wo 2015/040494 A2 I} J1] A0 0000 YR O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

26 March 2015 (26.03.2015)

WIPOIPCT

(10) International Publication Number

WO 2015/040494 A2

(51
eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification: Not classified (81) Designated States (uniess otherwise indicated, for every
. .. kind of national protection available). AE, AG, AL, AM,
International Application Number: AO. AT. AU. AZ. BA. BB. BG. BH. BN. BR. BW. BY
PCT/IB2014/002726 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
22 September 2014 (22.09.2014) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
- . KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
Filing Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
Priority Data: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
61/881,353 23 September 2013 (23.09.2013) Us) o
14/134,950 19 December 2013 (19.12.2013) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
Applicant: SPOTIFY AB [SE/SE]; Birger Jarlsgatan 61, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
113 56 Stockholm (SE). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Inventors: HOFFERT, Eric; 349 Montrose Avenue, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
. DK, FE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
South Orange, NJ 07079 (US). STRIGEUS, Ludvig;
> LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Bondegatan 12, 416 65 Gothenburg (SE). OMAN, An-
dreas; Hildebergsviigen 6, 117 62 Stockholm (SE) SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
’ gsvagen o, : GW, KM, ML, MR, NE, SN, TD, TG).
Agents: CRISMAN, Douglas, J. ct al.; Morgan Lewis & Published:

Bockius LLP, 2 Palo Alto Square, 3000 El Camino Real,

Suite 700, Palo Alto, CA 94306 (US).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: SYSTEM AND METHOD FOR EFFICIENTLY PROVIDING MEDIA AND ASSOCIATED METADATA

Chient-Server Environment

Cliant Device 110:1

Media
Application
104

WMedia
Cantert
Buffer(s}

105

Client Devize 1101

P2p
Network
132

/[

Y

=
N ™~

'?g?/ Raiwork{s) 115

R >

Network
Cache
(e.g., CND)
138

/'\«

s/’/"/

Redundant
Content Host
Server{s) 138

Berver System 120-1

Media Delivery
Module 122

Server System 120-n

Figure 1A

(57) Abstract: An electronic device with one or more processors,
memory and a display obtains a file header for a file corresponding to a
plurality of clusters, where the file header includes a cluster index. The
device receives a request to seek to a respective position within the file
and, in response to receiving the request: identifies a cluster of the plur-
ality of clusters that includes content that corresponds to the respective
position based on the cluster index; obtains a cluster header associated
with the cluster based on information retrieved from the cluster index,
where the cluster header includes a content index; and after obtaining the
cluster header, identifies respective content within the cluster corres-
ponding to the respective position based on the content index. The
device provides at least a portion of content corresponding to the file to
a presentation device for presentation to a uset, starting with the respect-
ive content.

WO 2015/040494 PCT/IB2014/002726

SYSTEM AND METHOD FOR EFFICIENTLY PROVIDING MEDIA
AND ASSOCIATED METADATA

TECHNICAL FIELD

[0001] The disclosed implementations herein relate generally to providing media

content and, more particularly, to searching or seeking within media content.

BACKGROUND

[0002] As computer technology has improved and become ubiquitous, users
increasingly are able to use computer based devices to consume media content. For example,
users can listen to audio content or watch video content on a variety of computer based
electronic devices. In addition, advances in network technology have increased the speed and
reliability with which information can be transmitted over computer networks. As such, it is
possible to stream media data over computer networks as needed rather than transmitting a
file in a physical media, such as a CD or DVD, or downloading the entire file before

consuming the media content.

SUMMARY

[0003] Despite the advances in networking speed and reliability, some solutions for
streaming, or otherwise accessing, media are sometimes cumbersome and involve excessive
loading times. This is especially true when a user attempts to seck to a position within media
content. In such circumstances, upon beginning playback or streaming media content, a user
cannot instantancously (or quickly) seck within the media content, and the user will likely

experience frequent breaks to load content that degrade the user’s experience.

[0004] Accordingly, there is a need for a method or a media content container to
reduce the upfront time needed to seck within media content to provide a more seamless user
experience. Such methods and systems may complement or replace conventional methods for
seeking within media content. Such methods and systems enhance the user experience as the

user is able to seek media content quickly and without excessive loading delays.

[0005] In accordance with some implementations, a method of seeking within media
content is disclosed herein. The method is performed at an electronic device (e.g., a client

device) with one or more processors and memory. The method includes: obtaining a file

WO 2015/040494 PCT/IB2014/002726

header for a file that corresponds to a plurality of clusters, where the file header includes a
cluster index that enables coarse searching (e.g., keyframe-based seeking for video content)
within the file; and receiving a request to seek to a respective position within the file. In
response to receiving the request, the method includes: identifying a cluster of the plurality of
clusters that includes content that corresponds to the respective position based on the cluster
index; obtaining a cluster header associated with the cluster based on information retrieved
from the cluster index, where the cluster header includes a content index that enables fine
searching (e.g., frame-based seeking for video content) within the cluster; obtaining cluster
data associated with the cluster; and after obtaining the cluster header, identifying respective
content within the cluster that corresponds to the respective position based on the content
index. After identifying the respective content, the method includes providing at least a
portion of content corresponding to the file to a presentation device for presentation to a user,

starting with the respective content.

[0006] In some implementations, respective file portions are compatible with a
respective file format when the file portions can be used to generate content in the respective
file format. In some implementations, the first file format is a file format used by devices
(e.g., portable multifunction devices such as smartphones and tablet computers) that have
limited processing resources and are not capable of generating file portions in a different
format or can generate file portions in the different format but suffer from a noticeable impact
on performance (e.g., reduction in battery life, overheating, lag or stutters in video/audio
playback, etc.) to do so; while the second file format is a file format used by devices with
greater processing resources (e.g., gaming consoles or personal computers such as desktop or
laptop computers) that are capable of generating file portions in a different format using the
second modification information without a noticeable impact on performance (e.g., reduction
in battery life, overheating, lags or stutters in video/audio playback, etc.). In some
implementations, the first client also converts portions of the content based on playback
requirements at the first client (e.g., audio content in AAC format is converted to MP3 format
or vice versa). In some implementations, in addition to generating file portions that are
compatible with the second file format, the second client also converts portions of the content
based on playback requirements at the second client (e.g., audio content in AAC format is

converted to MP3 format or vice versa).

[0007] In accordance with some implementations, a method of providing media

content is disclosed herein. The method is performed at a computer system (e.g., a server

2

WO 2015/040494 PCT/IB2014/002726

system) with one or more processors and memory. The method includes obtaining content-
access information that enables distribution of content to a plurality of clients having
different file format processing capabilities. The method also includes providing to a first
client, having first file format processing capabilities, first information that enables the first
client to access respective content in a first file format. The method further includes
providing to a second client, having second file format processing capabilities different from
the first file format processing capabilities, second information that enables the second client
to access respective content in a second file format different from the first file format, where:
the first information identifies a first set of file portions that can be combined to generate the
respective content in the first file format; the second information identifies a second set of file
portions that can be combined to generate the respective content in the second file format;
and the second set of file portions includes one or more shared file portions that are included

in the first set of file portions.

[0008] In some implementations, a computer system (e.g., an electronic device or
server system) includes one or more processors and memory storing one or more programs
for execution by the one or more processors, the one or more programs include instructions
for performing the operations of any of the methods described herein. In some
implementations, a non-transitory computer readable storage medium storing one or more
programs, the one or more programs comprising instructions, which, when executed by a
portable electronic device or computer system (e.g., an electronic device or server system)
with one or more processors perform, cause the device or system to perform the operations of

any of the methods described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The implementations disclosed herein are illustrated by way of example, and
not by way of limitation, in the figures of the accompanying drawings. Like reference

numerals refer to corresponding parts throughout the drawings.

[0010] Figure 1A is a block diagram illustrating a client-server environment in

accordance with some implementations.

[0011] Figure 1B is a block diagram illustrating a media delivery system in

accordance with some implementations.

[0012] Figure 2 is a block diagram illustrating a client device in accordance with

some implementations.

WO 2015/040494 PCT/IB2014/002726

[0013] Figure 3 is a block diagram illustrating a server system in accordance with

some implementations.

[0014] Figure 4A is a block diagram of a data structure for an example media file in

accordance with some implementations.

[0015] Figure 4B is a block diagram of an example data structure for a segment

source table in accordance with some implementations

[0016] Figure 4C is a block diagram of an example data structure for a plurality of

segments comprising a media file in accordance with some implementations.

[0017] Figure 5 is a flow diagram illustrating a process for seeking within media

content in accordance with some implementations.

[0018] Figure 6A is a block diagram of an example data structure for a plurality of

file portions in accordance with some implementations.

[0019] Figure 6B is a block diagram of an example data structure for a plurality of

file portions in accordance with some implementations.

[0020] Figure 6C is a block diagram of an example data structure enabling coarse
and/or fine searching within the information in Figure 6B in accordance with some

implementations.

[0021] Figures 7A-7F are flow diagrams illustrating a method of seeking within

media content in accordance with some implementations.

[0022] Figures 8 A-8D are flow diagrams illustrating a method of providing media

content in accordance with some implementations.

DETAILED DESCRIPTION

[0023] Below, Figure 1A provides an illustration of a client-server environment 100,
and Figure 1B provides an illustration of a media delivery system 150. Figures 2-3 provide
descriptions of a representative client device (sometimes also herein called a user device, an
electronic device, a client, or, more simply, a device) and a representative server system,
respectively, within client-server environment 100. Figures 4A-4C provide illustrations of
example data structures for seeking within media content. Figure 5 provides a flowchart of a
process for secking (sometimes also herein called searching) within media content (e.g., as

described in greater detail with reference to method 700 in Figures 7A-7F). Figures 6A-6C

4

WO 2015/040494 PCT/IB2014/002726

provide illustrations of example data structures for first information and second information
(c.g., as described in greater detail with reference to method 800 in Figures 8A-8D). Figures
7A-7F are flow diagrams of a method of seeking or searching within media content. Figures

8A-8D are flow diagrams of a method of providing media content.

[0024] Figure 1A is a block diagram of a client-server environment 100 in accordance
with some implementations. Client-server environment 100 includes one or more client
devices (110-1, . . ., 110-n) and one or more server systems (120-1, . . ., 120-n) that are
connected through one or more networks 115. Client-server environment 100 also, optionally,
includes a peer-to-peer (P2P) network 132 of clients (e.g., client applications and/or client
devices) that share files with each other (e.g., via network 115), a network cache 136 (e.g.,
including one or more content delivery network (CDN) servers), and one or more redundant

content host servers 138 (e.g., media servers) connected to one or more networks 115.

[0025] Client device 110-1 in Figure 1A is a representative electronic device
associated with a respective user. Server system 120-1 in Figure 1A is a representative server
associated with a media content provider with which users (and their electronic devices),
optionally, have accounts that enable the users to access media content from one or more of
server systems 120. One or more networks 115 can be any network such as the Internet, other
Wide Area Networks, Local Area Networks, Personal Area Networks, metropolitan area

networks, VPNs, local peer-to-peer, ad-hoc connections, and so on.

[0026] In some implementations, client device 110-1 is one of the group of: a
personal computer, a mobile electronic device, a wearable computing device, a laptop, a
tablet computer, a mobile phone, a digital media player, or any other electronic device able to
prepare media content for presentation, control presentation of media content, and/or present
media content. For example, server system 120-1 is operated and/or provided by a
subscription-based media streaming service to which a user, optionally, has an account
associated with account credentials that enable client device 110-1 to communicate with and
receive content from content sources such as server system 120-1, P2P network 132, network

cache 136 and/or redundant content host server(s) 138.

[0027] In some implementations, client device 110-1 includes a first electronic device
(e.g., a controlling electronic device) and a second electronic device (e.g., a controlled
electronic device), and both the first electronic device and the second electronic device are

associated with a common user account (or associated user accounts) provided by a content

WO 2015/040494 PCT/IB2014/002726

provider with which server system 120-1 is associated. The first electronic device (e.g., a
personal computer or a set top box) is optionally associated with account credentials and
receives content from server system 120-1, and the second electronic device is a media
presentation device (e.g., a set of speakers, a display, a television set, etc.) that receives the

content from the first electronic device and presents that content to the user.

[0028] In some implementations, client device 110-1 includes a media content
presentation and control application 104 (hereinafter “media application”). Media application
104 is able to control the presentation of media by client device 110-1. For example, media
application 104 enables a user to navigate media content items, select media content items for
playback on client device 110-1, select media streams for presentation, change currently

displayed media streams, create and edit playlists, and other such operations.

[0029] In some implementations, media content is stored by client device 110-1 (e.g.,
in a local cache such as a media content buffer 105 and/or in permanent storage at client
device 110-1). In some implementations, the media content is stored by a server system 120-1
(e.g., an origin server), which is located remotely from client device 110-1. In some
implementations, the media content is stored by one or more computing devices in media
delivery system 150, discussed in more detail below with reference of Figure 1B. Media
delivery system 150 includes peer-to-peer (P2P) network 132, network cache 136, and one or
more redundant content host servers 138. The media content is then sent (or streamed) from
one or more of the computing devices in media delivery system 150 to client device 110-1
over one or more networks 115. As used herein, media content is streamed from a source to a
destination by transmitting data corresponding to the media content from the source to the
destination over time where a computer at the destination can perform operations on the
media content before the media content has been completely received (e.g., a first portion of
the media content is received from the source and can be played before a second, later,

portion of the media content is received from the source).

[0030] In some implementations, the data sent from (or streamed from) server system
120-1 is stored/cached by client device 110-1 in a local cache such as one or more media
content buffers 105 in the memory of client device 110-1. Media content stored in media
content buffer(s) 105 is, typically, removed after the media content is presented by client
device 110-1, allowing new media content data to be stored in media content buffer 105. At
least some of the media content stored in media content buffer(s) 105 is, optionally, retained

for a predetermined amount of time after the content is presented by client device 110-1
6

WO 2015/040494 PCT/IB2014/002726

and/or until other predetermined conditions are satisfied. For example the content is stored
until the content has been presented by the client device, the content corresponding to a
media tile is stored until the media corresponding to the media tile has reached an end of the
content (e.g., an end of a movie/television show or sporting event), or the content
corresponding to a first media tile is stored until the client device switches to playing content
corresponding to a second media tile to enable the user to play the content corresponding to
the first media tile again without re-downloading the content (e.g., in response to activation
of a “play again” or “replay” affordance in a media player user interface). Media content
buffer 105 is configured to store media content from more than one media content stream.
Storing data in a buffer while it is being moved from one place to another (e.g., temporarily
storing compressed data received from a content source before it is processed by a codec
and/or temporarily storing decompressed data generated by a codec before it is rendered by a
renderer) is sometimes referred to as “buffering” data, and data stored in this way is
sometimes referred to a “buffered” data. “Buffered” data is typically, but optionally, removed
(or marked for deletion) from the buffer in which it was stored after it is transmitted from the

buffer to its destination (e.g., a codec or a renderer), rather than being stored for later use.

[0031] In some implementations, when client device 110-1 includes a first electronic
device and a second electronic device, media application 104 (e.g., on a set top box) is also
able to control media content presentation by the second electronic device (e.g., a set of
speakers or a television set or other display connected to the set top box), which is distinct
from the first electronic device. Thus, in some circumstances, the user is able to use media
application 104 to cause the first electronic device to act both as a media presentation device
as well as a remote control for other media presentation devices. This enables a user to
control media presentation on multiple electronic devices from within media application 104

and/or using a single user interface.

[0032] When a user wants to playback media on client device 110-1, the user is
enabled to interact with media application 104 to send a media control request to server
system 120-1. Server system 120-1 receives the media control request over one or more
networks 115. For example, the user is enabled to press a button on a touch screen of client
device 110-1 in order to send the media control request to server system 120-1. As described
below, a media control request is, for example, a request to begin presentation of media
content by client device 110-1. Though often used herein to describe requests to initiate or

begin presentation of media by client device 110-1, media control requests optionally also

7

WO 2015/040494 PCT/IB2014/002726

include requests and/or signals to control other aspects of the media that is being presented on
client device 110-1, including but not limited to commands to pause, skip, fast-forward,
rewind, seek, adjust volume, change the order of items in a playlist, add or remove items
from a playlist, adjust audio equalizer settings, change or set user settings or preferences,
provide information about the currently presented content, begin presentation of a media
stream, transition from a current media stream to another media stream, and the like. In some
implementations, media controls control what content is being delivered to client device 110-
1 (e.g., if the user pauses playback of the content, delivery of the content to client device 110-
1 is stopped). However, the delivery of content to client device 110-1 is, optionally, not
directly tied to user interactions with media controls. For example, while the content that is
delivered to client device 110-1 is selected based on a user request for particular content by
the user, the content optionally continues to be delivered to client device 110-1 even if the
user pauses playback of the content (e.g., so as to increase an amount of the content that is
buffered and reduce the likelihood of playback being interrupted to download additional
content). In some implementations, if user bandwidth or data usage is constrained (e.g., the
user is paying for data usage by quantity or has a limited quantity of data usage available),
client device 110-1 ceases to download content if the user has paused or stopped the content,

s0 as to conserve bandwidth and/or reduce data usage.

