vector registers and the
interim vector registers to yield contents of the respective source vector registers. In
combination with any of the above embodiments, the strided data is to include eight
registers of vectors, each vector to include five elements that correspond with the other
vectors, fifteen blend operations are to be applied to contents of the preliminary vector
registers and the interim vector registers to yield contents of the respective source
vector registers, and three masks are to be used in application of the fifteen blend
operations to yield contents of the source vector registers.

[00265] Some embodiments of the present disclosure include a system. The system
may include a front end to receive an instruction, a decoder to decode the instruction, a
core to execute the instruction, and a retirement unit to retire the instruction. The
system may include logic to determine that the instruction will require strided data
converted from source data in memory. In combination with any of the above
embodiments, the strided data is to include corresponding indexed elements from a
plurality of structures in the source data to be loaded into a same register to be used to
execute the instruction. In combination with any of the above embodiments, the core
includes logic to load source data into a plurality of preliminary vector registers. In
combination with any of the above embodiments, the source data is to be unaligned as
resident in the vector registers. In combination with any of the above embodiments, the
core includes logic to apply blend instructions to contents of the preliminary vector
registers to cause corresponding indexed elements from the plurality of structures to be
loaded into respective interim vector registers. In combination with any of the above
embodiments, the core includes logic to apply further blend instructions to contents of
the interim vector registers to cause further corresponding indexed elements from the
plurality of structures to be loaded into respective source vector registers. In
combination with any of the above embodiments, the core further includes logic to
execute the instruction upon one or more source vector registers upon completion of
conversion of source data to strided data. In combination with any of the above
embodiments, the core further includes a logic to perform permute operations upon

each respective source vector register to rearrange contents to match an original relative
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order in the source data. In combination with any of the above embodiments, each
source vector register is to include a missing element from the source data. In
combination with any of the above embodiments, the core further includes logic to
perform a load for each source vector register from the source data to provide the
missing element. In combination with any of the above embodiments, the strided data is
to include eight registers of vectors, each vector to include five elements that
correspond with the other vectors. In combination with any of the above embodiments,
eleven blend operations are to be applied to contents of the preliminary vector registers
and the interim vector registers to yield contents of the respective source vector
registers. In combination with any of the above embodiments, the strided data is to
include eight registers of vectors, each vector to include five elements that correspond
with the other vectors. In combination with any of the above embodiments, fifteen
blend operations are to be applied to contents of the preliminary vector registers and the
interim vector registers to yield contents of the respective source vector registers. In
combination with any of the above embodiments, the strided data is to include eight
registers of vectors, each vector to include five elements that correspond with the other
vectors, fifteen blend operations are to be applied to contents of the preliminary vector
registers and the interim vector registers to yield contents of the respective source
vector registers, and three masks are to be used in application of the fifteen blend
operations to yield contents of the source vector registers.

[00266] Embodiments of the present disclosure may include an apparatus. The
apparatus may include means for receiving an instruction, decoding the instruction, and
retiring the instruction. The apparatus may include means for determining that the
instruction will require strided data converted from source data in memory. In
combination with any of the above embodiments, the strided data is to include
corresponding indexed elements from a plurality of structures in the source data to be
loaded into a same register to be used to execute the instruction. In combination with
any of the above embodiments, the apparatus includes means for loading source data
into a plurality of preliminary vector registers, the source data to be unaligned as
resident in the vector registers. In combination with any of the above embodiments, the
apparatus includes means for applying blend instructions to contents of the preliminary

vector registers to cause corresponding indexed elements from the plurality of
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structures to be loaded into respective interim vector registers. In combination with any
of the above embodiments, the apparatus includes means for applying further blend
instructions to contents of the interim vector registers to cause further corresponding
indexed elements from the plurality of structures to be loaded into respective source
vector registers. In combination with any of the above embodiments, the apparatus
includes means for executing the instruction upon one or more source vector registers
upon completion of conversion of source data to strided data. In combination with any
of the above embodiments, the apparatus includes means for performing permute
operations upon each respective source vector register to rearrange contents to match an
original relative order in the source data. In combination with any of the above
embodiments, the apparatus includes means for applying further blend instructions,
each source vector register to include a missing element from the source data. In
combination with any of the above embodiments, the method further includes
performing a load for each source vector register from the source data to provide the
missing element. In combination with any of the above embodiments, the strided data
includes eight registers of vectors and each vector to include five elements that
correspond with the other vectors. In combination with any of the above embodiments,
the apparatus includes means for performing eleven blend operations to contents of the
preliminary vector registers and the interim vector registers to yield contents of the
respective source vector registers. In combination with any of the above embodiments,
the strided data is to include eight registers of vectors, each vector to include five
elements that correspond with the other vectors, and the apparatus includes means for
performing fifteen blend operations to contents of the preliminary vector registers and
the interim vector registers to yield contents of the respective source vector registers. In
combination with any of the above embodiments, the strided data is to include eight
registers of vectors, each vector to include five elements that correspond with the other
vectors, the apparatus includes means for performing fifteen blend operations to
contents of the preliminary vector registers and the interim vector registers to yield
contents of the respective source vector registers, and the apparatus includes means for
applying three masks to be used in application of the fifteen blend operations to yield

