
(12) STANDARD PATENT APPLICATION (11) Application No. AU 2006200199 Al
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Discoverability and enumeration mechanisms in a hierarchically secure storage system

(51) International Patent Classification(s)
G06F 17/30 (2006.01) G06F 21/22 (2006.01)

(21)

(31)

Application No: 2006200199 (22) Date of Filing: 2006.01.17

Priority Data

Number
11168589
60657536

(32) Date
2005.06.28
2005.02.28

(33) Country
US
US

(43)
(43)

(71)

(72)

(74)

Publication Date:
Publication Journal Date:

2006.09.14
2006.09.14

Applicant(s)
Microsoft Corporation

Inventor(s)
Dubhashi, Kedarnath A.;Skaria, Simon;Hunter, Jason T.

Agent Attorney
Davies Collison Cave, 1 Nicholson Street, MELBOURNE, VIC, 3000

MS312708.02/MSFTP981 USA

ABSTRACT OF THE DISCLOSURE

A system that generates a per user abstraction of a store from a connection

point. Filtering a view set of a hierarchically secured containment hierarchy based on

the access permissions of the principal is one of the novel features of the invention.

The invention can offer a collection of primitives that can operate on this aggregation

that span multiple container hierarchies with potentially heterogeneous security

descriptors. The model can reduce the necessity to traverse the container hierarchy to

discover all the accessible items in a domain.

1/9

USER, APPLICATION, etc. 100

S104

FIG. 1

AUSTRALIA

PATENTS ACT 1990

COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

Discoverability and enumeration mechanisms in a hierarchically secure storage system

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

5102

MS312708.02MSFTP98 I USA Express Mail No. EV628832521US

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent application

Serial No. 60/657,536 entitled "DISCOVERABILITY AND ENUMERATION

MECHANISMS IN A HIERARCHICALLY SECURE STORAGE SYSTEM" and

filed February 28, 2005. The entirety of the above-noted application is incorporated

by reference herein.

BACKGROUND

[0002] Storage systems traditionally use a containment hierarchy to organize units

of storage. In accordance with these systems, a container and therefore, inherently the

units of data maintained within the container, are independently securable to facilitate

the provisioning of access to the principals. Conventional systems offer

discoverability through traversal that could limit access to data upon encountering a

container that is not accessible to the principal.

[0003] These systems suffer from at least the following limitations. One limitation

is that a principal cannot visualize the global set of data for which they have access.

In other words, upon rendering a global set of data, if a container is encountered

whereby a user does not have access, the contents units of data) of this container

could not be rendered. Consider a situation where a sub-folder or sub-container exists

within a container with access restrictions placed upon the principal. In this scenario,

the principal could not visualize discover) or access the contents of the sub-

folder even if adequate permissions are in place. This restrictive discoverablity is due

to lack of adequate permissions to access the parent folder.

[00041 Another limitation of traditional systems is that a principal cannot operate

on all the data at once. For example, a restriction for an operation such as "grant

access to FABRIKAM\alice for all data in the tree-like structure rooted at a given

node" would not be possible as restrictions may be in place that would limit access to

some of the data in the tree-like structure. In some traditional systems, such operation

is effected in the user context and rather than a system context.

MS312708.02/MSFTP981USA

[0005] Yet another limitation of some conventional systems is that accessing data

requires adequate permissions in place for all of the containers from the point of

connection to the immediate parent of the unit of data in addition to access

permissions on the unit of storage. In other words, in some systems, even if the direct

file path of the data is known, permission to access the data may be restricted if access

permissions do not exist from the point of connection to the immediate parent where

the data is stored.

[0006] Still another limitation is that, for effective enumeration on the existing file

system model, traditional storage systems distinguish between data and metadata. For

rich end-user types, this separation creates difficulty to recognize the distinction

between metadata and data.

SUMMARY

[0007] The following presents a simplified summary of the invention in order to

provide a basic understanding of some aspects of the invention. This summary is not

an extensive overview of the invention. It is not intended to identify key/critical

elements of the invention or to delineate the scope of the invention. Its sole purpose

is to present some concepts of the invention in a simplified form as a prelude to the

more detailed description that is presented later.

10008] The invention disclosed and claimed herein, in one aspect thereof,

comprises a system that generates a per user abstraction of a store from a connection

point. This abstraction can facilitate discoverability of data maintained in a

hierarchically secure storage system in accordance with applicable permissions.

Filtering a view set from of a hierarchically secured containment structure based on

the access permissions of the principal is one of the novel features of the invention.

The invention can offer a collection of primitives that can operate on this aggregation

that span multiple container hierarchies with potentially heterogeneous security

policies security descriptors). The model can reduce the necessity to traverse the

container hierarchy to discover all the read-accessible items in a domain.

[00091 In yet another aspect, an artificial intelligence (AI) component is provided

that employs a probabilistic and/or statistical-based analysis to prognose or infer an

action that a user desires to be automatically performed.

[0010] To the accomplishment of the foregoing and related ends, certain

illustrative aspects of the invention are described herein in connection with the

MS312708.02/MSFTP98 1 USA

following description and the annexed drawings. These aspects are indicative,

however, of but a few of the various ways in which the principles of the invention can

be employed and the subject invention is intended to include all such aspects and their

equivalents. Other advantages and novel features of the invention will become

apparent from the following detailed description of the invention when considered in

conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 illustrates a general component block diagram of a system that

facilitates discoverability of data in a hierarchical secure storage system in accordance

with an aspect of the invention.

[0012] FIG. 2 illustrates a block diagram of a system that includes a single

instance table and a security descriptor table in accordance with an aspect of the

invention.

[0013] FIG. 3 illustrates a system that classifies items in a type system as instances

of generic container types and compound item types in accordance with an aspect.

[0014] FIG. 4 illustrates a block diagram of a system having a store component

and a client component on opposite sides of a trust boundary in accordance with an

aspect of the invention.

[0015] FIG. 5 illustrates a methodology of initialization in accordance with an

aspect of the invention.

10016] FIG. 6 is a relational diagram illustrating that operations which query the
views can operate in the user context where access control for selection statements

can be enforced by row level security in accordance with an aspect of the invention.

[0017] FIG. 7 is a block diagram of a system that employs artificial intelligence-

based mechanisms in accordance with an aspect of the invention.

[0018] FIG. 8 illustrates a block diagram of a computer operable to execute the

disclosed architecture.

[0019] FIG. 9 illustrates a schematic block diagram of an exemplary computing

environment in accordance with the subject invention.

DETAILED DESCRIPTION

[0020] The invention is now described with reference to the drawings, wherein

like reference numerals are used to refer to like elements throughout. In the following

MS312708.02/MSFTP98 1 USA

description, for purposes of explanation, numerous specific details are set forth in

order to provide a thorough understanding of the subject invention. It may be evident,

however, that the invention can be practiced without these specific details. In other

instances, well-known structures and devices are shown in block diagram form in

order to facilitate describing the invention.