[0033] Client-server environment 100 in Figure 1A also includes a representative
server system 120-1 that includes a media delivery module 122, a media content database 124,
and a context database 126. Media content database 124 stores media content that is
configured to be provided to and presented by client device 110-1 and/or provided to
Network Cache 136, clients in a P2P Network 132, or other content sources. For example,
media content database 124 stores audio (e.g., music, audio books, etc.), video (e.g., movies,
television shows, etc.), images, or other media content that can be sent to (or streamed to)
other client devices. Media content database 124 optionally includes data in different formats
and file types to allow a variety of different devices and/or applications to receive content. In
some implementations, the data is stored in a single file format and is converted, transcribed,
transcoded, and/or transmuxed to the appropriate data type or format before or as it is
streamed to client device 110-1. In some implementations, when the data is stored in a single
file format, the data is converted, transcribed, transcoded, and/or transmuxed to the
appropriate data type at client device 110-1. In some implementations, for a set of two or

more frequently used file formats, the data is stored in multiple formats (e.g., a copy of the

WO 2015/040494 PCT/IB2014/002726

data for a particular file is stored in a first file format and a second file format) and the data
can be transcoded or transmuxed into a different, less frequently used, file format on an as-
needed basis as described in greater detail below. In some implementations, remuxing or

transmuxing content includes changing a media container in which the content is organized

while preserving some or all of the content within the media container.

[0034] In some implementations, server system 120-1 includes a media delivery
module 122 (e.g., a media streaming module). In some implementations, media delivery
module 122 receives a media control request from a respective client device (e.g., client
device 110-1). In response to receiving the media control request, media delivery module 122

sends (e.g., streams) media content to a client device as requested.

[0035] In some circumstances, the received media control request includes
information identifying the client device (e.g., an IP address) to which server system 120-1
should forward the media control request. For example, a user, optionally, has multiple client
devices that can present media received from server system 120-1, such as a mobile phone, a
computer system, a tablet computer, a television, a home stereo, etc. The identifying
information optionally includes a unique or semi-unique device identifier, such as an IP
address, a Media Access Control (MAC) address, a user-specified device name, an
International Mobile Equipment Identity (IMEI) number, or the like. Accordingly, the media
control request will identify that a request is intended for the home stereo, for example, so
that server system 120-1 can send the requested media and/or the media control request to the
home stereo. Client device 110-1 optionally provides server system 120-1 with an indication
of device capabilities of the device such as screen resolution, processing speed, video buffer
size/availability, available bandwidth, target/desired bandwidth, codec availability, and the
like, and the server system provides content to the electronic device in accordance with the

device capabilities.

[0036] In some implementations, server system 120-1 includes a context database 126.
Context database 126 stores data associated with the presentation of media content by client
device 110-1 that includes, among other things, the current position in a media content stream
that is being presented by client device 110-1, a playlist associated with the media content
stream, previously played content, skipped pieces of media content, and previously indicated
user preferences. For example, context database 126, optionally, includes information that a
content stream to client device 110-1 currently is presenting a song, at 1 minute and 23

seconds into the song, as well as all the songs played in the last hour and the next 20 songs in
9

WO 2015/040494 PCT/IB2014/002726

the playlist. In some circumstances, server system 120-1 transmits the context associated with
a media content stream to client device 110-1 that is presenting the content stream so that one
or more items of context information can be used by client device 110-1, such as for display
to the user. When the client device to which the media content is being streamed changes
(e.g., from client device 110-1 to client device 110-n), server system 120-1 transmits the
context associated with the active media content to the newly active client device (e.g., client

device 110-n).

[0037] Figure 1B is a block diagram of a media delivery system 150 in accordance
with some implementations. Media delivery system 150 in Figure 1B includes a plurality of
computing devices including one or more of a client device 110-1 with a local cache such as
a media content buffer 105, one or more server systems 120 (sometimes also herein called
origin servers) with a media delivery module 122 and a media content database 124 and/or
access to a media content database 124, a peer-to-peer (P2P) network 132 including one or
more peers (133-1, ..., 133-n), a network cache 136, and one or more redundant content
host servers 138. Media content is optionally stored at one or more of the computing devices
in media delivery system 150. For example, media content is initially stored in media content
database 124 of server system 120 and subsequently disseminated/distributed to one or more
peers 133 in P2P network 132, network cache 136, and/or one or more redundant content host

servers 138 for access by client device 110-1.

[0038] When client device 110-1 sends a media control request to server system 120-
1 for media content, server system 120-1 (e.g., media delivery module 122) responds to the
request by utilizing source information (e.g., source table 334 shown in Figure 3) to instruct
one or more of the computing devices in media delivery system 150 to send media content
associated with the media control request to client device 110-1 as requested or sends
relevant source information to client device 110-1 that enables client device 110-1 to request
the media content associated with the media control request from a source (e.g., P2P network
132, network cache 136, and/or redundant content host servers 138). Client device 110-1
optionally obtains media content associated with the media control request from a local cache
such as media content buffer 105. Client device 110-1 optionally utilizes locally stored source
information (e.g., source table 242 shown in Figure 2) to request or obtain media content
associated with the media control request from one or more computing devices in media
delivery system 150 (e.g., P2P network 132, network cache 136, or redundant content host

servers 138). In some implementations, the locally stored source information is updated by

10

WO 2015/040494 PCT/IB2014/002726

server system 120-1 on a predefined schedule. In some implementations, the locally stored
source information is updated by server system 120-1 in response to the media control

request.

[0039] Figure 2 is a block diagram illustrating a representative client device 110-1 in
accordance with some implementations. Client device 110-1, typically, includes one or more
processing units or cores (CPUs) 202, one or more network interfaces 210, memory 212, and
one or more communication buses 214 for interconnecting these components. Client device
110-1 includes a user interface 204. User interface 204 includes one or more output devices
206, including user interface elements that enable the presentation of media content to a user,
including via speakers or a visual display. User interface 204 also includes one or more input
devices 208, including user interface components that facilitate user input such as a keyboard,
a mouse, a voice-command input unit, a touch-sensitive display (sometimes also herein called
a touch screen display), a touch-sensitive input pad, a gesture capturing camera, or other
input buttons. In some implementations, client device 110-1 is a wireless device, such as a
mobile phone or a tablet computer. Furthermore, in some implementations, client device 110-
1 uses a microphone and voice recognition or a camera and gesture recognition to supplement
or replace the keyboard. Memory 212 includes high-speed random access memory, such as
DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and,
optionally, includes non-volatile memory, such as one or more magnetic disk storage devices,
optical disk storage devices, flash memory devices, or other non-volatile solid state storage
devices. Memory 212 optionally includes one or more storage devices remotely located from
one or more CPUs 202. Memory 212, or, alternatively, the non-volatile memory device(s)
within memory 212, includes a non-transitory computer readable storage medium. In some
implementations, memory 212, or the computer readable storage medium of memory 212,

stores the following programs, modules and data structures, or a subset or superset thereof:

e an operating system 216 that includes procedures for handling various basic system

services and for performing hardware dependent tasks;

e anetwork communication module 218 for connecting client device 110-1 to other
computing devices via one or more communication network interfaces 210 (wired or
wireless) connected to one or more communication networks such as the Internet,
other Wide Area Networks, Local Area Networks, Personal Area Networks,
metropolitan area networks, VPNS, peer-to-peer, content delivery networks, and/or

ad-hoc connections;
11

WO 2015/040494 PCT/IB2014/002726

a presentation module 220 (e.g., a media player) for enabling presentation of media
content at client device 110-1 (e.g., rendering media content) through output devices

206 associated with user interface 204 (e.g., a touch screen display, speakers, etc.);

one or more ¢lectronic device application modules 222 for enabling client device 110-
1 to perform various functionalities, one or more application modules 222 including

but not limited to one or more of:

o an input processing module 224 for receiving input from a user through input

device(s) 208 and interpreting the received input;

o amedia request generation module 226 for generating a request for media

content based on input received by input processing module 224;

o amedia reception module 228 for receiving media content (e.g., receiving a
stream of media content) from a computing device in media delivery system
150 (e.g., for receiving media content from a computing device that is remote

from client device 110-1);

o amedia application 104 for processing media content (e.g., media content
streams), for providing processed media content (e.g., at least one media
content stream) to presentation module 220 for transmittal to one or more
output devices 206, and for providing controls enabling a user to navigate,

select for playback, and control media content; the media application includes:

» amedia extraction module 230 for de-multiplexing (demuxing),
decrypting, decompressing, decoding, transcoding, and/or transcode-
multiplexing (transmuxing), or otherwise processing media content
(e.g., a stream) received from a computing device in media delivery

system 150; and

» asecking module 232 for utilizing and handling a respective file
header for media content obtained from a computing device in media

delivery system 150 so as to seek within the media content;

o asegment request module 234 for requesting a respective segment or portion
of media content from one or more computing devices in media delivery

system 150;

12

WO 2015/040494 PCT/IB2014/002726

o one or more ¢electronic device data modules 236 for storing data, including, but not

limited to one or more of:

o media content buffer(s) 105 (or another type of local cache) for storing (e.g., at
least temporarily) media content data from a computing device in media

delivery system 150 (e.g., server system 120-1 or a respective peer 133-1);

o media content database 238 for storing, locally on client device 110-1, media

content as part of the user’s personal media content library;

o auser profile database 240 for storing account information associated with a
user of client device 110-1 such as user media history, user preferences, user

interests, account credentials, and/or other such information; and

o a source table 242 for storing information indicating the location or address of
computing devices (e.g., sources) in the media delivery system 150 storing
respective segments or portions of media content and, optionally, information

indicating which computing devices store which portions of media content.

[0040] Each of the above identified elements may be stored in one or more of the
previously mentioned memory devices, and corresponds to a set of instructions for
performing a function described above. The above identified modules or programs (i.¢., sets
of instructions) need not be implemented as separate software programs, procedures, or
modules, and thus various subsets of these modules may be combined or otherwise re-
arranged in various implementations. Memory 212 optionally stores a subset or superset of
the modules and data structures identified above. Memory 212 optionally stores additional

modules and data structures not described above.

[0041] Figure 3 is a block diagram illustrating a representative server system 120-1
(e.g., an origin server) in accordance with some implementations. Server system 120-1
typically includes one or more processing units CPU(s) 302, one or more network interfaces
304, memory 306, and one or more communication buses 308 for interconnecting these
components. Memory 306 includes high-speed random access memory, such as DRAM,
SRAM, DDR RAM, or other random access solid state memory devices; and, optionally,
includes non-volatile memory, such as one or more magnetic disk storage devices, optical
disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
Memory 306 optionally includes one or more storage devices remotely located from CPU(s)
302. Memory 306, or, alternatively, the non-volatile memory device(s) within memory 306,

13

WO 2015/040494 PCT/IB2014/002726

includes a non-transitory computer readable storage medium. In some implementations,
memory 306 or the computer readable storage medium of memory 306 stores the following

programs, modules and data structures, or a subset or superset thereof:

e an operating system 310 that includes procedures for handling various basic system

services and for performing hardware dependent tasks;

e anectwork communication module 312 that is used for connecting server system 120-1
to other computing devices via one or more communication network interfaces 304
(wired or wireless) connected to one or more networks 115 such as the Internet, other
Wide Area Networks, Local Area Networks, Personal Area Networks, metropolitan
arca networks, VPN, peer-to-peer networks, content delivery networks, ad-hoc

connections, and so on;

e one or more server application modules 314 for enabling server system 120-1 to

perform various functionalities, including but not limited to one or more of:

o arequest processing module 316 for receiving a request from a client device
(e.g., client device 110-1) for media content (e.g., a request to stream media

content);

o amedia delivery module 122 for sending (e.g., streaming) media content to a
client device (e.g., client device 110-1) remote from sever system 120-1 in
response to the request from client device 110-1, media delivery module 122

including but not limited to:

= an encoding module 318 for encoding media content prior to sending
(e.g., streaming) the media content to client device 110-1 or to other

content sources for storage;

* an encryption module 320 for encrypting one or more portions of
media content prior to sending (e.g., streaming) the media content to

client device 110-1;

= a compression module 322 for compressing media content prior to

sending (e.g., streaming) the media content to client device 110-1;

» an omission module 324 for omitting information from media content
prior sending (e.g., streaming) the media content to client device 110-1

(e.g., by determining redundant information that can be omitted when

14

WO 2015/040494 PCT/IB2014/002726

compressing the media content while maintaining a quality of the

media content above a predefined quality level) ; and

» asegmentation module 325 for dividing a media file or media content
into one or more segments and distributing the one or more segments
to one or more computing devices (e.g., sources) in media delivery
system 150 (e.g., distributing segments of the file to different peers in a
P2P network so as to enable different segments of the file to be
received from different peers and used to generate the media content at

a receiving client); and

o a context tracking module 326 for tracking and storing the context of a media
content stream, optionally, including storing, among other data, one or more of
the current playback position in a media content stream that is currently being
presented by a client device (e.g., client device 110-1), the position in a
current playlist, the play history of a user, the preferences of a user, previously
skipped media content, whether media content items were “liked” or
“disliked” (e.g., via “starred,” “thumbs-up,” and/or “thumbs-down”

indications), and the like;

o one or more server data modules 330 for storing data related to server system 120-1,

including but not limited to:

o amedia content database 124 for storing media content and metadata
describing the media content and enabling users to search through the media

content to identify media content;

o a context database 126 for storing information associated with one or more
media content streams, where context information, optionally, includes one or
more of the current playback position in a media content stream, metadata
relating to the media, a position in a playlist, play history of a user, user

preferences, skipped media, and user settings;

o auser profile database 332 for storing account information for a plurality of
users, where the account information for a respective user, optionally, includes
a user media content request/playback history, a list of electronic devices
associated with the respective user, user preferences, user interests, and other
such information; and

15

WO 2015/040494 PCT/IB2014/002726

o a source table 334 for storing information indicating the location or address of
sources in media delivery system 150 storing respective segments or portions
of media content and, optionally, information indicating which computing

devices store which portions of media content.

[0042] Each of the above identified elements may be stored in one or more of the
previously mentioned memory devices, and corresponds to a set of instructions for
performing a function described above. The above identified modules or programs (i.e., sets
of instructions) need not be implemented as separate software programs, procedures, or
modules, and thus various subsets of these modules may be combined or otherwise re-
arranged in various implementations. Memory 306 optionally stores a subset or superset of
the modules and data structures identified above. Memory 306 optionally stores additional

modules and data structures not described above.

[0043] Although Figure 3 shows server system 120-1, Figure 3 is intended more as
functional description of the various features that may be present in a set of servers than as a
structural schematic of the implementations described herein. In practice, and as recognized
by those of ordinary skill in the art, items shown separately could be combined and some
items could be separated. For example, some items shown separately in Figure 3 could be
implemented on single servers and single items could be implemented by one or more servers.
The actual number of servers used to implement server system 120-1 and how features are
allocated among them will vary from one implementation to another and, optionally, depends
in part on the amount of data traffic that the system must handle during peak usage periods as

well as during average usage periods.

[0044] Figure 4A is a block diagram of a data structure for an example media file 400
in accordance with some implementations. In some implementations, media file 400 includes
media content such as audio (e.g., music, audio books, etc.), video (e.g., movies, television
shows, etc.), images, or other media content. In some implementations, media file 400
includes a file header 402 and a plurality of clusters (e.g., cluster 1, cluster 2, . . ., cluster N).
In some implementations, file header 402 includes one or more of a global header 404, a
segment index 416, and a cluster index 422. In some implementations, a respective cluster
(e.g., cluster N) of the plurality of clusters includes a cluster header 428 and cluster data 438.
In some implementations, when media file 400 includes video content, media file 400 is
divided by keyframes (e.g., frames that are self-contained and do not rely on content of other

frames) and cluster data for a respective cluster includes a group of pictures (e.g., frames that
16

WO 2015/040494 PCT/IB2014/002726

are defined relative to a respective keyframe) starting with a respective keyframe. Cluster
data for a respective cluster optionally includes keyframe data and one or more portions of

frame data that are deltas relative to the keyframe.

