
(12) United States Patent
Sivadas et al.

US008578.333B2

(10) Patent No.: US 8,578,333 B2
(45) Date of Patent: Nov. 5, 2013

(54) METHOD AND SYSTEM FOR CLIENT-SIDE
USER INTERFACE ENHANCEMENT TO
ENABLE APPLICATION INTEGRATION AND
PORTALSATION

(75) Inventors: Madhav Sivadas, Singapore (SG);
Shiva Kumar Madhavan, Singapore
(SG); Balaraman Kunduvara,
Singapore (SG)

(73)

(*)

Assignee: Exilant Pte Ltd., Singapore (SG)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1070 days.

(21)

(22)

Appl. No.: 12/305,949

PCT Fled: Jun. 27, 2007

(86). PCT No.:
S371 (c)(1),
(2), (4) Date:

PCT/SG2OOTAOOO184

Dec. 19, 2008

(87) PCT Pub. No.: WO2008/002274
PCT Pub. Date: Jan. 3, 2008

(65) Prior Publication Data

US 2010/0218O84A1 Aug. 26, 2010

Related U.S. Application Data
Provisional application No. 60/817,008, filed on Jun.
27, 2006.

(60)

Int. C.
G06F 9/44
U.S. C.
USPC 717/121; 717/102; 717/109; 715/740:

71.5/771

(51)

(52)
(2006.01)

32
16

USER

INPUt

DEWELCPER

SAY

30

wORKSTATION
2

MEMRY

r s

2

ESKO
ANT

desktop ApplicATCN

desktop APPLECATION

NeWorkf
Wis browsER - 48 NRNT Processor
RUNIMENGINE NRAN roc

K

(58) Field of Classification Search
USPC 717/100–122, 146,124; 715/234, 771,

71.5/740
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0144233 A1* 10/2002 Chong et al. 717/105
2002/0184610 A1* 12/2002 Chong et al. ... T17/109
2002fO1991.82 A1* 12/2002 Whitehead T25.1
2003/0172368 A1* 9/2003 Alumbaugh et al. T17/106
2003/0208743 A1* 1 1/2003 Chong et al. 717/106

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO O2/065.360 8, 2002
WO WOO3,0836OO 10, 2003

OTHER PUBLICATIONS

Rahat Iqbal et al. A framework for interoperability of heterogeneous
systems—Database and Expert Systems Applications, 2003. Pro
ceedings. 14th International Workshop, pp. 1-5.*
International Search Report, International Application No. PCT/
SG2007/000184, Aug. 28, 2007, 3 pp.

(Continued)
Primary Examiner — Lewis A Bullock, Jr.
Assistant Examiner — Tina Huynh
(74) Attorney, Agent, or Firm — Haynes and Boone LLP
(57) ABSTRACT
A system for integrating and interoperating multiple hetero
geneous applications, the system comprising: an Integrated
Development Environment (IDE) to enable human users to
define the integration and interoperation points of the mul
tiple applications; a configuration file format based on which
the IDE generates specific configuration instances; and a
runtime engine that understands configuration files adhering
to the file format and performs the necessary integration and
interoperation actions on the various constituent applications
that have been referred to in the configuration file.

28 Claims, 11 Drawing Sheets

20
SSRWER

ROCESSOR

MEMORY

NRAC

WEB
Applicatof

AG

INTERFace
Web

APCAON
PAGE

- wwww.rewa-r

Local

US 8,578,333 B2
Page 2

(56) References Cited OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS Written Opinion of the International Searching Authority, Interna
tional Application No. PCT/SG2007/000184, Aug. 28, 2007, 4 pp.

2004/0068714 A1* 4/2004 Deimel et al. 717/101
2004/0177335 A1 9/2004 Beisiegel et al.
2005/0223392 A1* 10, 2005 Cox et al. T19,328
2008/O120600 A1* 5/2008 Deimel et al. 717/121 * cited by examiner

US 8,578,333 B2 Sheet 2 of 11 Nov. 5, 2013 U.S. Patent

US 8,578,333 B2 Sheet 3 of 11 Nov. 5, 2013 U.S. Patent

--
CN
cN

-

- - - - - - - - - - - - - - - - - - -

pepeolue.uco ;
†74. Z

- - - - - - - - - - - - - -

r--~~~~~---

- ea - sle - - - - rs - see - - - - - - - a --- or s- a

- - - - - - - w w - - - - w w - - - - - - - - was - - - - - - - - - - - - - - - - - see ass-- - - was aws was - - - - - www a w- - - - - - w w are -- - - - - - -oss

US 8,578,333 B2 Sheet 4 of 11 Nov. 5, 2013 U.S. Patent

90

US 8,578,333 B2

O
ce

d
L

U.S. Patent

US 8,578,333 B2 Sheet 7 of 11 Nov. 5, 2013 U.S. Patent

--

----------------or serve - - - - - - - - - - - - were r --------------------------

E

Z 1. j.0

US 8,578,333 B2 Sheet 8 of 11 Nov. 5, 2013 U.S. Patent

| 709

US 8,578,333 B2 Sheet 10 of 11 Nov. 5, 2013 U.S. Patent

00,7

US 8,578,333 B2 Sheet 11 of 11 Nov. 5, 2013 U.S. Patent

US 8,578,333 B2
1.