[0021] As used in this application, the terms "component" and "system" are

intended to refer to a computer-related entity, either hardware, a combination of

hardware and software, software, or software in execution. For example, a

component can be, but is not limited to being, a process running on a processor, a

processor, an object, an executable, a thread of execution, a program, and/or a

computer. By way of illustration, both an application running on a server and the

server can be a component. One or more components can reside within a process

and/or thread of execution, and a component can be localized on one computer and/or

distributed between two or more computers.

[0022] As used herein, the term to "infer" or "inference" refer generally to the

process of reasoning about or inferring states of the system, environment, and/or user

from a set of observations as captured via events and/or data. Inference can be

employed to identify a specific context or action, or can generate a probability

distribution over states, for example. The inference can be probabilistic-that is, the

computation of a probability distribution over states of interest based on a

consideration of data and events. Inference can also refer to techniques employed for

composing higher-level events from a set of events and/or data. Such inference

results in the construction of new events or actions from a set of observed events

and/or stored event data, whether or not the events are correlated in close temporal

proximity, and whether the events and data come from one or several event and data

sources.

[0023] Aspects of this invention are related to computer systems and more

particularly to the discoverability of data maintained in a hierarchically secure storage

system(s). As described supra, traditional storage systems have limitations with

regard to security-related discoverability mechanisms. To this end, emerging

database-oriented file systems can support rich querying and provide schematized end

user types for common data units contacts). These schematized end-user types

facilitate and can enhance the interoperability of applications with respect to data.

MS312708.02/MSFTP98 1 USA

[0024] The subject invention takes into account a hierarchical representation of

data. More particularly, this invention takes into account that data can be

"bucketized" into different folders and thereafter placed into different containers.

Users can employ these containers to organize their data. For example, data can be

organized bucketized) into categories such as pictures, music, documents, etc.

Additionally, these categories can be further organized into containers thereby

establishing a hierarchical representation of the data. By way of example, within

pictures, there could be pictures of"my family", "my vacation", "my wedding", etc.

As well, sub-categories can exist in accordance with the hierarchy.

[0025] In accordance with this hierarchical representation, the invention can

facilitate associating a security policy security descriptor) with each object. It

will be appreciated that an object can be any data element contained within a

container as well as the container itself. As well, each object can be represented in an

individual row of a table. This row-based representation will be better understood

upon a discussion of the figures that follow.

[0026] In an aspect, the security descriptor can enable the provisioning of these

objects for data access. By way of example, in accordance with an aspect of the

invention, a security policy can facilitate setting a "my vacations" folder to permit

access by anyone in a group, "my family." As well, within "my vacations" a user can

further limit access to certain members of"my family" to access a subfolder

"my trip to Seattle").

[0027] In accordance with conventional systems, accessible exploration of a data

store ends at any point when a folder is reached for which the user does not have

enumeration access. Consider a hierarchy where F1 contains F2 which contains F3

the moment that the user reaches F2 where no permission is granted, the user will not

have the ability to view data within F3. Even though the user may have access to F3,

conventional systems will prohibit discoverability because F3 is contained within F2

for which permissions are not in place this is a limitation. The subject invention

enables a user to have uniform access to explore discover) and/or render thereby

allowing employment of all data in a data store whereby permissions are granted and

in place. As described supra, this uniform access can be facilitated via a security

policy associated with each object in a data store. As will be understood, each

security policy can be associated to a row-level item.

MS312708.02/MSFTP981 USA

[0028] Traditional file systems employ two access modes to retrieve files. First,

these systems facilitate a limited discovery method whereby a user can discover data

elements for which adequate security permissions exist. The other is a direct access

mechanism whereby a user can access a file if the full path is known and permission

to access is in place.

[0029] In addition to the two disparate modes, the subject invention can employ a

third mode which is a query mode data store filtering) that allows access and

discovery based upon security credentials. Unlike traditional systems, the subject

invention can provide a mechanism to query all data based upon a defined specified

property as well as to operate on that data. With this invention, so long as access

credentials are in place, the data can be discovered and operated on as desired.

[0030] In accordance therewith, the subject invention can enable a security policy

security descriptor) that can be set in the root of a tree-like structure

hierarchical data organization) and propagated through the tree-like structure to all of

the children in the structure. It is to be understood that the propagated security

descriptor can be based upon the parent security policy, child security policy, and/or

the type of the object. Logic can be employed that effects generating and propagating

a security policy throughout a tree-like structure. As will be described infra, rules-

based logic and/or artificial intelligence can be employed to propagate a security

policy.

[0031] Consider a scenario where a user creates a new item. In this scenario, there

would be certain security policies descriptors) of the parent that can be inherited

or combined into the child. In one aspect, a user can have a folder container)

with permissions and when an object is created, the permissions for the object can be

assumed to be the same. Alternatively, the permissions propagated to the newly

created object can be intelligently determined based on both the permissions for the

folder as well as permissions for the object. The preceding are examples of

inheritance in accordance with aspects of the novel innovation.

[0032] It will be appreciated that, in traditional file systems, this propagation is not

possible. Rather, to change permissions in accordance with conventional systems, an

administrator must walk through each child of a tree-like structure and change the

permissions as applicable. To the contrary, in accordance with aspects of this

invention, when a root permission is changed (or established), the permission can

automatically be propagated to all of the tree-like structure, including children.

MS312708.02/MSFTP981 USA

[0033] It is important to note that, in some traditional systems, security

permissions could only be propagated in the "user's context" at the time of the update.

Although there are situations where permissions can change at a later time,

conventional systems cannot automatically update these permissions.

[0034] The subject invention can propagate permissions in the "system's context."

Therefore, even if a user does not have permission to an intervening folder, if

permissions are in place for a sub, sub-sub, etc. tree-like structure, these permissions

can be propagated in accordance with the invention. This aspect will be better

understood by considering the aforementioned Fl, F2 and F3 example.

[0035] Continuing with the example, even if permissions are not in place for F2, if

permissions exist for F3, permissions can be propagated from F1 to F3. Unlike earlier

file systems that distinguish between attributes name of the file, size, date

created) and data content of the file), in rich data systems it is difficult to

determine between an attribute and data. As such, "items" were created and are used

to grant access permissions on a per "item" basis regardless of the data element being

an attribute or data. Accordingly, with respect to. the subject invention, management

of the security model can particularly be simplified since the system does not have to

keep track of two separate security permissions. Rather, in one aspect, only one
"read" or only one "write" permission is employed per item rather than employing

two "read" permissions and two "write" permissions per item.

[0036] As a result, the invention can facilitate a user to view an abstraction of all

of the data for which permissions are in place. These views can be defined over the

entire store and subsequently rendered to a user. The view can be defined as an

intersection of the items visible from a connection point and the set of security

permissions allowed. As a result, a user can view and/or access items below a

connection point for which the user has security permissions to view and/or access.