[0045] In some implementations, global header 404 includes content description
information or attributes corresponding to the media content in media file 400 that describe
characteristics of the media file as a whole. In some embodiments, global header 404 includes
content description information indicating a header version 406, a resolution 408 for the
media content in media file 400, codec information 410 for decoding the media content in
media file 400 (e.g., codec information 410 indicates that video content in media file 410 is
formatted as H.264 and audio content in media file 400 is formatted as AAC), channel
information 412 for the media content in media file 400 (e.g., a number and identify of
channels of content in the media file, such as audio, video, and/or text channels), and a codec
settings table 414 (e.g., with information specifying codec settings for different bitrates). For
example, when media file 400 includes video content, the content description information in
global header 404 includes one or more of: width and height of video frames, frame rate, and
profile (e.g., an H.264 profile that specifies a type of compression to be used and provides a
tradeoff between an amount of compression of the content and an amount of computational
resources used to decompress the compressed content) and level (e.g., an H.264 level that
constrains the bitrate and macroblocks in situation where devices have bitrate constraints). In
another example, when media file 400 includes audio content, the content description
information in global header 404 includes one or more of: a sample rate of the audio content,
a number of channels of audio content, a number of bits per audio sample, a time scale, a

time delay, a bitrate, audio codec, video codec, and a header compression indicator.

[0046] In some implementations, global header 404 also indicates a protocol used for
encoding or compressing the information stored in media file 400. More specifically, global
header 404 optionally indicates an offset or timestamp encoding protocol used to generate
and interpret offset information 418 in segment index 416, cluster timestamp information 424
in cluster index 422, offset information 426 in cluster index 422, offset information 432 in
cluster header 428, and timestamp information 434 in cluster header 428. For example, global
header 404 indicates that offset information 426 in cluster index 422 is delta encoded so that
offset information 426 stores a number of bytes indicating a difference between a size of a

previous cluster and a size of the respective cluster. In another example, global header 404

17

WO 2015/040494 PCT/IB2014/002726

indicates that that offset information 426 in cluster index 422 stores a size in bytes of a

respective cluster.

[0047] In some implementations, media file 400 is divided into a plurality of
segments where each segment includes a plurality of clusters. Typically, the first segment of
the plurality of segments comprising media file 400 includes file header 402. In some
implementations, each segment comprising media file 400 includes a same number of
clusters. In some implementations, the segments comprising media file 400 contain a variable
number of clusters. In some implementations, each segment is cluster aligned (e.g., each
segment contains an integer number of clusters and the breaks between segments are selected
so as to coincide with breaks between clusters). In some implementations, one or more
segments are not cluster aligned (e.g., one or more segments include a non-integer number of
clusters). In some implementations, the plurality of segments comprising media file 400 are
stored by one or more of the computing devices in media delivery system 150. For example, a
first segment is stored at peer 133-1 and peer 133-N in peer-to-peer (P2P) network 132, and a
second segment is stored in network cache 136, so that a client can request the segment from
different sources depending on availability of the segment at the different sources, network
congestion, and other considerations. The segmentation of a respective media file is discussed

in more detail below with reference to Figure 4C.

[0048] In some implementations, segment index 416 includes a plurality of entries
that correlate offset information 418 (e.g., information that can be used to determine a
location of a particular segment in media file 400) with a segment identifier 420 for each
segment of media file 400. For example, segment index 416 enables client device 110-1 to
identify a unique segment identifier 420 for a respective segment based on offset information
418 (e.g., client device 110-1 uses segment index 416 to identify a segment identifier that
corresponds to a point halfway through media file 400). In some implementations, segment
identifier 420 is a unique identifier assigned to each segment. In some implementations,
respective segment identifier 420 for a respective segment is (or includes) a hash (e.g., a
SHA-1 hash) of content of the respective segment. In some implementations, media file 400
is segmented and file header 402 includes segment index 416 when the media content is on-
demand media content. In some implementations, a segment index is not included when the
media content is live content that is being provided in real time (e.g., content that is being
provided to client with little or no delay from the time when the content is being recorded,

such as with live news or live sports events).

18

WO 2015/040494 PCT/IB2014/002726

[0049] In some implementations, offset information 418 is any information that
enables client device 110-1 (e.g., seeking module 232) to determine or extrapolate a byte
offset indicating a number of bytes from the start of media file 400 (or some other specified
point within media file 400) to the start of a segment (or some other specified point within the
segment) or a time offset indicating a number of time units (e.g., milliseconds, seconds,
minutes, etc.) from the start of media file 400 (or some other specified point within media file
400) to the start of the segment (or some other specified point within the segment). For
example, offset information 418 optionally includes a size in bytes of the segment, a length in
units of time of the segment, a delta in bytes indicating the size difference between a previous
segment and the respective segment, a time delta indicating the time difference between the
length of the previous segment and the length of the respective segment, an offset in bytes
from the start of media file 400 (or some other specified point within media file 400) to the
start of the segment (or some other specified point within the segment), and/or an offset in
units of time from the start of media file 400 (or some other specified point within media file
400) to the start of the segment (or some other specified point within the segment). Storing
deltas between offsets and timestamps of adjacent frames and clusters can provide valuable
compression of data in media file 400 that reduces bandwidth needed to transmit the media
file and storage space needed to store the media file, as described in greater detail below with

reference to method 700.

[0050] In some implementations, cluster index 422 includes a plurality of entries that
correlate cluster timestamp information 424 with offset information 426 for each cluster in
media file 400. Cluster index 422 enables coarse searching within media file 400 (e.g.,
keyframe- or cluster-based secking). For example, cluster index 422 enables client device
110-1 to correlate cluster timestamp information 424 (e.g., a starting time of a respective
cluster or some other specified point within the respective cluster) with offset information
426 indicating a byte offset from the start of media file 400 (or some other specified point
within media file 400) to the start the respective cluster (or some other specified point within
the respective cluster) so that client device 110-1 (e.g., media extraction module 230) is
enabled to identify a respective cluster associated with a requested timestamp and, optionally,

identify a respective segment that includes the respective cluster.

[0051] In some implementations, cluster timestamp information 424 can be any
information that enables client device 110-1 (e.g., seeking module 232) to determine or

extrapolate a time of the start of a respective cluster (or some other specified point within the

19

WO 2015/040494 PCT/IB2014/002726

respective cluster) relative to the start of media file 400 (or some other specified point within
media file 400). For example, cluster timestamp information 424 optionally includes an
absolute time of the start of a respective cluster (or some other specified point within the
respective cluster) relative to the start of media file 400 (or some other specified point within
media file 400), a delta in units of time between the start time of the previous cluster (or some
other specified point within the previous cluster) and the start time of the respective cluster
(or some other specified point within the respective cluster), and/or other delta encoding

protocols (e.g., as described in greater detail below with reference to method 700).

[0052] In some implementations, offset information 426 can be any information that
enables client device 110-1 (e.g., seeking module 232) to determine or extrapolate a byte
offset from the start of the media file (or some other specified point within media file 400) to
the start of a respective cluster (or some other specified point within the respective cluster).
For example, offset information 426 optionally includes a size in bytes of the respective
cluster, a delta in bytes indicating the size difference between a previous cluster and the
respective cluster, and/or an offset in bytes from the start of the media file (or some other
specified point within media file 400) to the start of the respective cluster (or some other

specified point within the respective cluster).

[0053] For example, a user of client device 110-1 performs a secking operation to
seek to a respective timestamp within media file 400. In response to receiving the requested
timestamp, client device 110-1 (e.g., seeking module 232) determines a cluster corresponding
to the requested timestamp based on cluster index 422 by correlating the requested timestamp

with a byte offset associated with the cluster.

[0054] In some implementations, respective cluster header 428-N (sometimes also
herein called a content index) corresponding to cluster N includes a cluster size 430 for
cluster N (e.g., a size in bytes) and a plurality of entries that correlate offset information 432
with timestamp information 434 for each frame in cluster N. Cluster header 428 enables fine
searching within media file 400 (e.g., frame-based secking). The first pairing 432-1, 434-1 in
cluster header 428-N corresponds to a keyframe or first frame in cluster N, and the remaining

pairings (e.g., 432-n, 434-n) in cluster header 428 correspond to the other frames in cluster N.

[0055] In some implementations, offset information 432 can be any information that
enables client device 110-1 (e.g., secking module 232) to determine or extrapolate a byte

offset from the start of media file 400 (or some other specified point within media file 400) to

20

WO 2015/040494 PCT/IB2014/002726

the start of a frame (or some other specified point within the frame). For example, offset
information 432 optionally includes a size in bytes of the frame, a number of bytes from the
start of the cluster (or some other specified point within the cluster) to the start of the frame
(or some other specified point within the frame), a delta in bytes indicating the size difference
between the previous frame and the respective frame, and/or an offset in bytes from the start
of the media file (or some other specified point within media file 400) to the start of the frame
(or some other specified point within the frame). Storing deltas between offsets and
timestamps of adjacent frames and clusters can provide valuable compression of data in
media file 400 that reduces bandwidth needed to transmit the media file and storage space
needed to store the media file, as described in greater detail below with reference to method

700.

[0056] In some implementations, timestamp information 434 can be any information
that enables client device 110-1 (e.g., media extraction module 230) to determine or
extrapolate a time of the start of a respective frame (or some other specified point within the
respective frame) relative to the start of media file 400 (or some other specified point within
media file 400). For example, timestamp information 434 optionally includes an absolute
time of the start of a respective frame (or some other specified point within the respective
frame) relative to the start of media file 400 (or some other specified point within media file
400), a delta in units of time between the start time of the cluster (or some other specified
point within the cluster) and the start time of the respective frame (or some other specified
point within the respective frame), a delta in units of time between the start time of the
previous frame in the cluster (or some other specified point within the previous frame) and
the start time of the respective frame (or some other specified point within the respective
frame), and/or other delta encoding protocols (e.g., as described in greater detail below with
reference to method 700). In some implementations, the timestamp info for the first frame in
a cluster is (or corresponds to) cluster timestamp information for the cluster (e.g., the frame

timestamp for the first frame in a cluster is the same as the cluster timestamp for the cluster).

[0057] In some implementations, cluster data 438-N corresponding to cluster N
includes keyframe data 440-1 for the first frame (e.g., the keyframe) in cluster N and one or
more portions of frame data 440-2, . . ., 440-n for the other frames in cluster N. In some
implementations, the portions of frame data 440 are delta encoded (e.g., as described in
greater detail below with reference to method 700). For example, frame data 440-2

corresponding to a second frame of cluster data 438-N optionally includes the delta or

21

WO 2015/040494 PCT/IB2014/002726

difference between keyframe data 440-1 corresponding to the prior frame in the cluster which

is, in this example, the keyframe and the second frame.

[0058] Figure 4B is a block diagram of an example data structure for a segment
source table 440 (sometimes also herein called source information) in accordance with some
implementations. In some implementations, an entry of segment source table 440 correlates a
unique segment identifier associated with a respective segment with one or more computing
devices (or sources) in media delivery system 150. In Figure 4B, segment source table 440
indicates that source “S1” has stored segments related to segment identifiers 420-1 and 420-2.
Furthermore, in Figure 4B, segment source table 440 indicates that a respective segment

related to segment identifier 420-1 is stored at a plurality of sources including S1, S5, S9, S22.

[0059] In some implementations, segment source table 440 is stored at server system
120-1 (e.g., source table 334), locally at client device 110-1 (e.g., source table 242), or at both
server system 120-1 and client device 110-1. In some implementations, when client device
110-1 does not store source table 242, after client device 110-1 (e.g., seeking module 232)
identifies a segment identifier 420 for a respective segment of media file 400 based on
segment index 416, segment request module 234 sends a request to server system 120-1 for
the respective segment. In response to receiving the request, server system 120-1 (e.g.,
request processing module 316) determines which computing devices in media delivery
system 150 have stored the requested respective segment based on source table 334, and, in
turn, instructs one or more of the computing devices in media delivery system 150 having
stored the requested respective segment to deliver the requested respective segment to client
device 110-1 and/or provides the source information to client device 110-1 to enable client

device 110-1 to request the respective segment from the source.

[0060] In some implementations, when client device 110-1 stores source table 242,
after client device 110-1 (e.g., seeking module 232) identifies a segment identifier for a
respective segment of media file 400 based on segment index 416 in response to a playback
or seeking request from the user of client device 110-1, segment request module 234
determines which computing devices in media delivery system 150 have stored the requested
respective segment based on locally stored source table 242, and, in turn, instructs one or
more of the computing devices in media delivery system 150 storing the requested respective
segment to deliver the requested respective segment to client device 110-1. As shown in
Figure 4B, in some circumstances for each of a plurality of respective segments of a media

file, the respective segment is stored concurrently at multiple sources (e.g., the respective
22

WO 2015/040494 PCT/IB2014/002726

segment is available from multiple peers in a P2P network and/or is available from a media

server in a content delivery network).

[0061] Figure 4C is a block diagram of an example data structure for a plurality of
segments comprising media file 400 in accordance with some implementations. For example,
Figure 4C illustrates a plurality of segments 1, 2, 3 for media file 400. In Figure 4C, segment

1 includes file header 402 and a plurality of clusters C1, C2, C3, C4, C5, C6, C7, C8. In
Figure 4C, segment 2 includes a plurality of clusters C9, C10, C11, C12, C13, C14, C15, C16,
and segment 3 includes a plurality of clusters C17, C18, C19, C20, C21, C22, C23, C24. For
example, in Figure 4C, each of segments 1, 2, 3 includes an equal number of clusters.
However, in some implementations, the plurality of segments comprising a media file include
an unequal number of clusters. In some implementations, segmentation module 325 at server

system 120-1 is configured to divide a media file into one or more segments.

[0062] Figure 5 is a flow diagram illustrating a process 500 for secking within media
content in accordance with some implementations. For example, a user has selected media
file 400 for playback via media application 104 and has received/stored file header 402
corresponding to media file 400. In some implementations, file header 402 includes cluster
index 422 which enables coarse searching (e.g., keyframe-based seeking) within media file
400. In some implementations, where media file 400 is divided into a plurality of segments
(e.g., for on-demand media content), file header 402 also includes segment index 422 which
enables client device 110-1 to obtain segments from one or more computing devices in media

delivery system 150.

[0063] At step 502, client device 110-1 (e.g., input processing module 224) receives
an input from the user of client device 110-1 to seek to a respective timestamp or location
within the media content via media controls (e.g., play, pause, fast-forward, rewind, seek,
etc.) in media application 104 displayed on the display of client device 110-1. For example,
client device 110-1 detects on a touch screen display associated with client device 110-1 a
gesture in the user interface for media application 104 that corresponds to dragging a slider or
time-bar (or otherwise interacts with a user interface object) to seck to a specified timestamp

or a particular frame within a video file.

[0064] At step 504, client device 110-1 (e.g., seeking module 232) correlates the
requested timestamp with respective cluster timestamp information 424 by determining

which cluster timestamp information 424 most closely matches (or is within the range of) the

23

WO 2015/040494 PCT/IB2014/002726

requested timestamp. Seeking module 232 then utilizes cluster index 422 within file header
402 to match the respective cluster timestamp information 424 with respective offset
information 426. Secking module 232 then determines a byte offset for a respective cluster
indicating a number of bytes from the start of media file 400 to the requested timestamp
based on respective offset information 426. In some implementations, global header 404
within file header 402 for the media file indicates a type of offset encoding used by the media
file so that seeking module 232 is enabled to determine the byte offset from respective offset

information 426.

[0065] At step 506, client device 110-1 (e.g., seeking module 232) determines a
segment identifier associated with a respective segment that includes the respective cluster
based on the byte offset determined for the respective cluster in step 504. For example,
secking module 232 correlates the byte offset for the respective cluster with offset
information 418 for the respective segment and, then, matches offset information 418 with a
segment identifier 420 (e.g., segment ID 420-1) for the respective segment based on segment

index 416.

[0066] At step 508, client device 110-1 (e.g., segment request module 234)
determines which computing devices in media delivery system 150 have stored the respective
segment based on source information (e.g., locally stored source table 242 corresponding to
segment source table 440 in Figure 4B or a remote source information such as source table
334 at server system 120-1). For example, segment request module 234 correlates the
segment identifier (e.g., segment ID 420-1) determined in step 506 with one or more
computing devices (e.g., sources S1, S5, S9, S22) that have stored the respective segment
corresponding to the segment identifier based on segment source table 440. Segment request
module 234 then sends a request, including the segment identifier (e.g., segment ID 420-1)
and the address of client device 110-1, to one or more of the identified sources (e.g., source
S1) to obtain the respective segment. In some implementations, if a request to one source
fails (e.g., because the source fails to respond to the request or responds by indicating that the
source does not have the respective segment) client device 110-1 requests the respective
segment from a different source. In some implementations, if multiple requests are sent to
multiple sources at the same time, client device 110-1 optionally cancels any outstanding

requests once client 110-1 has received the respective segment.

