PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4 : (11) International Publication Number: WO 89/09962
GOGF 9/00, 9/30 Al (43) International Publication Date: 19 October 1989 (19.10.89)
(21) International Application Number: PCT/US89/01393 | JP, KP, KR, LK, LU, LU (European patent), MC, MG, ML
(OAPI patent), MR (OAPI patent), MW, NL, NL (European
(22) International Filing Date: 5 April 1989 (05.04.89) { patent), NO, RO, SD, SE, SE (European patent), SN (OAPI
patent), SU, TD (OAPI patent), TG (OAPI patent).
(30) Priority data:
178,382 6 April 1988 (06.04.88) US| Published

(71X(72) Applicant and Inventor: KING, Ed [US/US]; 4945
Norris Road, Fremont, CA 94536 (US).

(74) Agents: HARRIMAN, J., D., II et al.; 2049 Century Park
East, Suite 1200, Los Angeles, CA 90067 (US).

(81) Designated States: AT, AT (European patent), AU, BB, BE
(European patent), BF (OAPI patent), BG, BJ (OAPI pa-
tent), BR, CF (OAPI patent), CG (OAPI patent), CH,
CH (European patent), CM (OAPI patent), DE, DE (Eu-
ropean patent), DK, FI, FR (European patent), GA (OA-
PI patent), GB, GB (European patent), HU, IT (Euro-
pean patent),

With international search report.

(54) Title: METHOD AND APPARATUS FOR IMPROVED EXECUTION OF INSTRUCTION SEQUENCES

(57) Abstract

The computer system of the present invention
provides a method and apparatus .for executing
instruction sets, The processor (17) of the present
invention creates a link §gt of instructions (16). The
link list includes the origin and destination of the
operation to be executed in the particular instruction
step. A “learn processor” (18) reviews the link list
instruction set and updates pointers to eliminate

4
/o

K

HSTRUCTION ChetT

/IS

20 7

lé\ /

instruction steps that do not require execution. The
learn processor (18) tracks results from instruction
sequences, which produce an output. The variable
inputs and outputs are stored in a state cache (20). If

STu7E
CACHE

3

Ak L1ST ks
NSTRUCTTOMS | =

the variable inputs do not change between one cycle
sequence and the next the correct result is simply
placed at the proper location in the instruction
sequence.

ExeLurioN
\rocsssoR

MowrraRs

Lanenme [Rocessor ,]

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international appli-
cations under the PCT.

AT Austria . FR France ML Mali

AU Australia GA Gabon MR Mauritania
BB Barbados GB United Kingdom MW Malawi

BE Belgium HU . Hungary NL Netherlands
BG Bulgaria IT Taly NO Norway

BJ Benin JP Japan RO Romania
BR Brazil KP Democratic People’s Republic SD Sudan

CF Central African Republic of Korea SE Sweden

CG Congo KR Republic of Korea SN Senegal

CH Switzerland LI Liechtenstein SU Soviet Union
CM Cameroon LK SriLanka TD Chad

DE Germany, Federal Republic of LU Luxembourg TG Togo

DK Denmark MC Monaco US United States of America

FI Finland MG Madagascar

-

WO 89/09962

5

10

15

20

25

30

PCT/US89/01393

1
METHOD AND APPARATUS FOR IMPROVED EXECUTION OF INSTRUCTION SEQUENCES

BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION

This invention relates to the field of computing systems, and in
particular to a method and apparatus for increasing the speed and efficiency

of execution of a sequence of instructions.

2. BACKGROUND ART

Computing systems perform tasks by executing a series of instruction
steps known as a program. The performance of a computing system is
directly related to the speed with which it can execute these instruction steps.
Typically, a processing means, such as a central processing unit (CPU),
microprocessor or other processing engine is utilized to execute instruction
steps. The processing means is driven by a clock which enables the
processing means, allowing the execution of instructions or portions of
instructions in fixed increments of time. The clock rate is one factor in
determining the performance of a computing system. Other factors include
the number of instructions to be executed and the number of instructions
which can be executed in a single clock cycle. The prior art has attempted to
increase the efficiency of computer systems by reducing the number of
instructions and/or increasing the number of instructions which are
executed in each clock cycle. In order to increase the performance and speed
of computer systems, some manufacturers have employed reduced
instruction set computers (RISC) chips and others are implementing a
standard complex instruction set (CISC) chip.

One disadvantage of utilizing RISC chips is the requirement of a new
architecture and new software, costing time and money. The use of CISC

architecture has the disadvantage of narrow applicability to only certain

WO 89/09962 PCT/US89/01393

10

15

2
types of applications. In addition, these solutions are limited to chip level
improvements and do not provide a method and apparatus for improving
the efficiency of all computer systems, regardless of the processing means.
Therefore, it would be advantageous to increase the speed of execution of
existing software applications and provide a method and apparatus for
improved execution of any set of executable instructions.

It would also be advantageous to improve the perfomance of low cost
computing systems, such as personal computers, to achieve performance
heretofore only available on minicomputers or mainframes. For example,
personal computers have not been widely used in certain operating
environments and applications because they lack the speed and performance
of minicomputers and main frame corhputers. Work stations, artificial
intelligence (AI) applications and other computation intensive applications
require specialized and expensive hardware. The specialized nature of such
hardware often makes it incapable of running the vast array of the existing
software available to the personal computer market. It would be
advantageous to combine the speed and performance of a super or super

mini computer with the low cost and existing software library of a personal

computer.

20

Personal computers are generally built around a standard
microprocessor such as, for example, the Intel 80286 or 80386. Generally, the
performance of the microprocessor is a controlling factor in the performance
of the machine itself.

There are several factors which control the speed of a standard
microprocessor. Initially, the technology of the microprocessor has an effect
on the speed of the microprocessor. For example, the technology (CMOS,
NMOS, bipolar etc.) determines the clock rate of the microprocessor. The
faster the clock rate, the faster the microprocessor. However, clock speed is

not the only controlling factor in microprocessor performance. The number

WO 89/09962

10

15

20

25

PCT/US89/01393
3
of clock cycles per executed instruction, in combination with clock speed, is
the principal determinant of microprocessor performance. More simplified,

the performance of a microprocessor can be described as follows:

T=NIC

T=Time to execute program

N=Number of instructions in program
I=Average number of clock cycles per instruction

C=Basic clock cycle time.

Because the clock speed of the microprocessor is a function of circuit
technology, it cannot be improved by a computer designer. However, the
number of instructions in a program and the average number of clock cycles
per instruction can be improved by "pipe lining" the architecture of the
computer system to maximize efficiency in execution. A typical bottleneck
in increasing computer system efficiency is the lack of memory bandwidth.
Typical computer buses are too slow to take full advantage of the memory
bandwidth of an Intel 30286 microprocessor, for example. An IBM PC/AT,
for example, has a memory band width of 4 megabytes per second. The Intel
80286 microprocessor requires 2.87 bytes per op code. Therefore, to achieve
performance of ten million instructions per second (mips) would require
over 27 megabytes per second of memory bandwidth, not available in the
standard IBM PC/AT.

A second bottleneck is the interrupt structure within a computer
system in dealing with third party controllers, i.e. peripherals. Other speed
bottlenecks occur within the processor itself related to the ability to perform
complex instructions in a single clock cycle.

It is therefore an object of the present invention to provide a method

and apparatus for improving the effieciency of execution of instruction steps

30 in a computing system.

WO 89/09962 PCT/US89/01393

4
It is another object of the present invention to provide a computer

system having a reduced number of clock cycles per executed instruction.
It is a further object of the present invention to provide a computer
system which will operate at high speeds.
5 It is still another object of the present invention to provide a
computer system whose performance is substantially independent of the

technology of the processing means.

WO 89/09962 PCT/US89/01393

5
SUMMARY OF THE PRESENT INVENTION

The present invention provides an improved method and apparatus
5 for executing instruction sets. The present invention utilizes a dual bus

architecture to provide greater memory access bandwidth and allowing
increased system operation. A high speed access bus is utilized for memory
access and a standard bandwidth bus is utilized for third party controllers
and peripherals. The processor of the present invention creates a link list of

10 instructions. The link list includes the origin and destination of the
operation to be executed in the particular instruction step. A "learn
processor” reviews the link list instruction set and updates pointers to
eliminate instruction steps that do not require execution. The learn
processor tracks result from instruction sequences, which produce an

15 output. The variable inputs and outputs are stored in a state cache. If the
variable inputs do not change between one cycle sequence and the next, the
correct result is simpiy placed at the proper location in the instruction
stream, eliminating the necessity of executing the instruction sequence. By
eliminating all unnecessary instructions, the clock cycles per instruction

20 ratio is improved, leading to more efficient system operation. The "learn
processor" also evaluates link list instructions to determine origin points
and destination points. Sequential instructions which have identical origin
points and destination points may be collapsed to an "ORG" point which is,
in the preferred embodiment, a link list instruction location which performs

25 a plurality of instructions simultaneously.

In the preferred embodiment of the present invention, an I/O port
couples the present system to an instruction set. The instructions are routed
to an instruction unit for conversion to a link list format. Each element in
the link list has an execution field and a pointer field. The execution field

30 includes the instruction operand, source and destination. The pointer field

WO 89/09962 PCT/US89/01393

6.
includes a pointer to another location in the link list. After conversion to
the link listrformat, the link list instruction elements are stored in a link list
memory.

A learning processor and an execution processor are coupled to the

link list memory. The execution processor executes the instructions in an

 element of the link list and proceeds to the next element indicated by the

10

15

20

pointer field. ‘The learn processor reviews each link list element to
determine if the insfruction can be (a) collapsed onto another link list
element, (b) omitted from execution in general and (c) omitted from
execution at the preSent time.

Link list elements containing instructions having similar destinations
or origins, or which have open descriptors, may be collapsed into a single
link list eiement. Thus, if three consecutive instructions fetched data from
similar memory locations, for example, these instructions can be collapsed
into a single link list element. Each link list element which cannot be
collapsed onto a prior link list elemeht is defined as an "ORG" point. ORG
points consist of link list elements having a single instruction or a plurality
of instructions.

Certain instructions need never be executed by the execution
processor. For example, a no-op (no operation), need not be executed.
When a no-op is encountered, the learn processor updates the pointer field
of the prior link list element to skip over the no-op and proceed to the next
executable link list element.

Often, programs sequences are encountered which manipulate one or
more variables to produce a desired result. Each time the sequence is
encountered, the same result is produced if the variables have not changed.
The learn processor is coupled to a state cache which stores the variables and

result. When the sequences are encountered, the learn processor pulls the

- state cache to see if the variables have been changed. If not, the result is

WO 89/09962 PCT/US89/01393
7
inserted into the proper location and the sequence is not performed. In one
embodiment of the invention, if the variables have been changed, the
sequence of steps is performed separately from the main sequence program
so that when the sequence is encountered, the new value may be
5 automatically inserted at the proper location. Alternatively, the sequence

could be performed as part of the main program when the variables have
been changed and the program sequence is encountered. The present
invention provides a method and apparatus for improving the efficiency of
execution of a sequence of instruction steps, regardless of the particular

10 application or environment of the sequence.

WO 89/09962 7 PCT/US89/01393

8
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram illustrating prior art computer system.

Figure 2 is a block diagram i]lustrating a computer system of the
present invention.

Figure 3 is a block diagram illustrating an embodiment of the present
10 invention.

Figure 4 is a block diagram illustrating the "learning processor" of the
present invention.

WO 89/09962

10

15

20

25

30

PCT/US89/01393

9
DETAILED DESCRIPTION OF THE PRESENT INVENTION

Method and apparatus for improved execution of instructions sets is
described. In the following description, numerous specific details, such as
bus width, memory width, number of fields etc., are set forth in detail in
order to provide a more thorough understanding of the present invention.
It will be obvious, however, to one skilled in the art, that the present
invention may be practiced without these specific details. In other instances,
well known features have not been described in detail in order not to
unnecessarily obscure the present invention.

GENERAL OVERVIEW

The present invention is directed to a method and apparatus for
improving the performance of computer systems in the execution of
instruction steps. In one embodiment, the present invention is directed to
improving the performance of a computer system running standard
microprocessor based software.

The present invention includes an execution processor means capable
of executing a number of instructions in a single clock cycle. A learn
processor means is provided which eliminates unnecessary program steps,
combines selected program steps, and monitors repeated sequences of
program steps so that they are executed only if changes in data have
occurred.

By eliminating unnecessary program steps, such as no-ops, the
number of instructions to be executed is reduced, improving system
performance. Program steps having similar sources and/or destinations are
combined and executed simultaneously, further reducing the number of
program steps and increasing the performance of the system. Sequences of
instructions which produce the same result if the variables do not change

are monitored, with the result stored in a state cache. If, when the sequence

WO 89/09962 PCT/US89/01393

10

15

20

25

10
of instructions is next encountered, the variables have not changed, the

result is inserted into the program at the appropriate location and the
sequence is not executed, further reducing the number of program steps and
improving the performance of the machine.

The learn processor of the present invention tracks the history of the
instruction steps being executed and eliminates and compresses the steps,
reducing the number of instructions and correspondingly the number of
clock cycles necessary to execute the program. This differs from prior art
schemes which are predictive in nature.

As discussed previously, the time it takes a computer system to
execute a program is dependent on N, the number of instructions in the
program, I, the average number of clock cycles per instruction, and C, the
basic clock cycle time. N and I are functions of architecture while C is a
function of circuit technology. For purposes of this application, performance
increases are achieved for all values of C. The present invention has equal
application to any clock cycle time and or processing technology. In other
words, improvements in clock cycle time will result in improvements in
performance of the present invention. However, the focus of the present
invention is on improving performance by optimizing the values of N and
L. Other prior art computer systems view N and I as fixed and rely on
improvements in chip technology to increase performance. Therefore, one
goal of the present invention is to both reduce the number of instructions
and reduce the average number of clock cycles per instruction.

The present invention is directed to general algorithm machines. A
general algorithm machine is defined, for the purposes of the present
application, as rany machine, computer system or execution system which
executes a sequence of instruction steps. The instruction sequence of a

general algorithm machine can be generally described as follows:

WO 89/09962 PCT/US89/01393

10

15

20

25

TABLE I t

Fetch instruction

=

Decode instruction

(optional) Fetch secondary operands
Do address calculation

Fetch data (register, memory, or other)
Execute instruction

Store results

Add size of instruction due to current location counter.

© ® N W oe w

Check for interrupts

10. Return to One

The goal of prior art computer systems is to execute the above listed
ten steps in as few clock cycles as possible. In an ideal "no overhead"
machine, one instruction is executed each clock cycle and with pipe lining,
all ten of the above general algorithm steps are performed in each clock cycle
(at separate locations). However, even in such a "no overhead" machine, all
instructions are fetched (whether they need to be executed or not) and only a
single instruction is fetched at any one time.

In order to increase the efficiency of the operation of prior art general
algorithm machines, many prior art systems have used a solution that is
predictive in nature. In other words, some method is implemented to
predict which registers, program steps, or data are likely to be utilized by the
system. These are then stored in a memory cache for rapid access by the
computer system as they are needed. When variations occur, the
predictions are updated and revised. The efficiency of such prior art systems
is limited by their very predictive nature. By definition, it is impossible for
such systems to always provide the correct items at the correct time.

Further, such predictive systems do not eliminate unnecessary program

steps, nor do they collapse a sequence of instructions into a single step.

WO 89/09962 PCT/US89/01393

10

15

20

12
LEARN MODE

The present invention, on the other hand, uses a “learning" mode on
the entire set of instructions. In a learn mode, the system remembers what
is required at each step of the program as well as the next step required at
that particular time. In this manner, unnecessary program steps can be
eliminated. In addition, the present invention tracks and combines
sequences of instructions having similar origin points and similar
destination points.

The present invention implements the learn mode by defining and
identifying the beginning instruction of é sequence of instructions which
can be collapsed into a single step. The instruction set is regrouped into a
séries of "ORG" points. By definition, an ORG point is the last instruction
encountered upon which subsequent instructions can be collapsed.
(Accordingly, an ORG point is also any instruction which cannot be
collapsed onto a prior instruction.) Correspondingly, an ORG point is an

instruction step that must be executed. Instruction sets which need not be

executed are not executed in the implementation of the present invention,

further saving time. Therefore, two main principles of the present
invention are the reduction of number of instructions (N) by eliminating
instructions that need not be executed and collapsing sequences of
instructions on to ORG points, and reducing the number of clock cycles per
instruction (I) by executing a plurality of instructions simultaneously (in the
collapsed sequences).

METHOD OF COMBINING INSTRUCTIONS

The learn mode of the present invention combines instructions to

promote greater performance and efficiency. Referring again to Table I, the

first three steps of a general algorithm machine are made more efficient by
the present invention by fetching more than one instruction during a clock

cycle whenever possible. Instead of fetching instructions, the present

WO 89/09962

10

15

20

25

PCT/US89/01393
13
invention fetches ORG points. Because every ORG point consists of one or
more instructions (by definition), improved performance is achieved.

However, it is not possible to combine all instruction steps. One limit
is determined at step 5 of Table 1, fetch data. If the sources of the data are not
similar sources, it is not possible to fetch the data and have it available in a
single clock cycle. Therefore, if a sequence of instructions do share similar
sources, those instructions are combined in the present invention. For the
purpose of the present invention "similar sources" are sources which the
computer system can access simultaneously.

In a processor context, for example, similar sources could be memory
locations within the "window" of the memory. The window of a memory is
generally equal to the width of the memory. If consecutive instructions call
memory locations within the memory window and these locations can be
accessed simultaneously, the locations are considered to be similar sources.
Similarly, if register locations are accessible simultaneously, they are similar
sources. Although the above examples relate to processor implementations
of the present invention, they are given as examples only. The present
invention has equal application to any type of system which executes
instructions. Therefore, similar sources are not limited to memory or
register locations but relate to any source of data or instructions which can be
simultaneously accessed by the system. Further, for systems in which
locations not within the memory window may be addressed
simultaneously, such locations are considered similar.

At step 7 of table 1, the results of the operation of the instruction on
the fetch data are stored. If the results of a sequence of instructions are to be
stored in similar destinations, those instructions are susceptible of
combination. Therefore, those sequences of instructions having similar

destinations may also be combined by the present invention.

WO 89/09962 ' PCT/US89/01393

10

15

20

25

14
As described with respect to similar sources above, similar

destinations are destinations (memory locations, registers, or any other type
of destination) which can be accessed by the system in question
simultaneously. It is not a requirement of the present invention that the
destinations be exactly the same location. The present invention is
concerned with the ability to move results or other information at the same
time to any locations.

Certain instructions have open descriptors, such as JUMP commands
and may always be collapsed onto a prior instruction step.

In one embodiment of the present invention, entire sequences of
ORG points and/or instructions may be treated as a single step. In certain
particular sequences of instructions, certain variables are manipulated to
produce a desired result. Often the sequences involve mathematical
maitipulations of data. If the variables remain constant, the manipulations
produce the same result and/or results each time the sequence is
encountered. After the sequence has been performed completely once, the
variables and results are stored in a state cache and monitored. When next
the sequence of steps is encountered, the monitors are polled to see if
variables have been changed since the previous execution. If the variables
have not changed, the stored result may simply be inserted into the program
sequence at the proper location so that the entire sequence of steps is
eliminated, improving the efficiency of the system. If the variables have
been changed, the particular sequence is executed to produce the new result.
As before, these variables and new results are stored and monitored by the
learn mode in anticipation of the next time the sequence is encountered.
Alternatively, when a variable is changed, the sequence of steps can be
executed separately from the main program sequence and the new result
may then be inserted at the proper location whenever the sequence is next

encountered in the main program.

WO 89/09962

10

15

20

25

PCT/US89/01393

15
The following is an example of the application of the learn mode of

the present invention to an instruction set which may be found, for
example, in a microprocessor environment. The instruction set of the

present example is as follows:

TABLE II

1. Move a --> [m]

2. Move b —> [m+2]

3. Movec<--0

4. Add [m] +d ~-> [m]

5. Addd+2->d

6. Compare d with immediate value
7. Jump not equal to error

8. Move [m+4] <--d

9. Jumptol

When the learn mode of the present invention first encounters the
above instruction set, it encounters the instructions consecutively from 1
through 9. When instruction 1 is encountered, the present invention
defines that instruction as an ORG point and executes the instruction,
generating a result.

When instruction 2 is first encountered, the learn mode analyzes the
instruction to see if the instruction may have similar sources or destinations
with the present ORG point and therefore be suitable for collapsing onto the
present ORG point (instruction 1). In this case, the memory location, (m+2)
is within the window area of the first memory location, (m). Therefore, the -
learn mode collapses these two instructions into a single instruction.

Instruction 3 shares neither similar sources nor destination with the
present ORG point (combination of instructions 1 and 2). Therefore,

instruction 3 becomes a new ORG point.

WO 89/09962 PCT/US89/01393

10

15

20

25

When the learn mode of the prlegent invention encounters
instruction 4, a comparison is made between the sources and destinations of
instruction 4 and the present ORG point, (instruction 3). Since no sources or
destinations are shared, instruction 4 is defined as a new ORG point.

Instruction 5 has a matching destination (d) with instruction 4.
Therefore, instruction 5 can be collapsed onto the present ORG point,
(instruction 4) to form a new ORG point, namely a combination of
instructions 4 and 5.

Instruction 6 shares a source (d) with the existing ORG point, and so it
too is collapsed into the ORG point. The present ORG point now becomes
the combination of instructions 4,5 and 6.

Instruction 7 is a jump command. Whether or not the command is to
be executed at this point is immaterial. The jump command is a decisional
command which can be collapsed onto the ORG point and executed at the
proper time. The new ORG point then becomes the combination of steps 4 -
7. In the preferred embodiment of the present invention, jump commands
are also monitored by a state cache. The parameters making up the
decisional aspect of the jump command are constantly monitored and tested
outside of the main program. When the jump command is encouﬁtered,
the state cache is polled to determine if the jump should be executed. If the
jump is to be executed, the pointer of the ORG point containing the jump
command will have already been updated to the proper location. If the
jump command is not to be executed, the pointer will reflect such a state as
well. |

Instruction 8 shares sources and destinations with the present ORG
point. Therefore, instruction 8 is collapsed into the ORG point. Instruction
9 is a jump to the beginning of the loop and is independent of source or
destination and can be collapsed into the ORG point. At this point, the

instruction set is a series of ORG points as follows.

PCT/US89/01393

WO 89/09962
17
ORG 1 -Instructions 1, 2
ORG 2 -Instruction 3
ORG 3 -Instructions 4, 5,6, 7, 8,9
Using the learn mode of the present invention, an instruction
5 sequence requiring nine clock cycles in a prior art system can be executed in

10

15

20

25

only three clock cycles in the system of the present invention. The method
of creating ORG points and the operation of the ORG points in the present
invention is described in detail below.

The learn mode of the present invention also takes advantage of the
fact that long sequences of instructions may be collapsed if the result of the
sequence does not change from one encounter to the next. For example, if a
sequence of instructions based on a number of variables yields a result, this
result can be stored in a special memory, in the preferred embodiment a
"state cache". The variables can also be stored in the state cache. If the
variables have not been changed prior to the next encounter of that
sequence, there is no need to execute the sequence and the result may be

simply inserted into the program at the proper location.

Link List Generation

In order to implement the learn mode of the present invention,
instruction sequences are first converted to a link list format. The link
listing includes a number of fields including instructions, operands, and a
pointer field to point to the next location in the link list to be executed. The
link list element consists primarily of an execution field and a pointer field.
The execution field stores instructions from the instruction sequence or
instruction set to be executed by the system of the present invention. The
pointer is a location indicator which directs the execution unit to another

location in the link list. The link list is constantly updated during execution

WO 89/09962 PCT/US89/01393

10

15

20

25

18
of the program. As discussed previously, certain instruction sequences can

be collapsed into a single ORG point for execution during a single clock cycle.
Referring again to the example list of instructions of Table II above, the
generation of the link list is as follows.

When instruction number 1 is read by the learn mode, the learn
mode identifies the instruction as an ORG point (because it is the first
instruction encountered) and creates a link list element as follows:

| Execution field (Instruction 1) Pointer (2)

The pointer points to instruction 2 which is the next instruction in
the
instruction sequence. When instruction 2 is read, a comparison of the
destination and sources of the instruction is initiated as described above. As
noted previously, instruction 2 can be collapsed onto mstructlon 1. The
resulting collapsed instruction is as follows:

Execution field (Instruction 1, Instruction 2) Pointer (3)

The pointer now points to instruction 3, which is the next instruction
in sequence. Instruction 3 is read, and a comparison is made between the
sources and destination of instruction 3 and the previous ORG point. There
is no match between the present ORG point and instruction 3 so the link list
now reads as follows:

Execution field (Instruction 1, Instruction 2) Pointer (3)

Execution field (Instruction 3) Pointer (4)

Instruction 4 is encountered and again no match is made between the
present ORG point (instruction 3) and instruction 4. Instruction 4 therefore
becomes a new ORG point with the link list appearing as follows:

Execution field (Instruction 1, 2) Pointer (3)

Execution field (Instruction 3) Pointer (4)

Execution field (Instruction 4) Pointer (5)

WO 89/09962

10

15

20

25

PCT/US89/01393
19
Instruction 5 shares source/destination with instruction 4 and is
therefore collapsed onto instruction 4. The link list reads as follows:

Execution field (Instruction 1, 2) Pointer (3)

Execution field (Instruction 3) Pointer (4)

Execution field (Instruction 4, 5) Pointer (6)

Instruction 6 also has a common source/destination with the present
ORG point and is therefore collapsed onto the ORG point. The link list now
reads as follows:

Execution field (Instruction 1, 2) Pointer (3)

Execution field (Instruction 3) Pointer (4)

Execution field (Instruction 4, 5, 6) Pointer (7)

When reading instruction 7, the learn processor identifies it as an
open descriptor and can thus be collapsed into the present ORG point. The
link list then reads:

Execution field (Instruction 1, 2) Pointer (3)

Execution field (Instruction 3) Pointer (4)

Execution field (Instruction 4, 5, 6, 7) Pointer (8)

In the preferred embodiment of the present invention, the number of
instructions that can be collapsed onto a single ORG point is unlimited.
However, depending upon memory configurations, and cost/performance
consideration, it may be desirable to limit the number of instructions that
can be collapsed into a single ORG point. For purposes of this example, it is
assumed that a maximum of 4 instructions may be collapsed into a single
ORG point. Therefore, when reading instruction 8, even though it could be
collapsed onto the present ORG point due to similar source/destination
information, the learn mode labels instruction 8 as a new ORG point. The
link list now reads:

Execution field (Instruction 1, 2) Pointer (3)

Execution field (Instruction 3) Pointer (4)

WO 89/09962 PCT/US89/01393

10

15

20

25

20
Execution field (Instruction 4, 5, 6, 7) Pointer (8)

Execution field (Instruction 8) Pointer (9)

Since instruction 9 has an open descriptor, it can be collapsed onto
instruction 8 so that the final link list of the 9 instructions reads as follows:

Execution field (Instruction 1, 2) Pointer (3)

Execution field (Instruction 3) Pointer (4)

Executed field (Instruction 4, 5, 6, 7) Pointer (8)

Executed field (Instruction 8, 9) Pointer (1)

The pointer of the last ORG point of the link list points back to the
first element of the link list and not to any particular instruction. As can be
seen, even with a limited number of instructions that may be collapsed into
a single ORG point, the present invention results in ORG points in place of
the original 9 instruction steps. Because each ORG point may be executed in
a single clock cycle, the present invention has reduced the number of clock
cycles required to execute the instruction sequence from a minimum of 9 in
a no overhead prior art machine to 4 in the present invention.

LANGUAGE PROCESSING

The present invention has application to all types of instruction sets.
A micro code instruction set typically begins with a programmer preparing a
series of steps in source code (such as fortran, basic etc.). The source code is
used to generate "P code" which is an intermediate or source code.
Typically, there are two or three source code instructions for each source
code instruction. A compiler may be used to generate templets which
generate the same sequences of instructions for a particular type of language
function. The ratio of templet instructions to P code is greater than 1. The
templets are then converted to assembly language and from the assembly
language, the hardware generates micro code. The final ratio of micro code
instructions to source code instructions can be as large as 200 to 1. By

applying the principles of the present invention at any or all stages of code,

WO 89/09962

10

15

20

25

PCT/US89/01393
21
efficiencies can be achieved prior to execution by a processor. For example, if
five source code instructions could be reduced to a single link list element of
the present, the resulting micro code may be only 200 lines instead of 1000
lines in the uncollapsed case.

Further, the present invention is not limited to coding environments
but to any system which executes sequences of instructions. For example,
the present invention has particular use in a language processor. A
language processor is a machine which directly executes a high level
language such as source code or P code. All programs have repeated
sequences which may be collapsed by the learn processor or avoided through

use of the state cache.

System Lavout

Referring to figure 1, a prior art computer system is illustrated. In
such a prior art system, a single bus 10 is used to connect a processor 11,
memory 12 and peripherals 13. In a prior art "AT" style system, the bus is
limited to 4 megabytes per second, too slow to support high performance
computing.

The preferred embodiment of the present invention is illustrated in
figure 2. Input output (I/O) means 14 connect the present invention to a
source of instructions. Instruction unit 15 coupled to I/O 14 converts the
instructions to link list format stored in link list instruction memory 16.
The instruction unit 15 pre-fetches streams of instructions from an
instruction source in the "outside world". The instruction unit uses typical
caching methods for efficient pre-fetching of instructions that has the added

capability of reconfiguring the reconstruction list into a link list format. As

- noted previously, the link list format consists of an instruction field and a

pointer field. The link list instruction memory 16 is coupled to an execution

processor 17 for executing each of the link list elements. Link list memory 16

WO 89/09962 PCT/US89/01393

10

15

20

25

: 22
is also coupled to learning processor 18 which evaluates each link list

element for compression to ORG points. The learning processor 18 also is
coupled to the execution processor 17 so that cache updates may be
maintained.

As noted above, the present invention combines a plurality of
operands into single link list elements. For example, a plurality of "add"
instructions may be combined in a single link list element. Therefore, the
execution processor 17 must be capable of executing a plurality of adds in a
single step.

The learning processor 18 is also coupled to state cache 20 for storing
the results of instruction sequences. As previously noted, if none of the
variables of the instruction sequence are changed, the state value for that
sequence is simply inserted at the proper location each time the sequence is
encountered. Monitors 19 are used to indicate whether any changes have
occurred in the variables. If changes have occurred, the state cache is
updated accordingly.

In the preferred embodiment, the present invention utilizes
"resettable” RAMs so that, upon initialization, all memory (state cache, link
list, etc.) may be cleared in a single clock cycle.

In operation, the learn processor 18 further divides the instruction
field into a plurality of subfields. These subfields include a plurality of
source fields identifying the source of the operation, destination fields,
identifying the destination of the operation, and an operand field also called
a "type class" field which stores the operand of the instruction. The learn
processor 18 then compares these fields to the fields of existing ORG points
to determine if further collapsing of the link list element can be achieved.
As noted previously, if source fields are similar, and collapse of the operand
is permissible, a link list element may be collapsed onto a prior element or

ORG point.

WO 89/09962

10

15

20

25

PCT/US89/01393

23
In the preferred embodiment of the present invention, the sources

need not be identical but merely similar. For example, referring to Table II,
instruction 1 moves a register value A into a memory location M.
Instruction 2 involves writing to a different memory location, but one that
is within the window of the original memory location M. Thus, the second
memory location is similar to the first memory location. Such sources
and/or destinations may be combined in the preferred embodiment of the
present invention.

If a link list element is collapsed onto a prior ORG point, thus creating
a new ORG point, the learn processor 18 updates the link list 16. Each time
the link list is encountered, further compression of the link list elements
and ORG points may be accomplished. Thus, efficiency and correspondingly
speed advantages may be obtained.

Referring to Figure 3, a block diagram illustrating another
embodiment of the present invention is illustrated. A plurality of
instructions are stored in memory 30 and coupled through bus 34 to
instruction fetch 31. Instruction fetch 31 includes format and decode means
33 for providing execution data to the link list block 36, including the source
of the instruction and all information needed to execute the instruction. A
slot control block 32 assigns a slot number to each instruction to provide an
index to each instruction. The output of format and decode block 33 is a
formatted instruction with a number of fields, including a PC field, a
number of execution fields, state cache slot number, etc.. When a slot is
assigned, a look-up table is updated to reflect the assignment so that
instruction elements may be found quickly and easily.

The formatted instructions are coupled to instruction link list block 36
and an instruction link list is generated as described previously. The
instruction link list is coupled to and stored in register 37, which may be a

number of RAM cache memories. A state cache 38 stores data elements

WO 89/09962 PCT/US89/01393

10

15

20

24
which may be called or accessed by particular instructions in the link list.

When a sequence of instructions calls a state cache slot, the data is read and a
validation is performed and a write operation is performed on the same
phase as the validation.

The execution phase unit 39 accesses register 37 and state cache 38 and
the instruction link list element is executed. The learn processor 40 is
coﬁpled to the execution phase unit 39 and performs compressions and
combinations as outlined above. The instruction fetch 31, instruction link
list 36, state cache 38, execution phase unit 39 and learn processor 40 are

coupled to BRD bus 35. The BRD bus is a synchronous bus.

Learn Processor

The learn mode processor is illustrated in detail in Figure 4. The
learn mode processor monitors the link list elements to determine if the
element or group of elements should be executed and to update the learn
procéssor with the result. Another aspect of the learn processor is to
mbnitor a series of results to see if a compression of elements may be
achieved. An instruction register 50 receives a number of link list element
instructions for review by the learn processor. The register 50 is coupled to
an execution unit 51, a descriptor capture block 55, a state RAM cache 52 and
current ORG storage 66.

As noted previously, the link list element comprise a number of
fields. The learn processor divides the link list element into two types of
fields, execution fields and state fields. The execution fields are coupled to
the execution unit 51 and descriptor capture block 55. The state fields are
coupled to state RAM cache 52. The execution unit acts on the execution
fields and produces results and destinations 63. The current ORG point is
stored in current ORG register 66 which is updated each time the ORG point

changes or a new ORG point is selected.

e

WO 89/09962

10

15

20

PCT/US89/01393

25
The state cache RAM 52 is addressed by the state fields of the link list

elements and pulls out data. The data is provided to the monitor circuit 53,
which is a series of tables. The state cache RAM 52, monitors 53 and validate
circuitry 54 make up the state cache 20 of Figure 2. When an instruction is
first encountered and converted to a link list element, one descriptor field, a
state cache bit, is set (high or low) to indicate that the instruction is in the
category of state cache control. In other words, the learn processor is
designed to assign certain types and classes of instructions as in the category
of state cache control. An "add" for example, can be executed faster in the
execution processor than by utilizing the state cache method. Instructions
which are appropriate for state cache treatment are instructions which are
inefficient, such as procedure calls, returns, jumps, state changing
instructions, task switching instructions, and memory management checks.

When an instruction is designated as appropriate for state cache
treatment, the descriptor or series of descriptors comprising the instruction
(or link list element or ORG point) are stored in the state cache along with
the result of those descriptors. Each descriptor is coupled to an address
monitor to determine if the address has been written to since the last
execution. The address monitor stores the address location of the descriptor.
The address monitor is a RAM, and, when the stored memory address is
written to, a "dirty" bit is set in the monitor, indicating that the address has
been written to and that the result is now assumed to be invalid, so that the
sequence of instructions must now be executed to obtain a new result.

The field values of the link list elements are provided to descriptor
capture block 55. The descriptor capture block 55 provides the field values,
such as, for example, source, destination, instruction type (add, subtract,
jump, etc.) to the field comparison circuitry 56. The field comparison
circuitry 56 compares the descriptor fields of the present link list element to

the descriptor fields of the present ORG point stored in current ORG storage

WO 89/09962 ' PCT/US89/01393

10

15

20

26
66. If similar sources and or destinations are found, and the instruction is

one which is valid to compress, the present link list element is combined
with the present ORG point.

Once the instruction passes from the input point of the execution unit
to the output point, multiplex and merge circuitry 58 is provided to either
merge the link list element with the existing ORG point or to replace the
existing ORG point with the present link list element, forming a new ORG
point. The multiplexers 58 are coupled to result register 59, along with
validate circuitry 54.

The logic array 61 is coupled to the result register to analyze the results
of the field comparison block 56. After the instruction is provided to the
result register 59, the link list is either updated, indicating that no more
compression can take place, or state cache values are assigned to the state
cache RAM 52. The result register provides the results to logic array 61 to
look at the results of rthre field comparisons and state cache finalization. The
logic array accesses a state machine 60. The state machine 60 controls BRD
bus 35 leading to link list 35. If no match of similar sources or destinations
has been made, the logic array 61 signals the state machine 60 to write an
ORG point to the BRD bus 35. The logic array 61 may comprise a PLA, PAL,
AND/OR gates, etc. The state machine 60 saves the current result stored in
the result out register 59 and rupdates it after each instruction or link list
element has been compared to the current ORG point. When no further
compression can occur, the logic array signals the state machine to save what
it has accumulated thus far and send it to the BRD bus to be stored as a new
ORG point in the link list 36.

For example, if three instructions are suitable for compression into a
single ORG point, the state machine stores the merged instruction from the
result register as the current ORG point and outputs that value to the

current ORG register 66. If the fourth instruction is not suitable for

WO 89/09962 PCT/US89/01393

27
compression, the logic array instructs the state machine to send the current

ORG point and send it to the BRD bus. The fourth instruction, stored in the
result register 59, is then provided to the state machine as a new ORG point.
Although the present invention has been described in terms of a
5 processor environment, it has equal application to any system which
executes instructions. The method of the present invention can be used to
reduce, eliminate and combine any sequence of instructions in any
application.
Thus, a method and apparatus for improved execution of instruction

10 sequences has been described.

WO 89/09962 PCT/US89/01393

10

15

20

25

28
CLAIMS

1. A method of defining a plurality of instructions for execution in a
computer system comprising the steps of:

converting each instruction to a link list element having and
execution field and a pointer for indicating a next link list element to be
executed;

determining a source and a destination for each link list element;

combining as a single element, consecuﬁvely executable link list
elements having similar sources and destinations;

defining each element which cannot be combined with prior elements
as an ORG point;

defining said pointers to indicate a next element requiring execution;

whereby said plurality of instructions is contained in a plurality of

ORG points fewer in number than said plurality of instructions.

2. The method of claim 1 wherein said execution field contains at

least one instruction.

3. The method of claim 1 wherein said combined link list elements
have a single execution field having a plurality of instructions and a single

pointer.

4. The method of claim 1 wherein said instructions comprise a

microprocessor instruction set.

5. The method of claim 1 further including the step of storing each

link list element in a first memory means.

Cag

WO 89/09962 PCT/US89/01393

10

15

20

25

29
6. The method of claim 5 wherein a first processor is coupled to said

first memory means and is used to determine sources, destinations and

necessity of execution of each link list element.

7. The method of claim 1 further including the steps of:

monitoring sequences of elements whose execution produces a result
in response to at least one variable;

storing said variable and said result in a second memory means;

inserting said result at a desired location when said sequence is next

encountered in place of executing said sequence when said variable has not

changed.

8. The method of claim 7 further including the step of executing said
sequence when said sequence is next encountered and said variable has

changed.

9. The method of claim 8 wherein a result is stored each time said
sequence is executed and inserted at said desired location when said

sequence is encountered and said variable has not changed.

10. Apparatus for improved execution of a plurality of instructions
comprising:

storage means for storing said plurality of instructions;

transformation means coupled to said storage means for transforming
each of said instructions into a plurality of fields;

comparison means coupled to said transformation means for
comparing said fields of one of said plurality of instructions with a next

sequential of said instructions, said comparison means providing a first

WO 89/09962 - PCT/US89/01393

10

15

20

25

30
signal when said fields are similar and a second signal when said fields are

not similar; ‘
combining means coupled to said comparison means for combining
said one instruction with said next instruction to form a combined
instruction when said comparison means provides said first signal;
execution means coupled to said combining means for executing said

combined intruction.

- 11. The apparatus of claim 10 wherein said transformation means
comprises a link list generator for transforming said instructions into

execution fields and pointer fields.

12. The apparatus of claim 11 wherein said execution fields includes a

source field, destination field and an instruction field.

13. The apparatus of claim 12 wherein said comparison means
outputs said first signal when said source field of said one instruction is

similar to said source field of said next instruction.

14. The apparatus of claim 13 wherein said comparison means
outputs said first signal when said destination field of said one instruction is

similar to said destination field of said next instruction.

15. The apparatus of claim 14 further including a state storage means
coupled to said transformation means and said execution means for storing
a result of a sequence of said instructions and providing said result to said

execution means when said sequence is encountered.

*®

WO 89/09962

10

15

20

25

PCT/US89/01393
31

16. A method for improved execution of a plurality of instructions
comprising the steps of:

determining a source and destination for each of said plurality of
instructions;

comparing said source and destination of one instruction with said
source and destination of a next sequential instruction;

combining said one instruction with said next instruction into a
combined instruction when said source of said one instruction is similar to
said source of said next instruction and combining said one instruction with
said next instruction into a combined instruction when said destination of
said one instruction is similar to said destination of said next instruction;

combining said combined instruction with a next sequential
instruction when said source of said combined instruction is similar to said
source of said next instruction and combining said combined instruction
with said next instruction when said destination of said combined
instruction is similar to said destination of said next instruction;

repeating the previous step for each sequential instruction.

17. The method of claim 16 wherein said sources comprise memory

locations.

18. The method of claim 17 wherein said memory locations are

similar when within a predetermined memory window.

19. An apparatus for executing a plurality of instructions comprising:
an instruction unit for converting said instructions to a plurality of
link list elements including a source field, destination field, instruction field

and pointer field;

WO 89/09962 7 PCT/US89/01393

10

15

20

32
a first storage means coupled to said instruction unit for storing said

link list elements;

an execution processor coupled to said first storage means for
executing said link list elements;

a learn processor coupled to said first storage means and said
execution processor, said learn processor comparing said fields of sequential
of said link list elements and combining sequentially executable link list
elements having similar sources and destinations into an ORG point and

providing said ORG point to said first storage means as a link list element.

20. The apparatus of claim 19 wherein said learn processor comprises
a second storage means for storing said source and destination fields, a field
comparison means coupled to said second storage means for comparing sa1d
source and destination fields of sequential of said link list elements,
multiplexing means for combining a link list element with a next sequential
link list element having similar sources and destinations and for combining
previously combined link list elements with a next sequential link list

element having similar sources and destinations.

Y

WO 89/09962

PCT/US89/01393

1/3
rII
RS S0C AR PHERALS
10] 13
Ve
e 770 7
MErIOR Y _]
PRIOR ART
14
o
AisTRUCTION ChoiT
20 [7
/ s “
STarE Avk KiST
CACHE SNSTRYCTTOMS ket
EXELYTTON
RoCESSOR
LEARCNNG /ROSESSOR
Mons7arS
19/ LI&
Lzg 2

QHRSTITIITE QCHEET

WO 89/09962 PCT/US89/01393

273
34
N ,
) Bos ')
J b J_ 1 ‘
MEMOR Y ST RUCT/ON T3
AETCH
- 32
30 Ko7 4
Con 7204
forria7 Ao DEcons L3
v
JNSTRUET 7oA/ ~+ 36
Lizk Lrs7 %)
I\
| Q
]‘_jy 3
35—
y /-—/ 37
!
LEE/STEC
STATE
CAcHE —
<
Nzg
LxEcuriol FHase v B
39—
L2 .

N 40

SUBSTITUTE SHEET

WO 89/09962 PCT/US89/01393

3/3

fEcrsTER/Lm7ED | _eq
NSTRUCT 7OMS

- | 1

B 52

7 7
EXECUTION STATE

AUy Aor 1708
o
! CACHE 'L_ﬁ

Y s 54

CLRRENT e
ORG | L¥scer7oR

‘66 \55

53

7
VAL104T# Clieces/ TRy

Conrparisars CRcen 7Ry

MuLTipLex ano Meree |
T

/79

4

sl u7
| |

STarE | Los/c
| AacH IAE Aresy

3
/5 ol

Y

>

GRD CongRILs j_'_JV 74

Link LusT 430

S11BSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

Internationai Application No.

PCT/US89/01393

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) &

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC(4): GO6F 9/00, 9/30
U.s. Cl.: 364/300, 200

Il. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System Classification Symbols

U.s. ClL. 364/200, 900, 300

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched 8

ill. DOCUMENTS CONSIDERED TO BE RELEVANT ¢

Category * Citation of Document, 't with indication, where appropriate, of the relevant passages 12 Relevant to Claim No. 13
A US, A, 4,567,574 (SAAD'E) 28 January 1986 1-20
see entire document.
A US, A, 4,454,579 (PILAT) 12 June 1984 1-20
see abstract.
A US, A, 4,435,753 (RIZZI) 6 March 1984 1-20

see abstract.

wT" later document published after the international filing date

* Special categories of cited documents: 10 | filin
or priority date and not in conflict with the application but

“A" document defining the general state of the art which is not - =0 :
considered to be of particutar relevance ;:r;sleedmtignunderstand the principle or theory underlying the
“E" earlier document but published on or after the international ax" document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
“L" document which may éhrow hdoubts on priority cl?im(s) or involve an inventive step

which is cited to establish the publication date of another wyr g : . : : .
4o bt + - ocument of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

document member of the same patent family

#0" document referring to an oral disclosure, use, exhibition or
other means

up» document published prior to the international filing date but
fater than the priority date claimed “&"

IV. CERTIFICATION

Date of the Actual Completion of the Internationai Search Date of Mailing of this International Search Report

30 MAY 1989 29 JUN 1989

Signature of Authorized Officer
s - r _2
s >

DAVID_ Y, ENG

International Searching Authority

ISA/US

Form PCTASA/210 (second sheet) (Rev.11-87)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