[0037] Referring initially to FIG. 1, a system 100 that facilitates rendering a

representation of content of file store is shown. Generally, system 100 can include a

query component 102 and a row-level security component 104. In operation, the

query component 102, together with the row-level security component 104 can

identify items within a data component 106 that satisfy a security policy or

permission. Once identified, the resultant set of data can be rendered to a user and/or

application. For example, as previously described, the invention can render the

resultant set via a display to a user.

MS312708.02/MSFTP9S 1 USA

[0038] With reference now to FIG. 2, a more detailed block diagram of the row-

level security component 104 is shown. In particular, the row-level security

component 104 can include a security descriptor table 202 and a single instance table

204. Each of these tables will be described in greater detail infra.

[0039] The security component 104 can provide a realization of row level security.

When the user connects to a share data component 106), implicit view

definitions for each of the data types can be defined within the scope the connection.

In order to add context to the invention, below is an exemplary view definition for a

"Contact" type.

CREATE VIEW [System.Storage.Contacts.Store] [Contact] AS

SELECT ItemId, Typeld, NamespaceName, ContainerId,

ItemSyncMetadata,

TREAT(Item AS [System.Storage.Contacts.Store].[Contact]) AS

Item, PathHandle,

EntityState, ObjectSize, ChangeInformation, PromotionStatus

FROM [System.Storage.Store].[Table!Item]

WHERE Item IS OF ([System.Storage.Contacts.Store].[Contact])

AND (@@ITEM DOMAIN IS ROOT 1

OR (PathHandle @@ITEMDOMAIN AND PathHandle

@@ITEMDOMAINLIMIT))

10040] Each item is stored as a row in the entity tables (202, 204). The above

exemplary expression can effect filtering out the Contact types from the global scope

of items in the store. Implicit to this filtering is the dimension of access control where

a user would see only those items that are readable according to the security

descriptors in the corresponding row.

[0041] In this example, a view definition can include the above-identified

"WHERE" clause that restricts a view to items that are Contacts. The remainder of

the example can restrict access to items from the connection point. It is to be

understood that the view definition above does not include the security definition.

[0042] As described above, the security mechanism is a function of the row level

security stored in tables (202, 204). This mechanism is applied at the underlying table

level of the view and has propagating effects on the view. When security is enabled

MS312708.02/MSFTP981USA

on a per row basis, the rows for which a user does not have read access do not appear

in the resultant set provided by the query component 102.

[0043] In a file system model, each "item" is in a row, and each row has security

associated with it. The row level security mechanism 104 restricts the rows from

appearing in the results for those rows that a user does not have read access. The

view, given a definition conveyed to the query component 102, (as in the above

example) can restrict the rendering viewing) based at least in part upon the

connection point. Therefore, the resultant set, can be the intersection of these two

restrictions. It will be appreciated that these security mechanisms can occur implicit

to the query definition. As a result, the user can be shielded from any of the

operations.

[0044] The subject invention employs a single instancing mechanism that checks

the security descriptor of each row in the table 204). This single instancing

mechanism makes it possible to appear that the system is performing a check across

each row. A single instancing of security descriptors across rows can make the check

of this mechanism efficient. It will be appreciated that security policies access

control lists) can be employed in place of the exemplary security descriptors.

Therefore, it is to be understood that these additional novel aspects are intended to fall

within the scope of this invention and claims appended hereto. Additionally, although

ACLs are mentioned above, it is to be understood that other aspects exist that employ

disparate security policies. These disparate security policies are intended to fall

within the scope of this disclosure and claims appended hereto.

[0045] In operation, two tables (202, 204) are maintained a table of security

descriptors 202 and a single instance table of mapping between the hash SHA-1)

of the security descriptor and a security descriptor identification (SDID). It will be

appreciated that this SDID is a unique value. In accordance with the invention, single

instancing refers to a mechanism where, for each unique security descriptor in the

store, the system maintains a map between the SDID and a hash of the security

descriptor.

[0046] Therefore, for each row, instead of storing a security descriptor, the SDID

that corresponds to it is stored. In one aspect, when a user creates an item, the user

has a choice to provide a security descriptor or leave it empty. If left empty, the

security descriptor can be inherited from the parent from the item being created.

When the user opts to explicitly provide a security descriptor, the system can merge

MS312708.02/MSFTP981 USA

the explicitly defined descriptor with the security descriptor of the parent to create

one.

[0047] Once a determination is made what the security descriptor on the new item

will be, a determination will be made if it already exists. If it does exist, the existing

one will be used. If it does not exist, the new one will be saved.

[0048] To determine if a security descriptor exists, the invention references the

single instance table 204 that includes a mapping of the security descriptor to a hash

SHA-1 hash) of the security descriptor. Therefore, in order to determine if there

exists another item with the same security descriptor, a hash is computed of the

subject security descriptor. The system then queries the single instancing table 204

for a row to see if any rows contain the same hash SHA-1) of security

descriptor. If a match is found, there is a high probability that it exists.

[0049] Next, a comparison the actual security descriptor is made to verify if the

security descriptor exists. If the actual security descriptor is not the same, the system

stores the security descriptor independently. It is to be appreciated that the system

only relies upon the hash algorithm SHA-1) to guarantee non-uniqueness. In

other words, if the hashed value does not match a hashed value in the single instance

-table 204, a determination can be made that the security descriptor does not exist.

[0050] There are three properties to a security descriptor the hash

(mathematically computed value based upon the binary of the security descriptor), the

security descriptor itself (binary), and the SDID (integer value that points to the

security descriptor). For each row, the system stores the ID of that particular row for

which the security descriptor is relevant. Next, in the single instance table 204, the

system maps between the hash SHA-1) and the SDID. In the security descriptor

table 202, the system maps between SDID and binary.

[0051] Therefore, the single instance table 204 and the security descriptor table

202 together give a complete mapping from a SHA-I hash to SDID to binary.

Effectively, these two tables (202, 204) can be used to perform a single instancing

check.

[0052] A security descriptor can have the following logical form:

O:owner sid

G:group_sid

D:dacl flags(acel) ace2)... (acen)

MS312708.02/MSFTP98 1USA

S:sacl_flags(acel)(ace2)... (acen)

[0053] In the above example, 0: identifies the owner, G: identifies the group, D:

identifies the Discretionary Access Control List (DACL) (the section of the security

descriptor in the scope of the disclosure) and S: identifies the System Access Control

List (SACL). DACL is a collection of Access Control Entries (ACE) each can take

the following form.

ace_type;ace_flags;rights; account_sid

[0054] A given principal can be granted or denied access to specific items.

Accordingly, the denied items can be implicitly filtered out from the user views. A

filtering engine or query component 102 can scan all the items in the store agnostic to

any container semantics and produce a uniform set thereby circumventing the

limitations of the traversals in the traditional file systems.