[0067] At step 510, a computing device within media delivery system 150 (e.g.,

source S1 corresponding to one of the one or more redundant content host servers 138)
24

WO 2015/040494 PCT/IB2014/002726

receives the request from segment request module 234 with a request processor at source S1.
The request processor then forwards the segment identifier and address of client device 110-1
to a response generator at source S1. At step 512, the response generator at source S1 sends
the respective segment (including a plurality of clusters) associated with the segment
identifier (e.g., segment ID 420-1) to the destination address specified in the request sent by
segment request module 234 (e.g., the source sends the segment back to the client that
requested the segment) and, optionally, sends instructions to one or more other sources
indicating that the request has been fulfilled (e.g., so that the other sources can cancel

processing of the request if they have not yet responded).

[0068] At step 514, client device 110-1 receives, from source S1, the respective
segment corresponding to the requested timestamp. Client device 110-1 (e.g., segment
request module 234) then determines a byte offset for a respective cluster within the received
respective segment based on cluster index 422 (or retrieves the byte offset that was
previously determined in step 504). Seeking module 232 then determines respective cluster
timestamp information 424 that most closely matches (or is within the range of) the requested
timestamp. Seeking module 232 then utilizes cluster index 422 within file header 402 to
correlate the respective cluster timestamp information 424 with respective offset information
426. Seeking module 232 then determines a byte offset for the respective cluster indicating a
number of bytes from the start of media file 400 to the start of the respective cluster (e.g., to a

keyframe for the respective cluster) based on respective offset information 426.

[0069] At step 516, client device 110-1 (e.g., seeking module 232) determines offset
information 432 associated with a respective frame in the respective cluster based on the byte
offset determined for the respective cluster in step 514. Seeking module 232 then matches
timestamp information 434 to the determined offset information 432 based on cluster header
428 and, also, determines a byte offset for the respective frame based on the determined

offset information 432.

[0070] At step 518, client device 110-1 (e.g., seeking module 232) identifies based on
the byte offset for the respective frame determined in step 516 frame data 440 within cluster
data 438 for the respective frame that corresponds to the requested timestamp. The frame data
440 is, optionally, combined with keyframe data for a corresponding keyframe to generate a
final frame that corresponds to the requested timestamp. Media application 104 then sends
frame data 440 for the respective frame and the requested timestamp to presentation module

220 for presentation on client device 110-1 (e.g., on a touch screen display or other output
25

WO 2015/040494 PCT/IB2014/002726

device(s) 206). At step 520, the respective frame data is displayed (e.g., presentation module
220 at client device 110-1 receives the respective frame data and renders the respective frame
data for display on a display associated with client device 110-1 or the frame data is sent to

an external display to be rendered and displayed).

[0071] Figures 6A-6C are block diagrams illustrating example data structures that
enable portions of media files to be reused between different media formats (e.g., a first
media format that uses first information shown in Figure 6A and a second media format that
uses second information shown in Figures 6B-6C). Figure 6A is a block diagram of an
example data structure for a plurality of file portions comprising first information 600 in
accordance with some implementations. First information 600 corresponds to a media file
having a first file format with first file format processing capabilities. First information 600
comprises a plurality of segments including segments 1, 2, 3. In Figure 6A, segment 1
includes a plurality of file portions P1, P2, P3, P4, P5, P6, P7, P8. In Figure 6A, segment 2
includes a plurality of file portions P9, P10, P11, P12, P13, P14, P15, P16, and segment 3
includes a plurality of file portions P17, P18, P19, P20, P21, P22, P23, P24, P25. The file
portions include the media content data (e.g., frame data for video content or sample data for
audio content) for the media file. In some implementations, the file portions comprising first
information 600 are a first set of file portions. In some implementations, first modification
information 602 (e.g., an HTTP Live Streaming (HLS) playlist) associated with first
information 600 enables a respective client device to generate file portions that are
compatible with a second file format that is different from the first file format (e.g., a file
format described below with reference to Figure 6B). In some implementations, first
modification information 602 is stored separately from the first set of file portions comprising

first information 600.

[0072] Figure 6B is a block diagram of an example data structure for a plurality of
file portions comprising second information 650 in accordance with some implementations.
Second information 650 corresponds to a media file having a second file format (different
from the first file format) with second file format processing capabilities (different from the
first file format processing capabilities). Second information 650 comprises a plurality of
segments including segments 1, 2, 3. In Figure 6B, segment 1 includes file header 652 and a
plurality of file portions P1, P2, P3, P4, P5, P6, P7, P8. In Figure 6B, segment 2 includes a
plurality of file portions P9, P10, P11, P12, P13, P14, P15, P16, and segment 3 includes a
plurality of file portions P17, P18, P19, P20, P21, P22, P23, P24, P25. The file portions

26

WO 2015/040494 PCT/IB2014/002726

include media content data (e.g., frame data for video content) for the media file, the file
portions comprising second information 650 are a second set of file portions that include one
or more file portions that are different from the first set of file portions. In some
implementations, the file portions in first information 600 and second information 650 are the
same, or at least one of the file portions are shared. For example, in Figures 6A and 6B, while
segment 1 of first information 600 is different from segment 1 of second information 650,
segments 2 and 3 of first information 600 are the same as segments 2 and 3 of second
information 650. In some implementations, the file portions in the second set of file portions

are synonymous with the clusters discussed above with reference to Figures 4A and 4C.

[0073] In some implementations, second information 650 includes file header 652
with second modification information that enables a respective client device to generate file
portions that are compatible with the second file format, as described in greater detail below

with reference to Figure 6C.

[0074] Figure 6C is a block diagram of an example data structure enabling coarse
and/or fine searching within second information 650 in accordance with some
implementations. In some implementations, second information 650 includes file header 652
with second modification information that enables a respective client device to generate file
portions that are compatible with the second file format. In some implementations, file header
652 includes one or more of global header 404, segment index 416, and cluster index 422
(e.g., for use as described in greater detail in Figures 4A-4C and 5). In some implementations,
cluster index 422 enables coarse searching (e.g., keyframe-based seeking) within second
information 650. In some implementations, when the file portions in the second set of file
portions are clusters, file header 652 also includes cluster header request information 656
(e.g., a unique identifier or location information) that enables the client to obtain a metadata
file 654 that includes the cluster header information that enables fine searching (e.g., frame-
based seeking) within second information 650. In some implementations, metadata file 654
includes a plurality of cluster headers 428 (e.g., for use as described in greater detail in
Figures 4A-4C and 5) for the file portions (or clusters) in second information 650. In some
implementations, metadata file 654 is stored separately from the second set of file portions
comprising second information 650. Storing metadata file 654 separately from the segments
enables the segments to be used for both a file format that uses the cluster headers (e.g., to
enable fine searching) and a different file format that does not use the cluster headers. In

some implementations, when the metadata file 654 is stored separately, the cluster header

27

WO 2015/040494 PCT/IB2014/002726

information does not need to be included in the segments, and thus the segments do not have
additional information that would be unnecessary and potentially render the segments
unusable to a device that expects to receive segments that do not include the cluster header

information.

[0075] Figures 7A-7F are flow diagrams illustrating a method 700 of secking within
media content in accordance with some implementations. In some implementations, method
700 is performed at an electronic device (e.g., client device 110-1, Figures 1A and 2) with
one or more processors, memory, and a display. In some implementations, the display is a
touch screen display and the touch-sensitive surface is on the display. In some
implementations, the display is separate from the touch-sensitive surface. Some operations in
method 700 are, optionally, combined and/or the order of some operations is, optionally,

changed.

[0076] The electronic device obtains (702) a file header for a file that corresponds to a
plurality of clusters, where the file header includes a cluster index that enables coarse
searching within the file (e.g., keyframe-based searching or seeking). In some
implementations, the file header (e.g., file header 402, Figure 4A) is received along with a
first cluster of the file (e.g., the file header is received as part of a file segment that includes
both the first cluster and the file header). In some implementations, the file header is received

before receiving a first cluster of the file.

[0077] In some implementations, the electronic device obtains (704) the file header in
response to a request for content associated with the file (e.g., a request to begin playing
content associated with the file). For example, in response to a request from the user of client
device 110-1 to playback media content via media controls in media application 104
displayed on the display of client device 110-1, client device 110-1 obtains a file header (e.g.,
file header 402, Figure 4A) associated with the media content. In some implementations,

client device 110-1 obtains the file header from server system 120-1 or from a local cache.

[0078] In some implementations, the cluster index does not include (706) information
that enables fine searching within the file. For example, the cluster index (e.g., cluster index
422, Figure 4A) only enables coarse searching (e.g., cluster-based or keyframe-based
seeking) within the media content, and the cluster header (e.g., cluster header 428-N, Figure

4A) enables fine searching (e.g., frame-based secking) within the media content.

28

WO 2015/040494 PCT/IB2014/002726

[0079] In some implementations, the file header and/or the file omit (708) respective
omitted information that is necessary for extracting content (e.g., decoding) from the file. In
some implementations, if client device 110-1 obtaining the file and server system 120-1
transmitting/generating the file knows that a particular codec or file format will always be
used (e.g., based on a standardized codec that is used by the server system and the client
device or based on an out of band communication between the server system and the client
device agreeing to use a particular codec), then server system 120-1 transmitting/generating
the file, optionally, omits codec or file format information from global header 404 of the file,
and client device 110-1 obtaining the file can assume that the codec or file format has been
used without reading the information from global header 404 in file header 402. Similarly,
information that can be calculated from information included in the file is, optionally, omitted
from the file. For example, if a total size of the file, or a portion thereof, is needed but can be
calculated by adding together sizes of a plurality of components of the file, or the portion
thereof, then the total size of the file, or the portion thereof, is omitted. For example,
omission module 324 at server system 120-1 is configured to omit information from the file

header as described above so as to reduce the size of the file.

[0080] In some implementations, the respective omitted information is removed (710)
from the file header and/or the file before the file header is obtained by the electronic device
(e.g., the respective omitted information was removed prior to storage and/or transmission of
the file from server system 120-1 to client device 110-1); and prior to providing the portion of
content corresponding to the file to the presentation device (e.g., a display or touch screen
display) for presentation to the user, the electronic device: generates (e.g., re-determines) the
respective information (e.g., calculating a size of content) based on the file header and/or the
file and adds the omitted information into the file header and/or file. Sometimes, this means
that client device 110-1 (e.g., media extraction module 230) replaces data that was removed
from an externally defined data structure by server system 120-1. For instance, the first few
bytes of a properly formatted H.264 file indicate the length of what follows. In some
implementations, the file container measures the whole size of everything, so, server system
120-1 can remove the redundant bytes from the H.264 file header for file storage and
transmission, and media extraction module 230 at client device 110-1 can replace them
before handing the H.264 file header to presentation module 220 or player software that
expects the valid format. For example, omission module 324 at server system 120-1 is

configured to omit information from the file header and/or the file as described above.

29

WO 2015/040494 PCT/IB2014/002726

[0081] In some implementations, the respective omitted information is removed (712)
from the file header and/or the file in accordance with a determination that the respective
omitted information is duplicative of information that is included elsewhere in the file header
and/or the file. For example, if server system 120-1 determines that a piece of data is in the
file twice or more, server system 120-1 removes the redundant instances to have the piece of
data appear only once in the file and/or file header. For example, omission module 324 at
server system 120-1 is configured to omit information from the file header and/or the file as

described above.

[0082] In some implementations, the respective omitted information is removed (714)
from the file header and/or the file in accordance with a determination that the respective
omitted information describes aspects of the content corresponding to the file that are already
known to the electronic device (e.g., even if the respective omitted information is not
duplicative of information that is included elsewhere in the file header and/or the file). For
example, if a property of media content is defined out of band (e.g., the property is defined
via communications that occur outside of the transmission of the portions of the media file to
client device 110-1), then the individual media files do not need to specify that property for
the corresponding media content separately . In this example, server system 120-1 can omit
the information that the media uses the H.264 codec from the file header and file because
client device 110-1 knows that any media content received from a computing device in media
delivery system 150 employs the H.264 codec. For example, omission module 324 at server
system 120-1 is configured to omit information from the file header and/or as described

above.

[0083] In some implementations, the file header is compressed and prior to using the
cluster index (e.g., prior to identifying the cluster of the plurality of clusters that includes
content that corresponds to the respective position based on the cluster), the electronic device
decompresses (716) the file header and identifies the cluster index in the decompressed file
header. In some implementations, lossless compression is used (e.g., gzip). For example,
compression module 322 at server system 120-1 is configured to compress the file header
according to a predefined protocol. And, for example, media application 104 (e.g., media
extraction module 230) is configured to decompress the file header according to the

predefined protocol.

[0084] In some implementations, the plurality of clusters have (718) a predefined

size. For example, for live content, clusters have a predetermined size or length (e.g., four
30

WO 2015/040494 PCT/IB2014/002726

seconds long). In some implementations, a first cluster of the plurality of clusters has (720) a
first size and a second cluster of the plurality of clusters has a second size different from the
first size. For example, for on-demand content, cluster length ranges between one and four
seconds long (e.g., depending on the length of size of a group of pictures or a scene). For
example, a first cluster in a segment is two seconds long and a second cluster in the segment

is three seconds long.

[0085] In some implementations, a size of the cluster index increases (722) over time.
For live content, entries are added to the cluster index as time advances. For on-demand
content, the cluster index is fixed after cluster data is generated. Thus, in some
implementations, when client device 110-1 initially requests the file that corresponds to live
content, the cluster index has a first size and after a period of time (e.g., 10 minutes, while
content corresponding to the file is being presented to a user) client device 110-1 obtains an
updated file header that includes a cluster index with a second size that is larger than the first

size.

[0086] In some implementations, the file header includes (724) a respective number
that is stored as a non-floating point number, and the respective number is converted from a
floating point number to the non-floating point number based on a determination that a non-
floating point representation of the respective number is below a predefined size (e.g., below
a minimum size of a floating point number). Thus, in some implementations, a floating point
representation of a numbers is replaced with an integer representation of the number where
the integer representation of a number takes less space to store (and less bandwidth to
transmit) than a floating point representation of the number. For example, a number that is
between 0 and 10 and is measured in tenths of an integer takes fewer bits to store than a

corresponding floating point number with seven digit accuracy.

[0087] In some implementations, the file header further includes (726) a global
header that provides content description information that enables the device to prepare
content of the file for presentation to the user. In some implementations, when the file
includes video content, the content description information includes one or more of: width
and height of video frames, frame rate, and profile and level for a video codec such as H.264.
In some implementations, when the file includes audio content, the content description
information includes one or more of: sample rate of the audio content, number of channels of

audio content, bits per audio sample, time scale, time delay, bitrate, and header compression.

31

WO 2015/040494 PCT/IB2014/002726

[0088] In some implementations, the file is divided (728) into a plurality of segments,
a respective segment of the plurality of segments includes multiple sequential clusters from
the plurality of clusters, and the file header further includes a segment index that enables the
device to identify a respective segment that includes requested content. For example, in
Figure 4A, file header 402 includes segment index 416 that enables client device 110-1 to
identify which segment of the plurality of segments includes an identified cluster. Figure 4C,
for example, shows a plurality of segments 1, 2, 3 comprising media file 400 shown in Figure
4A. In Figure 4C, segment 1 includes file header 402 and a plurality of clusters C1, C2, C3,
C4, C5, C6, C7, C8, segment 2 includes a plurality of clusters C9, C10, C11, C12, C13, C14,
C15, C16, and segment 3 includes a plurality of clusters C17, C18, C19, C20, C21, C22, C23,
C24. For example, segmentation module 325 at server system 120-1 is configured to divide a
media file into one or more segments (¢.g., so that the media file can be distributed to and

obtained from a number of different content sources).