contents of the source vector registers.
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[00267] Embodiments of the present disclosure may include a method operating
within a processor. The apparatus may include means for receiving an instruction,
decoding the instruction, and retiring the instruction. The apparatus may include means
for determining that the instruction will require strided data converted from source data
in memory. In combination with any of the above embodiments, the strided data is to
include corresponding indexed elements from a plurality of structures in the source data
to be loaded into a same register to be used to execute the instruction. In combination
with any of the above embodiments, the method includes loading source data into a
plurality of preliminary vector registers, the source data to be unaligned as resident in
the vector registers. In combination with any of the above embodiments, the method
includes applying blend instructions to contents of the preliminary vector registers to
cause corresponding indexed elements from the plurality of structures to be loaded into
respective interim vector registers. In combination with any of the above embodiments,
the method includes applying further blend instructions to contents of the interim
vector registers to cause further corresponding indexed elements from the plurality of
structures to be loaded into respective source vector registers. In combination with any
of the above embodiments, the method includes executing the instruction upon one or
more source vector registers upon completion of conversion of source data to strided
data. In combination with any of the above embodiments, the method includes
performing permute operations upon each respective source vector register to rearrange
contents to match an original relative order in the source data. In combination with any
of the above embodiments, the method includes applying further blend instructions,
each source vector register to include a missing element from the source data. In
combination with any of the above embodiments, the method further includes
performing a load for each source vector register from the source data to provide the
missing element. In combination with any of the above embodiments, the strided data
includes eight registers of vectors and each vector to include five elements that
correspond with the other vectors. In combination with any of the above embodiments,
the method includes performing eleven blend operations to contents of the preliminary
vector registers and the interim vector registers to yield contents of the respective
source vector registers. In combination with any of the above embodiments, the strided

data is to include eight registers of vectors, each vector to include five elements that
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correspond with the other vectors, and the method includes performing fifteen blend
operations to contents of the preliminary vector registers and the interim vector
registers to yield contents of the respective source vector registers. In combination with
any of the above embodiments, the strided data is to include eight registers of vectors,
each vector to include five elements that correspond with the other vectors, the method
includes performing fifteen blend operations to contents of the preliminary vector
registers and the interim vector registers to yield contents of the respective source
vector registers, and the method includes applying three masks to be used in application

of the fifteen blend operations to yield contents of the source vector registers.
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CLAIMS
What is claimed is:
1. A processor, comprising:
a front end to receive an instruction;
a decoder to decode the instruction;
a core to execute the instruction, including:

a first logic to determine that the instruction will require strided data
converted from source data in memory, the strided data to include corresponding
indexed elements from a plurality of structures in the source data to be loaded into a
same register to be used to execute the instruction;

a second logic to load source data into a plurality of preliminary vector
registers, the source data to be unaligned as resident in the vector registers;

a third logic to apply blend instructions to contents of the preliminary
vector registers to cause corresponding indexed elements from the plurality of
structures to be loaded into respective interim vector registers; and

a fourth logic to apply further blend instructions to contents of the
interim vector registers to cause further corresponding indexed elements from the
plurality of structures to be loaded into respective source vector registers; and

a retirement unit to retire the instruction.

2. The processor of Claim 1, wherein the core further includes a fifth
logic to execute the instruction upon one or more source vector registers upon

completion of conversion of source data to strided data.

3. The processor of Claim 1, wherein the core further includes a fifth
logic to perform permute operations upon each respective source vector register to

rearrange contents to match an original relative order in the source data.

4. The processor of Claim 1, wherein:
after performance of the fourth logic, each source vector register is to include

a missing element from the source data; and
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the core further includes a fifth logic to perform a load for each source vector

register from the source data to provide the missing element.

5. The processor of Claim 1, wherein:

the strided data is to include eight registers of vectors, each vector to include
five elements that correspond with the other vectors; and

eleven blend operations are to be applied to contents of the preliminary vector
registers and the interim vector registers to yield contents of the respective source

vector registers.

6. The processor of Claim 1, wherein:

the strided data is to include eight registers of vectors, each vector to include
five elements that correspond with the other vectors; and

fifteen blend operations are to be applied to contents of the preliminary vector
registers and the interim vector registers to yield contents of the respective source

vector registers.

7. The processor of Claim 1, wherein:

the strided data is to include eight registers of vectors, each vector to include
five elements that correspond with the other vectors;

fifteen blend operations are to be applied to contents of the preliminary vector
registers and the interim vector registers to yield contents of the respective source
vector registers; and

three masks are to be used in application of the fifteen blend operations to

yield contents of the source vector registers.

8. A system, comprising:
a front end to receive an instruction;
a decoder to decode the instruction;
a core to execute the instruction, including:
a first logic to determine that the instruction will require strided data

converted from source data in memory, the strided data to include corresponding
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indexed elements from a plurality of structures in the source data to be loaded into a
same register to be used to execute the instruction;

a second logic to load source data into a plurality of preliminary vector
registers, the source data to be unaligned as resident in the vector registers;

a third logic to apply blend instructions to contents of the preliminary
vector registers to cause corresponding indexed elements from the plurality of
structures to be loaded into respective interim vector registers; and

a fourth logic to apply further blend instructions to contents of the
interim vector registers to cause further corresponding indexed elements from the
plurality of structures to be loaded into respective source vector registers; and

a retirement unit to retire the instruction.

0. The system of Claim 8, wherein the core further includes a fifth logic
to execute the instruction upon one or more source vector registers upon completion

of conversion of source data to strided data.

10.  The system of Claim 8, wherein the core further includes a fifth logic
to perform permute operations upon each respective source vector register to

rearrange contents to match an original relative order in the source data.

11. The system of Claim 8, wherein:

after performance of the fourth logic, each source vector register is to include
a missing element from the source data; and

the core further includes a fifth logic to perform a load for each source vector

register from the source data to provide the missing element.

12. The system of Claim 8, wherein:

the strided data is to include eight registers of vectors, each vector to include
five elements that correspond with the other vectors; and

eleven blend operations are to be applied to contents of the preliminary vector
registers and the interim vector registers to yield contents of the respective source

vector registers.



WO 2017/105719 PCT/US2016/061965

10

15

20

25

85

13. The system of Claim 8, wherein:

the strided data is to include eight registers of vectors, each vector to include
five elements that correspond with the other vectors; and

fifteen blend operations are to be applied to contents of the preliminary vector
registers and the interim vector registers to yield contents of the respective source

vector registers.

14. The system of Claim 8, wherein:

the strided data is to include eight registers of vectors, each vector to include
five elements that correspond with the other vectors;

fifteen blend operations are to be applied to contents of the preliminary vector
registers and the interim vector registers to yield contents of the respective source
vector registers; and

three masks are to be used in application of the fifteen blend operations to

yield contents of the source vector registers.

15. A method comprising, within a processor:

receiving an instruction;

decoding the instruction;

determining that the instruction will require strided data converted from source
data in memory, the strided data to include corresponding indexed elements from a
plurality of structures in the source data to be loaded into a same register to be used to
execute the instruction;

loading source data into a plurality of preliminary vector registers, the source
data to be unaligned as resident in the vector registers;

applying blend instructions to contents of the preliminary vector registers to
cause corresponding indexed elements from the plurality of structures to be loaded

into respective interim vector registers;
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applying further blend instructions to contents of the interim vector registers to
cause further corresponding indexed elements from the plurality of structures to be
loaded into respective source vector registers; and

retiring the instruction.

16. The method of Claim 15, further comprising execute the instruction
upon one or more source vector registers upon completion of conversion of source

data to strided data.

17. The method of Claim 15, further comprising performing permute
operations upon each respective source vector register to rearrange contents to match

an original relative order in the source data.

18. The method of Claim 15, wherein:

when applying further blend instructions, each source vector register includes
a missing element from the source data; and

the method further includes performing a load for each source vector register

from the source data to provide the missing element.

19. The method of Claim 15, wherein:

the strided data includes eight registers of vectors, each vector including five
elements that correspond with the other vectors; and

the method includes performing eleven blend operations to contents of the
preliminary vector registers and the interim vector registers to yield contents of the

respective source vector registers.

20. The method of Claim 15, wherein:
the strided data includes eight registers of vectors, each vector including five

elements that correspond with the other vectors; and
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the method includes performing fifteen blend operations to contents of the
preliminary vector registers and the interim vector registers to yield contents of the

respective source vector registers.

5 21. An apparatus, including means for Claims 15-20.
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