[0055] The two internal tables (202, 204) can be used to facilitate the storage and

access control in the system. In an exemplary aspect, the system can employ a

[System.Storage.Store].[Table! SecurityDescriptorSinglelnstance] table 204

instance table) and a Sys.security_descriptors table 202 security descriptor

table). The Sys.security_descriptors table 202 is a catalog view of security

descriptors. These descriptors can be created or deleted using data definition

language (DDL) primitives provided by SQL Server. The single instance table 204

can key to a central processing unit (CPU) and memory optimizations in the system.

[0056] In accordance with an aspect, it can be common that a significant number

of items share the same security policy or descriptor. In one example, the maximum

size of an access control list (ACL) is 64KB thus a given security descriptor can be in

the order of 128KB. It will be appreciated that it can be inefficient to store a value of

this size with each item given its potentially high degree of commonality. Therefore,

each unique security descriptor can be stored in the Sys.security_descriptors table 202

and a mapping between the descriptor and its SHA-1 hash can be maintained in the

single instance table 204. As stated previously, a SHA-1 has does not guarantee

uniqueness of outputs, but a collision is extremely improbable given its large output

range 2 16 0 Since the instance table 204 can have a self-healing nature, it can

guarantee that the system can auto recover from corruption or inconsistencies.

MS3 1 2708.02/MSFTP98 1 USA

[0057] Item/Extension/Fragment/Link tables have an entry for the SDID that can

be marked with SECURITY attribute. This can ensure that all read access to these

tables and any views built on top of these views are subject to an access check

requesting (FILEREAD_DATA I FILE_READ_ATTRIBUTES). Rows in the

ItemExtension, Link and ItemFragment tables have the same security descriptor as the

corresponding row in the Item table.

[0058] The mechanism described supra can be considered to be at the core of an

authorization model in the read path for emerging file systems. Any authorization

model can inherently rely on an authentication model. In one example, when a user

connects to the store, the user can be authenticated deemed trustworthy) using

the preferred operating system authentication mechanisms NTLM (NT LAN

Manager), Kerberos). The net result of authentication can be a security token

representing the user that is accessing the file system. This token can be used

subsequently for making authorization decisions for the principal.

[0059] In accordance with another aspect of the invention, items secured using row

or. record level security (RLS) can be protected from the storage service account as

well. For security evaluation, the service account can be considered like any other

NT-brand account. While this can particularly guarantee uniform security semantics,

it brings out interesting problems in the update path. For example, consider a user

trying to create an item with a given Namespace name. Namespace names in

emerging file systems are guaranteed to be unique in their containing folder,

providing an unambiguous naming system. During create operations, the system

guarantees this uniqueness by ensuring the non-existence of other items in the same

folder with the same namespace name.

[0060] In this scenario, an item may already exist in the folder with access

permissions denied to the service account. This invention can address this problem by

using a signature mechanism. Update primitives that require global access to the store

can be signed with certificates that are granted "exempt RLS" privilege. From within

the context of such a primitive, the system can query the store and row level security

will be bypassed in this case.

[0061] As described supra, traditional file systems have made a distinction

between attributes and data for enabling the traversal semantics. The lack of

discoverability and query-based semantics induced a model where attributes and data

are distinguished for access control decisions. The subject invention provides

MS312708.02/MSFTP98 lUSA

seamless access to data and attributes by facilitating all or nothing semantics on the

type system.

[0062] Following is a detailed discussion of an exemplary file system security

model. The discussion that follows describes component functionality in a number of

disparate scenarios. It is to be appreciated that these described scenarios are provided

merely to provide context to the invention and are not intended to limit the invention,

or claims appended hereto, in any way.

[0063] Referring first to the file system security model, in one aspect, data can be

organized in a store as an "item" which can refer to the smallest unit of consistency in

file system. An "item" can be independently secured, serialized, synchronized,

copied, backed-up/restored, etc. It will be appreciated that a file system item can be

described as an instance of a type whose ancestor is the type System.Storage.Item,

which is an entity type. All items in file system can be stored in a single global extent

of items. As well, each item can have a unique identifier which is guaranteed to be

unique for all items in a given file system store.

[0064] Referring now to FIG. 3, a system 300 is shown. System 300 is in

accordance with the context of this security discussion whereas items in a type system

302 can be classified as instances of generic container types 304 and compound item

types 306. Generic containers 304 can be used to model folders and any other

hierarchical data collection buckets. Compound item types 306 can be used to model

a single logical unit of data for an application. Instances of this type can give all or

nothing semantics for typical data operations like copy, move, sync etc. Examples of

the latter include, but are not limited to, mail messages, pictures, contacts, etc.

Instances (denoted by dashed lines) of compound item types 306 can be further

classified as file backed items 308 (FBIs) and non-file backed items 310 (nFBIs). It

will be appreciated that a Win32-brand access is semantically limited to FBIs and

generic containers.

[0065] The following containment hierarchy tree-like structure) applies to

the items. Generic containers 304 and compound items 306 can contain any other

item types including generic containers. Items within these additional generic

containers can also be independently secured. FBIs 308 can not contain other items

and hence form leaf nodes in the hierarchy.

[0066] Referring now to FIG. 4, it will be appreciated that a file system 400 can

include two major components on opposite sides of a trust boundary 402 a store

MS312708.02/MSFTP981USA

component 404 and a client component 406. As illustrated, store component 404 can

include 1 to N object components, where N is an integer. Object components 1 to N

can be referred to individually or collectively as object components 408. The store

component 404 that deals with storage and retrieval of the object 408 can form a

trusted file system subsystem between the store component 404 and the client

component 406.

[0067] The client component 406 which can provide programming semantics to

the platform usually runs in the user processes. It will be understood that the users

can be authenticated at connection time. Retrieved objects 408 items) can be

materialized in the client space. In one aspect, no security checks or access

constraints are enforced by the client on these objects 408. In accordance with the

invention, the store component 404 can enforce access control (via access control

component 410) when the programming context is persisted to the store component

404. Following is a discussion of user authentication.

[0068] File system 400 can expose the notion of a security principal that can

perform actions against the items 408 contained in a file system store 404. In aspects

of the invention, a security principal could be a user or a security group. Accordingly,

the security principal can be represented by a security identifier (SID).

[0069] As illustrated in FIG. 4, a connection to the file system service is in the

context of a security principal that is successfully authenticated by the access control

component 410. It will be understood that file system authentication via access

control component 410) can be a derivative of the operating system authentication

mechanism. For example, a file system authentication can be a derivative of a

Windows-brand authentication available in the SQL (structured query language)

security model. For example, it will be appreciated that SQL offers another built-in

authentication mechanism called SQL authentication which may not be supported in

file system 400.