[0089] In some implementations, the plurality of segments of the file are distributed
(730) among a plurality of sources; and the first segment is available from a plurality of
different sources (e.g., one or more central content-distribution servers, one or more peers in
peer-to-peer network, a local cache, a content delivery network, a local area network cache,
etc.). Figure 1B, for example, shows media delivery system 150 with a plurality of computing
devices or sources. In some implementations, a first source of the first segment is identified
using source information (e.g., segment source table 440) that includes one or more sources
for segments of the file. Figure 4B, for example, shows segment source table 440 where each
entry includes a plurality of sources in media delivery system 150 associated with segment
identifier 420 for a respective segment. In some implementations, segment source table 440
(e.g., source table 242) is stored locally at client device 110-1. In some implementations,
segment source table 440 (e.g., source table 334) or information from segment source table
440 is retrieved from a content delivery coordination server or origin server (e.g., server
system 120-1). For example, segmentation module 325 at server system 120-1 is configured
to distribute the one or more segments to one or more computing devices (e.g., sources) in

media delivery system 150.

[0090] In some implementations, the plurality of segments for the file include (732)
one or more cluster-aligned segments that each include an integer number of clusters greater
than or equal to one. In some implementations, all of the segments for the file are cluster-

aligned. In some implementations, some of the segments for the file are cluster-aligned while

32

WO 2015/040494 PCT/IB2014/002726

other segments are not cluster-aligned. In some implementations, segments are determined

without regard to whether or not the segments are cluster-aligned.

[0091] In some situations, it is desirable to maintain roughly the same size of segment
for segments that are provided to clients, so that the system can deliver the segments
predictably and efficiently (e.g., segment storage and delivery can be optimized for segments
within a predefined range of sizes rather than being adapted to handle segments of an
arbitrary size). In some implementations, segment size is controlled at least in part by
adjusting a number of clusters that are included in a segment so as to maintain a roughly
uniform segment size (e.g., a segment size within the predefined range of sizes). In some
implementations, a first segment of the plurality of segments includes (734) a first set of N
clusters and a second segment of the plurality of segments includes a second set of M
clusters, where the clusters in the first set of N clusters are distinct from the clusters in the
second set of M clusters. In some implementations, M =N (e.g., for live content, clusters
have a fixed size and thus segments with the same number of clusters will have
approximately the same size). In some implementations, M # N (e.g., for on-demand content,
clusters, optionally, have varying sizes and thus segments optionally have different numbers
of clusters in situations where doing so helps to maintain segments of approximately the same
size). However, in some implementations, no two segments (in either live or on-demand)

have a cluster in common (e.g., segments do not overlap with each other).

[0092] The electronic device receives (736) a request to seek to a respective position
(c.g., a timestamp or a particular frame) within the file. For example, client device 110-1 (e.g.,
input processing module 224) detects on a touch screen display associated with client device
110-1 a gesture in the user interface for media application 104 that corresponds to the user
dragging a slider or time-bar (or otherwise interacts with a user interface object) to seck to a

specified timestamp or a particular frame within a video file.

[0093] In response to receiving the request (738), the electronic device identifies
(740) a cluster of the plurality of clusters that includes content that corresponds to the
respective position based on the cluster index (e.g., the cluster index includes timestamp
information and offset information for each cluster). Figure 4A, for example, shows cluster
index 422 with an entry for each cluster in media file 400, where each entry includes cluster
timestamp information 424 and offset information 426. In some implementations, the cluster

corresponding to the respective position is identified by utilizing cluster index 422 to

33

WO 2015/040494 PCT/IB2014/002726

correlate the timestamp requested by the user to a byte offset corresponding to (e.g., recorded

in or calculated from) the offset information, which identifies a particular cluster.

[0094] In response to receiving the request (738), the electronic device obtains (742)
a cluster header associated with the cluster based on information retrieved from the cluster
index, where the cluster header includes a content index that enables fine searching within the
cluster. Figure 4A, for example, shows cluster header 428-N with cluster size 430 for cluster
N and an entry for each frame in cluster N, where each entry includes offset information 432

and timestamp information 434.

[0095] In some implementations, the content index in the cluster header for the
cluster includes (744) a sequence of content entries including a first content entry that
corresponds to first content followed by a second content entry that corresponds to second
content followed by a third content entry that corresponds to third content. In some
implementations, the second content entry includes information that identifies a position of
the second content (e.g., a position of the second content within the cluster for offset
information or a position of the second content within the media content that corresponds to
the file for timestamp information) based on a distance between corresponding portions of the
first content and the second content (e.g., a distance between a beginning of the first content
and a beginning of the second content within the cluster for offset information or a distance
between times associated with the first content and the second content for timestamp
information). In some implementations, the third content entry includes information that
identifies a position of the third content (e.g., a position of the third content within the cluster
for offset information or a position of the third content within media that corresponds to the
file for timestamp information) based on a distance between corresponding portions of the
second content and the third content (e.g., a distance between a beginning of the second
content and a beginning of the third content within the cluster for offset information or a
distance between times associated with the second content and the third content within media

that corresponds to the file for timestamp information).

[0096] In one example, the sequence {0, 100, 205, 295, 400}, where each number in
the sequence corresponds to a byte offset from the start of a respective cluster to the start of a
respective frame in the respective cluster, is stored as the sequence {0, 100, 105, 90, 105}. In
this example, each number in the stored sequence is the difference between the byte offset for
the respective frame and the byte offset for the previous frame. For example, a first entry in

the stored sequence is zero, the second entry is equal to 100 - 0, the third entry is equal to 205
34

WO 2015/040494 PCT/IB2014/002726

- 100, the fourth entry is equal to 295 - 205, and the fifth entry is equal to 400 - 295. In some
implementations, timestamp information (e.g., measured in frames or milliseconds) and/or
offset information (e.g., measured in bytes) is compressed (e.g., stored as deltas of positions)
as described above. For example, cluster timestamp information 424 in cluster index 422 or
timestamp information 434 in cluster header 428 is compressed as described above. In
another example, offset information 418 in segment index 416, offset information 426 in
cluster index 422, or offset information 432 in cluster header 428 is compressed as described
above. In some implementations, information that identifies the position of respective content
within the cluster (e.g., offset information that identifies a position in bytes of the respective
content within the cluster) is compressed (e.g., stored as deltas of positions) as described
above. In some implementations, information that identifies the position of the respective
content within media content that corresponds to the file (e.g., timestamp information that
identifies a temporal position of the respective content in media that corresponds to the file)
is compressed (e.g., stored as deltas of positions) as described above. For example,
compression module 322 at server system 120-1 is configured to compress the media file
according to the protocol described above, and media extraction module 230 at client device

110-1 is configured to decompress the media file according to the protocol.

[0097] In some implementations, the content index in the cluster header for the
cluster includes (746) a sequence of content entries including a first content entry that
corresponds to first content followed by a second content entry that corresponds to second
content followed by a third content entry that corresponds to third content. In some
implementations, the third content entry includes information that identifies a position of the
third content (e.g., a position of the third content within the cluster for offset information or a
position of the third content within media that corresponds to the file for timestamp
information) based on a difference between: a distance between corresponding portions of the
first content and the second content (e.g., a distance between a beginning of the first content
and a beginning of the second content within the cluster for offset information or a distance
between times associated with the first content and the second content within media that
corresponds to the file for timestamp information) and distance between corresponding
portions of the second content and the third content (e.g., a distance between a beginning of
the second content and a beginning of the third content within the cluster for offset
information or a distance between times associated with the second content and the third

content within media that corresponds to the file for timestamp information).

35

WO 2015/040494 PCT/IB2014/002726

[0098] In one example, the sequence {0, 100, 205, 295, 400}, where each number in
the sequence corresponds to a byte offset from the start of a respective cluster to the start of a
respective frame in the respective cluster, is stored as {0, 100, 5, -20, 15}. In this example,
first, the difference between the byte offset for the respective frame and the byte offset for the
previous frame is calculated (e.g., the calculated sequence is {0, 100, 105, 90, 105}), and,
then, each number in the stored sequence is the difference between the difference calculated
for the respective frame and the difference calculated for the previous frame. For example,
the first entry in the stored sequence is 0, the second entry is equal to 100 - 0, the third entry
is equal to 105 - 100, the fourth entry is equal to 90 - 105, and the fifth entry is equal to 105 -
90. In some implementations, timestamp information (e.g., measured in frames or
milliseconds) and/or offset information (e.g., measured in bytes) is compressed (e.g., stored
as deltas of distances) as described above. Almost any kind of information can be compressed
as described above. For example, cluster timestamp information 424 in cluster index 422 or
timestamp information 434 in cluster header 428 can be compressed as described above. For
example, offset information 418 in segment index 416, offset information 426 in cluster
index 422, or offset information 432 in cluster header 428 is optionally compressed as
described above. In some implementations, information that identifies the position of
respective content within the cluster (e.g., offset information that identifies a position in bytes
of the respective content within the cluster) is compressed (e.g., stored as deltas of distances)
as described above. In some implementations, information that identifies the position of the
respective content within media content that corresponds to the file (e.g., timestamp
information that identifies a temporal position of the respective content in media that
corresponds to the file) is compressed (e.g., stored as deltas of distances) as described above.
In some implementations, other position information is compressed (e.g., stored as deltas of
distances) as described above. For example, compression module 322 at server system 120-1
is optionally configured to compress the media file according to the protocol described above,
and media extraction module 230 at client device 110-1 is optionally configured to

decompress the media file according to the protocol.

[0099] In some implementations, the content index for the cluster includes (748) an
overall size of the cluster, a plurality of entries for corresponding content (e.g., corresponding
frames) that include information from which sizes of corresponding content can be
determined, and a respective entry for respective content that does not include information

from which a size of the respective content can be determined. In some implementations,

36

WO 2015/040494 PCT/IB2014/002726

client device 110-1 determines a size of the respective content based on the overall size of the
cluster and the sizes of the content corresponding to the plurality of entries in the cluster other
than the respective entry. In some implementations, when a respective chunk (e.g., an outer
container) comprises a plurality of portions (e.g., inner containers), information in a
respective portion does not repeat the size of the previous portion. For example, the size of a
last portion can be determined by subtracting the sizes of all other portions in the respective
chunk from the size of the respective chunk. For example, compression module 322 at server
system 120-1 is configured to compress the media file as described above and media
extraction module 230 at client device 110-1 is configured to decompress the media file by

reversing the process described above.

[00100] In response to receiving the request (738), the electronic device obtains (750)
cluster data associated with the cluster. For example, step 514 in Figure 5 shows client device
110-1 determining a byte offset for a respective cluster corresponding to a requested
timestamp based on cluster index 516. Upon determining the byte offset for the respective
cluster, client device 110-1 is enabled to obtain the respective cluster, including both a cluster

header and cluster data, based on the determined byte offset.

[00101] In some implementations, the cluster header is obtained (752) in a first
location and the cluster data is obtained from one or more locations different from the first
location. In some implementations, the cluster data is stored/received together with the cluster
header. For example, both cluster header 428-N and cluster data 438-N corresponding to
cluster N are stored at an origin server (e.g., server system 120-1). In some implementations,
the cluster data is stored/received separately from the cluster header. For example, cluster
header 428-N corresponding to cluster N is stored at an origin server (e.g., server system 120-
1) and cluster data 438-N corresponding to cluster N is stored at a peer 133 in P2P network
132.

[00102] In some implementations, obtaining the cluster data includes (754) identifying,
based on information retrieved from the cluster index (e.g., offset information), a position of
the cluster data in the file (e.g., a byte offset), identifying, in the segment index (e.g., based
on the byte offset), a first segment that includes the cluster data, obtaining the first segment,
and identifying the cluster data in the first segment. For example, step 506 in Figure 5 shows
client device 110-1 identifying a segment identifier for a first segment including the cluster
data corresponding on the byte offset determined in step 504 based on segment index 416.

For example, step 508 in Figure 5 shows client device 110-1 determining a source for the first
37

WO 2015/040494 PCT/IB2014/002726

segment based on source information (e.g., source table 242 or source table 334) and sending
a request for the first segment including the segment identifier for the first segment and the
address of the device to one or more sources associated with the segment identifier for the
first segment. For example, step 514 in Figure 5 shows client device 110-1 receiving the first
segment from one of the one or more sources associated with the segment identifier for the
first segment. For example, step 518 in Figure 5 shows client device 110-1 identifying cluster
data in the first segment corresponding to a requested frame based on a byte offset

determined in step 516.

[00103] In some implementations, obtaining the first segment includes (756)
requesting the first segment from a first source using an identifier of the first segment
retrieved from the segment index. In some implementations, segment index 416 includes
offset information and a segment identifier (e.g., a SHA-1 hash) for each segment comprising
the media file. For example, segment index 416 in Figure 4A includes a plurality of entries
for each segment comprising media file 400, where an entry for a respective segment
includes offset information 418 and segment identifier 420. First, cluster index 422 relates a
user requested timestamp (e.g., by way of cluster timestamp information 424) to a byte offset
(e.g., by way of offset information 426). Then, the byte offset is used to determine a
corresponding segment identifier 420 in segment index 416. In some implementations, the
identifier of the first segment includes (758) a cryptographic hash. For example, segment
identifiers 420 in segment index 416 generated by applying a cryptographic hash function
(e.g., MD5, SHA-0, SHA-1, SHA-3, etc.) to content of the corresponding segment.

[00104] In some implementations, after obtaining the first segment, the electronic
device obtains (760) a second segment, where: when the file corresponds to on-demand
content, the second segment is obtained from a respective source selected from a source table
that includes a plurality of sources from which the second segment is available and when the
file corresponds to live content, the second segment is obtained from the first source. For
example, in some situations, for on-demand content, segments for a media file are stored in
and obtained from one or more different sources in media delivery system 150. In some
implementations, one or more sources for a respective segment are determined from source
information (e.g., source table 242 stored locally at the device or source table 334 stored
remotely from the device at server system 120-1). For example, in some situations, for live
content (e.g., real-time content), segments for a media file are stored at (or streamed from) a

single source in media delivery system 150 and the segments are obtained by transmitting

38

WO 2015/040494 PCT/IB2014/002726

requests to a same source such as a same uniform resource locator (URL). In this example,
the computing device that receives the requests, optionally, balances the load by instructing
different sources to transmit the segments to the device when its resources or bandwidth does

not meet certain predefined criteria.

[00105] After obtaining the cluster header, the electronic device identifies (762)
respective content (e.g., a frame) within the cluster that corresponds to the respective position
based on the content index. In some implementations, the frame is identified by correlating
the timestamp requested by the user to a byte offset in the offset info that identifies a frame
within the cluster. For example, step 518 in Figure 5 shows client device 110-1 identifying
frame data for a respective frame based on the byte offset for the respective frame determined

in step 516.

[00106] After identifying the respective content, the electronic device provides (764) at
least a portion of content corresponding to the file to a presentation device for presentation to
a user, starting with the respective content. For example, step 518 in Figure 5 further shows
client device 110-1 sending the identified frame data to a presentation device (e.g., software
configured render frame data on a display) identifying frame data for a respective frame

based on a byte offset for the respective frame determined in step 516.

[00107] In some implementations, the file header is obtained (766) from a first location
and the content corresponding to the file is obtained from a second location distinct from the
first location. In some implementations, file header 402 for media file 400 is obtained from a
first source (e.g., an origin server or server system 120-1) in media delivery system 150 and
content comprising media file 400 (e.g., segments or cluster data) is obtained from one or
more sources (€.g., peers 133 in P2P system 132 and/or network cache 136) in media delivery

system 150 different from the first source.

[00108] In some implementations, the file includes (763) one or more encrypted
portions including a respective encrypted portion and, before providing the portion of content
corresponding to the file to the presentation device for presentation to a user, the device
decrypts the respective encrypted portion. In some implementations, at least a portion of the
file header is encrypted. In some implementations, at least a portion of a cluster header is
encrypted. In some implementations, at least a portion of the cluster data is encrypted. For
example, encryption module 320 at server system 120-1 is configured to encrypt one or more

portions of the media file according to a predefined encryption algorithm, and media

39

WO 2015/040494 PCT/IB2014/002726

extraction module 230 at client device 110-1 is configured to decrypt the one or more

portions of the media file according to the predefined encryption algorithm.

[00109] In some implementations, the file includes (770) video data; a respective
cluster of the plurality of clusters corresponds to a group of frames with a respective
keyframe and the respective content corresponds to one or more frames in the video data. In
some implementations, the file includes (772) audio data; a respective cluster of the plurality
of clusters corresponds to a group of audio samples or audio frames and the respective

content corresponds to one or more audio samples or audio frames in the audio data.