METHOD AND SYSTEM FOR CLIENTSIDE
USER INTERFACE ENHANCEMENT TO

ENABLE APPLICATION INTEGRATION AND
PORTALISATION

TECHNICAL FIELD

The invention concerns a method and system for client
side user interface enhancement to enable application inte
gration and portalisation. This invention relates to the inte
gration and interoperation of multiple heterogeneous
applications at the client browser end and to the enablement
of orchestration of data and events between the applications.

BACKGROUND OF THE INVENTION

Enterprise application integration (EAI) deals with the
methods and techniques for unifying disparate applications at
the back-end in order to facilitate the provision of enhanced
composite applications that provide richer functionality and
better abstraction that what was available before. The effort to
achieve EAI is relatively large. Such initiatives also require
much financial sponsorship and implementation time. This is
because of the far reaching impact of modifying and re
engineering legacy applications and back-end systems.
The problem of application integration is compounded

when heterogeneous applications require to be integrated.
This is because the underlying implementation technologies
of the individual applications can be very disparate, thereby
causing the integration process to be complex and time-con
Suming.

Service Oriented Architectures (SOA) is the current meth
odology that the information technology (IT) industry
believes will help in defining a systematic approach to total
enterprise application integration. This is because SOA not
only provides an architecture philosophy, but it also covers
non-technical/management issues concerning EAI. Gover
nance, cost analysis, and project management are some of the
non-technical issues that are addressed in a proper SOA based
enterprise system.

Over the long term SOA promises dramatic improvements
Such as cycle time reduction, ultimate levels of reuse, and
proper management of back end enterprise software services.
However, its effects are visible mostly over a period spanning
a few years. In general, SOA is not a short term solution. It is
also common that end users and business sponsors do not see
visible benefits of adopting SOA in the short term.

Hence there is a need for a system that integrates and
interoperates heterogeneous applications without requiring
changes to the application code or design, thereby reducing
the time-to-market of the integrated system. The reduction in
time would enable businesses to operate more efficiently.
Reuse of existing applications without making changes to the
code or design helps businesses in maximizing the use of their
existing software assets.

SUMMARY

According to an aspect of the present invention, a method
and system of integrating and interoperating multiple hetero
geneous applications is provided comprising: an Integrated
Development Environment (IDE) to enable human users to
define the integration and interoperation points of the mul
tiple applications; a configuration file format based on which
the IDE generates specific configuration instances; and a
runtime engine that understands configuration files adhering
to the file format and performs the necessary integration and

10

15

25

30

35

40

45

50

55

60

65

2
interoperation actions on the various constituent applications
that have been referred to in the configuration file.
An embodiment of the invention provides an IDE that

enables users to specify the various actions on web pages or
screens that need to be integrated. The IDE provides a visual
interface for users to define the layout of the integrated portal:
identify specific pages and Screens that need to be altered;
specify the type of alterations to be made on each of the pages;
specify drag-and-drop actions; specify automatic orchestra
tion of actions between the pages.

According to an aspect of the invention a file format is
provided for representing the configuration information that
is created by the IDE as a result of the users aforesaid inter
action with it. The file format specifies the minimum infor
mation that is needed by the runtime engine to accurately
perform transformations on the application screens and Web
pageS.

According to an aspect of the invention a runtime engine is
provided that reads configuration files adhering to the afore
mentioned configuration file format, creates the integrated
portal application as specified in the file; and performs the
specified transformations on the application screens and Web
pages, all in real-time.
An embodiment of the invention provides a runtime engine

that can activated via a URL. Once activated, it resides in
memory of the web browser and reads the configuration data
from the specified file. It then performs all the actions and
orchestrations that are specified in the configuration file.

According to an aspect of the invention, a desktop agent
application is provided that listens to requests from the runt
ime engine and performs actions on a targeted non-web based
application that is currently running on the computer. The
desktop agent also contains a mechanism to listen to activities
on the target application and sends appropriate signals back to
the runtime engine.
An embodiment of the invention provides a MICROSOFT

WINDOWS desktop agent that runs on a computer based on
MICROSOFT WINDOWS operating system. This desktop
agent receives messages from the target application by inject
ing a special module called a “hook into the execution envi
ronment of the application. MICROSOFT WINDOWS hook
is a mechanism provided by Microsoft for intercepting mes
sages to the user interface (UI) of any running application that
makes use of Microsoft's UI technology. The desktop agent
sends messages to the target application by making calls to
Microsoft's WIN32 Application Programming Interface
(API) functions. MICROSOFT WINDOWS, AND WIN32
are trade marks of Microsoft Corporation, Redmond, Wash.,
United States of America.

According to an aspect of the invention, a protocol is pro
vided that enables the runtime engine to communicate with
applications via the desktop agents that execute on remote
computers on a network.
An embodiment of the invention provides the ability to

communicate and integrate with applications that are running
on a CITRIX Presentation Server desktop. CITRIX is a trade
mark of Citrix Systems Inc., Ft. Lauderdale, Fla., United
States of America. CITRIX enables Windows applications to
execute on a central “farm of servers' and the graphical
interfaces or graphical user interface (GUI) to these applica
tions are made available to remote computers.
An embodiment of the present invention provides an enter

prise Single Sign On engine that is capable of storing user
credentials (for example, username, password, and other cus
tom data), automatically retrieving these values when needed,

US 8,578,333 B2
3

propagating the data into the authentication screens or pages
of the target applications, and Submitting the authentication
request.

Further, a method of operation of the runtime is provided in
accordance with an embodiment of the invention. The method
comprises: parsing the configuration file; creating the portal
page; using the configuration data to detect and intercept
specific Web pages as they enter the browser; altering the
hyper-text mark-up language (HTML) contents of the pages
according to the specifications in the configuration file; send
ing the altered HTML to the browser for visual rendering.

To integrate non-web applications, a method of operation
of the runtime is provided. The method comprises parsing the
configuration file, launching the non-Web applications, using
the configuration data to navigate to appropriate Screens,
performing orchestration actions on the Screens.

According to an aspect of the invention computer program
product comprises a computer usable medium for integrating
and interoperating multiple heterogeneous applications, the
computerusable medium comprising computer readable pro
gram code configured to: provide an Integrated Development
Environment (IDE) to enable a user to define integration and
interoperation points of the multiple applications; provide a
configuration file format based on which the IDE generates
specific configuration instances; and provide a runtime
engine that understands configuration files adhering to the file
format and performs the necessary integration and interop
eration actions on the various constituent applications that
have been referred to in a configuration file.

In this description the terms are to be understood and
defined by the general meaning as known in the computer and
information technology (IT) industry and in SOA applica
tions. For example:
URL is a Uniform Resource Locator (URL) is a string of

characters conforming to a standardized format, which refers
to a resource on the Internet (such as a document or an image)
by its location.

Portal is a website that aggregates web content from mul
tiple sources and displays the resulting conglomeration in a
uniform look and feel.

Portlet is a single unit of content in a portal that can be
traced to a particular source. A portal comprises of several
portlets. Each portlet contains data from its originating con
tent SOurce.

Portalisation is the (preferably automated) technique of
converting content from multiple sources to form part of a
portal.
Web browser is the application that displays web content

on users computer terminals.
Web application is any application, whose user interface is

rendered through a web browser.
Desktop application is any non-web application that is

installed on the user's computer.
Desktop is a graphical user interface (GUI) environment

that provides users with a visual area on the screen/display
that resembles a physical desktop. Multiple applications can
be launched on this visual desktop. The desktop environment
provides users the facility to perform actions such as mini
mizing, maximizing, and arrangement of the visual interfaces
of the applications on the desktop. A desktop typically pro
vides icons, windows, toolbars, folders, wallpapers, and abili
ties like drag and drop.

Desktop session is a logical separation of a given user's
current session on multi-user server grade computer systems
that are capable of executing multiple desktops concurrently.

5

10

15

25

30

35

40

45

50

55

60

65

4
A desktop session is used to differentiate between each of the
multiple desktops that can be activated on Such multi-user
computer systems.
Remote desktop is a technology and mechanism provided

by Vendors such as Citrix in whichauser can initiate a desktop
session on a remote computer system.

Integration is the technique translating the data and com
mands of one application to that of another. In contrast with
"portalisation', which further transforms the appearance of
the unified applications to have a common look and feel
visually, the process of integration does not have to provide
common visual appearance.

Interoperation is the movement of data and events between
independent applications or pages.

Orchestration is an arrangement of interoperation units that
can be chained to form a higher level flow.

Integrated Development Environment(IDE) is a graphical
user-interface (GUI) application that enables software devel
opers to perform a range of tasks using visual mechanisms.

Runtime is a part of a Software application that executes in
real time to perform tasks. This term is used in a relative
sense. For example the Software component in this invention
has a runtime and an IDE. Here the IDE is considered as a tool
that does not require being present all the time for the main
component to work. However, relative to the IDE, there is a
runtime present inside the IDE that makes it perform tasks.
HTML is hypertext markup language. The mechanism of

encoding content of web sites in a manner that Web browsers
can interpret them, and display the data visually as desired.

Heterogeneous Web applications are disparate web appli
cations that have independent existence and have (in many
cases) been developed using a wide variety of technologies
such as active server pages (ASP), .NET, Java 2 platform
enterprise edition (J2EE), PHP: hypertext preprocessor
(PHP), Perl, etc. J2EE is a trade mark of Sun Microsystems,
Inc., Santa Clara, Calif., United States of America.

Heterogeneous applications are disparate applications (in
cluding web and non-web applications) that have indepen
dent existence and have been developed using a wide range of
technologies.

BRIEF DESCRIPTION OF THE DRAWINGS

An example of the invention will now be described with
reference to the accompanying drawings, in which:

FIG. 1 is a block diagram of the system in accordance with
an embodiment of the present invention;

FIG. 2 is a runtime architecture diagram of the system in
accordance with an embodiment of the present invention;
FIG.3A-G show a set of sequence diagrams of the runtime

of the system in accordance with an embodiment of the inven
tion; and

FIG. 4A-C depict the format of the configuration file that
defines the portal (FIG. 4A); depicts the format of the con
figuration file that defines the layout of the portal (FIG. 4B);
and depicts the format of the configuration file that defines the
modifications to be applied to the specific portlets and the
various actions performed in response to events that are gen
erated in the integrated portal (FIG. 4C).

DETAILED DESCRIPTION

FIG.1 and the following discussion are intended to provide
a brief, general description of a Suitable computing environ
ment in which the present invention may be implemented.
Although not required, the invention will be described in the
general context of computer-executable instructions. Such as

US 8,578,333 B2
5

program modules, being executed by a computer Such as a
personal computer, laptop computer, notebook computer,
tablet computer, personal digital assistant (PDA) and the like.
Generally, program modules include routines, programs,
characters, components, and data structures that perform par
ticular tasks or implement particular abstract data types. As
those skilled in the art will appreciate, the invention may be
practiced with other computer system configurations, includ
ing hand-held devices, multiprocessor systems, microproces
sor-based or programmable consumer electronics, network
personal computers (PC), minicomputers, mainframe com
puters, and the like. The invention may also be practiced in
distributed computing environments where tasks are per
formed by remote processing devices that are linked through
a communications network. In a distributed computing envi
ronment, program modules may be located in both local and
remote memory storage devices.
The main components of the system 10 are illustrated in

FIG. 1 in accordance with an embodiment of the invention.
The system generally comprises: an Integrated Development
Environment (IDE) 12 that runs on a computer terminal 14
that is used by a developer 16; a configuration file 26 that is
generated by the IDE as a result of interactions with the user;
and a runtime engine 48 that is loaded into a web browser that
displays the integrated portal. The computer terminal 14 or
workstation may comprise interalia a memory 2, processor 4.
and interface 6 for interfacing with a network such as the
Internet or Intranet 18. An input device 7 and display 8 is
provided for a user to interface with the user workstation for
inputting and displaying data.

The IDE provides a visual environment for the developer
16 to define the layout of the integrated portal, specify the
constituent portlet applications, specify user interface (UI)
changes in any of the portlets, and define interoperation
actions among the portlets.
The specifications made by the user are converted by the

IDE into a configuration file 26 and sent to a remote location
specified by the user. This location 24 is within a web server
20 that is reachable via a communications network from the
IDE's host machine 14. The web server 20-20 may comprise
a memory 72, processor 74, and an interface 76 interalia. It
will be appreciated that file location 24 may be selected and
stored on the server 20 having any number of configurations,
for example a single server or multiple servers. The location
24 shown in dashed box may be accessible and centralized to
manage on the server 20 without requiring additional hard
ware or software to store the configurations. Alternatively the
file 26 is stored on the IDEs host machine 14 and is later
transferred to a web server by any other means.
Any user 32 who intends to interact with the resulting

integrated portal (“integrated portal'), loads the configuration
file into a web browser 40 by targeting it to the URL of the
configuration file location 24. The web page or web applica
tion 22 on the web server 20 is accessible via the network 18
by the runtime engine 48 of the user's web browser 40. It will
be appreciated that the user32 may access the system 10 via
a computer terminal workstation 30, the same or similar to
computer terminal workstation 14 of the developer 16. Of
course, it will be appreciated that the developer 16 may per
form the same or all of the functions as described of the user
32 on a single workstation Such as workstation 14 and/or
workstation 30.
When loaded into the browser 40, the file spawns an

instance of a runtime engine 48. Further, this runtime reads
the remainder of the configuration data and begins to
assemble the integrated portal.

10

15

25

30

35

40

45

50

55

60

65

6
The runtime engine identifies the component portlets and

their URL addresses and directs the browser to load these
pages 22.
The configuration data 26 could specify one or more desk

top applications 44 to be part of the integrated portal. A
desktop application could be based purely on Microsoft's
Win32 technology or other technologies such as Citrix ICA
52 or Java Abstract Windowing Toolkit (AWT), Java Swing
154 or the like.

If the configuration data 26 specifies a desktop application
44 to be part of the integrated portal, the runtime engine 48
will communicate with a desktop agent component 42 on the
user's computer. The desktop agent will launch the appropri
ate desktop application 44 on the user's computer and estab
lish an internal conduit to relay commands from the runtime
engine 48 to the desktop application 44. The desktop agent
can connect and communicate with multiple desktop appli
cations concurrently.

If the configuration data 26 specifies a desktop application
154 that is based on Java user interface technologies such as
Java Abstract Windowing Toolkit (AWT) or Swing, the desk
top agent will launch a modified version the appropriate
application on the user's computer. The modification com
prises of adding the Java AWT/Swing Adapter 152 into the
startup sequence of the application's 154 Java Virtual
Machine (JVM). The Java AWT/Swing Adapter listens to
commands from the desktop agent and relays commands to
the target Java application 154.

If the configuration data 26 specifies a desktop application
52 that is based on a third-party remote desktop technology
such as CITRIX, the runtime engine 48 will communicate a
special message to the desktop agent component 42 on the
user's computer. The desktop agent will launch the desktop
application 52 on the user's computer. It will then determine
the location of the remote machine 64, and the user desktop
66 on the machine, where the actual application 62 is execut
ing and communicate with that machine's desktop agent 60 in
order to establish an internal conduit to relay commands into
the application 62. The effect of performing actions on the
application 62 can be visibly seen on the application 52
through third party technologies such as CITRIX ICA (Inde
pendent Computing Architecture)

In greater detail and with reference to FIGS. 2, 3A-F and
4A-C, the runtime engine 48 comprises of a Kernel 100 and
several component modules 102, 104, 106, 108, 110, 112,
114, 116, 118, 120, 122. Together, these component modules
are loaded into a browser 40. Currently available Internet
browser software contains an execution engine 130, which
generally include a module to process asynchronous HTTP
requests, called XMLHttpRequest module 132; and a module
to process the HTML document, called DOM API module
134. The desktop agent 42 may comprise several component
modules such as administration service 142, application
launcher 144 and request broker 146 to access and call
WIN32 API layer 150. The Java AWT/Swing Adapter 152 is
a special module that is launched along with any Java appli
cation 154 that is integrated by an embodiment of the inven
tion.

With reference to the runtime sequence process 200 shown
in FIG. 3A in accordance with an embodiment of the inven
tion, when loaded 202 into the browser the Kernel calls 204
the Config Manager 112 to load 206 the portal configuration
400, as shown in FIG. 4A. The Config Manager relays 206
this instruction to the Net 118 module. The Net module loads
208 the specified URLs via XMLHttp component 132 of the
browser. The Config Manager 112 stores 210 the information
obtained into the Registry component 102.

US 8,578,333 B2
7

Based on the portal configuration retrieved, the Kernel 100
instructs 212 the Config Manager 112 to load 214 the layout
configuration 450, as shown in FIG. 4B. The Config Manager
calls 214 the Net module to load 216 the content of the
configuration from the network, and write to Registry 218.
The Kernel 100 then instructs 220 the Layout Manager 110

to make the layout of the page as specified in the configuration
data. The Layout Manager obtains the configuration informa
tion from the Registry component. The Layout Manager then
makes multiple calls 222.224 to the browser's DOMAPI 134
in order to construct 226 a page that conforms to the specified
layout. Each portlet resides in a separate HTML iFrame in the
main page.

With reference to the runtime sequence process 230 shown
in FIG. 3B in accordance with an embodiment of the inven
tion, the Kernel calls the Page Fetch 116 module to load 232
the specified portlet pages into their respective iFrame. The
Page Fetch module makes multiple calls 234,236 to the DOM
API component in order to load 238 the pages.

With reference to the runtime sequence process 240 shown
in FIG. 3C in accordance with an embodiment of the inven
tion, if the portal configuration specifies any desktop appli
cations to be part of the portal, the Kernel 100 instructs 242
the Communication Module 122 to initiate the launch of the
desktop application. The Communication Module sends 244
a launch request to the Desktop Agent 46. The Desktop Agent
uses the standard Microsoft Windows API 132 to launch 246
the desktop application. The Win32 API 132 returns 248 a
response to the Desktop Agent which is relayed back to the
Communication Module indicating successful launch 250 of
the desktop application. The Communication Module
responds 252 back to the Kernel with an indication of suc
cessful launch of the desktop application. This process is
repeated for all the desktop applications that are specified in
the portal configuration.

With reference to the runtime sequence process 260 shown
in FIG. 3D in accordance with an embodiment of the inven
tion, as web pages are loaded, the web browser engine 130
generates "onload events, which are handled by the Page
Preprocessor 114 component. The Page Preprocessor per
forms a setup 262 of the portlets and identifies 264 the page
that has been loaded. The identification of pages is performed
by matching unique strings of text on the page. These identi
fication strings are provided in the portal configuration that
has been loaded previously.

The Page Preprocessor 114 then instructs the Config Man
ager to load 266 specific configuration for the page, as shown
in FIG. 4C that has been currently loaded. FIG. 4C shows the
file format 460 of configuration that may be applied on port
lets. The Config Manager 112 uses the Net module 118 to
relay 268 the command to the XMLHttp module 132 to obtain
270 the page configurations. The page configurations are
loaded and sent 272 to Page Preprocessor.
The Page Preprocessor 114 then forwards 274 this configu

ration to the Weaver 106 component. The Weaver reads the
configuration information and parses the current page and
calls 276 the Action Library 120 component with the refer
ence of the specific HTML tag element where the behaviour
modification is to be made. The Action Library receives this
information and sets up the appropriate event handling
mechanisms 278,280 with the help of the Event Manager 108
to subscribe to events and publish events.

Events, in the context of this document, are actions that are
either initiated by the user. Such as mouse click, typing on the
keyboard, mouse movement, drag-and-drop etc.; or initiated

10

15

25

30

35

40

45

50

55

60

65

8
by the application, such as loading of pages, screens, and
appearance of visual components in the user interface of the
applications.

In the context of this document, configuration of events is
the association of specific events with specific event handling
routines.

With reference to the runtime sequence process 290 shown
in FIG. 3E in accordance with an embodiment of the inven
tion, when a web application related event that has been
previously configured occurs, the Event Manager 108 pub
lishes 292 the event to the Action Library 120. The Action
Library receives the event notification and in response to
event 294 looks up the specified configuration data, as shown
in FIG. 4C to obtain the sequence of actions that is to be
performed in response to the event. FIG. 4C shows the file
format 460 of configurations that may be applied on portlets.
The Action Library executes these actions by making mul
tiple calls 296,298 to the DOM API module.

With reference to the runtime sequence process 300 shown
in FIG. 3F in accordance with an embodiment of the inven
tion, when a desktop application related event that has been
previously configured occurs, the Event Manager publishes
302 the event to the Action Library 120. The Action Library
receives the event notification in response to event 304 and
looks up the specified configuration data, as shown in FIG. 4C
to obtain the sequence of actions that is to be performed in
response to the event. FIG. 4C shows the file format 460 of
configurations that may be applied on portlets. The Action
Library sends 306,308 messages to the Desktop Agent 42 via
the Communication Module 122. The Desktop Agent per
forms 310,312 the required action on the targeted desktop
application by using the Win32 API Layer. The Desktop
Agent relays 314 the Successful completion of the actions to
the Communication Module, which relays 316 this to the
Action Library.

With reference to the runtime sequence process 320 shown
in FIG. 3G in accordance with an embodiment of the inven
tion, when a Java-based desktop application related event that
has been previously configured occurs, the Event Manager
publishes 322 the event to the Action Library 120. The Action
Library receives the event notification in response to event
324 and looks up the specified configuration data, as shown in
FIG. 4C to obtain the sequence of actions that is to be per
formed in response to the event. FIG.4C shows the file format
460 of configurations that may be applied on portlets. The
Action Library sends 326.328 messages to the Desktop Agent
42 via the Communication Module 122. The Desktop Agent
performs 330.332 the required action on the targeted desktop
application by using the Java AWT/Swing Adapter module.
The Desktop Agent relays 334 the successful completion of
the actions to the Communication Module, which relays 336
this to the Action Library.
At any point during the handling of events, if error condi

tions are reported to the Action Library, appropriate configu
rations can be set to instruct the handler to retry the process
ing. This mechanism adds a reasonable level of robustness
and tolerance to this invention.
The devices and subsystems of the exemplary methods and

systems described with respect to the figures may communi
cate, for example, over a communication network, and may
include any Suitable servers, workStations, PCs, laptop com
puters, handheld devices, with visual displays and/or moni
tors, telephones, cellular telephones, wireless devices, PDAs,
Internet appliances, set top boxes, modems, other devices,
and the like, capable of performing the processes of the dis
closed exemplary embodiments. The devices and sub
systems, for example, may communicate with each other

US 8,578,333 B2
9

using any suitable protocol and may be implemented using a
general-purpose computer system and the like. One or more
interface mechanisms may be employed, for example, includ
ing Internet access, telecommunications in any suitable form,
Such as Voice, modem, and the like, wireless communications
media, and the like. Accordingly, network 18 may include, for
example, wireless communications networks, cellular com
munications network, Public Switched Telephone Networks
(PSTNs), Packet Data Networks (PDNs), the Internet, intra
nets, hybrid communications networks, combinations
thereof, and the like.

It is to be understood that the embodiments, as described
with respect to the figures, are for exemplary purposes, as
many variations of the specific hardware used to implement
the disclosed exemplary embodiments are possible. For
example, the functionality of the devices and the Subsystems
of the embodiments may be implemented via one or more
programmed computer system or devices. To implement Such
variations as well as other variations, a single computer sys
tem may be programmed to perform the functions of one or
more of the devices and Subsystems of the exemplary sys
tems. On the other hand, two or more programmed computer
systems or devices may be substituted for any one of the
devices and Subsystems of the exemplary systems. Accord
ingly, principles and advantages of distributed processing,
Such as redundancy, replication, and the like, also may be
implemented, as desired, for example, to increase robustness
and performance of the exemplary systems described with
respect to the figures.
The exemplary systems described with respect to the fig

ures may be used to store information relating to various
processes described herein. This information may be stored in
one or more memories, such as hard disk, optical disk, mag
neto-optical disk, RAM, and the like, of the devices and
sub-systems of the embodiments. One or more databases of
the devices and Subsystems may store the information used to
implement the exemplary embodiments. The databases may
be organized using data structures, such as records, tables,
arrays, fields, graphs, trees, lists, and the like, included in one
or more memories, such as the memories listed above.

All or a portion of the exemplary systems described with
respect to figures may be conveniently implemented using
one or more general-purpose computer systems, micropro
cessors, digital signal processors, micro-controllers, and the
like, programmed according to the teachings of the disclosed
exemplary embodiments. Appropriate Software may be
readily prepared by programmers of ordinary skill based on
the teachings of the disclosed exemplary embodiments. In
addition, the exemplary systems may be implemented by the
preparation of application-specific integrated circuits or by
interconnecting an appropriate network of component cir
cuits.

It will be appreciated by persons skilled in the art that
numerous variations and/or modifications may be made to the
invention as shown in the specific embodiments without
departing from the scope or spirit of the invention as broadly
described.
The present embodiments are, therefore, to be considered

in all respects illustrative and not restrictive.

The invention claimed is:
1. A system for integrating and interoperating existing

heterogeneous applications, the system comprising:
a developer workstation running an Integrated Develop
ment Environment (IDE), the IDE being configured to
allow a developer, without creating a new application,
tO:

10

15

25

30

35

40

45

50

55

60

65

10
Select a plurality of existing heterogeneous applications

comprising respective visual user interfaces;
define integration points on the visual user interfaces of

the existing heterogeneous applications;
define one or more interoperation actions on the defined

integration points on the visual user interfaces for a
transformation of data and invoking of commands
from the defined integration points on the visual user
interfaces of a first application selected from the exist
ing heterogeneous applications to the defined integra
tion points on the visual user interfaces of a second
application selected from the existing heterogeneous
applications; and

generate a configuration file, the configuration file hav
ing configuration databased on the selected existing
heterogeneous applications, the defined integration
points, and the defined interoperation actions; and

a user workstation running a runtime engine, the runtime
engine being configured to:
read the configuration data;
launch the selected existing heterogeneous applications;
and

use the defined integration points and the defined inter
operation actions to integrate and interoperate the
selected existing heterogeneous applications without
modifying source code of the selected existing het
erogeneous applications.

2. The system of claim 1, wherein the configuration data
further comprises layout information of an integrated portal
wherein the layout information is defined by the developer
using a visual interface of the IDE.

3. The system of claim 2 wherein the runtime engine is
further configured to:

assemble the integrated portal by using the configuration
data to detect and intercept specific web pages as they
enter a browser;

alter hypertext markup language (HTML) contents of the
specific pages according to the configuration data; and

send the altered HTML to the browser for visual rendering.
4. The system of claim 2 wherein the configuration data

further comprises specified transformations defined by the
developer using the visual interface of the IDE to:

identify specific pages or screens of the selected existing
heterogeneous applications that need to be altered;

specify the type of alterations to be made on each of the
specific pages or screens;

specify drag-and-drop actions; and
specify automatic orchestration of actions between the spe

cific pages or screens.
5. The system of claim 4, wherein the configuration data

comprises minimum information that is needed by the runt
ime engine to accurately perform the specified transforma
tions and to integrate and interoperate the selected existing
heterogeneous applications.

6. The system of claim 4 wherein the runtime engine is
further configured to assemble the integrated portal and per
form the specified transformations.

7. The system of claim 6 wherein the runtime engine is
further configured to perform the specified transformations in
real-time.

8. The system of claim 6 wherein the specified transforma
tions are on Web pages and non-Web applications.

9. The system of claim 1, wherein the user workstation
further comprises a desktop agent for receiving requests from
the runtime engine, the desktop agent comprising:

US 8,578,333 B2
11

an administration service to manage connections to the
Selected existing heterogeneous applications that are
connected to an integrated portal;

a launcher module to launch the selected existing hetero
geneous applications when instructed by the runtime
engine; and

a request broker module that communicates with the
Selected existing heterogeneous applications by sending
messages from the runtime engine and returning
responses from the selected existing heterogeneous
applications to the runtime engine.

10. The system of claim 1 wherein the user workstation
further comprises a desktop agent, wherein the desktop agent
is configured to:

listen to requests from the runtime engine;
launch the selected existing heterogeneous applications by

invoking an underlying operating system's functionality
to launch applications;

connect to the selected existing heterogeneous applications
using a messaging layer of the underlying operating
system;

relay actions to the selected existing heterogeneous appli
cations using the connection; and

relay responses from the selected existing heterogeneous
applications back to the runtime engine.

11. The system of claim 1 wherein the runtime engine is
activated via a uniform resource locator (URL).

12. The system of claim 1 wherein the developer specifies
a location to store the configuration file.

13. The system of claim 12 wherein the location is on a
Sever.

14. The system of claim 1 wherein the running runtime
engine is stored in a memory allocated to Web browser.

15. The system of claim 14, wherein the running runtime
engine reads the configuration data and performs the defined
interoperation actions that are specified in the configuration
data.

16. The system of claim 1 wherein the developer worksta
tion and the user workstation are the same workstation.

17. The system of claim 1, further comprising a remote
machine capable of communication with the runtime engine,
the remote machine comprising a desktop agent, the desktop
agent comprising:

an administration service to manage connections to the
Selected existing heterogeneous applications;

a launcher module to launch the selected existing hetero
geneous applications when instructed by the runtime
engine; and

a request broker module that communicates with the
Selected existing heterogeneous applications by sending
messages from the runtime engine and returning
responses from the selected existing heterogeneous
applications to the runtime engine.

18. The system of claim 1, further comprising a remote
machine capable of communication with the runtime engine,
the remote machine comprising a desktop agent, wherein the
desktop agent is configured to:

listen to requests from the runtime engine;
launch the selected existing heterogeneous applications by

invoking an underlying operating system's functionality
to launch applications;

connect to the selected existing heterogeneous applications
using a messaging layer of the underlying operating
system;

relay actions to the selected existing heterogeneous appli
cations using the connection; and

5

10

15

25

30

35

40

45

50

55

60

65

12
relay responses from the selected existing heterogeneous

applications back to the runtime engine.
19. The system of claim 1 wherein the first application and

the second application are different.
20. A method for integrating and interoperating existing

heterogeneous applications, the method comprising:
providing an Integrated Development Environment (IDE)

configured to allow a developer, without creating a new
application, to:
Select a plurality of existing heterogeneous applications

comprising respective visual user interfaces;
define integration points on the visual user interfaces of

the existing heterogeneous applications;
define one or more interoperation actions on the defined

integration points on the visual user interfaces for a
transformation of data and invoking of commands
from the defined integration points on the visual user
interfaces of a first application selected from the exist
ing heterogeneous applications to the defined integra
tion points on the visual user interfaces of a second
application selected from the existing heterogeneous
applications;

generate a configuration file, the configuration file hav
ing configuration databased on the selected existing
heterogeneous applications, the defined integration
points, and the defined interoperation actions; and

providing a runtime engine configured to read the configu
ration data to launch the selected existing heterogeneous
applications and use the defined integration points and
the defined interoperation actions to integrate and inter
operate the selected existing heterogeneous applications
without modifying source code of the selected existing
heterogeneous applications.

21. The method of claim 20, further comprising the step of
executing the runtime engine wherein executing the runtime
engine further comprises the steps of

parsing the configuration file and loading the configuration
file into a browser;

creating an integrated portal;
using the configuration data to detect and intercept specific
web pages as they enter the browser;

altering hypertext markup language (HTML) contents of
the specific web pages according to the configuration
data; and

sending the altered HTML to the browser for visual ren
dering.

22. The method of claim 20 further comprising the step of
executing a desktop agent wherein executing the desktop
agent comprises:

listening to requests from the runtime engine;
launching the selected existing heterogeneous applications
by invoking an underlying operating system's function
ality to launch applications;

connecting to the selected existing heterogeneous applica
tions using a messaging layer of the underlying operat
ing System,

relaying actions to the selected existing heterogeneous
applications; and

relaying responses from the selected existing heteroge
neous applications back to the runtime engine.

23. The method of claim 22 wherein the desktop agent
resides on a remote machine, accessible via a network; and
application level protocols.

24. The method of claim 20 further comprising the steps of
displaying the visual user interfaces on a workstation having
a display device that is being operated by a user.

US 8,578,333 B2
13

25. The method of claim 20, further comprising the step of
displaying the visual user interfaces on a workstation having
a display device.

26. The method of claim 20 wherein the first application
and the second application are different.

27. A computer program product installed on a developer
Workstation, the computer program product for integrating
and interoperating existing heterogeneous applications,

the computer program product, when executed, provides
an Integrated Development Environment (IDE) being
configured to allow a developer, without creating a new
application, to:

Select a plurality of existing heterogeneous applications
comprising respective visual user interfaces;

define integration points on the visual user interfaces of the
existing heterogeneous applications;

define one or more interoperation actions on the defined
integration points on the visual user interfaces for a
transformation of data and invoking of commands from
the defined integration points on the visual user inter

5

10

15

14
faces of a first application selected from the existing
heterogeneous applications to the defined integration
points on the visual user interfaces of a second applica
tion selected from the existing heterogeneous applica
tions;

generate a configuration file, the configuration file having
configuration databased on the selected existing hetero
geneous applications, the defined integration points, and
the defined interoperation actions:

provide a runtime engine configured to:
read the configuration data to launch the selected exist

ing heterogeneous applications; and
use the defined integration points and the defined interop

eration actions to integrate and interoperate the selected
existing heterogeneous applications without modifying
Source code of the selected existing heterogeneous
applications.

28. The computer program product of claim 27 wherein the
first application and the second application are different.