[0070] Continuing with the example, an attempted connection by a Windows-

brand user can be authenticated by the file system 400 while leveraging Windows-

brand provided authentication services such as Kerberos, NTLM, etc. In the example,

an authenticated user is mapped to a "public" role in SQL which is used for

authorization decisions in the store 404. In one aspect, a built-in administrator (BA)

will be mapped to SQL administrators granting SQL administrative privileges to the

BA. In an alternative aspect, file system administration can be solely built using file

MS312708.02/MSFTP981 USA

system primitives. As such, BA would not be a member of the SQL administrators in

the alternative aspect.

[0071] The net result of the authentication is a security token that represents the

principal that accesses the file system 400. This data structure can include the SID of

the incoming principal as well as the SID's of all the groups for which the principal is

a member. In addition, all privileges held by the user can be, by default, enabled

while connecting to file system 400. As will be better understood following the

discussion below, this token can be subsequently used to make authorization

decisions.

[0072] Turning now to a discussion of authorization, as described supra, file

system authorization can be built on share level security and item level security. As

used in this description, a "share" can refer to an alias to an item 408 in the store 410.

When a store 410 is created, a default share is created aliased to the root item. Users

with sufficient privilege can create shares aliased to any generic container item

408) in the store 410.

[0073] The file system can use universal naming convention paths to expose

namespace locally and remotely. Hence file system clients connect to a share

whereby the connection point together with the relative hierarchy of names constitutes

the addressing mechanism to file system objects 408.

[0074] By way of example, suppose a user connects to a root share to access foo.

Accordingly, the access would appear as

\\MachineName\StoreName\RootShare\.. .\foo. Similarly, the user connected to a

share called AliceShare would access the same object as

\\MachineName\AliceShare\...\foo. In this example, the effective permission on the

item can be a function of the security descriptor on the connected share and the item.

It is to be understood that the former defines a share level security and the latter

defines an item level security. Details on each of these security mechanisms as well

as rules for composing the effective security descriptors are described infra.

[0075] Beginning with a discussion of the share level security, file system shares

in accordance with the invention are somewhat akin to Windows-brand shares. In

order to provide uniform semantics over local and remote access, for every file system

share created, a mirroring share can be created as well. Shares can be stored as items

in a catalog store and can be securable using item security which is the topic that

MS312708,02/MSFTP981USA

follows. Permissions on these items and on the shares can be the same granting

uniform access semantics on both local and remote access.

[0076] Default permissions can be granted as desired with respect to items. For

example, disparate items in a share can have different default permissions applied

with respect to user characteristics local system built-in administrator,

authenticated, interactive...).

[0077] Similar to Windows-brand shares, the default values for the share security

descriptor are configurable using the registry setting at

LanManServer\DefaultSecurity\SrvsvcDefaultSharelnfo.

[0078] Item security mechanisms can employ security descriptors to effect access

control. Accordingly, in one aspect, a security descriptor can be communicated by

APIs (application program interfaces) in a security descriptor definition language

string format and stored in the database in a packed binary format under the

VARBINARY column of Sys. Security_Descriptors, the security descriptor

table (202 of FIG. 2).

[0079] A new security descriptor table, 202 of FIG. 2 as described supra,

Sys. Security Descriptors, exists to hold each unique Security Descriptor,

stored as a packed binary security descriptor with a unique ID (SDID) for use as a

foreign key in file system base tables. For example, a security descriptor table can

appear as follows:

SDID SecurityDescriptor VARBINARY

XXXXXXXXXX
56 XXXXXXXXXX

[0080] Although the security descriptor table above employs a binary

representation for the security descriptor, it is to be appreciated that any suitable

representation can be employed without departing from the spirit and scope of the

invention and claims appended hereto.

[0081] Referring now to a discussion of representation and storage of security

descriptors and related data, as described supra, the invention employs two internal

tables that can hold security descriptor related information a security descriptor

table sys.security_descriptors and a single instance table

[System.Storage.Store]. [Table! SecurityDescriptorSingleInstance]).

MS312708.02/MSFTP981 USA

[0082] Continuing with the example, Sys.securitydescriptors is a catalog view

maintained by SQL. This binary is stored in a corresponding row with the SDID.

[0083] The single instance table can be maintained by the file system. It contains a

map of a hash of the binary security descriptor to the SDID identified in the

aforementioned Sys.securitydescriptors view or table. In one example, a SHA-1

hash can be employed. In one aspect, if multiple items with the same security

descriptors are created, a single entry can exist in both the tables.

[0084] As stated above, another novel feature of the invention is that if the single

instance table is ever corrupted, it can be destroyed as it is a self-healing table. In

other words, if a corruption were to occur; a new table can be created merely by

generating new hash values and associating them to the appropriate SDID.

[0085] In an aspect, Item/Extension/Fragment/Link tables can have an entry for the

SDID that is marked with "security" attribute. It will be understood that this can

ensure that any read access to these tables and any views built on top of these views

could be subject to an access check asking for (FILE_READ_DATA I

FILE_READ_ATTRIBUTES). It will further be understood that the ItemExtension,

Link and ItemFragment table must have the same security descriptor table as the Item

table.

[0086] FIG. 5 illustrates a methodology of initialization in accordance with an

aspect of the invention. While, for purposes of simplicity of explanation, the one or

more methodologies shown herein, in the form of a flow chart, are shown and

described as a series of acts, it is to be understood and appreciated that the subject

invention is not limited by the order of acts, as some acts may, in accordance with the

invention, occur in a different order and/or concurrently with other acts from that

shown and described herein. For example, those skilled in the art will understand and

appreciate that a methodology could alternatively be represented as a series of

interrelated states or events, such as in a state diagram. Moreover, not all illustrated

acts may be required to implement a methodology in accordance with the invention.

[0087] While building a model database during the build process security data

structures are initialized. At 502, tables are set up. In one example, setting up tables

can include setting up Sys.server_principals, Sys.database_principals,

Sys.serverrole_members and Sys.database_role_members. At 504, a single instance

table is created. In accordance with our example,

MS312708.02/MSFTP981 USA

[System.Storage.Store].[Table!SecurityDescriptorSinglelnstance] can be created at

504.

[0088] At 506 a root security descriptor is created. This root security descriptor

corresponds to the root of the store administrators have full control). At 508,

item level security descriptors are created. For example, at 508, security descriptors

for tombstone items can be created such that administrators have full control and

authenticated users have read access. At 510, these entries are added to the single

instance table.

[0089] The file system can support inheritance of ACLs. For example, from the

time of item creation CreateItem or CreateComplexItems), the security

descriptor for the item can be computed using the supplied security descriptor (if any),

the parent security descriptor, the type of item and the token NT-brand token) of

the caller.

[0090] Referring now to a discussion of access checks, all update APIs perform

appropriate access checks by calling [System.Storage. Store]. [HasSecurityAccess].

The API ensures that the caller is granted the request permission bit both at the share

level as well as the security descriptor item, record) level. In one specific

aspect, the access check performed on the security descriptor (of the parent) is

different (FILE_DELETE_CHILD) from the one (DELETE) performed on the share.

For other cases, the two access checks can be consistent.

[0091] Continuing with the example, ACL propagation throughout the tree-like

structure can be performed when SetItemSecurity (with a new DACL or SACL) or

MoveItem with a new parent is called. After the appropriate access checks are

performed to ensure that the caller is allowed to perform the operation, ACL

propagation can be effected in the context of File system. No access checks are done

on the subtree-like structure for which ACLs are updated.

[0092] It is to be appreciated that the invention can employ asynchronous and/or

synchronous propagation. Following is a discussion of synchronous propagation. It

is to be understood that the root of the subtree-like structure has nothing to do with

Compound items. Rather, the root of the subtree-like structure is a generic term to

describe the node on which SetItemSecurity or Moveltem is called.

[0093] In accordance with synchronous propagation, the new security descriptor

for the root item is computed. If DACL or SACL are not updated, the SDID if

updated for the item, extension, fragment and link tables and the system returns. The

MS312708.02/MSFTP98 1 USA

entire item subtree-like structure is locked starting at the item. In the example, it is

not necessary to lock any. other table (Extension, Fragment, Link).

[0094] Next, a temporary table that contains all the items in the act above can be

created. The temporary table can have the following characteristics. The temporary

table can have Containerld, ItemId, and NewSdId. As well, initially, NewSdId can be

NULL for all but the root of the subtree-like structure.

10095] For each entry in the temporary table, the new SD can be computed using

the new parent SD, the type of the item and the existing item SD. In the example,

CreatePrivateObj ectSecurityEx(SEFAVOID_PRIVILEGE_CHECK I

SEF_AVOID_OWNER_CHECK) can be used. Accordingly, the temporary table can

be traversed level by level each time processing those rows whose new parent SD has

been computed and the new SDID for the item is NULL. In accordance with the

example, this walks the table one level at a time.

10096] The number of iterations is O depth of the tree-like structure). Two

issues can be considered. First, computation of new security descriptors can be

considered. Second, update of security descriptors on all children can be considered.

In the second scenario, the theoretical limit is O number of children). In the first

scenario, although not necessary, it is usually O (depth of the tree). If needed, a new

Security Descriptor can be created in the single instance and

Sys.security_descriptors tables). Next, the temporary SDID table is updated in the

temporary table. Finally, Item, Extension, Link and Fragment table can be updated

using the data computed in temporary table.

[0097] FIG. 6 illustrates that T/SQL Operations which query the Master Table

Views operate in the User Context where Access Control for SELECT statements is

enforced by Row Level Security. Additionally, calls to the File system Store Update

API are made in the User Context but executed in the System Context. The

implementation can therefore enforce permission checks for the caller.

[0098] FIG. 7 illustrates a system 700 that employs artificial intelligence (AI)

which facilitates automating one or more features in accordance with the subject

invention. The subject invention in connection with implementing security

policies) can employ various AI-based schemes for carrying out various aspects

thereof. For example, a process for determining if a security descriptor should be set

and, if so, the level of security to employ can be facilitated via an automatic classifier

MS312708.02/MSFTP98 1 USA

system and process. Moreover, where the single instance and security descriptor

tables (202, 204 from FIG. 2) are remotely located in multiple locations, the classifier

can be employed to determine which location will be selected for comparison.

[0099] A classifier is a function that maps an input attribute vector, x (xl, x2, x3,

x4, xn), to a confidence that the input belongs to a class, that is, f(x)

confidence(class). Such classification can employ a probabilistic and/or statistical-

based analysis factoring into the analysis utilities and costs) to prognose or infer

an action that a user desires to be automatically performed.

[00100] A support vector machine (SVM) is an example of a classifier that can be

employed. The SVM operates by finding a hypersurface in the space of possible

inputs, which hypersurface attempts to split the triggering criteria from the non-

triggering events. Intuitively, this makes the classification correct for testing data that

is near, but not identical to training data. Other directed and undirected model

classification approaches include, naYve Bayes, Bayesian networks, decision

trees, neural networks, fuzzy logic models, and probabilistic classification models

providing different patterns of independence can be employed. Classification as used

herein also is inclusive of statistical regression that is utilized to develop models of

priority.

[00101] As will be readily appreciated from the subject specification, the subject

invention can employ classifiers that are explicitly trained via a generic training

data) as well as implicitly trained via observing user behavior, receiving

extrinsic information). For example, SVM's are configured via a learning or training

phase within a classifier constructor and feature selection module. Thus, the

classifier(s) can be used to automatically learn and perform a number of functions,

including but not limited to determining according to a predetermined criteria.

[00102] Referring now to FIG. 8, there is illustrated a block diagram of a computer

operable to execute the disclosed architecture. In order to provide additional context

for various aspects of the subject invention, FIG. 8 and the following discussion are

intended to provide a brief, general description of a suitable computing environment

800 in which the various aspects of the invention can be implemented. While the

invention has been described above in the general context of computer-executable

instructions that may run on one or more computers, those skilled in the art will

recognize that the invention also can be implemented in combination with other

program modules and/or as a combination of hardware and software.

MS312708.02/MSFTP981USA

[00103] Generally, program modules include routines, programs, components, data

structures, etc., that perform particular tasks or implement particular abstract data

types. Moreover, those skilled in the art will appreciate that the inventive methods

can be practiced with other computer system configurations, including single-

processor or multiprocessor computer systems, minicomputers, mainframe computers,

as well as personal computers, hand-held computing devices, microprocessor-based or

programmable consumer electronics, and the like, each of which can be operatively

coupled to one or more associated devices.

[00104] The illustrated aspects of the invention may also be practiced in distributed

computing environments where certain tasks are performed by remote processing

devices that are linked through a communications network. In a distributed

computing environment, program modules can be located in both local and remote

memory storage devices.

[00105] A computer typically includes a variety of computer-readable media.

Computer-readable media can be any available media that can be accessed by the

computer and includes both volatile and nonvolatile media, removable and non-

removable media. By way of example, and not limitation, computer-readable media

can comprise computer storage media and communication media. Computer storage

media includes both volatile and nonvolatile, removable and non-removable media

implemented in any method or technology for storage of information such as

computer-readable instructions, data structures, program modules or other data.

Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash

memory or other memory technology, CD-ROM, digital video disk (DVD) or other

optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other

magnetic storage devices, or any other medium which can be used to store the desired

information and which can be accessed by the computer.

[00106] Communication media typically embodies computer-readable instructions,

data structures, program modules or other data in a modulated data signal such as a

carrier wave or other transport mechanism, and includes any information delivery

media. The term "modulated data signal" means a signal that has one or more of its

characteristics set or changed in such a manner as to encode information in the signal.

By way of example, and not limitation, communication media includes wired media

such as a wired network or direct-wired connection, and wireless media such as

MS312708.02/MSFTP98 USA

acoustic, RF, infrared and other wireless media. Combinations of the any of the

above should also be included within the scope of computer-readable media.

[00107] With reference again to FIG. 8, the exemplary environment 800 for

implementing various aspects of the invention includes a computer 802, the computer

802 including a processing unit 804, a system memory 806 and a system bus 808.

The system bus 808 couples system components including, but not limited to, the

system memory 806 to the processing unit 804. The processing unit 804 can be any

of various commercially available processors. Dual microprocessors and other

multi-processor architectures may also be employed as the processing unit 804.

[00108] The system bus 808 can be any of several types of bus structure that may

further interconnect to a memory bus (with or without a memory controller), a

peripheral bus, and a local bus using any of a variety of commercially available bus

architectures. The system memory 806 includes read-only memory (ROM) 810 and

random access memory (RAM) 812. A basic input/output system (BIOS) is stored in

a non-volatile memory 810 such as ROM, EPROM, EEPROM, which BIOS contains

the basic routines that help to transfer information between elements within the

computer 802, such as during start-up. The RAM 812 can also include a high-speed

RAM such as static RAM for caching data.

[00109] The computer 802 further includes an internal hard disk drive (HDD) 814

EIDE, SATA), which internal hard disk drive 814 may also be configured for

external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD)

816, to read from or write to a removable diskette 818) and an optical disk drive

820, reading a CD-ROM disk 822 or, to read from or write to other high

capacity optical media such as the DVD). The hard disk drive 814, magnetic disk

drive 816 and optical disk drive 820 can be connected to the system bus 808 by a hard

disk drive interface 824, a magnetic disk drive interface 826 and an optical drive

interface 828, respectively. The interface 824 for external drive implementations

includes at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface

technologies. Other external drive connection technologies are within contemplation

of the subject invention.

[00110] The drives and their associated computer-readable media provide

nonvolatile storage of data, data structures, computer-executable instructions, and so

forth. For the computer 802, the drives and media accommodate the storage of any

data in a suitable digital format. Although the description of computer-readable

MS3 1 2708.02/MSFTP98 I USA

media above refers to a HDD, a removable magnetic diskette, and a removable optical

media such as a CD or DVD, it should be appreciated by those skilled in the art that

other types of media which are readable by a computer, such as zip drives, magnetic

cassettes, flash memory cards, cartridges, and the like, may also be used in the

exemplary operating environment, and further, that any such media may contain

computer-executable instructions for performing the methods of the invention.

[001111] A number of program modules can be stored in the drives and RAM 812,

including an operating system 830, one or more application programs 832, other

program modules 834 and program data 836. All or portions of the operating system,

applications, modules, and/or data can also be cached in the RAM 812. It is

appreciated that the invention can be implemented with various commercially

available operating systems or combinations of operating systems.

100112] A user can enter commands and information into the computer 802 through

one or more wired/wireless input devices, a keyboard 838 and a pointing device,

such as a mouse 840. Other input devices (not shown) may include a microphone, an

IR remote control, a joystick, a game pad, a stylus pen, touch screen, or the like.

These and other input devices are often connected to the processing unit 804 through

an input device interface 842 that is coupled to the system bus 808, but can be

connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a

game port, a USB port, an IR interface, etc.

[00113] A monitor 844 or other type of display device is also connected to the

system bus 808 via an interface, such as a video adapter 846. In addition to the

monitor 844, a computer typically includes other peripheral output devices (not

shown), such as speakers, printers, etc.

[00114] The computer 802 may operate in a networked environment using logical

connections via wired and/or wireless communications to one or more remote

computers, such as a remote computer(s) 848. The remote computer(s) 848 can be a

workstation, a server computer, a router, a personal computer, portable computer,

microprocessor-based entertainment appliance, a peer device or other common

network node, and typically includes many or all of the elements described relative to

the computer 802, although, for purposes of brevity, only a memory/storage device

850 is illustrated. The logical connections depicted include wired/wireless

connectivity to a local area network (LAN) 852 and/or larger networks, a wide

area network (WAN) 854. Such LAN and WAN networking environments are

MS312708.02/4SFTP981 USA

commonplace in offices and companies, and facilitate enterprise-wide computer

networks, such as intranets, all of which may connect to a global communications

network, the Internet.

[00115] When used in a LAN networking environment, the computer 802 is

connected to the local network 852 through a wired and/or wireless communication

network interface or adapter 856. The adaptor 856 may facilitate wired or wireless

communication to the LAN 852, which may also include a wireless access point

disposed thereon for communicating with the wireless adaptor 856.

[00116] When used in a WAN networking environment, the computer 802 can

include a modem 858, or is connected to a communications server on the WAN 854,

or has other means for establishing communications over the WAN 854, such as by

way of the Intemet. The modem 858, which can be internal or external and a wired or

wireless device, is connected to the system bus 808 via the serial port interface 842.

In a networked environment, program modules depicted relative to the computer 802,

or portions thereof, can be stored in the remote memory/storage device 850. It will be

appreciated that the network connections shown are exemplary and other means of

establishing a communications link between the computers can be used.

[00117] The computer 802 is operable to communicate with any wireless devices or

entities operatively disposed in wireless communication, a printer, scanner,

desktop and/or portable computer, portable data assistant, communications satellite,

any piece of equipment or location associated with a wirelessly detectable tag a

kiosk, news stand, restroom), and telephone. This includes at least Wi-Fi and

BluetoothTM wireless technologies. Thus, the communication can be a predefined

structure as with a conventional network or simply an ad hoc communication between

at least two devices.

[00118] Wi-Fi, or Wireless Fidelity, allows connection to the Internet from a couch

at home, a bed in a hotel room, or a conference room at work, without wires. Wi-Fi is

a wireless technology similar to that used in a cell phone that enables such devices,

computers, to send and receive data indoors and out; anywhere within the range

of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 b, g,

etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be

used to connect computers to each other, to the Internet, and to wired networks (which

use IEEE 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and

GHz radio bands, at an 11 Mbps (802.1 la) or 54 Mbps (802.1 lb) data rate, for

MS312708.02/MSFTP98 IUSA

example, or with products that contain both bands (dual band), so the networks can

provide real-world performance similar to the basic 10BaseT wired Ethernet networks

used in many offices.

[00119] Referring now to FIG. 9, there is illustrated a schematic block diagram of

an exemplary computing environment 900 in accordance with the subject invention.

The system 900 includes one or more client(s) 902. The client(s) 902 can be

hardware and/or software threads, processes, computing devices). The client(s)

902 can house cookie(s) and/or associated contextual information by employing the

invention, for example.

[00120] The system 900 also includes one or more server(s) 904. The server(s) 904

can also be hardware and/or software threads, processes, computing devices).

The servers 904 can house threads to perform transformations by employing the

invention, for example. One possible communication between a client 902 and a

server 904 can be in the form of a data packet adapted to be transmitted between two

or more computer processes. The data packet may include a cookie and/or associated

contextual information, for example. The system 900 includes a communication

framework 906 a global communication network such as the Internet) that can

be employed to facilitate communications between the client(s) 902 and the server(s)

904.

1001211 Communications can be facilitated via a wired (including optical fiber)

and/or wireless technology. The client(s) 902 are operatively connected to one or

more client data store(s) 908 that can be employed to store information local to the

client(s) 902 cookie(s) and/or associated contextual information). Similarly, the

server(s) 904 are operatively connected to one or more server data store(s) 910 that

can be employed to store information local to the servers 904.What has been

described above includes examples of the invention. It is, of course, not possible to

describe every conceivable combination of components or methodologies for

purposes of describing the subject invention, but one of ordinary skill in the art may

recognize that many further combinations and permutations of the invention are

possible. Accordingly, the invention is intended to embrace all such alterations,

modifications and variations that fall within the spirit and scope of the appended

claims. Furthermore, to the extent that the term "includes" is used in either the

detailed description or the claims, such term is intended to be inclusive in a manner

similar to the term "comprising".

MS312708.02/MSFTP981USA

Throughout this specification and the claims which follow, unless the context requires

otherwise, the word "comprise", and variations such as "comprises" or "comprising",

will be understood to imply the inclusion of a stated integer or step or group of

integers or steps but not the exclusion of any other integer or step or group of integers

or steps.

The reference to any prior art in this specification is not, and should not be taken as,

an acknowledgment or any form of suggestion that that prior art forms part of the

common general knowledge in Australia.

S MS312708.02/MSFTP981USA

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

I. A system that facilitates accessing data, comprising:

a query component that generates an abstraction of a data store from a

connection point; and

a row-level security component that limits the abstraction based upon

at least one row-level access permission.

2. The system of claim 1, the data store is organized in a hierarchy and the

query component transcends the hierarchy.

3. The system of claim 1, further comprising a component that provides a

trustworthy identity establishment system used in connection with an access control

enforcement policy.

4. The system of claim 1, further comprising a rendering component that

renders the limited abstraction.

The system of claim 1, the row-level security component associates a

security policy with at least one row in the data store.

6. The system of claim 5, each row in the data store contains a single

object.

7. The system of claim 6, the security policy is at least one of an access

control list (ACL) and a security descriptor.

8. The system of claim 7, the object is at least one of a data element and a

container organized in a hierarchical organization.

MS312708.02/MSFTP981USA

9. The system of claim 8, further comprising a component that

determines if propagation is appropriate and, if necessary, sets the security policy in a

root of the hierarchy and propagates the security policy to at least one child in the

hierarchy.

The system of claim 9, the component that propagates the security

policy intelligently uses a security descriptor of a parent and the object to compute an

effective security descriptor for the object.

11. The system of claim 1, the row-level security component further

comprises:

a security descriptor table that maps a security descriptor to a security

descriptor identifier (SDID); and

a single instance table that maps the SDID to a hash value of the SDID.

12. The system of claim 11, the SDID is an integer value that points to the

security descriptor.

13. The system of claim 11, the hash value is generated via a SHA-1 hash

algorithm.

14. The system of claim 1, further comprising an artificial intelligence (AI)

component that employs a probabilistic and/or statistical-based analysis to prognose

or infer an action that a user desires to be automatically performed.

A computer-readable medium having stored thereon computer-

executable instructions for carrying out the system of claim 1.

16. A method for providing access control to data in a data store,

comprising:

organizing the data into a hierarchical organization;

transcending the hierarchical organization;

setting a security policy in a root of the hierarchical organization;

MS312708.02/MSFTP981 USA

NO intelligently propagating the security policy to at least one child in the

Shierarchical organization based at least in part on a parent security descriptor;

Sgenerating a connection point abstraction of the data store; and

.s applying a row-level security policy to limit the abstraction to a subset

of the data based at least in part on the row-level security policy, the row-level

security policy associates at least one of an ACL and a security descriptor with at least

one row in the data store.

17. The method of claim 16, further comprising establishing a trustworthy
ID identity establishment system used in connection with applying the row-level security

policy.

18. The method of claim 17, further comprising rendering the limited

abstraction.

19. A system that facilitates access control of data in a data store,

comprising:

means for organizing the data into a tree-like structure;

means for transcending the tree-like structure;

means for setting a security policy in a root of the tree-like structure;

means for intelligently propagating the security policy to at least one

child in the tree-like structure;

means for applying the propagated security policy based at least in part

on a security policy of a parent and a security policy of the child; and

means for filtering a connection point abstraction of the data store

based at least in part on one or more security policies, the one or more security

policies associate with at least one row in the data store.

MS312708.02/MSFTP981 USA

The system of claim 19, further comprising:

means for establishing a trustworthy identity establishment system

used in connection with applying the row-level security policy.

DATED this SEVENTEENTH day of JANUARY 2006

Microsoft Corporation

by DAVIES COLLISON CAVE

Patent Attorneys for the applicant(s)

1/9

USER, APPLICATION, etc. 100

S104

FIG. 1

2/9

USER, APPLICATION, etc.

I
100

QUERY
COMPONENT

102

I i

T

106 DATA
COMPONENT

ROW LEVEL
SECURITY COMPONENT

204

SINGLE INSTANCE
TABLE

202

SECURITY
DESCRIPTOR TABLE

S104

FIG. 2

3/9

S300

TYPE SYSTEM 302

t

304 GENERIC 306CONTAINERIC COMPOUND ITEMS ,306
CONTAINER

FILE BACKED I NON-FILE BACKED
ITEMS I ITEMS

308 310

TYPE

1
INSTANCE

FIG. 3

4/9

-400

408 OBJECT, OBJECTN 408

404 ACCESS CONTROL 410
C COMPONENT

STORE COMPONENT

402

APPLICATION CONTEXT
CLIENT COMPONENT

406 PRINCIPAL

FIG. 4

5/9

FIG.

6/9

or400

T/SQL QUERIES

OPER. ITI ONS

BASE TAOSTOR E API LE VIEWS'

STORAGE ENGINE
ITEMID SSID

0 0

IUSER

SYSTEM

FIG. 6

7/9

USER, APPLICATION, etc. 700

QUERY 102
COMPONENT

ROW LEVEL
106-. DATA n,' l

r, 104

ARTIFICIAL
INTELLIGENCE

COMPONENT

FIG. 7

8/9

0(800
802

830
OPERATING SYSTEM

-8 32

APPLICATIONS

MODULES

DATA

IEXTERNAL
_HDD

F 11G 8

9/9

r 900

904

908 910

CLIENT DATA STORE(S) SERVER DATA STORE(S)

FIG. 9

	Abstract
	Description
	Claims
	Drawings