[00110] It should be understood that the particular order in which the operations in 7A-
7F have been described is merely exemplary, and is not intended to indicate that the
described order is the only order in which the operations could be performed. One of ordinary
skill in the art would recognize various ways to reorder the operations described herein. It
should be noted that details of other processes described herein with respect to other methods
described herein (e.g., method 800) are also applicable in an analogous manner to method
700 described above with respect to Figures 7A-7F. Additionally, it should be noted that
details of other processes described herein with respect to other methods described herein
(e.g., method 800) are also applicable in an analogous manner to method 700 described above
with respect to Figures 7A-7F. For example, the requests, media files, and file headers
described above with reference to method 700, optionally, have one or more of the
characteristics of the requests, media files, and file headers described herein with reference to
other methods described herein (e.g., method 800). For brevity, these details are not repeated

here.

[00111] Figures 8 A-8D are flow diagrams illustrating a method 800 of providing
media content in accordance with some implementations. In some implementations, method
800 is performed at a computer system (e.g., server system 120-1, Figures 1A and 3) with one
or more processors and memory. Some operations in method 800 are, optionally, combined

and/or the order of some operations is, optionally, changed.

[00112] The computer system obtains (802) content-access information (e.g., server
120 generates source table 334, updates source table 334 and/or retrieves content-access
information from source table 334) that enables distribution of content to a plurality of clients
having different file format processing capabilities. In some implementations, the content-

access information includes locations of content in a content distribution network, a list of

40

WO 2015/040494 PCT/IB2014/002726

peers that have portions of the content, other information that can be used by the computer
system to provide the content to a respective client and/or other information that can be used
by a respective client to request the content from a content source (e.g., a media server or a
peer). For example, server system 120-1 determines the addresses (e.g., IP or MAC
addresses) of a plurality of client devices (e.g., including first client device 110-1 having first
file format processing capabilities and second client device 110-n having second format
processing capabilities) in media delivery system 150 so as to enable server system 120-1 to

provide file portions to the client devices having different format processing capabilities.

[00113] The computer system provides (804) to a first client (e.g., client device 110-1),
having first file format processing capabilities, first information that enables the first client to
access respective content in a first file format (e.g., HLS format). For example, the computer
system provides the first client with a first portion of the previously obtained content-access
information (e.g., from source table 334) that includes locations from which the respective
content in the first file format can be retrieved and/or provides the first client with the

respective content in the first file format.

[00114] The first information identifies (806) a first set of file portions (e.g., the file
segments shown above in Figure 6A) that can be combined to generate the respective content
in the first file format. In some implementations, the set of file portions includes two or more
of the file portions that each include data corresponding to both audio and video content. In
some implementations, the file portions are divided temporally, so that in a sequence of file
portions, earlier file portions in the sequence correspond to earlier portions of the content and
later file portions in the sequence correspond to later portions of the content and, after
receiving the first portion or the first few portions, a client can start presenting the content to
a user while downloading additional portions. Thus, for example, the client is enabled to

stream the content without having downloaded all of the portions.

[00115] The computer system provides (808) to a second client (e.g., client device
110-n), having second file format processing capabilities different from the first file format
processing capabilities, second information that enables the second client to access respective
content in a second file format (e.g., an augmented HLS format) different from the first file
format. For example, the computer system provides the second client with a second portion of
the previously obtained content-access information (e.g., from source table 334) that includes
locations from which the respective content in the second file format can be retrieved and/or

provides the second client with the respective content in the second file format.
41

WO 2015/040494 PCT/IB2014/002726

[00116] Additionally, when the second client has second file format processing
capabilities, the second client is provided with at least one file portion (e.g., comprising
metadata) different from the file portions provided to the first client with first file processing
capabilities. The second client is also provided with at least one same file portion as the first
client with first file format processing capabilities. Thus, in some implementations, the
respective content is not simply being remuxed or transmuxed at the client or the server;
rather, the respective content is divided up so that it can be provided to, used by, and shared
between, different clients with different file processing capabilities (e.g., without requiring

the different clients to transmux the content after it is received).

[00117] The second information identifies (810) a second set of file portions (e.g., the
file segments shown above in Figure 6B) that can be combined to generate the respective
content in the second file format. The second set of file portions includes (812) one or more
shared file portions that are included in the first set of file portions. Additionally, in some
implementations, the shared file portions include muxed (multiplexed) content that includes
two or more content types (e.g., video, audio, text, etc.) and the shared file portions can be
used in either the first file format or the second file format without remuxing or transmuxing
the content. In some implementations, after receiving a respective set of file portions, the
client remuxes or transmuxes the content in the file portions to change a media container that
is used to organize the content. In some circumstances, for remuxing or transmuxing between
two different media containers, the specifications of the different media containers needs to
be known by the client performing the remuxing or transmuxing. In contrast, in some
implementations, when combining a respective set (¢.g., a first set or second set) of file
portions to generate the respective content, the information for combining the respective set
of file portions is contained in the file format (e.g., the order in which the file portions are to

be combined indicates how the file portions are to be combined).

[00118] In some implementations, the first file format provides functionality that is not
provided (814) by the second file format. In some implementations, the second file format
provides functionality that is not provided (816) by the first file format. For example, the
second file format enables the client device 110-1 to seek within the media content using
coarse and/or fine searching (e.g., keyframe-based and frame-based seeking, respectively). In
another example, the second file format includes a reduced-size, lightweight file header

enabling segmentation and/or coarse searching of the media file.

42

WO 2015/040494 PCT/IB2014/002726

[00119] In some implementations, the first set of file portions and the second set of file
portions are distributed (818) between a plurality of computing devices in a media delivery
system (e.g., a distributed content provision network). For example, with reference to Figure
1B, the file portions comprising the first set of file portions and the second set of file portions
are distributed among a plurality of computing devices (e.g., peers 133 in P2P network 132,
network cache 136, redundant content host servers 138, local cache 105, etc.) in media

delivery system 150.

[00120] In some implementations, a leading portion in the first set of file portions is
(820) different from a leading portion of the second set of file portions (e.g., segment 1 of
first information 600 in Figure 6A is different from segment 1 of second information 650 in
Figure 6B). In some implementations, the leading portion of the first set of file portions is
followed (822) by a set of shared file portions in a respective order, and the leading portion of
the second set of file portions is followed by the set of shared file portions in the respective
order (e.g., segments 2 and 3 of first information 600 in Figure 6A are the same as segments
2 and 3 of second information 650 in Figure 6B). In some implementations, the leading
portion of the second set of file portions includes (824) respective metadata that is not
included in the leading portion of the first set of file portions (e.g., file header 652 in segment
1 of second information 650 in Figure 6B is not included in segment 1 of first information
600 in Figure 6A). In some implementations, the respective metadata is appended (826) to a
beginning of the leading portion of the second set of file portions. Figure 6B, for example,
shows file header 652 appended to the beginning of segment 1 the second set of file portions
corresponding to second information 650. In some implementations, the second information
has (828) a file header that includes information (e.g., a cluster index) that enables coarse

searching (e.g., keyframe-based searching) within the file.

[00121] In some implementations, the second information has (830) a file header that
includes information that enables the client to obtain (e.g., retrieve) a fine-searching metadata
file, the fine-searching metadata file including information (e.g., cluster headers) that enables
fine searching (e.g., frame-based secking) within the file. Figure 6C, for example, shows file
header 652 corresponding to second information 650, including cluster header location
information 656, which points to the location of metadata file 654. Figure 6C, for example,
shows metadata file 654 including a plurality of cluster headers 428 for the clusters
comprising second information 650. In some implementations, cluster headers 428 enable

fine searching (e.g., frame-based secking) within the media file.

43

WO 2015/040494 PCT/IB2014/002726

[00122] In some implementations, the first set of file portions includes file portions
that are (832) compatible with the first file format, and the second set of file portions includes
file portions that are compatible with the first file format (and, optionally, are not compatible
with the second file format) and modification information that enables the second client to
generate file portions that are compatible with the second file format from file portions in the
first format. For example, the file portions in the first and second sets are shared. In some
implementations, a first client will receive a respective set of file portions in the first file
format, and a second client will receive the respective set of file portions in the first file
format and a file header (e.g., modification information) enabling playback of content

corresponding to the respective set of file portions in the second file format.

[00123] In some implementations, respective file portions are compatible with a
respective file format when the file portions can be used to generate content in the respective
file format. In some implementations, the first file format is a file format used by devices
(e.g., portable multifunction devices such as smartphones and tablet computers) that have
limited processing resources and are not capable of generating file portions in a different
format or can generate file portions in the different format but suffer from a noticeable impact
on performance (e.g., reduction in battery life, overheating, lag or stutters in video/audio
playback, etc.) to do so; while the second file format is a file format used by devices with
greater processing resources (e.g., gaming consoles or personal computers such as desktop or
laptop computers) that are capable of generating file portions in a different format using the
second modification information without a noticeable impact on performance (e.g., reduction
in battery life, overheating, lags or stutters in video/audio playback, etc.). In some
implementations, the first client also converts portions of the content based on playback
requirements at the first client (e.g., audio content in AAC format is converted to MP3 format
or vice versa). In some implementations, in addition to generating file portions that are
compatible with the second file format, the second client also converts portions of the content
based on playback requirements at the second client (e.g., audio content in AAC format is

converted to MP3 format or vice versa).

[00124] In some implementations, the modification information enables (834) the
second client to alter (e.g., add, remove, and/or replace) metadata from the second set of file
portions to generate file portions that are compatible with the second file format (e.g., without
transcoding or converting the underlying content in the second set of file portions). In some

implementations, the modification information includes (836) information that enables the

44

WO 2015/040494 PCT/IB2014/002726

second client to transcode the second set of file portions from the first file format to the
second file format to generate file portions that are compatible with the second file format
(e.g., instead of, or in addition to, altering metadata in the first set of file portions). For
example, transcoding MPEG-2 files to MPEG-4 files or transcoding MPEG-2 files to H.264
files.

[00125] In some implementations, the first set of file portions includes (838) respective
file portions (that are not compatible with the first file format) and first modification
information that enables the first client to generate file portions that are compatible with the
first file format from the respective file portions, and the second set of file portions includes
the respective file portions (that are not compatible with the second file format) and second
modification information that enables the second client to generate file portions that are
compatible with the second file format from the respective file portions. For example, the
first set of file portions includes raw portions and a first file header for playback in the first
file format, and the second set of portions includes the raw portions and a second file header
for playback in the second file format) In some implementations, respective file portions are
compatible with a respective file format when the file portions can be used to generate
content in the respective file format. In some implementations, in addition to generating file
portions that are compatible with the first file format, the first client also converts portions of
the content based on playback requirements of the first client (e.g., audio content in AAC
format is converted to MP3 format or vice versa). In some implementations, in addition to
generating file portions that are compatible with the second file format, the second client also
converts portions of the content based on playback requirements of the second client (e.g.,

audio content in AAC format is converted to MP3 format or vice versa).

[00126] In some implementations, the respective file portions are not (840) compatible
with the first file format or the second file format. For example, the file portions are raw,
unformatted file portions or portions in a third format. In some implementations, the first
modification information enables (842) the first client to alter (e.g., add, remove and/or
modify) metadata from the respective portions to generate file portions that are compatible
with the first file format (e.g., without transcoding or converting the underlying content in the
first set of file portions), and the second modification information enables the second client to
alter (e.g., add, remove and/or modify) metadata from the respective portions to generate file
portions that are compatible with the second file format (e.g., without transcoding or

converting the underlying content in the second set of file portions).

45

WO 2015/040494 PCT/IB2014/002726

[00127] In some implementations, the first modification information includes (844)
information that enables the first client to transcode the first set of file portions from a
respective file format to the first file format to generate file portions that are compatible with
the first file format (e.g., instead of, or in addition to, altering metadata in the first set of file
portions), and the second modification information includes information that enables the
second client to transcode the second set of file portions from the respective file format to the
second file format to generate file portions that are compatible with the second file format

(e.g., instead of, or in addition to, altering metadata in the second set of file portions).

[00128] In some implementations, the respective content is shared (846) over a peer-
to-peer network, and clients having the first file format processing capabilities make shared
file portions available (e.g., “‘seed” the shared file portions) to clients having the first file
format processing capabilities and to clients having the second file format processing
capabilities. In some implementations, clients having the second file format processing
capabilities make shared file portions available (e.g., “seed” the shared file portions) to
clients having the second file format processing capabilities and to clients having the first file
format processing capabilities. Thus, in some implementations clients that have different file
format processing capabilities are still able to participate in the same peer-to-peer network
(e.g., P2P network 132 in media delivery system 150 shown in Figure 1B) and exchange file
portions that are used at the various clients to generate the same content in different file
formats. Enabling different kinds of clients to participate in the same peer to peer network
improves the performance and reliability of peer-to-peer distribution by increasing the

number of peers for the respective content.

[00129] It should be understood that the particular order in which the operations in 8A-
8D have been described is merely exemplary, and is not intended to indicate that the
described order is the only order in which the operations could be performed. One of ordinary
skill in the art would recognize various ways to reorder the operations described herein. It
should be noted that details of other processes described herein with respect to other methods
described herein (e.g., method 700) are also applicable in an analogous manner to method
800 described above with respect to Figures 8A-8D. Additionally, it should be noted that
details of other processes described herein with respect to other methods described herein
(e.g., method 700) are also applicable in an analogous manner to method 800 described above
with respect to Figures 8A-8D. For example, the requests, media files, and file headers

described above with reference to method 800 optionally have one or more of the

46

WO 2015/040494 PCT/IB2014/002726

characteristics of the requests, media files, and file headers described herein with reference to
other methods described herein (e.g., method 700). For brevity, these details are not repeated

here.

[00130] Plural instances are, optionally provided for components, operations, or
structures described herein as a single instance. Finally, boundaries between various
components, operations, and data stores are somewhat arbitrary, and particular operations are
illustrated in the context of specific illustrative configurations. Other allocations of
functionality are envisioned and optionally fall within the scope of the implementation(s). In
general, structures and functionality presented as separate components in the example
configurations are, optionally, implemented as a combined structure or component. Similarly,
structures and functionality presented as a single component are, optionally, implemented as
separate components. These and other variations, modifications, additions, and improvements

fall within the scope of the implementation(s).

[00131] It will also be understood that, although the terms “first,” “second,” are, in
some circumstances, used herein to describe various elements, these elements should not be
limited by these terms. These terms are only used to distinguish one element from another.
For example, first information could be termed second information, and, similarly, second
information could be termed first information, which changing the meaning of the description,
so long as all occurrences of the “first information” are renamed consistently and all
occurrences of “second information” are renamed consistently. The first information and the

second information are both information, but they are not the same information.

[00132] The terminology used herein is for the purpose of describing particular
implementations only and is not intended to be limiting of the claims. As used in the

[TINETRT])
a

description of the implementations and the appended claims, the singular forms an,

and “the” are intended to include the plural forms as well, unless the context clearly indicates
otherwise. It will also be understood that the term “and/or” as used herein refers to and
encompasses any and all possible combinations of one or more of the associated listed items.
It will be further understood that the terms “comprises” and/or “comprising,” when used in
this specification, specify the presence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or addition of one or more other features,

integers, steps, operations, elements, components, and/or groups thereof.

47

WO 2015/040494 PCT/IB2014/002726

[00133] As used herein, the term “if” is, optionally, construed to mean “when” or
“upon” or “in response to determining” or “in accordance with a determination” or “in
response to detecting,” that a stated condition precedent is true, depending on the context.
Similarly, the phrase “if it is determined (that a stated condition precedent is true)” or “if (a
stated condition precedent is true)” or “when (a stated condition precedent is true)” is,
optionally, construed to mean “upon determining” or “in response to determining” or “in
accordance with a determination” or “upon detecting” or “in response to detecting” that the

stated condition precedent is true, depending on the context.

[00134] The foregoing description included example systems, methods, techniques,
instruction sequences, and non-transitory computer readable storage media that embody
illustrative implementations. For purposes of explanation, numerous specific details were set
forth in order to provide an understanding of various implementations of the inventive subject
matter. It will be evident, however, to those skilled in the art that implementations of the
inventive subject matter is, optionally, practiced without these specific details. In general,
well-known instruction instances, protocols, structures and techniques have not been shown

in detail.

[00135] The foregoing description, for purpose of explanation, has been described with
reference to specific implementations. However, the illustrative discussions above are not
intended to be exhaustive or to limit the implementations to the precise forms disclosed.
Many modifications and variations are possible in view of the above teachings. The
implementations were chosen and described in order to best explain the principles and their
practical applications, to thereby enable others skilled in the art to best utilize the
implementations and various implementations with various modifications as are suited to the

particular use contemplated.

48

WO 2015/040494 PCT/IB2014/002726

What is claimed is:

1. A method of secking within media content, comprising:
at an electronic device with one or more processors and memory;
obtaining a file header for a file that corresponds to a plurality of clusters, wherein the
file header includes a cluster index that enables coarse searching within the file;
receiving a request to seek to a respective position within the file;
in response to receiving the request:
identifying a cluster of the plurality of clusters that includes content that
corresponds to the respective position based on the cluster index;
obtaining a cluster header associated with the cluster based on information
retrieved from the cluster index, wherein the cluster header includes a content index that
enables fine searching within the cluster;
obtaining cluster data associated with the cluster; and
after obtaining the cluster header, identifying respective content within the
cluster that corresponds to the respective position based on the content index; and
after identifying the respective content, providing at least a portion of content
corresponding to the file to a presentation device for presentation to a user, starting with the

respective content.

2. The method of claim 1, wherein:

the file includes video data;

a respective cluster of the plurality of clusters corresponds to a group of frames with a
respective keyframe; and

the respective content corresponds to one or more frames in the video data.

3. The method of claim 1, wherein:

the file includes audio data;

a respective cluster of the plurality of clusters corresponds to a group of audio
samples or audio frames; and

the respective content corresponds to one or more audio samples or audio frames in

the audio data.

4. The method of any of claims 1-3, wherein the file header is obtained in response to a

request for content associated with the file.

49

WO 2015/040494 PCT/IB2014/002726

5. The method of any of claims 1-4, wherein the file header further includes a global
header that provides content description information that enables the device to prepare

content of the file for presentation to the user.

6. The method of any of claims 1-5, wherein:

the file is divided into a plurality of segments;

a respective segment of the plurality of segments includes multiple sequential clusters
from the plurality of clusters; and

the file header further includes a segment index that enables the device to identify a

respective segment that includes requested content.

7. The method of claim 6, wherein obtaining the cluster data includes:
identifying, based on information retrieved from the cluster, a position of the cluster
data in the file;
identifying, in the segment index, a first segment that includes the cluster data;
obtaining the first segment; and

identifying the cluster data in the first segment.

8. The method of claim 7, wherein obtaining the first segment includes requesting the
first segment from a first source using an identifier of the first segment retrieved from the

segment index.

9. The method of claim 8, wherein the identifier of the first segment includes a

cryptographic hash.

10. The method of any of claims 7-9, wherein:
the plurality of segments of the file are distributed among a plurality of sources; and

the first segment is available from a plurality of different sources.

11. The method of any of claims 7-10, including, after obtaining the first segment,
obtaining a second segment, wherein:

when the file corresponds to on-demand content, the second segment is obtained from
a respective source selected from a source table that includes a plurality of sources from
which the second segment is available; and

when the file corresponds to live content, the second segment is obtained from the

first source.

50

WO 2015/040494 PCT/IB2014/002726

12. The method of any of claims 6-11, wherein the plurality of segments for the file
include one or more cluster-aligned segments that each include an integer number of clusters

greater than or equal to one.

13. The method of claim 12, wherein:

a first segment of the plurality of segments includes a first set of N clusters; and

a second segment of the plurality of segments includes a second set of M clusters,
wherein the clusters in the first set of N clusters are distinct from the clusters in the second set

of M clusters.

14. The method of any of claims 1-13, wherein the cluster index does not include

information that enables fine searching within the file.

15. The method of any of claims 1-14, wherein the file header and the file omit respective

omitted information that is necessary for extracting content from the file.

16. The method of claim 15, wherein:
the respective omitted information was removed from the file header and/or the file
before the file header was obtained by the electronic device; and
the method includes, prior to providing the portion of content corresponding to the file
to the presentation device for presentation to the user:
generating the respective information based on the file header and/or the file;
and

adding the omitted information into the file header and/or file.

17. The method of claim 15, wherein the respective omitted information was removed
from the file header and/or the file in accordance with a determination that the respective
omitted information is duplicative of information that was included elsewhere in the file

header and/or the file.

18. The method of claim 15, wherein the respective omitted information was removed
from the file header and/or the file in accordance with a determination that the respective
omitted information describes aspects of the content corresponding to the file that are already

known to the electronic device.

51

WO 2015/040494 PCT/IB2014/002726

19. The method of any of claims 1-18, wherein the file header is compressed, and the
method includes, prior to using the cluster index, decompressing the file header and

identifying the cluster index in the decompressed file header.

20. The method of any of claims 1-19, wherein:

the content index in the cluster header for the cluster includes a sequence of content
entries including a first content entry that corresponds to first content followed by a second
content entry that corresponds to second content followed by a third content entry that
corresponds to third content;

the second content entry includes information that identifies a position of the second
content based on a distance between corresponding portions of the first content and the
second content; and

the third content entry includes information that identifies a position of the third
content based on a distance between corresponding portions of the second content and the

third content

21. The method of any of claims 1-19, wherein:
the content index in the cluster header for the cluster includes a sequence of content
entries including a first content entry that corresponds to first content followed by a second
content entry that corresponds to second content followed by a third content entry that
corresponds to third content; and
the third content entry includes information that identifies a position of the third
content based on a difference between:
a distance between corresponding portions of the first content and the second
content; and
a distance between corresponding portions of the second content and the third

content.

22. The method of claim 20, wherein:
the content index for the cluster includes:
an overall size of the cluster;
a plurality of entries for corresponding content that include information from
which sizes of corresponding content can be determined; and
a respective entry for respective content that does not include information
from which a size of the respective content can be determined; and

52

WO 2015/040494 PCT/IB2014/002726

the method includes, determining a size of the respective content based on the overall
size of the cluster and the sizes of the content corresponding to the plurality of entries in the

cluster other than the respective entry.

23. The method of any of claims 1-22, wherein:
the file header is obtained from a first location; and
the content corresponding to the file is obtained from a second location distinct from

the first location.

24. The method of any of claims 1-23, wherein:
the cluster header is obtained in a first location; and

the cluster data is obtained from one or more locations different from the first location.

25. The method of any of claims 1-24, wherein the plurality of clusters have a predefined

size.

26. The method of any of claims 1-24, wherein:
a first cluster of the plurality of clusters has a first size; and
a second cluster of the plurality of clusters has a second size different from the first

size.

27. The method of any of claims 1-26, wherein a size of the cluster index increases over

time.

28. The method of any of claims 1-27, wherein:

the file includes one or more encrypted portions including a respective encrypted
portion; and

before providing the portion of content corresponding to the file to the presentation

device for presentation to a user, the device decrypts the respective encrypted portion.

29. The method of any of claims 1-28, wherein:

the file header includes a respective number that is stored as a non-floating point
number; and

the respective number was converted from a floating point number to the non-floating
point number based on a determination that a non-floating point representation of the

respective number was below a predefined size.

53

WO 2015/040494 PCT/IB2014/002726

30. A computer system, comprising:
one or more processors and
memory storing one or more programs to be executed by the one or more processors;
the one or more programs comprising instructions for:
obtaining a file header for a file that corresponds to a plurality of clusters,
wherein the file header includes a cluster index that enables coarse searching within the file;
receiving a request to seek to a respective position within the file;
in response to receiving the request:
identifying a cluster of the plurality of clusters that includes content
that corresponds to the respective position based on the cluster index;
obtaining a cluster header associated with the cluster based on
information retrieved from the cluster index, wherein the cluster header includes a content
index that enables fine searching within the cluster;
obtaining cluster data associated with the cluster; and
after obtaining the cluster header, identifying respective content within
the cluster that corresponds to the respective position based on the content index; and
after identifying the respective content, providing at least a portion of content
corresponding to the file to a presentation device for presentation to a user, starting with the

respective content.

31. A computer system, comprising:
one or more processors; and
memory storing one or more programs for execution by the one or more processors,

the one or more programs including instructions for performing any of the methods of claims

1-29.

32. A non-transitory computer readable storage medium storing one or more programs,
the one or more programs comprising instructions, which, when executed by an electronic
device with one or more processors, cause the device to:

obtain a file header for a file that corresponds to a plurality of clusters, wherein the
file header includes a cluster index that enables coarse searching within the file;

receive a request to seek to a respective position within the file;

in response to receiving the request:

54

WO 2015/040494 PCT/IB2014/002726

identify a cluster of the plurality of clusters that includes content that
corresponds to the respective position based on the cluster index;

obtain a cluster header associated with the cluster based on information
retrieved from the cluster index, wherein the cluster header includes a content index that
enables fine searching within the cluster;

obtain cluster data associated with the cluster; and

after obtaining the cluster header, identify respective content within the cluster
that corresponds to the respective position based on the content index; and

after identifying the respective content, provide at least a portion of content

corresponding to the file to a presentation device for presentation to a user, starting with the

respective content.

33. A non-transitory computer readable storage medium storing one or more programs,
the one or more programs comprising instructions, which, when executed by a portable
electronic device or a computer system with one or more processors, cause the device or

system to perform any of the methods of claims 1-29.

34. A method of providing media content, comprising:
at a computer system including one or more processors and memory:
obtain information that enables distribution of content to a plurality of clients having
different file format processing capabilities;
providing to a first client, having first file format processing capabilities, first
information that enables the first client to access respective content in a first file format;
providing to a second client, having second file format processing capabilities
different from the first file format processing capabilities, second information that enables the
second client to access respective content in a second file format different from the first file
format, wherein:
the first information identifies a first set of file portions that can be combined
to generate the respective content in the first file format;
the second information identifies a second set of file portions that can be
combined to generate the respective content in the second file format; and
the second set of file portions includes one or more shared file portions that

are included in the first set of file portions.

55

WO 2015/040494 PCT/IB2014/002726

35. The method of claim 34, wherein the first file format provides functionality that is not

provided by the second file format.

36. The method of any of claims 34-35, wherein the second file format provides

functionality that is not provided by the first file format.

37. The method of any of claims 34-36, wherein the first set of file portions and the
second set of file portions are distributed among a plurality of computing devices in a media

delivery system.

38. The method of any of claims 34-37, wherein a leading portion in the first set of file

portions is different from a leading portion of the second set of file portions.

39. The method of claim 38, wherein:

the leading portion of the first set of file portions is followed by a set of shared file
portions in a respective order; and

the leading portion of the second set of file portions is followed by the set of shared

file portions in the respective order.

40. The method of any of claims 38-39, wherein the leading portion of the second set of
file portions includes respective metadata that is not included in the leading portion of the

first set of file portions.

41. The method of claim 40, wherein the respective metadata is appended to a beginning

of the leading portion of the second set of file portions.

42. The method of any of claims 34-41, wherein the second information has a file header

that includes information that enables coarse searching within the file.

43. The method of any of claims 34-42, wherein the second information has a file header
that includes information that enables the client to obtain a fine-searching metadata file, the

fine-searching metadata file including information that enables fine searching within the file.

44. The method of any of claims 34-43, wherein:
the first set of file portions includes file portions that are compatible with the first file

format; and

56

WO 2015/040494 PCT/IB2014/002726

the second set of file portions includes file portions that are compatible with the first
file format and modification information that enables the second client to generate file

portions that are compatible with the second file format from file portions in the first format.

45, The method of claim 44, wherein the modification information enables the second
client to alter metadata from the second set of file portions to generate file portions that are

compatible with the second file format.

46. The method of claim 44, wherein the modification information includes information
that enables the second client to transcode the second set of file portions from the first file
format to the second file format to generate file portions that are compatible with the second

file format.

47. The method of any of claims 34-43, wherein:

the first set of file portions includes respective file portions and first modification
information that enables the first client to generate file portions that are compatible with the
first file format from the respective file portions; and

the second set of file portions includes the respective file portions and second
modification information that enables the second client to generate file portions that are

compatible with the second file format from the respective file portions.

48. The method of claim 47, wherein the respective file portions are not compatible with

the first file format or the second file format.

49. The method of any of claims 47-48, wherein:
the first modification information enables the first client to alter metadata from the
respective portions to generate file portions that are compatible with the first file format; and
the second modification information enables the second client to alter metadata from
the respective portions to generate file portions that are compatible with the second file

format.

50. The method of any of claims 47-48, wherein:
the first modification information includes information that enables the first client to
transcode the first set of file portions from a respective file format to the first file format to

generate file portions that are compatible with the first file format; and

57

WO 2015/040494 PCT/IB2014/002726

the second modification information includes information that enables the second
client to transcode the second set of file portions from the respective file format to the second

file format to generate file portions that are compatible with the second file format.

51. The method of any of claims 34-50, wherein:

the respective content is shared over a peer-to-peer network; and

clients having the first file format processing capabilities make shared file portions
available to clients having the first file format processing capabilities and to clients having

the second file format processing capabilities.

52. A computer system, comprising:
Of MOre Processors;
memory; and
one or more programs, wherein the one or more programs are stored in the memory
and configured to be executed by the one or more processors, the one or more programs
including instructions for:
obtaining information that enables distribution of content to a plurality of
clients having different file format processing capabilities;
providing to a first client, having first file format processing capabilities, first
information that enables the first client to access respective content in a first file format;
providing to a second client, having second file format processing capabilities
different from the first file format processing capabilities, second information that enables the
second client to access respective content in a second file format different from the first file
format, wherein:
the first information identifies a first set of file portions that can be
combined to generate the respective content in the first file format;
the second information identifies a second set of file portions that can
be combined to generate the respective content in the second file format; and
the second set of file portions includes one or more shared file portions

that are included in the first set of file portions.

53. A computer system, comprising:

onc or more proccssors; and

58

WO 2015/040494 PCT/IB2014/002726

memory storing one or more programs for execution by the one or more processors,
the one or more programs including instructions for performing any of the methods of claims

34-51.

54. A non-transitory computer readable storage medium storing one or more programs,
the one or more programs comprising instructions, which, when executed by an electronic
device with one or more processors, cause the device to:
obtain information that enables distribution of content to a plurality of clients having
different file format processing capabilities;
provide to a first client, having first file format processing capabilities, first
information that enables the first client to access respective content in a first file format;
provide to a second client, having second file format processing capabilities different
from the first file format processing capabilities, second information that enables the second
client to access respective content in a second file format different from the first file format,
wherein:
the first information identifies a first set of file portions that can be combined
to generate the respective content in the first file format;
the second information identifies a second set of file portions that can be
combined to generate the respective content in the second file format; and
the second set of file portions includes one or more shared file portions that

are included in the first set of file portions.

55. A non-transitory computer readable storage medium storing one or more programs,
the one or more programs comprising instructions, which, when executed by a portable
electronic device or a computer system with one or more processors, cause the device or

system to perform any of the methods of claims 34-51.

59

WO 2015/040494

Client-Sarver Envirenment

100

Client Device 110-1

Media
Application
104

PCT/IB2014/002726

Media
Content
Buffer(s}

m &R

P2p
Network
132

Client Device 110-n

WJ

Network
Cache

(eg, CND)

136

\ %\ Network(s) 115

15

Server System 120-1

Media Delivery
Module 122

Media Contexi

Database |

Content

e

Figure 1A

—~— Redundant
By Content Host
Server(s) 138

Server System 128-n

PCT/IB2014/002726

WO 2015/040494

g1 ainbig

GoT (ayoen
BOOT) JBUNg

JUBILCD BIpay

L-Ob L 23As sl

ST (slonisg
180 JUBILICT

WRPUNPE Y

2EPD

J)
o T
V4 \
i .\
{aND “Bre)
suyoen f, UECT 4984
WICGMISR
mmwm /l/
o,
iﬂ! N I
v \
\\.\.E\E._EEF.E;EE.....!/
ver L
chielzlcly . gl CCL OINPO
JBILOT) BIPSIY ABnB(BIpapy
\\ll.\uiull-llll..ﬁ-..ﬂ.-i.ll
e

[-07 1 wWeishs 1anieg

HIOAMIEN did

[

waisiAs Aisaleq Bipsl

WO 2015/040494

Client Device

1181

CPU(s)
202

PCT/IB2014/002726

Memaory 212\

Operating System 218

Network Communication Module 21

Prasentation Module 22

204
A\

Electronic Device Application Module{s) 222

input Processing Module 224

Media Reguest Generation Maodule

22

Media Reception Module 228

Media Application 104

Media Exiraction Module 230

Seeking Module 232

Segment Request Module 234

(-3 X]

User interface
Device(s)
fnput 1
Device(s) 08
Network
Interface(s)

‘\'21@

Electronic Device Data Module(s) 236

Media Content Buffer(s) 105

Media Content Database 238

User Profile Database 24

Source Table 242

RS

Figure 2

WO 2015/040494

Server Sysiem

120-1

OPLis)
302

PCT/IB2014/002726

Memory 306 ~~

Operating System 310

Network Communication Module 312

Network
interface(s}

K" 304

Server Application Module(s) 314

Request Processing Module 318

Media Delivery Module 122

Encoding Module 318

Encryption Module 320

Compression Module 322

Omission Moduile 324

Segmentation Module 325

Context Tracking Moduie 328

PP

Server Data Module(s) 330

Media Content Database 124

Context Database 12

User Profile Database 332

Source Table 334

SFD

Figure 3

WO 2015/040494

Media File 400

File Header 402

Global Header 404

PCT/IB2014/002726

“V Header Version 406

Resoiution 408

Codec infg 41

Channel Info 412

Segment Index 418

Stream Table 414

RSP

S

-

@,

°
e Vg
- =
-,
»
e
~

Cluster index 422

Offset info 418-1

Segment 1D 420-1

Cluster 1

Cluster Header 428-1

Cluster Data 438-1

Cluster 2

Cluster Header 428-2

Cluster Dala 438-2

Cluster 3

Cluster Header 428-3

Chuster Data 438-3

Cluster 4

Cluster Header 428-4

Cluster Data 438-4

LXK]

Cluster N

Cluster Header 428-N |

Offset info 418-2

Segment 1D 420-2

s
Y LT Y]

Segment 1D 420-n

iy % Offset Info 4180

Cluster Timestamp Info 424-1

Offset info 426-1

Cluster Timestamp Info 424-2

Offset Info 428-2

B

Cluster Timestamp Info 424-n

Offset Info 4268-n

Cluster Size 430

Frame Timestamp info 434-1

Offset Info 432-1

Frame Timestamp Info 434-2

Offset info 432-2

2D

Frame Timestamp info 434-n

Offset Info 432-n

& | Keyframe Data 440-1

Frame Data 440-2

Cluster Data 438-N

[X

Frame Data 440-n

EFigure 4A

WO 2015/040494 PCT/IB2014/002726

Segment Source
Table 440

Segment 1D 420-1 51 1885 188 (822

Segment 1D 420-2 St 182 (8131837

PP

Segment D 420-n S4 156 188 310

Figure 4B

Segment 1 FiloHeader402 C1 1 C2 1 C31C4 1 C51C8) C7 | C8

Segment2 | CO [CI10{C11{C12 1 C13 1 C141C151C18

Segment3d (C17]C181C18{C20 [C211C221C231C24

Figure 4C

WO 2015/040494 PCT/IB2014/002726
500
INPUT/DISPLAY CLIENT DEVICE SOURCE
502 —y 504 ¢
Timestamp
User input g1 Cluster Index
Byte Offset
determined from
Offset info {e.g., Size,
Size Delta, Offset,
506 . ete.
AR)
Segment index
Segment D (SHA-1
Hash) identified using
Byte Offset
508 y 510
Sourcg Reguest
Information Processor
Segment ID
and Address Segment
and
Destination
514 512~ Address
Timestamp b Cluster Index | Response
Generator
Segment
Byte Offset of (including
Cluster one or more
(Keyframe) Clusters)
¥ F~ 510
Timestamp b1 Cluster Header
Byte Offset of
Reqguested
Frame {at
Timestamp)
520 ~y ¥ - 518
Display Frame et Frame Data

Frame Data (e.g.,
Group of Frames
and Timestamp}

Figure 5

WO 2015/040494 PCT/IB2014/002726

First Information 800

Segment 1 P1 P2 P3{P4IPE I PE] PTPS

Segment2 | PO P10 P IPI21P13 P14 P15 P18

Segmentd P17 {P18IP19 P20 P21 P22 P15 P24 | P28

Metadata E"“ First Modification information 802

{oplional} ' e e e e
Figure GA
Second Information 50
Segment 1 File Header g52 P1IP2IP3 1 P4 iP5 PG P7 | P8

Segmentd | PY [PI0{P11 I P12{P13 F14{P15| P16

Segment 3 (P17 PI18{PI19 P20 | P21 P22 1 P15 1 P24 { P25

Metadata ;W Metadata File 654 g
{oplionall " v o - o -
Figure 6B
File Header 602 FMeotadata File 654

Global Header 404

Segment index 41

Cluster Index 422

Cluster Header Request

Figure 6C

ginformation;@é@ m“mmmmmmmmm_ﬂg

WO 2015/040494

706

PCT/IB2014/002726

] The file header and/or the file omit respective omitted information that

Obtain a file header for 8 file that corresponds 1o a plurality of clusters,
where the file header includes a cluster index that enables coarse
searching within the file

The file header is obtained in response to a request for content ot
associated with the file {

The cluster index does not include information that enables fine
searching within the file |

iv

is necessary for extracting content from the file

[F o o o o

The respective omitted information was removed from the file
é header and/or the file before the file header was obtained by the
electronic device.

-

Prior to providing the portion of content corresponding to the file
to the presentation device for presentation o the user:

Genegrate the respective information based on the file
header and/or the file; and

Add the omitted information into the file header and/or file

Qon ows R UG RN U KRR GRS RIGRIY

The respective omitted information was removed from the file |
i header and/or the file in accordance with a determination that the §
i respective omitied information is duplicative of information that §
; was included elsewhere in the file header and/or the file é

| The respective omitted information was removed from the file | |

| header and/or the file in accordance with a determination that the L}~
| respective omitted information describes aspects of the content | |

| corresponding to the file that are already known {o the electronic | |

: device |

702

704

706

708

AL

T2

714

(A)
S
&

Figure 7A

WO 2015/040494 PCT/IB2014/002726

Obtain a file header for a file that corresponds to a plurality of clusters, L~7p2
where the file header includes a cluster index that enables coarse
searching within the file

-

§ The file header is compressed. bt 716
|

§ Frior to using the cluster index, decompress the file header and !

{ identify the cluster index in the decompressed file header. !

mmmmmmmmmmmmmmmmmmmmmmmmmm anond

g e e e e o o e e m e k

| Thea plurality of clusters have a predefined size b 748

E A first cluster of the plurality of clusters has a first size; and " 720

| A second cluster of the plurality of clusters has a second size different |

E from the first size |

mmmmmmmmmmmmmmmmmmmmmmmmmm ool

- 1

| A size of the cluster index increases over time W i v

| The filte header includes a respective number that is stored as a non- " 724
| floating point number; and {
| The respective number was converted from a floating point number to |
| a non-floating point number based on a determination that a non- §
| fioating point representation of the respective number was below a |
| predefined size {

E The file header further includes a global header that provides content =" 726
| descriptive information that enabiles the device to prepare content of |
| the file to the user {

]
]
&

Figure 7B

WO 2015/040494

PCT/IB2014/002726

Obtain a file header for a file that corresponds to a pluralily of clusters,
where the file header includes a cluster index that enables coarse
searching within the file

The file is divided into a plurality of segments; ;
A respective segment of the plurality of segments includes multipie b
sequential clusters from the plurality of clusters; and
The file header further includes a segment index that enables the i
device {0 identify a respective segment that includes reqguested ;
content ;

§ The plurality of segmentis of the file are distributed among a ;,.__T/
{ plurality of sources, and the first segment is available froma |
§ plurality of different sources {

nd

§ aligned segments that each include an integer number of {
g clusters greater than or equal o one

§ A first segment of the plurality of segments includes a first sat of g,_i,/
; N clusters, and a second segment of the plurality of segments | |
i includes a second set of M clusters, where the clusters in the firsty §
; set of N clusters are distinct from the clusters in the second set | ?
i of M clusters { ;

702

728

730

732

734

Receive a request [0 seek fo a respective position within the file 736
in response to receiving the request: 730

identify a cluster of the plurality of clusters that includes content that
corresponds to the respective position based on the cluster index [740

Figure 7C

WO 2015/040494 PCT/IB2014/002726

In response o receiving the request:

Obtain a cluster header associated with the cluster based on et 742
information retrieved from the cluster index, where the cluster header
includes a content index that enables fine searching within the cluster

mmmmmmmmmmmmmmmmmmmmmmmm -

! The content index in the cluster header for the cluster includes a jodbr] 744

§ sequence of content entries including a first content entry that |
corresponds {o first content foliowed by a second content entry
that corresponds to second content foliowed by a third content

| entry that corresponds to third content. The second content entry |

i includes information that identifies a position of the second

i content based on a distance between corresponding portions of 3

i the first content and the second content. The third content entry |

y includes information that identifies a position of the third content 3

| based on a distance beltween corresponding portions of the

| second content and the third content §

g The content index in the cluster header for the cluster includes a
sequence of content entries including a first content entry that

! corresponds to first content foliowed by a second content entry i

b that corresponds to second content followed by a third content TTTNTAR

| entry that corresponds to third content. The third content entry P

I includes information that identifies a position of the third content §

| based on a difference betweaen: ;

|

; i

; |

; i

; |

; i

A distance between corresponding portions of the first content
and the second content; and

A distance between corresponding portions of the second
content and the third content

oo KR GOUOD KUK GUOU0 AKX GOUOD UGKR. OUOU0 AXKRR OOUGR RKRKR OUOOU RXKRX OUOUO RKRXR GOUOD RRUGIX OUOUO RXKKR OOUOD KRR OUKKR RRRRR axei

The content index for the cluster includes: an overall size of the |

§ cluster; a plurality of entries for corresponding content that | o,

include information from which sizes of corresponding content E"‘“‘”/ 748
can be determined; and a respective entry for respective content

that does not include information from which a size of the §

respeactive content can be determined. §

size of the cluster and the sizes of the content corresponding o §
the plurality of entries in the cluster other than the respective

|

§

|

i Determine a size of the respective content based on the overall

§

|

| entry. i

Figure 7D

WO 2015/040494 PCT/IB2014/002726

In response {o receiving the request:

Obtain cluster data associated with the cluster

I'The cluster header is obtained in a first location. The cluster data |

is obtained from one or more locations different from the first (L
ocation §

SRR ARRRR RO RRRKR UK RRRRR UV RRRRA GUWR) AKRAR GUUAR WURR RKRR ARRURR GRRUG ARRAR GO RRRKR OO RRRR GO RURRR GURRR AKRRR SO

| When the file is divided into a plurality of segments and the file |

header includes a segment index, obtaining the cluster data ™
includes: identifying, based on information refrieved from the |
clusier index, a position of the cluster data in the file; identifying, |
in the segment index, a first segment that includes the cluster |
data; obtaining the first segment; and identifying the cluster data |
in the first segment !

[T e e e o e e !

Obtaining the first segment includes requesting the first §
segment from a first source using an identifier of the first 5]

!
; segment retrieved from the segment index Py
mmmmmmmmmmmmmmmmmmmm Py
5 The identifier of the first segment includes a ni
; g L4

!

{

!

{

!

{

!

{

!

{

!

i cryptographic hash
N R R
{
!
{
!
{
!
!
!
!
!
!

§
i
§
i
§
i
§
i
§
i
§
7
b
to
b
to
b
to
b
to
b
to
i

After obtaining the first segment, obtain a second segment, |
where: f

ot

When the file corresponds o on-demand content,
the second segment is obtained from a respective source
selected from a source table that includes a plurality of
sources from which the second segment is available; and

When the file corresponds to live content, the second

§ segment is obtained from the first source
mmmmmmmmmmmmmmmmmmmmmm of

After obtaining the cluster header, identify respective content within
the cluster that corresponds {0 the respective position based on the
content index

" 38

750

TN752

754

756

758

760

62

Figure 7E

WO 2015/040494 PCT/IB2014/002726

The file includes one or more ancrypted portions including a respective
encrypted portion.

Before providing the portion of content corresponding to the file (o the
presentation device for presentation 1o a user, decrypt the respective
encrypted portion.

Lv7g3

starting with the respective content

from the first location.

g corresponding to the file is obtained from a second location distinct
i

The file includes video data. A respeactive cluster of the plurality of |

E

! . ,

| The respective content corresponds o one or more frames inthe |
: video data |

The file includes audio data. A respective cluster of the plurality of {

|

! : ,

| The respective content corresponds o one or more audio samples or |
| audio frames in the audio data i

After identifying the respective content, provide at least a portion of content
corresponding to the file io a presentation device Tor presentation to a user,

7
The file header is obtained from a first location. The content fonort

§

|
clusters corresponds 1o a group of frames with a respective keyframe. .

clusters corresponds to a group of audio samples or audio framas. e

-7 64

766

770

772

WO 2015/040494 PCT/IB2014/002726

0
o2

Obtain content-access information that enables distribution of conlent o a
plurality of clients having different file format processing capabilities

802

!

Frovide to a first client, having first file format processing capabilities, first
information that enables the first client {0 access respective content in a first
file format

The first information entifies a first set of file portions thatcan be L
combined to generate the respective content in the first file format

-804

- 806

!

Provide to a second client, having second file format processing
capabilities, second information that enables the second client to access
respective conlent in a second file format different from the first file format

The second information identifies a second set of file portions that can b
be combined to generate the respective content in the second file
format

The second set of file portions includes one or more shared file -
portions thatl are included in the first set of Tile portions

7
é The first file format provides functionaiity that is not provided by the e
| second file format ;

g The second file format provides functionality that is not provided by b
| the first file format i

=808

810

812

- 814

=816

Figure 8A

WO 2015/040494 PCT/IB2014/002726

Provide to a second client, having second file format processing
capabilities, second information that enables the second client 1o access
respective content in a second file format different from the first file format

g The first set of file portions and the second set of file portions are o
| distributed among a plurality of computing devices in a media delivery §
| gystemn i

3 A leading portion in the first set of file portions is different froma b
leading portion of the second set of file portions ;
!

i The leading portion of the first set of file portions is Toliowed by a W
set of shared file portions in a respective order. The leading

| portion of the second set of file portions is followed by the set of

| shared file portions in the respective order.

R

The leading portion of the second set of file portions includes || 4
respective metadata that is not included in the leading portion of §
the first set of file portions

1
| The respective metadata is appended 1o a beginning of the M
| leading portion of the second set of file portions P E

oy

g"i"he second information has a file header that includes information that p
| enablas coarse searching within the file i

§The second information has a file header that includes information that je
| enables the client to obtain a fine-searching metadata fiig, the fine- |
| searching metadata file including information that enables fine !
§ searching within the file i

- 808

818

820

822

T R24

828

828

830

Figure 8B

WO 2015/040494

PCT/IB2014/002726

Provide to a second client, having second file format processing

capabilities, second information that enables the second client 1o access
respective content in a second file format different from the first file format

r
§
|
§
|
§
|
§
|
§
|
§
|
§
|

enables the second client to generate file portions that are compatible

The first set of file portions includes file portions that are compatible |
with the first file format. The second set of file portions includes file b
portions that are compatible with the first file format and modification |

information that ensbles the second client to generate file portions that |
are compatible with the second file format from file portions in the first |

format. E

T T T T T T T T e e 7 !
The modification information enables the second client to alter L~

metadata from the second set of file portions to generate fle | |
portions that are compatible with the second file format i

L

£

The modification information includes information that enables
the second client to transcode the second set of file portions fromy |
the first file format to the second file format to generate file | |
portions thal are compatible with the second file format p o

B

The first set of file portions includes respective file portions and first
modification information that enables the first client to generale file
portions that are compatible with the first file format from the
respective file portions. The second set of file portions includes the
respective file portions and second modification information that

with the second file format from the respeclive file portions.

mmmmmmmrmﬁ [5.

The respeclive file portions are not compatible with the first file
format or the second file format

;(j

S

- 808

832

834

836

- 838

840

Figure 8C

WO 2015/040494

PCT/IB2014/002726

Provide to a second client, having second file format processing

capabilities, second information that enables the second client 1o access
respective content in a second file format different from the first file format

]

The first set of file portions includes respective file portions and first

enables the second client to generate file portions that are compatible

The respeclive content is shared over a peer o peer network. Clients

modification information that enables the first client 1o generate file
portions that are compatible with the first file format from the
respective file portions. The second set of file portions includes the
respective file portions and second medification information that

with the second file format from the respective file portions.

!
-
§
|
§
|
§

The first modification information enables the first client o alter k“f/

metadata from the respective portions 1o generate file portions {
that are compatible with the first file format. The second i
modification information enables the second client o alter i
metadata from the respective portions 1o generate file portions |
that are compatible with the second file format. i

The first modification information includes information that
enables the first client (o transcode the first set of file portions
from a respective file format {o the first file format to generate file
portions that are compatible with the first file format. The second
modification information includes information that enables the
second client {o transcode the second set of file portions from the
respective file format {o the second file Tormat to generale file
portions that are compatible with the second file format.

having the first file format processing capabilities make shared file

portions available to clients having the first file format processing

capabilities and (o clients having the second file format processing
capabilities.

memm.(«ma

- 808

838

842

844

- 846

Figure 8D

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings

