(19) United States ## (12) Patent Application Publication (10) Pub. No.: US 2021/0301286 A1 Bradner et al. Sep. 30, 2021 (43) **Pub. Date:** (54) TARGETED PROTEIN DEGRADATION TO ATTENUATE ADOPTIVE T-CELL THERAPY ASSOCIATED ADVERSE INFLAMMATORY RESPONSES (71) Applicant: DANA-FARBER CANCER **INSTITUTE, INC.**, Boston, MA (US) (72) Inventors: James Bradner, Weston, MA (US); Justin Roberts, Cambridge, MA (US); Behnam Nabet, Boston, MA (US); Georg Winter, Vienna (AT); Andrew J. Phillips, Arlington, MA (US); Timothy Heffernan, Sugar Land, TX (US); Dennis Buckley, Jamaica Plain, (73) Assignee: DANA-FARBER CANCER **INSTITUTE, INC.**, Boston, MA (US) MA (US) (21) Appl. No.: 17/332,598 (22) Filed: May 27, 2021 ### Related U.S. Application Data - (60) Division of application No. 15/889,963, filed on Feb. 6, 2018, now Pat. No. 11,046,954, which is a continuation of application No. PCT/US2016/046088, filed on Aug. 8, 2016. - Provisional application No. 62/323,575, filed on Apr. 15, 2016, provisional application No. 62/323,591, filed on Apr. 15, 2016, provisional application No. 62/202,076, filed on Aug. 6, 2015. ### **Publication Classification** (51) Int. Cl. (2006.01)C12N 15/11 A61K 35/17 (2006.01)C07K 16/00 (2006.01) | A61K 31/4525 | (2006.01) | |--------------|-----------| | A61K 31/4545 | (2006.01) | | A61K 31/4985 | (2006.01) | | A61K 31/506 | (2006.01) | | A61K 31/519 | (2006.01) | | A61K 31/551 | (2006.01) | | A61K 31/575 | (2006.01) | | C07K 14/725 | (2006.01) | | C07K 14/705 | (2006.01) | | C07K 16/28 | (2006.01) | | A61K 31/5513 | (2006.01) | | A61K 31/58 | (2006.01) | | C07K 14/47 | (2006.01) | | C12N 15/90 | (2006.01) | | | | (52) U.S. Cl. CPC C12N 15/11 (2013.01); A61K 2035/122 (2013.01); CO7K 16/00 (2013.01); A61K 31/4525 (2013.01); A61K 31/4545 (2013.01); A61K 31/4985 (2013.01); A61K 31/506 (2013.01); A61K 31/519 (2013.01); A61K 31/551 (2013.01); A61K 31/575 (2013.01); C07K 14/7051 (2013.01); C07K 14/70517 (2013.01); C07K 14/70521 (2013.01); C07K 16/2863 (2013.01); A61K 31/5513 (2013.01); A61K 31/58 (2013.01); C07K 14/47 (2013.01); C12N 15/907 (2013.01); C07K 2317/622 (2013.01); C07K 2319/03 (2013.01); C07K 2319/20 (2013.01); C07K 2319/95 (2013.01); A61K 35/17 (2013.01) #### (57)**ABSTRACT** This invention is in the area of compositions and methods for regulating chimeric antigen receptor immune effector cell, for example T-cell (CAR-T), therapy to modulate associated adverse inflammatory responses, for example, cytokine release syndrome and tumor lysis syndrome, using targeted protein degradation. ### Specification includes a Sequence Listing. FIG. 1 FIG. 2 FIG. 3 ## CD19-dTAG CAR FIG. 4 FIG. 5 FIG. 6 FIG. 7A FIG. 7B FIG. 8 FIG. 9 FIG. 10 FIG. 11 FIG. 12 FIG. 13 FIG. 14A FIG. 14B FIG. 15A FIG. 15B FIG. 16 FIG. 17A FIG. 17B FIG. 18A FIG. 18B FIG. 19 FIG. 20 NIH-3T3: Treatments for 24 hr FIG. 21 NIH-3T3: 1µM Treatments FIG. 22 FIG. 23A FIG. 23B FIG. 23C FIG. 23D FIG. 24A FIG. 24B ## N-FKBP*-KRAS G12V Expt #1 2000 % DMSO Control 150 100 50 \$ -8 -10 log[inhibitor], M **→** d8ET6 ~~~ dFKBP9 dFKBP13 -₩- dFKBP7 **DMSO** dFKBP12 FIG. 24C # N-FKBP*-KRAS G12V FIG. 24D FIG. 25B FIG. 25C FIG. 25E FIG. 25F FIG. 25H FIG. 25I FIG. 26 FIG. 27 FIG. 28 FIG. 29 FIG. 30 FIG. 31 FIG. 32A FIG. 32B FIG. 32D FIG. 32E | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- | dBET1 | |--|-------| | | dBET2 | | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- | dBET3 | | HN N-N N O O O O O O O O O O O O O O O O | dBET4 | | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- | dBET5 | FIG. 33A | N-N° CI
SHN CONHO
SHN CONH | dBET6 | |--|-------| | HN CONTRACTOR | dBET7 | | | dBET8 | | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- | dBET9 | FIG. 33B | SHINT NT N | dBET10 | |---|--------| | SYLYING IN THE SHE | dBET11 | | | dBET12 | | | dBET13 | | | dBET14 | FIG. 33C | N-N H N N N N N N N N N N N N N N N N N | dBET15 | |--|--------| | | dBET16 | | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- | dBET17 | | | dBET18 | | HOTH SHOW SHOW | dGR1 | | HO THE STATE OF TH | dGR2 | FIG. 33D | HO THE SHAPE OF TH | dGR3 |
--|---------| | | dFKBP-1 | | | dFKBP-2 | | | dFKBP-3 | | | dFKBP-4 | | | dFKBP-5 | FIG. 33E | | dFKBP-6 | |---------|---------| | | dFKBP-7 | | | dFKBP-8 | | THE SEE | dFKBP-9 | FIG. 33F FIG. 33G FIG. 33H | Cmpd. No. | Structure | |-----------|--| | dBET19 | NC SHOW TO CO | | dBET20 | | | dBET21 | | | dBET22 | | | dBET23 | OME
OME
ON OME
ON ON OME
ON OME
ON OME
ON OME
ON OME
ON OME
ON OME
ON OME
O | FIG. 34A | ADETO4 | U | |---|---| | dBET24 | HN ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | | | | | N' ' | | | s N | | | | | | CI | | dBET25 | N-NoxoWe | | | -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | a la sala | | | | | | O O O LA A NHO(_) | | | H CI | | dBET26 | "N-N o Zowe | | | | | | | | | | | | | | dBET27 | | | | | | | | | | X y % o o o o o o o o o o o o o o o o o o | | *************************************** | | | | | | dBET28 | CI
H | | | 0~~~~0 | | - | | | - | S N NH | | - | | | - | CI | | L | EIC 24D | FIG. 34B | dBET29 | H | |---|--| | | | | | | | | \$ | | | | | dBET30 | H . N | | | N-NOZN-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | | | | | | dBET31 | H () | | | N-10 od | | | | | | | | | | | dBET32 | NH & NH | | | | | | | | | | | | HN HN | | | | | dBET33 | l ö m l
Ç Q | | | | | | | | | | | | HN | | *************************************** | THE CONTY | | | 1 Ö H I | FIG. 34C | dBET34 | | |--------|---| | dBET35 | HN NH NH NH SHOW | | dBET36 | N-N CO H CO | | dBET37 | | | dBET38 | N-NO-NHOON HOUSE | | dBET39 | N-N CI
SIG 34D | FIG. 34D | dBET40 | | |--------|--| | dBET41 | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- | | dBET42 | | | dBET43 | | | dBET44 | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- | | dBET45 | HN CANAL COME HOUSE CO | |--------|--| | dBET46 | | | dBET50 | | | dBET51 | | | dBET52 | | FIG. 34F FIG. 34G | dBET59 | STAND HOUSE | |--------|------------------------------| | dBET60 | | | dBET61 | | | dBET62 | | | dBET63 | | | dBET64 | SIN N NH ONH ONH ONH ONH ONH | FIG. 34H | r | | |---------
---| | dBET100 | S N N N N N N N N N N N N N N N N N N N | | dBET101 | S N N N N N O N N O N N O N N O N N O N N O N N O N N O N N O N N O N N O | | dBET102 | S N N NH O NH O NH O | | dBET103 | | | dBET104 | S-NNN NH NH NH O NH O O NHO | FIG. 34I | dBET105 | SNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN | |----------|--| | dBET106 | SN, N O HN O O O O O O O O O O O O O O O O | | dBET107 | S-N-N-H-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O | | dFKBP-14 | Meo Come OMe OMe | FIG. 34J | dFKBP-15 | MeO CAN | |----------|---| | dFKBP-16 | Q | | | MeO NH | | | Meo-CL pJ CTN-SNHO | | | 060 | | | No do | | | | | | MeO OMe
OMe | | dFKBP-17 | MeQ OS NOON | | | Meo-Cl of Office | | | | | | Ö Ö' | | | | | | MeO COMe | | | ÓMe PIG 241/ | FIG. 34K FIG. 34L FIG. 34M FIG. 34N | dFKBP-32 | Meo Sharan Haran Sharan | |----------|--| | | MeO OMe
OMe | | dFKBP-33 | MeO NH NH | | | MeO J OMe
OMe | | dFKBP-34 | Meo She | | | | | dKFBP-35 | MeO OMe OMe | | | Meo Clark | | | MeO OMe | | | Owe | FIG. 340 | dFKBP-36 | MeQ | |-------------|---------------------------------------| | UFKDF-30 | | | | Meo S S THOUSE S | | | | | | MY S WH | | | | | | | | | MeO COMe | | dFKBP-37 | ÓMe
MeO, O. H. / NH // | | GI KBI -57 | | | | MeO / 3 / N / NH | | | \ \(\beta\) | | | N.C. | | | | | | | | | MeO COME | | INTERNA A A | ÓMe | | dFKBP-38 | MeO O NO N | | | Meo-Cloth UT 520 | | | MIEO N-()=0 | | | O MH | | | N O O | | | ް0° | | | | | | MeO OMe | | dFKBP100 | MeO | | | Meo H | | | | | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | 人。 | | | MeO OMe | | | OMe | FIG. 34P | Cmpd.
No. | Structure | |--------------|-----------| | dBET200 | | | dBET201 | | | | | | dBET202 | | | | | | dBET203 | | FIG. 35A FIG. 35B FIG. 35C FIG. 35D FIG. 35E FIG. 35F FIG. 35G FIG. 35H FIG. 35I FIG. 35J | Cmpd
ID | Structures | R | |------------------|--------------------------|-------------| | dFKBP-
1-I-m | RARI R
NOO | HN L NH O | | dFKBP-
1-I-m" | RART R | HÅ TONGONEO | | dFKBP-
1-I-o | RARI
NOOR | | | dFKBP-
1-I-o" | RARI
NAOR
R | | | dFKBP-
1-I-p | RARI
AND OR
AND OR | | | dFKBP-
1-I-p" | RARI | | | dFKBP-
2-I-m | RARI R | | FIG. 36A | dFKBP-
2-I-m" | Story State of the | | |------------------
--|--| | dFKBP-
2-I-o | HAPO R | | | dFKBP-
2-I-o" | RARI
NO R | | | dFKBP-
2-I-p | RARI
AND
R | | | dFKBP-
2-I-p" | ARI DE RESTRICTION OF THE PROPERTY PROP | | | dFKBP-
3-I-m | RARI R
NO | | | dFKBP-
3-I-m" | RARI R
HOP | ************************************** | FIG. 36B | | a rew | | |------------------|---------------|--| | dFKBP-
3-I-o | HAPO R | ×o-tilil-o-til-o-til-o-til-o-til-o-til-o-til-o-til-o-til-o-til-o-til-o-til-o-til-o-til-o-til-o-til-o-til-o | | dFKBP-
3-I-o" | AND R | ×o-y ll - Children C | | dFKBP-
3-I-p | RARI OR | *of II-> II TO SHE | | dFKBP-
3-I-p" | RARI DR | ×~~ H~~ H~~ H~~ H~~ H~~ H~~ H~~ H~~ H~~ | | dFKBP-
4-I-m | RARI R
NOO | XON HOUSE | | dFKBP-
4-I-m" | AND RART R | ×~~ II~~ II Co | | dFKBP-
4-I-o | THE RAPE | * The second sec | FIG. 36C | dFKBP-
4-I-o" | THE RART RART RART RART RART RART RART RAR | xorth-vitorio | |------------------|--|--| | dFKBP-
4-I-p | RARI
AND OF R | ×~~ H~~ H~~ H~~ H~~ H~~ H~~ H~~ H~~ H~~ | | dFKBP-
4-I-p" | RARI | * The state of | | dFKBP-
5-I-m | RAR1 R | ×~~ The state of t | | dFKBP-
5-I-m" | RAR1 R
NAO O
RAR2 | ×o~H~~H~~H~~H~~H~~H~~H~~H~~H~~H~~H~~H~~H~ | | dFKBP-
5-I-o | RAR1 | *~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | dFKBP-
5-I-o" | RAR1
NJOR
RAR2 | ×o~ H~~ H~ | FIG. 36D | dFKBP-
5-I-p | RAR1
NO
RAR2 | XON HOUSE | |------------------|----------------------|--| | dFKBP-
5-I-p" | RAR2 | ×o~ H~~ H~~ H~~ H~~ H~~ H~~ H~~ H~~ H~~ H | | dFKBP-
6-I-m | RARY CARRES | *~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | dFKBP-
6-I-m" | RAR1 R | ×~~ II~~ II TO CONTROL OF THE CONTRO | | dFKBP-
6-I-0 | RARZ
NO R | *~\#\\\#\\\#\\\#\\\#\\\#\\\#\\#\\#\\#\\#\
 | dFKBP-
6-I-o" | RARY RARY RARY RARY | ×o~ H~~ H~ | | dFKBP-
6-I-p | RARI
NO O
RAR2 | ×o~H~~H~ | FIG. 36E | dFKBP- 7-I-m dFKBP- 7-I-m dFKBP- 7-I-m dFKBP- 7-I-o 7-I-p dFKBP- 7-I-p | | | · | |--|---|----------------------|----------------------------------| | dFKBP- 7-I-m" dFKBP- 7-I-o" | | NA PO | ° CACA-C>- I | | dFKBP- 7-I-m" dFKBP- 7-I-o" RAR1 dFKBP- 7-I-o" RAR2 RAR1 AND | | RARI CR | *or il conon on it of the second | | dFKBP- 7-I-0 ARR2 ARR1 ARR1 ARR1 ARR2 ARR1 ARR2 ARR3 | 1 | NY O | | | dFKBP- 7-I-o" RAR1 | 1 | RARI | xoyllooooolly (hopeo | | dFKBP-7-I-p" RAR1 | | RARI | | | dFKBP-7-I-p" RAR1 *OTINGEO NHO NHO NHO NHO NHO NHO NHO N | | RAR1
N O O R | | | FIG 36F | | RAR1
NHOO
RAR2 | CA-NH
CA-NH | FIG. 36F | dFKBP- 8-I-m dFKBP- 8-I-m dFKBP- 8-I-c 9-I-m | | | | |--|------------------|----------------------|--| | dFKBP- 8-I-m" dFKBP- 8-I-o" dFKBP- 8-I-o" dFKBP- 8-I-o" dFKBP- 8-I-p" 9-I-m dFKBP- 9-I-m | | TO O O RAR2 | ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | | dFKBP- 8-I-o dFKBP- 8-I-o dFKBP- 8-I-o dFKBP- 8-I-p | 1 : | ~ CO & CO | *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | dFKBP- 8-I-0" dFKBP- 8-I-p" dFKBP- 8-I-p" dFKBP- 8-I-p" RAR2 RAR1 | | RAR1 NO R RAR2 | [I N-()=0 | | dFKBP- 8-I-p dFKBP- 8-I-p" RAR2 RAR1 RAR1 RAR1 RAR1 RAR1 RAR2 RAR1 RAR1 RAR1 RAR2 RAR1 R | | RARI
NOOR
ROOR | | | dFKBP-
8-I-p" RAR2 RAR1 RAR2 RAR1 RAR2 RAR2 | 1 | RARI OR R | | | dFKBP-
9-I-m RAR2 | dFKBP-
8-I-p" | RAR1 | *~~, | | | | RARI R
NO
RAR2 | | FIG. 36G | dFKBP-
9-I-m" | RAR1 R
NO O
RAR2 | | |-------------------|------------------------|--| | dFKBP-
9-I-o | RAR1 | | | dFKBP-
9-I-o" | RAR1 | | | dFKBP-
9-I-p | RARI
N J O -R | *~*#° | | dFKBP-
9-I-p" | RAR1 | *~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | dFKBP-
17-I-m | RARI R
NO 0
RAR2 | | | dFKBP-
17-I-m" | RAR1 R
NAO | \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | FIG. 36H | dFKBP-
17-I-o | RARI
RARI
RARI | | |-------------------|-----------------------|---| | dFKBP-
17-I-o" | RARI
NO OR
RAR2 | | | dFKBP-
17-I-p | RAR1
NOOR
RAR2 | | | dFKBP-
17-I-p" | RARI
NO RARI | \$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | dFKBP-
26-I-m | RARI R | | | dFKBP-
26-I-m" | RARI R
RARI | \$ 11-0-0-0-11-0-11-0-11-0-11-0-11-0-11-0 | | dFKBP-
26-I-o | RARI
N O R
RAR2 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | FIG. 36I | | | | |-------------------|---|-------| | dFKBP-
26-I-o" | RARI
RARZ
RARZ | 3 11 | | dFKBP-
26-I-p | RARI PROPERTY OF THE | | | dFKBP-
26-I-p" | RAR1 NO O RAR2 | | | dFKBP-
24-I-m | RARI R
NO
NO
RARZ | | | dFKBP-
24-I-m" | RART R | | | dFKBP-
24-I-o | RARY RARY | | | dFKBP-
24-I-o" | RAR1 | € 36I | FIG. 36J | dFKBP-
24-I-p | RAR1
N J O R
RAR2 | | |-------------------|--------------------------|--| | dFKBP-
24-I-p" | RAR1 NO R RAR2 | | | dFKBP-
27-I-m | RARI R
NO 0
RARZ | | | dFKBP-
27-I-m" | RARI R
N
N
RAR2 | | | dFKBP-
27-I-o | RAR1 | | | dFKBP-
27-I-o" | RARI
NOOR
RAR2 | | FIG. 36K | | R ^{AR1} | | |-------------------|-------------------------|--| | dFKBP-
27-I-p | NO O RAR2 | | | dFKBP-
27-I-p" | RARZ
RARZ | | | dFKBP-
28-I-m | RARI R
RARI R | | | dFKBP-
28-I-m" | RARI R | | | dFKBP-
28-I-o | RARI
NO R
RARZ | | | dFKBP-
28-I-o" | RAR1
N H O R
RAR2 | | FIG. 36L | dFKBP-
28-I-p | RAR1
N O O O R | | |-------------------|---|--| | dFKBP-
28-I-p" | RAR1 N O O R | | | dFKBP-
25-I-m | R C C C C C C C C C C C C C C C C C C C | | | dFKBP-
25-I-m" | RARI R | | | dFKBP-
25-I-o | RARI
RARZ
RARZ | | | dFKBP-
25-I-o" | RAR1
NA POR
RAR2 | | FIG.
36M | | | , | |-------------------|--|------------------------------| | dFKBP-
25-I-p | RARI
RARI
NO
RARIZ | | | dFKBP-
25-I-p" | R ^{AR1}
N
O O
R ^{AR2} | | | dFKBP-
29-I-m | RARI CONTRACTOR RARIANTE CONTRACTOR RARIANTE CONTRACTOR RARIANTE CONTRACTOR RARIANTE CONTRACTOR RARIANTE CONTRACTOR RACE CONTR | | | dFKBP-
29-I-m" | RARI R
RARIA
RARIZ | | | dFKBP-
29-I-o | RARZ RARZ | | | dFKBP-
29-I-o" | RAR1 | | | dFKBP-
29-I-p | RAR1
N-O
RAR2 | 2 H - 0 (-0) 10 H - 2 NH - 0 | FIG. 36N | dFKBP-
29-I-p" | RARI
NOO
RAR2 | | |-------------------|-----------------------------------|---------------| | dFKBP-
21-I-m | RARI R
RARI | | | dFKBP-
21-I-m" | RARI R
NAO
RARZ | | | dFKBP-
21-I-o | RAR1 | | | dFKBP-
21-I-o" | RAR1 | STHM THO | | dFKBP-
21-I-p | RAR1 | STHAT CHARLES | | dFKBP-
21-I-p" | RARI
N
N
O
O
RARIZ | 9 HN | FIG. 360 | dFKBP
-16-I-
m | RARY R
NNO O | 2 HN - SNH | |-----------------------|--------------------|------------------| | dFKBP
-16-I-
m" | RAR1 R | | | dFKBP
-16-I-o | RAR1
N O R | 3 HN - NH ON SHO | | dFKBP
-16-I-
o" | RAR1 | | | dFKBP
-16-I-p | RAR1
N O O RAR2 | 2 HN WHO SHO | FIG. 36P | dFKBP
-16-I-
p" | RAR1
NOOR | 2 HN ~ JNH | |-----------------------|--------------------------|-------------------| | dFKBP
-20-I-
m | RARI R
RARI R
RAR2 | | | dFKBP
-20-I-
m" | RARI R
NAO | | | dFKBP
-20-I-o | RAR1 | 2 HAYANHO | | dFKBP
-20-I-
o" | RAR1
NOOR
RAR2 | 2 NHO SUHO | | dFKBP
-20-I-p | RAR1
RAR2 | | | dFKBP
-20-I-
p" | RARZ RARI | 2 1 NH NH NH NH O | FIG. 36Q | dFKBP
-18-I-
m | RAR1 R | WASH COM | |-----------------------|-------------------------|------------------| | dFKBP
-18-I-
m" | RARI R
NO
RARZ | *or H-Children | | dFKBP
-18-I-o | RAR1 | *or HI Child | | dFKBP
-18-I-
o" | RAR1
N O R | 202 HILLS SING | | dFKBP
-18-I-p | RARI
N O O R
RARZ | *OF HINGS NH | | dFKBP
-18-I-
p" | RAR1
N
N
RAR2 | WO JULY SINGS NH | FIG. 36R | dFKBP
-13-I-
m | RARI R
NOO | *or Hand Sington | |-----------------------|-----------------------|------------------| | dFKBP
-13-I-
m" | RARI R
NOO
RAR2 | *OFIL-CONTO | | dFKBP
-13-I-o | RAR1
N O R | 202 HAY SING THE | | dFKBP
-13-I-
o" | RAR1 | WINT STITE | | dFKBP
-13-I-p | RAR1
N O O R | WALL STATE | | dFKBP
-13-I-
p" | RAR1 RAR2 RAR2 | *OF INTO | | dFKBP
-14-I-
m | RARI R
NO O | 2 H | FIG. 36S | dFKBP
-14-I-
m" | RAR1 R
NOO
RAR2 | | |-----------------------|--------------------------|-------------| | dFKBP
-14-I-o | RAR1 RAR2 RAR2 | | | dFKBP
-14-I-
o" | RARI
NO
RARZ | | | dFKBP
-14-I-p | RAR1
N O O O RAR2 | | | dFKBP
-14-I-
p" | RAR1
NOO
RAR2 | \$ NH | | dFKBP
-19-I-
m | RARI R
RARI R
NO 0 | NHO SINGSON | FIG. 36T | dFKBP
-19-I-
m" | RAR1 R
N O O
RAR2 | WO THOUSE OF THE STATE S | |-----------------------|----------------------------------|--| | dFKBP
-19-I-o | RARI
NJOR
RAR2 | *ON-NHONS IN STA | | dFKBP
-19-I-
o" | RARI
NAOR
RAR2 | NH ON SIN THE | | dFKBP
-19-I-p | RARI
NO PO | WHO SHOW THE | | dFKBP
-19-I-
p" | RAR1
N
N
O
O
RAR2 | *OJ-WHO~SINGTO | | dFKBP
-15-I-
m | RAR1 R | 2 None of the state stat | | dFKBP
-15-I-
m" | RAR1 R | | FIG. 36U | dFKBP
-15-I-o | RAR1 N O O R RAR2 | \$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | |-----------------------|---------------------|---| | dFKBP
-15-I-
o" | RAR1 | | | dFKBP
-15-I-p | RAR2 | \$ CHA-\$NHO | | dFKBP
-15-I-
p" | RAR1
NOO
RAR2 | 2 - CLA-2-10
2 - NHO | | dFKBP
-A-m | RARI R
NO 0 | * H S NH S NH S NH S | | dFKBP
-A-m" | RAR1 R | NH ONH ONH | FIG. 36V | dFKBP
-A-o | RAR1
N O O R | NH NH ONH ONH | |-----------------------|---|---------------| | dFKBP
-A-o" | RAR1 | HZ O SH | | dFKBP
-A-p | RARI
RAR2 | NH ONH ONH | | dFKBP
-A-p" | R ^{AR1} R R R R R | H NH O NH O | | dFKBP
-34-I-
m | R CZ CZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | | | dFKBP
-34-I-
m" | RARI R
NO O
RAR2 | | | dFKBP
-34-I-0 | RARI
NOOR
RARZ | | FIG. 36W | dFKBP
-34-I-
o" | RAR1
N R
RAR2 | | |-----------------------|-------------------------------|---| | -34-I-p | RAR2 | | | dFKBP
-34-I-
p" | RAR1
NOORAR2 | | | dFKBP
-36-I-
m | R O NO NARZ | | | dFKBP
-36-I-
m" | RARI R
RARI
NO
RARIZ | | | dFKBP
-36-I-o | RARI
NOOR
RAR2 | \$ \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | dFKBP
-36-I-
o" | RARI
N JO R | PIC 26Y | FIG. 36X | dFKBP
-36-I-p | RAR1
N O O RAR2 | | |-----------------------|------------------------|--| | dFKBP
-36-I-
p" | RAR1
NOO
RAR2 | | | dFKBP
-35-I-
m | RARI R
RARI | | | dFKBP
-35-I-
m" | RAR1 R | | | dFKBP
-35-I-o | RARI
NO O
RAR2 | | | dFKBP
-35-I-
o" | RARI
NAPOR
RARIZ | | | dFKBP
-35-I-p | RAR1
N O O R | | FIG. 36Y | dFKBP | R ^{AR1} | | |-----------------------
--|--------| | -35-I-
p" | N O R RARZ | O J NH | | dFKBP
-37-I-
m | RARY R
RARY
RARZ | | | dFKBP
-37-I-
m" | RARI CANON CARACTER C | | | dFKBP
-37-I-o | RAR1
N O O R
RAR2 | | | dFKBP
-37-I-
o" | RAR1
NO R
RAR2 | | | dFKBP
-37-I-p | RAR1
N-OO
RAR2 | | | dFKBP
-37-I-
p" | RAR1
NPO PR | | FIG. 36Z | dFKBP
-30-I-
m | RARI R
N J O | | |-----------------------|---|--| | dFKBP
-30-I-
m" | RARI R
NO
NO
RARZ | | | dFKBP
-30-I-o | R P P P P P P P P P P P P P P P P P P P | | | dFKBP
-30-I-
o" | RARI
NO R
NO R
RAR2 | | | dFKBP
-30-I-p | RAR1
N O O R | | | dFKBP
-30-I-
p" | RAR1
NOOR
RAR2 | | FIG. 36AA | dFKBP
-32-I-
m | RARI R
N TO
N TO
RARZ | \$ HANNER TO SHE | |-----------------------|--|------------------| | dFKBP
-32-I-
m" | RARY ON ORANGE OF THE PROPERTY | | | dFKBP
-32-I-o | RARI
NOOR
RARZ
RARZ | | | dFKBP
-32-I-
o" | RAR1
N C R | | | dFKBP
-32-I-p | RARI
NO
RARI | | | dFKBP
-32-I-
p" | RAR1
NOOR
RAR2 | | FIG. 36BB | dFKBP | R ^{AR1} R | o H P | |-----------------|--------------------|---| | -31-I-
m | 010 | | | | | , A S NH | | | RARZ | | | dFKBP
-31-I- | RAR1 R | | | m" | | | | | RAR2 | ° 6 6′ · · · · | | dFKBP | R ^{AR1} | | | -31-I-o | 040 | | | | - NO F | → NH | | | RAR2 | | | dFKBP
-31-I- | R ^{AR1} | | | 0" | 040 | | | | ~ No R | V V NH | | | NAR2 | | | dFKBP | R ^{AR1} | | | -31-I-p | 0 60° | + B-O=0 | | | | NH S NH | | | R ^{AR2} | | | dFKBP
-31-I- | R ^{AR1} | | | p" | Q YOR | | | | ~~~~ | , o o o o o o o o o o o o o o o o o o o | | | RAR2 | NC 2400 | FIG. 36CC | dFKBP
-33-I-
m | RARI R
NO O | | |-----------------------|--------------------------|-----------------| | dFKBP
-33-I-
m" | RAR1 R | | | dFKBP
-33-I-o | RAR1 | | | dFKBP
-33-I-
o" | RARI
NOOR
RAR2 | | | dFKBP
-33-I-p | RAR1
NOOR
RAR2 | | | dFKBP
-33-I-
p" | RAR1
NO OR
RAR2 | | | dFKBP
-38-I-
m | RAR1 R
N TO O
RAR2 | S-N-CH-CH-CARPO | FIG. 36DD | dFKBP
-38-I-
m" | RAR1 R
NO O
RAR2 | | |-----------------------|------------------------|------------| | dFKBP
-38-I-o | RAR1 NO R RAR2 | | | dFKBP
-38-I-
o" | RARI
NOOR
RARZ | \$ 0.00 PT | | dFKBP
-38-I-p | RAR1
N O O R | | | dFKBP
-38-I-
p" | RAR1
NOO
RAR2 | | FIG. 36EE dFKBP-1-o dFKBP-1-p dFKBP-2-o FIG. 37A dFKBP*6-o dFKBP*6-p dFKBP*7-o FIG. 37B dFKBP*7-p dFKBP*8-o dFKBP*9-o FIG. 37C dFKBP*9-p FIG. 37D Х2-о dFKBP13-o dFKBP14-o FIG. 37E FIG. 37F dFKBP16-o dFKBP16-p dFKBP17-o FIG. 37G dFKBP17-p dFKBP18-o dFKBP18-p FIG. 37H dFKBP19-p FIG. 37I dFKBP21-o FIG. 37J FIG. 37K FIG. 37L dFKBP26-p ОMе MeÓ MeO MeÓ dFKBP27-o dFKBP28-o FIG. 37M FIG. 37N dFKBP30-o dFKBP30-p FIG. 370 dFKBP32-p FIG. 37P dFKBP33-p MeO MeO ÓМе dFKBP34-o FIG. 37Q dFKBP34-p FIG. 37R FIG. 37T FIG. 37U dFKBP49-p dFKBP49-m dFKBP49-o FIG. 37V FIG. 37W ## TARGETED PROTEIN DEGRADATION TO ATTENUATE ADOPTIVE T-CELL THERAPY ASSOCIATED ADVERSE INFLAMMATORY RESPONSES ### RELATED APPLICATIONS [0001] This application is a U.S. Divisional Application of U.S. application Ser. No. 15/889,963, filed Feb. 6, 2018, which is a continuation of International Application No. PCT/US2016/046088, filed Aug. 8, 2016, which claims the benefit of provisional U.S. Application No. 62/202,076, filed Aug. 6, 2015, provisional U.S. Application No. 62/323,591, filed Apr. 15, 2016, and provisional U.S. Application No. 62/323,575, filed Apr. 15, 2016. The entirety of each of these applications is hereby incorporated by reference. # GOVERNMENT LICENSE RIGHTS [0002] This invention was made with government support under grant numbers R01 CA176745 and P01 CA066996 awarded by the National Institutes of Health. The government has certain rights in the invention. ### FIELD OF THE INVENTION [0003] This invention is in the area of improved compositions and methods for regulating chimeric antigen receptor immune effector cell, for example T-cell (CAR-T), therapy to modulate associated adverse inflammatory responses, for example, cytokine release syndrome and tumor lysis syndrome, using targeted protein degradation. #### INCORPORATION BY REFERENCE [0004] The contents of the text file named "16010-023WO1US1_SequenceListing_ST25.txt" which was created on Jan. 29, 2018, and is 256 KB in size, are hereby incorporated by reference in their entirety. # BACKGROUND [0005] The adoptive transfer of genetically engineered immune effector cells aims to rapidly establish T-cell mediated tumor immunity. In this approach, the patient's own T-cells are targeted to bind to tumor cells through transgeneencoded chimeric antigen receptors (CARs). When expressed in T-cells, CARs efficiently redirect T-cell specificity and cytotoxicity to tumor cells in a mechanism that is independent of antigen processing. Through this approach, CAR T-cells overcome issues with immune tolerance and the requirement of major histocompatibility complex (MHC) presentation of antigens. CARs are synthetic, engineered receptors that contain sequences that encode antibody-based recognition domains linked to intracellular T-cell signaling sequences. First generation CARs include an extracellular single chain variable fragment (scFv) derived from an antibody and directed against a tumor target antigen, linked to an intracellular CD3 ξ signaling module. Second and third generation CARs have evolved to now include multiple co-stimulatory domains including, but not limited, to 4-1BB and CD28. [0006] Results from early clinical trials have established the therapeutic efficacy of CAR-T therapy in a number of cancers, including lymphoma (Till et al., "CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and
4-1 BB domains: pilot clinical trial results." *Blood* 119 (2012): 3940-3950), chronic lymphocytic leukemia (CLL) (Porter et al., "Chimeric antigen receptor modified T-cells in chronic lymphoid leukemia." *NEJM* 365 (2011):725-733), acute lymphoblastic leukemia (ALL) (Grupp et al., "Chimeric antigen receptor modified T-cells for acute lymphoid leukemia." *NEJM* 368 (2013):1509-1518), and neuroblastoma (Louis et al., "Antitumor activity and long-term date of chimeric antigen receptor-positive T-cells in patients with neuroblastoma." *Blood* 118 (2011):6050-6056), among others. [0007] In November 2014, the FDA granted orphan status to Juno Therapeutic, Inc.'s JCAR015. Kite Pharma, Inc.'s KTE-C19 for refractory aggressive non-Hodgkin's lymphoma also recently received the designation from both the FDA and the European Medicines Agency. The University of Pennsylvania/Novartis's CTL019 for ALL also received breakthrough status. [0008] Recently, CAR-T cells containing $\gamma\delta$ receptors targeting solid tumors such as melanoma and gastrointestinal tumors have been proposed. Mirzaei et al., "Prospects for chimeric antigen receptor (CAR) $\gamma\delta$ T cells: A potential game changer for adoptive T cell cancer immunotherapy," Cancer Letters 380 (2016):413-423. [0009] CAR T-cell therapy is not, however, without significant side effects. Although most adverse events with CAR-T are tolerable and acceptable, the administration of CAR T-cells has, in a number of cases, resulted in severe systemic inflammatory reactions, including cytokine release syndrome and tumor lysis syndrome (Xu et al., "Efficacy and safety of adoptive immunotherapy using anti-CD19 chimeric antigen receptor transduced T-cells: a systemic review of phase I clinical trials." Leukemia Lymphoma 54 (2013):255-260; Minagawa et al., "Seatbelts in CAR therapy: how safe are CARS?" Pharmaceuticals 8 (2015):230-249). For example, in 2010, two deaths were attributed to the development of cytokine release syndrome following administration of CAR T-cells in the clinical setting (Brentjens et al., "Treatment of chronic lymphocytic leukemia with genetically targeted autologous T-cells: case report of an unforeseen adverse event in a phase I clinical trial." Mol. Ther. 18 (2010):666-668; Morgan et al., "Case report of a serious adverse event following the administration of T-cells transduced with a chimeric antigen receptor recognizing ERBB2." Mol. Ther. 18 (2010):843-851). [0010] Cytokine release syndrome (CRS) is an inflammatory response clinically manifesting with fever, nausea, headache, tachycardia, hypotension, hypoxia, as well as cardiac and/or neurologic manifestations. Severe cytokine release syndrome is described as a cytokine storm, and can be fatal. CRS is believed to be a result of the sustained activation of a variety of cell types such as monocytes and macrophages, T-cells and B cells, and is generally characterized by an increase in levels of TNF α and IFN γ within 1 to 2 hours of stimulus exposure, followed by increases in interleukin (IL)-6 and IL-10 and, in some cases, IL-2 and IL-8 (Doessegger et al., "Clinical development methodology for infusion-related reactions with monoclonal antibodies." *Nat. Clin. Transl. Immuno.* 4 (2015):e39). [0011] Tumor lysis syndrome (TLS) is a metabolic syndrome that is caused by the sudden killing of tumor cells with chemotherapy, and subsequent release of cellular contents with the release of large amounts of potassium, phosphate, and nucleic acids into the systemic circulation. Catabolism of the nucleic acids to uric acid leads to hype- ruricemia: the marked increase in uric acid excretion can result in the precipitation of uric acid in the renal tubules and renal vasoconstriction, impaired autoregulation, decreased renal flow, oxidation, and inflammation, resulting in acute kidney injury. Hyperphosphatemia with calcium phosphate deposition in the renal tubules can also cause acute kidney injury. High concentrations of both uric acid and phosphate potentiate the risk of acute kidney injury because uric acid precipitates more readily in the presence of calcium phosphate and vice versa that results in hyperkalemia, hyperphosphatemia, hypocalcemia, remia, and acute renal failure. It usually occurs in patients with bulky, rapidly proliferating, treatment-responsive tumors (Wintrobe M M, et al., "Complications of hematopoietic neoplasms." Wintrobe's Clinical Hematology, 11th ed. Philadelphia, Pa.: Lippincott Williams & Wilkins; Vol II (2003):1919-1944). [0012] The dramatic clinical activity of CAR T-cell therapy necessitates the need to implement additional "safety" strategies to rapidly reverse or abort the T-cell responses in patients that are undergoing CRS or associated adverse events. Metabolic approaches including co-expression of Herpes simplex virus-thymidine kinase (HSV-TK) induce apoptosis of CAR T-cells upon treatment with ganciclovir. This approach is limited by the delayed kinetics of response and the potential for immunogenic reaction to HSV. Apoptosis promoting strategies have been developed in which a drug binding domain is expressed in frame with components of the apoptotic machinery, including Caspase 9 and FAS. This system allows for conditional activation of apoptosis upon administration of a small molecule inducer of dimerization. The effect is rapid, non-immunogenic, and reduces payload of transduced cells by 90%. Both approaches are currently being evaluated in clinical trials. While expression of "suicide" genes provides a mechanism to reverse the unwanted toxicities, both approaches are considered irreversible, effectively limiting any further therapeutic benefit to the patient. [0013] Other strategies for controlling CAR T-cell activation include separating dual costimulatory domains from the antigen-recognition domain, wherein stimulation of the CAR T-cell is controlled by a small-molecule drug-rimiducid. These T-cells, known as GoCAR-Ts, can only be fully activated when they are exposed to both cancer cells and the drug. In addition, strategies incorporating bispecific CARs which includes a second binding domain on the CAR T-cell that can lead to either an inhibitory or amplifying signal, allows for decreased off-target effects, wherein the presence of one target protein leads to activation of the CAR T-cell while the presence of a second protein leads to inhibition. [0014] WO2016/115177 to Juno Therapeutics, Inc. titled "Modified Hepatitis Post-Transcriptional Regulatory Elements" describes the inclusion of post-transcriptional regulatory elements (PREs) in administered proteins to hasten degradation by encouraging natural ubiquination of the protein and shorten half-life, including for example chimeric antigen receptors. The employed strategy, however, is not regulatable. [0015] It is an object of the present invention to provide effective reversible treatments which can modulate the activity of CAR T-cells and reduce adverse inflammatory responses. ### SUMMARY OF THE INVENTION [0016] Compositions, engineered cells, such as immune or immunostimulatory cells, and methods for mediating CAR immune effector cell stimulation, for example T-cell stimulation, through the incorporation of a heterobifunctional compound targeted protein, protein domain, or polypeptide sequence (the "heterobifunctional compound targeting domain" or "dTAG") within a synthetic chimeric antigen receptor (CAR) construct are provided that allows for reversible targeted protein degradation using a heterobifunctional compound (i.e., a heterobifunctional compound that binds to a ubiquitin ligase through its ubiquitin ligase binding moiety and also binds to the CAR that contains the dTAG through a dTAG Targeting Ligand in vivo, as defined in more detail below). Compared to modalities that incorporate suicide gene strategies which are used to rapidly induce cell death of, for example, CAR T-cells, the use of a heterobifunctional compound to target CAR ubiquitination and degradation within the CAR T-cell allows for reversible control of the CAR expression and in turn the T-cell response, while sparing the CAR T-cell itself. The dTAG can be used as a rheostat of CAR expression and, thus, CAR T-cell stimulation, affording the ability to regulate the expression of the CAR and degree of CAR T-cell responses by administration of the heterobifunctional compound, and regeneration of the CAR upon clearance of the heterobifunctional compound. Furthermore, by incorporating a heterobifunctional compound targeted protein within the CAR construct, adverse side effects associated with current CAR T-cell therapies such as inflammatory responses, including CRS, and metabolic responses, such as TIL, may be controlled through the administration of a heterobifunctional compound that controls CAR expression, all while allowing the CAR T-cell to retain its ability to reactivate upon reexpression of the CAR and clearance of the heterobifunctional compound. [0017] Therefore, in one embodiment, a method is provided that includes the steps of: [0018] (i) removing immune effector cells, for example T-cells, from a patient with a disorder of diseased cells that can be treated by increasing the ability of the patient's T-cells to recognize and bind to the diseased cells; [0019] (ii) transforming the T-cells ex vivo by inserting a gene encoding a CAR having at least a sequence targeting a diseased cell surface antigen and an amino acid sequence that can be recognized by and bound to a dTAG Targeting Ligand of a heterobifunctional compound to form a CAR T-cell; [0020] (iii) administering to the patient the autologous CAR T-cells; and then [0021] (iv) administering to the patient, as needed, a heterobifunctional compound which binds to a) the dTAG and b) a ubiquitin ligase; in a manner that brings the dTAG (and thus the CAR) into proximity of the ubiquitin ligase, such that the CAR, or a portion thereof, is ubiquitinated, and then
degraded by the proteasome. [0022] By degrading at least a portion of the cytoplasmic signaling domain of the CAR, the ability of the CAR to activate the immune effector cell, for example a CAR T-cell, is diminished. As contemplated herein, sufficient degradation of the CAR occurs wherein the CAR's signaling functionality is disrupted. [0023] As contemplated herein, the synthetic CARs of the present invention, which can be expressed by engineered cells for use in adoptive cell therapies, include an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic domain having at least one intracellular signaling domain and a dTAG capable of being targeted and bound by a dTAG Targeting Ligand of a heterobifunctional compound, wherein the binding of the heterobifunctional compound to the dTAG leads to the degradation of the CAR through ubiquitination and ubiquitin-mediated degradation. [0024] The dTAG of the CAR is any amino acid sequence to which a heterobifunctional compound can be bound through its dTAG Targeting Ligand, which leads to ubiquitination and then proteasomal degradation of the CAR. Preferably, the dTAG should not interfere with the function of the CAR. In one embodiment, the dTAG is a nonendogenous peptide, leading to heterobifunctional compound selectivity and allowing for the avoidance of off target effects upon administration of the heterobifunctional compound. In one embodiment, the dTAG is an amino acid sequence derived from an endogenous protein which has been modified so that the heterobifunctional compound binds only to the modified amino acid sequence and not the endogenously expressed protein. [0025] In particular embodiments, the dTAGs for use in the present invention include, but are not limited to, amino acid sequences derived from endogenously expressed proteins such as FK506 binding protein-12 (FKBP12), bromodomain-containing protein 4 (BRD4), CREB binding protein (CREBBP), or transcriptional activator BRG1 (SMARCA4). In other embodiments, dTAGs for use in the present invention may include, for example, a hormone receptor e.g. estrogen-receptor protein, androgen receptor protein, retinoid x receptor (RXR) protein, or dihydroflorate reductase (DHFR), including bacterial DHFR. In other embodiments, the dTAG may include, for example, an amino acid sequence derived from a bacterial dehalogenase. In other embodiments, the dTAG, may include, amino acid sequences derived from 7,8-dihydro-8-oxoguanin triphosphatase, AFAD, Arachidonate 5-lipoxygenase activating protein, apolipoprotein, ASH1L, ATAD2, baculoviral IAP repeat-containing protein 2, BAZ1A, BAZ1B, BAZ2A, BAZ2B, Bcl-2, Bcl-xL, BRD1, BRD2, BRD3, BRD4, BRD5, BRD6, BRD7, BRD8, BRD9, BRD10, BRDT, BRPF1, BRPF3, BRWD3, CD209, CECR2, CREBBP, E3 ligase XIAP, EP300, FALZ, fatty acid binding protein from adipocytes 4 (FABP4), GCN5L2, GTPase k-RAS, HDAC6, hematoietic prostaglandin D synthase, KIAA1240, lactoglutathione lyase, LOC93349, Mcl-1, MLL, PA2GA, PB1, PCAF, peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, PHIP, poly-ADP-ribose polymerase 14, poly-ADPribose polymerase 15, PRKCBP1, prosaposin, prostaglandin E synthase, retinal rod rhodopsin-sensitive cGMP 3','5phosphodiesterase subunit delta, S100-A7, SMARCA2, SMARCA4, SP100, SP110, SP140, Src, Sumoconjugating enzyme UBC9, superoxide dismutase, TAF1, TAF1L, tankyrase 1, tankyrase 2, TIF1a, TRIM28, TRIM33, TRIM66, WDR9, ZMYND11, or MLL4. In yet further embodiments, the dTAG may include, for example, an amino acid sequence derived from MDM2. [0026] In a particular embodiment, the dTAG is derived from BRD2, BRD3, BRD4, or BRDT. In certain embodiments, the dTAG is a modified or mutant BRD2, BRD3, BRD4, or BRDT protein. In certain embodiments, the one or more mutations of BRD2 include a mutation of the Tryptophan (W) at amino acid position 97, a mutation of the Valine (V) at amino acid position 103, a mutation of the Leucine (L) at amino acid position 110, a mutation of the W at amino acid position 370, a mutation of the V at amino acid position 376, or a mutation of the L at amino acid position 381. [0027] In certain embodiments, the one or more mutations of BRD3 include a mutation of the W at amino acid position 57, a mutation of the V at amino acid position 63, a mutation of the L at amino acid position 70, a mutation of the W at amino acid position 332, a mutation of the V at amino acid position 338, or a mutation of the L at amino acid position 345. In certain embodiments, the one or more mutations of BRD4 include a mutation of the W at amino acid position 81, a mutation of the V at amino acid position 87, a mutation of the L at amino acid position 94, a mutation of the W at amino acid position 374, a mutation of the V at amino acid position 380, or a mutation of the L at amino acid position 387. In certain embodiments, the one or more mutations of BRDT include a mutation of the W at amino acid position 50, a mutation of the V at amino acid position 56, a mutation of the L at amino acid position 63, a mutation of the W at amino acid position 293, a mutation of the V at amino acid position 299, or a mutation of the L at amino acid position 306. [0028] In a particular embodiment, the dTAG is derived from cytosolic signaling protein FKBP12. In certain embodiments, the dTAG is a modified or mutant cytosolic signaling protein FKBP12. In certain embodiments, the modified or mutant cytosolic signaling protein FKBP12 contains one or more mutations that create an enlarged binding pocket for FKBP12 ligands. In certain embodiments, the one or more mutations include a mutation of the phenylalanine (F) at amino acid position 36 to valine (V) (F36V) (referred to interchangeably herein as FKBP12* or FKBP*). [0029] In one embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof from any of SEQ ID NO: 1-9 or 24-58. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 1. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEO ID NO: 2. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 3. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 4. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 5. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 6. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 7. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 8. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 9. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 24. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 25. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 26. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 27. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 28. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 29. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 30. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 31. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 32. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 33. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 34. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 35. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 36. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 37. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 38. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 39. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 40. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 41. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 42. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 43. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 44. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 45. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 46. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 47. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEO ID NO: 48. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 49. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID
NO: 50. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 51. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 52. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 53. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 54. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 55. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 56. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 57. In a particular embodiment, the dTAG is derived from an amino acid sequence, or fragment thereof of SEQ ID NO: 58. In a particular embodiment, the fragment thereof refers to the minimum amino acid sequence need to be bound by the heterobifunctional compound. [0030] In one embodiment, the dTAG is derived from any amino acid sequence described herein, or a fragment thereof, and the dTAG is capable of being bound by a corresponding heterobifunctional compound comprising a dTAG Targeting Ligand capable of binding the dTAG described herein. In one embodiment, the dTAG is amino acid sequence capable of being bound by a heterobifunctional compound described in FIG. 33, FIG. 34, FIG. 35, FIG. 36, or FIG. 37, or any other heterobifunctional compound described herein. In one embodiment, the dTAG is amino acid sequence capable of being bound by a heterobifunctional compound comprising a dTAG Targeting Ligand described in Table T. In a particular embodiment, the dTAG is derived from an amino acid sequence or fragment thereof of SEQ ID NO: 1 and the dTAG is capable of being bound by a heterobifunctional compound selected from any of dFKBP-1-dFKBP-5. In a particular embodiment, the dTAG is derived from an amino acid sequence or fragment thereof of SEQ ID NO: 2 and the dTAG is capable of being bound by a heterobifunctional compound selected from any of dFKBP-6-dFKBP-13. In a particular embodiment, the dTAG is derived from an amino acid sequence or fragment thereof of SEQ ID NO: 3 and the dTAG is capable of being bound by a heterobifunctional compound selected from any of dBET1-dBET18. In a particular embodiment, the dTAG is derived from an amino acid sequence or fragment thereof of SEQ ID NO: 3 and the dTAG is capable of being bound by a heterobifunctional compound selected from any of dBromo1-dBromo34. In a particular embodiment, the dTAG is derived from an amino acid sequence or fragment thereof of SEQ ID NO: 9 and the dTAG is capable of being bound by a heterobifunctional compound selected from any of dHalo1-dHalo2. In a particular embodiment, the dTAG is derived from CREBBP and the heterobifunctional compound contains a CREBBP dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from SMARCA4, PB1, or SMARCA2 and the heterobifunctional compound contains a SMARCA4/PB1/SMARCA2 dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from TRIM24 or BRPF1 and the heterobifunctional compound contains a TRIM24/BRPF1 dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from a glucocorticoid receptor and the heterobifunctional compound contains a glucocorticoid dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from an estrogen or androgen receptor and the heterobifunctional compound contains an estrogen/androgen receptor dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from DOT1L and the heterobifunctional compound contains a DOT1L dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from Ras and the heterobifunctional compound contains a Ras dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from RasG12C and the heterobifunctional compound contains a RasG12C dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from HER3 and the heterobifunctional compound contains a HER3 dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from Bcl-2 or Bcl-XL and the heterobifunctional compound contains a Bcl-2/Bcl-XL dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from HDAC and the heterobifunctional compound contains a HDAC dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from PPAR and the heterobifunctional compound contains a PPAR dTAG Targeting Ligand selected from Table T. In a particular embodiment, the dTAG is derived from DHFR and the heterobifunctional compound contains a DHFR dTAG Targeting Ligand selected from Table T. [0031] As contemplated herein, the CARs of the present invention include an extracellular ligand binding domain capable of binding a targeted protein, typically an antigen, for example a tumor antigen. In one embodiment, the extracellular ligand binding domain is an antigen binding domain, for example, an antibody or an antigen binding fragment thereof. In particular embodiments, the antigenbinding fragment is a Fab or scFv. In one embodiment, the extracellular ligand binding domain is a ligand for a tumor marker, for example, a ligand that binds a marker expressed on the cell surface of a tumor, for example IL13 which binds to the IL13 receptor (IL13R) on glioma cells or heregulin which binds to erb B2, B3, and B4 on breast cancer cells. In one embodiment, the extracellular ligand binding domain targets a labeled or tagged protein or molecule, for example biotin or fluorescein isothiocyanate, which is bound to an antibody targeting a tumor expressed protein. For example, the extracellular ligand binding domain can target a label on a tumor-specific antibody, for example biotin, so that when the antibody-label binds to the tumor cell, the extracellular binding ligand of the CAR T-cell binds the label, activating the T-cell, and killing the tumor cell. In this regard, a "universal CAR" can be generated capable of binding any tagged or labeled antibody. See, e.g., Abate Daga et al., "CAR models: next generation CAR modifications for enhanced T-cell function," Molecular Therapy-Oncolytics (2016)3:1-7. An exemplary illustration of such a strategy is depicted in FIG. 2 [0032] In one embodiment, the antigen binding domain in the CAR binds to a tumor antigen, for example, a tumor antigen associated with a hematological malignancy or a solid tumor. Tumor antigens capable of being targeted by CAR T-cells are known, and include, for example, but are not limited to, CD19, CD20, CD22, CD30, CD40, CD70, CD123, ErbB2 (HER2/neu), epithelial cell adhesion molecule (EpCAM), Epidermal growth factor receptor (EGFR), epidermal growth factor receptor variant III (EGFRvIII). Disialoganglioside GD2, disialoganglioside GD3, mesothelian, ROR1, mesothelin, CD33/IL3Ra, C-Met, PSMA, Glycolipid, F77, EGFRvIII, GD-2, NY-ESO-1 TCR, melanomaassociated antigen (MAGE) A3 TCR, melanoma-associated antigen (MAGE) A1 TCR, alphafetoprotein (AFP), carcinoembryonic antigen (CEA), CA-125, MUC-1, epithelial tumor antigen (ETA), tyrosinase, CA15-3, CA27-29, CA19-9, calcitonin, calretinin CD34, CD99MIC2, CD7, chromogranin, cytokeratin, desmin, CD31 FL1, glial fibrillary acidic protein, gross cystid disease fluid protein, HMB-45, human chorionic gonadotropin inhibin, MART-1, Myo D1, neuron-specific enolast, placental alkaline phosphatase, prostate specific antigens, PSCA. PTPRC, 5100 protein, synaptophysin, thyroglobulin, thyroid transcription factor 1, tumor M2-PK, vimentin, human telomerase reverse transcriptase (hTERT), surviving, mouse double minute 2 homolog (MDM2), kappa-light chain, LeY, L1 cell adhesion molecule, oncofetal antigen (h5T4), TAG-72, VEGF-R2, and combinations thereof, as well as others described herein. Other antigens to which the antigen binding domain of the CAR can be directed include, but are not limited to, tissue or cell lineage specific antigens including, but not limited to, CD3, CD4, CD8, CD24, CD25, CD33, CD34, CD133, CD138, or a combination thereof. [0033] As contemplated herein, the CARs of the present invention include a transmembrane domain spanning the extracellular ligand binding domain and the at least one intracellular signaling domain. Transmembrane domains useful in the construction of CARs are known in the art, and can be derived from natural or synthetic sources. For example, transmembrane regions contemplated herein include, but are not limited to, those derived from (i.e. comprise at least the transmembrane region(s) of) the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD8, CD45, CD4, CDS, CDS, CD9, CD 16, CD22, CD33, CD37, CD64, CD80, CD86, CD 134, CD137, CD 154, or KIR2DS2. Alternatively the transmembrane domain in some embodiments is synthetic, for example, comprising predominantly hydrophobic residues such as leucine and valine. In some aspects, a triplet of phenylalanine, tryptophan and valine will be found at each end of a synthetic transmem- [0034] As further contemplated herein, the CARs of the present invention include at least one intracellular (or cytoplasmic) signaling domain. The intracellular signaling domain of the CAR activates at least one of the normal effector functions or responses of the immune cell. For example, upon binding of the extracellular ligand domain to a target antigen, the signaling domain may act to activate the CAR T-cell, for example, by inducing a function of a T-cell such as cytolytic activity or T-helper activity, including the secretion of cytokines or other factors. In some embodiments, the CAR includes an
intracellular component of the TCR complex, such as a TCR CD3+ chain that mediates T-cell activation and cytotoxicity, e.g., the immunoreceptor tyrosine-based activation motif (ITAM) domain CD3 zeta chain (CD3ζ). Thus, in some aspects as contemplated herein, the antigen binding molecule is linked to one or more cell signaling domains. In some embodiments, cell signaling domains include CD3 transmembrane domain, CD3 intracellular signaling domains, and/or other CD transmembrane domains. In some embodiments, the CAR further includes a portion of one or more additional molecules such as Fc receptor γ, for example FcεRIγ, CD8, CD4, CD25, or CD16. For example, in some aspects, the CAR includes a chimeric molecule between CD3-zeta (CD3- ζ) or Fc receptor γ and CD8, CD4, CD25 or CD16. In one embodiment, the intracellular signaling domain is a Dap-12 derived signaling domain. Generalized examples of CARs having a dTAG capable of being bound by a heterobifunctional compound resulting in degradation of at least a portion of the CAR in combination with one or more signaling domains are illustrated in FIG. 1. [0035] In some embodiments, the intracellular signaling domain or domains include the cytoplasmic sequences of the T-cell receptor (TCR), and in some aspects also those of co-receptors that in the natural context act in concert with such receptor to initiate signal transduction following antigen receptor engagement, and/or any derivative or variant of such molecules, and/or any synthetic sequence that has the same functional capability. In the context of a natural TCR, full activation generally requires not only signaling through the TCR, but also a costimulatory signal. Thus, in some embodiments, to promote full activation, a component for generating secondary or co-stimulatory signal is also included in the CAR. In other embodiments, the CAR does not include a component for generating a costimulatory signal. In some aspects, an additional CAR is expressed in the same cell and provides the component for generating the secondary or costimulatory signal. In some aspects, the cell comprises a first CAR which contains signaling domains to induce the primary signal and a second CAR which binds to a second antigen and contains the component for generating a costimulatory signal. For example, a first CAR can be an activating CAR and the second CAR can be a costimulatory CAR. In some aspects, both CARs must be ligated in order to induce a particular effector function in the cell, which can provide specificity and selectivity for the cell type being targeted. In one embodiment, the cell comprises a first CAR which contains signaling domains to induce the primary signal and a costimulatory ligand molecule to stimulate other immune cells. See, e.g., Abate Daga et al., "CAR models: next generation CAR modifications for enhanced T-cell function," Molecular Therapy-Oncolytics (2016)3:1-7. An exemplary schematic of such a strategy is illustrated [0036] In some embodiments, the CAR includes a signaling domain and/or transmembrane portion of a costimulatory receptor, such as CD28, 4-1BB, OX40, DAP10, and ICOS. In some aspects, the same CAR includes both the activating and costimulatory components; in other aspects, the activating domain is provided by one CAR whereas the costimulatory component is provided by another CAR or ligand recognizing another antigen. [0037] In certain embodiments, the intracellular signaling domain comprises a CD28 transmembrane and signaling domain linked to a CD3 (e.g., CD3-zeta) intracellular domain. In some embodiments, the intracellular signaling domain comprises a chimeric CD28 and CD 137 (4-1BB, TNFRSF9) co-stimulatory domain, linked to a CD3 zeta intracellular domain. In some embodiments, the intracellular signaling domain comprises a chimeric CD28 or CD 137 (4-1BB, TNFRSF9) co-stimulatory domain. In some embodiments, the intracellular signaling domain comprises a chimeric CD28 and OX40 co-stimulatory domain. In some embodiments, the intracellular signaling domain comprises a chimeric CD27 co-stimulatory domain. In some embodiments, the intracellular signaling domain comprises a chimeric CD27 and DAP10 co-stimulatory domain. [0038] In some embodiments, the CAR encompasses two or more costimulatory domain combined with an activation domain, e.g., primary activation domain, in the cytoplasmic portion. One example is a receptor including intracellular components of CD3-zeta, CD28, and 4-1BB. Other examples include a receptor including intracellular components of CD3-zeta, CD28, and OX40. [0039] As contemplated herein, the CARs of the present invention are expressed by an immune effector cell, for example a T-cell, and administered to a subject in order to treat a disease or disorder, for example, a cancer. Among the cell types that may be used to express the CARs of the present invention include, but are not limited to, T-cells, NK cells, CD4+ T-cells, CD8+ cells, and stem cells, such as an induced pluripotent stem cell (iPS cell). In one embodiment, the cell is an autologous T-cell. In one embodiment, the cell shows anti-tumor activity when cross-reacted with a tumor cell containing an antigen capable of being bound by the extracellular ligand binding domain. [0040] Further contemplated herein is the use of heterobifunctional compound molecules capable of binding to the dTAG of the CARs of the present invention and inducing degradation through ubiquitination. By administering to a subject a heterobifunctional compound directed to a dTAG, the immune effector cell response can be modulated in a subject who has previously received an immune effector cell expressing the CARs of the present invention. The heterobifunctional compounds for use in the present invention are small molecule antagonists capable of disabling the biological function of the CAR through degradation. The heterobifunctional compounds for use in the present invention provide prompt ligand-dependent target protein degradation via chemical conjugation with derivatized phthalimides that hijack the function of the Cereblon E3 ubiquitin ligase complex. Using this approach, the CARs of the present invention can be degraded rapidly with a high specificity and efficiency. [0041] The heterobifunctional compounds that can be used in the present invention include those that include a small molecule E3 ligase ligand which is covalently linked to a dTAG Targeting Ligand through a Linker of varying length and/or functionality as described in more detail below. The heterobifunctional compound is able to bind to the dTAG and recruit an E3 ligase, for example, via binding to a Cereblon (CRBN) containing ligase or Von Hippel-Lindau tumor suppressor (VHL) to the CAR for ubiquitination and subsequent proteasomal degradation. **[0042]** Moreover, by combining the chemical strategy of protein degradation via the bifunctional molecules of the present application with the effectiveness of CAR T-cell therapy, the activity of the CAR T-cell, and thus the side effects, can be regulated in a precise, temporal manner by rapidly turning on and off ubiquitination, and proteasomal degradation of the CAR. [0043] Examples of heterobifunctional compounds useful in the present invention are exemplified in detail below. [0044] In one aspect, a nucleic acid is provided that encodes a CAR having an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic domain having at least one intracellular signaling domain and a dTAG capable of being bound by a heterobifunctional compound. [0045] In a particular embodiment, a nucleic acid encoding a CAR is provided that has an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic domain having at least one intracellular signaling domain and a dTAG, wherein the dTAG is derived from an amino acid sequence or fragment thereof of SEQ ID NO: 1 and the dTAG is capable of being bound by a heterobifunctional compound selected from any of dFKBP-1-dFKBP-5. In a particular embodiment, a nucleic acid encoding a CAR is provided that has an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic domain having at least one intracellular signaling domain and a dTAG, wherein the dTAG is derived from an amino acid sequence or fragment thereof of SEQ ID NO: 2 and the dTAG is capable of being bound by a heterobifunctional compound selected from any of dFKBP-6-dFKBP-13. In a particular embodiment, a nucleic acid encoding a CAR is provided that has an extracellular ligand binding domain, a transmem- brane domain, and a cytoplasmic domain having at least one intracellular signaling domain and a dTAG, wherein the dTAG is derived from an amino acid sequence or fragment thereof of SEQ ID NO: 3 and the dTAG is capable of being bound by a heterobifunctional compound selected from any of dBET1-dBET18. In a particular embodiment, a nucleic acid encoding a CAR is provided that has an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic domain having at least one intracellular signaling domain and a dTAG, wherein the dTAG is derived from an amino acid sequence or fragment thereof of SEQ ID NO: 3 and the dTAG is capable of being bound by a heterobifunctional compound selected from any of dBromo1dBromo34. In a particular embodiment, a nucleic acid encoding a CAR is provided that has an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic domain having at least one intracellular signaling domain and a dTAG, wherein the dTAG is derived from an amino acid sequence or fragment thereof of SEQ ID NO: 9 and the dTAG is capable of being bound by a heterobifunctional compound selected from any of dHalo1-dHalo2. [0046] In one aspect, an amino acid is provided that encodes a CAR having an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic domain having at least one intracellular signaling domain and a dTAG capable of
being bound by a heterobifunctional compound. [0047] In one aspect, a CAR expressing cell is provided, for example a natural killer (NK) cell or T lymphocyte, wherein the CAR has an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic domain having at least one intracellular signaling domain and a dTAG capable of being bound by a heterobifunctional compound. [0048] In a particular aspect, a method of modulating the activity of a cell expressing the CARs of the present invention is provided that includes administering to a subject administered the CAR expressing cell a heterobifunctional compound. [0049] Other aspects of the invention include polynucleotide sequences, plasmids, and vectors encoding the CARs of the present invention, and T-cells expressing the CARs of the present invention. [0050] Additional aspects include methods of modulating T lymphocyte or natural killer (NK) cell activity in a patient and treating the patient suffering from cancer by introducing into the individual a T lymphocyte or NK cell that includes a CAR of the present invention, and subsequently administering to the subject a heterobifunctional compound that is capable of degrading the CAR. These aspects particularly include the treatment of renal cell carcinoma, cervical carcinoma, osteosarcoma, glioblastoma, lung cancer, melanoma, breast cancer, prostate cancer, bladder cancer, salivary gland cancer, endometrial cancer, colon cancer, renal cell carcinoma, ovarian cancer, neuroblastoma, rhabdomyosarcoma, leukemia, and lymphoma. Examples of cancer targets for use with the present invention are cancers of B cell origin, particularly including acute lymphoblastic leukemia, B-cell chronic lymphocytic leukemia and B-cell non-Hodgkin's lymphoma. ## BRIEF DESCRIPTION OF THE FIGURES [0051] FIG. 1 is a schematic of generalized exemplary chimeric antigen receptors (CARs) of the invention which include a single chain antibody, hinge domain (H), transmembrane domain (TM), signaling domains responsible for T-cell activation, and a dTAG capable of being bound by a heterobifunctional compound resulting in degradation of at least a portion of the CAR. From left to right, the illustrative CARs include a CD3 ξ -derived signaling domain, a costimulatory domain and CD3 ξ -derived domain, and two costimulatory domains and a CD3 ξ -derived domain all with a 3' fused dTAG. [0052] FIG. 2 is a schematic of a generalized example of a universal CAR having a dTAG capable of being bound by a heterobifunctional compound resulting in degradation of at least a portion of the CAR, wherein the extracellular ligand binding domain targets a label or a tag, wherein the label or tag is bound to, for example, and antibody capable of binding a target ligand such as a tumor antigen. [0053] FIG. 3 is a schematic of a generalized example of a CAR having a dTAG capable of being bound by a heterobifunctional compound resulting in degradation of at least a portion of the CAR in a trans signaling combination with a costimulatory ligand including a costimulatory ligand capable of stimulating other immune effector cells. [0054] FIG. 4 is a schematic of an exemplary chimeric antigen receptor (CAR) having a scFv extracellular domain targeting the tumor antigen CD19, a CD8 Hinge transmembrane domain, a CD 28 transmembrane and signaling domain, a CD3-zeta co-stimulatory domain, and a dTAG capable of being targeted by a heterobifunctional compound. [0055] FIG. 5 is a plasmid map of the plasmid encoding CD19-CAR-dTAG. [0056] FIG. 6 is an immunoblot of cells treated with bi-functional molecules described in the present invention. 293FT cells (CRBN-WT or CRBN-/-) expressing either HA-tagged FKBP12WT or FKBP* (also referred to as dFKBP12* herein) were treated with indicated concentrations of dFKBP7 for 4 hours. CRBN-dependent degradation of FKBP* and not FKBPWT confirms selective activity of dFKBP7 for mutant FKBP*. [0057] FIG. 7A and FIG. 7B are graphs measuring the activity of a panel of dFKBP heterobifunctional compounds in cells expressing FKBP* fused to Nluc. Degradation of FKBP* is measured as a signal ratio (Nluc/Fluc) between NANOluc and firefly luciferase from the same multicistronic transcript in wild type (FIG. 7A) or CRBN-/- (FIG. 7B) 293FT cells treated with indicated concentrations of dFKBPs for 4 hours. A decrease in the signal ratio indicates FKBP* (Nluc) degradation. [0058] FIG. 8 is an immunoblot of cells treated with heterobifunctional compounds described in the present invention. Isogenic 293FT cells (CRBN-WT or CRBN-/-) expressing either FKBP12WT or FKBP* were treated with 100 nM of either dFKBP7 or dFKBP13 for 4 hours. CRBN-dependent degradation of FKBP* and not FKBP12WT or endogenous FKBP12 confirms selectivity of dFKBP7 and dFKBP13 for mutant FKBP*. [0059] FIG. 9 is an immunoblot of cells treated with heterobifunctional compounds described in the present invention. Isogenic 293FT cells (CRBN-WT or CRBN-/-) expressing HA-tagged FKBP* were treated with the indicated dose of dFKBP13 for 4 hours. These data confirm dose- and CRBN-dependent degradation of HA-tagged FKBP* by dFKBP13. [0060] FIG. 10 is an immunoblot of cells treated with heterobifunctional compounds described in the present invention. 293FT cells (CRBN-WT) expressing HA-tagged FKBP* were treated with 100 nM dFKBP13 for the indicated times. Cells were harvested and protein lysates immunoblotted to measure the kinetics of HA-tagged FKBP* degradation induced by dFKBP13. [0061] FIG. 11 is an immunoblot of cells treated with heterobifunctional compounds described in the present invention. 293FT cells (CRBN-WT) expressing FKBP* were pretreated with 1 uM Carfilzomib (proteasome inhibitor), 0.5 uM MLN4924 (neddylation inhibitor), and 10 uM Lenalidomide (CRBN binding ligand) for two hours prior to a 4 hour treatment with dFKBP13. Degradation of HAtagged FKBP* by dFKBP13 was rescued by the proteasome inhibitor Carfilzomib, establishing a requirement for proteasome function. Pre-treatment with the NAE1 inhibitor MLN4924 rescued HA-tagged FKBP* establishing dependence on CRL activity, as expected for cullin-based ubiquitin ligases that require neddylation for processive E3 ligase activity. Pre-treatment with excess Lenalidomide abolished dFKBP13-dependent FKBP* degradation, confirming the requirement of CRBN engagement for degrada- [0062] FIG. 12 is a schematic that illustrates the rheostat mechanism of CAR-dTAG. [0063] FIG. 13 is an immunoblot of cells treated with heterobifunctional compounds described in the present invention. Jurkat T-cells were transduced with lentivirus expressing CD19-CAR-dTAG. Cells were selected with blasticidin and expanded. Stable expression of CD19-CAR-dTAG was confirmed. [0064] FIG. 14A and FIG. 14B are immunoblots of cells treated with heterobifunctional compounds described in the present invention. Jurkat T-cells expressing CD19-CAR-dTAG were treated with the indicated dose of dFKBP7 or dFKBP13 for 4 hours. These data confirm dose-dependent degradation of CD19-CAR-dTAG in Jurkat T-cells. [0065] FIG. 15A and FIG. 15B are immunoblots of cells treated with bi-functional molecules described in the present invention. Jurkat T-cells expressing CD19-CAR-dTAG were treated with 250 nM of dFKBP7 or dFKBP13 for the indicated time. These data confirm time-dependent degradation of CD19-CAR-dTAG in Jurkat T-cells. [0066] FIG. 16 is an immunoblot of cells treated with heterobifunctional compounds described in the present invention. Jurkat T-cells expressing CD19-CAR-dTAG were treated with 250 nM of dFKBP7 for 4 hours. The dFKBP7 was then removed from the Jurkat cells via washouts and the re-expression of CD19-CAR-dTAG was monitored by immunoblot analysis at the indicated time points. Data suggest that CD19-CAR-dTAG protein levels recovered following removal of dFKBP7. [0067] FIG. 17A and FIG. 17B illustrate the rheostat chemical control of CD19-CAR-dTAG expression in T cells treated with heterobifunctional compounds described in the present invention. FIG. 17A illustrates the experimental design to measure the ability to control the expression CD19-CAR-dTAG in T-cells upon addition and removal of dFKBP7. Jurkat cells expressing CD19-CAR-dTAG were treated with 250 nM of dFKBP7 at the indicated time points (0 and 8 hours). At 4 and 12 hours, the dFKBP7 was washed out of the Jurkat cells. At each indicated timepoint, Jurkat cells were harvest to monitor CD19-CAR-dTAG expression levels via immunoblot analysis. FIG. 17B is the resulting immunoblot from the experimental design in FIG. 17A. The heterobifunctional compounds dFKBP7 molecule allows for exquisite chemical control of CD19-CAR-dTAG protein levels allowing for modulation within hours. These data support the rheostat mechanism described in the current invention. [0068] FIG. 18A and FIG. 18B are immunoblots of cells treated with heterobifunctional compounds described in the present invention. Immunoblots of MV4; 11 leukemia cells expressing indicated proteins fused to mutant FKBP* with an HA tag. Cells were treated for 16 hours with indicated concentrations of FKBP* selective heterobifunctional compounds, dFKBP7 or dFKBP13 and abundance of fusion proteins measured by western immunoblot analysis. [0069] FIG. 19 is an immunoblot of NIH3T3 cells expressing KRASG12V allele fused to FKBP* in the N-terminus or C-terminus. Cells were treated with 500 nM dFKBP7 for the indicated time. Cells were harvested and immunoblotted to measure degradation of FKBP*-KRASG12V and downstream surrogates of KRAS signaling (e.g. pMEK and pAKT). The data suggest N-terminal FKBP* fusions are active and degraded upon administration of dFKBP7. [0070] FIG. 20 is an immunoblot of NIH3T3 cells expressing FKBP* fused to the N-terminus of KRASG12V treated with 1 uM of the indicated dFKBP heterobifunctional compounds for 24 hours. Cells were harvested and immunoblotted to measure degradation of FKBP*-KRASG12V and downstream surrogates of KRAS
signaling (e.g. pMEK and pAKT). The data suggest that dFKBP9, dFKBP12, and dFKBP13 induce potent degradation of FKBP*-KRASG12V and inhibition of downstream signaling. [0071] FIG. 21 is an immunoblot of NIH3T3 cells expressing FKBP* fused to the N-terminus of KRASG12V treated with the indicated concentrations of dFKBP13 for 24 hours. Cells were harvested and immunoblotted to measure degradation of FKBP*-KRASG12V and downstream surrogates of KRAS signaling (e.g. pMEK and pAKT). The data suggest that dFKBP13 induces potent degradation of FKBP*-KRASG12V and inhibits downstream signaling potently with an IC50>100 nM. [0072] FIG. 22 is an immunoblot of NIH3T3 cells expressing FKBP* fused to the N-terminus of KRASG12V treated with 1 uM dFKBP13 for the indicated time. Cells were harvested and immunoblotted to measure degradation of FKBP*-KRASG12V and downstream surrogates of KRAS signaling (e.g. pMEK and pAKT). Data suggest that dFKBP13 induces potent degradation of FKBP*-KRASG12V and inhibition of downstream signaling as early as 1 hour post treatment. [0073] FIG. 23A, FIG. 23B, FIG. 23C, and FIG. 23D are panels of phase contrast images of control NIH3T3 cells or NIH3T3 expressing FKBP* fused to the N-terminus of KRASG12V treated with DMSO or dFKBP13 for 24 hours. Phase contrast images highlight the morphological change induced upon dFKBP13-dependent degradation of FKBP*-KRASG12V. [0074] FIG. 24A, FIG. 24B, FIG. 24C, and FIG. 24D are proliferation graphs that measure the effect of dFKBP13 on the growth of NIH3T3 control cells of NIH3T3 expressing FKBP*-KRASG12V. Cells were treated with the indicated concentrations if dFKBPs for 72 hours and cell count measured using an ATPlite assay. The ATPlite 1 step luminescence assay measures cell proliferation and cytotoxicity in cells based on the production of light caused by the reaction of ATP with added luciferase and D-luciferin. A decrease in signal indicates a reduction in cell number. [0075] FIG. 25A, FIG. 25B, FIG. 25C, FIG. 25D, FIG. 25E, FIG. 25F, FIG. 25G, FIG. 25H, and FIG. 25I provide examples of Degron moieties for use in the present invention, wherein R is the point of attachment for the Linker and X is as defined herein. [0076] FIG. 26 provides additional examples of Degron moieties for use in the present invention, wherein R is the point of attachment for the Linker and X is as defined herein. [0077] FIG. 27 provides additional examples of Degron moieties for use in the present invention, wherein R is the point of attachment for the Linker and X is as defined herein. [0078] FIG. 28 provides examples of Linker moieties for use in the present invention. [0079] FIG. 29 provides additional examples of Linker moieties for use in the present invention. [0080] FIG. 30 provides examples of heteroaliphatic Linker moieties for use in the present invention. [0081] FIG. 31 provides examples of aromatic Linker moieties for use in the present invention. [0082] FIG. 32A, FIG. 32B, FIG. 32C, FIG. 32D, and FIG. 32E provide dTAG Targeting Ligands for use in the present invention, wherein R is the point at which the Linker is attached. [0083] FIG. 33A, FIG. 33B, FIG. 33C, FIG. 33D, FIG. 33E, FIG. 33F, FIG. 33G, and FIG. 33H provide specific heterobifunctional compounds for use in the present invention [0084] FIG. 34A, FIG. 34B, FIG. 34C, FIG. 34D, FIG. 34E, FIG. 34F, FIG. 34G, FIG. 34H, FIG. 34I, FIG. 34J, FIG. 34K, FIG. 34L, FIG. 34M, FIG. 34N, FIG. 34O, and FIG. 34P provide specific heterobifunctional compounds for use in the present invention, wherein X in the above structures is a halogen chosen from F, Cl, Br, and I. [0085] FIG. 35A, FIG. 35B, FIG. 35C, FIG. 35D, FIG. 35E, FIG. 35F, FIG. 35G, FIG. 35H, FIG. 35I, and FIG. 35J provide specific heterobifunctional compounds for use in the present invention. [0086] FIG. 36A, FIG. 36B, FIG. 36C, FIG. 36D, FIG. 36E, FIG. 36F, FIG. 36G, FIG. 36H, FIG. 36I, FIG. 36J, FIG. 36K, FIG. 36L, FIG. 36M, FIG. 36N, FIG. 36O, FIG. 36P, FIG. 36Q, FIG. 36R, FIG. 36S, FIG. 36T, FIG. 36U, FIG. 36V, FIG. 36W, FIG. 36X, FIG. 36Y, FIG. 36Z, FIG. 36AA, FIG. 36BB, FIG. 36CC, FIG. 36DD, and FIG. 36EE provide specific heterobifunctional compounds for use in the present invention, wherein \mathbb{R}^{AR1} and \mathbb{R}^{AR2} are described herein [0087] FIG. 37A, FIG. 37B, FIG. 37C, FIG. 37D, FIG. 37E, FIG. 37F, FIG. 37G, FIG. 37H, FIG. 37I, FIG. 37K, FIG. 37L, FIG. 37M, FIG. 37N, FIG. 37O, FIG. 37P, FIG. 37Q, FIG. 37R, FIG. 37S, FIG. 37T, FIG. 37U, FIG. 37V, and FIG. 37W provide additional heterobifunctional compounds for use in the present invention. # DETAILED DESCRIPTION OF THE INVENTION [0088] In one embodiment, a method is provided that includes at least the steps of: [0089] (i) removing immune effector cells, for example T-cells, from a patient with a disorder of diseased cells that can be treated by increasing the ability of the patient's T-cells to recognize and bind to the diseased cells; [0090] (ii) transforming the T-cells ex vivo by inserting a gene encoding a CAR having at least a sequence targeting a diseased cell surface antigen and an amino acid sequence that can be recognized by and bound to a dTAG Targeting Ligand of a heterobifunctional compound to form a CAR T-cell; [0091] (iii) administering to the patient the autologous CAR T-cells; and then [0092] (iv) administering to the patient, as needed, a heterobifunctional compound which binds to a) the dTAG and b) a ubiquitin ligase; in a manner that brings the dTAG (and thus the CAR T-cell) into proximity of the ubiquitin ligase, such that the CAR is ubiquitinated, and then degraded by the proteasome. [0093] In one embodiment, a method is provided that includes at least the steps of: [0094] administering to a patient as needed, a heterobifunctional compound; [0095] wherein the patient has a disorder of diseased cells that can be treated by increasing the ability of the patient's immune effector cells, for example T-cells, to recognize and bind to the diseased cells; [0096] wherein the patient has previously been administered autologous immune effector cells, for example, CAR T-cells, which have been transformed ex vivo by inserting a gene encoding a CAR having at least a sequence targeting a diseased cell surface antigen and an amino acid sequence that can be recognized by and bound to a dTAG Targeting Ligand of a heterobifunctional compound to form a CAR T-cell: [0097] wherein the heterobifunctional compound is capable of binding to a) the dTAG and b) a ubiquitin ligase in a manner that brings the dTAG (and thus the CAR) into proximity of the ubiquitin ligase, such that the CAR is ubiquitinated, and then degraded by the proteasome. [0098] The invention includes compositions and methods for mediating CAR T-cell stimulation through the incorporation of a heterobifunctional compound targeted protein or heterobifunctional compound tag, collectively referred to as a dTAG, within a synthetic chimeric antigen receptor (CAR) construct that allows for reversible targeted protein degradation using a heterobifunctional compound. The CARs of the invention are useful in treating cancer including but not limited to hematologic malignancies and solid tumors. The present invention includes a strategy of adoptive cell transfer of T-cells transduced to express a chimeric antigen receptor (CAR) having a dTAG that is capable of being bound by a heterobifunctional compound, which, upon contact with the heterobifunctional compound, is degraded by the ubiquitin proteasomal pathway. **[0099]** CARs are molecules that combine antibody-based specificity for a desired antigen (e.g., tumor antigen) with a T-cell receptor-activating intracellular domain to generate a chimeric protein that exhibits a specific anti-tumor cellular immune activity. [0100] The present invention relates generally to the use of T-cells genetically modified to stably express a desired CAR having a dTAG. T-cells expressing these CARs are referred to herein as CAR T-cells or CAR modified T-cells. Preferably, the cell can be genetically modified to stably express an antibody binding domain on its surface, conferring novel antigen specificity that is WIC independent. In some instances, the T-cell is genetically modified to stably express a CAR that combines an antigen recognition domain of a specific antibody with an intracellular domain having a dTAG in a single chimeric protein. [0101] In one embodiment, the CAR of the invention includes an extracellular domain having an antigen recognition domain, a transmembrane domain, and a cytoplasmic domain. In one embodiment, the transmembrane domain that naturally is associated with one of the domains in the CAR is used. In another embodiment, the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins to minimize interactions with other members of the receptor complex. In one embodiment, the transmembrane domain is the CD8a hinge domain. [0102] With respect to the cytoplasmic domain, the CAR of the invention is designed to include at least one signaling domain and a heterobifunctional compound targeted protein (dTAG). The heterobifunctional compound targeted protein of the CAR is any amino acid sequence to which a heterobifunctional compound can be bound, leading to the degradation of the CAR when in contact with the heterobifunctional compound. Preferably, the dTAG should not interfere with the function of the CAR. In one embodiment, the dTAG is a non-endogenous peptide, leading to heterobifunctional compound selectivity and allowing for the avoidance of off target effects upon administration of the heterobifunctional compound. In one embodiment, the dTAG is an amino acid sequence derived from an endogenous protein which has been modified so that the heterobifunctional compound binds only to the modified amino acid sequence and not the endogenously expressed
protein. [0103] The signaling domain can be any suitable signaling domain capable of activating the T-cell, for example, CD3ξ, CD28, 4-1BB, OX40 (CD134), CD27, ICOS, DAP-10, or DAP-12 signaling domain, which can be by itself or be combined with any other desired cytoplasmic domain(s) useful in the context of the CAR of the invention. In one embodiment, the cytoplasmic domain of the CAR can be designed to further comprise a second signaling domain, for example, the signaling domain of CD3-zeta, CD28, 4-1BB, OX40 (CD134), CD27, ICOS, DAP-10, and/or DAP-12 signaling domain, or any combination thereof. For example, the cytoplasmic domain of the CAR can include but is not limited to CD3-zeta, 4-1BB, and/or CD28 signaling modules and combinations thereof. [0104] The generation of CAR T-cells is known in the art. For example, see Wang et al, "Clinical manufacturing of CART cells: foundation of a promising therapy," Oncolytics (2016)3:1-7 (and incorporated herein). In general, the CAR T-cells of the invention can be generated by introducing a lentiviral vector including a desired CAR, for example a CAR comprising anti-CD19, CD8a hinge and transmembrane domain, human CD28 and CD3zeta signaling domains, and a FKBP* dTAG into the cells. The CAR T-cells of the invention are able to replicate in vivo resulting in long-term persistence that can lead to sustained tumor control, and are subject to modulation of activation via administration of a heterobifunctional compound. [0105] In one embodiment, genetically modified T-cells expressing a CAR for the treatment of a patient having cancer or at risk of having cancer are administered using lymphocyte infusion. Autologous lymphocyte infusion is used in the treatment. Autologous PBMCs are collected from a patient in need of treatment and T-cells are activated and expanded using the methods described herein and known in the art and then infused back into the patient. **[0106]** In yet another embodiment, the treatment of a patient at risk of developing CLL is provided. The invention also includes treating a malignancy or an autoimmune disease in which chemotherapy and/or immunotherapy in a patient results in significant immunosuppression in the patient, thereby increasing the risk of the patient of developing CLL. [0107] The invention includes using CAR T-cells that express a CAR containing a dTAG. The CAR T-cells of the invention can undergo robust in vivo CAR T-cell expansion and can establish targeted antigen-specific memory cells that persist at high levels for an extended amount of time in blood and bone marrow. In some instances, the CAR T-cells of the invention infused into a patient can be modulated by administering to the subject a heterobifunctional compound that is capable of binding the dTAG on the CAR, resulting in degradation of the dTAG and a down regulation of the CAR T-cell activation without destroying the CAR T-cell. #### Terminology [0108] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice for testing of the present invention, typical materials and methods are described herein. [0109] It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. [0110] As used herein, a "chimeric antigen receptor (CAR)" means a fused protein comprising an extracellular domain capable of binding to an antigen, a transmembrane domain, and at least one intracellular signaling domain. The "chimeric antigen receptor (CAR)" is sometimes called a "chimeric receptor", a "T-body", or a "chimeric immune receptor (CIR)." The "extracellular ligand binding domain" means any oligopeptide or polypeptide that can bind to another protein. The "intracellular signaling domain" or "cytoplasmic signaling domain" means any oligopeptide or polypeptide known to function as a domain that transmits a signal to cause activation or inhibition of a biological process in a cell. [0111] As used herein, a "tumor antigen" means a biological molecule having antigenicity, expression of which is associated with a neoplastic cell. The tumor antigens targeted in the present invention include a tumor specific antigen (an antigen which is present only in tumor cells and is not found in other normal cells), and a tumor-associated antigen (an antigen which is also present in other organs and tissues or heterogeneous and allogeneic normal cells, or an antigen which is expressed on the way of development and differentiation). [0112] As used herein, a "single chain variable fragment (scFv)" means a single chain polypeptide derived from an antibody which retains the ability to bind to an antigen. An example of the scFv includes an antibody polypeptide which is formed by a recombinant DNA technique and in which Fv regions of immunoglobulin heavy chain (H chain) and light chain (L chain) fragments are linked via a spacer sequence. Various methods for preparing a scFv are known, and include methods described in U.S. Pat. No. 4,694,778, Science, 242 (1988):423-442, Nature 334 (1989):54454, and Science 240 (1988):1038-1041. [0113] As used herein, a "domain" means one region in a polypeptide which is folded into a particular structure independently of other regions. [0114] "Activation", as used herein, refers to the state of a T-cell that has been sufficiently stimulated to induce detectable cellular proliferation. Activation can also be associated with induced cytokine production, and detectable effector functions. The term "activated T-cells" refers to, among other things, T-cells that are undergoing cell division. [0115] The term "antibody," as used herein, refers to an immunoglobulin molecule which specifically binds with an antigen. Antibodies can be intact immunoglobulins derived from natural sources or from recombinant sources and can be immunoreactive portions of intact immunoglobulins. Antibodies are typically tetramers of immunoglobulin molecules. The antibodies in the present invention may exist in a variety of forms including, for example, polyclonal antibodies, monoclonal antibodies, Fv, Fab and F(ab)2, as well as single chain antibodies and humanized antibodies (Harlow et al., "Using Antibodies: A Laboratory Manual", Cold Spring Harbor Laboratory Press, N Y (1999); Harlow et al., "Antibodies: A Laboratory Manual", Cold Spring Harbor, N.Y. (1989); Houston et al., *Proc. Natl. Acad. Sci.* 85 (1988):5879-5883; and Bird et al., *Science* 242 (1988):423-426). [0116] The term "antibody fragment" refers to a portion of an intact antibody and refers to the antigenic determining variable regions of an intact antibody. Examples of antibody fragments include, but are not limited to, Fab, Fab', F(ab')2, and Fv fragments, linear antibodies, scFv antibodies, and multispecific antibodies formed from antibody fragments. [0117] The term "antigen" or "Ag" as used herein is defined as a molecule that can be targeted by an antibody or antibody fragment thereof. [0118] As used herein, the term "autologous" is meant to refer to any material derived from the same individual to which it is later to be re-introduced into the individual. [0119] "Co-stimulatory ligand," as the term is used herein, includes a molecule on an antigen presenting cell (e.g., an APC, dendritic cell, B cell, and the like) that specifically binds a cognate co-stimulatory molecule on a T-cell, thereby providing a signal which, in addition to the primary signal provided by, for instance, binding of a TCR/CD3 complex with an MHC molecule loaded with peptide, mediates a T-cell response, including, but not limited to, proliferation, activation, differentiation, and the like. A co-stimulatory ligand can include, but is not limited to, CD7, B7-1 (CD80), B7-2 (CD86), PD-L1, PD-L2, 4-1BBL, OX40L, inducible costimulatory ligand (ICOS-L), intercellular adhesion molecule (ICAM), CD30L, CD40, CD70, CD83, HLA-G, MICA, MICB, HVEM, lymphotoxin beta receptor, 3/TR6, ILT3, ILT4, HVEM, an agonist or antibody that binds Toll ligand receptor and a ligand that specifically binds with B7-H3. A co-stimulatory ligand also encompasses, inter alia, an antibody that specifically binds with a co-stimulatory molecule present on a T-cell, such as, but not limited to, CD27, CD28, 4-1BB, OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, and a ligand that specifically binds with CD83. [0120] An "effective amount" as used herein, means an amount which provides a therapeutic or prophylactic benefit. [0121] "Encoding" refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA. [0122] As used herein "endogenous" refers to any material from or produced inside an organism, cell, tissue or system. [0123] As used herein, the term "exogenous" refers to any material introduced from or produced outside an organism, cell, tissue, or system. [0124] The term "expression" as used herein is defined as the transcription and/or translation of a particular nucleotide sequence
driven by its promoter. [0125] "Expression vector" refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cisacting elements for expression; other elements for expression can be supplied by the host T-cell or in an in vitro expression system. Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide. [0126] A "co-stimulatory molecule" refers to the cognate binding partner on a T-cell that specifically binds with a co-stimulatory ligand, thereby mediating a co-stimulatory response by the T-cell, such as, but not limited to, proliferation. Co-stimulatory molecules include, but are not limited to an MHC class I molecule, BTLA and a Toll ligand receptor. [0127] Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. The phrase nucleotide sequence that encodes a protein or an RNA may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron (s). [0128] A "lentivirus" as used herein refers to a genus of the Retroviridae family. Lentiviruses are unique among the retroviruses in being able to infect non-dividing cells; they can deliver a significant amount of genetic information into the DNA of the host T-cell, so they are one of the most efficient methods of a gene delivery vector. HIV, SIV, and FIV are all examples of lentiviruses. Vectors derived from lentiviruses offer the means to achieve significant levels of gene transfer in vivo. **[0129]** By the term "modulating," as used herein, is meant mediating a detectable increase or decrease in the level of a response in a subject compared with the level of a response in the subject in the absence of a treatment or compound, and/or compared with the level of a response in an otherwise identical but untreated subject. The term encompasses per- turbing and/or affecting a native signal or response thereby mediating a beneficial therapeutic response in a subject, preferably, a human. [0130] A "co-stimulatory signal", as used herein, refers to a signal, which in combination with a primary signal, such as TCR/CD3 ligation, leads to T-cell proliferation, activation, and/or upregulation or downregulation of key molecules. [0131] "Parenteral" administration of an immunogenic composition includes, e.g., subcutaneous (s.c.), intravenous (i.v.), intramuscular (i.m.), or intrasternal injection, or infusion techniques. [0132] The term "polynucleotide" as used herein is defined as a chain of nucleotides. Furthermore, nucleic acids are polymers of nucleotides. Thus, nucleic acids and polynucleotides as used herein are interchangeable. One skilled in the art has the general knowledge that nucleic acids are polynucleotides, which can be hydrolyzed into the monomeric "nucleotides." The monomeric nucleotides can be hydrolyzed into nucleosides. As used herein polynucleotides include, but are not limited to, all nucleic acid sequences which are obtained by any means available in the art, including, without limitation, recombinant means, i.e., the cloning of nucleic acid sequences from a recombinant library or a cell genome, using ordinary cloning technology and PCRTM, and the like, and by synthetic means. [0133] As used herein, the terms "peptide," "polypeptide," and "protein" are used interchangeably, and refer to a compound comprised of amino acid residues covalently linked by peptide bonds. A protein or peptide must contain at least two amino acids, and no limitation is placed on the maximum number of amino acids that can comprise a protein's or peptide's sequence. Polypeptides include any peptide or protein comprising two or more amino acids joined to each other by peptide bonds. As used herein, the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types. "Polypeptides" include, for example, biologically active fragments, substantially homologous polypeptides, oligopeptides, homodimers, heterodimers, variants of polypeptides, modified polypeptides, derivatives, analogs, fusion proteins, among others. The polypeptides include natural peptides, recombinant peptides, synthetic peptides, or a combination thereof. [0134] By the term "stimulation," is meant a primary response induced by binding of a stimulatory molecule (e.g., a TCR/CD3 complex or CAR) with its cognate ligand thereby mediating a signal transduction event, such as, but not limited to, signal transduction via, for example, the TCR/CD3 or CD3 complex. Stimulation can mediate T-cell proliferation, activation, and/or upregulation or downregulation of key molecules, and the like. [0135] To "treat" a disease as the term is used herein, means to reduce the frequency or severity of at least one sign or symptom of a disease or disorder experienced by a subject. [0136] The term "transfected" or "transformed" or "transduced" as used herein refers to a process by which exogenous nucleic acid is transferred or introduced into, for example, the host T-cell. A "transfected" or "transformed" or "transduced" cell is one which has been transfected, trans- formed or transduced with exogenous nucleic acid. The cell includes the primary subject T-cell and its progeny. [0137] A "vector" is a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term "vector" includes an autonomously replicating plasmid or a virus. The term should also be construed to include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for example, polylysine compounds, liposomes, and the like. Examples of viral vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, and the like. [0138] Ranges: throughout this disclosure, various aspects of the invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and should not be construed as a limitation on the scope of the invention. The description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, and 6. This applies regardless of the breadth of the range. [0139] As used herein, a "dosage form" means a unit of administration of an active agent. Examples of dosage forms include tablets, capsules, injections, suspensions, liquids, emulsions, implants, particles, spheres, creams, ointments, suppositories, inhalable forms, transdermal forms, buccal, sublingual, topical, gel, mucosal, and the like. A "dosage form" can also include an implant, for example an optical implant. [0140] As used herein, "pharmaceutical compositions" are compositions comprising at least one active agent, and at least one other substance, such as a carrier. "Pharmaceutical combinations" are combinations of at least two active agents which may be combined in a single dosage form or provided together in separate dosage forms with instructions that the active agents are to be used together to treat any disorder described herein. [0141] As used herein, "pharmaceutically acceptable salt" is a derivative of the disclosed compound in which the parent compound is modified by making inorganic and organic, non-toxic, acid or base addition salts thereof. The salts of the present compounds can be synthesized from a parent compound that contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting free acid forms of these compounds with a stoichiometric amount of the appropriate base (such as Na, Ca, Mg, or K hydroxide, carbonate, bicarbonate, or the like), or by reacting free base forms of these compounds with a stoichiometric amount of the appropriate acid. Such reactions are typically carried out in water or in an organic solvent, or in a mixture of the two. Generally, non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are typical, where practicable. Salts of the present compounds further include solvates of the compounds and of the compound salts. [0142] Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts and the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, conventional nontoxic acid salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearie, lactic, malie, tartarie, citric, ascorbie, pamoie, maleic,
hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, mesylic, esylic, besylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, HOOC—(CH₂)_n—COOH where n is 0-4, and the like, or using a different acid that produces the same counterion. Lists of additional suitable salts may be found, e.g., in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., (1985):1418. [0143] The term "carrier" applied to pharmaceutical compositions/combinations of the invention refers to a diluent, excipient, or vehicle with which an active compound is [0144] A "pharmaceutically acceptable excipient" means an excipient that is useful in preparing a pharmaceutical composition/combination that is generally safe, non-toxic and neither biologically nor otherwise inappropriate for administration to a host, typically a human. In one embodiment, an excipient is used that is acceptable for veterinary use. [0145] A "patient" or "host" or "subject" is a human or non-human animal in need of treatment or prevention of any of the disorders as specifically described herein, including but not limited to adverse immune responses associated with any CAR T-cell cancer treatment. Typically, the host is a human. A "patient" or "host" or "subject" also refers to for example, a mammal, primate (e.g., human), cows, sheep, goat, horse, dog, cat, rabbit, rat, mice, fish, bird and the like. [0146] A "therapeutically effective amount" of a pharmaceutical composition/combination of this invention means an amount effective, when administered to a host, to provide a therapeutic benefit such as an amelioration of symptoms or reduction or diminition of the disease itself. ### Chimeric Antigen Receptors (CARs) [0147] The CARs of the present invention are characterized in that they include an extracellular ligand binding domain capable of binding to an antigen, a transmembrane domain, and an intracellular domain in this order from the N-terminal side, wherein the intracellular domain includes at least one signaling domain and a dTAG. [0148] (a) Extracellular Domain [0149] The CARs of the invention include an extracellular target-specific ligand binding domain, for example an antigen binding moiety. The choice of moiety depends on the type and number of ligands that define the surface of a target cell. For example, the extracellular ligand binding domain may be chosen to recognize a ligand that acts as a cell surface marker on target cells associated with a particular disease state. Thus examples of cell surface markers that may act as ligands for the extracellular ligand binding domain in the CARs of the present invention include those associated with viral, bacterial and parasitic infections, autoimmune disease, and cancer cells. [0150] In one embodiment, the CARs of the invention can be engineered to target a tumor antigen of interest by way of engineering a desired antigen binding moiety that specifically binds to an antigen on a tumor cell. In the context of the present invention, tumor antigen refers to antigens that are common to specific types of cancer. The antigens discussed herein are merely included by way of example. The list is not intended to be exclusive and further examples will be readily apparent to those of skill in the art. [0151] Tumor antigens are proteins that are produced by tumor cells that elicit an immune response, particularly T-cell mediated immune responses. The selection of the antigen binding moiety of the invention will depend on the particular type of cancer to be treated. Tumor antigens are well known in the art and include, for example, a gliomaassociated antigen, carcinoembryonic antigen (CEA), β-human chorionic gonadotropin, alphafetoprotein (AFP), lectinreactive AFP, thyroglobulin, RAGE-1, MN-CA IX, human telomerase reverse transcriptase, RU1, RU2 (AS), intestinal carboxyl esterase, mut hsp70-2, M-CSF, prostate, prostatespecific antigen (PSA), PAP, NY-ESO-1, LAGE-1a, p53, prostein, PSMA, Her2/neu, survivin and telomerase, prostate-carcinoma tumor antigen-1 (PCTA-1), MAGE, ELF2M, neutrophil elastase, ephrinB2, CD22, insulin growth factor (IGF)-I, IGF-II, IGF-I receptor, mesothelin, α-Folate receptor, CAIX, EGP-2, EGP-40, IL13R-a2, KDR, kappa-light chain, LeY, L1 cell adhesion molecule, murine CMV, NKG2D ligands, GD2, GD3, and VEGF-R2. [0152] In one embodiment, the tumor antigen comprises one or more antigenic cancer epitopes associated with a malignant tumor. Malignant tumors express a number of proteins that can serve as target antigens for an immune attack. These molecules include but are not limited to tissue-specific antigens such as MART-1, tyrosinase and GP 100 in melanoma and prostatic acid phosphatase (PAP) and prostate-specific antigen (PSA) in prostate cancer. Other target molecules belong to the group of transformationrelated molecules such as the oncogene HER-2/Neu/ErbB-2, Erb-B3, Erb-B4. Yet another group of target antigens are onco-fetal antigens such as carcinoembryonic antigen (CEA). In B-cell lymphoma the tumor-specific idiotype immunoglobulin constitutes a truly tumor-specific immunoglobulin antigen that is unique to the individual tumor. B-cell differentiation antigens such as CD19, CD20 and CD37 are other candidates for target antigens in B-cell lymphoma. Some of these antigens (CEA, HER-2, CD19, CD20, idiotype) have been used as targets for passive immunotherapy with monoclonal antibodies with limited [0153] The type of tumor antigen referred to in the invention may also be a tumor-specific antigen (TSA) or a tumor-associated antigen (TAA). A TSA is unique to tumor cells and does not occur on other cells in the body. A TAA associated antigen is not unique to a tumor cell and instead is also expressed on a normal cell under conditions that fail to induce a state of immunologic tolerance to the antigen. The expression of the antigen on the tumor may occur under conditions that enable the immune system to respond to the antigen. TAAs may be antigens that are expressed on normal cells during fetal development when the immune system is immature and unable to respond or they may be antigens that are normally present at extremely low levels on normal cells but which are expressed at much higher levels on tumor cells. [0154] Non-limiting examples of TSA or TAA antigens include the following: Differentiation antigens such as MART-1/MelanA (MART-I), gp100 (Pmel 17), tyrosinase, TRP-1, TRP-2 and tumor-specific multilineage antigens such as MAGE-1, MAGE-3, BAGE, GAGE-1, GAGE-2, p15; overexpressed embryonic antigens such as CEA; overexpressed oncogenes and mutated tumor-suppressor genes such as p53, Ras, HER-2/neu; unique tumor antigens resulting from chromosomal translocations, such as BCR-ABL, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR; and viral antigens, such as the Epstein Barr virus antigens EBVA and the human papillomavirus (HPV) antigens E6 and E7. Other large, protein-based antigens include TSP-180, MAGE-4, MAGE-5, MAGE-6, RAGE, NY-ESO, p185erbB2, p180erbB-3, c-met, nm-23H1, PSA, TAG-72, CA 19-9, CA 72-4, CAM 17.1, NuMa, K-ras, beta-Catenin, CDK4, Mum-1, p 15, p 16, 43-9F, 5T4, 791Tgp72, alpha-fetoprotein, beta-HCG, BCA225, BTAA, CA 125, CA 15-3\CA 27.29\BCAA, CA 195, CA 242, CA-50, CAM43, CD68\P1, CO-029, FGF-5, G250, Ga733\EpCAM, HTgp-175, M344, MA-50, MG7-Ag, MOV18, NB/70K, NY-CO-1, RCAS1, SDCCAG16, TA-90\Mac-2 binding protein\cyclophilin C-associated protein, TAAL6, TAG72, TLP, and TPS. [0155] In an embodiment, the antigen binding moiety portion of the CAR targets an antigen that includes but is not limited to CD19, CD20, CD30, CD44, CD22, ROR1, Mesothelin, CD33/IL3Ra, c-Met, PSMA, Glycolipid F77, EGFRvIII, GD-2, MY-ESO-1 TCR, MAGE A3 TCR, and the like. [0156] In one embodiment, the antigen binding moiety portion of the CAR targets a particular cell surface molecule on a cell, wherein the cell surface molecule is associated with a particular type of cell, for example a cluster of differentiation molecule. [0157] Depending on the desired antigen to be targeted, the CAR of the invention can be engineered to include the appropriate antigen bind moiety that is specific to the desired antigen target. For example, if CD19 is the desired antigen that is to be targeted, an antibody or antibody fragment, for example a scFv for CD19 can be used as the antigen bind moiety for incorporation into the CAR of the invention. In one embodiment, the antigen binding domain is comprised of a scFv. Single chain antibodies refer to antibodies formed by recombinant DNA techniques in which immunoglobulin heavy and light chain fragments are linked to the Fv region via an engineered span of amino acids. Various methods of generating single chain antibodies are known, including those described in U.S. Pat. No. 4,694,778; Bird (1988) Science 242:423-442; Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883; Ward et al. (1989) Nature 341:544-546; Skerra et al. (1988) Science 240:1038-1041. [0158] In one embodiment, the extracellular ligand binding domain binds a label or tag, for example biotin or fluorescein isothiocyanate, wherein biotin or fluorescein isothiocyanate is bound to an antibody capable of binding a molecule on the surface of a tumor cell. [0159] In one embodiment, the extracellular ligand binding domain binds a marker associated with a particular cell or disease state, for example IL13R. In one embodiment, the extracellular ligand binding domain binds to a cluster of differentiation molecule associated with a particular cell. [0160] (b) Transmembrane Domain [0161] The CARs of the present invention can be designed to include a transmembrane domain that is fused to the extracellular domain of the CAR. In one embodiment, the transmembrane domain that naturally is associated with one of the domains in the CAR is used. In some instances, the transmembrane domain can be selected or modified by amino acid substitution to avoid
binding of such domains to the transmembrane domains of the same or different surface membrane proteins to minimize interactions with other members of the receptor complex. [0162] The transmembrane domain may be derived either from a natural or from a synthetic source. Where the source is natural, the domain may be derived from any membranebound or transmembrane protein. Transmembrane regions of particular use in this invention may be derived from (i.e. comprise at least the transmembrane region(s) of) the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CDS, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, or GITR. Alternatively the transmembrane domain may be synthetic, in which case it will comprise predominantly hydrophobic residues such as leucine and valine. Preferably a triplet of phenylalanine, tryptophan and valine will be found at each end of a synthetic transmembrane domain. Optionally, a short oligo- or polypeptide linker, preferably between 2 and 10 amino acids in length may form the linkage between the transmembrane domain and the cytoplasmic signaling domain of the CAR. A glycine-serine doublet provides a particularly suitable linker. [0163] In one embodiment, the transmembrane domain in the CAR of the invention is derived from the CD8 transmembrane domain. In some instances, the transmembrane domain of the CAR of the invention comprises the CD8a hinge domain. [0164] Further, in the CAR of the present invention, a signal peptide sequence can be linked to the N-terminus. The signal peptide sequence exists at the N-terminus of many secretory proteins and membrane proteins, and has a length of 15 to 30 amino acids. Since many of the protein molecules mentioned above as the intracellular domain have signal peptide sequences, the signal peptides can be used as a signal peptide for the CAR of the present invention. [0165] (c) Intracellular Signaling Domain [0166] The intracellular signaling domain, or cytoplasmic signaling domain, used interchangeably herein, of the CAR of the invention is responsible for activation of at least one of the normal effector functions of the immune cell in which the CAR has been placed. The term "effector function" refers to a specialized function of a cell. Effector function of a T-cell, for example, may be cytolytic activity or helper activity including the secretion of cytokines. Thus the term "intracellular signaling domain" refers to the portion of a protein which transduces the effector function signal and directs the cell to perform a specialized function. While usually the entire intracellular signaling domain can be employed, in many cases it is not necessary to use the entire chain. To the extent that a truncated portion of the intracellular signaling domain is used, such truncated portion may be used in place of the intact chain as long as it transduces the effector function signal. The term intracellular signaling domain is thus meant to include any truncated portion of the intracellular signaling domain sufficient to transduce the effector function signal. [0167] Examples of intracellular signaling domains for use in the CAR of the invention include the cytoplasmic sequences of the T-cell receptor (TCR) and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivative or variant of these sequences and any synthetic sequence that has the same functional capability. [0168] It is known that signals generated through the TCR alone may not be sufficient for full activation of the T-cell and that a secondary or co-stimulatory signal may also be required. Thus, T-cell activation can be said to be mediated by two distinct classes of cytoplasmic signaling sequence: those that initiate antigen-dependent primary activation through the TCR (primary cytoplasmic signaling sequences) and those that act in an antigen-independent manner to provide a secondary or co-stimulatory signal (secondary cytoplasmic signaling sequences). [0169] Primary cytoplasmic signaling sequences regulate primary activation of the TCR complex either in a stimulatory way, or in an inhibitory way. Primary cytoplasmic signaling sequences that act in a stimulatory manner may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs or ITAMs. [0170] Examples of ITAM containing primary cytoplasmic signaling sequences that are of particular use in the invention include those derived from TCR zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CDS, CD22, CD79a, CD79b, and CD66d. In one embodiment, the cytoplasmic signaling molecule in the CAR of the invention comprises a cytoplasmic signaling sequence derived from CD3 zeta. [0171] The cytoplasmic domain of the CAR can be designed to comprise the CD3-zeta signaling domain by itself or combined with any other desired cytoplasmic domain(s) useful in the context of the CAR of the invention. For example, the cytoplasmic domain of the CAR can comprise a CD3 zeta chain portion and a costimulatory signaling region. The costimulatory signaling region refers to a portion of the CAR comprising the intracellular domain of a costimulatory molecule. A costimulatory molecule is a cell surface molecule other than an antigen receptor or their ligands that is required for an efficient response of lymphocytes to an antigen. Examples of such molecules include CD27, CD28, 4-1BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, and a ligand that specifically binds with CD83, and the like. Thus, any of the costimulatory elements known in the art as useful in the construction of CARs are within the scope of the invention. [0172] The cytoplasmic signaling sequences within the cytoplasmic signaling portion of the CAR of the invention may be linked to each other in a random or specified order. Optionally, a short oligo- or polypeptide linker, preferably between 2 and 10 amino acids in length may form the linkage. A glycine-serine doublet provides a particularly [0173] In one embodiment, the cytoplasmic domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of CD28. In another embodiment, the cytoplasmic domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of 4-1BB. In yet another embodiment, the cytoplasmic domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of CD3-zeta and the signaling domain of CD28 and 4-1BB. In some embodi- suitable linker. ments, the intracellular signaling domain comprises a chimeric CD28 and OX40 co-stimulatory domain. In some embodiments, the intracellular signaling domain comprises a chimeric CD27 co-stimulatory domain. In some embodiments, the intracellular signaling domain comprises a chimeric CD27 and DAP10 co-stimulatory domain. [0174] (d) Heterobifunctional Compound Targeted Protein (dTAG) [0175] As contemplated herein, the CAR of the present invention has a heterobifunctional compound targeted protein (dTAG) that locates in the cytoplasm. The dTAG of the CAR is any amino acid sequence to which a heterobifunctional compound can be bound, leading to the ubiquitination and degradation of the CAR when in contact with the heterobifunctional compound. Preferably, the dTAG should not interfere with the function of the CAR. In one embodiment, the dTAG is a non-endogenous peptide, leading to heterobifunctional compound selectivity and minimizing off target effects that might occur if a heterobifunctional compound targets an endogenous protein. In one embodiment, the dTAG is an amino acid sequence derived from an endogenous protein which has been modified so that the heterobifunctional compound binds only to the modified amino acid sequence and not the endogenously expressed protein. In one embodiment, the dTAG is an endogenously expressed protein. Any amino acid sequence domain that can be bound by a ligand for use in a heterobifunctional compound can be used as a dTAG as contemplated herewith. [0176] In particular embodiments, the dTAG for use in the present invention include, but are not limited to, an amino acid sequence derived from an endogenously expressed protein such as FK506 binding protein-12 (FKBP12), bromodomain-containing protein 4 (BRD4), CREB binding protein (CREBBP), and transcriptional activator BRG1 (SMARCA4), or a variant thereof. As contemplated herein, "variant" means any variant comprising a substitution, deletion, or addition of one or a few to plural amino acids, provided that the variant substantially retains the same function as the original sequence, which in this case is providing a ligand for a heterobifunctional compound. In other embodiments, a dTAG for use in the present invention may include, for example, a hormone receptor e.g. estrogenreceptor protein, androgen receptor protein, retinoid x receptor (RXR) protein, and dihydroflorate reductase (DHFR), including bacterial DHFR, bacterial dehydrogenase, and [0177] Some embodiments of dTAGs can be, but are not limited to, those derived from Hsp90 inhibitors, kinase inhibitors, MDM2 inhibitors, compounds targeting Human BET Bromodomain-containing proteins, compounds targeting cytosolic signaling protein FKBP12, HDAC inhibitors, human lysine methyltransferase inhibitors, angiogenesis inhibitors, immunosuppressive compounds, and compounds targeting the aryl hydrocarbon receptor (AHR). [0178] In certain embodiments, the dTAG is derived from, a kinase, a BET bromodomain-containing protein, a cytosolic signaling protein (e.g., FKBP12), a nuclear protein, a histone deacetylase, a lysine methyltransferase, a protein regulating angiogenesis, a protein regulating immune response, an aryl hydrocarbon receptor (AHR), an estrogen receptor, an androgen receptor, a glucocorticoid receptor, or a transcription factor (e.g., SMARCA4, SMARCA2, TRIM24). [0179]
In certain embodiments, the dTAG is derived from a kinase, for example, but not limited to, a tyrosine kinase (e.g., AATK, ABL, ABL2, ALK, AXL, BLK, BMX, BTK, CSF1R, CSK, DDR1, DDR2, EGFR, EPHA1, EPHA2, EPHA3, EPHA4, EPHAS, EPHA6, EPHA7, EPHA8, EPHA10, EPHB1, EPHB2, EPHB3, EPHB4, EPHB6, ERBB2, ERBB3, ERBB4, FER, FES, FGFR1, FGFR2, FGFR3, FGFR4, FGR, FLT1, FLT3, FLT4, FRK, FYN, GSG2, HCK, IGF1R, ILK, INSR, INSRR, IRAK4, ITK, JAK1, JAK2, JAK3, KDR, KIT, KSR1, LCK, LMTK2, LMTK3, LTK, LYN, MATK, MERTK, MET, MLTK, MST1R, MUSK, NPR1, NTRK1, NTRK2, NTRK3, PDG-FRA, PDGFRB, PLK4, PTK2, PTK2B, PTK6, PTK7, RET, ROR1, ROR2, ROS1, RYK, SGK493, SRC, SRMS, STYK1, SYK, TEC, TEK, TEX14, TIE1, TNK1, TNK2, TNNI3K, TXK, TYK2, TYRO3, YES1, or ZAP70), a serine/ threonine kinase (e.g., casein kinase 2, protein kinase A, protein kinase B, protein kinase C, Raf kinases, CaM kinases, AKT1, AKT2, AKT3, ALK1, ALK2, ALK3, ALK4, Aurora A, Aurora B, Aurora C, CHK1, CHK2, CLK1, CLK2, CLK3, DAPK1, DAPK2, DAPK3, DMPK, ERK1, ERK2, ERK5, GCK, GSK3, HIPK, KHS1, LKB1, LOK, MAPKAPK2, MAPKAPK, MNK1, MSSK1, MST1, MST2, MST4, NDR, NEK2, NEK3, NEK6, NEK7, NEK9, NEK11, PAK1, PAK2, PAK3, PAK4, PAK5, PAK6, PIM1, PIM2, PLK1, RIP2, RIP5, RSK1, RSK2, SGK2, SGK3, SIK1, STK33, TAO1, TAO2, TGF-beta, TLK2, TSSK1, TSSK2, ULK1, or ULK2), a cyclin dependent kinase (e.g., Cdk1-Cdk11), and a leucine-rich repeat kinase (e.g., LRRK2). [0180] In certain embodiments, the dTAG is derived from a BET bromodomain-containing protein, for example, but not limited to, ASH1L, ATAD2, BAZ1A, BAZ1B, BAZ2A, BAZ2B, BRD1, BRD2, BRD3, BRD4, BRD5, BRD6, BRD7, BRD8, BRD9, BRD10, BRDT, BRPF1, BRPF3, BRWD3, CECR2, CREBBP, EP300, FALZ, GCN5L2, KIAA1240, LOC93349, MLL, PB1, PCAF, PHIP, PRKCBP1, SMARCA2, SMARCA4, SP100, SP110, SP140, TAF1, TAF1L, TIF1a, TRIM28, TRIM33, TRIM66, WDR9, ZMYND11, and MLL4. In certain embodiments, a BET bromodomain-containing protein is BRD4. [0181] In certain embodiments, the dTAG is derived from, but not limited to, 7,8-dihydro-8-oxoguanin triphosphatase, AFAD, Arachidonate 5-lipoxygenase activating protein, apolipoprotein, baculoviral IAP repeat-containing protein 2, Bcl-2, Bcl-xL, E3 ligase XIAP, fatty acid binding protein from adipocytes 4 (FABP4), GTPase k-RAS, HDAC6, hematoietic prostaglandin D synthase, lactoglutathione lyase, Mcl-1, PA2GA, peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, poly-ADP-ribose polymerase 14, poly-ADP-ribose polymerase 15, prosaposin, prostaglandin E synthase, retinal rod rhodopsin-sensitive cGMP 3','5-cyclic phosphodiesterase subunit delta, S100-A7, Src, Sumo-conjugating enzyme UBC9, superoxide dismutase, tankyrase 1, or tankyrase 2. [0182] In certain embodiments, the dTAG is derived from a nuclear protein including, but not limited to, BRD2, BRD3, BRD4, Antennapedia Homeodomain Protein, BRCA1, BRCA2, CCAAT-Enhanced-Binding Proteins, histones, Polycomb-group proteins, High Mobility Group Proteins, Telomere Binding Proteins, FANCA, FANCD2, FANCE, FANCF, hepatocyte nuclear factors, Mad2, NF-kappa B, Nuclear Receptor Coactivators, CREB-binding protein, p55, p107, p130, Rb proteins, p53, c-fos, c-jun, c-mdm2, c-myc, and c-rel. [0183] In a particular embodiment, the dTAG has an amino acid sequence derived from BRD2 ((Universal Protein Resource Knowledge Base (UniProtKB)-P25440 (BRD2_HUMAN) incorporated herein by reference), BRD3 (UniProtKB—Q15059 (BRD3 HUMAN) incorporated herein by reference), BRD4 (UniProtKB—O60885 (BRD4 HUMAN) incorporated herein by reference), or BRDT (UniProtKB—Q58F21 (BRDT_HUMAN) incorporated herein by reference) (see Baud et al., "A bump-and-hole approach to engineer controlled selectivity of BET bromodomains chemical probes", Science 346(6209) (2014): 638-641; and Baud et al., "New Synthetic Routes to Triazolo-benzodiazepine Analogues: Expanding the Scope of the Bump-and-Hole Approach for Selective Bromo and Extra-Terminal (BET) Bromodomain Inhibition", JMC 59 (2016):1492-1500, both incorporated herein by reference). In certain embodiments, the one or more mutations of BRD2 include a mutation of the Tryptophan (W) at amino acid position 97, a mutation of the Valine (V) at amino acid position 103, a mutation of the Leucine (L) at amino acid position 110, a mutation of the W at amino acid position 370, a mutation of the Vat amino acid position 376, or a mutation of the L at amino acid position 381. In certain embodiments, the one or more mutations of BRD3 include a mutation of the W at amino acid position 57, a mutation of the V at amino acid position 63, a mutation of the L at amino acid position 70, a mutation of the W at amino acid position 332, a mutation of the V at amino acid position 338, or a mutation of the L at amino acid position 345. In certain embodiments, the one or more mutations of BRD4 include a mutation of the W at amino acid position 81, a mutation of the V at amino acid position 87, a mutation of the L at amino acid position 94, a mutation of the W at amino acid position 374, a mutation of the V at amino acid position 380, or a mutation of the L at amino acid position 387. In certain embodiments, the one or more mutations of BRDT include a mutation of the W at amino acid position 50, a mutation of the V at amino acid position 56, a mutation of the L at amino acid position 63, a mutation of the W at amino acid position 293, a mutation of the V at amino acid position 299, or a mutation of the L at amino acid position 306. [0184] In certain embodiments, the dTAG is derived from a kinase inhibitor, a BET bromodomain-containing protein inhibitor, cytosolic signaling protein FKBP12 ligand, an HDAC inhibitor, a lysine methyltransferase inhibitor, an angiogenesis inhibitor, an immunosuppressive compound, and an aryl hydrocarbon receptor (AHR) inhibitor. [0185] In a particular embodiment, the dTAG is derived from cytosolic signaling protein FKBP12. In certain embodiments, the dTAG is a modified or mutant cytosolic signaling protein FKBP12. In certain embodiments, the modified or mutant cytosolic signaling protein FKBP12 contains one or more mutations that create an enlarged binding pocket for FKBP12 ligands. In certain embodiments, the one or more mutations include a mutation of the phenylalanine (F) at amino acid position 36 to valine (V) (F36V) (as counted without the methionine start codon) (referred to as FKBP12* or FKBP*, used interchangeably herein) (see Clackson et al., "Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity", PNAS 95 (1998):10437-10442, incorporated herein by reference). [0186] In a particular embodiment, the dTAG has an amino acid sequence derived from an FKBP12 protein (UniProtKB—P62942 (FKB1A_HUMAN), incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 1) GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFML ${\tt GKQEVIRGWEEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVFD}$ ${\tt VELLKLE}.$ [0187] In one embodiment, the dTAG is a FKBP12 derived amino acid sequence with a mutation of the phenylalanine (F) at amino acid position 36 (as counted without the methionine) to valine (V) (F36V) (referred to as FKBP12* or FKBP*, used interchangeably herein) having the amino acid sequence: (SEQ ID NO: 2) GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFML ${\tt GKQEVIRGWEEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVFD} \\ {\tt VELLKLE}.$ [0188] In one embodiment, the dTAG has an amino acid sequence derived from a BRD4 protein (UniProtKB—O60885 (BRD4_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 3) MSAESGPGTRLRNLPVMGDGLETSQMSTTQAQAQPQPANAASTNPPPPPET SNPNKPKROTNOLOYLLRVVLKTLWKHOFAWPFOOPVDAVKLNLPDYYKI IKTPMDMGTIKKRLENNYYWNAOECIODFNTMFTNCYIYNKPGDDIVLMA EALEKLFLOKINELPTEETEIMIVOAKGRGRGRKETGTAKPGVSTVPNTT QASTPPOTOTPOPNPPPVQATPHPFPAVTPDLIVQTPVMTVVPPQPLQTP PPVPPOPOPPPAPAPOPVOSHPPIIAATPOPVKTKKGVKRKADTTTPTTI DPIHEPPSLPPEPKTTKLGORRESSRPVKPPKKDVPDSOOHPAPEKSSKV SEQLKCCSGILKEMFAKKHAAYAWPFYKPVDVEALGLHDYCDIIKHPMDM STIKSKLEAREYRDAOEFGADVRLMFSNCYKYNPPDHEVVAMARKLODVF EMRFAKMPDEPEEPVVAVSSPAVPPPTKVVAPPSSSDSSSDSSSDSDSST DDSEEERAQRLAELQEQLKAVHEQLAALSQPQQNKPKKKEKDKKEKKKEK HKRKEEVEENKKSKAKEPPPKKTKKNNSSNSNVSKKEPAPMKSKPPPTYE SEEEDKCKPMSYEEKRQLSLDINKLPGEKLGRVVHIIQSREPSLKNSNPD EIEIDFETLKPSTLRELERYVTSCLRKKRKPQAEKVDVIAGSSKMKGFSS ${\tt SESESSSESSSDSEDSETEMAPKSKKKGHPGREQKKHEIFIRHHQQMQQ}$ ${\tt APAPVPQQPPPPPQQPPPPPPQQQQQPPPPPPPPSMPQQAAPAMKSSPP}$ ${\tt PFIATQVPVLEPQLPGSVFDPIGHFTQPILHLPQPELPPHLPQPPEHSTP}$ PHLNQHAVVSPPALHNALPQQPSRPSNRAAALPPKPARPPAVSPALTQTP LLPQPPMAQPPQVLLEDEEPPAPPLTSMQMQLYLQQLQKVQPPTPLLPSV KVQSQPPPPLPPPPHPSVQQQLQQQPPPPPPPQPQPPPQQQHQPPPRPVH -continued $\verb"LQPMQFSTHIQQPPPPQGQQPPHPPPGQQPPPPQPAKPQQVIQHHHSPRH"$ HKSDPYSTGHLREAPSPLMIHSPQMSQFQSLTHQSPPQQNVQPKKQELRA ASVVQPQPLVVVKEEKIHSPIIRSEPFSPSLRPEPPKHPESIKAPVHLPQ $\verb"RPEMKPVDVGRPVIRPPEQNAPPPGAPDKDKQKQEPKTPVAPKKDLKIKN"$ MGSWASLVQKHPTTPSSTAKSSSDSFEQFRRAAREKEEREKALKAQAEHA EKEKERLRQERMRSREDEDALEQARRAHEEARRRQEQQQQQQQQQQQQQ QQAAAVAAAATPQAQSSQPQSMLDQQRELARKREOERRREAMAATIDMN FOSDLLSIFEENLF. [0189] In one embodiment, the dTAG is derived from amino acid 75-147 of SEQ ID NO: 3. **[0190]** In one embodiment, the dTAG has an amino acid sequence derived from a ASH1L protein (UniProtKB—Q9NR48 (ASH1L_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 2463-2533 of Q9NR48. **[0191]** In one embodiment, the dTAG has an amino acid sequence derived from a ATAD2 protein (UniProtKB—Q6PL18 (ATAD2_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1001-1071 of Q6PL18. **[0192]** In one embodiment, the dTAG has an amino acid sequence derived from a BAZ1A protein (UniProtKB—Q9NRL2 (BAZ1A_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1446-1516 of Q9NRL2. [0193] In one embodiment,
the dTAG has an amino acid sequence derived from a BAZ1B protein (UniProtKB—Q9UIG0 (BAZ1B_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1356-1426 of Q9UIG0. [0194] In one embodiment, the dTAG has an amino acid sequence derived from a BAZ2A protein (UniProtKB—Q9UIF9 (BAZ2A_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1810-1880 of Q9UIF9. [0195] In one embodiment, the dTAG has an amino acid sequence derived from a BAZ2B protein (UniProtKB—Q9UIF8 (BAZ2B_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 2077-2147 of Q9UIF8. **[0196]** In one embodiment, the dTAG has an amino acid sequence derived from a BRD1 protein (UniProtKB—O95696 (BRD1_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 579-649 of 095696. [0197] In one embodiment, the dTAG has an amino acid sequence derived from a BRD2 protein (UniProtKB—P25440 (BRD2_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 27) MLQNVTPHNKLPGEGNAGLLGLGPEAAAPGKRIRKPSLLYEGFESPTMAS ${\tt VPALQLTPANPPPPEVSNPKKPGRVTNQLQYLHKVVMKALWKHQFAWPFR}$ QPVDAVKLGLPDYHKIIKQPMDMGTIKRRLENNYYWAASECMQDFNTMFT -continued NCYIYNKPTDDIVLMAQTLEKIFLQKVASMPQEEQELVVTIPKNSHKKGA KLAALQGSVTSAHQVPAVSSVSHTALYTPPPEIPTTVLNIPHPSVISSPL LKSLHSAGPPLLAVTAAPPAQPLAKKKGVKRKADTTTPTPTAILAPGSPA SPPGSLEPKAARLPPMRRESGRPIKPPRKDLPDSQQQHQSSKKGKLSEQL KHCNGILKELLSKKHAAYAWPFYKPVDASALGLHDYHDIIKHPMDLSTVK RKMENRDYRDAQEFAADVRLMFSNCYKYNPPDHDVVAMARKLQDVFEFRY AKMPDEPLEPGPLPVSTAMPPGLAKSSSESSSEESSSSEEEEEEDEE DEEEEESESSDSEEERAHRLAELQEQLRAVHEQLAALSQGPISKPKRKRE KKEKKKKRKAEKHRGRAGADEDDKGPRAPRPPQPKKSKKASGSGGGSAAL GPSGFGPSGGSGTKLPKKATKTAPPALPTGYDSEEEEESRPMSYDEKRQL SLDINKLPGEKLGRVVHIIQAREPSLRDSNPEEIEIDFETLKPSTLRELE RYVLSCLRKKPRKPYTIKKPVGKTKEELALEKKRELEKRLODVSGOLNST [0198] In one embodiment, the dTAG is derived from amino acid 91-163 or 364-436 of SEQ ID NO: 27. KKPPKKANEKTESSSAOOVAVSRLSASSSSSDSSSSSSSSSSSDTSDSDS [0199] In one embodiment, the dTAG has an amino acid sequence derived from a BRD3 protein (UniProtKB—Q15059 (BRD3_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEO ID NO: 28) ${\tt MSTATTVAPAGIPATPGPVNPPPPEVSNPSKPGRKTNQLQYMQNVVVKTL}$ WKHQFAWPFYQPVDAIKLNLPDYHKIIKNPMDMGTIKKRLENNYYWSASE CMQDFNTMFTNCYIYNKPTDDIVLMAQALEKIFLQKVAQMPQEEVELLPP $\verb|APKGKGRKPAAGAQSAGTQQVAAVSSVSPATPFQSVPPTVSQTPVIAATP|$ VPTITANVTSVPVPPAAAPPPPATPIVPVVPPTPPVVKKKGVKRKADTTT PTTSAITASRSESPPPLSDPKQAKVVARRESGGRPIKPPKKDLEDGEVPQ HAGKKGKLSEHLRYCDSILREMLSKKHAAYAWPFYKPVDAEALELHDYHD IIKHPMDLSTVKRKMDGREYPDAOGFAADVRLMFSNCYKYNPPDHEVVAM ARKLODVFEMRFAKMPDEPVEAPALPAPAAPMVSKGAESSRSSEESSSDS GSSDSEEERATRLAELOEOLKAVHEOLAALSOAPVNKPKKKKEKKEKKK KKDKEKEKEKHKVKAEEEKKAVKAPPAKOAOOKKAPPAKKANSTTTAGRO LKKGGKQASASYDSEEEEEGLPMSYDEKRQLSLDINRLPGEKLGRVVHII OSREPSLRDSNPDEIEIDFETLKPTTLRELERYVKSCLOKKORKPFSASG KKQAAKSKEELAQEKKKELEKRLQDVSGQLSSSKKPARKEKPGSAPSGGP [0200] In one embodiment, the dTAG is derived from amino acid 51-123 or 326-398 of SEQ ID NO: 28. **[0201]** In one embodiment, the dTAG has an amino acid sequence derived from a BRD7 protein (UniProtKB—Q9NPI1 (BRD7_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 148-218 of Q9NP11. **[0202]** In one embodiment, the dTAG has an amino acid sequence derived from a BRD8 protein (UniProtKB—Q9H0E9 (BRD8_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 724-794 or 1120-1190 of Q9H0E9. **[0203]** In one embodiment, the dTAG has an amino acid sequence derived from a BRD9 protein (UniProtKB—Q9H8M2 (BRD9_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 153-223 of Q9H8M2. **[0204]** In one embodiment, the dTAG has an amino acid sequence derived from a BRDT protein (UniProtKB—Q58F21 (BRDT_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEO ID NO: 29) MSLPSRQTAIIVNPPPPEYINTKKNGRLTNQLQYLQKVVLKDLWKHSFSW PFORPVDAVKLOLPDYYTIIKNPMDLNTIKKRLENKYYAKASECIEDFNT MFSNCYLYNKPGDDIVLMAOALEKLFMOKLSOMPOEEOVVGVKERIKKGT QQNIAVSSAKEKSSPSATEKVFKQQEIPSVFPKTSISPLNVVQGASVNSS SQTAAQVTKGVKRKADTTTPATSAVKASSEFSPTFTEKSVALPPIKENMP KNVLPDSQQQYNVVKTVKVTEQLRHCSEILKEMLAKKHFSYAWPFYNPVD VNALGLHNYYDVVKNPMDLGTIKEKMDNQEYKDAYKFAADVRLMFMNCYK YNPPDHEVVTMARMLODVFETHFSKIPIEPVESMPLCYIKTDITETTGRE NTNEASSEGNSSDDSEDERVKRLAKLOEOLKAVHOOLOVLSOVPFRKLNK KKEKSKKEKKKEKVNNSNENPRKMCEOMRLKEKSKRNOPKKRKOOFIGLK SESEDNAKPMNYDEKROLSLNINKLPGDKLGRVVHIIOSREPSLSNSNPD EIEIDFETLKASTLRELEKYVSACLRKRPLKPPAKKIMMSKEELHSQKKQ ELEKRLLDVNNOLNSRKROTKSDKTOPSKAVENVSRLSESSSSSSSSSSS ESSSSDLSSSDSSDSESEMFPKFTEVKPNDSPSKENVKKMKNECIPPEGR TGVTQIGYCVQDTTSANTTLVHQTTPSHVMPPNHHQLAFNYQELEHLQTV $\verb"KNISPLQILPPSGDSEQLSNGITVM+PSGDSDTTMLESECQAPVQKDIKI"$ ${\tt KNADSWKSLGKPVKPSGVMKSSDELFNQFRKAAIEKEVKARTQELIRKHL}$ ${\tt EQNTKELKASQENQRDLGNGLTVESFSNKIQNKCSGEEQKEHQQSSEAQD}$ ${\tt KSKLWLLKDRDLARQKEQERRRREAMVGTIDMTLQSDIMTMFENNFD}\,.$ [0205] In one embodiment, the dTAG is derived from amino acid 44-116 or 287-359 of SEQ ID NO: 29. **[0206]** In one embodiment, the dTAG has an amino acid sequence derived from a BRPF1 protein (UniProtKB—P55201 (BRPF1_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 645-715 of P55201. [0207] In one embodiment, the dTAG has an amino acid sequence derived from a BRPF3 protein (UniProtKB—Q9ULD4 (BRPF3_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 606-676 of Q9ULD4. [0208] In one embodiment, the dTAG has an amino acid sequence derived from a BRWD3 protein (UniProtKB—Q6RI45 (BRWD3_HUMAN) incorporated herein by refer- ence), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1158-1228 or 1317-1412 of O6RI45. **[0209]** In one embodiment, the dTAG has an amino acid sequence derived from a CECR2 protein (UniProtKB—Q9BXF3 (CECR2_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 451-521 of Q9BXF3. **[0210]** In one embodiment, the dTAG has an amino acid sequence derived from a CREBBP protein (UniProtKB—Q92793 (CBP_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1103-1175 of Q92793. **[0211]** In one embodiment, the dTAG has an amino acid sequence derived from an EP300 protein (UniProtKB—Q09472 (EP300_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1067-1139 of Q09472. **[0212]** In one embodiment, the dTAG has an amino acid sequence derived from a FALZ protein (UniProtKB—Q12830 (BPTF_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 2944-3014 of Q12830. [0213] In one embodiment, the dTAG has an amino acid sequence derived from a GCN5L2 protein (UniProtKB—Q92830 (KAT2A_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 745-815 of Q92830. [0214] In one embodiment, the dTAG has an amino acid sequence derived from a KIAA1240 protein (UniProtKB—Q9ULIO (ATD2B_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 975-1045 of Q9ULIO. [0215] In one embodiment, the dTAG has an amino acid sequence derived from a LOC93349 protein (UniProtKB—Q13342 (SP140_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 796-829 of Q13342. [0216] In one embodiment, the dTAG has an amino acid sequence derived from a MLL protein (UniProtKB—Q03164 (KMT2A_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1703-1748 of Q03164. [0217] In one embodiment, the dTAG has an amino acid sequence derived from a PB1 protein (UniProtKB—Q86U86 (PB1_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 63-134, 200-270, 400-470, 538-608, 676-746, or 792-862 of O86U86. [0218] In one embodiment, the dTAG has an amino acid sequence derived from a PCAF protein (UniProtKB—Q92831 (KAT2B_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 740-810 of Q92831. [0219] In one embodiment, the dTAG has an amino acid sequence derived from a PHIP protein (UniProtKB—Q8WWQ0 (PHIP_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1176-1246 or 1333-1403 of Q8WWQ0. [0220] In one embodiment, the dTAG has an amino acid sequence derived from a PRKCBP1 protein (UniProtKB—Q9ULU4 (PKCB1_HUMAN) incorporated herein by refer- ence), or variant thereof. In one embodiment, the dTAG is derived from amino acid 165-235 of Q9ULU4. [0221] In one embodiment, the dTAG has an amino acid sequence derived from a SMARCA2 protein (UniProtKB—P51531 (SMCA2_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1419-1489 of P51531. **[0222]** In one embodiment, the dTAG has an amino acid sequence derived from a SMARCA4 protein (UniProtKB—P51532 (SMCA4_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1477-1547 of P51532. [0223] In one embodiment, the dTAG has an amino acid sequence derived from a SP100 protein (UniProtKB—P23497 (SP100_HUMAN) incorporated herein by reference), or variant thereof. In one
embodiment, the dTAG is derived from amino acid 761-876 of P23497. **[0224]** In one embodiment, the dTAG has an amino acid sequence derived from a SP110 protein (UniProtKB—Q9HB58 (SP110_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 581-676 of Q9HB58. [0225] In one embodiment, the dTAG has an amino acid sequence derived from a SP140 protein (UniProtKB—Q13342 (SP140_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 796-829 of Q13342. [0226] In one embodiment, the dTAG has an amino acid sequence derived from a TAF1 protein (UniProtKB—P21675 (TAF1_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1397-1467 or 1520-1590 of P21675. [0227] In one embodiment, the dTAG has an amino acid sequence derived from a TAF1L protein (UniProtKB—Q8IZX4 (TAF1L_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1416-1486 or 1539-1609 of Q8IZX4. [0228] In one embodiment, the dTAG has an amino acid sequence derived from a TIF1A protein (UniProtKB—O15164 (TIF1A_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 932-987 of 015164. [0229] In one embodiment, the dTAG has an amino acid sequence derived from a TRIM28 protein (UniProtKB—Q13263 (TIF1B_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 697-801 of Q13263. **[0230]** In one embodiment, the dTAG has an amino acid sequence derived from a TRIM33 protein (UniProtKB—Q9UPN9 (TRI33_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 974-1046 of Q9UPN9. [0231] In one embodiment, the dTAG has an amino acid sequence derived from a TRIM66 protein (UniProtKB—O15016 (TRI66_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1056-1128 of 015016. [0232] In one embodiment, the dTAG has an amino acid sequence derived from a WDR9 protein (UniProtKB—Q9NSI6 (BRWD1_HUMAN) incorporated herein by refer- ence), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1177-1247 or 1330-1400 of Q9NSI6. [0233] In one embodiment, the dTAG has an amino acid sequence derived from a ZMYND11 protein (UniProtKB—Q15326 (ZMY11_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 168-238 of Q15326. [0234] In one embodiment, the dTAG has an amino acid sequence derived from a MLL4 protein (UniProtKB—Q9UMN6 (KMT2B_HUMAN) incorporated herein by reference), or variant thereof. In one embodiment, the dTAG is derived from amino acid 1395-1509 of Q9UMN6. [0235] In one embodiment, the dTAG has an amino acid sequence derived from an estrogen receptor, human (Uni-ProtKB—P03372-1, incorporated herein by reference), or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 4) (SEQ ID NO: 5) MTMTLHTKASGMALLHQIQGNELEPLNRPQLKIPLERPLGEVYLDSSKPA VYNYPEGAAYEFNAAAAANAQVYGQTGLPYGPGSEAAAFGSNGLGGFPPL NSVSPSPLMLLHPPPQLSPFLQPHGQQVPYYLENEPSGYTVREAGPPAFY RPNSDNRRQGGRERLASTNDKGSMAMESAKETRYCAVCNDYASGYHYGVW SCEGCKAFFKRSIQGHNDYMCPATNQCTIDKNRRKSCQACRLRKCYEVGM MKGGIRKDRRGGRMLKHKRQRDDGEGRGEVGSAGDMRAANLWPSPLMIKR SKKNSLALSLTADQMVSALLDAEPPILYSEYDPTRPFSEASMMGLLTNLA DRELVHMINWAKRVPGFVDLTLHDQVHLLECAWLEILMIGLVWRSMEHPG KLLFAPNLLLDRNQGKCVEGMVEIFDMLLATSSRFRMMNLQGEEFVCLKS IILLNSGVYTFLSSTLKSLEEKDHIHRVLDKITDTLIHLMAKAGLTLQQQ HQRLAQLLLILSHIRHMSNKGMEHLYSMKCKNVVPLYDLLLEMLDAHRLH APTSRGGASVEETDQSHLATAGSTSSHSLQKYYITGEAEG FPATV. [0236] In one embodiment, the dTAG has an amino acid sequence derived from an estrogen receptor ligand-binding domain, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: SLALSLTADQMVSALLDAEPPILYSEYDPTRPFSEASMMGLITNLADREL VHMINWAKRVPGFVDLTLHDQVHLLECAWLEILMIGLVWRSMEHPGKLLF APNLLLDRNQGKCVEGMVEIFDMLLATSSRFRMMNLQGEEFVCLKSIILL NSGVYTFLSSTLKSLEEKDHIHRVLDKITDTLIHLMAKAGLTLQQQHQRL AQLLLILSHIRHMSNKGMEHLYSMKCKNVVPLYDLLLEMLDAHRL. [0237] In one embodiment, the dTAG has an amino acid sequence derived from an androgen receptor, UniProtKB—P10275 (ANDR_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 6) MEVQLGLGRVYPRPPSKTYRGAFQNLFQSVREVIQNPGPRHPEAASAAPP GASLLLLOOOOOOOOOOOOOOOOETSPROOOOOGEDGSPOAH #### -continued RRGPTGYLVLDEEQQPSQPQSALECHPERGCVPEPGAAVAASKGLPQQLP ${\tt APPDEDDSAAPSTLSLLGPTFPGLSSCSADLKDILSEASTMQLLQQQQQE}$ AVSEGSSSGRAREASGAPTSSKDNYLGGTSTISDNAKELCKAVSVSMGLG VEALEHLSPGEOLRGDCMYAPLLGVPPAVRPTPCAPLAECKGSLLDDSAG KSTEDTAEYSPFKGGYTKGLEGESLGCSGSAAAGSSGTLELPSTLSLYKS GALDEAAAYQSRDYYNFPLALAGPPPPPPPPPPHPHARIKLENPLDYGSAWA ${\tt AAAAQCRYGDLASLHGAGAAGPGSGSPSAAASSSWHTLFTAEEGQLYGPC}$ GGGGGGGGGGGGGGGGGGGGGGAGAVAPYGYTRPPOGLAGOESDFTAP DVWYPGGMVSRVPYPSPTCKVSEMGPWMDSYSGPYGDMRLETARDHVLPI DYYEPPOKTCLICGDEASGCHYGALTCGSCKVFFKRAAEGKOKYLCASRN ${\tt DCTIDKFRKNCPSCRLRKCYEAGMTLGARKLKKLGNLKLQEEGEASSTT}$ SPTEETTQKLTVSHIEGYECQPIFLNVLEAIEPGVVCAGHDNNQPDSFAA $\verb|LLSSLNELGERQLVHVVKWAKALPGFRNLHVDDQMAVIQYSWMGLMVFAM|$ GWRSFTNVNSRMLYFAPDLVFNEYRMHKSRMYSQCVRMRHLSQEFGWLQI TPOEFLCMKALLLFSIIPVDGLKNOKFFDELRMNYIKELDRIIACKRKNP TSCSRRFYQLTKLLDSVQPIARELHQFTFDLLIKSHMVSVDFPEMMAEII SVOVPKILSGKVKPIYFHTO. **[0238]** In one embodiment, the dTAG has an amino acid sequence derived from an androgen receptor ligand-binding domain, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 24) DNNQPDSFAALLSSLNELGERQLVHVVKWAKALPGFRNLHVDDQMAVIQY SWMGLMVFAMGWRSFTNVNSRMLYFAPDLVFNEYRMHKSRMYSQCVRMRH LSQEFGWLQITPQEFLCMKALLLFSIIPVDGLKNQKFFDELRMNYIKELD RIIACKRKNPTSCSRRFYQLTKLLDSVQPIARELHQFTFDLLIKSHMVSV DFPEMMAEIISVQVPKILSGKVKPIYFHT. [0239] In one embodiment, the dTAG has an amino acid sequence derived from a Retinoic Receptor, (UniProtKB—P19793) (RXRA_HUMAN) (incorporated herein by reference), or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 7) MDTKHFLPLDFSTQVNSSLTSPTGRGSMAAPSLHPSLGPGIGSPGQLHSP ISTLSSPINGMGPPFSVISSPMGPHSMSVPTTPTLGFSTGSPQLSSPMNP VSSSEDIKPPLGLNGVLKVPAHPSGNMASFTKHICAICGDRSSGKHYGVY SCEGCKGFFKRTVRKDLTYTCRDNKDCLIDKRQRNRCQYCRYQKCLAMGM KREAVQEERQRGKDRNENEVESTSSANEDMPVERILEAELAVEPKTETYV EANMGLNPSSPNDPVTNICQAADKQLFTLVEWAKRIPHFSELPLDDQVIL LRAGWNELLIASFSHRSIAVKDGILLATGLHVHRNSASSAGVGAIFDRVL ${\tt TELVSKMRDMQMDKTELGCLRAIVLFNPDSKGLSNPAEVEALREKVYASL} \\ {\tt EAYCKHKYPEQPGRFAKLLLRLPALRSIGLKCLEHLFFFKLIGDTPIDTFLEMEMLEAPHQMT.} \\$ **[0240]** In one embodiment, the dTAG has an amino acid sequence derived from a Retinoic Receptor ligand-binding domain, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 25) SANEDMPVERILEAELAVEPKTETYVEANMGLNPSSPNDPVTNICQAADK QLFTLVEWAKRIPHFSELPLDDQVILLRAGWNELLIASFSHRSIAVKDGI LLATGLHVHRNSAHSAGVGAIFDRVLTELVSKMRDMQMDKTELGCLRAIV LFNPDSKGLSNPAEVEALREKVYASLEAYCKHKYPEQPGRFAKLLLRLPA LRSIGLKCLEHLFFFKLIGDTPIDTFLMEMLEAPHOMT. **[0241]** In one embodiment, the dTAG has an amino acid sequence derived from a DHFR, *E. coli*, UniProtKB—Q79DQ2 (Q79DQ2_ECOLX) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 8) MNSESVRIYLVAAMGANRVIGNGPNIPWKIPGEQKIFRRLTEGKVVVMGR KTFESIGKPLPNRHTLVISRQANYRATGCVVVSTLSHAIALASELGNELY VAGGAEIYTLALPHAHGVFLSEVHQTFEGDAFFPMLNETEFELVSTETIQ AVIPYTHSVYARRNG. **[0242]** In one embodiment, the dTAG has an amino acid sequence derived from a bacterial dehalogenase, or variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 9) MAEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLFLHGNPTSSYVWRN IIPHVAPTHRCIAPDLIGMGKSDKPDLGYFFDDHVRFMDAFIEALGLEEV VLVIHDWGSALGFHWAKRNPERVKGIAFMEFIRPIPTWDEWPEFARETFQ AFRTTDVGRKLIIDQNVFIEGTLPMGVVRPLTEVEMDHYREPFLNPVDRE PLWRFPNELPIAGEPANIVALVEEYMDWLHQSPVPKLLFWGTPGVLIPPA EAARLAKSLPNCKAVDIGPGLNLLQEDNPDLIGSEIARWLSTLEISG. [0243] In one embodiment, the dTAG has an amino acid sequence derived from the N-terminus of MDM2, or variants thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 26) MCNTNMSVPTDGAVTTSQIPASEQETLVRPKPLLLKLLKSVGAQKDTYTM KEVLFYLGQYIMTKRLYDEKQQHIVYCSNDLLGDLFGVPSFSVKEHRKIY TMIYRNLVVV. [0244] In one embodiment, the dTAG has an amino acid sequence derived from apoptosis regulator Bcl-xL protein, UniProtKB—Q07817 (B2CL1_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 30) MSQSNRELVVDFLSYKLSQKGYSWSQFSDVEENRTEAPEGTESEMETPSA INGNPSWHLADSPAVNGATGHSSSLDAREVIPMAAVKQALREAGDEFELR YRRAFSDLTSQLHITPGTAYQSFEQVVNELFRDGVNWGRIVAFFSFGGAL CVESVDKEMQVLVSRIAAWMATYLNDHLEPWIQENGGWDTFVELYGNNAA AESBKGOERFNRWFLTGMTVAGVVLLGSLESRK [0245] In one embodiment, the dTAG has an amino acid sequence derived from the CD209 antigen, UniProtKB—Q9NNX6 (CD209_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 31) MSDSKEPRLQQLGLLEEEQLRGLGFRQTRGYKSLAGCLGHGPLVLQLLSF TLLAGLLVQVSKVPSSISQEQSRQDAIYQNLTQLKAAVGELSEKSKLQEI YQELTQLKAAVGELPEKSKLQEIYQELTRLKAAVGELPEKSKLQEIYQEL TWLKAAVGELPEKSKMQEIYQELTRLKAAVGELPEKSKQQEIYQELTRLK AAVGELPEKSKQQEIYQELTRLKAAVGELPEKSKQQEIYQELTQLKAAVE RLCHPCPWEWTFFQGNCYFMSNSQRNWHDSITACKEVGAQLVVIKSAEEQ NFLQLQSSRSNRFTWMGLSDLNQEGTWQWVDGSPLLPSFKQYWNRGEPNN VGEEDCAEFSGNGWNDDKCNLAKFWICKKSAASCSRDEEQFLSPAPATPN PPPA. [0246] In one embodiment, the dTAG has an amino acid sequence derived from E3 ligase XIAP, UniProtKB—P98170 (XIAP_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 32) MTFNSFEGSKTCVPADINKEEEFVEEFNRLKTFANFPSGSPVSASTLARA
GFLYTGEGDTVRCFSCHAAVDRWQYGDSAVGRHRKVSPNCRFINGFYLEN SATQSTNSGIQNGQYKVENYLGSRDHFALDRPSETHADYLLRTGQVVDIS DTIYPRNPAMYSEEARLKSFQNWPDYAHLTPRELASAGLYYTGIGDQVQC FCCGGKLKNWEPCDRAWSEHRRHFPNCFFVLGRNLNIRSESDAVSSDRNF PNSTNLPRNPSMADYEARIFTFGTWIYSVNKEQLARAGFYALGEGDKVKC FHCGGGLTDWKPSEDPWEQHAKWYPGCKYLLEQKGQEYINNIHLTHSLEE CLVRTTEKTPSLTRRIDDTIFQNPMVQEAIRMGFSFKDIKKIMEEKIQIS GSNYKSLEVLVADLVNAQKDSMQDESSQTSLQKEISTEEQLRRLQEEKLC KICMDRNIAIVFVPCGHLVTCKQCAEAVDKCPMCYTVITFKQKIFMS. [0247] In one embodiment, the dTAG has an amino acid sequence derived from baculoviral IAP repeat-containing protein 2, UniProtKB—Q13490 (BIRC2_HUMAN) incor- (SEQ ID NO: 33) porated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: MHKTASQRLFPGPSYQNIKSIMEDSTILSDWTNSNKQKMKYDFSCELYRM STYSTFPAGVPVSERSLARAGFYYTGVNDKVKCFCCGLMLDNWKLGDSPI QKHKQLYPSCSFIQNLVSASLGSTSKNTSPMRNSFAHSLSPTLEHSSLFS GSYSSLSPNPLNSRAVEDISSSRTNPYSYAMSTEEARFLTYHMWPLTFLS PSELARAGFYYIGPGDRVACFACGGKLSNWEPKDDAMSEHRRHFPNCPFL ENSLETLRFSISNLSMQTHAARMRTFMYWPSSVPVQPEQLASAGFYYVGR NDDVKCFCCDGGLRCWESGDDPWVEHAKWFPRCEFLIRMKGQEFVDEIQG EMGFNRDLVKQTVQSKILTTGENYKTVNDIVSALLNAEDEKREEEKEKQA RYPHLLEOLLSTSDTTGEENADPPIIHFGPGESSSEDAVMMNTPVVKSAL EEMASDDLSLIRKNRMALFQQLTCVLPILDNLLKANVINKQEHDIIKQKT QIPLQARELIDTILVKGNAAANIFKNCLKEIDSTLYKNLFVDKNMKYIPT ${\tt EDVSGLSLEEQLRRLQEERTCKVCMDKEVSVVFIPCGHLVVCQECAPSLR}$ KCPICRGIIKGTVRTFLS. [0248] In one embodiment, the dTAG has an amino acid sequence derived from hematoietic prostaglandin D synthase, UniProtKB—O60760 (HPGDS_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 34) MPNYKLTYFNMRGRAEIIRYIFAYLDIQYEDHRIEQADWPEIKSTLPFGK IPILEVDGLTLHQSLAIARYLTKNTDLAGNTEMEQCHVDAIVDTLDDFMS CFPWAEKKQDVKEQMFNELLTYNAPHLMQDLDTYLGGREWLIGNSVTWAD FYWEICSTTLLVFKPDLLDNHPRLVTLRKKVQAIPAVANWIKRRPQTKL. **[0249]** In one embodiment, the dTAG has an amino acid sequence derived from GTPase k-RAS, UniProtKB—P01116 (RASK_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 35) MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGET CLLDILDTAGQEEYSAMRDQYMIRTGEGFLCVFAINNTKSFEDIHHYREQ IKRVKDSEDVPMVLVGNKCDLPSRTVDTKQAQDLARSYGIPFIETSAKTR QRVEDAFYTLVREIRQYRLKKISKEEKTPGCVKIKKCIIM. **[0250]** In one embodiment, the dTAG has an amino acid sequence derived from Poly-ADP-ribose polymerase 15, UniProtKB—Q460N3 (PAR15_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 36) MAAPGPLPAAALSPGAPTPRELMHGVAGVTSRAGRDREAGSVLPAGNRGA RKASRRSSSRSMSRDNKFSKKDCLSIRNVVASIQTKEGLNLKLISGDVLY IWADVIVNSVPMNLQLGGGPLSRAFLQKAGPMLQKELDDRRRETEEKVGN IFMTSGCNLDCKAVLHAVAPYWNNGAETSWQIMANIIKKCLTTVEVLSFS SITFPMIGTGSLQFPKAVFAKLILSEVFEYSSSTRPITSPLQEVHFLVYT NDDEGCQAFLDEFTNWSRINPNKARIPMAGDTQGVVGTVSKPCFTAYEMK IGAITFQVATGDIATEQVDVIVNSTARTFNRKSGVSRAILEGAGQAVESE CAVLAAQPHRDFIITPGGCLKCKIIIHVPGGKDVRKTVTSVLEECEQRKY TSVSLPAIGTGNAGKNPITVADNIIDAIVDFSSQHSTPSLKTVKVVIFQP ELLNIFYDSMKKRDLSASLNFQSTFSMTTCNLPEHWTDMNHQLFCMVQLE PGQSEYNTIKDKFTRTCSSYAIEKIERIQNAFLWQSYQVKKRQMDIKNDH KNNERLLFHGTDADSVPYVNQHGFNRSCAGKNAVSYGKGTYFAVDASYSA KDTYSKPDSNGRKHMYVVRVLTGVFTKGRAGLVTPPPKNPHNPTDLFDSV [0251] In one embodiment, the dTAG has an amino acid sequence derived from Poly-ADP-ribose polymerase 14, UniProtKB—Q460N5 (PAR14_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 37) MAVPGSFPLLVEGSWGPDPPKNLNTKLQMYFQSPKRSGGGECEVRQDPRS PSRFLVFFYPEDVROKVLERKNHELVWOGKGTFKLTVOLPATPDEIDHVF EEELLTKESKTKEDVKEPDVSEELDTKLPLDGGLDKMEDIPEECENISSL VAFENLKANVTDIMLILLVENISGLSNDDFOVEIIRDFDVAVVTFOKHID TIRFVDDCTKHHSIKOLOLSPRLLEVTNTIRVENLPPGADDYSLKLFFEN PYNGGGRVANVEYFPEESSALIEFFDRKVLDTIMATKLDFNKMPLSVFPY YASLGTALYGKEKPLIKLPAPFEESLDLPLWKFLOKKNHLIEEINDEMRR CHCELTWSOLSGKVTIRPAATLVNEGRPRIKTWOADTSTTLSSIRSKYKV NPIKVDPTMWDTIKNDVKDDRILIEFDTLKEMVILAGKSEDVOSIEVOVR ELIESTTQKIKREEQSLKEKMIISPGRYFLLCHSSLLDHLLTECPEIEIC $\verb"YDRVTQHLCLKGPSADVYKAKCEIQEKVYTMAQKNIQVSPEIFQFLQQVN"$ ${\tt WKEFSKCLFIAQKILALYELEGTTVLLTSCSSEALLEAEKQMLSALNYKR}$ IEVENKEVLHGKKWKGLTHNLLKKONSSPNTVIINELTSETTAEVIITGC VKEVNETYKLLFNFVEQNMKIERLVEVKPSLVIDYLKTEKKLFWPKIKKV NVQVSFNPENKQKGILLTGSKTEVLKAVDIVKQVWDSVCVKSVHTDKPGA KQFFQDKARFYQSEIKRLFGCYIELQENEVMKEGGSPAGQKCFSRTVLAP ${\tt GVVLIVQQGDLARLPVDVVVNASNEDLKHYGGLAAALSKAAGPELQADCD}$ OIVKREGRLLPGNATISKAGKLPYHHVIHAVGPRWSGYEAPRCVYLLRRA VQLSLCLAEKYKYRSIAIPAISSGVFGFPLGRCVETIVSAIKENFQFKKD GHCLKEIYLVDVSEKTVEAFAEAVKTVFKATLPDTAAPPGLPPAAAGPGK TSWEKGSLVSPGGLQMLLVKEGVQNAKTDVVVNSVPLDLVLSRGPLSKSL LEKAGPELQEELDTVGQGVAVSMGTVLKTSSWNLDCRYVLHVVAPEWRNG STSSLKIMEDIIRECMEITESLSLKSIAFPAIGTGNLGFPKNIFAELIIS EVEKESSKNQLKTLQEVHFLLHPSDHENIQAFSDEFARRANGNLVSDKIP KAKDTQGFYGTVSSPDSGVYEMKIGSIIFQVASGDITKEEADVIVNSTSN SFNLKAGVSKAILECAGQNVERECSQQAQQRKNDYIITGGGFLRCKNIIH VIGGNDVKSSVSSVLQECEKKNYSSICLPAIGTGNAKQHPDKVAEAIIDA I EDFVOKGSAOSVKKVKVVIFLPOVLDVFYANMKKREGTOLSSOOSVMSK LASFLGFSKQSPQKKNHLVLEKKTESATFRVCGENVTCVEYAISWLQDLI EKEQCPYTSEDECIKDFDEKEYQELNELQKKLNINISLDHKRPLIKVLGI SRDVMQARDEIEAMIKRVRLAKEQESRADCISEFIEWQYNDNNTSHCFNK MTNLKLEDARREKKKTVDVKINHRHYTVNLNTYTATDTKGHSLSVQRLTK SKVDIPAHWSDMKQQNFCVVELLPSDPEYNTVASKFNQTCSHFRIEKIER IQNPDLWNSYQAKKKTMDAKNGQTMNEKQLFHGTDAGSVPHVNRNGFNRS YAGKNAVAYGKGTYFAVNANYSANDTYSRPDANGRKHVYYVRVLTGIYTH GNHSLIVPPSKNPQNPTDLYDTVTDNVHHPSLFVAFYDYQAYPEYLITFR Κ. [0252] In one embodiment, the dTAG has an amino acid sequence derived from superoxide dismutase, UniProtKB—P00441 (SODC_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 38) MATKAVCVLKGDGPVQGIINFEQKESNGPVKVWGSIKGLTEGLHGFHVH EFGDNTAGCTSAGPHFNPLSRKHGGPKDEERHVGDLGNVTADKDGVADV SIEDSVISLSGDHCIIGRTLVVHEKADDLGKGGNEESTKTGNAGSRLAC GVIGIAQ. [0253] In one embodiment, the dTAG has an amino acid sequence derived from retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta, UniProtKB—O43924 (PDE6D_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 39) MSAKDERAREILRGFKLNWMNLRDAETGKILWQGTEDLSVPGVEHEARV PKKILKCKAVSRELNFSSTEQMEKFRLEQKVYFKGQCLEEWFFEFGFVI PNSTNTWQSLIEAAPESQMMPASVLTGNVIIETKFFDDDLLVSTSRVRL FYV. [0254] In one embodiment, the dTAG has an amino acid sequence derived from induced myeloid leukemia cell differentiation protein Mcl-1, UniProtKB—Q07820 (MCL1_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 40) MFGLKRNAVIGLNLYCGGAGLGAGSGGATRPGGRLLATEKEASARREIG GGEAGAVIGGSAGASPPSTLTPDSRRVARPPPIGAEVPDVTATPARLLF FAPTRRAAPLEEMEAPAADAIMSPEEELDGYEPEPLGKRPAVLPLLELV GESGNNTSTDGSLPSTPPPAEEEEDELYRQSLEIISRYLREQATGAKDT KPMGRSGATSRKALETLRRVGDGVQRNHETAFQGMLRKLDIKNEDDVKS LSRVMIHVFSDGVTNWGRIVTLISFGAFVAKHLKTINQESCIEPLAESI TDVLVRTKRDWLVKQRGWDGFVEFFHVEDLEGGIRNVLLAFAGVAGVGA GLAYLIR. [0255] In one embodiment, the dTAG has an amino acid sequence derived from apoptosis regulator Bcl-2, UniProtKB—Q07820 (BCL2_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 41) MAHAGRTGYDNREIVMKYIHYKLSQRGYEWDAGDVGAAPPGAAPAPGIF SSQPGHTPHPAASRDPVARTSPLQTPAAPGAAAGPALSPVPPVVHLTLR QAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRI VAFFEFGGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWD AFVELYGPSMRPLFDFSWLSLKTLLSLALVGACITLGAYLGHK. [0256] In one embodiment, the dTAG has an amino acid sequence derived from peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, UniProtKB—Q13526 (PIN1_HU-MAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 42) MADEEKLPPGWEKRMSRSSGRVYYFNHITNASQWERPSGNSSSGGKNGQ GEPARVRCSHLLVKHSQSRRPSSWRQEKITRTKEEALELINGYIQKIKS GEEDFESLASQFSDCSSAKARGDLGAFSRGQMQKPFEDASFALRTGEMS GPVFTDSGIHIILRTE. **[0257]** In one embodiment, the dTAG has an amino acid sequence derived from tankyrase 1, UniProtKB—O95271 (TNKS1_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 43) MAASRRSQHHHHHHQQQLQPAPGASAPPPPPPPPLSPGLAPGTTPASPT ASGLAPFASPRHGLALPEGDGSRDPPDRPRSPDPVDGTSCCSTTSTICT VAAAPVVPAVSTSSAAGVAPNPAGSGSNNSPSSSSSPTSSSSSSPSSPG SSLAESPEAAGVSSTAPLGPGAAGPGTGVPAVSGALRELLEACRNGDVS RVKRLVDAANVNAKDMAGRKSSPLHFAAGFGRKDVVEHLLQMGANVHAR DDGGLIPLHNACSFGHAEVVSLLLCQGADPNARDNWNYTPLHEAAIKGK IDVCIVLLQHGADPNIRNTDGKSALDLADPSAKAVLTGEYKKDELLEAA RSGNEEKLMALLTPLNVNCHASDGRKSTPLHLAAGYNRVRIVQLLLQHG $\verb|ADVHAKDKGGLVPLHNACSYGHYEVTELLLKHGACVNAMDLWQFTPLHE|$ ${\tt AASKNRVEVCSLLLSHGADPTLVNCHGKSAVDMAPTPELRERLTYEFKG}$ HSLLQAAREADLAKVKKTLALEIINFKQPQSHETALHCAVASLHPKRKQ VTELLLRKGANVNEKNKDFMTPLHVAAERAHNDVMEVLHKHGAKMNALD TLGQTALHRAALAGHLQTCRLLLSYGSDPSIISLQGFTAAQMGNEAVQQ ILSESTPIRTSDVDYRLLEASKAGDLETVKOLCSSONVNCRDLEGRHST PLHFAAGYNRVSVVEYLLHHGADVHAKDKGGLVPLHNACSYGHYEVAEL LVRHGASVNVADLWKFTPLHEAAAKGKYEICKLLLKHGADPTKKNRDGN TPLDLVKEGDTDTODLLRGDAALLDAAKKGCLARVOKLCTPENINCRDT OGRNSTPLHLAAGYNNLEVAEYLLEHGADVNAODKGGLIPLHNAASYGH VDIAALLIKYNTCVNATDKWAFTPLHEAAQKGRTQLCALLLAHGADPTM KNQEGQTPLDLATADDIRALLIDAMPPEALPTCFKPQATVVSASLISPA STPSCLSAASSIDNLTGPLAELAVGGASNAGDGAAGTERKEGEVAGLDM $\verb"NISQFLKSLGLEHLRDIFETEQITLDVLADMGHEELKEIGINAYGHRHK"$ $\verb|LIKGVERLLGGQQGTNPYLTFHCVNQGTILLDLAPEDKEYQSVEEEMQS|$ ${\tt TIREHRDGGNAGGIFNRYNVIRIQKVVNKKLRERFCHRQKEVSEENHNH}$ ${\tt HNERMLFHGSPFINAIIHKGFDERHAYIGGMFGAGIYFAENSSKSNQYV}$ YGIGGGTGCPTHKDRSCYICHRQMLFCRVTLGKSFLQFSTMKMAHAPPG HHSVIGRPSVNGLAYAEYVIYRGEQAYPEYLITYQIMKPEAPSQTATAA EQKT. [0258] In one embodiment, the dTAG has an amino acid sequence derived from tankyrase 2, UniProtKB—O9H2K2 (TNKS2_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 44) MSGRRCAGGGAACASAAAEAVEPAARELFEACRNGDVERVKRLVTPEKV
NSRDTAGRKSTPLHFAAGFGRKDVVEYLLQNGANVQARDDGGLIPLHNA CSFGHAEVVNLLLRHGADPNARDNWNYTPLHEAAIKGKIDVCIVLLQHG AEPTIRNTDGRTALDLADPSAKAVLTGEYKKDELLESARSGNEEKMMAL LTPLNVNCHASDGRKSTPLHLAAGYNRVKIVQLLLQHGADVHAKDKGDL VPLHNACSYGHYEVTELLVKHGACVNAMDLWQFTPLHEAASKNRVEVCS LLLSYGADPTLLNCHNKSAIDLAPTPQLKERLAYEFKGHSLLQAAREAD VTRIKKHLSLEMVNFKHPQTHETALHCAAASPYPKRKQICELLLRKGAN INEKTKEFLTPLHVASEKAHNDVVEVVVKHEAKVNALDNLGQTSLHRAA YCGHLQTCRLLLSYGCDPNIISLQGFTALQMGNENVQQLLQEGISLGNS EADRQLLEAAKAGDVETVKKLCTVQSVNCRDIEGRQSTPLHFAAGYNRV SVVEYLLQHGADVHAKDKGGLVPLHNACSYGHYEVAELLVKHGAVVNVA DLWKFTPLHEAAAKGKYEICKLLLQHGADPTKKNRDGNTPLDLVKDGDT #### -continued DIQDLLRGDAALLDAAKKGCLARVKKLSSPDNVNCRDTQGRHSTPLHLA AGYNNLEVAEYLLQHGADVNAQDKGGLIPLHNAASYGHVDVAALLIKYN ACVNATDKWAFTPLHEAAQKGRTQLCALLLAHGADPTLKNQEGQTPLDL VSADDVSALLTAAMPPSALPSCYKPQVLNGVRSPGATADALSSGPSSPS SLSAASSLDNLSGSFSELSSVVSSSGTEGASSLEKKEVPGVDFSITQFV RNLGLEHLMDIFEREQITLDVLVEMGHKELKEIGINAYGHRHKLIKGVE RLISGQQGLNPYLTLNTSGSGTILIDLSPDDKEFQSVEEEMQSTVREHR DGGHAGGIFNRYNILKIQKVCNKKLWERYTHRRKEVSEENHNHANERML FHGSPFVNAIIHKGFDERHAYIGGMFGAGIYFAENSSKSNQYVYGIGGG TGCPVHKDRSCYICHRQLLFCRVTLGKSFLQFSAMKMAHSPPGHHSVTG RPSVNGLALAEYVIYRGEOAYPEYLITYOIMRPEGMVDG. [0259] In one embodiment, the dTAG has an amino acid sequence derived from 7,8-dihydro-8-oxoguanin tase, Uni-ProtKB—P36639 (8ODP_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 45) MYWSNQITRRLGERVQGFMSGISPQQMGEPEGSWSGKNPGTMGASRLYT LVLVLQPQRVLLGMKKRGEGAGRWNGFGGKVQEGETIEDGARRELQEES GLTVDALHKVGQIVFEFVGEPELMDVHVFCTDSIQGTPVESDEMRPCWF QLDQIPFKDMWPDDSYWFPLLLQKKKFHGYFKFQGQDTILDYTLREVDT V. **[0260]** In one embodiment, the dTAG has an amino acid sequence derived from Proto-oncogene tyrosine protein kinase Src, UniProtKB—P12931 (SRC_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 46) MGSNKSKPKDASQRRRSLEPAENVHGAGGAFPASQTPSKPASADGHRG PSAAFAPAAAEPKLEGGENSSDTVTSPQRAGPLAGGVTTFVALYDYESR TETDLSFKKGERLQIVNNTEGDWWLAHSLSTGQTGYIPSNYVAPSDSIQ AEEWYFGKITRRESERLLLNAENPRGTFLVRESETTKGAYCLSVSDFDN AKGLNVKHYKIRKLDSGGFYITSRTQFNSLQQLVAYYSKHADGLCHRLT TVCPTSKPQTQGLAKDAWEIPRESLRLEVKLGQGCFGEVWMGTWNGTTR VAIKTLKPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEY MSKGSLLDFLKGETGKYLRLPQLVDMAAQIASGMAYVERMNYVHRDLRA ANILVGENLVCKVADFGLARLIEDNEYTARQGAKEPIKWTAPEAALYGR FTIKSDVWSFGILLTELTTKGRVPYPGMVNREVLDQVERGYRMPCPPEC PESLHDLMCQCWRKEPEERPTFEYLQAFLEDYFTSTEPQYQPGENL. [0261] In one embodiment, the dTAG has an amino acid sequence derived from prostaglandin E synthase, UniProtKB—O14684 (PTGES_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 47) MPAHSLVMSSPALPAFLLCSTLLVIKMYVVAIITGQVRLRKKAFANPED ALRHGGPQYCRSDPDVERCLRAHRNDMETIYPFLFLGFVYSFLGPNPFV ${\tt AWMHFLVFLVGRVAHTVAYLGKLRAPIRSVTYTLAQLPCASMALQILWE}$ AARHI **[0262]** In one embodiment, the dTAG has an amino acid sequence derived from Arachidonate 5-lipoxygenase activating protein, UniProtKB—P20292 (AL5AP_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 48) MDQETVGNVVLLAIVTLISVVQNGFFAHKVEHESRTQNGRSFQRTGTLA FERVYTANONCVDAYPTFLAVLWSAGLLCSOVPAAFAGLMYLFVROKYF #### -continued $\tt VGYLGERTQSTPGYIFGKRIILFLFLMSVAGIFNYYLIFFFGSDFENYI$ KTISTTISPLLLIP. [0263] In one embodiment, the dTAG has an amino acid sequence derived from fatty acid binding protein from adipocyte, UniProtKB—P15090 (FABP4_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 49) MCDAFVGTWKLVSSENFDDYMKEVGVGFATRKVAGMAKPNMIISVNGDVI ${\tt TIKSESTFKNTEISFILGQEFDEVTADDRKVKSTITLDGGVLVHVQKWDG}$ KSTTIKRKREDDKI,VVECVMKGVTSTRVYERA. [0264] In one embodiment, the dTAG has an amino acid sequence derived from PH-interacting protein, UniProtKB—Q8WWQ0 (PHIP_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 50) MSCERKGLSELRSELYFLIARFLEDGPCQQAAQVLIREVAEKELLPRRTDWTGKEHPRT YQNLVKYYRHLAPDHLLQICHRLGPLLEQEIPQSVPGVQTLLGAGRQSLLRTNKSCKHV VWKGSALAALHCGRPPESPVNYGSPPSIADTLFSRKLNGKYRLERLVPTAVYQHMKMH KRILGHLSSVYCVTFDRTGRRIFTGSDDCLVKIWATDDGRLLATLRGHAAEISDMAVNY $\verb"ENTMIAAGSCDKMIRVWCLRTCAPLAVLQGHSASITSLQFSPLCSGSKRYLSSTGADGTI"$ CFWLWDAGTLKINPRPAKFTERPRPGVQMICSSFSAGGMFLATGSTDHIIRVYFFGSGQP EKISELEFHTDKVDSIQFSNTSNRFVSGSRDGTARIWQFKRREWKSILLDMATRPAGQNL QGIEDKITKMKVTMVAWDRHDNTVITAVNNMTLKVWNSYTGQLIHVLMGHEDEVFVL EPHPFDPRVLFSAGHDGNVIVWDLARGVKIRSYFNMIEGQGHGAVFDCKCSPDGQHFA CTDSHGHLLIFGFGSSSKYDKIADOMFFHSDYRPLIRDANNFVLDEOTOOAPHLMPPPFL VDVDGNPHPSRYQRLVPGRENCREEQLIPQMGVTSSGLNQVLSQQANQEISPLDSMIQR LOOEODLRRSGEAVISNTSRLSRGSISSTSEVHSPPNVGLRRSGOIEGVROMHSNAPRSEI ATERDLVAWSRRVVVPELSAGVASRQEEWRTAKGEEEIKTYRSEEKRKHLTVPKENKIP TVSKNHAHEHFLDLGESKKQQTNQHNYRTRSALEETPRPSEEIENGSSSSDEGEVVAVS GGTSEEEERAWHSDGSSSDYSSDYSDWTADAGINLOPPKKVPKNKTKKAESSSDEEEES $\verb"EKQKQKQIKKEKKKVNEEKDGPISPKKKKPKERKQKRLAVGELTENGLTLEEWLPSTWI"$ $\verb"TDTIPRRCPFVPQMGDEVYYFRQGHEAYVEMARKNKIYSINPKKQPWHKMELREQELM"$ $\verb|KIVGIKYEVGLPTLCCLKLAFLDPDTGKLTGGSFTMKYHDMPDVIDFLVLRQQFDDAKY|$ $\verb"RRWNIGDRFRSVIDDAWWFGTIESQEPLQLEYPDSLFQCYNVCWDNGDTEKMSPWDM"$ ELIPNNAVFPEELGTSVPLTDGECRSLIYKPLDGEWGTNPRDEECERIVAGINQLMTLDIA SAFVAPVDLQAYPMYCTVVAYPTDLSTIKQRLENRFYRRVSSLMWEVRYIEHNTRTFNE PGSPIVKSAKFVTDLLLHFIKDOTCYNIIPLYNSMKKKVLSDSEDEEKDADVPGTSTRKR $\verb|KDHQPRRRLRNRAQSYDIQAWKKQCEELLNLIFQCEDSEPFRQPVDLLEYPDYRDIIDTP|\\$ MDFATVRETLEAGNYESPMELCKDVRLIFSNSKAYTPSKRSRIYSMSLRLSAFFEEHISSV LSDYKSALRFHKRNTITKRRKKRNRSSSVSSAASSPERKKRILKPQLKSESSTSAFSTPTR SIPPRHNAAQINGKTESSSVVRTRSNRVVVDPVVTEQPSTSSAAKTFITKANASAIPGKTI LENSVKHSKALNTLSSPGQSSFSHGTRNNSAKENMEKEKPVKRKMKSSVLPKASTLSKS SAVIEQGDCKNNALVPGTIQVNGHGGQPSKLVKRGPGRKPKVEVNTNSGEIIHKKRGRK PKKLQYAKPEDLEQNNVHPIRDEVLPSSTCNFLSETNNVKEDLLQKKNRGGRKPKRKM KTQKLDADLLVPASVKVLRRSNRKKIDDPIDEEEEFEELKGSEPHMIRTRNQGRRTAFYN EDDSEEEQRQLLFEDTSLTFGTSSRGRVRKLTEKAKANLIGW. [0265] In one embodiment, the dTAG has an amino acid sequence derived from SUMO-conjugating enzyme UBC9, UniProtKB—P63279 (UBC9_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 51) MSGIALSRLAQERKAWRKDHPFGFVAVPTKNPDGTMNLMNWECAIPGKK GTPWEGGLFKLRMLFKDDYPSSPPKCKFEPPLFHPNVYPSGTVCLSILE EDKDWRPAITIKQILLGIQELLNEPNIQDPAQAEAYTIYCQNRVEYEKR VRAOAKKFAPS. [0266] In one embodiment, the dTAG has an amino acid sequence derived from Protein S100-A7, UniProtKB—P31151 (S10A7_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 52) MSNTOAERSIIGMIDMFHKYTRRDDKIEKPSLLTMMKENFPNFLSACDK ${\tt KGTNYLADVFEKKDKNEDKKIDFSEFLSLLGDIATDYHKQSHGAAPCSG}$ GSQ. [0267] In one embodiment, the dTAG has an amino acid sequence derived from phospholipase A2, membrane associated, UniProtKB—P14555 (PA2GA_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 53) ${\tt MKTLLLLAVIMIFGLLQAHGNLVNFHRMIKLTTGKEAALSYGFYGCHCG}$ VGGRGSPKDATDRCCVTHDCCYKRLEKRGCGTKFLSYKFSNSGSRITCA ${\tt KQDSCRSQLCECDKAAATCFARNKTTYNKKYQYYSNKHCRGSTPRC.}$ **[0268]** In one embodiment, the dTAG has an amino acid sequence derived from histone deacetylase 6, UniProtKB—Q9UBN7 (HDAC6_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 54) $\verb|MTSTGQDSTTTRQRRSRQNPQSPPQDSSVTSKRNIKKGAVPRSIPNLAE|$ VKKKGKMKKLGQAMEEDLIVGLQGMDLNLEAEALAGTGLVLDEQLNEFH ### -continued CLWDDSFPEGPERLHAIKEQLIQEGLLDRCVSFQARFAEKEELMLVHSL EYIDLMETTQYMNEGELRVLADTYDSVYLHPNSYSCACLASGSVLRLVD AVLGAEIRNGMAIIRPPGHHAQHSLMDGYCMFNHVAVAARYAQQKHRIR RVLIVDWDVHHGQGTQFTFDQDPSVLYFSIHRYEQGRFWPHLKASNWST TGFGOGOGYTINVPWNOVGMRDADYIAAFLHVLLPVALEFOPOLVLVAA ${\tt GFDALQGDPKGEMAATPAGFAQLTHLLMGLAGGKLILSLEGGYNLRALA}$ EGVSASLHTLLGDPCPMILESPGAPCRSAQASVSCALEALEPFWEVLVR STETVERDNMEEDNVEESEEEGPWEPPVLPILTWPVLQSRTGLVYDQNM MNHCNLWDSHHPEVPORILRIIVICRLEELGLAGRCLTLTPRPATEAEL LTCHSAEYVGHLRATEKMKTRELHRESSNFDSIYICPSTFACAOLATGA ${\tt ACRLVEAVLSGEVLNGAAVVRPPGHHAEQDAACGFCFFNSVAVAARHAQ}$ TISGHALRILIVDWDVHHGNGTQHMFEDDPSVLYVSLHRYDHGTFFPMG DEGASSQIGRAAGTGFTVNVAWNGPRMGDADYLAAWHRLVLPIAYEFNP $\verb"ELVLVSAGFDAARGDPLGGCQVSPEGYAHLTHLLMGLASGRIILILEGG"$ YNLTSISESMAACTRSLLGDPPPLLTLPRPPLSGALASITETIQVHRRY ${\tt WRSLRVMKVEDREGPSSSKLVTKKAPQPAKPRLAERMTTREKKVLEAGM}$ ${\tt GKVTSASFGEESTPGQTNSETAVVALTQDQPSEAATGGATLAQTISEAA}$ IGGAMLGQTTSEEAVGGATPDQTTSEETVGGAILDQTTSEDAVGGATLG QTTSEEAVGGATLAQTTSEAAMEGATLDQTTSEEAPGGTELIQTPLASS TDHQTPPTSPVQGTTPQISPSTLIGSLRTLELGSESQGASESQAPGEEN $\verb|LLGEAAGGQDMADSMLMQGSRGLTDQAIFYAVTPLPWCPHLVAVCPIPA|$ AGLDVTOPCGDCGTIOENWVCLSCYOVYCGRYINGHMLOHHGNSGHPLV LSYIDLSAWCYYCQAYVHHQALLDVKNIAHQNKFGEDMPHPH. [0269] In one embodiment, the dTAG has an amino acid sequence derived from prosaposin, UniProtKB—P07602 (SAP_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEQ ID NO: 55) $\verb|MYALFLLASLLGAALAGPVLGLKECTRGSAVWCQNVKTASDCGAVKHCL|$ QTVWNKPTVKSLPCDICKDVVTAAGDMLKDNATEEEILVYLEKTCDWLP KPNMSASCKEIVDSYLPVILDIIKGEMSRPGEVCSALNLCESLQKHLAE LNHQKQLESNKIPELDMTEVVAPFMANIPLLLYPQDGPRSKPQPKDNGD VCQDCIQMVTDIQTAVRTNSTFVQALVEHVKEECDRLGPGMADICKNYI SQYSEIAIQMMMHMQPKEICALVGFCDEVKEMPMQTLVPAKVASKNNIP ALELVEPIKKHEVPAKSDVYCEVCEFLVKEVTKLIDNNKTEKEILDAFD KMCSKLPKSLSEECQEVVDTYGSSILSILLEEVSPELVCSMLHLCSGTR ### -continued [0270] In one embodiment, the dTAG has an amino acid sequence derived from apolipoprotein a, UniProtKB—P08519 (APOA_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: (SEO ID NO: 56) MEHKEVVLLLLLFLKSAAPEQSHVVQDCYHGDGQSYRGTYSTTVTGRTCQAWSSMTP HQHNRTTENYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVA PPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHS ${\tt
HSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPT}$ VTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSR TPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTP VPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPE YYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPS LEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYP NAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEA PSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNA GLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTOCSDAEGTAVAPPTVTPVPSLEAPS EOAPTEORPGVOECYHGNGOSYRGTYSTTVTGRTCOAWSSMTPHSHSRTPEYYPNAGL IMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQ ${\tt APTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLEVICATION of the complex com$ ${\tt NYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAP}$ TEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNY CRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTE QRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCR ${\tt NPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRP}$ GVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPD AVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGV QECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAV AAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQEC YHGNGOSYRGTYSTTVTGRTCOAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAP YCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYH GNGOSYRGTYSTTVTGRTCOAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYC YTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGN GQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYT ${\tt RDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQ}$ ${\tt SYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRD}$ PGVRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSY RGTYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPG ${\tt VRWEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRG}$ ${\tt TYSTTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVR}$ WEYCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTY STTVTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWE YCNLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTT VTGRTCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYC $\verb|NLTQCSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVT|$ GRTCOAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNL TOCSDAEGTAVAPPTVTPVPSLEAPSEOAPTEORPGVOECYHGNGOSYRGTYSTTVTGR TCQAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQ ${\tt CSDAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTC}$ QAWSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCS DAEGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQA ${\tt WSSMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDA}$ EGTAVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWS SMTPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGT AVAPPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSM TPHSHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAV APPTVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPH SHSRTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPP TVTPVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHS $\verb"RTPEYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVT"$ PVPSLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTP EYYPNAGLIMNYCRNPDAVAAPYCYTRDPGVRWEYCNLTQCSDAEGTAVAPPTVTPVP SLEAPSEQAPTEQRPGVQECYHGNGQSYRGTYSTTVTGRTCQAWSSMTPHSHSRTPEYY PNAGLIMNYCRNPDPVAAPYCYTRDPSVRWEYCNLTQCSDAEGTAVAPPTITPIPSLEAP ${\tt SEQAPTEQRPGVQECYHGNGQSYQGTYFITVTGRTCQAWSSMTPHSHSRTPAYYPNAG}$ LIKNYCRNPDPVAAPWCYTTDPSVRWEYCNLTRCSDAEWTAFVPPNVILAPSLEAFFEQ ALTEETPGVODCYYHYGOSYRGTYSTTVTGRTCOAWSSMTPHOHSRTPENYPNAGLTR NYCRNPDAEIRPWCYTMDPSVRWEYCNLTOCLVTESSVLATLTVVPDPSTEASSEEAPT EQSPGVQDCYHGDGQSYRGSFSTTVTGRTCQSWSSMTPHWHQRTTEYYPNGGLTRNY CRNPDAEISPWCYTMDPNVRWEYCNLTOCPVTESSVLATSTAVSEQAPTEOSPTVODCY HGDGOSYRGSFSTTVTGRTCOSWSSMTPHWHORTTEYYPNGGLTRNYCRNPDAEIRPW CYTMDPSVRWEYCNLTOCPVMESTLLTTPTVVPVPSTELPSEEAPTENSTGVODCYRGD ${\tt GQSYRGTLSTTITGRTCQSWSSMTPHWHRRIPLYYPNAGLTRNYCRNPDAEIRPWCYTM}$ ${\tt DPSVRWEYCNLTRCPVTESSVLTTPTVAPVPSTEAPSEQAPPEKSPVVQDCYHGDGRSY}$ RGISSTTVTGRTCQSWSSMIPHWHQRTPENYPNAGLTENYCRNPDSGKQPWCYTTDPC (SEQ ID NO: 58) ### -continued VRWEYCNLTQCSETESGVLETPTVVPVPSMEAHSEAAPTEQTPVVRQCYHGNGQSYRG TFSTTVTGRTCQSWSSMTPHRHQRTPENYPNDGLTMNYCRNPDADTGPWCFTMDPSIR WEYCNLTRCSDTEGTVVAPPTVIQVPSLGPPSEQDCMFGNGKGYRGKKATTVTGTPCQ EWAAQEPHRHSTFIPGTNKWAGLEKNYCRNPDGDINGPWCYTMNPRKLFDYCDIPLCA SSSFDCGKPQVEPKKCPGSIVGGCVAHPHSWPWQVSLRTRFGKHFCGGTLISPEWVLTA AHCLKKSSRPSSYKVILGAHQEVNLESHVQEIEVSRLFLEPTQADIALLKLSRPAVITDKV MPACLPSPDYMVTARTECYITGWGETQGTFGTGLLKEAQLLVIENEVCNHYKYICAEHL ARGTDSCQGDSGGPLVCFEKDKYILQGVTSWGLGCARPNKPGVYARVSRFVTWIEGM MRNN. [0271] In one embodiment, the dTAG has an amino acid sequence derived from lactoglutathione lyase, UniProtKB—Q04760 (LGUL_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: $(SEQ\ ID\ NO:\ 57)$ MAEPQPPSGGLTDEAALSCCSDADPSTKDFLLQQTMLRVKDPKKSLDFYT RVLGMTLIOKCDFPIMKFSLYFLAYEDKNDIPKEKDEKIAWALSRKATLE #### -continued $\label{limit} {\tt LTHNWGTEDDETQSYHNGNSDPRGFGHIGIAVPDVYSACKRFEELGVKFV} $$ KKPDDGKMKGLAFIQDPDGYWIEILNPNKMATLM.$ [0272] In one embodiment, the dTAG has an amino acid sequence derived from protein afadin, UniProtKB—P55196 (AFAD_HUMAN) incorporated herein by reference, or a variant thereof. In one embodiment, the dTAG is derived from the amino acid sequence: MSAGGRDEERRKLADIIHEWNANRLDLFEISQPTEDLEFHGVMRFYFQDKAAGNFATK $\verb|CIRVSSTATTQDVIETLAEKFRPDMIRMLSSPKYSLYEVHVSGERRLDIDEKPLVVQLNW|$ NKDDREGRFVLKNENDAIPPKKAQSNGPEKQEKEGVIQNFKRTLSKKEKKEKKKREKE ALRQASDKDDRPFQGEDVENSRLAAEVYKDWIPETSFTRTISNPEVVMKRRRQQKLEKR ${\tt MQEFRSSDGRPDSGGTLRIYADSLKPNIPYKTILLSTTDPADFAVAEALEKYGLEKENPK}$ DYCIARVMLPPGAQHSDEKGAKEIILDDDECPLQIFREWPSDKGILVFQLKRRPPDHIPKK TKKHLEGKTPKGKERADGSGYGSTLPPEKLPYLVELSPGRRNHFAYYNYHTYEDGSDS RDKPKLYRLOLSVTEVGTEKLDDNSIOLFGPGIOPHHCDLTNMDGVVTVTPRSMDAETY VEGORI SETTMLOSGMKVOFGASHVFKFVDPSODHALAKRSVDGGLMVKGPRHKPGIV QETTFDLGGD I HSGTALPTSKSTTRLDSDRVSSASSTAERGMVKPM I RVEQOPDYRRQES ${\tt RTQDASGPELILPASIEFRESSEDSFLSAIINYTNSSTVHFKLSPTYVLYMACRYVLSNQYR}$ PDISPTERTHKVIAVVNKMVSMMEGVIQKQKNIAGALAFWMANASELLNFIKQDRDLS ${\tt RITLDAQDVLAHLVQMAFKYLVHCLQSELNNYMPAFLDDPEENSLQRPKIDDVLHTLT}$ GAMSLLRRCRVNAALTIQLFSQLFHFINMWLFNRLVTDPDSGLCSHYWGAIIRQQLGHIE AWAEKQGLELAADCHLSRIVQATTLLTMDKYAPDDIPNINSTCFKLNSLQLQALLQNYH ${\tt CAPDEPFIPTDLIENVVTVAENTADELARSDGREVQLEEDPDLQLPFLLPEDGYSCDVVR}$ NIPNGLQEFLDPLCQRGFCRLIPHTRSPGTWTIYFEGADYESHLLRENTELAQPLRKEPEII TVTLKKQNGMGLSIVAAKGAGQDKLGIYVKSVVKGGAADVDGRLAAGDQLLSVDGRS LVGLSQERAAELMTRTSSVVTLEVAKQGAIYHGLATLLNQPSPMMQRISDRRGSGKPRP KSEGEELYNNSTQNGSPESPQLPWAEYSEPKKLPGDDRLMKNRADHRSSPNVANQPPSP GGKSAYASGTTAKITSVSTGNLCTEEQTPPPRPEAYPIPTQTYTREYFTFPASKSQDRMAP -continued PONOWPNYEEKPHMHTDSNHSSIAIORVTRSQEELREDKAYQLERHRIEAAMDRKSDSD MWINQSSSLDSSTSSQEHLNHSSKSVTPASTLTKSGPGRWKTPAAIPATPVAVSQPIRTDL PPPPPPPPVHYAGDFDGMSMDLPLPPPPSANQIGLPSAQVAAAERRKREEHQRWYEKEK ARLEEERERKRREQERKLGQMRTQSLNPAPFSPLTAQQMKPEKPSTLQRPQETVIRELQP QQQPRTIERRDLQYITVSKEELSSGDSLSPDPWKRDAKEKLEKQQQMHIVDMLSKEIQEL QSKPDRSAEESDRLRKLMLEWQFQKRLQESKQKDEDDEEEEDDDVDTMLIMQRLEAER RARLQDEERRRQQQLEEMRKREAEDRARQEEERRRQEEERTKRDAEEKRRQEEGYYSR LEAERRRQHDEAARRLLEPEAPGLCRPPLPRDYEPPSPSPAPGAPPPPPQRNASYLKTQV LSPDSLFTAKFVAYNEEEEEEDCSLAGPNSYPGSTGAAVGAHDACRDAKEKRSKSQDA DSPGSSGAPENLTFKERORLFSOGODVSNKVKASRKLTELENELNTK. [0273] Heterobifunctional compounds capable of binding to the amino acid sequences, or a fragment thereof, described above can be generated using the dTAG Targeting Ligand described in Table T. In one embodiment, the CAR contains a dTAG derived from an amino acid sequence described above, or a fragment thereof, and is degraded by administering to the subject a heterobifunctional compound comprising a dTAG Targeting Ligand described in Table T. In one embodiment, the CAR contains a dTAG derived from an amino acid sequence described above, or a fragment thereof, and is degraded by administering to the subject its corresponding heterobifunctional compound, which is capable of binding to the to the dTAG described in the CAR, for example a heterobifunctional compound described in FIG. 33, FIG. 34, FIG. 35, FIG. 36, or FIG. 37, or any other heterobifunctional compound described herein. ### Nucleic Acid Encoding CAR [0274] The present invention provides a nucleic acid encoding a CAR as described herein. The nucleic acid encoding the CAR can be easily prepared from an amino acid sequence of the specified CAR by a conventional method. A base sequence encoding an amino acid sequence can be readily obtained from, for example, the aforementioned amino acid sequences or publicly available references sequences, for example, NCBI RefSeq IDs or accession numbers of GenBank, for an amino acid sequence of each domain, and the nucleic acid of the present invention can be prepared using a standard molecular biological and/or chemical procedure. RefSeq IDs for commonly used CAR domains are known in the art, for example, U.S. Pat. No. 9,175,308 (which are incorporated herein by reference) discloses a number of specific amino acid sequences particularly used as CAR transmembrane and intracellular signaling domains. As one example, based on the base sequence, a nucleic acid can be synthesized, and the nucleic acid of the present invention can be prepared by combining DNA fragments which are obtained from a cDNA library using a polymerase chain reaction (PCR). [0275] The nucleic acids of the present invention can be linked to another nucleic acid so as to be expressed under control of a suitable promoter. Examples of the promoter include a promoter that constitutively promotes the expression of a gene, a promoter that induces the expression of a gene by the action of a drug or the like (e.g. tetracycline or doxorubicin). The nucleic acid of the present invention can be also linked to, in order to attain efficient transcription of the nucleic acid, other regulatory elements that cooperate with a promoter or a transcription initiation site, for example, a nucleic acid comprising an
enhancer sequence or a terminator sequence. In addition to the nucleic acid of the present invention, a gene that can be a marker for confirming expression of the nucleic acid (e.g. a drug resistance gene, a gene encoding a reporter enzyme, or a gene encoding a fluorescent protein) may be incorporated. [0276] One example of a suitable promoter is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of any polynucleotide sequence operatively linked thereto. Another example of a suitable promoter is Elongation Growth Factor- 1α (EF- 1α). However, other constitutive promoter sequences may also be used, including, but not limited to the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, MoMuLV promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter, as well as human gene promoters such as, but not limited to, the actin promoter, the myosin promoter, the hemoglobin promoter, and the creatine kinase promoter. Further, the invention should not be limited to the use of constitutive promoters. Inducible promoters are also contemplated as part of the invention. The use of an inducible promoter provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired, or turning off the expression when expression is not desired. Examples of inducible promoters include, but are not limited to a metallothionine promoter, a glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter. [0277] The present invention contemplates a composition comprising the nucleic acid of the present invention as an active ingredient, together with a pharmaceutically acceptable excipients are well known to a person skilled in the art. Examples of the pharmaceutically acceptable excipients are well known to a person skilled in the art. Examples of the pharmaceutically acceptable excipients include phosphate buffered saline (e.g. 0.01 M phosphate, 0.138 M NaCl, 0.0027 M KCl, pH 7.4), an aqueous solution containing a mineral acid salt such as a hydrochloride, a hydrobromide, a phosphate, or a sulfate, saline, a solution of glycol or ethanol, and a salt of an organic acid such as an acetate, a propionate, a malonate or a benzoate. An adjuvant such as a wetting agent or an emulsifier, and a pH buffering agent can also be used. As the pharmaceutically acceptable excipients, excipients described in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. (1991)) (which is incorporated herein by reference) can be appropriately used. The composition of the present invention can be formulated into a known form suitable for parenteral administration, for example, injection or infusion. Further, the composition of the present invention may comprise formulation additives such as a suspending agent, a preservative, a stabilizer and/or a dispersant, and a preservation agent for extending a validity term during storage. The composition may be in a dry form for reconstitution with an appropriate sterile liquid prior to use. For fine particle-mediated administration, a particle such as a gold particle of a microscopic size can be coated with a DNA. [0278] When the nucleic acid of the present invention is introduced into a cell ex vivo, the nucleic acid of the present invention may be combined with a substance that promotes transference of a nucleic acid into a cell, for example, a reagent for introducing a nucleic acid such as a liposome or a cationic lipid, in addition to the aforementioned excipients. Alternatively, a vector carrying the nucleic acid of the present invention is also useful as described later. Particularly, a composition in a form suitable for administration to a living body which contains the nucleic acid of present invention carried by a suitable vector is suitable for in vivo gene therapy. [0279] A composition that includes the nucleic acid of the present invention as an active ingredient can be administered for treatment of, for example, a cancer [blood cancer (leukemia), solid tumor etc.], an inflammatory disease/autoimmune disease (asthma, eczema), hepatitis, or an infectious disease the cause of which is a virus such as influenza and HIV, a bacterium, or a fungus, for example, a disease such as tuberculosis, MRSA, VRE, or deep mycosis, depending on an antigen to which a CAR encoded by the nucleic acid binds. A composition comprising the nucleic acid of the present invention as an active ingredient can be administered, by any desired route, including but not limited to, intradermally, intramuscularly, subcutaneously, intraperitoneally, intranasally, intraarterially, intravenously, intratumorally, or into an afferent lymph vessel, by parenteral administration, for example, by injection or infusion, although the administration route is not particularly limited. ## Immune Effector Cells Expressing CARs [0280] Immune effector cells expressing the CAR of the present invention can be engineered by introducing the nucleic acid encoding a CAR described above into a cell. In one embodiment, the step is carried out ex vivo. For example, a cell can be transformed ex vivo with a virus vector or a non-virus vector carrying the nucleic acid of the present invention to produce a cell expressing the CAR of the present invention. [0281] The nucleic acid encoding the CAR of the present invention can be inserted into a vector, and the vector can be introduced into a cell. For example, a virus vector such as a retrovirus vector (including an oncoretrovirus vector, a lentivirus vector, and a pseudo type vector), an adenovirus vector, an adeno-associated virus (AAV) vector, a simian virus vector, a vaccinia virus vector or a sendai virus vector, an Epstein-Barr virus (EBV) vector, and a HSV vector can be used. Preferably, a virus vector lacking the replicating ability so as not to self-replicate in an infected cell is preferably used. [0282] In addition, a non-virus vector can also be used in the present invention in combination with a liposome and a condensing agent such as a cationic lipid as described in WO 96/10038, WO 97/18185, WO 97/25329, WO 97/30170, and WO 97/31934 (which are incorporated herein by reference). The nucleic acid of the present invention can be also introduced into a cell by calcium phosphate transduction, DEAE-dextran, electroporation, or particle bombardment. [0283] For example, when a retrovirus vector is used, the process of the present invention can be carried out by selecting a suitable packaging cell based on a LTR sequence and a packaging signal sequence possessed by the vector and preparing a retrovirus particle using the packaging cell. Examples of the packaging cell include PG13 (ATCC CRL-10686), PA317 (ATCC CRL-9078), GP+E-86 and GP+en-vAm-12 (U.S. Pat. No. 5,278,056), and Psi-Crip (*PNAS* 85 (1988):6460-6464). A retrovirus particle can also be prepared using a 293 cell or a 293T-cell having high transfection efficiency. Many kinds of retrovirus vectors produced based on retroviruses and packaging cells that can be used for packaging of the retrovirus vectors are widely commercially available from many companies. [0284] In the step of introducing a nucleic acid into a cell, a functional substance for improving the introduction efficiency can also be used (e.g. WO 95/26200 and WO 00/01836 (which are incorporated herein by reference)). Examples of the substance for improving the introduction efficiency include a substance having ability to bind to a virus vector, for example, fibronectin and a fibronectin fragment. Preferably, a fibronectin fragment having a heparin binding site, for example, a fragment commercially available as RetroNetcin (registered trademark, CH-296, manufactured by TAKARA BIC INC.) can be used. Also, polybrene which is a synthetic polycation having an effect of improving the efficiency of infection of a retrovirus into a cell, a fibroblast growth factor, V type collagen, polylysine or DEAE-dextran can be used. [0285] In one aspect of the present invention, the functional substance can be used in a state of being immobilized on a suitable solid phase, for example, a container used for cell culture (plate, petri dish, flask or bag) or a carrier (microbeads etc.). [0286] In order to assess the expression of a CAR polypeptide or portion thereof, the expression vector to be introduced into a cell can also contain either a selectable marker gene or a reporter gene or both to facilitate identification and selection of expressing cells from the population of cells sought to be transfected or infected through viral vectors. In other aspects, the selectable marker may be carried on a separate piece of DNA and used in a cotransfection procedure. Both selectable markers and reporter genes may be flanked with appropriate regulatory sequences to enable expression in the hosT-cells. Useful selectable markers include, for example, antibiotic-resistance genes, such as neo and the like. [0287] Reporter genes are used for identifying potentially transfected cells and for evaluating the functionality of regulatory sequences. In general, a reporter gene is a gene that is not present in or expressed by the recipient organism or tissue and that encodes a polypeptide whose expression is manifested by some easily detectable property, e.g., enzy- matic activity. Expression of the reporter gene is assayed at a suitable time after the DNA has been introduced into the recipient cells. Suitable reporter genes may include genes encoding luciferase, beta-galactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the green fluorescent protein gene (e.g., Ui-Tei et al., 2000 FEBS Letters 479: 79-82). Suitable expression
systems are well known and may be prepared using known techniques or obtained commercially. In general, the construct with the minimal 5' flanking region showing the highest level of expression of reporter gene is identified as the promoter. Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter-driven transcription. [0288] The cell expressing the CAR of the present invention is a cell in which the nucleic acid encoding a CAR described above is introduced and expressed by the cell. The cell of the present invention binds to a specific antigen via the CAR, and then a signal is transmitted into the cell, and as a result, the cell is activated. The activation of the cell expressing the CAR is varied depending on the kind of a host cell and an intracellular domain of the CAR, and can be confirmed based on, for example, release of a cytokine, improvement of a cell proliferation rate, change in a cell surface molecule, or the like as an index. For example, release of a cytotoxic cytokine (a tumor necrosis factor, lymphotoxin, etc.) from the activated cell causes destruction of a target cell expressing an antigen. In addition, release of a cytokine or change in a cell surface molecule stimulates other immune cells, for example, a B cell, a dendritic cell, a NK cell, and a macrophage. In order to confirm the presence of the recombinant DNA sequence in the cell, a variety of assays may be performed. Such assays include, for example, "molecular biological" assays well known to those of skill in the art, such as Southern and Northern blotting, RT-PCR and PCR; "biochemical" assays, such as detecting the presence or absence of a particular peptide, e.g., by immunological means (ELISAs and Western blots) or by assays described herein to identify agents falling within the scope of the invention. [0289] An immune effector cell such as lymphocytes including but not limited to cytotoxic lymphocytes, T-cells, cytotoxic T-cells, T helper cells, Thl7 T-cells, natural killer (NK) cells, natural killer T (NKT) cells, mast cells, dendritic cells, killer dendritic cells, or B cells derived from a mammal, for example, a human cell, or a cell derived from a non-human mammal such as a monkey, a mouse, a rat, a pig, a horse, or a dog can be used. For example, a cell collected, isolated, purified or induced from a body fluid, a tissue or an organ such as blood (peripheral blood, umbilical cord blood etc.) or bone marrow can be used. A peripheral blood mononuclear cell (PBMC), an immune cell (a dendritic cell, a B cell, a hematopoietic stem cell, a macrophage, a monocyte, a NK cell or a hematopoietic cell (a neutrophil, a basophil)), an umbilical cord blood mononuclear cell, a fibroblast, a precursor adipocyte, a hepatocyte, a skin keratinocyte, a mesenchymal stem cell, an adipose stem cell, various cancer cell strains, or a neural stem cell can be used. In the present invention, particularly, use of a T-cell, a precursor cell of a T-cell (a hematopoietic stem cell, a lymphocyte precursor cell etc.) or a cell population containing them is preferable. Examples of the T-cell include a CD8-positive T-cell, a CD4-positive T-cell, a regulatory T-cell, a cytotoxic T-cell, and a tumor infiltrating lymphocyte. The cell population containing a T-cell and a precursor cell of a T-cell includes a PBMC. The aforementioned cells may be collected from a living body, obtained by expansion culture of a cell collected from a living body, or established as a cell strain. When transplantation of the produced CAR-expressing cell or a cell differentiated from the produced CAR-expressing cell into a living body is desired, it is preferable to introduce the nucleic acid into a cell collected from the living body itself or a conspecific living body thereof. [0290] In one embodiment, the CAR expressing cell is a T-cell isolated from a subject for autologous therapy. Typically, prior to expansion and genetic modification of the T-cells of the invention, a source of T-cells is obtained from a subject. T-cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In certain embodiments of the present invention, any number of T-cell lines available in the art, may be used. In certain embodiments of the present invention, T-cells can be obtained from a unit of blood collected from a subject using any number of techniques known to the skilled artisan, such as FicollTM separation. In one preferred embodiment, cells from the circulating blood of an individual are obtained by apheresis. The apheresis product typically contains lymphocytes, including T-cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. In one embodiment, the cells collected by apheresis may be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media for subsequent processing steps. In one embodiment of the invention, the cells are washed with phosphate buffered saline (PBS). In an alternative embodiment, the wash solution lacks calcium and may lack magnesium or may lack many if not all divalent cations. Initial activation steps in the absence of calcium may lead to magnified activation. As those of ordinary skill in the art would readily appreciate a washing step may be accomplished by methods known to those in the art, such as by using a semi-automated "flow-through" centrifuge (for example, the Cobe 2991 cell processor, the Baxter CytoMate, or the Haemonetics Cell Saver 5) according to the manufacturer's instructions. After washing, the cells may be resuspended in a variety of biocompatible buffers, such as, for example, Ca2+-free, Mg2+-free PBS, PlasmaLyte A, or other saline solution with or without buffer. Alternatively, the undesirable components of the apheresis sample may be removed and the cells directly resuspended in culture media. [0291] In another embodiment, T-cells are isolated from peripheral blood lymphocytes by lysing the red blood cells and depleting the monocytes, for example, by centrifugation through a PERCOLL™ gradient or by counterflow centrifugal elutriation. A specific subpopulation of T-cells, such as CD3+, CD28+, CD4+, CD8+, CD45RA+, and CD45RO+T-cells, can be further isolated by positive or negative selection techniques. For example, in one embodiment, T-cells are isolated by incubation with anti-CD3/anti-CD28 (i.e., 3×28)-conjugated beads, such as DYNABEADS® M-450 CD3/CD28 T, for a time period sufficient for positive selection of the desired T-cells. In one embodiment, the time period is about 30 minutes. In a further embodiment, the time period ranges from 30 minutes to 36 hours or longer and all integer values there between. In a further embodi- ment, the time period is at least 1, 2, 3, 4, 5, or 6 hours. In yet another preferred embodiment, the time period is 10 to 24 hours. In one preferred embodiment, the incubation time period is 24 hours. For isolation of T-cells from patients with leukemia, use of longer incubation times, such as 24 hours, can increase cell yield. Longer incubation times may be used to isolate T-cells in any situation where there are few T-cells as compared to other cell types, such in isolating tumor infiltrating lymphocytes (TIL) from tumor tissue or from immune-compromised individuals. Further, use of longer incubation times can increase the efficiency of capture of CD8+ T-cells. Thus, by simply shortening or lengthening the time T-cells are allowed to bind to the CD3/CD28 beads and/or by increasing or decreasing the ratio of beads to T-cells (as described further herein), subpopulations of T-cells can be preferentially selected for or against at culture initiation or at other time points during the process. Additionally, by increasing or decreasing the ratio of anti-CD3 and/or anti-CD28 antibodies on the beads or other surface, subpopulations of T-cells can be preferentially selected for or against at culture initiation or at other desired time points. The skilled artisan would recognize that multiple rounds of selection can also be used in the context of this invention. In certain embodiments, it may be desirable to perform the selection procedure and use the "unselected" cells in the activation and expansion process. "Unselected" cells can also be subjected to further rounds of selection. [0292] Enrichment of a T-cell population by negative selection can be accomplished with a combination of antibodies directed to surface markers unique to the negatively selected cells. One method is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to enrich for CD4+ cells by negative selection, a monoclonal antibody cocktail typically includes antibodies to CD14, CD20, CD11b, CD16, HLA-DR, and CD8. In certain embodiments, it may be desirable to enrich for or positively select for regulatory T-cells which typically express CD4+, CD25+, CD62Lhi, GITR+, and FoxP3+. Alternatively, in certain embodiments, T regulatory cells are depleted by anti-C25 conjugated beads or other similar method of selection. [0293] For isolation of a desired population of cells by positive or negative selection, the concentration of cells and surface (e.g., particles such as beads) can be varied. In certain embodiments, it may be desirable to significantly decrease the volume in which beads and cells are mixed together (i.e., increase the concentration of cells), to ensure maximum contact of cells and beads. For example, in one embodiment, a concentration of 2 billion cells/ml is used. In one embodiment, a concentration of 1 billion cells/ml is used. In a further embodiment, greater than 100
million cells/ml is used. In a further embodiment, a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In yet another embodiment, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further embodiments, concentrations of 125 or 150 million cells/ml can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T-cells, or from samples where there are many tumor cells present (i.e., leukemic blood, tumor tissue, etc.). Such populations of cells may have therapeutic value and would be desirable to obtain. For example, using high concentration of cells allows more efficient selection of CD8+ T-cells that normally have weaker CD28 expression. [0294] In a related embodiment, it may be desirable to use lower concentrations of cells. By significantly diluting the mixture of T-cells and surface (e.g., particles such as beads), interactions between the particles and cells is minimized. This selects for cells that express high amounts of desired antigens to be bound to the particles. For example, CD4+ T-cells express higher levels of CD28 and are more efficiently captured than CD8+ T-cells in dilute concentrations. In one embodiment, the concentration of cells used is 5×10^6 /ml. In other embodiments, the concentration used can be from about 1×10^5 /ml to 1×10^6 /ml, and any integer value in between. [0295] In other embodiments, the cells may be incubated on a rotator for varying lengths of time at varying speeds at either $2\text{-}10^{\circ}$ C. or at room temperature. [0296] T-cells for stimulation can also be frozen after a washing step. Wishing not to be bound by theory, the freeze and subsequent thaw step provides a more uniform product by removing granulocytes and to some extent monocytes in the cell population. After the washing step that removes plasma and platelets, the cells may be suspended in a freezing solution. While many freezing solutions and parameters are known in the art and will be useful in this context, one method involves using PBS containing 20% DMSO and 8% human serum albumin, or culture media containing 10% Dextran 40 and 5% Dextrose, 20% Human Serum Albumin and 7.5% DMSO, or 31.25% Plasmalyte-A, 31.25% Dextrose 5%, 0.45% NaCl, 10% Dextran 40 and 5% Dextrose, 20% Human Serum Albumin, and 7.5% DMSO or other suitable cell freezing media containing for example, Hespan and PlasmaLyte A, the cells then are frozen to -80° C. at a rate of 1° per minute and stored in the vapor phase of a liquid nitrogen storage tank. Other methods of controlled freezing may be used as well as uncontrolled freezing immediately at -20° C. or in liquid nitrogen. [0297] In certain embodiments, cryopreserved cells are thawed and washed as described herein and allowed to rest for one hour at room temperature prior to activation using the methods of the present invention. [0298] Also contemplated in the context of the invention is the collection of blood samples or apheresis product from a subject at a time period prior to when the expanded cells as described herein might be needed. As such, the source of the cells to be expanded can be collected at any time point necessary, and desired cells, such as T-cells, isolated and frozen for later use in T-cell therapy for any number of diseases or conditions that would benefit from T-cell therapy, such as those described herein. In one embodiment a blood sample or an apheresis is taken from a generally healthy subject. In certain embodiments, a blood sample or an apheresis is taken from a generally healthy subject who is at risk of developing a disease, but who has not yet developed a disease, and the cells of interest are isolated and frozen for later use. In certain embodiments, the T-cells may be expanded, frozen, and used at a later time. In certain embodiments, samples are collected from a patient shortly after diagnosis of a particular disease as described herein but prior to any treatments. In a further embodiment, the cells are isolated from a blood sample or an apheresis from a subject prior to any number of relevant treatment modalities, including but not limited to treatment with agents such as natalizumab, efalizumab, antiviral agents, chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAM-PATH, anti-CD3 antibodies, cytoxan, cyclosporin, FK506, rapamycin, mycophenolic acid, steroids, FR901228, and irradiation. These drugs inhibit either the calcium dependent phosphatase calcineurin (cyclosporine and FK506) or inhibit the p70S6 kinase that is important for growth factor induced signaling (rapamycin) (Liu et al., Cell 66 (1991):807-815; Henderson et al., Immun 73 (1991):316-321; Bierer et al., Curr. Opin. Immun 5 (1993):763-773). In a further embodiment, the cells are isolated for a patient and frozen for later use in conjunction with (e.g., before, simultaneously or following) bone marrow or stem cell transplantation, T-cell ablative therapy using either chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, or antibodies such as OKT3 or CAMPATH. In another embodiment, the cells are isolated prior to and can be frozen for later use for treatment following B-cell ablative therapy such as agents that react with CD20, e.g., Rituxan. [0299] In a further embodiment of the present invention, T-cells are obtained from a patient directly following treatment. In this regard, it has been observed that following certain cancer treatments, in particular treatments with drugs that damage the immune system, shortly after treatment during the period when patients would normally be recovering from the treatment, the quality of T-cells obtained may be optimal or improved for their ability to expand ex vivo. Likewise, following ex vivo manipulation using the methods described herein, these cells may be in a preferred state for enhanced engraftment and in vivo expansion. Thus, it is contemplated within the context of the present invention to collect blood cells, including T-cells, dendritic cells, or other cells of the hematopoietic lineage, during this recovery phase. Further, in certain embodiments, mobilization (for example, mobilization with GM-CSF) and conditioning regimens can be used to create a condition in a subject wherein repopulation, recirculation, regeneration, and/or expansion of particular cell types is favored, especially during a defined window of time following therapy. Illustrative cell types include T-cells, B cells, dendritic cells, and other cells of the immune system. [0300] Whether prior to or after genetic modification of the T-cells to express a desirable CAR, the T-cells can be activated and expanded generally using methods as described, for example, in U.S. Pat. Nos. 6,352,694; 6,534, 055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905, 681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175, 843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 20060121005. [0301] Generally, the T-cells of the invention are expanded by contact with a surface having attached thereto an agent that stimulates a CD3/TCR complex associated signal and a ligand that stimulates a co-stimulatory molecule on the surface of the T-cells. In particular, T-cell populations may be stimulated as described herein, such as by contact with an anti-CD3 antibody, or antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator (e.g., bryostatin) in conjunction with a calcium ionophore. For co-stimulation of an accessory molecule on the surface of the T-cells, a ligand that binds the accessory molecule is used. For example, a population of T-cells can be contacted with an anti-CD3 antibody and an anti-CD28 antibody, under conditions appropriate for stimulating proliferation of the T-cells. To stimulate proliferation of either CD4+ T-cells or CD8+ T-cells, an anti-CD3 antibody and an anti-CD28 antibody. Examples of an anti-CD28 antibody include 9.3, B-T3, XR-CD28 (Diaclone, Besancon, France) can be used as can other methods commonly known in the art (Berge et al., *Transplant Proc.* 30(8) (1998):3975-3977; Haanen et al., *J. Exp. Med.* 190(9) (1999):1319-1328, 1999; and Garland et al., *J. Immunol Meth.* 227(1-2) (1999):53-63). [0302] In certain embodiments, the primary stimulatory signal and the co-stimulatory signal for the T-cell may be provided by different protocols. For example, the agents providing each signal may be in solution or coupled to a surface. When coupled to a surface, the agents may be coupled to the same surface (i.e., in "cis" formation) or to separate surfaces (i.e., in "trans" formation). Alternatively, one agent may be coupled to a surface and the other agent in solution. In one embodiment, the agent providing the co-stimulatory signal is bound to a cell surface and the agent providing the primary activation signal is in solution or coupled to a surface. In certain embodiments, both agents can be in solution. In another embodiment, the agents may be in soluble form, and then cross-linked to a surface, such as a cell expressing Fc receptors or an antibody or other binding agent which will bind to the agents. In this regard, see for example, U.S. Patent Application Publication Nos. 20040101519 and 20060034810 for artificial antigen presenting cells (aAPCs) that are contemplated for use in activating and expanding T-cells in the present invention. [0303] In one embodiment, the two agents are immobilized on beads, either on the same bead, i.e., "cis," or to separate beads, i.e., "trans." By way of example,
the agent providing the primary activation signal is an anti-CD3 antibody or an antigen-binding fragment thereof and the agent providing the co-stimulatory signal is an anti-CD28 antibody or antigen-binding fragment thereof; and both agents are co-immobilized to the same bead in equivalent molecular amounts. In one embodiment, a 1:1 ratio of each antibody bound to the beads for CD4+ T-cell expansion and T-cell growth is used. In certain aspects of the present invention, a ratio of anti CD3:CD28 antibodies bound to the beads is used such that an increase in T-cell expansion is observed as compared to the expansion observed using a ratio of 1:1. In one particular embodiment an increase of from about 1 to about 3 fold is observed as compared to the expansion observed using a ratio of 1:1. In one embodiment, the ratio of CD3:CD28 antibody bound to the beads ranges from 100:1 to 1:100 and all integer values there between. In one aspect of the present invention, more anti-CD28 antibody is bound to the particles than anti-CD3 antibody, i.e., the ratio of CD3:CD28 is less than one. In certain embodiments of the invention, the ratio of anti CD28 antibody to anti CD3 antibody bound to the beads is greater than 2:1. In one particular embodiment, a 1:100 CD3:CD28 ratio of antibody bound to beads is used. In another embodiment, a 1:75 CD3:CD28 ratio of antibody bound to beads is used. In a further embodiment, a 1:50 CD3:CD28 ratio of antibody bound to beads is used. In another embodiment, a 1:30 CD3:CD28 ratio of antibody bound to beads is used. In one preferred embodiment, a 1:10 CD3:CD28 ratio of antibody bound to beads is used. In another embodiment, a 1:3 CD3:CD28 ratio of antibody bound to the beads is used. In yet another embodiment, a 3:1 CD3:CD28 ratio of antibody bound to the beads is used. [0304] Ratios of particles to cells from 1:500 to 500:1 and any integer values in between may be used to stimulate T-cells or other target cells. As those of ordinary skill in the art can readily appreciate, the ratio of particles to cells may depend on particle size relative to the target cell. For example, small sized beads could only bind a few cells, while larger beads could bind many. In certain embodiments the ratio of cells to particles ranges from 1:100 to 100:1 and any integer values in-between and in further embodiments the ratio comprises 1:9 to 9:1 and any integer values in between, can also be used to stimulate T-cells. The ratio of anti-CD3- and anti-CD28-coupled particles to T-cells that result in T-cell stimulation can vary as noted above, however certain preferred values include 1:100, 1:50, 1:40, 1:30, 1:20, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, and 15:1 with one preferred ratio being at least 1:1 particles per T-cell. In one embodiment, a ratio of particles to cells of 1:1 or less is used. In one particular embodiment, a preferred particle:cell ratio is 1:5. In further embodiments, the ratio of particles to cells can be varied depending on the day of stimulation. For example, in one embodiment, the ratio of particles to cells is from 1:1 to 10:1 on the first day and additional particles are added to the cells every day or every other day thereafter for up to 10 days, at final ratios of from 1:1 to 1:10 (based on cell counts on the day of addition). In one particular embodiment, the ratio of particles to cells is 1:1 on the first day of stimulation and adjusted to 1:5 on the third and fifth days of stimulation. In another embodiment, particles are added on a daily or every other day basis to a final ratio of 1:1 on the first day, and 1:5 on the third and fifth days of stimulation. In another embodiment, the ratio of particles to cells is 2:1 on the first day of stimulation and adjusted to 1:10 on the third and fifth days of stimulation. In another embodiment, particles are added on a daily or every other day basis to a final ratio of 1:1 on the first day, and 1:10 on the third and fifth days of stimulation. One of skill in the art will appreciate that a variety of other ratios may be suitable for use in the present invention. In particular, ratios will vary depending on particle size and on cell size and type. [0305] In further embodiments of the present invention, the cells, such as T-cells, are combined with agent-coated beads, the beads and the cells are subsequently separated, and then the cells are cultured. In an alternative embodiment, prior to culture, the agent-coated beads and cells are not separated but are cultured together. In a further embodiment, the beads and cells are first concentrated by application of a force, such as a magnetic force, resulting in increased ligation of cell surface markers, thereby inducing cell stimulation. [0306] By way of example, cell surface proteins may be ligated by allowing paramagnetic beads to which anti-CD3 and anti-CD28 are attached (3×28 beads) to contact the T-cells. In one embodiment the cells (for example, 104 to 109 T-cells) and beads (for example, DYNABEADS® M-450 CD3/CD28 T paramagnetic beads at a ratio of 1:1) are combined in a buffer, preferably PBS (without divalent cations such as, calcium and magnesium). Again, those of ordinary skill in the art can readily appreciate any cell concentration may be used. For example, the target cell may be very rare in the sample and comprise only 0.01% of the sample or the entire sample (i.e., 100%) may comprise the target cell of interest. Any cell number is within the context of the present invention. In certain embodiments, it may be desirable to significantly decrease the volume in which particles and cells are mixed together (i.e., increase the concentration of cells), to ensure maximum contact of cells and particles. For example, in one embodiment, a concentration of about 2 billion cells/ml is used. In another embodiment, greater than 100 million cells/ml is used. In a further embodiment, a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In yet another embodiment, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further embodiments, concentrations of 125 or 150 million cells/ml can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T-cells. Such populations of cells may have therapeutic value and would be desirable to obtain in certain embodiments. For example, using high concentration of cells allows more efficient selection of CD8+ T-cells that normally have weaker CD28 expression. [0307] In one embodiment of the present invention, the mixture may be cultured for several hours (about 3 hours) to about 14 days or any hourly integer value in between. In another embodiment, the mixture may be cultured for 21 days. In one embodiment of the invention the beads and the T-cells are cultured together for about eight days. In another embodiment, the beads and T-cells are cultured together for 2-3 days. Several cycles of stimulation may also be desired such that culture time of T-cells can be 60 days or more. Conditions appropriate for T-cell culture include an appropriate media (e.g., Minimal Essential Media or RPMI Media 1640 or, X-vivo 15, (Lonza)) that may contain factors necessary for proliferation and viability, including serum (e.g., fetal bovine or human serum), interleukin-2 (IL-2), insulin, IFN-y, IL-4, IL-7, GM-CSF, IL-10, IL-12, IL-15, TGF β , and TNF- α or any other additives for the growth of cells known to the skilled artisan. Other additives for the growth of cells include, but are not limited to, surfactant, plasmanate, and reducing agents such as N-acetyl-cysteine and 2-mercaptoethanol. Media can include RPMI 1640, AIM-V, DMEM, MEM, α-MEM, F-12, X-Vivo 15, and X-Vivo 20, Optimizer, with added amino acids, sodium pyruvate, and vitamins, either serum-free or supplemented with an appropriate amount of serum (or plasma) or a defined set of hormones, and/or an amount of cytokine(s) sufficient for the growth and expansion of T-cells. Antibiotics, e.g., penicillin and streptomycin, are included only in experimental cultures, not in cultures of cells that are to be infused into a subject. The targeT-cells are maintained under conditions necessary to support growth, for example, an appropriate temperature (e.g., 37° C.) and atmosphere (e.g., air plus 5% CO2). [0308] T-cells that have been exposed to varied stimulation times may exhibit different characteristics. For example, typical blood or apheresed peripheral blood mononuclear cell products have a helper T-cell population (TH, CD4+) that is greater than the cytotoxic or suppressor T-cell population (TC, CD8+). Ex vivo expansion of T-cells by stimulating CD3 and CD28 receptors produces a population of T-cells that prior to about days 8-9 consists predominately of TH cells, while after about days 8-9, the population of T-cells comprises an increasingly greater population of TC cells. Depending on the purpose of treatment, infusing a subject with a T-cell population comprising predominately of TH cells may be advantageous. Similarly, if an antigenspecific subset of TC cells has been isolated it may be beneficial to expand this subset to a greater degree. **[0309]** Further, in addition to CD4 and CD8 markers, other phenotypic markers vary significantly, but in large part, reproducibly during the course of the cell expansion process. Thus, such reproducibility enables the ability to tailor an activated T-cell product for specific purposes. # Use of CAR Expressing Cells for Treatment of Disease [0310] The cell expressing the CAR can be used as a therapeutic agent for a disease. The therapeutic agent can be the cell expressing the CAR as an active ingredient, and may further include a suitable
excipient. Examples of the excipient include the aforementioned pharmaceutically acceptable excipients for the composition includes the nucleic acid of the present invention as an active ingredient, various cell culture media, and isotonic sodium chloride. The disease against which the cell expressing the CAR is administered is not limited as long as the disease shows sensitivity to the cell. Examples of the disease include a cancer (blood cancer (leukemia), solid tumor etc.), an inflammatory disease/autoimmune disease (asthma, eczema), hepatitis, and an infectious disease, the cause of which is a virus such as influenza and HIV, a bacterium, or a fungus, for example, tuberculosis, MRSA, VRE, and deep mycosis. The cell expressing the CAR of the present invention that binds to an antigen possessed by a cell that is desired to be decreased or eliminated for treatment of the aforementioned diseases, that is, a tumor antigen, a viral antigen, a bacterial antigen or the like is administered for treatment of these diseases. The cell of the present invention can also be utilized for prevention of an infectious disease after bone marrow transplantation or exposure to radiation, donor lymphocyte transfusion for the purpose of remission of recurrent leukemia, and the like. The therapeutic agent comprising the cell expressing the CAR as an active ingredient can be administered intradermally, intramuscularly, subcutaneously, intraperitoneally, intranasally, intraarterially, intravenously, intratumorally, or into an afferent lymph vessel, by parenteral administration, for example, by injection or infusion, although the administration route is not limited. [0311] In a particular embodiment, the CAR expressing cell is an autologous T-cell from a subject with cancer. Cancers that may be treated include tumors that are not vascularized, or not yet substantially vascularized, as well as vascularized tumors. The cancers may comprise non-solid tumors (such as hematological tumors, for example, leukemias and lymphomas) or may comprise solid tumors. Types of cancers to be treated with the CARs of the invention include, but are not limited to, carcinoma, blastoma, and sarcoma, and certain leukemia or lymphoid malignancies, benign and malignant tumors, and malignancies e.g., sarcomas, carcinomas, and melanomas. Adult tumors/cancers and pediatric tumors/cancers are also included. [0312] Hematologic cancers are cancers of the blood or bone marrow. Examples of hematological (or hematogenous) cancers include leukemias, including acute leukemias (such as acute lymphocytic leukemia, acute myelocytic leukemia, acute myelogenous leukemia and myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia), chronic leukemias (such as chronic myelocytic (granulocytic) leukemia, chronic myelogenous leukemia, and chronic lymphocytic leukemia), polycythemia vera, lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma (indolent and high grade forms), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, myelodysplastic syndrome, hairy cell leukemia and myelodysplasia. [0313] Other hematological cancers include T-cell or NKcell lymphoma, for example, but not limited to: peripheral T-cell lymphoma; anaplastic large cell lymphoma, for example anaplastic lymphoma kinase (ALK) positive, ALK negative anaplastic large cell lymphoma, or primary cutaneous anaplastic large cell lymphoma; angioimmunoblastic lymphoma; cutaneous T-cell lymphoma, for example mycosis fungoides, Sézary syndrome, primary cutaneous anaplastic large cell lymphoma, primary cutaneous CD30+ T-cell lymphoproliferative disorder; primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma; primary cutaneous gamma-delta T-cell lymphoma; primary cutaneous small/medium CD4+ T-cell lymphoma, and lymphomatoid papulosis; Adult T-cell Leukemia/Lymphoma (ATLL); Blastic NK-cell Lymphoma; Enteropathy-type T-cell lymphoma; Hematosplenic gamma-delta T-cell Lymphoma; Lymphoblastic Lymphoma; Nasal NK/T-cell Lymphomas; Treatment-related T-cell lymphomas; for example lymphomas that appear after solid organ or bone marrow transplantation; T-cell prolymphocytic leukemia; T-cell large granular lymphocytic leukemia; Chronic lymphoproliferative disorder of NK-cells; Aggressive NK cell leukemia; Systemic EBV+ T-cell lymphoproliferative disease of childhood (associated with chronic active EBV infection); Hydroa vacciniforme-like lymphoma; Adult T-cell leukemia/lym-T-cell Enteropathy-associated phoma; lymphoma; Hepatosplenic T-cell lymphoma; or Subcutaneous panniculitis-like T-cell lymphoma. [0314] In one embodiment, the CAR expressing cells can be used in an effective amount to treat a host, for example a human, with a lymphoma or lymphocytic or myelocytic proliferation disorder or abnormality. For example, the CAR expressing cells as described herein can be administered to a host suffering from a Hodgkin Lymphoma or a Non-Hodgkin Lymphoma. For example, the host can be suffering from a Non-Hodgkin Lymphoma such as, but not limited to: an AIDS-Related Lymphoma; Anaplastic Large-Cell Lymphoma; Angioimmunoblastic Lymphoma; Blastic NK-Cell Lymphoma; Burkitt's Lymphoma; Burkitt-like Lymphoma (Small Non-Cleaved Cell Lymphoma); Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma; Cutaneous T-Cell Lymphoma; Diffuse Large B-Cell Lymphoma; Enteropathy-Type T-Cell Lymphoma; Follicular Lymphoma; Hepatosplenic Gamma-Delta T-Cell Lymphoma; Lymphoblastic Lymphoma; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Nasal T-Cell Lymphoma; Pediatric Lymphoma; Peripheral T-Cell Lymphomas; Primary Central Nervous System Lymphoma; T-Cell Leukemias; Transformed Lymphomas; Treatment-Related T-Cell Lymphomas; or Waldenstrom's Macroglobulinemia. [0315] Alternatively, a CAR expressing cells disclosed herein can be used in an effective amount to treat a host, for example a human, with a Hodgkin Lymphoma, such as, but not limited to: Nodular Sclerosis Classical Hodgkin's Lymphoma (CHL); Mixed Cellularity CHL; Lymphocyte-deple- tion CHL; Lymphocyte-rich CHL; Lymphocyte Predominant Hodgkin Lymphoma; or Nodular Lymphocyte Predominant HL. [0316] Alternatively, a CAR expressing cells disclosed herein can be used in an effective amount to treat a host, for example a human with a specific B-cell lymphoma or proliferative disorder such as, but not limited to: multiple myeloma; Diffuse large B cell lymphoma; Follicular lymphoma; Mucosa-Associated Lymphatic Tissue lymphoma (MALT); Small cell lymphocytic lymphoma; Mediastinal large B cell lymphoma; Nodal marginal zone B cell lymphoma (NMZL); Splenic marginal zone lymphoma (SMZL); Intravascular large B-cell lymphoma; Primary effusion lymphoma; or Lymphomatoid granulomatosis; B-cell prolymphocytic leukemia; Hairy cell leukemia; Splenic lymphoma/leukemia, unclassifiable; Splenic diffuse red pulp small B-cell lymphoma; Hairy cell leukemiavariant; Lymphoplasmacytic lymphoma; Heavy chain diseases, for example, Alpha heavy chain disease, Gamma heavy chain disease, Mu heavy chain disease; Plasma cell myeloma; Solitary plasmacytoma of bone; Extraosseous plasmacytoma; Primary cutaneous follicle center lymphoma; T-cell/histiocyte rich large B-cell lymphoma; DLBCL associated with chronic inflammation; Epstein-Barr virus (EBV)+ DLBCL of the elderly; Primary mediastinal (thymic) large B-cell lymphoma; Primary cutaneous DLBCL, leg type; ALK+ large B-cell lymphoma; Plasmablastic lymphoma; Large B-cell lymphoma arising in HHV8-associated multicentric; Castleman disease; B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma; or B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lym- [0317] In one embodiment, CAR expressing cells disclosed herein can be used in an effective amount to treat a host, for example a human with leukemia. For example, the host may be suffering from an acute or chronic leukemia of a lymphocytic or myelogenous origin, such as, but not limited to: Acute lymphoblastic leukemia (ALL); Acute myelogenous leukemia (AML); Chronic lymphocytic leukemia (CLL); Chronic myelogenous leukemia (CML); juvenile myelomonocytic leukemia (JMML); hairy cell leukemia (HCL); acute promyelocytic leukemia (a subtype of AML); large granular lymphocytic leukemia; or Adult T-cell chronic leukemia. In one embodiment, the patient suffers from an acute myelogenous leukemia, for example an undifferentiated AML (M0); myeloblastic leukemia (M1; with/without minimal cell maturation); myeloblastic leukemia (M2; with cell maturation); promyelocytic leukemia (M3 or M3 variant [M3V]); myelomonocytic leukemia (M4 or M4 variant with eosinophilia [M4E]); monocytic leukemia (M5); erythroleukemia (M6); or megakaryoblastic leukemia (M7). [0318] In one embodiment, a CAR expressing cell disclosed herein can be used in an effective amount to treat a host, for example a human with a solid tumor. Examples include, but are not limited to, but are not limited to: estrogen-receptor positive, HER2-negative advanced breast cancer, late-line metastatic breast cancer, liposarcoma, nonsmall cell lung cancer, liver cancer, ovarian cancer, glioblastoma, refractory solid tumors, retinoblastoma positive breast cancer as well as retinoblastoma positive endometrial, vaginal and ovarian cancers and lung and bronchial cancers, adenocarcinoma of the colon, adenocarcinoma of the rec- tum, central nervous system germ cell tumors, teratomas, estrogen receptor-negative breast cancer, estrogen receptorpositive breast cancer, familial testicular germ cell tumors, HER2-negative breast cancer, HER2-positive breast cancer, male breast cancer, ovarian immature teratomas, ovarian mature teratoma, ovarian monodermal and highly specialized teratomas, progesterone receptor-negative breast cancer, progesterone receptor-positive breast cancer, recurrent breast cancer, recurrent colon cancer, recurrent extragonadal germ
cell tumors, recurrent extragonadal non-seminomatous germ cell tumor, recurrent extragonadal seminomas, recurrent malignant testicular germ cell tumors, recurrent melanomas, recurrent ovarian germ cell tumors, recurrent rectal cancer, stage III extragonadal non-seminomatous germ cell tumors, stage III extragonadal seminomas, stage III malignant testicular germ cell tumors, stage III ovarian germ cell tumors, stage IV breast cancers, stage IV colon cancers, stage IV extragonadal non-seminomatous germ cell tumors, stage IV extragonadal seminoma, stage IV melanomas, stage IV ovarian germ cell tumors, stage IV rectal cancers, testicular immature teratomas, testicular mature teratomas, estrogen-receptor positive, HER2-negative advanced breast cancer, late-line metastatic breast cancer, liposarcoma, nonsmall cell lung cancer, liver cancer, ovarian cancer, glioblastoma, refractory solid tumors, retinoblastoma positive breast cancer as well as retinoblastoma positive endometrial, vaginal and ovarian cancers and lung and bronchial cancers, metastatic colorectal cancer, metastatic melanoma, or cisplatin-refractory, unresectable germ cell tumors, carcinoma, sarcoma, including, but not limited to, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, breast cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, prostate cancer, cancer of the bladder, cancer of the kidney or ureter, renal cell carcinoma, carcinoma of the renal pelvis, neoplasms of the central nervous system (CNS), primary CNS lymphoma, spinal axis tumors, brain stem glioma, pituitary adenoma, fibrosarcoma, myxosarcoma, chondrosarcoma, osteosarcoma, chordoma, malignant fibrous histiocytoma, hemangiosarcoma, angiosarcoma, lymphangiosarcoma. Mesothelioma, leiomyosarcoma, rhabdomyosarcoma, squamous cell carcinoma; epidermoid carcinoma, malignant skin adnexal tumors, adenocarcinoma, hepatoma, hepatocellular carcinoma, renal cell carcinoma, hypernephroma, cholangiocarcinoma, transitional cell carcinoma, choriocarcinoma, seminoma, embryonal cell carcinoma, glioma anaplastic; glioblastoma multiforme, neuroblastoma, medulloblastoma, malignant meningioma, malignant schwannoma, neurofibrosarcoma, parathyroid carcinoma, medullary carcinoma of thyroid, bronchial carcinoid, pheochromocytoma, IsleT-cell carcinoma, malignant carcinoid, malignant paraganglioma, melanoma, Merkel cell neoplasm, cystosarcoma phylloide, salivary cancers, thymic carcinomas, bladder cancer, and Wilms tumor, a blood disorder or a hematologic malignancy, including, but not limited to, myeloid disorder, lymphoid disorder, leukemia, lymphoma, myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), masT-cell disorder, and myeloma (e.g., multiple myeloma). [0319] In another embodiment, a CAR expressing cell disclosed herein can be used in an effective amount to treat a host, for example a human with an autoimmune disorder. Examples include, but are not limited to: Acute disseminated encephalomyelitis (ADEM); Addison's disease; Agammaglobulinemia; Alopecia areata; Amyotrophic lateral sclerosis (Also Lou Gehrig's disease; Motor Neuron Disease); Ankylosing Spondylitis; Antiphospholipid syndrome; Antisynthetase syndrome; Atopic allergy; Atopic dermatitis; Autoaplastic anemia; Autoimmune Autoimmune cardiomyopathy; Autoimmune enteropathy; Autoimmune granulocytopenia; Autoimmune hemolytic anemia; Autoimmune hepatitis; Autoimmune hypoparathyroidism; Autoimmune inner ear disease; Autoimmune lymphoproliferative syndrome; Autoimmune myocarditis; Autoimmune pancreatitis; Autoimmune peripheral neuropathy; Autoimmune ovarian failure; Autoimmune polyendocrine syndrome; Autoimmune progesterone dermatitis; Autoimmune thrombocytopenic purpura; Autoimmune thyroid disorders; Autoimmune urticarial; Autoimmune uveitis; Autoimmune vasculitis; Balo disease/Balo concentric sclerosis; Behçet's disease; Berger's disease; Bickerstaff's encephalitis; Blau syndrome; Bullous pemphigoid; Cancer; Castleman's disease; Celiac disease; Chagas disease; Chronic inflammatory demyelinating polyneuropathy; Chronic inflammatory demyelinating polyneuropathy; Chronic obstructive pulmonary disease; Chronic recurrent multifocal osteomyelitis; Churg-Strauss syndrome; Cicatricial pemphigoid; Cogan syndrome; Cold agglutinin disease; Complement component 2 deficiency; Contact dermatitis; Cranial arteritis; CREST syndrome; Crohn's disease; Cushing's Syndrome; Cutaneous leukocytoclastic angiitis; Dego's disease; Dercum's disease; Dermatitis herpetiformis; Dermatomyositis; Diabetes mellitus type 1; Diffuse cutaneous systemic sclerosis; Discoid lupus erythematosus; Dressler's syndrome; Drug-induced lupus; Eczema; Endometriosis; Enthesitis-related arthritis; Eosinophilic fasciitis; Eosinophilic gastroenteritis; Eosinophilic pneumonia; Epidermolysis bullosa acquisita; Erythema nodosum; Erythroblastosis fetalis; Essential mixed cryoglobulinemia; Evan's syndrome; Extrinsic and intrinsic reactive airways disease (asthma); Fibrodysplasia ossificans progressive; Fibrosing alveolitis (or Idiopathic pulmonary fibrosis); Gastritis; Gastrointestinal pemphigoid; Glomerulonephritis; Goodpasture's syndrome; Graves' disease; Guillain-Barre syndrome (GBS); Hashimoto's encephalopathy; Hashimoto's thyroiditis; Hemolytic anemia; Henoch-Schonlein purpura; Herpes gestationis (Gestational Pemphigoid); Hidradenitis suppurativa; Hughes-Stovin syndrome; Hypogammaglobulinemia; Idiopathic inflammatory demyelinating diseases; Idiopathic pulmonary fibrosis; Idiopathic thrombocytopenic purpura; IgA nephropathy; Immune glomerulonephritis; Immune nephritis; Immune pneumonitis; Inclusion body myositis; inflammatory bowel disease; Interstitial cystitis; Juvenile idiopathic arthritis aka Juvenile rheumatoid arthritis; Kawasaki's disease; Lambert-Eaton myasthenic syndrome; Leukocytoclastic vasculitis; Lichen planus; Lichen sclerosus; Linear IgA disease (LAD); Lupoid hepatitis aka Autoimmune hepatitis; Lupus erythematosus; Majeed syndrome; microscopic polyangiitis; Miller-Fisher syndrome; mixed connective tissue disease; Morphea; Mucha-Habermann disease aka Pityriasis lichenoides et varioliformis acuta; Multiple sclerosis; Myasthenia gravis; Myositis; Meniere's disease; Narcolepsy; Neuromyelitis optica (also Devic's disease); Neuromyotonia; Ocular cicatricial pemphigoid; Opsoclonus myoclonus syndrome; Ord's thyroiditis; Palindromic rheumatism; PANDAS (pediatric autoimmune neuropsychiatric disorders associated streptococcus); Paraneoplastic cerebellar degeneration; Paroxysmal nocturnal hemoglobinuria (PNH); Parry Romberg syndrome; Pars planitis; Parsonage-Turner syndrome; Pemphigus vulgaris; Perivenous encephalomyelitis; Pernicious anaemia; POEMS syndrome; Polyarteritis nodosa; Polymyalgia rheumatic; Polymyositis; Primary biliary cirrhosis; Primary sclerosing cholangitis; Progressive inflammatory neuropathy; Psoriasis; Psoriatic arthritis; pure red cell aplasia; Pyoderma gangrenosum; Rasmussen's encephalitis; Raynaud phenomenon; Reiter's syndrome; relapsing polychondritis; restless leg syndrome; retroperitoneal fibrosis; rheumatic fever; rheumatoid arthritis; Sarcoidosis; Schizophrenia; Schmidt syndrome; Schnitzler syndrome; Scleritis; Scleroderma; Sclerosing cholangitis; serum sickness; Sjögren's syndrome; Spondyloarthropathy; Stiff person syndrome; Still's disease; Subacute bacterial endocarditis (SBE); Susac's syndrome; Sweet's syndrome; Sydenham chorea; sympathetic ophthalmia; systemic lupus erythematosus; Takayasu's arteritis; temporal arteritis (also known as "gianT-cell arteritis"); thrombocytopenia; Tolosa-Hunt syndrome; transverse myelitis; ulcerative colitis; undifferentiated connective tissue disease; undifferentiated spondyloarthropathy; urticarial vasculitis; vasculitis; vitiligo; viral diseases such as Epstein Barr Virus (EBV), Hepatitis B, Hepatitis C, HIV, HTLV 1, Varicella-Zoster Virus (VZV) and Human Papilloma Virus (HPV); or Wegener's granulomatosis. In some embodiments, the autoimmune disease is an allergic condition, including those from asthma, food allergies, atopic dermatitis, and rhinitis. [0320] Solid tumors are abnormal masses of tissue that usually do not contain cysts or liquid areas. Solid tumors can be benign or malignant. Different types of solid tumors are named for the type of cells that form them (such as sarcomas, carcinomas, and lymphomas). Examples of solid tumors, such as sarcomas and carcinomas, include fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteosarcoma, and other sarcomas, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, lymphoid malignancy, pancreatic cancer, breast cancer, lung cancers, ovarian cancer, prostate cancer, hepatocellular carcinoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, medullary thyroid carcinoma, papillary thyroid carcinoma, pheochromocytomas sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, Wilms' tumor, cervical cancer, testicular tumor, seminoma, bladder carcinoma, melanoma, and CNS tumors (such as a glioma (such as brainstem glioma and mixed gliomas), glioblastoma (also known as glioblastoma multiforme) astrocytoma, CNS lymphoma, germinoma, medulloblastoma, Schwannoma craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma,
oligodendroglioma, meningioma, neuroblastoma, retinoblastoma and brain metastases). [0321] In one embodiment, the antigen binding moiety portion of the CAR of the invention is designed to treat a particular cancer. For example, a CAR designed to target CD19 can be used to treat cancers and disorders including but are not limited to pre-B ALL (pediatric indication), adult ALL, mantle cell lymphoma, diffuse large B-cell lymphoma, salvage post allogenic bone marrow transplantation, and the like [0322] In another embodiment, the CAR can be designed to target CD22 to treat diffuse large B-cell lymphoma. [0323] In one embodiment, cancers and disorders include but are not limited to pre-B ALL (pediatric indication), adult ALL, mantle cell lymphoma, diffuse large B-cell lymphoma, salvage post allogenic bone marrow transplantation, and the like can be treated using a combination of CARs that target CD19, CD20, CD22, and ROR1. [0324] In one embodiment, the CAR can be designed to target mesothelin to treat mesothelioma, pancreatic cancer, ovarian cancer, and the like. [0325] In one embodiment, the CAR can be designed to target CD33/IL3Ra to treat acute myelogenous leukemia and the like [0326] In one embodiment, the CAR can be designed to target CD30 to treat lymphoma, for example Hodgkin lymphoma, and the like. [0327] In one embodiment, the CAR can be designed to target c-Met to treat triple negative breast cancer, non-small cell lung cancer, and the like. [0328] In one embodiment, the CAR can be designed to target PSMA to treat prostate cancer and the like. [0329] In one embodiment, the CAR can be designed to target Glycolipid F77 to treat prostate cancer and the like. [0330] In one embodiment, the CAR can be designed to target EGFRvIII to treat glioblastoma and the like. [0331] In one embodiment, the CAR can be designed to target GD-2 to treat neuroblastoma, melanoma, and the like. [0332] In one embodiment, the CAR can be designed to target NY-ESO-1 TCR to treat myeloma, sarcoma, melanoma, and the like. [0333] In one embodiment, the CAR can be designed to target MAGE A3 TCR to treat myeloma, sarcoma, melanoma, and the like. [0334] In one embodiment, the CAR can be designed to target CEA to treat colorectal cancer and the like. [0335] In one embodiment, the CAR can be designed to target erb-B2, erb-B3, and/or erb-B4 to treat breast cancer, and the like. [0336] In one embodiment, the CAR can be designed to target IL-13R-a2 to treat glioma, glioblastoma, or medulloblastoma, and the like. [0337] However, the invention should not be construed to be limited to solely to the antigen targets and diseases disclosed herein. Rather, the invention should be construed to include any antigenic or ligand target that is associated with a disease where a CAR having a dTAG can be used to treat the disease. [0338] The CAR-expressing cells of the invention may also serve as a type of vaccine for ex vivo immunization and/or in vivo therapy in a mammal. Preferably, the mammal is a human. [0339] With respect to ex vivo immunization, at least one of the following occurs in vitro prior to administering the cell into a mammal: i) expansion of the cells, ii) introducing a nucleic acid encoding a CAR to the cells, and/or iii) cryopreservation of the cells. [0340] The CAR-expressing cells of the present invention can be administered either alone, or as a pharmaceutical composition in combination with diluents and/or with other components such as IL-2 or other cytokines or cell populations. Briefly, pharmaceutical compositions of the present invention may comprise a target T-cell population as described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives. Compositions of the present invention are preferably formulated for intravenous administration. **[0341]** Pharmaceutical compositions of CAR expressing cells of the present invention may be administered in a manner appropriate to the disease to be treated (or prevented). The quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease, although appropriate dosages may be determined by clinical trials. [0342] When "an immunologically effective amount", "an anti-tumor effective amount", "a tumor-inhibiting effective amount", or "therapeutic amount" is indicated, the precise amount of the compositions of the present invention to be administered can be determined by a physician with consideration of individual differences in age, weight, tumor size, extent of infection or metastasis, and condition of the patient (subject). It can generally be stated that a pharmaceutical composition comprising the T-cells described herein may be administered at a dosage of 10⁴ to 10⁹ cells/kg body weight, preferably 10⁵ to 10⁶ cells/kg body weight, including all integer values within those ranges. T-cell compositions may also be administered multiple times at these dosages. The cells can be administered by using infusion techniques that are commonly known in immunotherapy (see, e.g., Rosenberg et al., New Eng. J. of Med. 319 (1988):1676). The optimal dosage and treatment regime for a particular patient can readily be determined by one skilled in the art of medicine by monitoring the patient for signs of disease and adjusting the treatment accordingly. [0343] The administration of the CAR expressing cells may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. The CAR expressing cells described herein may be administered to a patient subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous (i.v.) injection, or intraperitoneally. In one embodiment, the CAR expressing cells of the present invention are administered to a patient by intradermal or subcutaneous injection. In another embodiment, the CAR expressing cells of the present invention are preferably administered by i.v. injection. The CAR expressing cells may be injected directly into a tumor, lymph node, or site of infection. [0344] The dosage of the above treatments to be administered to a patient will vary with the precise nature of the condition being treated and the recipient of the treatment. The scaling of dosages for human administration can be performed according to art-accepted practices. ## Heterobifunctional Compounds [0345] As described above, the CARs of the present invention include an intracellular heterobifunctional com- pound binding moiety or domain that provides a ligand for a targeting heterobifunctional compound. By including a dTAG in the CAR construct, the CAR as expressed by the CAR expressing cells can be readily and rapidly degraded upon exposure to a heterobifunctional compound, which utilizes the ubiquitin proteasomal pathway to degrade the CAR. In this way, administering a heterobifunctional compound targeting a specific dTAG within a CAR allows for the modulation of the activation of the CAR expressing cell, as degradation of the CAR or a portion thereof within the CAR expressing cell prohibits activation signaling from occurring. This strategy can be utilized to modulate the activation of the CAR expressing cell, for example, to lessen the activation of the CAR expressing cell in order to reduce adverse inflammatory responses. Furthermore, by utilizing a heterobifunctional compound strategy, the CAR expressing cell is spared. [0346] Strategies harnessing the ubiquitin proteasome pathway (UPP) to selectively target and degrade proteins have been employed for post-translational control of protein function. Heterobifunctional compounds, are composed of a target protein-binding ligand and an E3 ubiquitin ligase ligand. Heterobifunctional compounds, are capable of induced proteasome-mediated degradation of selected proteins via their recruitment to E3 ubiquitin ligase and subsequent ubiquitination. These drug-like molecules offer the possibility of reversible, dose-responsive, tunable, temporal control over protein levels. An early description of such compounds was provided in U.S. Pat. No. 7,041,298, titled "Proteolysis Targeting Chimeric Pharmaceutical," filed in September 2000 by Deshales et al. and granted in May 2006. The publication by Sakamoto et al. (PNAS 98(15) (2001): 8554-8559), titled "PROTACS: Chimeric Molecules that Target Proteins to the Skp1-Cullin F Box Complex for Ubiquitination and Degradation," describes a heterobifunctional compound consisting of a small molecule binder of MAP-AP-2 linked to a peptide capable of binding the F-box protein β-TRCP, the disclosure of which is also provided in U.S. Pat. No. 7,041,298. The publication by Sakamoto et al. (Molecular and Cellular Proteomics 2 (2003):1350-1358), titled "Development of PROTACS to Target Cancer-promoting Proteins for Ubiquitination and Degradation," describes an analogous heterobifunctional compound (PROTAC2) that instead of degrading MAP-AP-2 degrades estrogen and androgen receptors. The publication by Schneekloth et al. (JACS 126 (2004):3748-3754), titled "Chemical Genetic Control of Protein Levels: Selective in vivo Targeted Degradation," describes an analogous heterobifunctional compound (PROTAC3) that targets the FK506 binding protein (FKBP12) and shows both PROTAC2 and PROTAC3 hit their respective targets with green fluorescent protein (GFP) imaging. The publication by Schneekloth et al. (ChemBioChem 6 (2005)40-46) titled "Chemical Approaches to Controlling Intracellular Protein Degradation" described
the state of the field at the time, using the technology. The publication by Schneekloth et al. (BMCL 18(22) (2008):5904-5908), titled "Targeted Intracellular Protein Degradation Induced by a Small Molecule: En Route to Chemical Proteomics," describes a heterobifunctional compound that consist of two small molecules linked by PEG that in vivo degrades the androgen receptor by concurrently binding the androgen receptor and Ubiquitin E3 ligase. WO 2013/170147 to Crews et al., titled "Compounds Useful for Promoting Protein Degradation and Methods Using Same," describes compounds comprising a protein degradation moiety covalently bound to a linker, wherein the ClogP of the compound is equal to or higher than 1.5. A review of the foregoing publications by Buckley et al. (Angew. Chem. Int. Ed. 53 (2014):2312-2330) is titled "Small-Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome System." WO 2015/160845 assigned to Arvinas Inc., titled "Imide Based Modulators of Proteolysis and Associated methods of Use," describes the use of Degron technology with thalidomide to utilize cereblon as the E3 ligase protein. The following publication by J. Lu et al. (Chemistry and Biol. 22(6) (2015):755-763), titled "Hijacking the E3 Ubiquitin Ligase Cereblon to efficiently Target BDR4," similarly describes thalidomide based compounds useful for degrading BDR4. Additional publications describing this technology include Bondeson et al. (Nature Chemical Biology 11 (2015):611-617), Gustafson et al. (Angew. Chem. Int. Ed. 54 (2015):9659-9662), Buckley et al. (ACS Chem. Bio. 10 (2015):1831-1837), U.S. 2016/0058872 assigned to Arvinas Inc. titled "Imide Based Modulators of Proteolysis and Associated Methods of Use", U.S. 2016/0045607 assigned to Arvinas Inc. titled "Estrogen-related Receptor Alpha Based PROTAC Compounds and Associated Methods of Use", U.S. 2014/0356322 assigned to Yale University, GlaxoSmithKline, and Cambridge Enterprise Limited University of Cambridge titled "Compounds and Methods for the Enhanced Degradation of Targeted Proteins & Other Polypeptides by an E3 Ubiquitin Ligase", Lai et al. (Angew. Chem. Int. Ed. 55 (2016):807-810), Toure et al. (Angew. Chem. Int. Ed. 55 (2016):1966-1973), and US 2016/ 0176916 assigned to Dana Farber Cancer Institute titled "Methods to Induce Targeted Protein Degradation Through Bifunctional Molecules." [0347] Other descriptions of targeted protein degradation technology include Itoh et al. (*JACS* 132(16) (2010):5820-5826), titled "Protein Knockdown Using Methyl Bestatin-Ligand Hybrid Molecules: Design and Synthesis of Inducers of Ubiquitination-Mediated Degradation of Cellular Retinoic Acid-Binding Proteins," which describes a small molecule linked to a peptide that utilizes E3 ubiquitin ligase to degraded retinoic acid-binding proteins, and Winter et al. (*Science* 348 (2015):1376-1381), titled "Phthalimide Conjugation as a Strategy for in vivo Target Protein Degradation," describes thalidomide based targeted protein degradation technology. [0348] Heterobifunctional compounds useful to degrade the CARs of the present invention may be any heterobifunctional compound capable of binding to a dTAG within the CAR to induce degradation. Heterobifunctional compounds are generally known in the art, for example, see U.S. Pat. No. 7,041,298; Sakamoto et al. (PNAS, 2001, 98(15): 8554-8559); Sakamoto et al. (Molecular and Cellular Proteomics 2 (2003)1350-1358); Schneekloth et al. (JACS 126 (2004): 3748-3754); Schneekloth et al. (ChemBioChem 6 (2005): 40-46); Schneekloth et al. (BMCL 18(22) (2008):5904-5908); WO 2013/170147; Buckley et al. (Angew. Chem. Int. Ed. 53 (2014):2312-2330); WO 2015/160845; Lu et al. (Chemistry and Biol. 22(6) (2015):755-763); Bondeson et al. (Nature Chemical Biology 11 (2015):611-617); Gustafson et al. (Angew. Chem. Int. Ed. 54 (2015):9659-9662); Buckley et al. (ACS Chem. Bio. 10 (2015):1831-1837); U.S. 2016/ 0058872 assigned to Arvinas Inc. titled "Imide Based Modulators of Proteolysis and Associated Methods of Use", U.S. 2016/0045607 assigned to Arvinas Inc. titled "Estrogenrelated Receptor Alpha Based PROTAC Compounds and Associated Methods of Use", U.S. 2014/0356322 assigned to Yale University, GlaxoSmithKline, and Cambridge Enterprise Limited University of Cambridge titled "Compounds and Methods for the Enhanced Degradation of Targeted Proteins & Other Polypeptides by an E3 Ubiquitin Ligase", U.S. 2016/0176916 assigned to Dana-Farber Cancer Institute, Inc. titled "Methods to Induce Targeted Protein Degradation Through Bifunctional Molecules", Lai et al. (*Angew. Chem. Int. Ed.* 55 (2016):807-810); Toure et al. (*Angew. Chem. Int. Ed.* 55 (2016):1966-1973); Itoh et al. (*JACS* 132(16) (2010):5820-5826); and Winter et al. (*Science* 348 (2015):1376-1381), each of which is incorporated herein by reference. [0349] In certain aspects of the present invention, the heterobifunctional compounds described herein can be utilized to modulate the activation of a CAR expressing cell of the present invention. In particular, heterobifunctional compounds suitable for use in the present application contain a ligand, e.g., a small molecule ligand (i.e., having a molecular weight of below 2,000, 1,000, 500, or 200 Daltons), such as a thalidomide-like ligand, which is capable of binding to a ubiquitin ligase, such as cereblon, and a moiety that is capable of binding to a target or being bound by a target that allows tagging to occur. [0350] In general, heterobifunctional compounds suitable for use in the present application have the general structure: Degron-Linker-dTAG Targeting Ligand wherein the Linker is covalently bound to a Degron and a dTAG Targeting Ligand, the Degron is a compound capable of binding to a ubiquitin ligase such as an E3 Ubiquitin Ligase (e.g., cereblon), and the dTAG Targeting Ligand is capable of binding to the dTAG on the CAR. [0351] In certain embodiments, the present application utilizes a compound of Formula I or Formula II: $$(R_3')_n$$ $$R_3$$ $$R_4$$ $$R_5$$ $$R_6$$ $$R_7$$ wherein: [0352] the Linker is a group that covalently binds to the dTAG Targeting Ligand and Y; and [0353] the dTAG Targeting Ligand is capable of binding to a dTAG target or being bound by a dTAG target that allows tagging to occur. [0354] In certain embodiments, the present application provides a compound of Formula (I), or an enantiomer, diastereomer, stereoisomer, or pharmaceutically acceptable salt thereof, [0355] wherein: [0356] the Linke (L)r is a group that covalently binds to the dTAG Targeting Ligand and Y; and [0357] the dTAG Targeting Ligand is capable of binding to or binds to a dTAG targeted protein; [0358] and wherein X1, X2, Y, R_1 , R_2 , R_2 ', R_3 , R_3 ', R_4 , R_5 , m and n are each as defined herein. [0359] In certain embodiments, the present application provides a compound of Formula (II), or an enantiomer, diastereomer, stereoisomer, or pharmaceutically acceptable salt thereof. [0360] wherein: [0361] the Linker is a group that covalently binds to the dTAG Targeting Ligand and Y; and [0362] the dTAG Targeting Ligand is capable of binding to or binds to a targeted protein; [0363] and wherein $\bar{X}_1,\,X_2,\,Y,\,R_1,\,R_2,\,R_2',\,R_3,\,R_3',\,R_4,\,R_5,$ m and n are each as defined herein. [0364] In certain embodiments, the present invention uses a compound of Formula III, Formula IV, Formula V, Formula VI, Formula VII, Formula VIII, and Formula IX: (III) $$G$$ X_3 X_3 X_3 X_4 $X_$ -dTAG TARGETING LIGAND (VII) $$X_3 = X_3 X_3 X_3 Q_4 Q_3 \\ \parallel \\ Q_1 Q_2 \\ Z_2 \\ \perp d \text{TAG TARGETING LIGAND}, (IX)$$ wherein: [0365] the Linker (L) is a group that covalently binds to the dTAG Targeting Ligand and Z_2 ; [0366] the dTAG Targeting Ligand is capable of binding to a target dTAG or being bound by a target dTAG; [0367] Z₂ is a bond, alkyl, —O, —C(O)NR₂, —NR⁶C(O), —NH, or —NR⁶; [0368] R⁶ is H, alkyl, —C(O)alkyl, or —C(O)H; [0369] X_3 is independently selected from O, S, and CH_2 , [0370] $\rm\ W_2$ is independently selected from the group CH2, CHR, C=O, SO2, NH, and N-alkyl; [0371] Y_2 is independently selected from the group NH, N-alkyl, N-aryl, N-hetaryl, N-cycloalkyl, N-heterocyclyl, O, and S; [0372] G and G' are independently selected from the group H, alkyl, OH, CH₂-heterocyclyl optionally substituted with R', and benzyl optionally substituted with R; [0373] $\rm~Q_1,\,Q_2,\,Q_3,$ and $\rm Q_4$ are independently selected from CH, N, CR', and N-oxide. [0374] A_2 is independently selected from the group alkyl, cycloalkyl, Cl and F; $\begin{array}{llll} \textbf{[0375]} & R^7 \text{ is selected from: } -\text{CONR'R", } -\text{OR', } -\text{NR'R", } \\ -\text{SR', } & -\text{SO}_2\text{R', } & -\text{SO}_2\text{NR'R", } & -\text{CR'R"-, } \\ -\text{CR'NR'R"-, } & -\text{aryl, } & -\text{hetaryl, } & -\text{alkyl, } & -\text{cycloalkyl, } & -\text{heterocyclyl, } & -\text{P(O)(OR')R", } & -\text{P(O)R'R", } & -\text{OP(O)(OR')R", } \\ -\text{OP(O)R'R", } & -\text{Cl, } & -\text{F, } & -\text{Br, } & -\text{I, } & -\text{CF}_3, & -\text{CN, } \\ -\text{NR'SO}_2\text{NR'R", } & -\text{NR'CONR'R", } & -\text{CONR'COR", } \\ -\text{NR'C(=N-CN)NR'R", } & -\text{C(=N-CN)NR'R", } & -\text{NR'C(=C-NO}_2\text{NR'R", } \\ \end{array}$ [0376] R' and R" are independently selected from a bond, H, alkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl [0377] Non-limiting examples of dTAG Targeting Ligands for use in the present invention include: Dehalogenase targeting ligands such as $$\xi$$ ξ $-$ FKBP12 targeting ligands such as [0378] In some embodiments the dTAG Targeting Ligand targets a mutated endogenous target or a non-endogenous target. Degron [0379] The Degron is a compound moiety that links a dTAG, through the Linker and dTAG Targeting Ligand, to a ubiquitin ligase for proteasomal degradation. In certain embodiments, the Degron is a compound that binds to a ubiquitin ligase. In
further embodiments, the Degron is a compound that binds to a E3 Ubiquitin Ligase. In further embodiments, the Degron is a compound that binds to cereblon. In further embodiments, the Degron is a thalidomide or a derivative or analog thereof. [0380] In certain embodiments, the Degron is a moiety of Formula D, Formula D0, or Formula D': $$\begin{array}{c|c} O & (R_3')_n & & & & \\ \hline & & & & \\ HN & & & & \\ R^4 & & & & \\ R^4 & & & & \\ \end{array}$$ $$O = \bigcap_{\substack{(R_3')_n \\ N \\ R_3}} (R_3)_{n} R_5$$ $$Q = \bigcap_{\substack{(R_1)_m \\ R_1 \\ R_2}} (R_1)_m$$ [0381] or an enantiomer, diastereomer, or stereoisomer thereof, wherein: $$\begin{array}{c|c} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & &$$ [0382] Y is a bond, $(CH_2)_{1-6}$, $(CH_2)_{0-6}$ —O, $(CH_2)_{0-6}$ —C (O)NR $_2$ ', $(CH_2)_{0-6}$ —NR $_2$ 'C(O), $(CH_2)_{0-6}$ —NH, or $(CH_2)_{0-6}$ —NR $_2$ '', [0383] X is C(O) or $C(R_3)_2$; [0384] X_1-X_2 is $C(R_3)=N$ or $C(R_3)_2-C(R_3)_2$; [0385] each R_1 is independently halogen, OH, C_1 - C_6 alkyl, or C alkoxy; **[0386]** R₂ is C₁-C₆ alkyl, C(O)—C₁-C₆ alkyl, or C(O)—C₃-C₆ cycloalkyl; [0387] R_2' is H or C_1 - C_6 alkyl; [0388] each R₃ is independently H or C₁-C₃ alkyl; [0389] each R_3 ' is independently C_1 - C_3 alkyl; [0390] each R_4 is independently H or C_1 - C_3 alkyl; or two R_4 , together with the carbon atom to which they are attached, form C(O), a C_3 - C_6 carbocycle, or a 4-, 5-, or 6-membered heterocycle comprising 1 or 2 heteroatoms selected from N and O; [0391] R_5 is H, deuterium, C_1 - C_3 alkyl, F, or Cl; [0392] m is 0, 1, 2 or 3; and [0393] n is 0, 1 or 2; wherein the compound is covalently bonded to another moiety (e.g., a compound, or a Linker) via [0394] In certain embodiments, the Degron is a moiety of Formula D, wherein is (D') $$\sum_{b}^{X}$$ [0395] In certain embodiments, the Degron is a moiety of Formula D, wherein is **[0396]** In certain embodiments, the Degron is a moiety of Formula D, wherein X is C(O). **[0397]** In certain embodiments, the Degron is a moiety of Formula D, wherein X is $C(R_3)_2$; and each R_3 is H. In certain embodiments, X is $C(R_3)_2$; and one of R_3 is H, and the other is C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. In certain embodiments, X is $C(R_3)_2$; and each R_3 is independently selected from methyl, ethyl, and propyl. **[0398]** In certain embodiments, the Degron is a moiety of Formula D, wherein X_1 - X_2 is $C(R_3)$ —N. In certain embodiments, X_1 - X_2 is CH—N. In certain embodiments, X_1 - X_2 is $C(R_3)$ —N; and R_3 is C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. In certain embodiments, X_1 - X_2 is $C(CH_3)$ —N **[0399]** In certain embodiments, the Degron is a moiety of Formula D, wherein X_1 - X_2 is $C(R_3)_2$ — $C(R_3)_2$; and each R_3 is H. In certain embodiments, X_1 - X_2 is $C(R_3)_2$ — $C(R_3)_2$; and one of R_3 is H, and the other three R_3 are independently C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. In certain embodiments, X_1 - X_2 is $C(R_3)_2$ — $C(R_3)_2$; and two of the R_3 are H, and the other two R_3 are independently C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. In certain embodiments, X_1 - X_2 is $C(R_3)_2$ — $C(R_3)_2$; and three of the R_3 are H, and the remaining R_3 is C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. **[0400]** In certain embodiments, the Degron is a moiety of Formula D, wherein Y is a bond. **[0401]** In certain embodiments, the Degron is a moiety of Formula D, wherein Y is $(CH_2)_1$, $(CH_2)_2$, $(CH_2)_3$, $(CH_2)_4$, $(CH_2)_5$, or $(CH_2)_6$. In certain embodiments, Y is $(CH_2)_1$, $(CH_2)_2$, or $(CH_2)_3$. In certain embodiments, Y is $(CH_2)_1$ or $(CH_2)_2$. **[0402]** In certain embodiments, the Degron is a moiety of Formula D, wherein Y is O, CH_2 —O, $(CH_2)_2$ —O, $(CH_2)_3$ —O, $(CH_2)_4$ —O, $(CH_2)_5$ —O, or $(CH_2)_6$ —O. In certain embodiments, Y is O, CH_2 —O, $(CH_2)_2$ —O, or $(CH_2)_3$ —O. In certain embodiments, Y is O or CH_2 —O. In certain embodiments, Y is O. **[0403]** In certain embodiments, the Degron is a moiety of Formula D, wherein Y is $C(O)NR_2$ ', CH_2 — $C(O)NR_2$ ', $(CH_2)_2$ — $C(O)NR_2$ ', $(CH_2)_3$ — $C(O)NR_2$ ', $(CH_2)_4$ — $C(O)NR_2$ ', $(CH_2)_5$ — $C(O)NR_2$ ', or $(CH_2)_6$ — $C(O)NR_2$ '. In certain embodiments, Y is $C(O)NR_2$ ', CH_2 — $C(O)NR_2$ ', in certain embodiments, Y is $C(O)NR_2$ '. In certain embodiments, Y is $C(O)NR_2$ ' or CH_2 — $C(O)NR_2$ '. In certain embodiments, Y is $C(O)NR_2$ ' or CH_2 — $C(O)NR_2$ '. In certain embodiments, Y is $C(O)NR_2$ '. **[0404]** In certain embodiments, the Degron is a moiety of Formula D, wherein Y is NR_2 'C(O), CH_2 — NR_2 'C(O), $(CH_2)_2$ — NR_2 'C(O), $(CH_2)_3$ — NR_2 'C(O), $(CH_2)_4$ — NR_2 'C (O), $(CH_2)_5$ — NR_2 ' C(O), or $(CH_2)_6$ — NR_2 'C(O). In certain embodiments, Y is NR_2 'C(O), CH_2 — NR_2 'C(O), or CH_2 — NR_2 'C(O), or CH_2 — CH_2 — CH_2 0. In certain embodiments, Y is NR_2 'C(O) or CH_2 — CH_2 0. In certain embodiments, Y is NR_2 'C(O). **[0405]** In certain embodiments, the Degron is a moiety of Formula D, wherein R_2 ' is H. In certain embodiments, the Degron is a moiety of Formula D, wherein R_2 ' is selected from methyl, ethyl, propyl, butyl, i-butyl, t-butyl, pentyl, i-pentyl, and hexyl. In certain embodiments, R_2 ' is C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. **[0406]** In certain embodiments, the Degron is a moiety of Formula D, wherein Y is NH, CH_2 —NH, $(CH_2)_2$ —NH, $(CH_2)_3$ —NH, $(CH_2)_4$ —NH, $(CH_2)_5$ —NH, or $(CH_2)_6$ —NH. In certain embodiments, Y is NH, CH_2 —NH, $(CH_2)_2$ —NH, or $(CH_2)_3$ —NH. In certain embodiments, Y is NH or CH_2 —NH. In certain embodiments, Y is NH. [0407] In certain embodiments, the Degron is a moiety of Formula D, wherein Y is NR_2 , CH_2 — NR_2 , $(CH_2)_2$ — NR_2 , $(CH_2)_3$ — NR_2 , $(CH_2)_4$ — NR_2 , $(CH_2)_5$ — NR_2 , or $(CH_2)_6$ — NR_2 . In certain embodiments, Y is NR_2 , CH_2 — NR_2 , CH_2 — NR_2 , or CH_2) $_3$ — NR_2 . In certain embodiments, Y is NR_2 or CH_2 — NR_2 . In certain embodiments, Y is NR_2 . **[0408]** In certain embodiments, the Degron is a moiety of Formula D, wherein R_2 is selected from methyl, ethyl, propyl, butyl, i-butyl, t-butyl, pentyl, i-pentyl, and hexyl. In certain embodiments, R_2 is C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. **[0409]** In certain embodiments, the Degron is a moiety of Formula D, wherein R_2 is selected from C(O)-methyl, C(O)-ethyl, C(O)-propyl, C(O)-butyl, C(O)-i-butyl, C(O)-t-butyl, C(O)-pentyl, C(O)-i-pentyl, and C(O)-hexyl. In certain embodiments, R_2 is C(O)— C_1 - C_3 alkyl selected from C(O)-methyl, C(O)-ethyl, and C(O)-propyl. **[0410]** In certain embodiments, the Degron is a moiety of Formula D, wherein R_2 is selected from C(O)-cyclopropyl, C(O)-cyclobutyl, C(O)-cyclopentyl, and C(O)-cyclohexyl. In certain embodiments, R_2 is C(O)-cyclopropyl. [0411] In certain embodiments, the Degron is a moiety of Formula D, wherein R₃ is H. **[0412]** In certain embodiments, the Degron is a moiety of Formula D, wherein R_3 is C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. In certain embodiments, R_3 is methyl. [0413] In certain embodiments, the Degron is a moiety of Formula D, wherein n is 0. **[0414]** In certain embodiments, the Degron is a moiety of Formula D, wherein n is 1. [0415] In certain embodiments, the Degron is a moiety
of Formula D, wherein n is 2. **[0416]** In certain embodiments, the Degron is a moiety of Formula D, wherein each R_3 ' is independently C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. [0417] In certain embodiments, the Degron is a moiety of Formula D, wherein m is 0. [0418] In certain embodiments, the Degron is a moiety of Formula D, wherein m is 1. [0419] In certain embodiments, the Degron is a moiety of Formula D, wherein m is 2. [0420] In certain embodiments, the Degron is a moiety of Formula D, wherein m is 3. **[0421]** In certain embodiments, the Degron is a moiety of Formula D, wherein each R_1 is independently selected from halogen (e.g., F, Cl, Br, and I), OH, C_1 - C_6 alkyl (e.g., methyl, ethyl, propyl, butyl, i-butyl, t-butyl, pentyl, i-pentyl, and hexyl), and C_1 - C_6 alkoxy (e.g., methoxy, ethoxy, propoxy, butoxy, i-butoxy, t-butoxy, and pentoxy). In further embodiments, the Degron is a moiety of Formula D, wherein each R_1 is independently selected from F, Cl, OH, methyl, ethyl, propyl, butyl, i-butyl, t-butyl, methoxy, and ethoxy. [0422] In certain embodiments, the Degron is a moiety of Formula D, wherein each R_4 is H. **[0423]** In certain embodiments, the Degron is a moiety of Formula D, wherein one of R_4 is H, and the other R_4 is C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. **[0424]** In certain embodiments, the Degron is a moiety of Formula D, wherein each R_4 is independently C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. [0425] In certain embodiments, the Degron is a moiety of Formula D, wherein two R_4 , together with the carbon atom to which they are attached, form C(O). **[0426]** In certain embodiments, the Degron is a moiety of Formula D, wherein two R_4 , together with the carbon atom to which they are attached, form cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. [0427] In certain embodiments, the Degron is a moiety of Formula D, wherein two R_4 , together with the carbon atom to which they are attached, form a 4-, 5-, or 6-membered heterocycle selected from oxetane, azetidine, tetrahydrofuran, pyrrolidine, piperidine, piperazine, and morpholine. In certain embodiments, two R₄, together with the carbon atom to which they are attached, form oxetane. **[0428]** In certain embodiments, the Degron is a moiety of Formula D, wherein R_5 is H, deuterium, or C_1 - C_3 alkyl. In further embodiments, R_5 is in the (S) or (R) configuration. In further embodiments, R_5 is in the (S) configuration. In certain embodiments, the Degron is a moiety of Formula D, wherein the compound comprises a racemic mixture of (S)— R_5 and (R)— R_5 . [0429] In certain embodiments, the Degron is a moiety of Formula D, wherein R_5 is H. [0430] In certain embodiments, the Degron is a moiety of Formula D, wherein R_5 is deuterium. **[0431]** In certain embodiments, the Degron is a moiety of Formula D, wherein R_5 is C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. In certain embodiments, R_5 is methyl. **[0432]** In certain embodiments, the Degron is a moiety of Formula D, wherein R_5 is F or Cl. In further embodiments, R_5 is in the (S) or (R) configuration. In further embodiments, R_5 is in the (R) configuration. In certain embodiments, the Degron is a moiety of Formula D, wherein the compound comprises a racemic mixture of (S)— R_5 and (R)— R_5 . In certain embodiments, R_5 is F. **[0433]** In certain embodiments, the Degron is selected from the structures in FIG. **25**, wherein X is H, deuterium, C_1 - C_3 alkyl, or halogen; and R is the attachment point for the Linker. [0434] In certain embodiments, the Degron is selected from the structures in FIG. 26. [0435] In certain embodiments, the Degron is selected from the structures in FIG. 27. # Linker **[0436]** The Linker is a bond or a chemical group that links a dTAG Targeting Ligand with a Degron. In certain embodiments the Linker is a carbon chain. In certain embodiments, the carbon chain optionally includes one, two, three, or more heteroatoms selected from N, O, and S. In certain embodiments, the carbon chain comprises only saturated chain carbon atoms. In certain embodiments, the carbon chain optionally comprises two or more unsaturated chain carbon atoms (e.g., C=C or C=C). In certain embodiments, one or more chain carbon atoms in the carbon chain are optionally substituted with one or more substituents (e.g., oxo, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_3 alkoy, OH, halogen, NH₂, NH(C_1 - C_3 alkyl), N(C_1 - C_3 alkyl)₂, CN, C_3 - C_8 cycloalkyl, heterocyclyl, phenyl, and heteroaryl). [0437] In certain embodiments, the Linker includes at least 5 chain atoms (e.g., C, O, N, and S). In certain embodiments, the Linker comprises less than 20 chain atoms (e.g., C, O, N, and S). In certain embodiments, the Linker comprises 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 chain atoms (e.g., C, O, N, and S). In certain embodiments, the Linker comprises 5, 7, 9, 11, 13, 15, 17, or 19 chain atoms (e.g., C, O, N, and S). In certain embodiments, the Linker comprises 5, 7, 9, or 11 chain atoms (e.g., C, O, N, and S). In certain embodiments, the Linker comprises 6, 8, 10, 12, 14, 16, or 18 chain atoms (e.g., C, O, N, and S). In certain embodiments, the Linker comprises 6, 8, 10, 12, 14, 16, or 18 chain atoms (e.g., C, O, N, and S). [0438] In certain embodiments, the Linker is a carbon chain optionally substituted with non-bulky substituents (e.g., oxo, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₃ alkoxy, OH, halogen, NH₂, NH(C₁-C₃ alkyl), N(C₁-C₃ alkyl)₂, and CN). In certain embodiments, the non-bulky substitution is located on the chain carbon atom proximal to the Degron (i.e., the carbon atom is separated from the carbon atom to which the Degron is bonded by at least 3, 4, or 5 chain atoms in the Linker). [0439] In certain embodiments, the Linker is of Formula or an enantiomer, diastereomer, or stereoisomer thereof, wherein [0440] p1 is an integer selected from 0 to 12; [0441] p2 is an integer selected from 0 to 12; [0442] p3 is an integer selected from 1 to 6; [0443] each W is independently absent, CH₂, O, S, NH or NR₅; [0444] Z is absent, CH_2 , O, NH or NR_5 ; [0445] each R_5 is independently C_1 - C_3 alkyl; and [0446] Q is absent or $-CH_2C(O)NH$ — wherein the Linker is covalently bonded to the Degron with the next to Q, and covalently bonded to the dTAG Targeting Ligand with the next to Z, and wherein the total number of chain atoms in the Linker is less than 20. [0447] In certain embodiments, the Linker-dTAG Targeting Ligand (TL) has the structure of Formula L1 or L2: $$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array}
\begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \\ \\$$ or an enantiomer, diastereomer, or stereoisomer thereof, wherein: [0448] p1 is an integer selected from 0 to 12; [0449] p2 is an integer selected from 0 to 12; [0450] p3 is an integer selected from 1 to 6; [0451] each W is independently absent, CH₂, O, S, NH or NR₅; [0452] Z is absent, CH_2 , O, NH or NR_5 ; [0453] each R_5 is independently C_1 - C_3 alkyl; and [0454] TL is a dTAG Targeting Ligand, wherein the Linker is covalently bonded to the Degron with [0455] In certain embodiments, p1 is an integer selected from 0 to 10. [0456] In certain embodiments, p1 is an integer selected from 2 to 10. [0457] In certain embodiments, p1 is selected from 1, 2, 3, 4, 5, and 6. [0458] In certain embodiments, p1 is selected from 1, 3, and 5. [0459] In certain embodiments, p1 is selected from 1, 2, and 3. [0460] In certain embodiments, p1 is 3. [0461] In certain embodiments, p2 is an integer selected from 0 to 10. [0462] In certain embodiments, p2 is selected from 0, 1, 2, 3, 4, 5, and 6. **[0463]** In certain embodiments, p2 is an integer selected from 0 and 1. [0464] In certain embodiments, p3 is an integer selected from 1 to 5. [0465] In certain embodiments, p3 is selected from 2, 3, 4, and 5. [0466] In certain embodiments, p3 is selected from 1, 2, and 3. [0467] In certain embodiments, p3 is selected from 2 and 3. [0468] In certain embodiments, at least one W is CH₂. [0469] In certain embodiments, at least one W is O. [0470] In certain embodiments, at least one W is S. [0471] In certain embodiments, at least one W is NH. **[0472]** In certain embodiments, at least one W is NR_5 ; and R_5 is C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. [0473] In certain embodiments, W is O. [0474] In certain embodiments, Z is absent. [0475] In certain embodiments, Z is CH₂. [0476] In certain embodiments, Z is O. [0477] In certain embodiments, Z is NH. **[0478]** In certain embodiments, Z is NR_5 ; and R_5 is C_1 - C_3 alkyl selected from methyl, ethyl, and propyl. **[0479]** In certain embodiments, Z is part of the dTAG Targeting Ligand that is bonded to the Linker, namely, Z is formed from reacting a functional group of the dTAG Targeting Ligand with the Linker. [0480] In certain embodiments, W is CH₂, and Z is CH₂. [0481] In certain embodiments, W is O, and Z is CH₂. [0482] In certain embodiments, W is CH₂, and Z is O. [0483] In certain embodiments, W is O, and Z is O. [0484] In certain embodiments, the Linker-dTAG Targeting Ligand has the structure selected from Table L: # TABLE L TABLE L-continued wherein Z, TL, and p1 are each as described above. [0485] Any one of the Degrons described herein can be covalently bound to any one of the Linkers described herein. [0486] In certain embodiments, the present application includes the Degron-Linker (DL) having the following structure: $$O = (R_3')_n \atop R_3 \atop R_4 \atop R_4 \atop Q} (DLa)$$ $$(DLa)$$ $$(R_1)_m \atop (DLb)$$ $$\begin{array}{c|c} R_3 \\ N \\ R_5 \\ R_5 \\ N \\ X_1 \\ X_2 \end{array} \begin{array}{c} P_4 \\ P_2 \\ P_2 \\ W \\ P_1 \\ P_3 \\ P_3 \\ P_4 \\ P_5 \\ P_5 \\ P_5 \\ P_6 \\ P_7 \\ P_8 P_8$$ $$O = \begin{pmatrix} R_3 \\ N \end{pmatrix}_{R_4} \begin{pmatrix} R_5 \\ N \end{pmatrix}_{R_4} \begin{pmatrix} R_4 \\ N \end{pmatrix}_{R_4} \begin{pmatrix} R_1 \\ N \end{pmatrix}_{m} \begin{pmatrix} R_1 \\ N \end{pmatrix}_{R_5} \\$$ -continued $$(DLb^{\prime})$$ $$O = \underbrace{\begin{pmatrix} R_3 & R_4 & 0 & \\ N & R_5 & 0 & \\ R_5 & N & 1 & \\ R_5 & N & 1 & \\ X_1 & X_2 & & \\ \end{pmatrix}}_{(R_1)_m} \underbrace{\begin{pmatrix} R_4 & 0 & \\ Q & & \\ & & &$$ wherein each of the variables is as described above in Formula D0 and Formula L0, and a dTAG Targeting Ligand is covalently bonded to the DL with the next to Z. [0487] . In certain embodiments, the present application includes to the Degron-Linker (DL) having the following structure: $$O = \begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p_1} \begin{pmatrix} Q & & & \\ &$$ $$O = \left(\begin{array}{c} O \\ O \\ \end{array} \right) \left(\begin{array}{c} O \\ P_{1} \\ \end{array} \right) \left(\begin{array}{c} Z \\ P_{3} \\ \end{array} \right) \left(\begin{array}{c} Z \\ P_{3} \\ \end{array} \right) \left(\begin{array}{c} O \\$$ $$O = \left(\begin{array}{c} O \\ O \\ HN \end{array} \right) \left(\begin{array}{c} O \\ O \\ O \end{array} \right) \left(\begin{array}{c} H \\ N \\ O \end{array} \right) \left(\begin{array}{c} W \\ P^2 \end{array} \right) \left(\begin{array}{c} W \\ P^3 \end{array} \right) \left(\begin{array}{c} Z \\ P^3 \end{array} \right) \left(\begin{array}{c} Z \\ P^3 \end{array} \right) \left(\begin{array}{c} Z \\ P^3 \end{array} \right) \left(\begin{array}{c} W \end{array}$$ wherein each of the variables is as described above in Formula D and Formula L0, and a dTAG Targeting Ligand is covalently bonded to the DL with the next to Z [0488] Some embodiments of
the present application relate to a bifunctional compound having the following structure: or an enantiomer, diastereomer, or stereoisomer thereof, wherein each of the variables is as described above in Formula D and Formula L0, and the dTAG Targeting Ligand is described herein below. [0489] Further embodiments of the present application relate to a bifunctional compound having the following structure: $$O = \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p1} \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{p2}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p1} \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{p2}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p1} \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p1} \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p1} \begin{pmatrix} N & N \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R_5 & X \\ N & N \end{pmatrix}_{p3}}^{Q} \underbrace{\begin{pmatrix} R$$ or an enantiomer, diastereomer, or stereoisomer thereof, wherein each of the variables is as described above in Formula D and Formula L0, and the dTAG Targeting Ligand is described herein below. [0490] Certain embodiments of the present application relate to bifunctional compounds having one of the following structures: **[0491]** In certain embodiments, the Linker may be a polyethylene glycol group ranging in size from about 1 to about 12 ethylene glycol units, between 1 and about 10 ethylene glycol units, about 2 about 6 ethylene glycol units, between about 2 and 5 ethylene glycol units, between about 2 and 4 ethylene glycol units. [0492] In certain embodiments, the Linker is designed and optimized based on SAR (structure-activity relationship) and X-ray crystallography of the dTAG Targeting Ligand with regard to the location of attachment for the Linker. [0493] In certain embodiments, the optimal Linker length and composition vary by target and can be estimated based upon X-ray structures of the original dTAG Targeting Ligand bound to its target. Linker length and composition can be also modified to modulate metabolic stability and pharmacokinetic (PK) and pharmacodynamics (PD) parameters [0494] In certain embodiments, where the dTAG Targeting Ligand binds multiple targets, selectivity may be achieved by varying Linker length where the ligand binds some of its targets in different binding pockets, e.g., deeper or shallower binding pockets than others. [0495] In an additional embodiment, the heterobifunctional compounds for use in the present invention include a chemical Linker (L). In certain embodiments, the Linker group L is a group comprising one or more covalently connected structural units of A (e.g., $-A_1 \ldots A_q$ -), wherein A_1 is a group coupled to at least one of a Degron, a dTAG Targeting Ligand, or a combination thereof. In certain embodiments, A_1 links a Degron, a dTAG Targeting Ligand, or a combination thereof directly to another Degron, Targeting Ligand, or combination thereof. In other embodiments, A_1 links a Degron, a dTAG Targeting Ligand, or a combination thereof indirectly to another Degron, dTAG Targeting Ligand or combination thereof through A_{σ} . [0496] In certain embodiments, A_1 to A_q are, each independently, a bond, $CR^{L1}R^{L2}$, O, S, SO, SO_2 , NR^{L3} , SO_2NR^{L3} , $SONR^{L3}$, $CONR^{L3}$, $NR^{L3}CONR^{L4}$, $NW^{L3}SO_2NR^{L4}$, CO, CR^{L1} — CR^{L2} , C=C, $SiR^{L1}R^{L2}$, $P(O)R^{L1}$, $P(O)OR^{L1}$, $NR^{L3}C($ — $NCN)NR^{L4}$, $NR^{L3}C($ —NCN), [0497] R^{L1} , R^{L2} , R^{L3} , R^{L4} and R^{L5} are, each independently, H, halo, C₁₋₈alkyl, OC₁₋₈alkyl, SC₁₋₈alkyl, NHC_{1-8} alkyl, $N(C_{1-8}$ alkyl)₂, C_{3-11} cycloalkyl, aryl, heteroaryl, C_{3-11} heterocyclyl, OC_{1-8} cycloalkyl, SC_{1-8} cy cloalkyl, NHC₁₋₈cycloalkyl, N(C₁₋₈cycloalkyl)₂, N(C₁ scycloalkyl)(C₁₋₈alkyl), OH, NH₂, SH, SO₂C₁₋₈alkyl, P(O)(OC₁₋₈alkyl)₂, $P(O)(OC_{1-8}alkyl)(C_{1-8}alkyl),$ $CC - C_{1-8}alkyl$, CCH, $CH = CH(C_{1-8}alkyl)$, $C(C_{1-8}al-1)$ $kyl) = CH(C_{1-8}alkyl),$ $C(C_{1-8}alkyl) = C(C_{1-8}alkyl)_2$ $Si(OH)_3$, $Si(C_{1-8}alkyl)_3$, $Si(OH)(C_{1-8}alkyl)_2$, $COC_{1-8}alkyl)_3$ salkyl, CO₂H, halogen, CN, CF₃, CHF₂, CH₂F, NO₂, $SF_5, \ SO_2NHC_{1-8}alkyl, \ SO_2N(C_{1-8}alkyl)_2, \ SONHC_{1-8}alkyl)_2$ salkyl, SON(C₁₋₈alkyl)₂, CONHC₁₋₈alkyl, CON(C₁ $salkyl)_2,\ N(C_{1-8}alkyl)CONH(C_{1-8}alkyl),\ N(C_{1-8}alkyl)$ CON(C₁₋₈alkyl)₂, NHCONH(C₁₋₈alkyl), NHCON(C₁₋₈ salkyl)₂, NHCONH₂, N(C₁₋₈alkyl)SO₂NH(C₁₋₈alkyl), $N(C_{1-8}alkyl)$ $SO_2N(C_{1-8}alkyl)_2$, NH $SO_2NH(C_{1-8}al-1)_2$ kyl), NH SO₂N(C₁₋₈alkyl)₂, NH SO₂NH₂. [0498] In certain embodiments, q is an integer greater than or equal to 0. In certain embodiments, q is an integer greater than or equal to 1. **[0499]** In certain embodiments, e.g., where q is greater than 2, A_q is a group which is connected to a Degron, and A_1 and A_q are connected via structural units of A (number of such structural units of A: q-2). **[0500]** In certain embodiments, e.g., where q is 2, A_q is a group which is connected to A_1 and to a Degron moiety. **[0501]** In certain embodiments, e.g., where q is 1, the structure of the Linker group L is $-A_1$ -, and A_1 is a group which is connected to a Degron moiety and a dTAG Targeting Ligand moiety. [0502] In additional embodiments, q is an integer from 1 to 100, 1 to 90, 1 to 80, 1 to 70, 1 to 60, 1 to 50, 1 to 40, 1 to 30, 1 to 20, or 1 to 10. [0503] In certain embodiments, the Linker (L) is selected from the structures in FIG. 28. [0504] In other embodiments the Linker (L) is selected from the structures in FIG. 29. [0505] In additional embodiments, the Linker group is optionally substituted (poly)ethyleneglycol having between 1 and about 100 ethylene glycol units, between about 1 and about 50 ethylene glycol units, between 1 and about 25 ethylene glycol units, between about 1 and 10 ethylene glycol units, between 1 and about 8 ethylene glycol units and 1 and 6 ethylene glycol units, between 2 and 4 ethylene glycol units, or optionally substituted alkyl groups interspersed with
optionally substituted, O, N, S, P or Si atoms. In certain embodiments, the Linker is substituted with an aryl, phenyl, benzyl, alkyl, alkylene, or heterocycle group. In certain embodiments, the Linker may be asymmetric or symmetrical. [0506] In any of the embodiments of the compounds described herein, the Linker group may be any suitable moiety as described herein. In one embodiment, the Linker is a substituted or unsubstituted polyethylene glycol group ranging in size from about 1 to about 12 ethylene glycol units, between 1 and about 10 ethylene glycol units, about 2 about 6 ethylene glycol units, between about 2 and 5 ethylene glycol units, between about 2 and 4 ethylene glycol units. [0507] Although the Degron group and dTAG Targeting Ligand group may be covalently linked to the Linker group through any group which is appropriate and stable to the chemistry of the Linker, the Linker is independently covalently bonded to the Degron group and the dTAG Targeting Ligand group preferably through an amide, ester, thioester, keto group, carbamate (urethane), carbon or ether, each of which groups may be inserted anywhere on the Degron group and dTAG Targeting Ligand group to provide maximum binding of the Degron group on the ubiquitin ligase and the dTAG Targeting Ligand group on the target dTAG. (It is noted that in certain aspects where the Degron group targets Ubiquitin Ligase, the target protein for degradation may be the ubiquitin ligase itself). The Linker may be linked to an optionally substituted alkyl, alkylene, alkene or alkyne group, an aryl group or a heterocyclic group on the Degron and/or dTAG Targeting Ligand groups. [0508] In certain embodiments, "L" can be linear chains with linear atoms from 4 to 24, the carbon atom in the linear chain can be substituted with oxygen, nitrogen, amide, fluorinated carbon, etc., such as the structures in FIG. 30. [0509] In certain embodiments, "L" can be nonlinear chains, and can be aliphatic or aromatic or heteroaromatic cyclic moieties, some examples of "L" include but not be limited to the structures of FIG. 31. dTAG Targeting Ligand [0510] The dTAG Targeting Ligand (TL) is capable of binding to a dTAG or being bound by a dTAG target that allows tagging with ubiquitin to occur; [0511] As contemplated herein, the CARs of the present invention include a heterobifunctional compound targeted protein (dTAG) which locates in the cytoplasm. The heterobifunctional compound targeted protein of the CAR is any amino acid sequence to which a heterobifunctional compound can be bound, leading to the degradation of the CAR when in contact with the heterobifunctional compound. Preferably, the dTAG should not interfere with the function of the CAR. In one embodiment, the dTAG is a nonendogenous peptide, leading to heterobifunctional compound selectivity and allowing for the avoidance of off target effects upon administration of the heterobifunctional compound. In one embodiment, the dTAG is an amino acid sequence derived from an endogenous protein which has been modified so that the heterobifunctional compound binds only to the modified amino acid sequence and not the endogenously expressed protein. In one embodiment, the dTAG is an endogenously expressed protein. Any amino acid sequence domain that can be bound by a ligand for use in a heterobifunctional compound can be used as a dTAG as contemplated herewith. [0512] In particular embodiments, the dTAGs for use in the present invention include, but are not limited to, amino acid sequences derived from endogenously expressed proteins such as FK506 binding protein-12 (FKBP12), bromodomain-containing protein 4 (BRD4), CREB binding protein (CREBBP), and transcriptional activator BRG1 (SMARCA4), or a variant thereof. As contemplated herein, "variant" means any variant such as a substitution, deletion, or addition of one or a few to plural amino acids, provided that the variant substantially retains the same function as the original sequence, which in this case is providing ligand binding for a heterobifunctional compound. In other embodiments, dTAGs for us in the present invention may include, for example, hormone receptors e.g. estrogen-receptor proteins, androgen receptor proteins, retinoid x receptor (RXR) protein, and dihydroflorate reductase (DHFR), including bacterial DHFR, bacterial dehydrogenase, and variants. [0513] Some embodiments of the present application include TLs which target dTAGs including, but not limited to, those derived from Hsp90 inhibitors, kinase inhibitors, MDM2 inhibitors, compounds targeting Human BET bromodomain-containing proteins, compounds targeting cytosolic signaling protein FKBP12, HDAC inhibitors, human lysine methyltransferase inhibitors, angiogenesis inhibitors, immunosuppressive compounds, and compounds targeting the aryl hydrocarbon receptor (AHR). [0514] In certain embodiments, the dTAG Targeting Ligand is a compound that is capable of binding to or binds to a dTAG derived from a kinase, a BET bromodomain-containing protein, a cytosolic signaling protein (e.g., FKBP12), a nuclear protein, a histone deacetylase, a lysine methyltransferase, a protein regulating angiogenesis, a protein regulating immune response, an aryl hydrocarbon receptor (AHR), an estrogen receptor, an androgen receptor, a glucocorticoid receptor, or a transcription factor (e.g., SMARCA4, SMARCA2, TRIM24). [0515] In certain embodiments, the dTAG is derived from a kinase to which the dTAG Targeting Ligand is capable of binding or binds including, but not limited to, a tyrosine kinase (e.g., AATK, ABL, ABL2, ALK, AXL, BLK, BMX, BTK, CSF1R, CSK, DDR1, DDR2, EGFR, EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHA10, EPHB1, EPHB2, EPHB3, EPHB4, EPHB6, ERBB2, ERBB3, ERBB4, FER, FES, FGFR1, FGFR2, FGFR3, FGFR4, FGR, FLT1, FLT3, FLT4, FRK, FYN, GSG2, HCK, IGF1R, ILK, INSR, INSRR, IRAK4, ITK, JAK1, JAK2, JAK3, KDR, KIT, KSR1, LCK, LMTK2, LMTK3, LTK, LYN, MATK, MERTK, MET, MLTK, MST1R, MUSK, NPR1, NTRK1, NTRK2, NTRK3, PDG-FRA, PDGFRB, PLK4, PTK2, PTK2B, PTK6, PTK7, RET, ROR1, ROR2, ROS1, RYK, SGK493, SRC, SRMS, STYK1, SYK, TEC, TEK, TEX14, TIE1, TNK1, TNK2, TNNI3K, TXK, TYK2, TYRO3, YES1, or ZAP70), a serine/ threonine kinase (e.g., casein kinase 2, protein kinase A, protein kinase B, protein kinase C, Rafkinases, CaM kinases, AKT1, AKT2, AKT3, ALK1, ALK2, ALK3, ALK4, Aurora A, Aurora B, Aurora C, CHK1, CHK2, CLK1, CLK2, CLK3, DAPK1, DAPK2, DAPK3, DMPK, ERK1, ERK2, ERK5, GCK, GSK3, HIPK, KHS1, LKB1, LOK, MAPKAPK2, MAPKAPK, MNK1, MSSK1, MST1, MST2, MST4, NDR, NEK2, NEK3, NEK6, NEK7, NEK9, NEK11, PAK1, PAK2, PAK3, PAK4, PAK5, PAK6, PIM1, PIM2, PLK1, RIP2, RIP5, RSK1, RSK2, SGK2, SGK3, SIK1, STK33, TAO1, TAO2, TGF-beta, TLK2, TSSK1, TSSK2, ULK1, or ULK2), a cyclin dependent kinase (e.g., Cdk1-Cdk11), and a leucine-rich repeat kinase (e.g., LRRK2). [0516] In certain embodiments, the dTAG is derived from a BET bromodomain-containing protein to which the dTAG Targeting Ligand is capable of binding or binds including, but not limited to, ASH1L, ATAD2, BAZ1A, BAZ1B, BAZ2A, BAZ2B, BRD1, BRD2, BRD3, BRD4, BRD5, BRD6, BRD7, BRD8, BRD9, BRD10, BRDT, BRPF1, BRPF3, BRWD3, CECR2, CREBBP, EP300, FALZ, GCN5L2, KIAA1240, LOC93349, MLL, PB1, PCAF, PHIP, PRKCBP1, SMARCA2, SMARCA4, SP100, SP110, SP140, TAF1, TAF1L, TIF1a, TRIM28, TRIMS 3, TRIM66, WDR9, ZMYND11, and MLL4. In certain embodiments, a BET bromodomain-containing protein is BRD4. [0517] In certain embodiments, the dTAG is derived from a nuclear protein to which the dTAG Targeting Ligand is capable of binding or binds including, but not limited to, BRD2, BRD3, BRD4, Antennapedia Homeodomain Protein, BRCA1, BRCA2, CCAAT-Enhanced-Binding Proteins, histones, Polycomb-group proteins, High Mobility Group Proteins, Telomere Binding Proteins, FANCA, FANCD2, FANCE, FANCF, hepatocyte nuclear factors, Mad2, NF-kappa B, Nuclear Receptor Coactivators, CREB-binding protein, p55, p107, p130, Rb proteins, p53, c-fos, c-jun, c-mdm2, c-myc, and c-rel. [0518] In certain embodiments, the dTAG Targeting Ligand is selected from a kinase inhibitor, a BET bromodomain-containing protein inhibitor, cytosolic signaling protein FKBP12 ligand, an HDAC inhibitor, a lysine methyltransferase inhibitor, an angiogenesis inhibitor, an immunosuppressive compound, and an aryl hydrocarbon receptor (AHR) inhibitor. [0519] In certain embodiments, the dTAG Targeting Ligand is a SERM (selective estrogen receptor modulator) or SERD (selective estrogen receptor degrader). Non-limiting examples of SERMs and SERDs are provided in WO 2014/191726 assigned to Astra Zeneca, WO2013/090921, WO 2014/203129, WO 2014/203132, and US2013/0178445 assigned to Olema Pharmaceuticals, and U.S. Pat. Nos. 9,078,871, 8,853,423, and 8,703,810, as well as US 2015/0005286, WO 2014/205136, and WO 2014/205138 assigned to Seragon Pharmaceuticals. [0520] Additional dTAG Targeting Ligands include, for example, any moiety which binds to an endogenous protein (binds to a target dTAG). Illustrative dTAG Targeting Ligands includes the small molecule dTAG Targeting Ligand: Hsp90 inhibitors, kinase inhibitors, HDM2 and MDM2 inhibitors, compounds targeting Human BET bromodomain-containing proteins, HDAC inhibitors, human lysine methyltransferase inhibitors, angiogenesis inhibitors, nuclear hormone receptor compounds, immunosuppressive compounds, and compounds targeting the aryl hydrocarbon receptor (AHR), among numerous others. Such small molecule target dTAG binding moieties also include pharmaceutically acceptable salts, enantiomers, solvates and polymorphs of these compositions, as well as other small molecules that may target a dTAG of interest. [0521] In some embodiments the dTAG Targeting Ligand is an Ubc9 SUMO E2 ligase 5F6D targeting ligand including but not limited to those described in "Insights Into the Allosteric Inhibition of the SUMO E2 Enzyme Ubc9." by Hewitt, W. M., et. al. (2016) Angew. Chem. Int. Ed. Engl. 55: 5703-5707 [0522] In another
embodiment the dTAG Targeting Ligand is a Tank1 targeting ligand including but not limited to those described in "Structure of human tankyrase 1 in complex with small-molecule inhibitors PJ34 and XAV939." Kirby, C. A., Cheung, A., Fazal, A., Shultz, M. D., Stams, T, (2012) Acta Crystallogr., Sect.F 68: 115-118; and "Structure-Efficiency Relationship of [1,2,4]Triazol-3-ylamines as Novel Nicotinamide Isosteres that Inhibit Tankyrases." Shultz, M. D., et al. (2013) J. Med. Chem. 56: 7049-7059. [0523] In another embodiment the dTAG Targeting Ligand is a SH2 domain of pp60 Src targeting ligand including but not limited to those described in "Requirements for Specific Binding of Low Affinity Inhibitor Fragments to the SH2 Domain of pp60Src Are Identical to Those for High Affinity Binding of Full Length Inhibitors" Gudrun Lange, et al., J. Med. Chem. 2003, 46, 5184-5195. **[0524]** In another embodiment the dTAG Targeting Ligand is a Sec7 domain targeting ligand including but not limited to those described in "The Lysosomal Protein Saposin B Binds Chloroquine." Huta, B. P., et al., (2016) Chemmedchem 11: 277. [0525] In another embodiment the dTAG Targeting Ligand is a Saposin-B targeting ligand including but not limited to those described in "The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding" I. Nemcovicova and D. M. Zajone Acta Cryst. (2014). D70, 851-862. [0526] In another embodiment the dTAG Targeting Ligand is a Protein S100-A7 20WS targeting ligand including but not limited to those described in "2WOS STRUCTURE OF HUMAN S100A7 IN COMPLEX WITH 2,6 ANS" DOI: 10.2210/pdb2wos/pdb; and "Identification and Characterization of Binding Sites on S100A7, a Participant in Cancer and Inflammation Pathways." Leon, R., Murray, et al., (2009) Biochemistry 48: 10591-10600. [0527] In another embodiment the dTAG Targeting Ligand is a Phospholipase A2 targeting ligand including but not limited to those described in "Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2" Schevitz, R. W., et al., Nat. Struct. Biol. 1995, 2, 458-465. [0528] In another embodiment the dTAG Targeting Ligand is a PHIP targeting ligand including but not limited to those described in "A Poised Fragment Library Enables Rapid Synthetic Expansion Yielding the First Reported Inhibitors of PHIP(2), an Atypical Bromodomain" Krojer, T.; et al. Chem. Sci. 2016, 7, 2322-2330. **[0529]** In another embodiment the dTAG Targeting Ligand is a PDZ targeting ligand including but not limited to those described in "Discovery of Low-Molecular-Weight Ligands for the AF6 PDZ Domain" Mangesh Joshi, et al. Angew. Chem. Int. Ed. 2006, 45, 3790-3795. [0530] In another embodiment the dTAG Targeting Ligand is a PARP15 targeting ligand including but not limited to those described in "Structural Basis for Lack of ADP-ribosyltransferase Activity in Poly(ADP-ribose) Polymerase-13/Zinc Finger Antiviral Protein." Karlberg, T., et al., (2015) J. Biol. Chem. 290: 7336-7344. [0531] In another embodiment the dTAG Targeting Ligand is a PARP14 targeting ligand including but not limited to those described in "Discovery of Ligands for ADP-Ribosyltransferases via Docking-Based Virtual Screening." Andersson, C. D., et al., (2012) J. Med. Chem. 55: 7706-7718.; "Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors." Wahlberg, E., et al. (2012) Nat. Biotechnol. 30: 283-288.; "Discovery of Ligands for ADP-Ribosyltransferases via Docking-Based Virtual Screening. "Andersson, C. D., et al. (2012) J. Med. Chem. 55: 7706-7718. [0532] In another embodiment the dTAG Targeting Ligand is a MTH1 targeting ligand including but not limited to those described in "MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool" Helge Gad, et. al. Nature, 2014, 508, 215-221. [0533] In another embodiment the dTAG Targeting Ligand is a mPGES-1 targeting ligand including but not limited to those described in "Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics." Luz, J. G., et al., (2015) J. Med. Chem. 58: 4727-4737. [0534] In another embodiment the dTAG Targeting Ligand is a FLAP-5-lipoxygenase-activating protein targeting ligand including but not limited to those described in "Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein." Ferguson, A. D., McKeever, B. M., Xu, S., Wisniewski, D., Miller, D. K., Yamin, T. T., Spencer, R. H., Chu, L., Ujjainwalla, F., Cunningham, B. R., Evans, J. F., Becker, J. W. (2007) Science 317: 510-512. [0535] In another embodiment the dTAG Targeting Ligand is a FA Binding Protein targeting ligand including but not limited to those described in "A Real-World Perspective on Molecular Design." Kuhn, B.; et al. J. Med. Chem. 2016, 59, 4087-4102. [0536] In another embodiment the dTAG Targeting Ligand is a BCL2 targeting ligand including but not limited to those described in "ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets." Souers, A. J., et al. (2013) NAT. MED. (N.Y.) 19: 202-208. [0537] Any protein which can bind to a dTAG Targeting Ligand group and acted on or degraded by a ubiquitin ligase is a target protein according to the present invention. In general, an endogenous target proteins for use as dTAGs may include, for example, structural proteins, receptors, enzymes, cell surface proteins, proteins pertinent to the integrated function of a cell, including proteins involved in catalytic activity, aromatase activity, motor activity, helicase activity, metabolic processes (anabolism and catabolism), antioxidant activity, proteolysis, biosynthesis, proteins with kinase activity, oxidoreductase activity, transferase activity, hydrolase activity, lyase activity, isomerase activity, ligase activity, enzyme regulator activity, signal transducer activity, structural molecule activity, binding activity (protein, lipid carbohydrate), receptor activity, cell motility, membrane fusion, cell communication, regulation of biological processes, development, cell differentiation, response to stimulus, behavioral proteins, cell adhesion proteins, proteins involved in cell death, proteins involved in transport (including protein transporter activity, nuclear transport, ion transporter activity, channel transporter activity, carrier activity, permease activity, secretion activity, electron transporter activity, pathogenesis, chaperone regulator activity, nucleic acid binding activity, transcription regulator activity, extracellular organization and biogenesis activity, translation regulator activity. [0538] More specifically, a number of drug targets for human therapeutics represent dTAG targets to which protein target or dTAG Targeting Ligand may be bound and incorporated into compounds according to the present invention. These include proteins which may be used to restore function in numerous polygenic diseases, including for example B7.1 and B7, TINFR1m, TNFR2, NADPH oxidase, BclIBax and other partners in the apoptosis pathway, C5a receptor, HMG-CoA reductase, PDE V phosphodiesterase type, PDE IV phosphodiesterase type 4, PDE I, PDEII, PDEIII, squalene cyclase inhibitor, CXCR1, CXCR2, nitric oxide (NO) synthase, cyclo-oxygenase 1, cyclo-oxygenase 2, 5HT receptors, dopamine receptors, G Proteins, i.e., Gq, histamine receptors, 5-lipoxygenase, tryptase serine protease, thymidylate synthase, purine nucleoside phosphorylase, GAPDH trypanosomal, glycogen phosphorylase, Carbonic anhydrase, chemokine receptors, JAW STAT, RXR and similar, HIV 1 protease, HIV 1 integrase, influenza, neuraminidase, hepatitis B reverse transcriptase, sodium channel, multi drug resistance (MDR), protein P-glycoprotein (and MRP), tyrosine kinases, CD23, CD124, tyrosine kinase p56 lck, CD4, CDS, IL-2 receptor, IL-1 receptor, TNF-alphaR, ICAM1, Cat+ channels, VCAM, VLA-4 integrin, selectins, CD40/CD40L, neurokinins and receptors, inosine monophosphate dehydrogenase, p38 MAP Kinase, RaslRaflMEWERK pathway, interleukin-1 converting enzyme, caspase, HCV, NS3 protease, HCV NS3 RNA helicase, glycinamide ribonucleotide formyl transferase, rhinovirus 3C protease, herpes simplex virus-1 (HSV-I), protease, cytomegalovirus (CMV) protease, poly (ADP-ribose) polymerase, cyclin dependent kinases, vascular endothelial growth factor, oxytocin receptor, microsomal transfer protein inhibitor, bile acid transport inhibitor, 5 alpha reductase inhibitors, angiotensin 11, glycine receptor, noradrenaline reuptake receptor, endothelin receptors, neuropeptide Y and receptor, estrogen receptors, androgen receptors, adenosine receptors, adenosine kinase and AMP deaminase, purinergic receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2X1-7), farnesyltransferases, geranylgeranyl transferase, TrkA a receptor for NGF, beta-amyloid, tyrosine kinase vitronectin receptor, integrin receptor, Her-21 neu, telomerase inhibition, cytosolic phospholipaseA2 and EGF receptor tyrosine kinase. Additional protein targets useful as dTAGs include, for example, ecdysone 20-monooxygenase, ion channel of the GABA gated chloride channel, acetylcholinesterase, voltage-sensitive sodium channel protein, calcium release channel, and chloride channels. Still further target proteins for use as dTAGs include Acetyl-CoA carboxylase, adenylosuccinate synthetase, protoporphyrinogen oxidase, and enolpyruvylshikimate-phosphate synthase. [0539] Haloalkane dehalogenase enzymes are another target of specific compounds according to the present invention which may be used as dTAGs. Compounds according to the present invention which contain chloroalkane peptide binding moieties (C1-C12 often about C2-C10 alkyl halo groups) may be used to inhibit and/or degrade haloalkane dehalogenase enzymes which are used in fusion proteins or related diagnostic proteins as described in
PCT/US2012/063401 filed Dec. 6, 2011 and published as WO 2012/078559 on Jun. 14, 2012, the contents of which is incorporated by reference herein. [0540] Non-limiting examples of dTAG Targeting Ligands are shown below in Table T and represent dTAG Targeting Ligands capable of targeting proteins or amino acid sequence useful as dTAGs. #### TABLE T #### BRD dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached; and R', is methyl or ethyl. CREBBP dTAG Targeting Ligands: TABLE T-continued wherein: R is the point at which the Linker is attached; A is N or CH; and m is 0, 1, 2, 3, 4, 5, 6, 7, or 8. $SMARCA4/PB1/SMARCA2\ dTAG\ Targeting\ Ligands:$ wherein: R is the point at which the Linker is attached; A is N or CH; and m is 0, 1, 2, 3, 4, 5, 6, 7, or 8. TRIM24/BRPF1 dTAG Targeting Ligands: TABLE T-continued TABLE T-continued wherein: R is the point at which the Linker is attached; and m is 0, 1, 2, 3, 4, 5, 6, 7, or 8. Glucocorticoid Receptor dTAG Targeting Ligand: TABLE T-continued wherein: R is the point at which the Linker is attached. Estrogen/Androgen Receptor dTAG Targeting Ligands: TABLE T-continued $$F_{3}C$$ S F R R wherein: R is the point at which the Linker is attached. $DOT1L\ dTAG\ Targeting\ Ligands;$ $$\begin{array}{c} O \\ \\ HN \\ \\ N \\$$ wherein: R is the point at which the Linker is attached; A is N or CH; and m is 0, 1, 2, 3, 4, 5, 6, 7, or 8. TABLE T-continued Ras dTAG Targeting Ligands: TABLE T-continued $\label{eq:wherein: RasG12C dTAG} Wherein: RasG12C dTAG Targeting Ligands:$ TABLE T-continued $$\begin{array}{c} R \\ I \\ \end{array}$$ $$\begin{array}{c} C_1 \\ \\ I \end{array} \begin{array}{c} O_1 \\ \\ N \end{array} \begin{array}{c} O_2 \\ \\ N \end{array} \begin{array}{c} O_3 \begin{array}{c}$$ $$\begin{array}{c} Cl \\ I \\ \end{array} \begin{array}{c} OH \\ N \\ \end{array} \begin{array}{c} O_2 \\ N \\ \end{array} \begin{array}{c} O_2 \\ R \end{array}$$ $$\begin{array}{c} O \\ \\ R \end{array} \begin{array}{c} O \\ \\ I \\ I \end{array} \begin{array}{c} O \\ I \end{array} \begin{array}{c} O \end{array}$$ wherein: R is the point at which the Linker is attached. Her3 dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached; ### Bcl-2/Bcl-XL dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached. $\label{eq:hda} \mbox{HDAC dTAG Targeting Ligands:}$ wherein: R is the point at which the Linker is attached. TABLE T-continued # PPAR-gamma dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached. $RXR\ dTAG\ Targeting\ Ligands;$ TABLE T-continued TABLE T-continued wherein: R is the point at which the Linker is attached. TABLE T-continued DHFR dTAG Targeting Ligands: $$\begin{array}{c} O \\ O \\ N \\ N \\ N \end{array}$$ $$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$$ TABLE T-continued $$\bigcap_{N \to \infty} \bigcap_{N \bigcap_{N$$ wherein: R is the point at which the Linker is attached. Heat Shock Protein 90 (HSP90) Inhibitors: [0541] HSP90 inhibitors as used herein include, but are not limited to: 1. The HSP90 inhibitors identified in Vallee, et al., "Tricyclic Series of Heat Shock Protein 90 (HSP90) Inhibitors Part I: Discovery of Tricyclic Imidazo[4,5-C]Pyridines as Potent Inhibitors of the HSP90 Molecular Chaperone (2011) J. Med. Chem. 54: 7206, including YKB (N-[4-(3H-imidazo [4,5-C]Pyridin-2-yl)-9H-Fluoren-9-yl]-succinamide): derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the terminal amide group; 2. The HSP90 inhibitor p54 (modified) (8-[(2,4-dimethylphenyl)sulfanyl]-3|pent-4-yn-1-yl-3H-purin-6-amine): derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the terminal acetylene group; 3. The HSP90 inhibitors (modified) identified in Brough, et al., "4,5-Diarylisoxazole HSP90 Chaperone Inhibitors: Potential Therapeutic Agents for the Treatment of Cancer", J. MED. CHEM. vol: 51, page: 196 (2008), including the compound 2GJ (5-[2,4-dihydroxy-5-(1-methylethyl)phenyl]-n-ethyl-4-[4-(morpholin-4-ylmethyl)phenyl]isoxazole-3-carboxamide) having the structure: derivatized, where a Linker group L or a -(L-DEGRON) group is attached, for example, via the amide group (at the amine or at the alkyl group on the amine); 4. The HSP90 inhibitors (modified) identified in Wright, et al., Structure-Activity Relationships in Purine-Based Inhibitor Binding to HSP90 Isoforms, Chem Biol. 2004 June; 11(6):775-85, including the HSP90 inhibitor PU3 having the structure: derivatized where a Linker group L or -(L-DEGRON) is attached, for example, via the butyl group; and 5. The HSP90 inhibitor geldanamycin ((4E,6Z,8S,9S,10E, 12S,13R,14S,16R)-13-hydroxy-8,14,19-trimethoxy-4,10, 12,16-tetramethyl-3,20,22-trioxo-2-azabicyclo[16.3.1] (derivatized) or any of its derivatives (e.g. 17-alkylamino-17-desmethoxygeldanamycin ("17-AAG") or 17-(2-dimethylaminoethyl)amino-17-desmethoxygeldanamycin ("17-DMAG")) (derivatized, where a Linker group L or a -(L-DEGRON) group is attached, for example, via the amide group). Kinase and Phosphatase Inhibitors: [0542] Kinase inhibitors as used herein include, but are not limited to: 1. Erlotinib Derivative Tyrosine Kinase Inhibitor: [0543] where R is a Linker group L or a -(L-DEGRON) group attached, for example, via the ether group; 2. The kinase inhibitor sunitinib (derivatized): $$F \longrightarrow \bigcap_{\substack{N \\ H}} R$$ derivatized where R is a Linker group L or a -(L-DEGRON) group attached, for example, to the pyrrole moiety; 3. Kinase Inhibitor sorafenib (derivatized): derivatized where R is a Linker group L or a -(L-DEGRON) group attached, for example, to the amide moiety; 4. The kinase inhibitor desatinib (derivatized): derivatized where R is a Linker group L or a -(L-DEGRON) attached, for example, to the pyrimidine; 5. The kinase inhibitor lapatinib (derivatized): derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the terminal methyl of the sulfonyl methyl group; 6. The kinase inhibitor U09-CX-5279 (derivatized): $$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &
& \\ & & \\ &$$ derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the amine (aniline), carboxylic acid or amine alpha to cyclopropyl group, or cyclopropyl group; 7. The kinase inhibitors identified in Millan, et al., Design and Synthesis of Inhaled P38 Inhibitors for the Treatment of Chronic Obstructive Pulmonary Disease, J. MED CHEM. vol:54, page: 7797 (2011), including the kinase inhibitors Y1W and Y1X (Derivatized) having the structures: YIX(1-ethyl-3-(2-{[3-(1-methylethyl)[1,2,4]triazolo[4,3-a] pyridine-6-yl]sulfanyl}benzyl)urea, derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the ipropyl group; $1-(3-tert-butyl-1-phenyl-1H-pyrazol-5-yl)-3-(2-\{[3-(1-methylethyl)[1,2,4]triazolo[4,3-a]pyridin-6-yl]\\ sulfanyl\}benzyl)urea$ derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, preferably via either the i-propyl group or the t-butyl group; 8. The kinase inhibitors identified in Schenkel, et al., Discovery of Potent and Highly Selective Thienopyridine Janus Kinase 2 Inhibitors J. Med. Chem., 2011, 54 (24), pp 8440-8450, including the compounds 6TP and OTP (Derivatized) having the structures: 6ТР 4-amino-2-[4-(tert-butylsulfamoyl)phenyl]-N-methylthieno [3,2-c]pyridine-7-carboxamide Thienopyridine 19 derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the terminal methyl group bound to amide moiety; 2-methyl-N^1^-[3-(pyridin-4-yl)-2,6-naphthyridin-1-yl] propane-1,2-diamine derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the secondary amine or terminal amino group; 10. The kinase inhibitors identified in Lountos, et al., "Structural Characterization of Inhibitor Complexes with Checkpoint Kinase 2 (Chk2), a Drug Target for Cancer Therapy", J. STRUCT. BIOL. vol:176, pag: 292 (2011), including the kinase inhibitor YCF having the structure: $$HO = \begin{pmatrix} H & H & H \\ N & N & N \\ NH_2 & H & H \end{pmatrix}$$ OTP NH2 derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via either of the terminal hydroxyl groups; 11. The kinase inhibitors identified in Lountos, et al., "Structural Characterization of Inhibitor Complexes with Checkpoint Kinase 2 (Chk2), a Drug Target for Cancer Therapy", J. STRUCT. BIOL. vol:176, pag: 292 (2011), including the kinase inhibitors XK9 and NXP (derivatized) having the structures: 4-amino-N-methyl-2-[4-(morpholin-4-yl)phenyl]thieno[3, 2-c]pyridine-7-carboxamide Thienopyridine 8 derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the terminal methyl group bound to the amide moiety; 9. The kinase inhibitors identified in Van Eis, et al., "2,6-Naphthyridines as potent and selective inhibitors of the novel protein kinase C isozymes", Biorg. Med. Chem. Lett. 2011 Dec. 15; 21(24):7367-72, including the kinase inhibitor 07U having the structure: N-{4-[(1E)-N—(N-hydroxycarbamimidoyl)ethanehydrazonoyl]phenyl}-7-nitro-1H-indole-2-carboxamide $$\begin{array}{c} H \\ N \\ NH \\ NH_2 \\ NXP \end{array}$$ # N-{4-[(1E)-N-CARBAMIMIDOYLETHANEHYDRA-ZONOYL|PHENYL}-1H-INDOLE-3-CARBOXAMIDE [0544] derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the terminal hydroxyl group (XK9) or the hydrazone group (NXP); 12. The kinase inhibitor afatinib (derivatized) (N-[4-[(3-chloro-4-fluorophenyl)amino]-7-[[(3S)-tetrahydro-3-furanyl]oxy]-6-quinazolinyl]-4(dimethylamino)-2-butenamide) (Derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the aliphatic amine group); 13. The kinase inhibitor fostamatinib (derivatized) ([6-({5-fluoro-2-[(3,4,5-trimethoxyphenyl)amino]pyrimidin-4-yl}amino)-2,2-dimethyl-3-oxo-2,3-dihydro-4H-pyrido[3,2-b]-1,4-oxazin-4-yl]methyl disodium phosphate hexahydrate) (Derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via a methoxy group); 14. The kinase inhibitor gefitinib (derivatized) (N-(3-chloro-4-fluoro-phenyl)-7-methoxy-6-(3-morpholin-4-ylpropoxy) quinazolin-4-amine): derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via a methoxy or ether group; 15. The kinase inhibitor lenvatinib (derivatized) (4-[3-chloro-4-(cyclopropylcarbamoylamino)phenoxy]-7-methoxy-quinoline-6-carboxamide) (derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the cyclopropyl group); 16. The kinase inhibitor vandetanib (derivatized) (N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine) (derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the methoxy or hydroxyl group); 17. The kinase inhibitor vemurafenib (derivatized) (propane-1-sulfonic acid {3-[5-(4-chlorophenyl)-1H-pyrrolo[2, 3-b]pyridine-3-carbonyl]-2,4-difluoro-phenyl}-amide), derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the sulfonyl propyl group; 18. The kinase inhibitor Gleevec (derivatized): $$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$ derivatized where R as a Linker group L or a -(L-DEGRON) group is attached, for example, via the amide group or via the aniline amine group; 19. The kinase inhibitor pazopanib (derivatized) (VEGFR3 inhibitor): derivatized where R is a Linker group L or a -(L-DEGRON) group attached, for example, to the phenyl moiety or via the aniline amine group; 20. The kinase inhibitor AT-9283 (Derivatized) Aurora Kinase Inhibitor $$\begin{array}{c} O \\ N \\ HN \\ N \end{array}$$ where R is a Linker group L or a -(L-DEGRON) group attached, for example, to the phenyl moiety); 21. The kinase inhibitor TAE684 (derivatized) ALK inhibitor where R is a Linker group L or a -(L-DEGRON) group attached, for example, to the phenyl moiety); 22. The kinase inhibitor nilotinib (derivatized) Abl inhibitor: derivatized where R is a Linker group L or a -(L-DEGRON) group attached, for example, to the phenyl moiety or the aniline amine group; 23. Kinase Inhibitor NVP-BSK805 (derivatized) JAK2 Inhibitor derivatized where R is a Linker group L or a -(L-DEGRON) group attached, for example, to the phenyl moiety or the diazole group; 24. Kinase Inhibitor crizotinib Derivatized Alk Inhibitor derivatized where R is a Linker group L or a -(L-DEGRON) group attached, for example, to the phenyl moiety or the diazole group; 25. Kinase Inhibitor JNJ FMS (derivatized) Inhibitor derivatized where R is a Linker group L or a -(L-DEGRON) group attached, for example, to the phenyl moiety; 26. The kinase inhibitor foretinib (derivatized) Met Inhibitor derivatized where R is a Linker group L or a -(L-DEGRON) group attached, for example, to the phenyl moiety or a hydroxyl or ether group on the quinoline moiety; 27. The allosteric Protein Tyrosine Phosphatase Inhibitor PTP1B (derivatized): derivatized where a Linker group L
or a -(L-DEGRON) group is attached, for example, at R, as indicated; 28. The inhibitor of SHP-2 Domain of Tyrosine Phosphatase (derivatized): derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, at R; 29. The inhibitor (derivatized) of BRAF (BRAFV600E)/ MEK: $$\begin{array}{c} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$ derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, at R; 30. Inhibitor (derivatized) of Tyrosine Kinase ABL derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, at R; 31. The kinase inhibitor OSI-027 (derivatized) mTORC1/2 inhibitor derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, at R; 32. The kinase inhibitor OSI-930 (derivatized) c-Kit/KDR inhibitor derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, at R; and 33. The kinase inhibitor OSI-906 (derivatized) IGF1R/IR inhibitor derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, at R. Wherein, in any of the embodiments described in sections I-XVII, "R" designates a site for attachment of a Linker group L or a -(L-DEGRON) group on the piperazine moiety. #### HDM2/MDM2 Inhibitors: [0545] HDM2/MDM2 inhibitors as used herein include, but are not limited to: 1. The HDM2/MDM2 inhibitors identified in Vassilev, et al., In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, SCIENCE vol:303, pag: 844-848 (2004), and Schneekloth, et al., Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics, Bioorg. Med. Chem. Lett. 18 (2008) 5904-5908, including (or additionally) the compounds nutlin-3, nutlin-2, and nutlin-1 (derivatized) as described below, as well as all derivatives and analogs thereof: (derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, at the methoxy group or as a hydroxyl group); (derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, at the methoxy group or hydroxyl group); (derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the methoxy group or as a hydroxyl group); and 2. Trans-4-Iodo-4'-Boranyl-Chalcone [0546] (derivatized where a Linker group L or a Linker group L or a -(L-DEGRON) group is attached, for example, via a hydroxy group). Compounds Targeting Human BET Bromodomain-Containing Proteins: [0547] In certain embodiments, "dTAG Targeting Ligand" can be ligands binding to Bromo- and Extra-terminal (BET) proteins BRD2, BRD3 and BRD4. Compounds targeting Human BET Bromodomain-containing proteins include, but are not limited to the compounds associated with the targets as described below, where "R" or "Linker" designates a site for Linker group L or a -(L-DEGRON) group attachment, for example: 1. JQ1, Filippakopoulos et al. Selective inhibition of BET bromodomains. Nature (2010): X = Cl, Br, F, H 2. I-BET, Nicodeme et al. Suppression of Inflammation by a Synthetic Histone Mimic. Nature (2010). Chung et al. Discovery and Characterization of Small Molecule Inhibitors of the BET Family Bromodomains. J. Med Chem. (2011): 3. Compounds described in Hewings et al. 3,5-Dimethylisoxazoles Act as Acetyl-lysine Bromodomain Ligands. J. Med. Chem. (2011) 54 6761-6770. 4. I-BET151, Dawson et al. Inhibition of BET Recruitment to Chromatin as an Effective Treatment for MLL-fusion Leukemia. Nature (2011): 5. Carbazole type (US 2015/0256700) 6. Pyrrolopyridone type (US 2015/0148342) 7. Tetrahydroquinoline type (WO 2015/074064) 8. Triazolopyrazine type (WO 2015/0677701 9. Pyridone type (WO 2015/022332) 10. Quinazolinone type (WO 2015/015318) 11. Dihydropyridopyrazinone type (WO 2015/011084) (Where R or L or Linker, in each instance, designates a site for attachment, for example, of a Linker group L or a -(L-DEGRON) group). HDAC Inhibitors: ${\bf [0548]}$ $\,$ HDAC Inhibitors (derivatized) include, but are not limited to: 1. Finnin, M. S. et al. Structures of Histone Deacetylase Homologue Bound to the TSA and SAHA Inhibitors. Nature 40, 188-193 (1999). (Derivatized where "R" designates a site for attachment, for example, of a Linker group L or a -(L-DEGRON) group); and 2. Compounds as defined by formula (I) of PCT WO0222577 ("DEACETYLASE INHIBITORS") (Derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the hydroxyl group); Human Lysine Methyltransferase Inhibitors: [0549] Human Lysine Methyltransferase inhibitors include, but are not limited to: 1. Chang et al. Structural Basis for G9a-Like protein Lysine Methyltransferase Inhibition by BIX-1294. Nat. Struct. Biol. (2009) 16(3) 312. $$\begin{array}{c} O \\ N \\ N \end{array}$$ $$\begin{array}{c} N \\ N \end{array}$$ $$\begin{array}{c} N \\ N \end{array}$$ (Derivatized where "R" designates a site for attachment, for example, of a Linker group L or a -(L-DEGRON) group); 2. Liu, F. et al Discovery of a 2,4-Diamino-7-aminoalkoxyquinazoline as a Potent and Selective Inhibitor of Histone Methyltransferase G9a. J. Med. Chem. (2009) 52(24) 7950. (Derivatized where "R" designates a potential site for attachment, for example, of a Linker group L or a -(L-DEGRON) group); - 3. Azacitidine (derivatized) (4-amino-1-(3-D-ribofuranosyl-1,3,5-triazin-2(1H)-one) (Derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via the hydroxy or amino groups); and - 4. Decitabine (derivatized) (4-amino-1-(2-deoxy-b-Derythro-pentofuranosyl)-1,3,5-triazin-2(1H)-one) (Derivatized where a Linker group L or a -(L-DEGRON) group is attached, for example, via either of the hydroxy groups or at the amino group). Angiogenesis Inhibitors: [0550] Angiogenesis inhibitors include, but are not limited to: - 1. GA-1 (derivatized) and derivatives and analogs thereof, having the structure(s) and binding to Linkers as described in Sakamoto, et al., Development of Protacs to target cancerpromoting proteins for ubiquitination and degradation, Mol Cell Proteomics 2003 December; 2(12):1350-8; - 2. Estradiol (derivatized), which may be bound to a Linker group L or a -(L-DEGRON) group as is generally described in Rodriguez-Gonzalez, et al., Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer, Oncogene (2008) 27, 7201-7211; - 3. Estradiol, testosterone (derivatized) and related derivatives, including but not limited to DHT and derivatives and analogs thereof, having the structure(s) and binding to a Linker group L or a -(L-DEGRON) group as generally described in Sakamoto, et al., Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation, Mol Cell Proteomics 2003 December; 2(12):1350-8: and - 4. Ovalicin, fumagillin (derivatized), and derivatives and analogs thereof, having the structure(s) and binding to a Linker group L or a -(L-DEGRON) group as is generally described in Sakamoto, et al., Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation Proc Natl Acad Sci USA. 2001 Jul. 17; 98(15):8554-9 and U.S. Pat. No. 7,208,157. Immunosuppressive Compounds: [0551] Immunosuppressive compounds include, but are not limited to: 1. AP21998 (derivatized), having the structure(s) and binding to a Linker group L or a -(L-DEGRON) group as is generally described in Schneekloth, et al., Chemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation, J. AM. CHEM. SOC. 2004, 126, 3748-3754; 2. Glucocorticoids (e.g., hydrocortisone, prednisone, and methylprednisolone) (Derivatized where a Linker group L or a -(L-DEGRON) group is to bound, e.g. to any of the hydroxyls) and beclometasone
dipropionate (Derivatized where a Linker group or a -(L-DEGRON) is bound, e.g. to a proprionate); 3. Methotrexate (Derivatized where a Linker group or a -(L-DEGRON) group can be bound, e.g. to either of the terminal hydroxyls); 4. Ciclosporin (Derivatized where a Linker group or a -(L-DEGRON) group can be bound, e.g. at any of the butyl groups); 5. Tacrolimus (FK-506) and rapamycin (Derivatized where a Linker group L or a -(L-DEGRON) group can be bound, e.g. at one of the methoxy groups); and 6. Actinomycins (Derivatized where a Linker group L or a -(L-DEGRON) group can be bound, e.g. at one of the isopropyl groups). Compounds Targeting the Aryl Hydrocarbon Receptor (AHR): [0552] Compounds targeting the aryl hydrocarbon receptor (AHR) include, but are not limited to: 1. Apigenin (Derivatized in a way which binds to a Linker group L or a -(L-DEGRON) group as is generally illustrated in Lee, et al., Targeted Degradation of the Aryl Hydrocarbon Receptor by the PROTAC Approach: A Useful Chemical Genetic Tool, Chem Bio Chem Volume 8, Issue 17, pages 2058-2062, Nov. 23, 2007); and 2. SR1 and LGC006 (derivatized such that a Linker group L or a -(L-DEGRON) is bound), as described in Boitano, et al., Aryl Hydrocarbon Receptor Antagonists Promote the Expansion of Human Hematopoietic Stem Cells, Science 10 Sep. 2010: Vol. 329 no. 5997 pp. 1345-1348. Compounds Targeting RAF Receptor (Kinase): #### [0553] PLX4032 PLX4032 R HN F HN S (Derivatized where "R" designates a site for Linker group L or -(L-DEGRON) group attachment, for example). Compounds Targeting FKBP: #### [0554] (Derivatized where "R" designates a site for a Linker group L or a -(L-DEGRON) group attachment, for example). Compounds Targeting Androgen Receptor (AR) [0555] 1. RU59063 Ligand (derivatized) of Androgen Receptor (Derivatized where "R" designates a site for a Linker group L or a -(L-DEGRON) group attachment, for example). 2. SARM Ligand (derivatized) of Androgen Receptor (Derivatized where "R" designates a site for a Linker group L or a -(L-DEGRON) group attachment, for example). 3. Androgen Receptor Ligand DHT (derivatized) (Derivatized where "R" designates a site for a Linker group L or -(L-DEGRON) group attachment, for example). 4. MDV3100 Ligand (derivatized) #### 5. ARN-509 Ligand (derivatized) # 6. Hexahydrobenzisoxazoles [0556] # 7. Tetramethylcyclobutanes [0557] Compounds Targeting Estrogen Receptor (ER) ICI-182780 1. Estrogen Receptor Ligand [0558] (Derivatized where "R" designates a site for Linker group L or -(L-DEGRON) group attachment). Compounds Targeting Thyroid Hormone Receptor (TR) [0559] 1. Thyroid Hormone Receptor Ligand (derivatized) (Derivatized where "R" designates a site for Linker group L or -(L-DEGRON) group attachment and MOMO indicates a methoxymethoxy group). Compounds Targeting HIV Protease [0560] 1. Inhibitor of HIV Protease (derivatized) (Derivatized where "R" designates a site for Linker group L or -(L-DEGRON) group attachment). See, J. Med. Chem. 2010, 53, 521-538. #### 2. Inhibitor of HIV Protease #### [0561] (Derivatized where "R" designates a potential site for Linker group L or -(L-DEGRON) group attachment). See, J. Med. Chem. 2010, 53, 521-538. Compounds Targeting HIV Integrase [0562] 1. Inhibitor of HIV Integrase (derivatized) (Derivatized where "R" designates a site for Linker group L or -(L-DEGRON) group attachment). See, J. Med. Chem. 2010, 53, 6466. #### 2. Inhibitor of HIV Integrase (derivatized) #### 3. Inhibitor of HIV integrase (derivatized) $$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$ (Derivatized where "R" designates a site for Linker group L or -(L-DEGRON) group attachment). See, J. Med. Chem. 2010, 53, 6466. Compounds Targeting HCV Protease 1. Inhibitors of HCV Protease (Derivatized) [0563] (Derivatized where "R" designates a site for Linker group L or -(L-DEGRON) group attachment). Compounds Targeting Acyl-Protein Thioesterase-1 and -2 (APT1 and APT2) $\,$ 1. Inhibitor of APT1 and APT2 (Derivatized) [0564] [0565] (Derivatized where "R" designates a site for Linker group L or -(L-DEGRON) group attachment). See, Angew. Chem. Int. Ed. 2011, 50, 9838-9842, where L is a Linker group as otherwise described herein and said Degron group is as otherwise described herein such that the Linker binds the Degron group to a dTAG Targeting Ligand group as otherwise described herein. BCL2 dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached. BCL-XL dTAG Targeting Ligands: -continued R is the point at which the Linker is attached. FA Binding Protein dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached. FLAP-5-Lipoxygenase Activating Protein dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached. HDAC6 Zn Finger Domain dTAG Targeting Ligands: $$\bigcap_{R} \bigcap_{N} \bigcap_{N$$ wherein: R is the point at which the Linker is attached. Kringle Domain V 4BVV dTAG Targeting Ligands: R is the point at which the Linker is attached. Lactoylglutathione Lyase dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached. $\label{eq:mpges} mPGES\text{--}1\ dTAG\ Targeting\ Ligands}:$ $$\begin{array}{c} C_{1} \\ \\ R \\ \\ R \end{array}$$ R is the point at which the Linker is attached. MTH1 dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached. PARP14 dTAG Targeting Ligand: $$H_2N$$ H_2N R is the point at which the Linker is attached. PARP15 dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached. PDZ Domain dTAG Targeting Ligands: wherein: R and R' are points at which the Linker(s) are attached. PHIP Domain dTAG Targeting Ligands: R is the point at which the Linker is attached. Phospholipase A2 Domain dTAG Targeting Ligands: $$\begin{array}{c} NH_2 \\ NH_2 \\ NH_2 \\ NH_2 \\ O \\ NH_2 \\ O \\ CO_2H \\ \end{array}$$ and wherein: R is the point at which the Linker is attached. Protein S100-A7 2WOS dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached. Saposin-B dTAG Targeting Ligands: -continued R is the point at which the Linker is attached. Sec7 dTAG Targeting Ligands: R is the point at which the Linker is attached. SH2 Domain of pp60 Src dTAG Targeting Ligands: R is the point at which the Linker is attached. Tank1 dTAG Targeting Ligands: wherein: R is the point at which the Linker is attached. Ubc9 SUMO E2 Ligase SF6D dTAG Targeting Ligands: R is the point at which the Linker is attached. [0566] In certain embodiments, the present application includes compounds containing the dTAG Targeting Ligands shown in Table 1. TABLE 1 | dTAG Targeting Ligands 1-6 | | |----------------------------|--| | Compound | Structure | | TL1 | HO N N N N N N N N N N N N N N N N N N N | | | Ang. Chem. Int'l. Ed. 50, 9378 (2011) | TL2 TL3 TABLE 1-continued | | TABLE 1-continued | |----------|--| | | dTAG Targeting Ligands 1-6 | | Compound | Structure | | TL4 | HO OH WINDH | | TL5 | JACS 115, 9925 (1993) | | TL6 | OH
(S)
N
(S)
N | | TL7 | HO N N N N N N N N N N N N N N N N N N N | [0567] In certain embodiments, the dTAG Targeting Ligand is a compound of Formula TL-I: $$Ra^{4} \xrightarrow{T^{3}} T^{4} \xrightarrow{T^{2}} Ra^{2},$$ $$(Ra^{1})_{mnl}$$ $$(Ra^{3})_{mnl}$$ $$(Ra^{3})_{mnl}$$ $$(Ra^{3})_{mnl}$$ or a pharmaceutically acceptable salt thereof, wherein: $$T^{1} = T^{2}$$ $T^{3} = T^{3} *$ is $T^{4} = T^{3} *$ is $T^{4} = T^{3} *$ is $T^{4} = T^{3} *$ is [0568] A^1 is S or C=C; [0569] A² is NRa⁵ or O; [0570] nn1 is 0, 1, or 2; [0571] each Ra^1 is independently C_1 -
C_3 alkyl, $(CH_2)_{0-3}$ — CN, (CH₂)₀₋₃-halogen, (CH₂)₀₋₃OH, (CH₂)₀₋₃—C₁-C₃ alkoxy, C(O)NRa⁵L, OL, NRa⁵L, or L; [0572] Ra² is H, C_1 - C_6 alkyl, $(CH_2)_{0-3}$ -heterocyclyl, (CH₂)₀₋₃-phenyl, or L, wherein the heterocyclyl comprises one saturated 5- or 6-membered ring and 1-2 heteroatoms selected from N, O, and S and is optionally substituted with C_1 - C_3 alkyl, L, or C(O)L, and wherein the phenyl is optionally substituted with C₁-C₃ alkyl, CN, halogen, OH, C₁-C₃ alkoxy, or L; [0573] nn2 is 0, 1, 2, or 3; [0574] each Ra³ is independently C_1 - C_3 alkyl, $(CH_2)_{0-3}$ — CN, (CH₂)₀₋₃-halogen, L, or C(O)NRa⁵L; [0575] Ra⁴ is C_1 - C_3 alkyl; [0576] Ra⁵ is H or C_1 - C_3 alkyl; and [0577] L is a Linker, provided that the compound of Formula TL-I is substituted with only one L. [0578] In certain embodiments, [0579] In certain embodiments, $$T^1$$ T^2 T^3* is T^4 T^3* In certain embodiments, A¹ is S. In certain embodiments, A¹ is C—C. [0581] [0582] In certain embodiments, A² is NRa⁵. In further embodiments, Ra⁵ is H. In other embodiments, Ra⁵ is C₁-C₃ alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In further embodiments, Ra⁵ is methyl. [0583] In certain embodiments, A^2 is O. [0584] In certain embodiments, nn1 is 0. [0585] In certain embodiments, nn1 is 1. [0586] In certain embodiments, nn1 is 2. [0587] In certain embodiments, at least one Ra¹ is C₁-C₃ alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In further embodiments, at least one Ra1 is methyl. In further embodiments, two Ra¹ are methyl. [0588] In certain embodiments, at least one Ra¹ is CN, (CH_2) —CN, $(CH_2)_2$ —CN, or $(CH_2)_3$ —CN. In further embodiments, at least one Ra¹ is (CH₂)—CN. [0589] In certain embodiments, at least one Ra¹ is halogen (e.g., F, Cl, or Br), (CH₂)-halogen, (CH₂)₂-halogen, or (CH₂)₃-halogen. In further embodiments, at least one Ra¹ is C_1 , (CH_2) —Cl, $(CH_2)_2$ —Cl, or $(CH_2)_3$ —Cl. [0590] In certain embodiments, at least one Ra¹ is OH, (CH₂)—OH, (CH₂)₂—OH, or (CH₂)₃—OH. [0591] In certain embodiments, at least one Ra¹ is C₁-C₃ alkoxy (e.g., methoxy, ethoxy, or propoxy), (CH_2) — C_1 - C_3 alkoxy, $(CH_2)_2$ — C_1 - C_3 alkoxy, or $(CH_2)_3$ — C_1 - C_3 alkoxy. In certain embodiments, at least one Ra¹ is methoxy. [0592] In certain embodiments, one Ra¹ is C(O)NRa⁵L. In further embodiments, Ra⁵ is H. In other embodiments, Ra⁵ is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). [0593] In certain embodiments, one Ra¹ is OL. [0594] In certain embodiments, one Ra¹ is NRa⁵L. In further embodiments, Ra⁵ is H. In other embodiments, Ra⁵ is C₁-C₃ alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In other embodiments, Ra⁵ is methyl. [0595] In certain embodiments, one Ra¹ is L. [0596] In certain embodiments, Ra² is H. [0597] In certain embodiments, Ra² is straight-chain C_1 - C_6 or branched C_3 - C_6 alkyl (e.g., methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, or hexyl). In further embodiments, Ra² is methyl, ethyl, or t-butyl. [0598] In certain embodiments, Ra² is heterocyclyl, (CH₂)-heterocyclyl, (CH₂)₂-heterocyclyl, or (CH₂)₃-heterocyclyl. In further embodiments, Ra² is (CH₂)₃-heterocyclyl. In further embodiments, the heterocyclyl is selected from pyrrolidinyl, pyrazolidinyl, imidazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, piperidinyl, piperazinyl, hexahydropyrimidinyl, morpholinyl, and thiomorpholinyl. In further embodiments, the heterocyclyl is piperazinyl. [0599] In certain embodiments, the heterocyclyl is substituted with C₁-C₃ alkyl (e.g., methyl, ethyl, propyl, or i-pro- [0600] In certain embodiments, the heterocyclyl is substituted with C(O)L. [0601] In certain embodiments, the heterocyclyl is substituted with L. [0602] In certain embodiments, Ra^2 is phenyl, (CH₂)-phenyl, (CH₂)-phenyl, or (CH₂)₃-phenyl. In further embodiments, Ra^2 is phenyl. **[0603]** In certain embodiments, the phenyl is substituted with C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In certain embodiments, the phenyl is substituted with CN. In certain embodiments, the phenyl is substituted with halogen (e.g., F, Cl, or Br). In certain embodiments, the phenyl is substituted with OH. In certain embodiments, the phenyl is substituted with C_1 - C_3 alkoxy (e.g., methoxy, ethoxy, or propoxy). [0604] In certain embodiments, the phenyl is substituted with L. [0605] In certain embodiments, Ra² is L. [0606] In certain embodiments, nn2 is 0. [0607] In certain embodiments, nn2 is 1. [0608] In certain embodiments, nn2 is 2. [0609] In certain embodiments, nn2 is 3. **[0610]** In certain embodiments, at least one Ra^3 is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In further embodiments, at least one Ra^3 is methyl. **[0611]** In certain embodiments, at least one Ra³ is CN, (CH_2) —CN, (CH_2) —CN, (CH_2) —CN, or $(CH_2)_3$ —CN. In further embodiments, at least one Ra³ is CN. **[0612]** In certain embodiments, at least one Ra³ is halogen (e.g., F, Cl, or Br), (CH_2) -halogen, $(CH_2)_2$ -halogen, or $(CH_2)_3$ -halogen. In further embodiments, at least one Ra³ is Cl, (CH_2) —C₁, $(CH_2)_2$ —Cl, or $(CH_2)_3$ —Cl. In further embodiments, at least one Ra³ is Cl. [0613] In certain embodiments, one Ra³ is L. **[0614]** In certain embodiments, one Ra³ is C(O)NRa⁵L. In further embodiments, Ra⁵ is H. In other embodiments, Ra⁵ is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). [0615] In certain embodiments, Ra⁴ is C₁-C₃ alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In further embodiments, Ra⁴ is methyl. [0616] In certain embodiments, Ra⁵ is H. **[0617]** In certain embodiments, Ra^5 is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In further embodiments, Ra^5 is methyl. [0618] In certain embodiments, $$T^{1}$$ T^{3} T^{3} is T^{4} T^{3} * and A1 is S. [0619] In certain embodiments, $$T^1$$ T^2 T^3 T^3 is T^3 T^3 T^3 T^3 [0620] In certain embodiments, $$T^{1}$$ T^{2} T^{3} * is T^{4} T^{3} *, and A^1 is C = C. **[0621]** In certain embodiments, A^2 is NH, and Ra^2 is $(CH_2)_{0-3}$ -heterocyclyl. In further embodiments, Ra^2 is $(CH_2)_3$ -heterocyclyl. In further embodiments, the heterocyclyl is piperazinyl. In further embodiments, the heterocyclyl is substituted with C_1 - C_3 alkyl, L, or C(O)L. **[0622]** In certain embodiments, A^2 is NH, and Ra^2 is $(CH_2)_{0-3}$ -phenyl. In further embodiments, Ra^2 is phenyl. In further embodiments, the phenyl is substituted with OH or I. [0623] In certain embodiments, A² is NH, and Ra² is L. **[0624]** In certain embodiments, A^2 is NH, and Ra^2 is H or C_1 - C_6 alkyl. In further embodiments, Ra^2 is C_1 - C_4 alkyl. **[0625]** In certain embodiments, A^2 is O, and Ra^2 is H or C_1 - C_6 alkyl. In further embodiments, Ra^2 is C_1 - C_4 alkyl. [0626] In certain embodiments, a dTAG Targeting Ligand is a compound of Formula TL-I1: or a pharmaceutically acceptable salt thereof, wherein A², Ra¹, Ra², Ra³, Ra⁴, Ra⁵, nn1, and nn2 are each as defined above in Formula TL-I. [0627] Each of A^2 , Ra^1 , Ra^2 , Ra^3 , Ra^4 , Ra^5 , nn1, and nn2 may be selected from the moieties described above in Formula TL-I. Each of the moieties defined for one of A^2 , Ra^1 , Ra^2 , Ra^3 , Ra^4 , Ra^5 , nn1, and nn2, can be combined with any of the moieties defined for the others of A^2 , Ra^1 , Ra^2 , Ra^3 , Ra^4 , Ra^5 , nn1, and nn2, as described above in Formula TL-I. [0628] In certain embodiments, a dTAG Targeting Ligand is a compound of Formula TL-I1a-TL-I1d: $$Ra^4$$ N Ra^7 , Ra^7 , Ra^7 , $$Ra^{4} \xrightarrow{N} N \qquad (TL-I1d)$$ $$Ra^{4} \xrightarrow{N} N \qquad A^{2} \qquad Ra^{8},$$ $$(Ra^{6})_{m1} \qquad NRa^{5}L$$ or a pharmaceutically acceptable salt thereof, wherein: **[0629]** each Ra⁶ is independently C_1 - C_3 alkyl, $(CH_2)_{0-3}$ —CN, $(CH_2)_{0-3}$ -halogen, $(CH_2)_{0-3}$ -OH, or $(CH_2)_{0-3}$ - C_1 - C_3 alkoxy; **[0630]** Ra 7 is $(CH_2)_{0-3}$ -heterocyclyl, $(CH_2)_{0-3}$ -phenyl, or L, wherein the heterocyclyl comprises one saturated 5- or 6-membered ring and 1-2 heteroatoms selected from N, O, and S and is substituted with L or C(O)L, and wherein the phenyl is substituted with L; **[0631]** R⁸ is H, C₁-C₆ alkyl, $(CH_2)_{0-3}$ -heterocyclyl, or $(CH_2)_{0-3}$ -phenyl, wherein the heterocyclyl comprises one saturated 5- or 6-membered ring and 1-2 heteroatoms selected from N, O, and S and is optionally substituted with C₁-C₃ alkyl, and wherein the phenyl is optionally substituted with C₁-C₃ alkyl, CN, halogen, OH, or C₁-C₃ alkoxy; [0632] Ra¹⁰ is C_1 - C_3 alkyl, $(CH_2)_{0-3}$ —CN, or $(CH_2)_{0-3}$ -halogen; and [0633] A^2 , Ra^4 , Ra^5 , nn1, and L are each as defined above in Formula TL-I. [0634] In certain embodiments, nn1 is 0. [0635] In certain embodiments, nn1 is 1. [0636] In certain embodiments, nn1 is 2. **[0637]** In certain embodiments, at least one Ra^6 is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In further embodiments, at least one Ra^6 is methyl. In further embodiments, two Ra^6 are methyl. **[0638]** In certain embodiments, at least one Ra⁶ is CN, (CH_2) —CN, $(CH_2)_2$ —CN, or $(CH_2)_3$ —CN. In further embodiments, at least one Ra⁶ is (CH_2) —CN. [0639] In certain embodiments, at least one Ra⁶ is halogen (e.g., F, Cl, or Br), (CH₂)-halogen, (CH₂)₂-halogen, or (CH₂)₃-halogen. In further embodiments, at least one Ra⁶ is Cl, (CH₂)—Cl, (CH₂)₂—Cl, or (CH₂)₃—Cl. **[0640]** In certain embodiments, at least one Ra^6 is OH, (CH_2) —OH, $(CH_2)_2$ —OH, or $(CH_2)_3$ —OH. **[0641]** In certain embodiments, at least one Ra⁶ is C_1 - C_3 alkoxy (e.g., methoxy, ethoxy, or propoxy), (CH_2) — C_1 - C_3 alkoxy, $(CH_2)_2$ — C_1 - C_3 alkoxy, or $(CH_2)_3$ — C_1 - C_3 alkoxy. In certain embodiments, at least one
Ra⁶ is methoxy. **[0642]** In certain embodiments, Ra^7 is heterocyclyl, (CH_2) -heterocyclyl, $(CH_2)_2$ -heterocyclyl, or $(CH_2)_3$ -heterocyclyl. In further embodiments, Ra^7 is $(CH_2)_3$ -heterocyclyl. In further embodiments, the heterocyclyl is selected from pyrrolidinyl, pyrazolidinyl, imidazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, piperidinyl, piperazinyl, hexahydropyrimidinyl, morpholinyl, and thiomorpholinyl. In further embodiments, the heterocyclyl is piperazinyl. [0643] In certain embodiments, the heterocyclyl is substituted with C(O)L. [0644] In certain embodiments, the heterocyclyl is substituted with L. **[0645]** In certain embodiments, Ra^7 is phenyl, (CH₂)-phenyl, (CH₂)-phenyl, or (CH₂)₃-phenyl. In further embodiments, Ra^7 is phenyl. [0646] In certain embodiments, Ra⁷ is L. [0647] In certain embodiments, Ra⁸ is H. **[0648]** In certain embodiments, Ra^8 is straight-chain C_1 - C_6 or branched C_3 - C_6 alkyl (e.g., methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, or hexyl). In further embodiments, Ra^8 is methyl, ethyl, or t-butyl. **[0649]** In certain embodiments, Ra^8 is heterocyclyl, (CH_2) -heterocyclyl, $(CH_2)_2$ -heterocyclyl, or $(CH_2)_3$ -heterocyclyl. In further embodiments, Ra^8 is $(CH_2)_3$ -heterocyclyl. In further embodiments, the heterocyclyl is selected from pyrrolidinyl, pyrazolidinyl, imidazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, piperidinyl, piperazinyl, hexahydropyrimidinyl, morpholinyl, and thiomorpholinyl. In further embodiments, the heterocyclyl is piperazinyl. **[0650]** In certain embodiments, the heterocyclyl is substituted with C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). [0651] In certain embodiments, Ra^8 is phenyl, (CH₂)-phenyl, (CH₂)-phenyl, or (CH₂)₃-phenyl. In further embodiments, Ra^8 is phenyl. **[0652]** In certain embodiments, the phenyl is substituted with C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In certain embodiments, the phenyl is substituted with CN. In certain embodiments, the phenyl is substituted with halogen (e.g., F, Cl, or Br). In certain embodiments, the phenyl is substituted with OH. In certain embodiments, the phenyl is substituted with C_1 - C_3 alkoxy (e.g., methoxy, ethoxy, or propoxy). **[0653]** In certain embodiments, Ra^{10} is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). **[0654]** In certain embodiments, Ra^{10} is CN, (CH_2) —CN, $(CH_2)_2$ —CN, or $(CH_2)_3$ —CN. [0655] In certain embodiments, Ra¹⁰ is halogen (e.g., F, Cl, or Br), (CH₂)-halogen, (CH₂)₂-halogen, or (CH₂)₃-halogen. In further embodiments, Ra¹⁰ is Cl, (CH₂)—Cl, (CH₂)₂—Cl, or (CH₂)₃—Cl. In further embodiments, Ra¹⁰ is C₁. [0656] Each of A², Ra⁴, Ra⁵, and nn1 may be selected from the moieties described above in Formula TL-I. Each of the moieties defined for one of A², Ra⁴, Ra⁵, Ra⁶, Ra⁷, Ra⁸, Ra¹⁰, and nn1, can be combined with any of the moieties defined for the others of A², Ra⁴, Ra⁵, Ra⁶, Ra⁷, Ra⁸, Ra¹⁰, and nn1, as described above and in Formula TL-I. [0657] In certain embodiments, a dTAG Targeting Ligand is a compound of Formula TL-I2: or a pharmaceutically acceptable salt thereof, wherein A^2 , Ra^1 , Ra^2 , Ra^3 , Ra^4 , Ra^5 , nn1, and nn2 are each as defined above in Formula TL-I. [0658] Each of A², Ra¹, Ra², Ra³, Ra⁴, Ra⁵, nn1, and nn2 may be selected from the moieties described above in Formula TL-I. Each of the moieties defined for one of A², Ra¹, Ra², Ra³, Ra⁴, Ra⁵, nn1, and nn2, can be combined with any of the moieties defined for the others of A², Ra¹, Ra², Ra³, Ra⁴, Ra⁵, nn1, and nn2, as described above in Formula TL-I. [0659] In certain embodiments, a dTAG Targeting Ligand is a compound of Formula TL-I2a-TL-I2c: or a pharmaceutically acceptable salt thereof, wherein A^2 , Ra^4 , Ra^5 , nn1, and L are each as defined above in Formula TL-I, and Ra^6 , Ra^7 , Ra^8 , and Ra^{10} are each as defined above in Formula TL-I1a-TL-I1d. [0660] Each of A^2 , Ra^4 , Ra^5 , and nn1 may be selected from the moieties described above in Formula TL-I, and each of Ra^6 , Ra^7 , Ra^8 , and Ra^{10} may be selected from the moieties described above in Formula TL-I1a-TL-I1d. Each of the moieties defined for one of A^2 , Ra^4 , Ra^5 , Ra^6 , Ra^7 , Ra^8 , Ra^{10} , and nn1, can be combined with any of the moieties defined for the others of A^2 , Ra^4 , Ra^5 , Ra^6 , Ra^7 , Ra^8 , Ra^{10} , and nn1, as described above in Formula TL-I and TL-I1a-TL-I1d. [0661] In certain embodiments, a dTAG Targeting Ligand is a compound of Formula TL-I3: $$Ra^4$$ $(Ra^1)_{mn1}$ $(Ra^3)_{mn2}$ $(Ra^3)_{mn2}$ or a pharmaceutically acceptable salt thereof. [0662] A², Ra¹, Ra², Ra³, Ra⁴, Ra⁵, nn1, and nn2 are each as defined above in Formula TL-I. Each of A², Ra¹, Ra², Ra³, Ra⁴, Ra⁵, nn1, and nn2 may be selected from the moieties described above in Formula TL-I. Each of the moieties defined for one of A², Ra¹, Ra², Ra³, Ra⁴, Ra⁵, nn1, and nn2, can be combined with any of the moieties defined for the others of A², Ra¹, Rae, Ra¹, Ra⁴, Ra⁵, nn1, and nn2, as described above in Formula TL-I. [0663] In certain embodiments, a dTAG Targeting Ligand is a compound of Formula TL-I3a-TL-I3c: $$Ra^4$$ $$(Ra^6)_{mn1}$$ $$Ra^{10}$$ $$(TL-13a)$$ $$Ra^4$$ A^2 Ra^8 , or $(Ra^6)_{mn1}$ NRa^5L -continued (TL-I3c) $$Ra^4$$ Ra^8 , Ra^9 Ra^{10} or a pharmaceutically acceptable salt thereof, wherein: [0664] Ra⁹ is C(O)NRa⁵L, OL, NRa⁵L, or L; [0665] A^2 , Ra^4 , Ra^5 , nn1, and L are each as defined above in Formula TL-I; and [0666] ${ m Ra}^6, { m Ra}^7, { m Ra}^8,$ and ${ m Ra}^{10}$ are each as defined above in Formula TL-I1a-TL-I1d. **[0667]** In certain embodiments, Ra 9 is C(O)NRa 5 L. In further embodiments, Ra 5 is H. In other embodiments, Ra 5 is C $_1$ -C $_3$ alkyl (e.g., methyl, ethyl, propyl, or i-propyl). [0668] In certain embodiments, Ra⁹ is OL. **[0669]** In certain embodiments, Ra^9 is NRa^5L . In further embodiments, Ra^5 is H. In other embodiments, Ra^5 is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In other embodiments, Ra_5 is methyl. [0670] In certain embodiments, Ra⁹ is L. [0671] Each of A², Ra⁴, Ra⁵, and nn1 may be selected from the moieties described above in Formula TL-I, and each of Ra⁶, Ra⁷, Ra⁸, and Ra¹⁰ may be selected from the moieties described above in Formula TL-I1a-TL-I1d. Each of the moieties defined for one of A², Ra⁴, Ra⁵, Ra⁶, Ra⁷, Ra⁸, Ra⁹, Ra¹⁰, and nn1, can be combined with any of the moieties defined for the others of A², Ra⁴, Ra⁵, Ra⁶, Ra⁷, Ra⁸, Ra⁸, Ra¹⁰, and nn1, as described above and in Formula TL-I and TL-I1a-TL-I1d. [0672] In certain embodiments, a dTAG Targeting Ligand is a compound of Formula TL-VI: or a pharmaceutically acceptable salt thereof, wherein: [0673] Rf1 is C(O)NRf2L, OL, NRf2L, or L; [0674] Rf² is independently H or C₁-C₃ alkyl; and [0675] L is a Linker. **[0676]** In certain embodiments, Rf^l is $C(O)NRf^2L$. In further embodiments, Rf^2 is H. In other embodiments, Rf^2 is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). [0677] In certain embodiments, Rf¹ is OL. **[0678]** In certain embodiments, Rf^1 is NRe^4L . In further embodiments, Rf^2 is H. In other embodiments, Rf^2 is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In other embodiments, Rf^2 is methyl. [0679] In certain embodiments, Rf¹ is L. [0680] In certain embodiments, a dTAG Targeting Ligand is a compound of Formula TL-VII: $$(Rg^2)_{mn10} \xrightarrow{\parallel} Rg^3$$ $$(Rg^2)_{mn11},$$ $$(Rg^2)_{mn11},$$ $$Rg^1$$ or a pharmaceutically acceptable salt thereof, wherein: [0681] T⁷ is CH₂ or CH₂CH₂; [0682] Rg^1 is $C(O)Rg^5$ or $(CH_2)_{1-3}Rg^6$; [0683] nn10 is 0, 1, 2, or 3; [0684] nn11 is 0, 1, 2, or 3; [0685] each Rg^2 is independently C_1 - C_3 alkyl, C_1 - C_3 alkoxy, CN, or halogen; [0686] Rg³ is C(O)NRg⁴L, OL, NRg⁴L, L, O—(CH₂)₁-3—C(O)NRg⁴L, or NHC(O)—(CH₂)₁-3-C(O)NRg⁴L; [0687] Rg^4 is H or C_1 - C_3 alkyl; [0688] Rg⁵ is C_1 - C_6 alkyl; [0689] Rg 6 is phenyl optionally substituted with C $_1$ -C $_3$ alkyl, C $_1$ -C $_3$ alkoxy, CN, or halogen; and [0690] L is a Linker. [0691] In certain embodiments, T^7 is CH_2 . [0692] In certain embodiments, T^7 is CH_2CH_2 . [0693] In certain embodiments, Rg¹ is C(O)Rg⁵. [0694] In certain embodiments, Rg^1 is (CH_2) - Rg^6 , (CH_2) ₂- Rg^6 , or (CH_2) ₃- Rg^6 . **[0695]** In certain embodiments, Rg^5 is straight-chain C_1 - C_6 or branched C_3 - C_6 alkyl (e.g., methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, or hexyl). [0696] In certain embodiments, Rg⁶ is unsubstituted phenyl. **[0697]** In certain embodiments, Rg^6 is phenyl substituted with one, two, three, or more substituents independently selected from C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl), C_1 - C_3 alkoxy (e.g., methoxy, ethoxy, or propoxy), CN, and halogen (e.g., F, Cl, or Br). [0698] In certain embodiments, nn10 is 0. [0699] In certain embodiments, nn10 is 1. [0700] In certain embodiments, nn10 is 2. [0701] In certain embodiments, nn10 is 3. [0702] In certain embodiments, nn11 is 0. [0703] In certain embodiments, nn11 is 1. [0704] In certain embodiments, nn11 is 2. [0705] In certain embodiments, nn11 is 3. **[0706]** In certain embodiments, at least one Rg^2 is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In further embodiments, at least one Rg^2 is methyl. [0707] In certain embodiments, at least one Rg^2 is C_1 - C_3 alkoxy (e.g., methoxy, ethoxy, or propoxy). In further embodiments, at least one Rg^2 is methoxy. [0708] In certain embodiments, at least one Rg² is CN. [0709] In certain embodiments, at least one Rg² is halogen (e.g., F, Cl, or Br). **[0710]** In certain embodiments, Rg^3 is $C(O)NRg^4L$.
In further embodiments, Rg^4 is H. In other embodiments, Rg^4 is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). [0711] In certain embodiments, Rg³ is OL. **[0712]** In certain embodiments, Rg^3 is NRg^4L . In further embodiments, Rg^4 is H. In other embodiments, Rg^4 is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). In other embodiments, Rg^4 is methyl. [0713] In certain embodiments, Rg³ is L. **[0714]** In certain embodiments, Rg^3 is O— (CH_2) —C(O) NRg^4L , O— $(CH_2)_2$ — $C(O)NRg^4L$, or O— $(CH_2)_3$ —C(O) NRg^4L . In further embodiments, Rg^3 is O— (CH_2) —C(O) NRg^4L . In further embodiments, Rg^4 is H. In other embodiments, Rg^4 is C_1 - C_3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl). [0715] In certain embodiments, Rg^3 is NHC(O)—(CH₂)—C(O)NRg⁴L, NHC(O)—(CH₂)₂—C(O)NRg⁴L, or NHC (O)—(CH₂)₃—C(O)NRg⁴L. In further embodiments, Rg^3 is NHC(O)—(CH₂)—C(O)NRg⁴L, NHC(O)—(CH₂)₂—C(O) NRg⁴L. In further embodiments, Rg^3 is NHC(O)—(CH₂)₂—C(O)NRg⁴L. In further embodiments, Rg^4 is H. In other embodiments, Rg^4 is C₁-C₃ alkyl (e.g., methyl, ethyl, propyl, or i-propyl). [0716] In certain embodiments, the dTAG Targeting Ligand is selected from the structures of FIG. 32, wherein R is the point at which the Linker is attached. [0717] In certain embodiments, the dTAG Targeting Ligands or targets are chosen based on existence (known dTAG binding moieties) and ability to develop potent and selective ligands with functional positions that can accommodate a Linker. Some embodiments relate to dTAG Targeting Ligands with less selectivity, which may benefit from degradation coupled with proteomics as a measure of compound selectivity or target ID. [0718] Some embodiments of the present application relate to degradation or loss of 30% to 100% of the CAR. Certain embodiments relate to the loss of 50-100% of the CAR. Other embodiments relate to the loss of 75-95% of the CAR. [0719] Non-limiting examples of heterobifunctional compounds for use in the present invention include: [0720] FIG. 33 provides specific compounds for use in the present invention. [0721] FIG. 34, provides specific compounds for use in the present invention, wherein X in the above structures is a halogen chosen from F, Cl, Br, and I. [0722] FIG. 35, provides specific compounds for use in the present invention. [0723] FIG. 36, provides specific compounds for use in the present invention, wherein: [0724] R^{AR1} is selected from: and [0725] R^{AR2} is selected from: [0726] Additional compounds for use in the present invention include the structures of FIG. 37. [0727] Some of the foregoing heterobifunctional compounds include one or more asymmetric centers, and thus can exist in various isomeric forms, e.g., stereoisomers and/or diastereomers. Thus, compounds and pharmaceutical compositions thereof may be in the form of an individual enantiomer, diastereomer, or geometric isomer, or may be in the form of a mixture of stereoisomers. In certain embodiments, the compounds of the application are enantiopure compounds. In certain other embodiments, mixtures of stereoisomers or diastereomers are provided. [0728] Furthermore, certain heterobifunctional compounds, as described herein may have one or more double bonds that can exist as either the Z or E isomer, unless otherwise indicated. The application additionally encompasses the compounds as individual isomers substantially free of other isomers and alternatively, as mixtures of various isomers, e.g., racemic mixtures of stereoisomers. In addition to the above-mentioned compounds per se, this application also encompasses pharmaceutically acceptable derivatives of these heterobifunctional compounds and compositions comprising one or more compounds of the application and one or more pharmaceutically acceptable excipients or additives. [0729] Heterobifunctional compounds of the application may be prepared by crystallization of the compound under different conditions and may exist as one or a combination of polymorphs of the compound forming part of this application. For example, different polymorphs may be identified and/or prepared using different solvents, or different mixtures of solvents for recrystallization; by performing crystallizations at different temperatures; or by using various modes of cooling, ranging from very fast to very slow cooling during crystallizations. Polymorphs may also be obtained by heating or melting the compound followed by gradual or fast cooling. The presence of polymorphs may be determined by solid probe NMR spectroscopy, IR spectroscopy, differential scanning calorimetry, powder X-ray diffractogram and/or other techniques. Thus, the present application encompasses heterobifunctional compounds, their derivatives, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts their pharmaceutically acceptable solvates and pharmaceutically acceptable compositions containing them. # General Synthesis of the Heterobifunctional Compounds [0730] The heterobifunctional compounds described herein can be prepared by methods known by those skilled in the art. In one non-limiting example the disclosed heterobifunctional compounds can be made by the following schemes. [0731] As shown in Scheme 1 heterobifunctional compounds for use in the present invention can be prepared by chemically combining a Degron and a Linker followed by subsequent addition of a dTAG Targeting Ligand. Similarly, in Scheme 2 heterobifunctional compounds for use in the present invention are prepared by chemically combing a dTAG Targeting Ligand and Linker first, followed by subsequent addition of a Degron. As illustrated in the above and following schemes, heterobifunctional compounds for use in the present invention can readily be synthesized by one skilled in the art in a variety of methods and chemical reactions. [0732] Scheme 3: In Step 1, a nucleophilic Degron displaces a leaving group on the Linker to make a Degron Linker fragment. In Step 2, the protecting group is removed by methods known in the art to free a nucleophilic site on the linker. In Step 3, the nucleophilic Degron Linker fragment displaces a leaving group on the dTAG Targeting Ligand to form a compound for use in the present invention. In an alternative embodiment Step 1 and/or Step 2 is accomplished by a coupling reaction instead of a nucleophilic attack. [0733] Scheme 4: In Step 1, a nucleophilic dTAG Targeting Ligand displaces a leaving group on the Linker to make a dTAG Targeting Ligand Linker fragment. In Step 2, the protecting group is removed by methods known in the art to free a nucleophilic site on the linker. In Step 3, the nucleophilic dTAG Targeting Ligand Linker fragment displaces a leaving group on the Degron to form a compound for use in the present invention. In an alternative embodiment Step 1 and/or Step 2 is accomplished by a coupling reaction instead of a nucleophilic attack. Scheme 5 $$(R_3')_n$$ R_5 R_4 R_4 $(R_3')_n$ R_5 R $$O = \underbrace{\begin{pmatrix} (R_3')_n \\ R_5 \end{pmatrix}}_{R_2} \underbrace{\begin{pmatrix} R_3' \\ R_5 \end{pmatrix}}_{R_4} \underbrace{\begin{pmatrix} (R_1)_m \\ R_1)_m \end{pmatrix}}_{R_5} \underbrace{\begin{pmatrix} R_1 \\ R_2 \end{pmatrix}}_{R_4} \underbrace{\begin{pmatrix} R_1 \\ R_2 \end{pmatrix}}_{R_5} \underbrace{\begin{pmatrix}$$ [0734] Scheme 5 and Scheme 6: In Step 1, a nucleophilic Degron displaces a leaving group on the Linker to make a Degron Linker fragment. In Step 2, the protecting group is removed by methods known in the art to free a nucleophilic site on the Linker. In Step 3, the nucleophilic Degron Linker fragment displaces a leaving group on the dTAG Targeting Ligand to form a compound of Formula I or Formula II. In an alternative embodiment Step 1 and/or Step 2 is accomplished by a coupling reaction instead of a nucleophilic attack. Targeting Ligand Linker 7 [0735] a) reacting tert-Butyl (2-aminoethyl)carbamate or its analog (e.g., n=1-20) (1) or its analog (e.g., n=1-20) with chloroacetyl chloride under suitable conditions to generate tert-butyl (2-(2-chloroacetamido)ethyl)carbamate or its analog (e.g., n=1-20) (2); [0736] b) reacting tert-butyl (2-(2-chloroacetamido)ethyl) carbamate or its analog (2) with dimethyl 3-hydroxyphthalate under suitable conditions to provide dimethyl 3-(2-((2-((tert-butoxycarbonyl)amino)ethyl)amino)-2-oxoethoxy) phthalate or its analog (3); [0737] c) reacting dimethyl 3-(2-((2-((tert-butoxycarbonyl)amino)ethyl)amino)-2-oxoethoxy)phthalate or its analog (3) with strong base, followed by 3-aminopiperidine-2, 6-dione hydrochloride to generate tert-butyl (2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy) acetamido)ethyl)carbamate or its analog (4); [0738] d) deprotecting compound (4) to provide diaminoethyl-acetyl-O-thalidomide trifluoroacetate or its analog (5) [0739] e) reacting compound (5) with an acid derivative of a dTAG Targeting Ligand (compound (6)) under suitable conditions to yield a bifunctional compound (7). [0740] In certain embodiments, the methods described above are carried out in solution phase. In certain other embodiments, the methods described above are carried out on a solid phase. In certain embodiments, the synthetic method is amenable to high-throughput techniques or to techniques commonly used in combinatorial chemistry. Representative Synthesis of the Heterobifunctional Compounds [0741] Unless otherwise indicated, starting materials are either commercially available or readily accessible through laboratory synthesis by anyone reasonably familiar with the art. Described generally below, are procedures and general guidance for the synthesis of compounds as described generally and in subclasses and species herein. Example 1': Synthesis of IMiD Derivatives and Degrons [0742] General Procedure I: IMiD Condensation 2-(2,6-dioxopiperidin-3-yl)-4-hydroxyisoindoline-1, 3-dione (D-1) [0743]
In a 20 mL glass vial, a mixture of 3-hydroxyphthalic anhydride (500 mg, 3.05 mmol, 1 equiv), potassium acetate (927 mg, 9.44 mmol, 3.1 equiv) and 3-aminopiperidine-2,6-dione hydrochloride (552 mg, 3.35 mmol, 1.1 equiv) in acetic acid (10.2 mL, 0.3 M) was heated to 90° C. overnight. The black reaction mixture was cooled to room temperature and diluted to 20 mL with water, and subsequently cooled on ice for 30 min. The resulting slurry was transferred to a 50 mL Falcon tube, which was centrifuged at 3500 rpm for 5 min. The supernatant was discarded and the black solid was transferred to a 250 mL RBF with methanol and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (CH $_2$ Cl $_2$: MeOH (9:1)) to afford the title compound as a white solid (619 mg, 74%). 1 H NMR (400 MHz, DMSO-d $_6$) δ 11.07 (s, 1H), 7.65 (dd, J=8.4, 6.8 Hz, 1H), 7.31 (d, J=6.8 Hz, 1H), 7.24 (d, J=8.4 Hz, 1H), 5.06 (dd, J=12.8, 5.4 Hz, 1H), 2.94-2.82 (m, 1H), 2.64-2.43 (m, 2H), 2.08-1.97 (m, 1H); MS (ESI) calcd for C $_{13}$ H $_{11}$ N $_2$ O $_5$ [M+H] $^+$ 275.07, found 275.26 ### 2-(2,6-dioxopiperidin-3-yl)-4-nitroisoindoline-1,3-dione (D-10) [0744] General procedure I was followed using 3-nitrophthalic anhydride (300 mg, 1.55 mmol, 1 equiv), potassium acetate (473 mg, 4.82 mmol, 3.1 equiv) and 3-aminopiperidine-2,6-dione hydrochloride (281 mg, 1.71 mmol, 1.1 equiv) to afford the title compound as a light yellow solid (280 mg, 59%) following purification by flash column chromatography on silica gel (CH₂Cl₂:MeOH (9:1)). $^1\mathrm{H}$ NMR (500 MHz, DMSO-d₆) δ 11.17 (s, 1H), 8.35 (d, J=8.1 Hz, 1H), 8.24 (d, J=7.5 Hz, 1H), 8.14-8.10 (m, 1H), 5.20 (dd, J=12.9, 5.5 Hz, 1H), 2.93-2.84 (m, 1H), 2.64-2.45 (m, 2H), 2.11-2.04 (m, 1H); MS (ESI) calcd for $\mathrm{C_{13}H_{10}N_3O_6}$ [M+H]+ 304.06, found 304.19. # 2-(2,6-dioxopiperidin-3-yl)-5-nitroisoindoline-1,3-dione (D-2) [0745] General procedure I was followed using 4-nitrophthalic anhydride (300 mg, 1.55 mmol), potassium acetate (473 mg, 4.82 mmol) and 3-aminopiperidine-2,6-dione hydrochloride (281 mg, 1.71 mmol) to afford the title compound as a white solid (409 mg, 87%) following purification by flash column chromatography on silica gel (CH₂Cl₂:MeOH (30:1)). $^1\mathrm{H}$ NMR (500 MHz, DMSO-d₆) δ 11.18 (s, 1H), 8.68 (dd, J=8.1, 1.9 Hz, 1H), 8.56 (d, J=1.9 Hz, 1H), 8.19 (d, J=8.1 Hz, 1H), 5.24 (dd, J=12.9, 5.4 Hz, 1H), 2.90 (ddd, J=17.2, 13.9, 5.5 Hz, 1H), 2.69-2.48 (m, 2H), 2.14-2.05 (m, 1H); MS (ESI) calcd for $\mathrm{C_{13}H_{10}N_3O_6}$ [M+H] $^+$ 304.06, found 304.19. # 2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (D-6) [0746] General procedure I was followed using phthalic anhydride (155 mg, 1.05 mmol), potassium acetate (318 mg, 3.24 mmol) and 3-aminopiperidine-2,6-dione hydrochloride (189 mg, 1.15 mmol) to afford the title compound as a white solid (235 mg, 87%) following purification by flash column chromatography on silica gel (CH₂Cl₂:MeOH (15:1)). $^1\mathrm{H}$ NMR (500 MHz, DMSO-d₆) δ 11.13 (s, 1H), 8.00-7.76 (m, 4H), 5.16 (dd, J=12.8, 5.4 Hz, 1H), 2.89 (ddd, J=16.8, 13.7, 5.4 Hz, 1H), 2.65-2.42 (m, 2H), 2.12-1.99 (m, 1H); MS (ESI) calcd for C₁₃H₁₁N204 [M+H]+ 259.07, found 259.23. ### 2-(2,5-dioxopyrrolidin-3-yl)isoindoline-1,3-dione (D-7) [0747] General procedure I was followed using phthalic anhydride (90 mg, 0.608 mmol), potassium acetate (185 mg, 1.88 mmol) and 3-aminopyrrolidine-2,5-dione hydrochloride (101 mg, 0.668 mmol) to afford the title compound as a white solid (95 mg, 64%) following purification by flash column chromatography on silica gel (CH $_2$ Cl $_2$:MeOH (14: 1)). MS (ESI) calcd for C $_{12}$ H $_9$ N $_2$ O $_4$ [M+H]⁺ 245.06, found 245.26. #### 2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindoline-5carboxylic acid (D-13) [0748] General procedure I was followed using 1,2,4-benzenetricarboxylic anhydride (200 mg, 1.04 mmol), potassium acetate (317 mg, 3.23 mmol) and 3-aminopiperidine-2,6-dione hydrochloride (188 mg, 1.15 mmol) to afford the title compound as a white solid (178 mg, 57%) following purification by flash column chromatography on silica gel (CH₂Cl₂:MeOH (9:1)). MS (ESI) calcd for $\rm C_{14}H_{11}N_2O_6$ [M+H]* 303.06, found 303.24. ### 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (D-14) [0749] General procedure I was followed using 3-fluorophthalic anhydride (200 mg, 1.20 mmol), potassium acetate (366 mg, 3.73 mmol) and 3-aminopiperidine-2,6-dione hydrochloride (218 mg, 1.32 mmol) to afford the title compound as a white solid (288 mg, 86%) following purification by flash column chromatography on silica gel (CH₂Cl₂:MeOH (50:1)). $^1\mathrm{H}$ NMR (500 MHz, DMSO-d₆) δ 11.15 (s, 1H), 7.96 (ddd, J=8.3, 7.3, 4.5 Hz, 1H), 7.82-7.71 (m, 2H), 5.17 (dd, J=13.0, 5.4 Hz, 1H), 2.90 (ddd, J=17.1, 13.9, 5.4 Hz, 1H), 2.65-2.47 (m, 2H), 2.10-2.04 (m, 1H), MS (ESI) calcd for $\mathrm{C_{13}H_{10}FN_2O_4}$ [M+H]+ 277.06, found 277. 25. ### 2-(2,6-dioxopiperidin-3-yl)-4-methylisoindoline-1,3dione (D-19) [0750] General procedure I was followed using 3-methylphthalic anhydride (150 mg, 0.925 mmol), potassium acetate (281 mg, 2.87 mmol) and 3-aminopiperidine-2,6-dione hydrochloride (167 mg, 1.02 mmol) to afford the title compound as a white solid (168 mg, 67%) following purification by flash column chromatography on silica gel (CH₂Cl₂:MeOH (15:1)). MS (ESI) calcd for $C_{14}H_{13}N_2O_4$ [M+H] $^+$ 273.09, found 273.24. ### 2-(2,6-dioxopiperidin-3-yl)-5-fluoroisoindoline-1,3dione (D-24) [0751] General procedure I was followed using 4-fluorophthalic anhydride (200 mg, 1.20 mmol), potassium acetate (366 mg, 3.73 mmol) and 3-aminopiperidine-2,6-dione hydrochloride (218 mg, 1.32 mmol) to afford the title compound as a white solid (254 mg, 76%) following purification by flash column chromatography on silica gel (CH₂Cl₂:MeOH (15:1)). MS (ESI) calcd for $\rm C_{13}H_{10}FN_2O_4$ [M+H] $^+$ 277.06, found 277.24. ### 2-(2,6-dioxopiperidin-4-yl)isoindoline-1,3-dione (D-43) [0752] General procedure I was followed using phthalic anhydride (60 mg, 0.311 mmol), potassium acetate (95 mg, 0.963 mmol) and 4-aminopiperidine-2,6-dione hydrochloride (56 mg, 0.342 mmol) to afford the title compound as a white solid (40 mg, 43%) following purification by flash column chromatography on silica gel (CH₂Cl₂:MeOH (9:1)). MS (ESI) calcd for $\rm C_{13}H_{11}N_2O_4$ [M+H]⁺ 259.07, found 259.18. General Procedure II: Reduction of Aromatic Nitro Groups 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (D-4) [0753] A solution of 2-(2,6-dioxopiperidin-3-yl)-4-nitroisoindoline-1,3-dione (173 mg, 0.854 mmol), Pd(OAc)₂ (12.8 mg, 0.0854 mmol, 10 mol %) and potassium fluoride (66 mg, 1.71 mmol, 2 equiv) in THF:water (8:1) (5.7 mL, 0.1 M) was stirred at room temperature. Triethylsilane (365) μL, 3.41 mmol, 4 equiv) was added slowly, and the resulting black solution was stirred at room temperature for 1 hour. The reaction mixture was filtered through a pad of celite, which was washed excessively with ethyl acetate. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (CH₂Cl₂:MeOH (7:1)) to afford the title compound as a yellow powder (72 mg, 46%). ¹H NMR (500 MHz, DMSOd₆) δ 11.08 (s, 1H), 7.47 (dd, J=8.5, 7.0 Hz, 1H), 7.06-6.95 (m, 1H), 6.59-6.44 (m, 1H), 5.04 (dd, J=12.7, 5.4 Hz, 1H), 2.93-2.82 (m, 1H), 2.64-2.45 (m, 2H), 2.05-1.98 (m, 1H); MS (ESI) calcd for C₁₃H₁₁N₃O₄ [M+H]⁺ 274.08, found 274.23. # 2-(2,6-dioxopiperidin-3-yl)-5-nitroisoindoline-1,3-dione (D-8) [0754] General procedure II was followed using 2-(2,6-dioxopiperidin-3-yl)-5-nitroisoindoline-1,3-dione (100 mg, 0.330 mmol), Pd(OAc)₂ (7.4 mg, 0.033 mmol), potassium fluoride (38 mg, 0.660 mmol) and triethylsilane (211 μ L, 1.32 mmol to afford the title compound as a yellow solid (33 mg, 37%) following purification by flash column chromatography on silica gel (CH₂Cl₂:MeOH (9:1)). 1 H NMR (500 MHz, DMSO-d₆) δ 11.05 (s, 1H), 7.52 (d, J=8.2 Hz, 1H), 6.94 (d, J=2.0 Hz, 1H), 6.83 (dd, J=8.2, 2.0 Hz, 1H), 6.55 (s, 2H), 5.01 (dd, J=12.8, 5.4 Hz, 1H), 2.86 (ddd, J=16.9, 13.9, 5.5 Hz, 1H), 2.68-2.43 (m, 2H), 2.03-1.93 (m, 1H); MS (ESI) calcd for $\rm C_{13}H_{12}N_3O_4$ [M+H]* 274.08, found 274.59. ### 4-amino-2-(1-benzyl-2,6-dioxopiperidin-3-yl)isoin-doline-1,3-dione (D-12) [0755] General procedure II was followed using 2-(1-benzyl-2,6-dioxopiperidin-3-yl)-4-nitroisoindoline-1,3-dione (48 mg, 0.122 mmol), Pd(OAc)₂ (2.7 mg, 0.0122 mmol), potassium fluoride (14 mg, 0.244 mmol) and triethylsilane (78 μ L, 0.488 mmol to afford the title compound as a yellow solid (7 mg, 16%) following purification by flash column chromatography on silica gel (0 to 100% EtOAc in hexanes). MS (ESI) calcd for $\rm C_{20}H_{18}N_3O_4~[M+H]^+$ 364.13, found 364.34. # 3-(5-amino-2-methyl-4-oxoquinazolin-3(411)-yl) piperidine-2,6-dione (D-17) [0756] General procedure II was followed using 3-(2-methyl-5-nitro-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione (21 mg, 0.0664 mmol), Pd(OAc) $_2$ (1.5 mg, 0.0066 mmol), potassium fluoride (7.7 mg, 0.133 mmol) and triethylsilane (42 μ L, 0.266 mmol to afford the title compound as a white solid (7 mg, 37%) following purification by preparative HPLC. MS (ESI) calcd for $C_{14}H_{15}N_4O_3$ [M+H] $^+$ 287.11, found 287.30. #### 3-(7-amino-1-oxoisoindolin-2-yl)piperidine-2,6dione (D-41) [0757] General procedure II was followed using 3-(7-nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione (11 mg, 0.038 mmol), Pd(OAc)₂ (0.9 mg, 0.0038 mmol), potassium fluoride (4.4 mg, 0.076 mmol) and triethylsilane (24 μ L, 0.152 mmol to afford the title compound as a yellow solid (2 mg, 21%) following purification by flash column chromatography on silica gel (0 to 10% MeOH in CH₂Cl₂). MS (ESI) calcd for C₁₃H₁₄N₃O₃ [M+H]⁺ 260.10, found 260.52. General Procedure III: Acylation of Anilines N-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl) acetamide (D-5) [0758] In a 4 mL glass
vial, a mixture of 5-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (30 mg, 0.110 mmol, 1 equiv) and acetyl chloride (26 μL , 0.220 mmol, 2 equiv) in THF (1.8 mL, 0.1 M) was heated to reflux overnight. The reaction mixture was filtered, and the filter cake was washed with Et $_2$ O to give the title compound as a white solid (27 mg, 47%), that was used without further purification. 1H NMR (500 MHz, DMSO-d $_6$) δ 11.11 (s, 1H), 10.63 (s, 1H), 8.24 (d, J=1.5 Hz, 1H), 7.91-7.83 (m, 2H), 5.11 (dd, J=12.8, 5.4 Hz, 1H), 2.88 (ddd, J=17.0, 13.8, 5.4 Hz, 1H), 2.63-2.46 (m, 2H), 2.13 (s, 3H), 2.09-2.00 (m, 1H); MS (ESI) calcd for $C_{15}H_{14}N_3O_5$ [M+H] $^+$ 316.09, found 316.23. # N-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)acetamide (D-3) [0759] General procedure III was followed using 4-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (50 mg, 0.183 mmol) and acetyl chloride (26 μL , 0.366 mmol) to afford the title compound as a white solid (10 mg, 17%). 1H NMR (500 MHz, DMSO-d₆) δ 11.14 (s, 1H), 9.73 (s, 1H), 8.44 (d, J=8.4 Hz, 1H), 7.83 (dd, J=8.4, 7.3 Hz, 1H), 7.62 (d, J=7.2 Hz, 1H), 5.14 (dd, J=12.9, 5.4 Hz, 1H), 2.90 (ddd, J=17.1, 13.9, 5.4 Hz, 1H), 2.66-2.45 (m, 2H), 2.19 (s, 3H), 2.14-2.00 (m, 1H); MS (ESI) calcd for $C_{15}H_{14}N_3O_5$ [M+H]+ 316.09, found 316.27. ### 2-chloro-N-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetamide (D-32) [0760] General procedure III was followed using 5-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (10 mg, 0.0366 mmol) and chloroacetyl chloride (6 μ L, 0.0732 mmol) to afford the title compound as a white solid (7.1 mg, 55%). MS (ESI) calcd for $C_{15}H_{13}ClN_3O_5$ [M+H]⁺ 350.05, found 350.23. ## 2-chloro-N-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoin-dolin-4-yl)acetamide (D-34) [0761] General procedure III was followed using 3-(4-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione (20 mg, 0.0771 mmol) and chloroacetyl chloride (12 μL, 0.154 mmol) to afford the title compound as a white solid (14.9 mg, 56%). 1 H NMR (500 MHz, DMSO-d₆) δ 11.02 (s, 1H), 10.20 (s, 1H), 7.81 (dd, J=7.7, 1.3 Hz, 1H), 7.65-7.47 (m, 2H), 5.16 (dd, J=13.3, 5.1 Hz, 1H), 4.45-4.34 (m, 2H), 4.33 (s, 2H), 3.00-2.85 (m, 1H), 2.68-2.56 (m, 1H), 2.41-2.28 (m, 1H), 2.09-1.97 (m, 1H); MS (ESI) calcd for $C_{15}H_{15}ClN_3O_4$ [M+H] $^+$ 336.07, found 336.31. # N-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl) acrylamide (D-35) [0762] General procedure III was followed using 3-(4-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione (20 mg, 0.0771 mmol) and acryloyl chloride (13 μL , 0.154 mmol) to afford the title compound as a white solid (18 mg, 76%). $^1 H$ NMR (500 MHz, DMSO-d₆) δ 15.77 (s, 1H), 14.81 (s, 1H), 12.65 (dd, J=7.4, 1.6 Hz, 1H), 12.37-12.18 (m, 2H), 11.28 (dd, J=17.0, 10.2 Hz, 1H), 11.06 (dd, J=17.0, 1.9 Hz, 1H), 10.57 (dd, J=10.2, 1.9 Hz, 1H), 9.91 (dd, J=13.3, 5.1 Hz, 1H), 9.24-9.05 (m, 2H), 7.67 (ddd, J=17.2, 13.7, 5.5 Hz, 1H), 7.36 (dt, J=17.3, 3.8 Hz, 1H), 7.20-7.03 (m, 1H), 6.83-6.72 (m, 1H); MS (ESI) calcd for $C_{16}H_{16}N_3O_4$ [M+H] $^+$ 314.11, found 314.24. # N-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acrylamide (D-36) [0763] General procedure III was followed using 5-amino-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (10 mg, 0.0366 mmol) and acryloyl chloride (6 μ L, 0.0732 mmol) to afford the title compound as a white solid (8.8 mg, 73%). 1 H NMR (500 MHz, DMSO-d₆) δ 11.12 (s, 1H), 10.83 (s, 1H), 8.33 (d, J=1.8 Hz, 1H), 7.99 (dd, J=8.2, 1.9 Hz, 1H), 7.90 (d, J=8.2 Hz, 1H), 6.48 (dd, J=17.0, 10.1 Hz, 1H), 6.36 (dd, J=17.0, 1.9 Hz, 1H), 5.88 (dd, J=10.0, 1.9 Hz, 1H), 5.13 (dd, J=12.8, 5.5 Hz, 1H), 2.95-2.84 (m, 1H), 2.67-2.46 (m, 2H), 2.09-2.01 (m, 1H); MS (ESI) calcd for $\rm C_{16}H_{14}N_3O_5$ [M+H]⁺ 328.09, found 328.23. # N-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl) acetamide (D-37) [0764] General procedure III was followed using 3-(4-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione (20 mg, 0.0771 mmol) and acetyl chloride (11 μ L, 0.154 mmol) to afford the title compound as a white solid (17 mg, 71%). MS (ESI) calcd for $C_{15}H_{16}N_3O_4$ [M+H]⁺ 302.11, found 301.99. # N-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl) cyclopropanecarboxamide (D-38) [0765] General procedure III was followed using 3-(4-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione (20 mg, 0.0771 mmol) and cyclopropanecarbonyl chloride (14 μL , 0.154 mmol) to afford the title compound as a white solid (19 mg, 75%). $^1 H$ NMR (500 MHz, DMSO-d₆) δ 11.01 (s, 1H), 10.06 (s, 1H), 7.84 (dd, J=7.2, 1.9 Hz, 1H), 7.66-7.38 (m, 2H), 5.14 (dd, J=13.3, 5.1 Hz, 1H), 4.52-4.30 (m, 2H), 2.92 (ddd, J=17.3, 13.6, 5.4 Hz, 1H), 2.64-2.54 (m, 1H), 2.45-2.27 (m, 1H), 2.08-1.95 (m, 1H), 1.93-1.83 (m, 1H), 0.90-0.75 (m, 4H); MS (ESI) calcd for $C_{17}H_{18}N_3O_4$ [M+H] 4 328.13, found 328.00. General Procedure IV: Quinazolinone Condensation #### 3-(2-methyl-4-oxoquinazolin-3(4H)-yl)piperidine-2, 6-dione (D-9) [0766] In a 20 mL glass vial, anthranilic acid (100 mg, 0.729 mmol, 1 equiv), acetic acid (42 μL, 0.729 mmol, 1 equiv) and P(OPh)₃ (479 µL, 1.82 mmol, 2.5 equiv) in pyridine (1.0 uL, 0.7 M) was heated to 90° C. After 4 hours, the reaction mixture was cooled to room temperature and 3-aminopiperidine-2,6-dione hydrochloride (144 mg, 0.875 mmol, 1.2 equiv) was added. The reaction mixture was reheated to 90° C. for 1.5 h, whereupon it was stirred at room temperature overnight. The reaction mixture was taken up in EtOAc (15 mL) and water (15 mL). The organic layer was washed with brine (2×25 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (0-5% MeOH in CH₂Cl₂) to afford the title compound as a white solid (79 mg, 40%). ¹H NMR (500 MHz, DMSO-d₆) δ 11.03 (s, 1H), 8.03 (dd, J=7.9, 1.5 Hz, 1H), 7.82 (ddd, J=8.5, 7.1, 1.6 Hz, 1H), 7.62 (dd, J=8.3, 1.1 Hz, 1H), 7.50 (ddd, J=8.1, 7.1, 1.1 Hz, 1H), 5.27 (dd, J=11.5, 5.7 Hz, 1H), 2.92-2.78 (m, 1H), 2.73-2.56 (m, 5H), 2.26-2.06 (m, 1H); MS (ESI) calcd for $C_{14}H_{14}N_3O_3$ [M+H]⁺ 272.10, found 272.33. ### 3-(2-methyl-4-oxoquinazolin-3(4H)-yl)pyrrolidine-2,5-dione (D-11) [0767] General procedure IV was followed using anthranilic acid (200 mg, 1.46 mmol), acetic acid (84 μ L, 1.46 mmol), P(OPh)₃ (959 μ L, 3.65 mmol) and 3-aminopyrrolidine-2,5-dione hydrochloride (263 mg, 1.75 mmol) to afford the title compound as a white solid (25 mg, 7%) following purification by flash column chromatography on silica gel (CH₂Cl₂:MeOH (15:1)). MS (ESI) calcd for C₁₃H₁₂N₃O₃ [M+H]⁺ 258.09, found 258.22. # 3-(5-fluoro-2-methyl-4-oxoquinazolin-3(4H)-yl) piperidine-2,6-dione (D-66) [0768] General procedure IV was followed using 6-fluoro anthranilic acid (100 mg, 0.645 mmol), acetic acid (37 μL , 0.644 mmol), P(OPh) $_3$ (424 μL , 1.61 mmol) and 3-aminopiperidine-2,6-dione hydrochloride (127 mg, 0.774 mmol) to afford the title compound as a white solid (70 mg, 38%) following purification by flash column chromatography on silica gel (0-10% MeOH in CH $_2$ Cl $_2$). 1H NMR (500 MHz, DMSO-d $_6$) δ 11.03 (s, 1H), 7.84-7.76 (m, 1H), 7.44 (dd, J=8.2, 1.0 Hz, 1H), 7.25 (ddd, J=11.1, 8.2, 1.0 Hz, 1H), 5.24 (dd, J=11.3, 5.7 Hz, 1H), 2.90-2.75 (m, 1H), 2.62 (s, 3H), 2.61-2.56 (m, 2H), 2.20-2.12 (m, 1H); MS (ESI) calcd for $C_{14}H_{13}FN_3O_3$ [M+H] $^+$ 290.09, found 290.27. ### 3-(2-methyl-5-nitro-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione (D-67) [0769] General procedure IV was followed using 6-nitroanthranilic acid (100 mg, 0.549 mmol), acetic acid (31 μ L, 0.549 mmol), P(OPh)₃ (361 μ L, 1.37 mmol) and 3-aminopiperidine-2,6-dione hydrochloride (108 mg, 0.659 mmol) to afford the title compound as a white solid (29 mg, 17%) following purification by flash column chromatography on silica gel (0-10% MeOH in CH₂Cl₂). MS (ESI) calcd for C₁₄H₁₃N₄O₅ [M+H]⁺ 317.09, found 317.58. General Procedure V: Amide Coupling N-benzyl-2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindoline-5carboxamide (D-15) [0770] In a 4 mL glass vial, 2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindoline-5-carboxylic acid (10 mg, 0.033 mmol, 1 equiv), HATU (13 mg, 0.033 mmol, 1 equiv), DIPEA (17 μL , 0.099 mmol, 3 equiv) and benzyl amine (4 μL , 0.036 mmol, 1.1 equiv) in DMF (331 μL , 0.1 M) was stirred at room temperature overnight. The reaction mixture was diluted with MeOH to 4 mL, filtered and then purified by preparative HPLC to afford the title compound as a white solid (6 mg, 46%). MS (ESI) calcd for $C_{21}H_{18}N_3O_5$ [M+H]+ 392.12, found 392.33. General Procedure VI: Nucleophilic Aromatic Substitution 4-(benzylamino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (D-16) [0771] In a 4 mL glass vial, 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (10 mg, 0.036 mmol, 1 equiv), benzyl amine (4.4 μL, 0.040 mmol, 1.1 equiv) and DIPEA $(13 \mu L, 0.072 \text{ mmol}, 2 \text{ equiv})$ in NMP $(362 \mu L, 0.1 \text{ M})$ was heated to 90° C. overnight. The reaction mixture was cooled to room temperature and taken up in EtOAc (15 mL). The organic layer was washed with NaHCO₃(aq) (15 mL), water (15 mL) and brine (3×15 mL), and subsequently dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (0-100% EtOAc in hexanes) to afford the title compound as a yellow film (5 mg, 38%). ¹H NMR (500 MHz, Chloroform-d) δ 8.10 (s, 1H), 7.44 (dd, J=8.5, 7.1 Hz, 1H), 7.40-7.25 (m, 5H), 7.12 (d, J=7.1 Hz, 1H), 6.84 (d, J=8.5 Hz, 1H), 6.71 (t, J=5.9 Hz, 1H), 4.93 (dd, J=12.3, 5.3 Hz, 1H), 4.51 (d, J=5.9 Hz, 2H), 2.93-2.66 (m, 3H), 2.21-2.07 (m, 1H); MS (ESI) calcd for C₂₀H₁₈N₃O₄ [M+H]⁺ 364.13, found 364.31. ### 2-(2,6-dioxopiperidin-3-yl)-4-(isopropylamino)isoin-doline-1,3-dione (D-18) [0772] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (30 mg, 0.109 mmol), isopropylamine (10 $\mu L,~0.119$ mmol)
and DIPEA (21 $\mu L,~0.119$ mmol) to afford the title compound as a yellow film (11 mg, 32%) following purification by flash column chromatography on silica gel (0-100% EtOAc in hexanes). MS (ESI) calcd for $\rm C_{16}H_{18}N_3O_4~[M+H]^+~316.13$, found 316.65. [0773] 4-(diethylamino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (D-21) General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (30 mg, 0.109 mmol), diethylamine (11 μ L, 0.130 mmol) and DIPEA (32 μ L, 0.181 mmol) to afford the title compound as a yellow film (28 mg, 97%) following purification by flash column chromatography on silica gel (0-100% EtOAc in hexanes). MS (ESI) calcd for $C_{17}H_{20}N_3O_4$ [M+H]⁺ 330.14, found 330.62. #### 5-(benzylamino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (D-25) [0774] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-5-fluoroisoindoline-1,3-dione (30 mg, 0.109 mmol), benzyl amine (13 μL , 0.119 mmol) and DIPEA (38 μL , 0.217 mmol) to afford the title compound as a yellow film (6 mg, 15%) following purification by flash column chromatography on silica gel (0-100% EtOAc in hexanes). MS (ESI) calcd for $\rm C_{20}H_{18}N_3O_4~[M+H]^+$ 364.13, found 364.34. ### 2-(2,6-dioxopiperidin-3-yl)-5-(isopropylamino)isoin-doline-1,3-dione (D-26) [0775] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-5-fluoroisoindoline-1,3-dione (30 mg, 0.109 mmol), isopropyl amine (11 $\mu L,~0.130$ mmol) and DIPEA (38 $\mu L,~0.217$ mmol) to afford the title compound as a yellow film (6 mg, 17%) following purification by flash column chromatography on silica gel (0-100% EtOAc in hexanes). 1H NMR (500 MHz, Chloroform-d) δ 8.00 (s, 1H), 7.53 (d, J=8.3 Hz, 1H), 6.87 (d, J=2.1 Hz, 1H), 6.64 (dd, J=8.3, 2.2 Hz, 1H), 4.86 (dd, J=12.3, 5.4 Hz, 1H), 4.30 (d, J=7.8 Hz, 1H), 2.86-2.58 (m, 3H), 2.12-2.01 (m, 1H), 1.26-1.15 (m, 6H); MS (ESI) calcd for $C_{16}H_{18}N_3O_4$ [M+H]+ 316.13, found 316.30. #### 5-(diethylamino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (D-27) [0776] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-5-fluoroisoindoline-1,3-dione (30 mg, 0.109 mmol), diethylamine (14 μL , 0.130 mmol) and DIPEA (38 μL , 0.217 mmol) to afford the title compound as a yellow film (6 mg, 31%) following purification by flash column chromatography on silica gel (0-100% EtOAc in hexanes). $^1 H$ NMR (500 MHz, Chloroform-d) δ 8.08 (s, 1H), 7.57 (d, J=8.6 Hz, 1H), 6.98 (d, J=2.4 Hz, 1H), 6.72 (dd, J=8.7, 2.4 Hz, 1H), 4.90-4.80 (m, 1H), 3.40 (q, J=7.1 Hz, 4H), 2.89-2.61 (m, 3H), 2.11-2.01 (m, 1H), 1.16 (t, J=7.1 Hz, 6H); MS (ESI) calcd for $C_{17}H_{20}N_3O_4$ [M+H]* 330.14, found 330.69. # 2-(2,6-dioxopiperidin-3-yl)-5-((furan-2-ylmethyl) amino)isoindoline-1,3-dione (D-28) [0777] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-5-fluoroisoindoline-1,3-dione (50 mg, 0.181 mmol), furfurylamine (18 $\mu L,~0.199$ mmol) and DIPEA (63 $\mu L,~0.362$ mmol) to afford the title compound as a yellow film (8 mg, 13%) following purification by flash column chromatography on silica gel (0-5% MeOH in CH₂Cl₂). MS (ESI) calcd for C₁₈H₁₆N₃O₄ [M+H]⁺ 354.11, found 354.25. tert-butyl (2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl)carbamate (D-29) [0778] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (50 mg, 0.181 mmol), 1-Boc-ethylendiamine (32 mg, 0.199 mmol) and DIPEA (63 μ L, 0.362 mmol) to afford the title com- pound as a yellow film (31 mg, 41%) following purification by flash column chromatography on silica gel (0-10% MeOH in CH₂Cl₂). 1 H NMR (500 MHz, CDCl₃) δ 8.08 (bs, 1H), 7.50 (dd, J=8.5, 7.1 Hz, 1H), 7.12 (d, J=7.1 Hz, 1H), 6.98 (d, J=8.5 Hz, 1H), 6.39 (t, J=6.1 Hz, 1H), 4.96-4.87 (m, 1H), 4.83 (bs, 1H), 3.50-3.41 (m, 2H), 3.41-3.35 (m, 2H), 2.92-2.66 (m, 3H), 2.16-2.09 (m, 1H), 1.45 (s, 9H); MS (ESI) calcd for $C_{20}H_{25}N_4O_6$ [M+H] $^+$ 417.18, found 417.58. tert-butyl (2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)amino)ethyl)carbamate (D-30) [0779] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-5-fluoroisoindoline-1,3-dione (50 mg, 0.181 mmol), 1-Boc-ethylendiamine (32 mg, 0.199 mmol) and DIPEA (63 μ L, 0.362 mmol) to afford the title compound as a yellow film (22 mg, 29%) following purification by flash column chromatography on silica gel (0-10% MeOH in CH₂Cl₂). MS (ESI) calcd for C₂₀H₂₅N₄O₆ [M+H]⁺ 417.18, found 417.32. ### 2-(2,6-dioxopiperidin-3-yl)-4-((furan-2-ylmethyl) amino)isoindoline-1,3-dione (D-31) [0780] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (19.5 mg, 0.0706 mmol), furfurylamine (7 μL , 0.078 mmol) and DIPEA (25 μL , 0.141 mmol) to afford the title compound as a yellow film (19 mg, 76%) following purification by flash column chromatography on silica gel (0-2.5% MeOH in CH₂Cl₂). MS (ESI) calcd for $C_{18}H_{16}N_3O_4$ [M+H]* 354.11, found 354.27. # 3-(5-(benzylamino)-2-methyl-4-oxoquinazolin-3 (4H)-yl)piperidine-2,6-dione (D-39) [0781] With the exception that the reaction mixture was heated to 170° C. instead of 90° C., general procedure VI was followed using 3-(5-fluoro-2-methyl-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione (30 mg, 0.104 mmol), benzylamine (13 μL, 0.114 mmol) and DIPEA (36 μL, 0.207 mmol) to afford the title compound as a white solid (15 mg, 38%) following purification by flash column chromatography on silica gel (0-10% MeOH in CH₂Cl₂). ¹H NMR (500 MHz, Chloroform-d) δ 8.73 (t, J=5.7 Hz, 1H), 8.39 (s, 1H), 7.41 (t, J=8.1 Hz, 1H), 7.39-7.19 (m, 5H), 6.77 (d, J=7.7 Hz, 1H), 6.41 (d, J=8.3 Hz, 1H), 4.67 (dd, J=11.5, 5.9 Hz, 1H), 4.43 (d, J=5.7 Hz, 2H), 3.03-2.79 (m, 2H), 2.72-2.61 (m, 1H), 2.60 (s, 3H), 2.15-2.07 (m, 1H); MS (ESI) calcd for $C_{21}H_{21}N_4O_3$ [M+H]+ 377.16, found 377.02. # 3-(5-(isopropylamino)-2-methyl-4-oxoquinazolin-3 (411)-yl)piperidine-2,6-dione (D-40) [0782] With the exception that the reaction mixture was heated to 170° C. instead of 90° C., general procedure VI was followed using 3-(5-fluoro-2-methyl-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione (30 mg, 0.104 mmol), isopropylamine (10 μL , 0.114 mmol) and DIPEA (36 μL , 0.207 mmol) to afford the title compound as a white solid (5 mg, 15%) following purification by flash column chromatography on silica gel (0-10% MeOH in CH₂Cl₂). 1 H NMR (500 MHz, Chloroform-d) δ 8.31 (s, 1H), 8.21 (d, J=7.2 Hz, 1H), 7.50-7.37 (m, 1H), 6.70 (dd, J=7.9, 0.9 Hz, 1H), 6.47 (d, J=8.4 Hz, 1H), 4.65 (dd, J=11.4, 5.9 Hz, 1H), 3.69-3.56 (m, 1H), 3.03-2.80 (m, 3H), 2.58 (s, 3H), 2.14-2.03 (m, 1H), 1.27 (d, J=2.7 Hz, 3H), 1.26 (d, J=2.7 Hz, 3H); MS (ESI) calcd for $C_{17}H_{21}N_4O_3$ [M+H]⁺ 329.16, found 329.97. # 2-(2,6-dioxopiperidin-3-yl)-4-((2-hydroxyethyl) amino)isoindoline-1,3-dione (D-68) [0783] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (30 mg, 0.109 mmol), aminoethanol (7 μL , 0.119 mmol) and DIPEA (38 μL , 0.217 mmol) to afford the title compound as a yellow film (6 mg, 18%) following purification by flash column chromatography on silica gel (0-5% MeOH in CH₂Cl₂). $^1 H$ NMR (500 MHz, Chloroform-d) δ 8.26 (s, 1H), 7.50 (dd, J=8.5, 7.1 Hz, 1H), 7.12 (d, J=7.0 Hz, 1H), 6.95 (d, J=8.5 Hz, 1H), 6.50 (t, J=5.9 Hz, 1H), 4.97-4.85 (m, 1H), 3.94-3.79 (m, 2H), 3.47 (q, J=5.5 Hz, 2H), 3.03-2.68 (m, 3H), 2.19-2.04 (m, 1H); MS (ESI) calcd for $C_{15}H_{16}N_3O_5$ [M+H] $^+$ 318.11, found 318.22. ### 4-(cyclopropylamino)-2-(2,6-dioxopiperidin-3-yl) isoindoline-1,3-dione (D47) [0784] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (20 mg, 0.0724 mmol), cyclopropylamine (6 μL , 0.080 mmol) and DIPEA (25 μL , 0.141 mmol) to afford the title compound as a yellow film (16 mg, 70%) following purification by flash column chromatography on silica gel (0-5% MeOH in CH₂Cl₂). $^1 H$ NMR (500 MHz, Chloroform-d) δ 8.05 (s, 1H), 7.53 (dd, J=8.5, 7.1 Hz, 1H), 7.33-7.21 (m, 1H), 7.15 (dd, J=7.1, 0.7 Hz, 1H), 6.44 (bs, 1H), 4.95-4.85 (m, 1H), 2.98-2.66 (m, 3H), 2.62-2.50 (m, 1H), 2.19-2.06 (m, 1H), 0.92-0.78 (m, 2H), 0.67-0.56 (m, 2H); MS (ESI) calcd for $C_{16}H_{16}N_3O_4$ [M+H]+ 314.11, found 314.54. # 4-((2-(1H-indol-3-yl)ethyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (D-48) [0785] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (20 mg, 0.0724 mmol), tryptamine (13 mg, 0.080 mmol) and DIPEA (25 μL , 0.144 mmol) to afford the title compound as a yellow film (10 mg, 33%) following purification by flash column chromatography on silica gel (0-10% MeOH in CH₂Cl₂). $^1 H$ NMR (500 MHz, Chloroform-d) δ 8.14 (s, 1H), 8.11 (s, 1H), 7.65-7.55 (m, 1H), 7.45 (dd, J=8.6, 7.1 Hz, 1H), 7.37 (dt, J=8.2, 0.9 Hz, 1H), 7.21 (ddd, J=8.2, 7.0, 1.2 Hz, 1H), 7.16-7.04 (m, 3H), 6.88 (d, J=8.5 Hz, 1H), 6.34 (t, J=5.6 Hz, 1H), 4.89 (dd, J=12.4, 5.4 Hz, 1H), 3.59 (td, J=6.8, 5.5 Hz, 2H), 3.19-3.03 (m, 2H), 2.93-2.64 (m, 3H), 2.14-2.04 (m, 1H); MS (ESI) calcd for $C_{23}H_{21}N_4O_4\left[M+H\right]^+417.16$, found 417.26. ### 2-(2,6-dioxopiperidin-3-yl)-4-((4-hydroxyphenethyl) amino)isoindoline-1,3-dione (D-49) [0786] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (20 mg, 0.0724 mmol), tyramine (11 mg, 0.080 mmol) and DIPEA (25 μL , 0.144 mmol) to afford the title compound as a yellow film (15 mg, 54%) following purification by flash column chromatography on silica gel (0-5% MeOH in CH₂Cl₂). $^1 H$ NMR (500 MHz, Chloroform-d) δ 8.20 (s, 1H), 7.51 (dd, J=8.5, 7.1 Hz, 1H), 7.17-7.08 (m, 2H), 6.90 (d, J=8.5 Hz, 1H), 6.85-6.72 (m, 2H), 4.95-4.90 (m, 1H), 3.52-3.46 (m, 2H), 2.97-2.87 (m, 2H), 2.86-2.72 (m, 2H), 2.21-2.09 (m, 1H); MS (ESI) calcd for $\rm
C_{21}H_{20}N_3O_5\,[M+H]^+$ 394.14, found 394.25. 4-((2-(1H-imidazol-2-yl)ethyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (D-50) [0787] General procedure VI was followed using 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione (20 mg, 0.0724 mmol), histamine (15 mg, 0.080 mmol) and DIPEA (25 μ L, 0.144 mmol) to afford the title compound as a yellow film (5 mg, 19%) following purification by flash column chromatography on silica gel (0-10% MeOH in CH₂Cl₂). 1 H NMR (500 MHz, Chloroform-d) δ 8.19 (s, 1H), 7.61 (d, J=1.2 Hz, 1H), 7.47 (dd, J=8.5, 7.1 Hz, 1H), 7.07 (d, J=6.9 Hz, 1H), 6.96-6.83 (m, 2H), 6.39 (t, J=5.7 Hz, 1H), 4.97-4.79 (m, 1H), 3.59 (q, J=6.5 Hz, 2H), 2.95 (t, J=6.6 Hz, 2H), 2.92-2.62 (m, 2H), 2.16-2.04 (m, 1H); MS (ESI) calcd for $C_{18}H_{18}N_5O_4$ [M+H]+ 368.14, found 368.47. General Procedure VII: Acylation of Primary Amines N-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoin-dolin-4-yl)methyl)cyclopropanecarboxamide (D-22) [0788] In a 4 mL glass vial, 4-(aminomethyl)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (25 mg, 0.087 mmol, 1 equiv) and DIPEA (30 μL , 0.174 mmol, 2 equiv) in MeCN (250 μL , 0.35 M) was cooled to 0° C. Cyclopropanecarbonyl chloride (8.7 μL , 0.096 mmol) was added slowly and the reaction mixture was stirred at room temperature overnight. The product was isolated by filtration to afford the title compound as a white solid (4.8 mg, 15%), that was used without further purification. MS (ESI) calcd for $C_{18}H_{18}N_3O_5$ [M+H]+ 356.12, found 356.32. # N-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)methyl)acetamide (D-23) [0789] General procedure VII was followed using 4-(aminomethyl)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (25 mg, 0.087 mmol), DIPEA (30 μ L, 0.174 mmol) and acetyl chloride (7 μ L, 0.096 mmol) to afford the title compound as a white solid (4.5 mg, 16%). 1 H NMR (500 MHz, DMSO-d₆) δ 11.13 (s, 1H), 8.47 (t, J=6.0 Hz, 1H), 7.88-7.76 (m, 2H), 7.70 (dt, J=7.3, 1.1 Hz, 1H), 5.15 (dd, J=12.7, 5.4 Hz, 1H), 4.69 (d, J=6.0 Hz, 2H), 2.90 (ddd, J=16.8, 13.8, 5.4 Hz, 1H), 2.64-2.44 (m, 2H), 2.15-2.01 (m, 1H), 1.92 (s, 3H); MS (ESI) calcd for $\rm C_{16}H_{16}N_3O_5~[M+H]^+$ 330.11, found 330.05. 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethan-1-aminium 2,2,2-trifluoroacetate (D-33) [0790] A stirred solution of tert-butyl (2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl)carbamate (205 mg, 0.492 mmol, 1 equiv) in dichloromethane (2.25 mL) was added trifluoroacetic acid (0.250 mL). The reaction mixture was stirred at room temperature for 4 h, whereupon the volatiles were removed in vacuo. The title compound was obtained as a yellow solid (226 mg, >95%), that was used without further purification. $^1\mathrm{H}$ NMR (500 MHz, MeOD) δ 7.64 (d, J=1.4 Hz, 1H), 7.27-7.05 (m, 2H), 5.10 (dd, J=12.5, 5.5 Hz, 1H), 3.70 (t, J=6.0 Hz, 2H), 3.50-3.42 (m, 2H), 3.22 (t, J=6.0 Hz, 1H), 2.93-2.85 (m, 1H), 2.80-2.69 (m, 2H), 2.17-2.10 (m, 1H); MS (ESI) calcd for $\mathrm{C_{15}H_{17}N_4O_4}$ [M+H]+ 317.12, found 317.53. General Procedure VIII: Phenol Alkylation 2-(2,6-dioxopiperidin-3-yl)-4-((4-(morpholinomethyl)benzyl)oxy)isoindoline-1,3-dione (D-45) [0791] In a 4 mL glass vial, 2-(2,6-dioxopiperidin-3-yl)-4-hydroxyisoindoline-1,3-dione (30 mg, 0.109 mmol, 1 equiv) and K2CO3 (15 mg, 0.109 mmol, 1 equiv) in DMF (365 μL, 0.3 M) was stirred at room temperature. 4-(4-(bromomethyl)benzyl)morpholine (30 mg, 0.109 mmol, 1 equiv) in DMF (200 µL) was added and the reaction mixture was stirred at room temperature for 4 days. The reaction mixture was taken up in water (15 mL) and EtOAc (15 mL), and the organic layer was washed with brine (3×15 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (0 to 10% MeOH in CH_2Cl_2) to afford the title compound as a white solid (20 mg, 40%). ¹H NMR (500 MHz, DMSO-d₆) δ 11.10 (s, 1H), 7.82 (dd, J=8.5, 7.2 Hz, 1H), 7.60 (d, J=8.5 Hz, 1H), 7.50-7.42 (m, 3H), 7.35 (d, J=8.1 Hz, 2H), 5.35 (s, 2H), 5.09 (dd, J=12.8, 5.5 Hz, 1H), 3.64-3.51 (m, 4H), 3.46 (s, 2H), 2.88 (ddd, J=17.0, 14.1, 5.4 Hz, 1H), 2.63-2.47 (m, 2H), 2.38-2.31 (m, 4H), 2.07-1.99 (m, 1H); MS (ESI) calcd for $C_{25}H_{26}N_3O_6$ [M+H]⁺ 464.18, found 464.00. #### 4-(benzyloxy)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (D-46) [0792] General procedure VIII was followed using 2-(2, 6-dioxopiperidin-3-yl)-4-hydroxyisoindoline-1,3-dione (30 mg, 0.109 mmol), K2CO3 (15 mg, 0.109 mmol) and benzyl bromide (8 μL, 0109 mmol) to afford the title compound as a white solid (8 mg, 20%) after purification by flash column chromatography on silica gel (0 to 10% MeOH in CH₂Cl₂). ¹H NMR (500 MHz, DMSO-d₆) δ 11.10 (s, 1H), 7.83 (dd, J=8.5, 7.3 Hz, 1H), 7.60 (d, J=8.5 Hz, 1H), 7.53-7.50 (m, 2H), 7.47 (d, J=7.2 Hz, 1H), 7.45-7.39 (m, 2H), 7.38-7.32 (m, 1H), 5.38 (s, 2H), 5.09 (dd, J=12.8, 5.5 Hz, 1H), 2.88 (ddd, J=16.9, 13.8, 5.5 Hz, 1H), 2.64-2.46 (m, 2H), 2.07-1. 99 (m, 1H); MS (ESI) calcd for $C_{20}H_{17}N_2O_5$ [M+H]⁺ 365.11, found 365.21. 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl 4-methylbenzene-sulfonate (D-44) [0793] In a 4 mL glass vial, 2-(2,6-dioxopiperidin-3-yl)-4-((2-hydroxyethyl)amino)isoindoline-1,3-dione (7 mg, 0.0221 mmol, 1 equiv) and Et₃N (3 μ L, 0.033 mmol, 1.5 equiv) in CH₂Cl₂ (200 μL) was stirred at room temperature. Tosyl chloride (6 mg, 0.026 mmol, 1.2 equiv) in CH₂Cl₂ (100 µL) was added, and the reaction mixture was stirred at room temperature overnight. The reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (0-10% MeOH in CH₂Cl₂) to afford the title compound as a white solid (4 mg, 40%). ¹H NMR (500 MHz, DMSO-d₆) δ 11.13 (s, 1H), 7.64-7.59 (m, 2H), 7.46 (dd, J=8.6, 7.1 Hz, 1H), 7.33-7.27 (m, 2H), 7.04-6.93 (m, 2H), 6.58 (t, J=6.4 Hz, 1H), 5.09 (dd, J=12.7, 5.4 Hz, 1H), 4.15 (t, J=5.1 Hz, 2H), 3.65-3.52 (m, 2H), 2.97-2.83 (m, 1H), 2.67-2.46 (m, 2H), 2.27 (s, 3H), 2.12-2.02 (m, 1H); MS (ESI) calcd for $C_{22}H_{22}N_3O_7S$ [M+H]+ 472.12, found 472.39. ### (R)-4-hydroxy-2-(3-methyl-2,6-dioxopiperidin-3-yl) isoindoline-L3-dione (D-52) [0794] Hydroxyisobenzofuran-1,3-dione (147.08 mg, 0.896 mmol, 1 eq) was added to (R)-3-amino-3-methylpiperidine-2,6-dione hydrochloric acid (127.32 mg, 0.896 mmol, 1 eq). Pyridine (3.584 ml, 0.25 M) was then added to the mixture and it was stirred at 110° C. for 17 hours. The mixture was diluted with methanol and was condensed under reduced pressure. The crude material was purified by column chromatography (ISCO, 24 g silica column, 0 to 10% MeOH/DCM 25 minute gradient) to give a white oil (110.9 mg, 42.63% yield). ¹H NMR (400 MHz, DMSO-d₆) 8 10.95 (s, 1H), 7.61 (dd, J=8.4, 7.2 Hz, 1H), 7.27-7.14 (m, 2H), 2.73-2.63 (m, 1H), 2.57-2.51 (m, 1H), 2.04-1.97 (m, 1H), 1.86 (s, 3H). [0795] LCMS 289 (M+H). ### (S)-4-hydroxy-2-(3-methyl-2,6-dioxopiperidin-3-yl) isoindoline-1,3-dione (D-53) [0796] 4-hydroxyisobenzofuran-1,3-dione (148.99 mg, 0.907 mmol, 1 eq) was added to (S)-3-amino-3-methylpiperidine-2,6-dione hydrochloric acid (128.97 mg, 0.907 mmol, 1 eq). Pyridine (3.628 ml, 0.25 M) was then added to the mixture and it was stirred at 110° C. for 17 hours. The mixture was diluted with methanol and was condensed under reduced pressure. The crude material was purified by column chromatography (ISCO, 24 g silica column, 0 to 10% MeOH/DCM 25 minute gradient) to give a white oil (150 mg, 57.4% yield). 1 H NMR (400 MHz, DMSO-d₆) δ 10.95 (s, 1H), 7.62 (dd, J=8.4, 7.2 Hz, 1H), 7.27-7.16 (m, 2H), 2.75-2.62 (m, 1H), 2.55 (dd, J=14.0, 4.3 Hz, 1H), 2.05-1.96 (m, 1H), 1.86 (s, 3H). LCMS 289 (M+H). (S)-2-((2-(3-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetic acid (D-55) [0797] TFA (0.63 ml, 0.1 M) was added to tert-butyl (S)-2-((2-(3-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetate (25.4 mg, 0.063 mmol, 1 eq) and the mixture was stirred at 50° C. for an hour. The mixture was then diluted with methanol and condensed under reduced pressure to give a white powder (20.5 mg, 93.9% yield) that was carried forward without further purification. $^1\mathrm{H}$ NMR (500 MHz, Methanol-d₄) 87.81-7.75 (m, 1H), 7.50 (d, J=7.3 Hz, 1H), 7.45 (d, J=8.6 Hz, 2H), 7.43-7.37 (m, 3H), 5.09 (dd, J=12.8, 5.5 Hz, 1H), 4.76 (s, 2H), 4.63 (dd, J=9.1, 5.2 Hz, 1H), 3.66-3.55 (m, 30H), 3.51-3.41 (m, 5H), 2.90-2.83 (m, 1H), 2.79-2.71 (m, 2H), 2.69 (s, 3H), 2.43 (s, 3H), 2.14 (ddt, J=10.5, 5.5, 3.2 Hz, 1H), 1.69 (s, 3H). LCMS 347 (M+H). (R)-2-((2-(3-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetic acid (D-54) [0798] TFA (1.78 ml, 0.1 M) was added to tert-butyl (R)-2-((2-(3-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetate (71.3 mg, 0.178 mmol, 1 eq) and the mixture was stirred at 50° C. for an hour. The mixture JQ-acid was then diluted with methanol and condensed under reduced pressure to give a white powder (47.2 mg, 76.63% yield) that was carried forward without further purification. ¹H NMR (400 MHz, Methanol-d₄) δ 7.72 (ddd, J=8.5, 7.3, 5.0 Hz, 1H), 7.46-7.42 (m, 1H), 7.30 (dd, J=8.6, 4.5 Hz, 1H), 4.94 (d, J=5.3 Hz, 2H), 2.81-2.56 (m, 2H), 2.24-2.07 (m, 1H), 2.00 (s, 2H), 0.90 (t, J=6.5 Hz, 2H). LCMS 347 (M+H). ### 4,7-dichloro-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (D-51) [0799] 4,7-dichloroisobenzofuran-1,3-dione (434.6 mg, 2.002 mmol, 1 eq) was added to 3-aminopiperidine-2,6dione hydrochloric acid (362.6 mg, 2.203 mmol, 1.1 eq). Potassium acetate (609.07 mg, 6.206 mmol, 3.1 eq) and acetic acid (6.67 ml, 0.3 M) were then added to the mixture and it was stirred at 90° C. for 18 hours. The mixture was cooled down to room temperature, diluted with DI water and centrifuged for 5 minutes. The precipitate was diluted with methanol and was condensed under reduced pressure. The crude material was purified by column
chromatography (ISCO, 12 g silica column, 0 to 10% MeOH/DCM 25 minute gradient) to give a white powder (160.4 mg, 24.5% yield). ¹H NMR (500 MHz, DMSO-d₆) δ 11.15 (s, 1H), 7.91 (s, 2H), 5.17 (dd, J=12.9, 5.4 Hz, 1H), 2.88 (ddd, J=17.2, 13.9, 5.4 Hz, 1H), 2.68-2.54 (m, 1H), 2.05 (ddd, J=10.5, 5.4, 2.7 Hz, 1H). LCMS 328 (M+H). Example 1: Synthesis of dBET1 [0800] ### (1) Synthesis of JQ-Acid [0801] JQ1 (1.0 g, 2.19 mmol, 1 eq) was dissolved in formic acid (11 mL, 0.2 M) at room temperature and stirred for 75 hours. The mixture was concentrated under reduced pressure to give a yellow solid (0.99 g, quant yield) that was used without purification. $^1\mathrm{H}$ NMR (400 MHz, Methanol-d₄) δ 7.50-7.36 (m, 4H), 4.59 (t, J=7.1 Hz, 1H), 3.51 (d, J=7.1 Hz, 2H), 2.70 (s, 3H), 2.45 (s, 3H), 1.71 (s, 3H). LCMS 401.33 (M+H). **[0802]** N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamidetrifluoroacetate was synthesized according to the previously published procedure (Fischer et al., Nature 512 (2014):49). ### (2) Synthesis of dBET1 [0803] JQ-acid (11.3 mg, 0.0281 mmol, 1 eq) and N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate (14.5 mg, 0.0281 mmol, 1 eq) were dissolved in DMF (0.28 mL, 0.1 M) at room temperature. DIPEA (14.7 microliters, 0.0843 mmol, 3 eq) and HATU (10.7 mg, 0.0281 mmol, 1 eq) were then added and the mixture was stirred for 19 hours. The mixture was then purified by preparative HPLC to give dBET1 as a yellow solid (15.90 mg, 0.0202 mmol, 72%). ¹H NMR (400 MHz, Methanol-d₄) δ 7.77 (dd, J=8.3, 7.5 Hz, 1H), 7.49 (d, J=7.3 Hz, 1H), 7.47-7.37 (m, 5H), 5.07 (dd, J=12.5, 5.4 Hz, 1H), 4.74 (s, 2H), 4.69 (dd, J=8.7, 5.5 Hz, 1H), 3.43-3.32 (m, 3H), 3.29-3.25 (m, 2H), 2.87-2.62 (m, 7H), 2.43 (s, 3H), 2.13-2.04 (m, 1H), 1.72-1.58 (m, 7H). ¹³C NMR (100 MHz, cd₃od) δ 174.41, 172.33, 171.27, 171.25, 169.87, 168.22, 167.76, 166.73, 166.70, 156.26, 138.40, $138.23,\ 137.44,\ 134.83,\ 133.92,\ 133.40,\ 132.30,\ 132.28,$ 131.97, 131.50, 129.87, 121.85, 119.31, 118.00, 69.53, 54.90, 50.54, 40.09, 39.83, 38.40, 32.12, 27.74, 27.65, 23.61, 14.42, 12.97, 11.57. LCMS 785.44 (M+H). Example 2: Synthesis of dBET4 ### [0804] $$\begin{array}{c} H_2N \\ \\ N-N \\ \\ N \\$$ dBET4 or (R)dBET1 inactive control [0805] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.438 mL, 0.0438 mmol 1.2 eq) was added to (R)-JQ-acid (prepared from (R)-JQ1 in an analogous method to JQ-acid) (14.63 mg, 0.0365 mmol, 1 eq) at room temperature. DIPEA (19.1 microliters, 0.1095 mmol, 3 eq) and HATU (15.3 mg, 0.0402 mmol, 1.1 eq) were added and the mixture was stirred for 24 hours, then diluted with MeOH and concentrated under reduced pressure. The crude material was purified by preparative HPLC to give a yellow solid (20.64 mg, 0.0263 mmol, 72%). ¹H NMR (400 MHz, Methanol-d₄) δ 7.79 (dd, J=8.4, 7.4 Hz, 1H), 7.51 (d, J=7.3 Hz, 1H), 7.47-7.39 (m, 5H), 5.11-5.06 $\begin{array}{l} (m,1H),4.75~(s,2H),4.68~(dd,J=8.8,5.5\,Hz,1H),3.47-3.31\\ (m,5H),2.83-2.65~(m,7H),2.44~(s,3H),2.13-2.06~(m,1H),\\ 1.68~(s,3H),1.67-1.60~(m,4H). \\ ^{13}C~NMR~(100~MHz,cd_3od)~\delta~174.43,172.40,171.29,169.92,168.24,167.82,\\ 166.71,156.31,153.14,138.38,138.24,137.54,134.88,133.86,133.44,132.29,132.00,131.49,129.88,122.46,121.90,119.38,118.02,69.59,54.96,50.55,40.09,39.84,38.45,32.14,27.75,27.65,23.62,14.41,12.96,11.56.MS 785.48~(M+H). \end{array}$ Example 3: Synthesis of dBET3 ### [0806] [0807] A 0.1 M solution of N-(2-aminoethyl)-2-((2-(2,6dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.475 mL, 0.0475 mmol, 1.2 eq) was added to JQ-acid (15.86 mg, 0.0396 mmol, 1 eq) at room temperature. DIPEA (20.7 microliters, 0.1188 mmol, 3 eq) and HATU (16.5 mg, 0.0435 mmol, 1.1 eq) were then added and the mixture was stirred for 24 hours, then purified by preparative HPLC to give a yellow solid (22.14 mg, 0.0292 mmol, 74%). ¹H NMR (400 MHz, Methanol-d₄) δ 7.82-7.75 (m, 1H), 7.52-7.32 (m, 6H), 5.04 (dd, J=11.6, 5.5 Hz, 1H), 4.76 (d, J=3.2 Hz, 2H), 4.66 (d, J=6.6 Hz, 1H), 3.58-3.35 (m, 6H), 2.78-2.58 (m, 6H), 2.48-2.41 (m, 3H), 2.11--2.02 (m, 1H), 1.70 (d, J=11.8 Hz, 3H). $^{13}\mathrm{C}$ NMR (100 MHz, cd₃od) δ 174.38, 171.26, 171.19, 170.26, 168.86, 168.21, 167.76, 166.72, 156.27, 153.14, 138.44, 138.36, 138.19, 134.87, 133.71, 132.31, 131.57, 131.51, 129.90, 129.86, 121.81, 119.36, 117.95, 69.48, 54.83, 50.52, 40.09, 39.76, 38.30, 32.09, 23.63, 14.40, 11.61. LCMS 757.41 (M+H). Example 4: Synthesis of dBET5 [8080] [0809] A 0.1M solution of N-(6-aminohexyl)-2-((2-(2,6dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.247 mL, 0.0247 mmol, 1 eq) was added to JQ-acid (9.9 mg, 0.0247 mmol, 1 eq) at room temperature. DIPEA (12.9 microliters, 0.0741 mmol, 3 eq) and HATU (9.4 mg, 0.0247 mmol, 1 eq) were then added. the mixture was stirred for 21 hours, then diluted with MeOH and concentrated under reduced pressure. The crude material was purified by preparative HPLC to give a vellow solid (13.56 mg, 0.0167 mmol, 67%). ¹H NMR (400 MHz, Methanol-d₄) δ 7.82-7.78 (m, 1H), 7.53 (dd, J=7.3, 2.0 Hz, 1H), 7.49-7.37 (m, 5H), 5.10 (dt, J=12.4, 5.3 Hz, 1H), 4.76 (s, 2H), 4.70 (dd, J=8.7, 5.5 Hz, 1H), 3.42-3.33 (m, 2H), 3.25 (dt, J=12.3, 6.0 Hz, 3H), 2.87-2.67 (m, 7H), 2.48-2.42 (m, 3H), 2.14-2.09 (m, 1H), 1.69 (d, J=4.8 Hz, 3H), 1.58 (s, 4H), 1.42 (d, J=5.2 Hz, 4H). ¹³C NMR (100 MHz, cd₃od) δ 174.51, 171.31, 171.26, 169.82, 168.27, 168.26, 167.75, 156.26, 150.46, 138.20, 134.92, 133.92, 133.47, 132.34, 132.01, 131.52, 129.88, 121.69, 119.34, 117.95, 111.42, 69.39, 54.97, 50.56, 40.39, 40.00, 38.40, 32.15, 30.46, 30.16, 27.58, 27.48, 23.64, 14.41, 12.96, 11.55. LCMS 813.38. dBET5 Example 5: Synthesis of dBET6 [0810] [0811] A 0.1M solution of N-(8-aminooctyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.191 mL, 0.0191 mmol, 1 eq) was added to JQ-acid (7.66 mg, 0.0191 mmol, 1 eq) at room temperature. DIPEA (10 microliters, 0.0574 mmol, 3 eq) and HATU (7.3 mg, 0.0191 mmol, 1 eq) were added and the mixture was stirred for 22 hours, diluted with MeOH, and concentrated under reduced pressure. The crude material was purified by preparative HPLC to give a cream colored solid. (8.53 mg, 0.0101 mmol, 53%). 1 H NMR (400 MHz, Methanol-d₄) δ 7.80 (dd, J=8.4, 7.4 Hz, 1H), 7.53 (d, J=7.4 Hz, 1H), 7.49-7.36 (m, 5H), 5.10 (dt, J=12.3, 5.3 Hz, 1H), 4.75 (s, 2H), 4.69 (dd, J=8.8, 5.3 Hz, 1H), 3.42 (dd, J=15.0, 8.9 Hz, 1H), 3.30-3.18 (m, 4H), 2.90-2.64 (m, 7H), 2.45 (s, 3H), 2.13 (dtt, J=10.8, 5.2, 2.6 Hz, 1H), 1.71 (d, J=4.4 Hz, 3H), 1.56 (d, J=6.2 Hz, 4H), 1.33 (d, J=17.1 Hz, 8H). ¹³C NMR (100 MHz, cd₃od) δ 174.50, 172.38, 171.30, 169.81, 168.28, 167.74, 166.64, 156.25, 138.38, 138.20, 137.55, 134.92, 133.88, 133.42, 132.27, 132.02, 131.50, 129.85, 121.66, 119.30, 117.95, 69.37, 55.01, 50.58, 40.51, 40.12, 38.44, 32.18, 30.46, 30.33, 30.27, 30.21, 27.91, 27.81, 23.63, 14.42, 12.96, 11.55. LCMS 841.64 (M+H). Example 6: Synthesis of dBET9 [0812] dBET6 [0813] A 0.1M solution of N-(3-(2-(2-(3-aminopropoxy) ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.321 mL, 0.0321 mmol, 1 eq) was added to JQ-acid (12.87 mg, 0.0321 mmol, 1 eq) at room temperature. DIPEA (16.8 microliters, 0.0963 mmol, 3 eq) and HATU (12.2 mg, 0.0321 mmol, 1 eq) were added and the mixture was stirred for 24 hours, diluted with MeOH, and concentrated under reduced pressure. The crude material was purified by preparative HPLC to give a yellow oil. (16.11 mg, 0.0176 mmol, 55%). [0814] 1 H NMR (400 MHz, Methanol-d₄) δ 7.79 (dd, J=8.4, 7.4 Hz, 1H), 7.52 (d, J=7.2 Hz, 1H), 7.49-7.36 (m, 5H), 5.10 (dd, J=12.5, 5.5 Hz, 1H), 4.78-4.67 (m, 3H), 3.64-3.52 (m, 11H), 3.48-3.32 (m, 6H), 2.94-2.64 (m, 7H), 2.52-2.43 (m, 3H), 2.18-2.08 (m, 1H), 1.81 (p, J=6.3 Hz, 4H), 1.73-1.67 (m, 3H). LCMS 918.45 (M+H). Example 7: Synthesis of dBET17 [0815] [0816] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.281 mL, 0.0281 mmol 1 eq) was added to (S)-2-(4-(4-cyanophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl) acetic acid (11 mg, 0.0281 mmol, 1 eq) at room temperature. DIPEA (14.7 microliters, 0.0843 mmol, 3 eq) and HATU (10.7 mg, 0.0281 mmol, 1 eq) were added and the mixture was stirred for 24 hours, diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and condensed. Purification by column chromatography (ISCO, 4 g silica column 0-10% MeOH/DCM) gave a white solid (14.12 mg, 0.0182 mmol, 65%). [0817] 1 H NMR (400 MHz, Methanol-d₄) δ 7.82-7.72 (m, 3H), 7.61 (dd, J=8.5, 2.0 Hz, 2H), 7.51 (d, J=7.9 Hz, 1H), 7.44-7.40 (m, 1H), 5.11-5.05 (m, 1H), 4.76 (s, 2H), 4.66 (dd, J=9.0, 5.1 Hz, 1H), 3.48-3.32 (m, 4H), 3.30-3.23 (m, 1H), 2.87-2.61 (m, 7H), 2.43 (s, 3H), 2.10 (dt, J=10.7, 5.2 Hz, 1H), 1.70-1.59 (m, 7H). 13 C NMR (100 MHz, cd₃od) δ 174.42, 172.65, 171.27, 169.92, 168.25, 167.80, 165.88, 156.31, 143.55, 138.24, 134.88, 133.92, 133.50, 133.39, 131.72, 131.46, 130.55, 121.93, 119.39, 119.21, 118.02, 115.17, 69.59, 55.50, 50.55, 40.10, 39.83, 38.86, 32.11, 27.78, 27.67, 23.62, 14.41, 12.91, 11.64. LCMS 776.39 (M+H). Example 8: Synthesis of dRET1 [0818] [0819] N-(6-aminohexyl)-2-(2,6-dioxopiperidin-3-yl)-1, 3-dioxoisoindoline-5-carboxamide trifluoroacetate (13.29 mg, 0.258 mmol, 1 eq) and JQ-acid (10.3 mg, 0.0258 mmol, 1 eq) were dissolved in DMF (0.26 mL). DIPEA (13.5 microliters, 0.0775 mmol, 3 eq) was added, followed by HATU (9.8 mg, 0.0258 mmol, 1 eq) and the mixture was stirred at room temperature. After 24 hours, the material was diluted with DCM and purified by column
chromatography (ISCO, 0-15% MeOH/DCM) followed by preparative HPLC to give a pale yellow solid (11.44 mg, 0.0146 mmol 57%). [0820] 1 H NMR (400 MHz, Methanol-d₄) δ 8.29-8.23 (m, 2H), 7.93 (dd, J=8.1, 4.2 Hz, 1H), 7.50-7.34 (m, 4H), 5.17-5.11 (m, 1H), 4.75-4.69 (m, 1H), 3.53-3.32 (m, 6H), 3.25 (dd, J=13.8, 6.7 Hz, 1H), 2.90-2.67 (m, 6H), 2.49-2.38 (m, 3H), 2.18-2.10 (m, 1H), 1.64 (d, J=22.4 Hz, 6H), 1.47 (s, 4H). 13 C NMR (100 MHz, cd₃od) δ 174.48, 171.17, 168.05, 168.03, 167.99, 167.70, 166.63, 141.81, 138.40, 137.47, 135.09, 134.77, 134.74, 133.96, 133.94, 133.38, 132.24, 132.05, 131.44, 129.85, 124.57, 123.12, 123.09, 54.98, 50.78, 40.88, 40.08, 38.37, 32.13, 30.40, 30.23, 27.34, 27.26, 23.58, 14.40, 12.96, 11.54. LCMS 783.43 (M+H). dBET15 Example 9: Synthesis of dBET2 [0821] (1) Synthesis of (R)-ethyl 4-((8-cyclopentyl-7-ethyl-5-methyl-6-oxo-5,6,7,8-tetrahydropteridin-2-yl) amino)-3-methoxybenzoate #### [0822] [0823] (R)-2-chloro-8-cyclopentyl-7-ethyl-5-methyl-7,8dihydropteridin-6(5H)-one (44.2 mg, 0.15 mmol, 1 eq), ethyl 4-amino-3-methoxybenzoate (35.1 mg, 0.18 mmol, 1.2 eq), Pd₂dba₃ (6.9 mg, 0.0075 mmol, 5 mol %), XPhos (10.7 mg, 0.0225 mmol, 15 mol %) and potassium carbonate (82.9 mg, 0.60 mmol, 4 eq) were dissolved in tBuOH (1.5 mL, 0.1 M) and heated to 100° C. After 21 hours, the mixture was cooled to room temperature, filtered through celite, washed with DCM and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-100% EtOAc/hexanes over an 18 minute gradient) gave a yellow oil (52.3 mg, 0.115 mmol, 77%). ¹H NMR $(400 \text{ MHz}, \text{Chloroform-d}) \delta 8.57 \text{ (d, J=8.5 Hz, 1H)}, 7.69 \text{ (td, J=8.5 Hz, 1H)})$ J=6.2, 2.9 Hz, 2H), 7.54 (d, J=1.8 Hz, 1H), 4.52 (t, J=7.9 Hz, 1H), 4.37 (q, J=7.1 Hz, 2H), 4.23 (dd, J=7.9, 3.7 Hz, 1H), 3.97 (s, 3H), 3.33 (s, 3H), 2.20-2.12 (m, 1H), 2.03-1.97 (m, 1H), 1.86 (ddd, J=13.9, 7.6, 3.6 Hz, 4H), 1.78-1.65 (m, 4H), 1.40 (t, J=7.1 Hz, 3H), 0.88 (t, J=7.5 Hz, 3H). LCMS 454.32 (M+H). (2) Synthesis of (R)-4-((8-cyclopentyl-7-ethyl-5-methyl-6-oxo-5,6,7,8-tetrahydropteridin-2-yl) amino)-3-methoxybenzoic acid ### [0824] [0825] (R)-ethyl 4-((8-cyclopentyl-7-ethyl-5-methyl-6oxo-5,6,7,8-tetrahydropteridin-2-yl)amino)-3-methoxybenzoate (73.8 mg, 0.163 mmol, 1 eq) and LiOH (11.7 mg, 0.489 mmol, 3 eq) were dissolved in MeOH (0.82 mL) THF (1.63 mL) and water (0.82 mL). After 20 hours, an additional 0.82 mL of water was added and the mixture was stirred for an additional 24 hours before being purified by preparative HPLC to give a cream colored solid (53 mg, 0.125 mmol, 76%). ¹H NMR (400 MHz, Methanol-d₄) δ 7.97 (d, J=8.4 Hz, 1H), 7.67 (dd, J=8.3, 1.6 Hz, 1H), 7.64-7.59 (m, 2H), 4.38 (dd, J=7.0, 3.2 Hz, 1H), 4.36-4.29 (m, 1H), 3.94 (s, 3H), 3.30 (s, 3H), 2.13-1.98 (m, 2H), 1.95-1.87 (m, 2H), 1.87-1. 76 (m, 2H), 1.73-1.57 (m, 4H), 0.86 (t, J=7.5 Hz, 3H). ¹³C NMR (100 MHz, cd₃od) δ 168.67, 163.72, 153.59, 150.74, 150.60, 130.95, 127.88, 125.97, 123.14, 121.68, 116.75, 112.35, 61.76, 61.66, 56.31, 29.40, 29.00, 28.68, 28.21, 23.57, 23.41, 8.69. LCMS 426.45 (M+H). #### (3) Synthesis of dBET2 [0826] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.183 mL, 0.0183 mmol 1.2 eq) was added to (R)-4-((8-cyclopentyl-7-ethyl-5-methyl-6oxo-5,6,7,8-tetrahydropteridin-2-yl)amino)-3-methoxybenzoic acid (6.48 mg, 0.0152 mmol, 1 eq) at room temperature. DIPEA (7.9 microliters, 0.0456 mmol, 3 eq) and HATU (6.4 mg, 0.0168 mmol, 1.1 eq) were added and the mixture was stirred for 23 hours, before being purified by preparative HPLC to give a yellow solid (9.44 mg, 0.0102 mmol, 67%). ¹H NMR (400 MHz, Methanol-d₄) δ 7.84-7.77 (m, 2H), 7.58 (d, J=1.8 Hz, 2H), 7.53-7.46 (m, 2H), 7.42 (d, J=8.4 Hz, 1H), 5.11-5.05 (m, 1H), 4.76 (s, 2H), 4.48 (dd, J=6.5, 3.1 Hz, 1H), 4.33-4.24 (m, 1H), 3.95 (s, 3H), 3.49-3.35 (m, 4H), 2.97 (d, J=10.5 Hz, 3H), 2.89-2.65 (m, 5H), 2.17-1.99 (m, 4H), 1.89 (dd, J=14.5, 7.3 Hz, 2H), 1.69-1.54 (m, 6H), 1.36 (dt, J=7.6, 3.9 Hz, 1H), 0.85 (t, J=7.5 Hz, 3H). ¹³C NMR (100 MHz, cd₃od) δ 176.52, 174.48, 173.05, 171.34, 169.99, 168.91, 168.25, 167.80, 164.58, 156.34, 154.48, 153.10, 150.63, 138.22, 134.89, 133.96, 129.53, 123.93, 121.87, 120.78, 119.36, 117.99, 111.54, 69.55, 63.29, 63.10, 56.68, 50.55, 40.71, 39.86, 32.15, 29.43, 29.26, 28.73, 28.63, 27.81, 27.77, 24.25, 23.63, 8.47. LCMS 810.58 (M+H). Example 10: Synthesis of dBET7 #### [0827] $$H_2N$$ CF_3CO_2H $HATU, DIPEA, DMF$ [0828] A 0.1 M solution N-(6-aminohexyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.186 mL, 0.0186 mmol 1 eq) was added to (R)-4-((8-cyclopentyl-7-ethyl-5-methyl-6-oxo-5,6, 7,8-tetrahydropteridin-2-yl)amino)-3-methoxybenzoic acid (7.9 mg, 0.0186 mmol, 1 eq) at room temperature. DIPEA (9.7 microliters, 0.0557 mmol, 3 eq) and HATU (7.1 mg, 0.0186 mmol, 1 eq) were added and the mixture was stirred for 19 hours, before being purified by preparative HPLC to give the desired trifluoroacetate salt as a yellow solid(13.62 mg, 0.0143 mmol, 77%). [0829] ¹H NMR (400 MHz, Methanol-d₄) δ 7.80 (t, J=8.3 Hz, 2H), 7.61-7.57 (m, 2H), 7.55-7.49 (m, 2H), 7.42 (d, J=8.4 Hz, 1H), 5.13 (dd, J=12.6, 5.5 Hz, 1H), 4.75 (s, 2H), 4.48 (dd, J=6.5, 3.2 Hz, 1H), 4.33-4.24 (m, 1H), 3.97 (s, 3H), 3.40 (t, J=7.1 Hz, 2H), 3.34 (d, J=6.7 Hz, 2H), 3.30 (s, 3H), 2.98 (d, J=8.5 Hz, 1H), 2.89-2.82 (m, 1H), 2.79-2.63 (m, 3H), 2.17-2.00 (m, 4H), 1.91 (dt, J=14.4, 7.1 Hz, 3H), 1.61 (dt, J=13.4, 6.6 Hz, 7H), 1.47-1.41 (m, 3H), 0.86 (t, J=7.5 Hz, 3H). $^{13}\mathrm{C}$ NMR (100 MHz, cd_3od) δ 174.54, 171.37, 169.84, 168.84, 168.27, 167.74, 164.59, 156.26, 154.47, 153.18, 150.69, 138.19, 134.91, 134.05, 129.47, 124.78, 124.01, 121.65, 120.77, 119.29, 117.92, 117.86, 111.55, 69.34, 63.31, 63.13, 56.67, 50.53, 40.97, 39.96, 32.16, 30.42, 30.19, 29.42, 29.26, 28.72, 28.62, 27.65, 27.46, 24.26, 23.65, 8.47. LCMS 838.60 (M+H). Example 11: Synthesis of dBET8 [0830] $$\begin{array}{c} H_2N \\ \\ CF_3CO_2H \\ \\ N \\ \\ N \\ \end{array}$$ [0831] A 0.1 M solution N-(8-aminooctyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.186 mL, 0.0186 mmol 1 eq) was added to (R)-4-((8-cyclopentyl-7-ethyl-5-methyl-6-oxo-5,6, 7,8-tetrahydropteridin-2-yl)amino)-3-methoxybenzoic acid (7.9 mg, 0.0186 mmol, 1 eq) at room temperature. DIPEA (9.7 microliters, 0.0557 mmol, 3 eq) and HATU (7.1 mg, 0.0186 mmol, 1 eq) were added and the mixture was stirred for 16 hours, before being purified by preparative HPLC to give the desired trifluorocetate salt as an off-white solid(7.15 mg, 0.007296 mmol, 39%). [0832] ¹H NMR (400 MHz, Methanol-d₄) δ 7.83-7.77 (m, 2H), 7.61-7.56 (m, 2H), 7.55-7.50 (m, 2H), 7.42 (d, J=8.5 Hz, 1H), 5.13 (dd, J=12.6, 5.5 Hz, 1H), 4.75 (s, 2H), 4.49 (dd, J=6.6, 3.3 Hz, 1H), 4.33-4.24 (m, 1H), 3.97 (s, 3H), 3.39 (t, J=7.1 Hz, 2H), 3.34-3.32 (m, 2H), 3.30 (s, 3H), 3.01-2.83 (m, 2H), 2.82-2.65 (m, 3H), 2.17-2.01 (m, 4H), 1.91 (dt, J=14.2, 7.4 Hz, 1H), 1.68-1.54 (m, 7H), 1.37 (s, 7H), 0.86 (t, J=7.5 Hz, 3H). $^{13}\mathrm{C}$ NMR (100 MHz, cd_3od) δ 174.52, 171.35, 169.81, 168.85, 168.28, 167.74, 164.58, 156.27, 154.47, 153.89, 150.64, 138.19, 134.93, 134.18, 129.52, 129.41, 124.91, 123.83, 121.67, 120.76, 119.31, 117.95, 117.89, 111.57, 69.37, 63.37, 63.17, 56.67, 50.58, 41.12, 40.12, 32.19, 30.43, 30.28, 30.22, 30.19, 29.40, 29.25, 28.71, 28.62, 27.94, 27.75, 24.29, 23.65, 8.46. LCMS 866. 56 (M+H). Example 12: Synthesis of dBET10 [0833] [0834] A 0.1 M solution N-(3-(2-(2-(3-aminopropoxy) ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.172 mL, 0.0172 mmol 1 eq) was added to (R)-4-((8-cyclopentyl-7-ethyl-5-methyl-6-oxo-5,6,7,8-tetrahydropteridin-2-yl)amino)-3-methoxybenzoic acid (7.3 mg, 0.0172 mmol, 1 eq) at room temperature. DIPEA (9.0 microliters, 0.0515 mmol, 3 eq) and HATU (6.5 mg, 0.0172 mmol, 1 eq) were added and the mixture was stirred for 23 hours, before being purified by preparative HPLC to give the desired trifluoracetate salt as an off-white oil (10.7 mg, 0.0101 mmol, 59%). ¹H NMR (400 MHz, Methanol-d₄) & 7.78 (d, J=8.3 Hz, 1H), 7.75 (dd, J=8.4, 7.4 Hz, 1H), 7.56-7.51 (m, 2H), 7.49-7.44 (m, 2H), 7.36 (d, J=8.4 Hz, 1H), 5.08 (dd, J=12.4, 5.4 Hz, 1H), 4.69 (s, 2H), 4.44 (dd, J=6.7, 3.2 Hz, 1H), 4.30-4.21 (m, 1H), 3.92 (s, 3H), 3.59-3.42 (m, 12H), 3.35 (t, J=6.7 Hz, 2H), 3.25 (s, 3H), 2.95-2.64 (m, 5H), 2.13-1.95 (m, 4H), 1.91-1.71 (m, 7H), 1.65-1.48 (m, 4H), 0.81 (t, J=7.5 Hz, 3H). $^{13}{\rm C}$ NMR (100 MHz, cd_3od) δ 174.50, 171.35, 169.83, 168.77, 168.25, 167.68, 164.57, 156.26, 154.47, 153.05, 150.59, 138.19, 134.92, 133.89, 129.53, 124.57, 123.98, 121.72, 120.75, 119.26, 117.95, 117.86, 111.54, 71.51, 71.46, 71.28, 71.20, 70.18, 69.65, 69.41, 63.27, 63.07, 56.71, 50.57, 38.84, 37.59, 32.17, 30.41, 30.32, 29.46, 29.26, 28.73, 28.64, 24.27, 23.65, 8.49. LCMS 942.62 (M+H). Example 13: Synthesis of dBET16 [0835] [0836] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.402 mL, 0.0402 mmol 1 eq) was added (R)-4-((4-cyclopentyl-1,3-dimethyl-2-oxo-1, 2,3,4-tetrahydropyrido[2,3-b]pyrazin-6-yl)amino)-3-methoxybenzoic acid (16.55 mg, 0.0402 mmol, 1 eq) at room temperature. DIPEA (21 microliters, 0.1206 mmol, 3 eq) and HATU (15.3 mg, 0.0402 mmol, 1 eq) were added and the mixture was stirred for 21 hours, before being purified by preparative HPLC, followed by column chromatography (ISCO, 12 g NH2-silica column, 0-15% MeOH/DCM, 20 min gradient) to give HPLC to give a brown solid (10.63 mg, 0.0134 mmol, 33%). [0837] 1 H NMR (400 MHz, Methanol-d₄) δ 8.22 (d, J=8.4 Hz, 1H), 7.78 (dd, J=8.4, 7.4 Hz, 1H), 7.73-7.68 (m, 1H), 7.49 (d, J=7.4 Hz, 2H), 7.46-7.39 (m, 2H), 6.98 (d, J=8.8 Hz, 1H), 5.97-5.87 (m, 1H), 5.06
(dd, J=12.6, 5.4 Hz, 1H), 4.76 (s, 2H), 3.98 (s, 3H), 3.61 (s, 2H), 3.44-3.36 (m, 4H), 2.92 (s, 1H), 2.78 (dd, J=14.3, 5.2 Hz, 1H), 2.68 (ddd, J=17.7, 8.2, 4.5 Hz, 2H), 2.36-2.26 (m, 2H), 2.10-1.90 (m, 5H), 1.76-1.62 (m, 6H), 1.31 (d, J=16.0 Hz, 4H). LCMS 795.38 (M+H). Example 14: Synthesis of dBET11 [0838] (1) Synthesis of ethyl 4-((5,11-dimethyl-6-oxo-6,11-dihydro-5H-benzo[e]pyrimido[5,4-b][1,4]diazepin-2-yl)amino)-3-methoxybenzoate [0839] 2-chloro-5,11-dimethyl-5H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6(11H)-one(82.4 mg, 0.30 mmol, 1 eq), ethyl 4-amino-3-methoxybenzoate (70.3 mg, 0.36 mmol, 1.2 eq) Pd_2dba_3 (13.7 mg, 0.015 mmol, 5 mol %), XPhos (21.5 mg, 0.045 mmol, 15 mol %) and potassium carbonate (166 mg, 1.2 mmol, 4 eq) were dissolved in tBuOH (3.0 mL) and heated to 100° C. After 17 hours, the mixture was cooled room temperature and filtered through celite. The mixture was purified by column chromatography (ISCO, 12 g silica column, 0-100% EtOAc/hexanes, 19 min gradient) to give an off white solid (64.3 mg, 0.148 mmol, 49%). [0840] ¹H NMR (400 MHz, 50% cd₃od/cdcl₃) δ 8.51 (d, J=8.5 Hz, 1H), 8.17 (s, 1H), 7.73 (ddd, J=18.7, 8.1, 1.7 Hz, 2H), 7.52 (d, J=1.8 Hz, 1H), 7.46-7.41 (m, 1H), 7.15-7.10 (m, 2H), 4.34 (q, J=7.1 Hz, 4H), 3.95 (s, 3H), 3.47 (s, 3H), 3.43 (s, 3H), 1.38 (t, J=7.1 Hz, 3H). ¹³C NMR (100 MHz, 50% cd₃od/cdcl₃) δ 169.28, 167.39, 164.29, 155.64, 151.75, 149.73, 147.45, 146.22, 133.88, 133.18, 132.37, 126.44, 124.29, 123.70, 123.36, 122.26, 120.58, 118.05, 116.83, 110.82, 61.34, 56.20, 38.62, 36.25, 14.51. LCMS 434.33 (M+H). # (2) Synthesis of 4-((5,11-dimethyl-6-oxo-6,11-dihydro-5H-benzo[e]pyrimido[5,4-b][1,4]diazepin-2-yl)amino)-3-methoxybenzoic acid [0841] Ethyl 4-((5,11-dimethyl-6-oxo-6,11-dihydro-5H-benzo[e]pyrimido[5,4-b][1,4]diazepin-2-yl)amino)-3-methoxybenzoate (108.9 mg, 0.251 mmol, 1 eq) and LiOH (18 mg) were dissolved in THF (2.5 mL) and water (1.25 mL). After 24 hours, MeOH (0.63 mL) was added to improved solubility) and stirred for an additional 24 hours before being diluted with MeOH and purified by preparative HPLC to give a light yellow solid (41.31 mg). [0842] 1 H NMR (400 MHz, Methanol-d₄) δ 8.51 (d, J=8.5 Hz, 1H), 8.22 (s, 1H), 7.73 (ddd, J=11.8, 8.1, 1.7 Hz, 2H), 7.57 (d, J=1.8 Hz, 1H), 7.49-7.44 (m, 1H), 7.19-7.11 (m, 2H), 3.97 (s, 3H), 3.48 (s, 3H), 3.45 (s, 3H). LCMS 406.32 (M+H). #### (3) Synthesis of dBET11 [0843] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.190 mL, 0.0190 mmol 1 eq) was added to 4-((5,11-dimethyl-6-oxo-6,11-dihydro-5H-benzo[e]pyrimido[5,4-b][1,4]diazepin-2-yl)amino)-3-methoxybenzoic acid(7.71 mg, 0.0190 mmol, 1 eq) at room temperature. DIPEA (9.9 microliters, 0.0571 mmol, 3 eq) and HATU (7.2 mg, 0.0190 mmol, 1 eq) were added and the mixture was stirred for 22 hours, before being purified by preparative HPLC to give HPLC to give the desired trifluoroacetate salt as a cream colored solid (6.72 mg, 0.00744 mmol, 39%). [0844] 1 H NMR (400 MHz, Methanol-d₄) δ 8.46 (d, J=8.3 Hz, 1H), 8.21 (s, 1H), 7.79-7.73 (m, 2H), 7.52 (d, J=7.1 Hz, 1H), 7.50-7.43 (m, 3H), 7.33 (d, J=8.2 Hz, 1H), 7.15 (dd, J=7.7, 5.9 Hz, 2H), 4.98 (dd, J=12.0, 5.5 Hz, 1H), 4.69 (s, 2H), 3.97 (s, 3H), 3.49 (s, 3H), 3.46-3.34 (m, 7H), 2.81-2.67 (m, 3H), 2.13-2.08 (m, 1H), 1.69 (dt, J=6.6, 3.5 Hz, 4H). 13 C NMR (100 MHz, cd₃od) δ 173.40, 170.10, 169.68, 169.00, 168.85, 167.60, 167.15, 164.77, 156.01, 155.42, 151.83, 150.03, 148.21, 137.82, 134.12, 133.48, 132.58, 132.52, 128.11, 126.72, 124.54, 122.33, 121.06, 120.63, 118.77, 118.38, 117.94, 117.62, 109.67, 68.90, 56.33, 49.96, 40.16, 39.48, 38.72, 36.34, 31.82, 27.24, 23.16. LCMS 790.48 (M+H). Example 15: Synthesis of dBET12 [0845] $$\begin{array}{c} H_2N \\ O \\ O \\ N \\ N \\ N \end{array}$$ dBET12 [0846] A 0.1 M solution N-(3-(2-(2-(3-aminopropoxy) ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.186 mL, 0.0186 mmol 1 eq) was added to 4-((5, 11-dimethyl-6-oxo-6,11-dihydro-5H-benzo[e]pyrimido[5,4-b][1,4]diazepin-2-yl)amino)-3-methoxybenzoic acid (7.53 mg, 0.0186 mmol, 1 eq) at room temperature. DIPEA (9.7 microliters, 0.0557 mmol, 3 eq) and HATU (7.1 mg, 0.0186 mmol, 1 eq) were added and the mixture was stirred for 22 hours, before being purified by preparative HPLC to give HPLC to give the desired trifluoroacetate salt as a cream colored solid (7.50 mg, 0.00724 mmol, 39%). [0847] 1 H NMR (400 MHz, Methanol-d₄) δ 8.46 (d, J=8.9 Hz, 1H), 8.21 (s, 1H), 7.73 (dd, J=15.2, 7.8 Hz, 2H), 7.50-7.42 (m, 3H), 7.28 (d, J=8.5 Hz, 1H), 7.15 (t, J=7.7 Hz, 2H), 5.01 (dd, J=11.8, 5.8 Hz, 1H), 4.68 (s, 2H), 3.97 (s, 3H), 3.67-3.58 (m, 7H), 3.58-3.43 (m, 10H), 3.39 (t, J=6.8 Hz, 2H), 3.35 (s, 2H), 2.97 (s, 1H), 2.84-2.70 (m, 3H), 2.16-2.07 (m, 1H), 1.93-1.76 (m, 4H). LCMS 922.57 (M+H). Example 16: Synthesis of dBET13 [0848] [0849] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.501 mL, 0.0501 mmol 1 eq) was added to 2-((2-(4-(3,5-dimethylisoxazol-4-yl)phenyl)imidazo[1,2-a]pyrazin-3-yl)amino)acetic acid (synthesized as in McKeown et al, J. Med. Chem, 2014, 57, 9019) (18.22 mg, 0.0501 mmol, 1 eq) at room temperature. DIPEA (26.3 microliters, 0.150 mmol, 3 eq) and HATU (19.0 mg, 0.0501 mmol, 1 eq) were added and the mixture was stirred for 21 hours, before being purified by preparative HPLC to give HPLC to give the desired trifluoroacetate salt as a dark yellow oil (29.66 mg, 0.0344 mmol, 69%). ¹H NMR (400 MHz, Methanol-d₄) δ 9.09 (s, 1H), 8.65 (d, J=5.2 Hz, 1H), 8.14-8.06 (m, 2H), 7.94-7.88 (m, 1H), 7.80-7.74 (m, 1H), 7.59-7.47 (m, 3H), 7.40 (dd, J=8.4, 4.7 Hz, 1H), 5.11-5.06 (m, 1H), 4.72 (d, J=9.8 Hz, 2H), 3.90 (s, 2H), 3.25-3.22 (m, 1H), 3.12 (t, J=6.4 Hz, 1H), 2.96 (s, 2H), 2.89-2.79 (m, 1H), 2.76-2.62 (m, 2H), 2.48-2.42 (m, 3H), 2.29 (s, 3H), 2.10 (ddq, J=10.2, 5.3, 2.7 Hz, 1H), 1.49-1.45 (m, 2H), 1.37 (dd, J=6.7, 3.6 Hz, 2H). ¹³C NMR (100 MHz, cd₃od) δ 174.45, 171.98, 171.35, 169.88, 168.17, 167.85, 167.40, 159.88, 156.28, 141.82, 138.26, 135.85, 134.82, 133.09, 132.06, 130.75, 129.67, 122.07, 121.94, 119.30, 118.98, 118.06, 117.24, 69.56, 50.56, 40.05, 39.73, 32.13, 27.53, 23.62, 18.71, 17.28, 11.64, 10.85. LCMS 748.49 (M+H). Example 17: Synthesis of dBET14 [0850] [0851] A 0.1 M solution N-(3-(2-(2-(3-aminopropoxy) ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.510 mL, 0.0510 mmol 1 eq) was added to 2-((2-(4-(3,5-dimethylisoxazol-4-yl)phenyl)imidazo[1,2-a] pyrazin-3-yl)amino)acetic acid (synthesized as in McKeown et al, J. Med. Chem, 2014, 57, 9019) (18.52 mg, 0.0510 mmol, 1 eq) at room temperature. DIPEA (26.6 microliters, 0.153 mmol, 3 eq) and HATU (19.4 mg, 0.0510 mmol, 1 eq) were added and the mixture was stirred for 22 hours, before being purified by preparative HPLC to give HPLC to give the desired trifluoroacetate salt as a dark yellow oil (32.63 mg, 0.0328 mmol, 64%). [0852] 1 H NMR (400 MHz, Methanol-d₄) δ 9.09 (s, 1H), 8.66 (d, J=5.4 Hz, 1H), 8.17-8.08 (m, 2H), 7.92 (d, J=5.6 Hz, 1H), 7.77 (dd, J=8.4, 7.4 Hz, 1H), 7.60-7.47 (m, 3H), 7.39 (d, J=8.4 Hz, 1H), 5.09 (dd, J=12.4, 5.5 Hz, 1H), 4.71 (s, 2H), 3.91 (s, 2H), 3.62-3.46 (m, 10H), 3.38 (dt, J=16.0, 6.4 Hz, 3H), 3.18 (t, J=6.8 Hz, 2H), 2.97 (s, 1H), 2.89-2.81 (m, 1H), 2.78-2.66 (m, 2H), 2.47 (s, 3H), 2.31 (s, 3H), 2.16-2.08 (m, 1H), 1.79 (dt, J=12.8, 6.5 Hz, 2H), 1.64 (t, J=6.3 Hz, 2H). 13 C NMR (100 MHz, cd₃od) δ 174.48, 171.88, 171.34, 169.80, 168.22, 167.69, 167.42, 159.87, 156.24, 141.87, 138.21, 135.89, 134.88, 133.13, 132.04, 130.76, 129.67, 122.08, 121.69, 119.20, 117.94, 117.23, 71.44, 71.22, 71.10, 69.92, 69.62, 69.38, 50.57, 49.64, 38.11, 37.55, 32.16, 30.30, 30.20, 23.63, 11.67, 10.88. LCMS 880.46 (M+H). dBET14 Example 18: Synthesis of dBET18 [0853] (1) Synthesis of (S)-tert-butyl 4-(3-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamido)propyl) piperazine-1-carboxylate [0854] JQ-acid (176.6 mg, 0.441 mmol, 1 eq) was dissolved in DMF (4.4 mL) at room temperature. HATU (176 mg, 0.463 mmol, 1.05 eq) was added, followed by DIPEA (0.23 mL), 1.32 mmol, 3 eq). After 10 minutes, tert-butyl 4-(3-aminopropyl)piperazine-1-carboxylate (118 mg, 0.485 mmol, 1.1 eq) was added as a solution in DMF (0.44 mL). After 24 hours, the mixture was diluted with half saturated sodium bicarbonate and extracted twice with DCM and once with EtOAc. The combined organic layer was dried over sodium sulfate, filtered and condensed. Purification by column chromatography (ISCO, 24 g silica column, 0-15% MeOH/DCM, 23 minute gradient) gave a yellow oil (325.5 mg, quant yield) [0855] 1 H NMR (400 MHz, Chloroform-d) δ 7.67 (t, J=5.3 Hz, 1H), 7.41-7.28 (m, 4H), 4.58 (dd, J=7.5, 5.9 Hz, 1H), 3.52-3.23 (m, 8H), 2.63 (s, 9H), 2.37 (s, 3H), 1.80-1.69 (m, 2H), 1.64 (s, 3H), 1.42 (s, 9H). 13 C NMR (100 MHz, cdcl₃) δ 171.41, 164.35, 155.62, 154.45, 150.20, 136.92, 136.64, 132.19, 131.14, 130.98, 130.42, 129.98, 128.80, 80.24, 56.11, 54.32, 52.70, 38.96, 37.85, 28.42, 25.17, 14.43, 13.16, 11.82. LCMS 626.36 (M+H). (2) Synthesis of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4] diazepin-6-yl)-N-(3-(piperazin-1-yl)propyl)acetamide [0856] (S)-tert-butyl 4-(3-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamido)propyl)piperazine-1-carboxylate (325.5 mg) was dissolved in DCM (5 mL) and MeOH (0.5 mL). A solution of 4M HCl in dioxane (1 mL) was added and the mixture was stirred for 16 hours, then concentrated under a stream of nitrogen to give a yellow solid (231.8 mg) which was used without further purification. [0857] 1 H NMR (400 MHz, Methanol-d₄) δ 7.64-7.53 (m, 4H), 5.05 (t, J=7.1 Hz, 1H),
3.81-3.66 (m, 6H), 3.62-3.33 (m, 9H), 3.30 (p, J=1.6 Hz, 1H), 2.94 (s, 3H), 2.51 (s, 3H), 2.09 (dq, J=11.8, 6.1 Hz, 2H), 1.72 (s, 3H). 13 C NMR (100 MHz, cd₃od) δ 171.78, 169.38, 155.83, 154.03, 152.14, 140.55, 136.33, 134.58, 134.53, 133.33, 132.73, 130.89, 130.38, 56.07, 53.54, 41.96, 37.22, 36.23, 25.11, 14.48, 13.14, 11.68. LCMS 526.29 (M+H). (3) Synthesis of (S)-tert-butyl (6-(4-(3-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamido)propyl)piperazin-1-yl)-6-oxohexyl)carbamate [0858] (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(3-(piperazin-1-yl)propyl)acetamide (62.1 mg) and 6-((tert-butoxycarbonyl)amino)hexanoic acid (24.0 mg, 0.1037 mmol, 1 eq) were dissolved in DMF (1 mL). DIPEA (72.2 microliters, 0.4147 mmol, 4 eq) was added, followed by HATU (39.4 mg, 0.1037 mmol, 1 eq) and the mixture was stirred for 25 hours. The mixture was diluted with half saturated sodium bicarbonate and extracted three times with DCM. The combined organic layer was dried over sodium sulfate, filtered and condensed. Purification by column chromatography (ISCO, 4 g silica column, 0-15% MeOH/DCM, 15 minute gradient) gave a yellow oil (71.75 mg, 0.0970 mmol, 94%). [0859] 1 H NMR (400 MHz, Chloroform-d) δ 7.61 (s, 1H), 7.43-7.28 (m, 4H), 4.63 (s, 1H), 4.61-4.56 (m, 1H), 3.82-3. 21 (m, 10H), 3.11-3.01 (m, 2H), 2.61 (d, J=24.3 Hz, 9H), 2.38 (s, 3H), 2.28 (t, J=7.4 Hz, 2H), 1.73 (dq, J=13.8, 7.4 Hz, 2H), 1.63-1.55 (m, 2H), 1.53-1.24 (m, 14H). 13 C NMR (100 MHz, cdcl₃) δ 171.63, 171.11, 164.34, 156.17, 155.66, 150.21, 136.96, 136.72, 132.25, 131.14, 131.01, 130.47, 130.00, 128.85, 79.11, 56.42, 54.46, 53.06, 52.82, 45.04, 41.02, 40.47, 39.29, 38.33, 33.00, 29.90, 28.54, 26.60, 25.29, 24.86, 14.47, 13.20, 11.86. LCMS 739.37 (M+H). (4) Synthesis of (S)—N-(3-(4-(6-aminohexanoyl) piperazin-1-yl)propyl)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4] diazepin-6-yl)acetamide [0860] (S)-tert-butyl (6-(4-(3-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamido)propyl)piperazin-1-yl)-6-oxohexyl) carbamate (71.75 mg, 0.0970 mmol, 1 eq) was dissolved in DCM (2 mL) and MeOH (0.2 mL). A solution of 4M HCl in dioxane (0.49 mL) was added and the mixture was stirred for 2 hours, then concentrated under a stream of nitrogen, followed by vacuum to give a yellow foam (59.8 mg, 0.0840 mmol, 87%). [0861] 1 H NMR (400 MHz, Methanol-d₄) δ 7.68-7.53 (m, 4H), 5.04 (d, J=6.6 Hz, 1H), 4.66 (d, J=13.6 Hz, 1H), 4.23 (d, J=13.6 Hz, 1H), 3.63-3.34 (m, 7H), 3.29-3.00 (m, 5H), 2.95 (d, J=6.0 Hz, 5H), 2.51 (d, J=9.2 Hz, 5H), 2.08 (s, 2H), 1.77-1.62 (m, 7H), 1.45 (dt, J=15.3, 8.6 Hz, 2H). 13 C NMR (100 MHz, cd₃od) δ 173.77, 171.84, 169.35, 155.85, 153.99, 140.56, 136.40, 134.58, 133.35, 132.70, 130.39, 55.83, 53.57, 52.92, 52.70, 43.57, 40.55, 39.67, 37.33, 36.25, 33.17, 28.26, 26.94, 25.33, 25.26, 14.49, 13.15, 11.65. LCMS 639.35 (M+H). ### (5) Synthesis of dBET18 [0862] (S)—N-(3-(4-(6-aminohexanoyl)piperazin-1-yl) propyl)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3, 2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamide dihydrochloride (20.0 mg, 0.0281 mmol, 1 eq) and 2-((2-(2,6- (dd, J=12.5, 5.4 Hz, 1H), 4.76 (s, 2H), 4.68 (t, J=7.3 Hz, 1H), 3.59-3.32 (m, 8H), 3.28-3.18 (m, 4H), 2.87 (ddd, J=19.0, 14.7, 5.3 Hz, 2H), 2.80-2.65 (m, 6H), 2.44 (d, J=6.8 Hz, 5H), 2.33-2.25 (m, 1H), 2.14 (dd, J=9.8, 4.9 Hz, 1H), 2.06-1.89 (m, 3H), 1.70 (s, 3H), 1.61 (dq, J=14.4, 7.3, 6.9 Hz, 4H), 1.45-1.37 (m, 2H). 13 C NMR (100 MHz, cd_3od) δ 174.52, 173.97, 173.69, 171.44, 169.88, 168.26, 167.83, 166.72, 156.36, 138.28, 137.84, 134.89, 133.52, 132.12, 131.83, 131.38, 129.89, 121.87, 119.32, 118.01, 69.52, 55.64, 55.03, 52.79, 50.58, 43.69, 39.77, 38.57, 36.89, 33.47, 32.16, 29.93, 27.34, 25.76, 25.45, 23.63, 14.39, 12.94, 11.66. LCMS 953.43 (M+H). Example 19: Synthesis of dBET19 [0864] dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetic acid (9.32 mg, 0.0281 mmol, 1 eq) were dissolved in DMF (0.281 mL). DIPEA (19.6 microliters, 0.1124 mmol, 4 eq) was added, followed by HATU (10.7 mg, 0.0281 mmol, 1 eq). After 24 hours, the mixture was diluted with MeOH and purified by preparative HPLC to give the desired trifluoroacetate salt. [0863] 1 H NMR (400 MHz, Methanol-d₄) δ 7.83-7.79 (m, 1H), 7.54 (d, J=7.1 Hz, 1H), 7.45 (q, J=8.8 Hz, 5H), 5.12 [0865] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (235 microliters, 0.0235 mmol, 1 eq) was added to (S)-2-(4-(4-chlorophenyl)-2-(cyanomethyl)-3,9-dimethyl-6H-thieno[3,2-f][1,2,4]triazolo [4,3-a][1,4]diazepin-6-yl)acetic acid (10 mg, 0.0235 mmol, 1 eq) at room temperature. DIPEA (12.3 microliters, 0.0704 mmol, 3 eq) and HATU (8.9 mg, 0.0235 mmol, 1 eq) were added and the mixture was stirred for 18.5 hours. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a white solid (12.96 mg, 0.0160 mmol, 68%). ¹H NMR (400 MHz, Chloroform-d) δ 7.80 (dd, J=8.4, 7.4 Hz, 1H), 7.55-7.37 (m, 6H), 5.14-5.06 (m, 1H), 4.77 (d, J=1.5 Hz, 2H), 4.64 (dd, J=8.0, 5.6 Hz, 1H), 3.45-3.32 (m, 5H), 3.29-3.21 (m, 2H), 2.83-2.66 (m, 6H), 2.58 (s, 3H), 2.14-2.06 (m, 1H), 1.71-1. 57 (m, 4H). LCMS 810.30, M+H). Example 20: Synthesis of dBET20 [0866] [0867] 3-((2-((4-(4-(4-aminobutanoyl)piperazin-1-yl)phenyl)amino)-5-methylpyrimidin-4-yl)amino)-N-(tert-butyl) benzenesulfonamide trifluoroacetate (7.41 mg, 0.0107 mmol, 1 eq) and 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetic acid (3.6 mg, 0.0107 mmol, 1 eq) were dissolved in DMF (214 microliters, 0.05M) at room temperature. DIPEA (5.6 microliters, 0.0321 mmol, 3 eq) and HATU (4.1 mg, 0.0107 mmol, 1 eq) were added. After 22.5 hours, the mixture was diluted with MeOH and purified by preparative HPLC to give the desired product as a brown residue (6.27 mg, 0.00701 mmol, 65%). ¹H NMR (500 MHz, Methanol-d₄) δ 8.06 (s, 1H), 7.84-7.75 (m, 3H), 7.65 (s, 1H), 7.55 (t, J=7.8 Hz, 2H), 7.45 (d, J=8.4 Hz, 1H), 7.25-7.20 (m, 2H), 6.99 (d, J=8.8 Hz, 2H), 5.11 (dd, J=12.5, dBET20 5.4 Hz, 1H), 4.78 (s, 2H), 3.79-3.66 (m, 4H), 3.40 (t, J=6.6 Hz, 2H), 3.24-3.13 (m, 4H), 2.82-2.68 (m, 3H), 2.52 (t, J=7.4 Hz, 2H), 2.24-2.19 (m, 3H), 2.12 (dd, J=10.2, 5.1 Hz, 1H), 1.92 (dd, J=13.4, 6.4 Hz, 2H), 1.18 (s, 9H). LCMS 895.63 (M+H). Example 21: Synthesis of dBET21 [0868] [0869] A 0.1 M solution of 4-((10-aminodecyl)oxy)-2-(2, 6-dioxopiperidin-3-yl)isoindoline-1,3-dione trifluoroacetate in DMF (232 microliters, 0.0232 mmol, 1 eq) was added to JQ-acid (9.3 mg, 0.0232 mmol, 1 eq) at room temperature. DIPEA (12.1 microliters, 0.0696 mmol, 3 eq) and HATU (8.8 mg, 0.0232 mmol, 1 eq) were added and the mixture was stirred for 18 hours. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by preparative HPLC followed by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as an off-white residue (1.84 mg, 0.00235 mmol, 10%). $^1\mathrm{H}$ NMR (500 MHz, Methanol-d₄) δ 7.77-7.73 (m, 1H), 7.50-7.33 (m, 6H), 5.09 (dd, J=12.5, 5.5 Hz, 1H), 4.62 (s, 1H), 4.21 (t, J=6.4 Hz, 2H), 3.36 (s, 2H), 2.87-2.67 (m, 6H), 2.44 (s, 3H), 1.88-1.82 (m, 2H), 1.70 (s, 3H), 1.58 (s, 4H), 1.29 (s, 8H). LCMS 784.51 (M+H). Example 22: Synthesis of dBET22 [0870] [0871] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (247 microliters, 0.0247 mmol, 1 eq) was added to (S)-4-(4-chlorophenyl)-6-(2-methoxy-2-oxoethyl)-3,9-dimethyl-6H-thieno[3,2-f][1,2,4] triazolo[4,3-a][1,4]diazepine-2-carboxylic acid (10.98 mg, 0.0247 mmol, 1 eq) at room temperature. DIPEA (12.9 microliters, 0.0740 mmol, 3 eq) and HATU (9.4 mg, 0.0247 mmol, 1 eq) were added. The mixture was then stirred for 21 hours, then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a white solid (9.79 mg, 0.0118 mmol, 48%). ¹H NMR (400 MHz, Methanol-d₄) & 7.80 (dd, J=8.4, 7.4 Hz, 1H), 7.51 (dd, J=7.1, 1.5 Hz, 1H), 7.48-7.34 (m, 5H), 5.11 (ddd, J=12.4, 5.4, 3.5 Hz, 1H), 4.76 (s, 2H), 4.69 (td, J=7.2, 1.4 Hz, 1H), 3.76 (s, 3H), 3.55 (d, J=7.2 Hz, 2H), 3.48-3.33 (m, 4H), 2.93-2.82 (m, 1H), 2.78-2.64 (m, 5H), 2.14-2.07 (m, 1H), 1.96 (d, J=0.9 Hz, 3H), 1.66 (s, 4H). LCMS 829.39 (M+H). Example 23: Synthesis of dBET23 [0872] [0873] A 0.1 M solution of N-(8-aminooctyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (220 microliters, 0.0220 mmol, 1 eq) was added to (S)-4-(4-chlorophenyl)-6-(2-methoxy-2-oxoethyl)-3,9-dimethyl-6H-thieno[3,2-f][1,2,4] triazolo[4,3-a][1,4]diazepine-2-carboxylic acid (9.87 mg, 0.0220 mmol, 1 eq) at room temperature. DIPEA (11.5 microliters, 0.0660 mmol, 3 eq) and HATU (8.4 mg, 0.0220 mmol, 1 eq) were added. The mixture was then stirred for 21 hours, then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a white solid (8.84
mg, 0.00998 mmol, 45%). ¹H NMR (400 MHz, Methanol-d₄) 8 7.81 (dd, J=8.4, 7.4 Hz, 1H), 7.53 (d, J=7.3 Hz, 1H), 7.50-7.39 (m, 5H), 5.12 (dd, J=12.6, 5.4 Hz, 1H), 4.75 (s, 2H), 4.68 (t, J=7.2 Hz, 1H), 3.76 (s, 3H), 3.54 (d, J=7.2 Hz, 2H), 3.39-3.32 (m, 3H), 3.29 (s, 1H), 2.90-2.83 (m, 1H), 2.79-2.68 (m, 5H), 2.14 (dd, J=8.9, 3.7 Hz, 1H), 1.99 (s, 3H), 1.65-1.53 (m, 4H), 1.36 (d, J=6.5 Hz, 8H). LCMS 885.47 (M+H). #### Example 24: Synthesis of dBET24 Step 1: Synthesis of tert-butyl (2-(2-(2-(2-(2-(2-(2-(dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy) acetamido)ethoxy)ethoxy)ethyl)carbamate [0874] 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetic acid (200 mg, 0.602 mmol, 1 eq) was dissolved in DMF (6.0 mL, 0.1M). HATU (228.9 mg, 0.602 mmol, 1 eq), DIPEA (0.315 mL, 1.81 mmol, 3 eq) and N-Boc-2,2'-(ethylenedioxy)diethylamine (0.143 mL, 0.602 mmol, 1 eq) were added sequentially. After 6 hours, additional HATU (114 mg, 0.30 mmol, 0.5 eq) were added to ensure completeness of reaction. After an additional 24 hours, the mixture was diluted with EtOAc, and washed with saturated sodium bicarbonate, water and twice with brine. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 12 g silica column, 0-15% MeOH/DCM, 15 minute gradient) gave the desired product as a yellow oil (0.25 g, 0.44 mmol, 74%). ¹H NMR $(400 \text{ MHz}, \text{Methanol-d}_4) \delta 7.82-7.75 \text{ (m, 1H)}, 7.51 \text{ (d, J=7.4)}$ Hz, 1H), 7.41 (d, J=8.5 Hz, 1H), 5.13 (dd, J=12.4, 5.5 Hz, 1H), 4.76 (s, 2H), 3.66-3.58 (m, 6H), 3.53-3.45 (m, 4H), 3.19 (t, J=5.6 Hz, 2H), 2.95-2.83 (m, 1H), 2.80-2.67 (m, 2H), 2.19-2.12 (m, 1H), 1.41 (s, 9H). LCMS 563.34 (M+H). Step 2: Synthesis of N-(2-(2-(2-aminoethoxy) ethoxy)ethyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate [0875] tert-butyl (2-(2-(2-(2-((2-(2-6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)ethoxy)ethoxy) ethyl)carbamate (0.25 g, 0.44 mmol, 1 eq) was dissolved in TFA (4.5 mL) and heated to 50° C. After 3 hours, the mixture was cooled to room temperature, diluted with MeOH, and concentrated under reduced pressure. Purification by pre- parative HPLC gave the desired product as a tan solid (0.197 g, 0.342 mmol, 77%). $^1\mathrm{H}$ NMR (400 MHz, Methanol-d_4) δ 7.81 (ddd, J=8.4, 7.4, 1.1 Hz, 1H), 7.55-7.50 (m, 1H), 7.43 (d, J=8.5 Hz, 1H), 5.13 (dd, J=12.7, 5.5 Hz, 1H), 4.78 (s, 2H), 3.74-3.66 (m, 6H), 3.64 (t, J=5.4 Hz, 2H), 3.52 (t, J=5.3 Hz, 2H), 3.14-3.08 (m, 2H), 2.89 (ddd, J=17.5, 13.9, 5.2 Hz, 1H), 2.80-2.66 (m, 2H), 2.16 (dtd, J=13.0, 5.7, 2.7 Hz, 1H). LCMS 463.36 (M+H). #### Step 2: Synthesis of dBET24 [0876] A 0.1 M solution of N-(2-(2-(2-aminoethoxy) ethoxy)ethyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.324 mL, 0.0324 mmol, 1 eq) was added to JQ-acid (13.0 mg, 0.324 mmol, 1 eq). DIPEA 16.9 microliters, 0.0972 mmol, 3 eq) and HATU (12.3 mg, 0.0324 mmol, 1 eq) were then added and the mixture was stirred for 18 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as an off-white solid (20.0 mg, 0.0236 mmol, 73%). ¹H NMR (400 MHz, Methanol-d₄) δ 7.77-7.72 (m, 1H), 7.49 (d, J=7.4 Hz, 1H), 7.45-7.35 (m, 5H), 5.09 (ddd, J=12.3, 5.4, 3.7 Hz, 1H), 4.76 (s, 2H), 4.60 (dd, J=8.9, 5.3 Hz, 1H), 3.68-3.62 (m, 6H), 3.59 (t, J=5.6 Hz, 2H), 3.54-3.48 (m, 2H), 3.47-3.35 (m, 4H), 2.84 (ddd, J=19.4, 9.9, 4.6 Hz, 1H), 2.77-2.69 (m, 2H), 2.68 (d, J=1.8 Hz, 3H), 2.43 (s, 3H), 2.12 (dt, J=9.8, 5.3 Hz, 1H), 1.68 (s, 3H). LCMS 845.39 (M+H). Example 25: Synthesis of dBET25 [0877] $$\begin{array}{c} \text{MeO} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{O} \\$$ [0878] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (183 microliters, 0.0183 mmol, 1 eq) was added to (S)-4-(4-chlorophenyl)-6-(2-methoxy-2-oxoethyl)-2,9-dimethyl-6H-thieno[3,2-f][1,2,4] triazolo[4,3-a][1,4]diazepine-3-carboxylic acid (8.16 mg, 0.0183 mmol, 1 eq) at room temperature. DIPEA (9.6 microliters, 0.0550 mmol, 3 eq) and HATU (7.0 mg, 0.0183 mmol, 1 eq) were added. The mixture was then stirred for 23 hours, then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a yellow solid (4.39 mg, 0.00529 mmol, 29%). $^1{\rm H}$ NMR (400 MHz, Methanol-d₄) δ 7.82 (dd, J=8.4, 7.4 Hz, 1H), 7.55 (d, J=7.3 Hz, 1H), 7.45 (d, J=8.2 Hz, 1H), 7.43-7.31 (m, 4H), 5.16-5.10 (m, 1H), 4.77 (d, J=1.5 Hz, 2H), 4.56 (s, 1H), 3.74 (d, J=1.8 Hz, 3H), 3.66-3.60 (m, 1H), 3.50 (dd, J=16.5, 7.3 Hz, 1H), 3.37-3.32 (m, 1H), 3.28 (s, 3H), 2.85 (t, J=7.2 Hz, 2H), 2.75 (d, J=7.8 Hz, 1H), 2.71 (d, J=0.9 Hz, 3H), 2.59 (d, J=1.0 Hz, 3H), 2.18-2.10 (m, 1H), 1.36-1.24 (m, 4H). LCMS 829.38 (M+H). Example 26: Synthesis of dBET26 [0879] $$\begin{array}{c} \text{MeO} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{O} \\$$ [0880] A 0.1 M solution of N-(8-aminooctyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (186 microliters, 0.0186 mmol, 1 eq) was added to (S)-4-(4-chlorophenyl)-6-(2-methoxy-2-oxoethyl)-2,9-dimethyl-6H-thieno[3,2-f][1,2,4] triazolo[4,3-a][1,4]diazepine-3-carboxylic acid (8.26 mg, 0.0186 mmol, 1 eq) at room temperature. DIPEA (9.7 microliters, 0.0557 mmol, 3 eq) and HATU (7.1 mg, 0.0186 mmol, 1 eq) were added. The mixture was then stirred for 23 hours, then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a cream colored solid (6.34 mg, 0.00716 mmol, 38%). $^1\mathrm{H}$ NMR (400 MHz, Methanol-d₄) δ 7.83-7.78 (m, 1H), 7.53 (dd, J=7.3, 2.2 Hz, 1H), 7.45-7.38 (m, 3H), 7.32 (dd, J=8.5, 1.3 Hz, 2H), 5.16-5.08 (m, 1H), 4.76 (s, 2H), 4.56 (s, 1H), 3.75 (s, 3H), 3.66 (dd, J=15.9, 8.7 Hz, 1H), 3.50 (dd, J=16.9, 6.9 Hz, 1H), 3.32 (d, J=2.8 Hz, 4H), 2.84-2.74 (m, 3H), 2.70 (d, J=1.1 Hz, 3H), 2.66-2.54 (m, 3H), 2.14 (d, J=5.3 Hz, 1H), 1.62-1.22 (m, 12H). LCMS 885.48 (M+H). Example 27: Synthesis of dBET27 [0881] [0882] A 0.1 M solution of 4-(2-(2-aminoethoxy)ethoxy)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione trifluoroacetate in DMF (257 microliters, 0.0257 mmol, 1 eq) was added to JQ-acid (10.3 mg, 0.0257 mmol, 1 eq). DIPEA (13.4 microliters, 0.0771 mmol, 3 eq) and HATU (9.8 mg, 0.0257 mmol, 1 eq) were then added and the mixture was stirred for 18 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a white solid (14.53 mg, 0.0195 mmol, 76%). 1 H NMR (400 MHz, Methanol-d₄) 5 7.75 (ddd, J=8.5, 7.3, 1.3 Hz, 1H), 7.47-7.30 (m, 6H), 5.00 (ddd, J=25.4, 12.2, 5.2 Hz, 1H), 4.61 (td, J=9.4, 5.0 Hz, 1H), 4.36 (q, J=4.8 Hz, 2H), 3.96-3.89 (m, 2H), 3.74 (q, J=5.6 Hz, 2H), 3.53-3.41 (m, 3H), 3.30-3.24 (m, 1H), 2.78-2.53 (m, 6H), 2.41 (d, J=3.9 Hz, 3H), 2.09-1.98 (m, 1H), 1.67 (d, J=5.0 Hz, 3H). Example 28: Synthesis of dBET28 #### [0883] [0884] A 0.1 M solution of 4-(4-aminobutoxy)-2-(2,6dioxopiperidin-3-yl)isoindoline-1,3-dione trifluoroacetate in DMF (202 microliters, 0.0202 mmol, 1 eq) was added to JQ-acid (8.1 mg, 0.0202 mmol, 1 eq). DIPEA (10.6 microliters, 0.0606 mmol, 3 eq) and HATU (7.7 mg, 0.0202 mmol, 1 eq) were then added and the mixture was stirred for 18.5 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a cream colored solid (10.46 mg, 0.0144 mmol, 71%). ¹H NMR (400 MHz, Methanol-d₄) δ 7.76 (t, J=7.5 Hz, 1H), 7.43 (td, J=6.5, 2.5 Hz, 4H), 7.34 (t, J=8.8 Hz, 2H), 5.08-4.98 (m, 1H), 4.64 (td, J=9.1, 5.0 Hz, 1H), 4.26 (t, J=5.3 Hz, 2H), 3.57-3.32 (m, 4H), 2.84-2.59 (m, 6H), 2.45-2.37 (m, 3H), 2.08-2.01 (m, 1H), 2.00-1.91 (m, 2H), 1.82 (dq, J=13.8, 6.9 Hz, 2H), 1.68 (d, J=11.7 Hz, 3H). LCMS 728.38 (M+H). Example 29: Synthesis of dBET29 [0885] [0886] A 0.1 M solution of 4-((6-aminohexyl)oxy)-2-(2, 6-dioxopiperidin-3-yl)isoindoline-1,3-dione in DMF (205 microliters, 0.0205 mmol, 1 eq) was added to JQ-acid (8.2 mg, 0.0205 mmol, 1 eq). DIPEA (10.7 microliters, 0.0614 mmol, 3 eq) and HATU (7.8 mg, 0.0205 mmol, 1 eq) were then added and the mixture was stirred for 19 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a white solid (8.04 mg, 0.0106 mmol, 52%). ¹H NMR (400 MHz, Methanol- d_4) δ 7.75-7.71 (m, 1H), 7.51-7.34 (m, 6H), 5.07 (ddd, J=12.1, 5.4, 2.4
Hz, 1H), 4.62 (dd, J=9.0, 5.2 Hz, 1H), 4.22 (t, J=6.4 Hz, 2H), 3.44-3.32 (m, 2H), 3.29-3.21 (m, 2H), 2.88-2.65 (m, 6H), 2.43 (s, 3H), 2.13-2.06 (m, 1H), 1.86 (dt, J=13.9, 6.7 Hz, 2H), 1.68 (s, 3H), 1.59 (dq, J=14.2, 7.0 Hz, 4H), 1.54-1.45 (m, 2H). LCMS 756.40 (M+H). dBET29 Example 30: Synthesis of dBET30 [0887] [0888] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (163 microliters, 0.0163 mmol, 1 eq) was added to (S)-4-(4-chlorophenyl)-3,9-dimethyl-6-(2-((3-(4-methylpiperazin-1-yl)propyl)amino)-2-oxoethyl)-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine-2-carboxylic acid (9.31 mg, 0.0163 mmol, 1 eq) at room temperature. DIPEA (8.5 microliters, 0.0490 mmol, 3 eq) and HATU (6.2 mg, 0.0163 mmol, 1 eq) were added. The mixture was then stirred for 23.5 hours, then purified by preparative HPLC to give the desired product as a yellow oil (11.48 mg, 0.0107 mmol, 66%). $^1\mathrm{H}$ NMR (400 MHz, Methanol-d₄) δ 7.82-7.78 (m, 1H), 7.54-7.35 (m, 6H), 5.09 (td, J=12.7, 5.4 Hz, 1H), 4.77-4.70 (m, 3H), 3.56-3.31 (m, 12H), 3.23 (dd, J=8.0, 6.0 Hz, 3H), 3.05 (d, J=3.2 Hz, 2H), dBET30 2.93-2.81 (m, 5H), 2.78-2.63 (m, 5H), 2.15-2.05 (m, 2H), 1.96-1.86 (m, 4H), 1.68 (s, 4H). LCMS 954.55 (M+H). Example 31: Synthesis of dBET31 [0889] epine-2-carboxylic acid (8.7 mg, 0.0153 mmol, 1 eq) at room temperature. DIPEA (7.9 microliters, 0.0458 mmol, 3 eq) and HATU (5.8 mg, 0.0153 mmol, 1 eq) were added. The mixture was then stirred for 25 hours, then purified by preparative HPLC to give the desired product as a nice brown (not like poop brown, kind of like brick) oil (9.52 mg, [0890] A 0.1 M solution of N-(8-aminooctyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (153 microliters, 0.0153 mmol, 1 eq) was added to (S)-4-(4-chlorophenyl)-3,9-dimethyl-6-(2-((3-(4-methylpiperazin-1-yl)propyl)amino)-2-oxoethyl)-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diaz- 0.00847 mmol, 55%). $^1\mathrm{H}$ NMR (400 MHz, Methanol-d_4) δ 7.81 (dd, J=8.4, 7.4 Hz, 1H), 7.59-7.40 (m, 6H), 5.12 (dd, J=12.5, 5.4 Hz, 1H), 4.75 (s, 2H), 4.71 (t, J=7.4 Hz, 1H), 3.53-3.34 (m, 8H), 3.29-3.11 (m, 6H), 3.03-2.61 (m, 13H), 2.15 (s, 1H), 2.01-1.84 (m, 5H), 1.59 (s, 4H), 1.37 (s, 8H). LCMS 1010.62 (M+H). #### Example 32: Synthesis of dBET32 #### Example 33: Synthesis of dBET33 [0892] dBET33 [0893] A 0.1 M solution of N-(8-aminooctyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (188 microliters, 0.0188 mmol, 1 eq) was added to 4-(4-(4-((4-((4-((4-((4-((4-((4-((4-((3-(N-(tert-butyl) sulfamoyl)phenyl)piperazin-1-yl)-4-oxobutanoic acid (10.8 mg, 0.0188 mmol, 1 eq) at room temperature. DIPEA (9.8 microliters, 0.0564 mmol, 3 eq) and HATU (7.1 mg, 0.0188 mmol, 1 eq) were added and the mixture was stirred for 23 hours. The mixture was then diluted with methanol and purified by preparative HPLC to give the desired product as a brown residue (7.41 mg, 0.00715 mmol, 38%). ¹H NMR (500 MHz, Methanol-d₄) δ 8.06 (s, 1H), 7.80 (ddd, J=10.5, 7.6, 3.2 Hz, 3H), 7.65 (d, J=4.5 Hz, 1H), 7.57-7.51 (m, 2H), 7.41 (dd, J=8.4, 2.9 Hz, 1H), 7.25 (td, J=6.7, 2.9 Hz, 2H), 7.02 (t, J=8.0 Hz, 2H), 5.16-5.09 (m, 1H), 4.75 (d, J=9.5 Hz, 2H), 3.76 (dq, J=16.0, 5.3 Hz, 4H), 3.29-3.12 (m, 7H), 3.00-2.67 (m, 7H), 2.51 (t, J=6.8 Hz, 1H), 2.22 (d, J=3.1 Hz, 3H), 2.13 (dtd, J=10.4, 5.7, 3.1 Hz, 1H), 1.59-1.52 (m, 2H), 1.51-1.43 (m, 2H), 1.32 (t, J=16.6 Hz, 8H), 1.18 (d, J=1.3 Hz, 9H). LCMS 1036.69 (M+H). Example 34: Synthesis of dBET34 #### [0894] TFA•H₂N [0895] A 0.1 M solution of N-(3-(2-(2-(3-aminopropoxy) ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate DMF (173 microliters, 0.0173 mmol, 1 eq) was added to methylpyrimidin-2-yl)amino)phenyl)piperazin-1-yl)-4oxobutanoic acid (10.3 mg, 0.0173 mmol, 1 eq) at room temperature. DIPEA (9.0 microliters, 0.0519 mmol, 3 eq) and HATU (6.6 mg, 0.0173 mmol, 1 eq) were added and the mixture was stirred for 25 hours. The mixture was then diluted with methanol and purified by preparative HPLC to give the desired product as a brown residue (7.99 mg, 0.00718 mmol, 42%). ¹H NMR (500 MHz, Methanol-d₄) δ 8.06 (s, 1H), 7.83-7.76 (m, 3H), 7.65 (s, 1H), 7.58-7.50 (m, 2H), 7.43 (dd, J=17.7, 8.4 Hz, 1H), 7.27-7.21 (m, 2H), 7.02 (t, J=8.0 Hz, 2H), 5.13 (dt, J=12.7, 5.2 Hz, 1H), 4.76 (d, J=12.4 Hz, 2H), 3.73 (q, J=6.3 Hz, 4H), 3.63-3.49 (m, 10H), 3.41 (q, J=6.6 Hz, 2H), 3.27-3.15 (m, 5H), 3.01-2.81 (m, 4H), 2.79-2.63 (m, 5H), 2.50 (t, J=6.8 Hz, 1H), 2.22 (d, J=2.3 Hz, 3H), 2.17-2.11 (m, 1H), 1.88-1.70 (m, 4H), 1.18 (d, J=1.2 Hz, 9H). LCMS 1112.74 (M+H). Example 35: Synthesis of dBET35 [0896] [0897] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)amino)acetamide trifluoroacetate in DMF (185 microliters, 0.0185 mmol, 1 eq) was added to JQ-acid (7.4 mg, 0.0185 mmol, 1 eq). DIPEA (9.6 microliters, 0.0554 mmol, 3 eq) and HATU (7.0 mg, 0.0185 mmol, 1 eq) were then added and the mixture was stirred for 17 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-15% MeOH/DCM, 25 minute gradient) gave the desired product as a white solid (2.71 mg, 0.00351 mmol, 19%). ¹H NMR (500 MHz, Methanol-d₄) δ 7.48-7.37 (m, 4H), 7.34 (t, J=7.8 Hz, 1H), 7.14 (dd, J=7.4, 2.4 Hz, 1H), 6.67 (d, J=8.1 Hz, 1H), 5.14 (td, J=13.5, 5.2 Hz, 1H), 4.66-4.60 (m, 1H), 4.59 (d, J=8.3 Hz, 2H), 4.43-4.31 (m, 2H), 3.88 (s, 2H), 3.25 (dd, J=14.8, 7.1 Hz, 4H), 2.94-2.72 (m, 3H), 2.68 (d, J=4.9 Hz, 3H), 2.49-2.40 (m, 4H), 2.21-2.12 (m, 1H), 1.68 (s, 3H), 1.53 (s, 4H). LCMS 770.51 (M+H). dBET35 Example 36: Synthesis of dBET36 [0898] [0899] A 0.1 M solution of N-(4-aminobutyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)acetamide trifluoroacetate in DMF (222 microliters, 0.0222 mmol, 1 eq) was added to JQ-acid (8.9 mg, 0.0222 mmol, 1 eq). DIPEA (11.6 microliters, 0.0666 mmol, 3 eq) and HATU (8.4 mg, 0.0222 mmol, 1 eq) were then added and the mixture was stirred for 17.5 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-15% MeOH/ DCM, 25 minute gradient) gave the desired product as a white solid (12.42 mg, 0.0156 mmol, 70%). $^1\mathrm{H}$ NMR (500 MHz, Methanol-d_4) δ 7.80-7.74 (m, 2H), 7.68 (d, J=6.8 Hz, 1H), 7.42 (q, J=8.7 Hz, 4H), 5.11 (dt, J=12.3, 4.6 Hz, 1H), 4.63 (dd, J=8.8, 5.5 Hz, 1H), 4.10-4.00 (m, 2H), 3.39 (ddd, J=14.9, 8.8, 2.5 Hz, 1H), 3.30-3.21 (m, 5H), 2.88-2.76 (m, 1H), 2.74-2.65 (m, 5H), 2.44 (s, 3H), 2.15-2.08 (m, 1H), 1.69 (s, 3H), 1.63-1.55 (m, 4H). LCMS 769.49 (M+H). Example 37: Synthesis of dBET37 [0900] [0901] A 0.1 M solution of 6-amino-N-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)methyl)hexanamide trifluoroacetate in DMF (195 microliters, 0.0195 mmol, 1 eq) was added to JQ-acid (7.8 mg, 0.0195 mmol, 1 eq). DIPEA (10.2 microliters, 0.0584 mmol, 3 eq) and HATU (7.4 mg, 0.0195 mmol, 1 eq) were then added and the mixture was stirred for 18 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-15% MeOH/DCM, 25 minute gradient) gave the desired product as a white solid (11.83 mg, 0.0151 mmol, 77%). ¹H NMR (500 MHz, Methanol-d₄) & 7.78-7.74 (m, 2H), 7.71 (dd, J=5.3, 3.5 Hz, 1H), 7.42 (q, J=8.5 Hz, 4H), 5.13 (dd, J=12.6, 5.5 Hz, 1H), 4.82 (s, 2H), 4.63 (dd, J=8.8, 5.5 Hz, 1H), 3.40 (ddd, J=15.0, 8.8, 1.6 Hz, 1H), 3.30-3.21 (m, 3H), 2.86 (ddd, J=18.4, 14.6, 4.8 Hz, 1H), 2.74 (ddd, J=13.8, 10.1, 2.8 Hz, 2H), 2.69 (s, 3H), 2.44 (s, 3H), 2.30 (t, J=7.4 Hz, 2H), 2.13 (dd, J=12.9, 4.9, 2.3 Hz, 1H), 1.74-1.64 (m, 5H), 1.59 (p, J=7.0 Hz, 2H), 1.46-1.38 (m, 2H). LCMS 783.47 (M+H). #### Example 38: Synthesis of dBET38 Step 1: Synthesis of tert-butyl (3-(3-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy) acetamido)propoxy)propyl)carbamate [0902] tert-butyl (3-(3-aminopropoxy)propyl)carbamate (134.5 mg, 0.579 mmol, 1 eq) was dissolved in DMF (5.79 ml, 0.05 M) then added to 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetic acid (192.38 mg, 0.579 mmol, 1 eq). DIPEA (0.28 ml, 1.74 mmol, 3 eq) and HATU (153.61 mg, 0.579 mmol, 1 eq) were added and the mixture was stirred for 18 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water then brine. The organic layer was dried over sodium sulfate, filtered and condensed to give a yellow oil (157.1 mg). The crude material was purified by column chromatography (ISCO, 12 g silica column, 0 to 15% MeOH/DCM 25 minute gradient) to give a yellow oil (121.3 mg, 0.222 mmol, 38.27%). ¹H NMR (400 MHz, Methanol-d₄) 8 7.78 (dd, J=8.4, 7.4 Hz, 1H), 7.50 (d, J=7.3 Hz, 1H), 7.41 (d, J=8.5 Hz, 1H), 5.13 (dd, J=12.4, 5.5 Hz, 1H), 4.75 (s, 2H), 3.53-3.37 (m, 6H), 3.14-3.07 (m, 2H), 2.94-2.88 (m, 1H), 2.79-2.68 (m, 2H), 2.16 (ddd, J=12.8, 6.6, 2.7 Hz, 1H), 1.81 (p, J=6.4 Hz, 2H), 1.73-1.65 (m, 2H), 1.40 (s, 9H). LCMS 547.6 (M+H). Step 2: Synthesis of N-(3-(3-aminopropoxy)propyl)-2-((2-(2,6-dioxopuperidin-3-yl)-1,3-dioxoisoin-dolin-4-yl)oxy)acetamide trifluoroacetate salt [0903] TFA (2.22 ml, 0.1 M) was added to tert-butyl (3-(3-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)propoxy)propyl)carbamate (121.3
mg, 0.222 mmol, 1 eq) and the mixture was stirred at 50° C. for 2 hours. The mixture was then dissolved in MeOH and concentrated under reduced pressure to give a brown oil (114.1 mg) that was carried forward without further purification. ¹H NMR (400 MHz, Methanol-d₄) & 7.81-7.74 (m, 1H), 7.50 (d, J=7.3 Hz, 1H), 7.41 (d, J=8.5 Hz, 1H), 5.12 (dd, J=12.7, 5.5 Hz, 1H), 4.76 (s, 2H), 3.57-3.52 (m, 2H), 3.48 (t, J=5.9 Hz, 2H), 3.40 (t, J=6.6 Hz, 2H), 3.06 (t, J=6.5 Hz, 2H), 2.87 (ddd, J=14.1, 10.1, 7.0 Hz, 1H), 2.79-2.65 (m, 2H), 2.15 (dtd, J=12.8, 5.5, 2.6 Hz, 1H), 1.92 (dt, J=11.7, 5.9 Hz, 2H), 1.81 (p, J=6.3 Hz, 2H). LCMS 447.2 (M+H). Step 3: Synthesis of dBET38 [0905] A 0.1 M solution of N-(3-(3-aminopropoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (0.215 mL, 0.0215 mmol, 1 eq) was added to JQ-acid (8.6 mg, 0.0215 mmol, 1 eq) at room temperature. DIPEA (11.2 microliters, 0.0644 mmol, 3 eq) and HATU (8.2 mg, 0.0215 mmol, 1 eq) were added. After 19 hours, the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-15% MeOH/DCM, 25 minute gradient) gave the desired product as a cream colored solid (10.6 mg, 0.0127 mmol, 59%). $^1{\rm H}$ NMR (500 MHz, Methanol-d₄) δ 7.79-7.74 (m, 1H), 7.50 (d, J=8.1 Hz, 1H), 7.46-7.36 (m, 5H), 5.11 (ddd, J=12.4, 5.5, 1.7 Hz, 1H), 4.73 (s, 2H), 4.62 (ddd, J=8.7, 5.4, 1.4 Hz, 1H), 3.50 (q, J=6.3 Hz, 4H), 3.43 (t, J=6.5 Hz, 2H), 3.41-3.32 (m, 3H), 3.29-3.24 (m, 1H), 2.85 (ddd, J=18.3, 14.6, 4.2 Hz, 1H), 2.77-2.65 (m, 5H), 2.43 (s, 3H), 2.17-2.09 (m, 1H), 1.80 (h, J=6.4 Hz, 4H), 1.68 (s, 3H). LCMS 829.32 (M+H). Example 39: Synthesis of dBET39 [0906] dBET39 [0907] A 0.1 M solution of 4-((10-aminodecyl)oxy)-2-(2, 6-dioxopiperidin-3-yl)isoindoline-1,3-dione trifluoroacetate in DMF (0.212 mL, 0.0212 mmol, 1 eq) was added to JQ-acid (8.5 mg, 0.0212 mmol, 1 eq) at room temperature. DIPEA (11.1 microliters, 0.0636 mmol, 3 eq) and HATU (8.1 mg, 0.0212 mmol, 1 eq) were added. After 19 hours, the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-15% MeOH/DCM, 25 minute gradient) and preparative HPLC gave the desired product (0.39 mg, 0.00048 mmol, 2.3%). H NMR (500 MHz, Methanol- d_4) δ 7.77-7.73 (m, 1H), 7.56-7.31 (m, 6H), 5.11-5.06 (m, 1H), 4.62 (dd, J=9.2, 5.0 Hz, 1H), 4.58 (s, 2H), 4.21 (t, J=6.3 Hz, 2H), 3.42-3.38 (m, 1H), 3.24-3.20 (m, 1H), 2.90-2.68 (m, 6H), 2.45 (d, J=6.7 Hz, 3H), 2.11 (s, 1H), 1.83 (dd, J=14.7, 6.6 Hz, 2H), 1.70 (s, 3H), 1.61-1.49 (m, 4H), 1.32 (d, J=23.2 Hz, 10H). LCMS 812.60 (M+H). Example 40: Synthesis of dBET40 [0908] filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) and preparative HPLC gave the desired product as a brown oil (4.74 mg, 0.00601 mmol, 25%). $^1\mathrm{H}$ NMR (500 MHz, Methanol-d₄) δ 7.77-7.67 (m, 1H), 7.52-7.36 (m, 5H), 5.09-5.03 (m, 1H), 4.64 (d, J=4.8 Hz, 1H), 4.40-4.32 (m, 2H), 3.97-3.88 (m, 2H), 3.81-3.74 (m, 2H), 3.69-3.60 (m, 5H), 3.55-3.38 (m, 4H), 2.89-2.54 (m, 6H), 2.45 (d, J=5.9 Hz, 3H), 2.11 (s, 1H), 1.70 (d, J=8.6 Hz, 3H). LCMS 788.42 (M+H). Example 41: Synthesis of dBET41 Step 1: Synthesis of tert-butyl (4-((2-((2-(2,6-di-oxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy) acetamido)methyl)benzyl)carbamate [0910] tert-butyl (4-(aminomethyl)benzyl)carbamate (183.14 mg, 0.755 mmol, 1 eq) was dissolved in DMF (15.1 ml, 0.05 M) and added to 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetic acid (250.90 mg, 0.755 mmol, 1 eq). DIPEA (0.374 ml, 2.265 mmol, 3 eq) and HATU (296.67 mg, 0.755 mmol, 1 eq) were added and the [0909] A 0.1 M solution of 4-(2-(2-(2-aminoethoxy) ethoxy)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione trifluoroacetate in DMF (0.242 mL, 0.0242 mmol, 1 eq) was added to JQ-acid (9.7 mg, 0.0242 mmol, 1 eq) at room temperature. DIPEA (12.6 microliters, 0.0726 mmol, 3 eq) and HATU (9.2 mg, 0.0242 mmol, 1 eq) were added. After 22 hours, the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The combined organic layer was dried over sodium sulfate, mixture was stirred for 20 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water then brine. The organic layer was dried over sodium sulfate, filtered and condensed to give a light brown oil. The crude material was purified by column chromatography (ISCO, 12 g silica column, 0 to 15% MeOH/DCM 25 minute gradient) to give a light brown oil (373.1 mg, 0.678 mmol, 89.8%). ¹H NMR (500 MHz, DMSO-d₆) δ 11.10 (s, 2H), 8.48 (t, J=5.8 Hz, 1H), 7.80 (dd, J=8.4, 7.3 Hz, 1H), 7.49 (d, J=7.2 Hz, 1H), 7.40 (d, J=8.6 Hz, 1H), 7.26-7.08 (m, 4H), 5.11 (dd, J=12.9, 5.4 Hz, 1H), 4.86 (s, 2H), 4.33 (d, J=3.9 Hz, 2H), 4.09 (d, J=5.3 Hz, 2H), 2.65-2.51 (m, 3H), 2.07-1.99 (m, 1H), 1.38 (s, 9H). LCMS 551.5 (M+H). Step 2: Synthesis of N-(4-(aminomethyl)benzyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoracetate salt [0911] TFA (6.77 ml, 0.1 M) was added to tert-butyl (4-((2-((2-(d.6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)methyl)benzyl)carbamate (373.1 mg, 0.677 mmol, 1 eq) and the mixture was stirred at 50° C. for 1.5 hours. The mixture was then dissolved in MeOH and concentrated under reduced pressure to give a brown oil (270.29 mg) that was carried forward without further purification. 1 H NMR (500 MHz, DMSO-d₆) δ 11.11 (s, 1H), 8.55 (t, J=6.2 Hz, 1H), 8.07 (s, 3H), 7.81 (dd, J=8.5, 7.3 Hz, 1H), 7.51 (d, J=7.2 Hz, 1H), 7.40 (dd, J=14.9, 8.3 Hz, 3H), 7.31 (d, J=8.2 Hz, 2H), 5.11 (dd, J=12.9, 5.4 Hz, 1H), 4.87 (s, 2H), 4.37 (d, J=6.1 Hz, 2H), 4.01 (q, J=5.8 Hz, 2H), 2.66-2.51 (m, 3H), 2.07-1.99 (m, 1H). LCMS 451.3 (M+H). Step 3: Synthesis of dBET41 [0912] [0913] A 0.1 M solution of N-(4-(aminomethyl)benzyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl) oxy)acetamide trifluoroacetate in DMF (0.237 mL, 0.0237 mmol, 1 eq) was added to JQ-acid (9.5 mg, 0.0237 mmol, 1 eq) at room temperature. After 23 hours, the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a cream colored solid (11.8 mg, 0.0142 mmol, 60%). ¹H NMR (500 MHz, Methanol-d₄) δ 7.80-7.75 (m, 1H), 7.51 (dd, J=7.3, 1.5 Hz, 1H), 7.41 (d, J=8.4 Hz, 1H), 7.36 (d, J=2.2 Hz, 4H), 7.34-7.28 (m, 4H), 5.10-5.00 (m, 1H), 4.82 (s, 2H), 4.67-4.64 (m, 1H), 4.61-4. 42 (m, 4H), 4.34 (dd, J=14.9, 12.8 Hz, 1H), 3.49 (ddd, J=14.8, 9.5, 5.2 Hz, 1H), 2.83-2.75 (m, 1H), 2.73-2.61 (m, 5H), 2.44-2.39 (m, 3H), 2.06 (ddq, J=9.8, 4.7, 2.6 Hz, 1H), 1.66 (d, J=4.2 Hz, 3H). LCMS 832.92 (M+H). dBET41 Example 42: Synthesis of dBET42 [0914] [0915] A 0.1 M solution of 5-amino-N-(2-(2,6-dioxopip-eridin-3-yl)-1-oxoisoindolin-4-yl)pentanamide trifluoroacetate in DMF (222 microliters, 0.0222 mmol, 1 eq) was added to JQ-acid (8.9 mg, 0.0222 mmol, 1 eq). DIPEA (11.6 microliters, 0.0666 mmol, 3 eq) and HATU (8.4 mg, 0.0222 mmol, 1 eq) were then added and the mixture was stirred for 24 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a white solid (12.23 mg, 0.0165 mmol, 74%). 1 H NMR (500 MHz, Methanol-d₄) δ 7.76-7.71 (m, 1H), 7.66-7.62 (m, 1H), 7.51 (td, J=7.8, 2.5 Hz, 1H), 7.45-7.35 (m, 4H), 5.11 (ddd, J=13.2, 11.3, 5.2 Hz, 1H), 4.63 (ddd, J=8.8, 5.7, 3.2 Hz, 1H), 4.47 (s, 2H), 3.45-3.32 (m, 3H), 3.30-3.27 (m, 1H), 2.90-2.80 (m, 1H), 2.73-2.63 (m, 4H), 2.49 (t, J=7.4 Hz, 2H), 2.46-2.38 (m, 4H), 2.11 (ddtd, J=12.8, 10.5, 5.3, 2.3 Hz, 1H), 1.84-1.75 (m, 2H), 1.66 (dd, J=16.2, 7.6 Hz, 5H). LCMS 741.46 (M+H). Example 43: Synthesis of dBET43 [0916] [0917] A 0.1 M solution of 7-amino-N-(2-(2,6-dioxopip-eridin-3-yl)-1-oxoisoindolin-4-yl)heptanamide trifluoroacetate in DMF (227 microliters, 0.0227 mmol, 1 eq) was added to JQ-acid (9.1 mg, 0.0227 mmol, 1 eq). DIPEA (11.9 microliters, 0.0681 mmol, 3 eq) and HATU (8.6 mg, 0.0227 mmol, 1 eq) were then added and the mixture was stirred for 25.5 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as an off-white solid (12.58 mg, 0.0164 mmol, 72%). ¹H NMR (500 MHz, Methanol-d₄) δ 7.71 (d, J=7.9 Hz, 1H), 7.64 (d, J=7.4 Hz, 1H), 7.51 (t, J=7.8 Hz, 1H), 7.46-7.38 (m, 4H), 5.14 (ddd, J=13.3, 5.2, 2.2 Hz, 1H), 4.62 (ddd, J=8.6, 5.6, 2.1 Hz, 1H), 4.49-4.45 (m, 2H), 3.39 (ddd, J=14.9, 8.7, 1.3 Hz, 1H), 3.30-3.24 (m, 3H), 2.93-2.83 (m, 1H), 2.79-2.65 (m, 4H), 2.50-2.40 (m, 6H), 2.16 (ddq, J=9.9, 5.2, 2.6 Hz, 1H), 1.78-1.70 (m, 2H), 1.68 (d, J=2.1 Hz, 3H), 1.63-1.57 (m, 2H), 1.50-1.42 (m, 4H). LCMS 769.55 (M+H). Example 44: Synthesis of dBET44 [0918] dBET44 [0919] A 0.1 M solution of 8-amino-N-(2-(2,6-dioxopip-eridin-3-yl)-1-oxoisoindolin-4-yl)octanamide trifluoroacetate in
DMF (217 microliters, 0.0217 mmol, 1 eq) was added to JQ-acid (8.7 mg, 0.0217 mmol, 1 eq). DIPEA (11.3 microliters, 0.0651 mmol, 3 eq) and HATU (8.3 mg, 0.0217 mmol, 1 eq) were then added and the mixture was stirred for 20.5 hours at room temperature. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was then dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as an cream colored solid (14.28 mg, 0.0182 mmol, 84%). 1 H NMR (500 MHz, Methanol-d₄) δ 7.72-7.68 (m, 1H), 7.64 (d, J=7.5 Hz, 1H), 7.51 (t, J=7.7 Hz, 1H), 7.46-7.39 (m, 4H), 5.14 (dt, J=13.3, 5.0 Hz, 1H), 4.62 (dd, J=8.8, 5.4 Hz, 1H), 4.48-4.44 (m, 2H), 3.40 (ddd, J=14.9, 8.8, 0.9 Hz, 1H), 3.26 (dt, J=13.2, 6.9 Hz, 3H), 2.88 (ddd, J=18.7, 13.5, 5.4 Hz, 1H), 2.75 (dddd, J=17.6, 7.1, 4.5, 2.4 Hz, 1H), 2.68 (d, J=2.2 Hz, 3H), 2.49-2.39 (m, 6H), 2.17 (ddt, J=9.8, 5.3, 2.3 Hz, 1H), 1.76-1.70 (m, 2H), 1.70-1.67 (m, 3H), 1.61-1.54 (m, 2H), 1.42 (s, 6H). LCMS 783.53 (M+H). Example 45: Synthesis of dBET45 [0920] [0921] A 0.1 M solution of N-(8-aminooctyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (268 microliters, 0.0268 mmol, 1 eq) was added to (R)-4-((4-cyclopentyl-1,3-dimethyl-2-oxo-1,2,3,4-tetrahydropyrido[2,3-b]pyrazin-6-yl) amino)-3-methoxybenzoic acid (11.0 mg, 0.0268 mmol, 1 eq) at room temperature. DIPEA (14.0 microliters, 0.0804 mmol, 3 eq) and HATU (10.2 mg, 0.0268 mmol, 1 eq) were then added and the mixture was stirred for 18.5 hours. The mixture was then diluted with methanol and purified by preparative HPLC to give the desired product as a dark brown solid (10.44 mg, 0.0108 mmol, 40%). 1 H NMR (500 MHz, Methanol-d₄) δ 8.38 (d, J=8.4 Hz, 1H), 7.80-7.75 (m, 1H), 7.55-7.48 (m, 1H), 7.48-7.35 (m, 3H), 7.27 (d, J=8.3 Hz, 1H), 6.45 (d, J=8.2 Hz, 1H), 5.12 (dd, J=12.5, 5.5 Hz, 1H), 4.72 (d, J=5.1 Hz, 2H), 4.53 (s, 1H), 4.28 (d, J=6.8 Hz, 1H), 3.98 (d, J=4.1 Hz, 3H), 3.48-3.33 (m, 4H), 2.90-2.82 (m, 1H), 2.80-2.69 (m, 2H), 2.18-2.01 (m, 4H), 1.88-1.52 (m, 10H), 1.34 (d, J=42.9 Hz, 10H), 1.17 (d, J=6.8 Hz, 3H). LCMS 851.67 (M+H). dBET45 Example 46: Synthesis of dBET46 [0922] [0923] A 0.1 M solution of N-(3-(2-(2-(3-aminopropoxy) ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (256 microliters, 0.0256 mmol, 1 eq) was added to (R)-4-((4-cyclopentyl-1,3-dimethyl-2-oxo-1,2,3,4-tetrahydropyrido[2,3-b]pyrazin-6-yl)amino)-3-methoxybenzoic acid (10.5 mg, 0.0256 mmol, 1 eq) at room temperature. DIPEA (13.4 microliters, 0.0767 mmol, 3 eq) and HATU (9.7 mg, 0.0256 mmol, 1 eq) were then added and the mixture was stirred for 20 hours. The mixture was then diluted with methanol and purified by preparative HPLC to give the desired product as a dark brown solid (13.69 mg, 0.0132 mmol, 51%). $^{1}\mathrm{H}$ NMR (500 MHz, Methanol-d_4) δ 8.28-8.24 (m, 1H), 7.74-7.71 (m, 1H), 7.49 (dd, J=7.3, 3.7 Hz, 1H), 7.39-7.34 (m, 2H), 7.28-7.25 (m, 1H), 7.14-7.10 (m, 1H), 6.34 (d, J=8.3 Hz, 1H), 5.01-4.97 (m, 1H), 4.62 (s, 2H), 4.25 (q, J=6.7 Hz, 1H), 3.95 (d, J=5.4 Hz, 3H), 3.60 (ddd, J=9.0, 6.1, 1.6 Hz, 8H), 3.53-3.46 (m, 6H), 3.40-3.37 (m, 2H), 2.78 (td, J=11.1, 6.6 Hz, 3H), 2.16-2.00 (m, 4H), 1.84 (ddt, J=33.5, 13.0, 6.4 Hz, 7H), 1.75-1.60 (m, 6H), 1.17 (d, J=6.8 Hz, 3H). LCMS 927.74 (M+H). Example 47: Synthesis of dBET50 [0924] dBET50 [0925] A 0.1 M solution of N-(3-(2-(2-(3-aminopropoxy) ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (200 microliters, 0.0200 mmol, 1 eq) was added to (S)-4-(4-chlorophenyl)-6-(2-methoxy-2-oxoethyl)-3,9-dim- ethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine-2-carboxylic acid (8.9 mg, 0.020 mmol, 1 eq) at room temperature. DIPEA (10.5 microliters, 0.060 mmol, 3 eq) and HATU (7.6 mg, 0.020 mmol, 1 eq) were added. The mixture was then stirred for 17 hours, then diluted with OMe EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a cream colored solid (9.31 mg, 0.00968 mmol, 48%). $^1{\rm H}$ NMR (500 MHz, Methanol-d₄) δ 7.82-7.78 (m, 1H), 7.52 (dd, J=7.1, 1.6 Hz, 1H), 7.49-7.40 (m, 5H), 5.10 (ddd, J=12.8, 5.5, 2.9 Hz, 1H), 4.74 (s, 2H), 4.67 (t, J=7.1 Hz, 1H), 3.76 (s, 3H), 3.62-3.50 (m, 14H), 3.49-3.43 (m, 2H), 3.40 (q, J=6.5 Hz, 2H), 2.87 (ddd, J=17.6, 14.0, 5.3 Hz, 1H), 2.79-2.67 (m, 5H), 2.12 (ddq, J=10.3, 5.4, 2.9 Hz, 1H), 2.00 (s, 3H), 1.86 (q, J=6.3 Hz, 2H), 1.80 (p, J=6.4 Hz, 2H). LCMS 961.67 (M+H). Example 48: Synthesis of dBET51 [0926] [0927] A 0.1 M solution of N-(2-(2-(2-aminoethoxy) ethoxy)ethyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (200 microliters, 0.0200 mmol, 1 eq) was added to (S)-4-(4chlorophenyl)-6-(2-methoxy-2-oxoethyl)-3,9-dimethyl-6Hthieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine-2-carboxylic acid (8.9 mg, 0.020 mmol, 1 eq) at room temperature. DIPEA (10.5 microliters, 0.060 mmol, 3 eq) and HATU (7.6 mg, 0.020 mmol, 1 eq) were added. The mixture was then stirred for 17 hours, then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/ DCM, 25 minute gradient) gave the desired product as an off-white solid (8.38 mg, 0.00942 mmol, 47%). ¹H NMR (500 MHz, Methanol-d₄) δ 7.80 (dd, J=8.4, 7.4 Hz, 1H), $$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$ dBET51 7.52 (dd, J=7.2, 1.3 Hz, 1H), 7.48-7.38 (m, 5H), 5.08 (ddd, J=12.7, 5.5, 1.6 Hz, 1H), 4.74 (d, J=2.7 Hz, 2H), 4.66 (t, J=7.1 Hz, 1H), 3.75 (d, J=3.0 Hz, 3H), 3.65 (t, J=4.1 Hz, 6H), 3.59 (t, J=5.3 Hz, 2H), 3.57-3.49 (m, 4H), 3.49-3.40 (m, 2H), 2.93-2.84 (m, 1H), 2.78-2.64 (m, 5H), 2.15-2.09 (m, 1H), 2.00 (d, J=0.9 Hz, 3H). LCMS 889.58 (M+H). Example 49: Synthesis of dBET52 [0928] JQ-acid (8.0 mg, 0.020 mmol, 1 eq) at room temperature. DIPEA (10.5 microliters, 0.060 mmol, 3 eq) and HATU (7.6 mg, 0.020 mmol, 1 eq) were added. After 17.5 hours, the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as a colorless [0929] A 0.1 M solution of N-(2-(2-(2-(2-aminoethoxy) ethoxy)ethoxy)ethyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (200 microliters, 0.020 mmol, 1 eq) was added to residue (9.12 mg, 0.01025 mmol, 51%). ¹H NMR (500 MHz, Methanol-d₄) 8 7.77 (t, J=7.9 Hz, 1H), 7.50 (dd, J=7.3, 1.5 Hz, 1H), 7.47-7.36 (m, 5H), 5.09 (ddd, J=13.0, 7.6, 5.5 Hz, 1H), 4.76 (s, 2H), 4.62 (dd, J=9.1, 5.1 Hz, 1H), 3.62 (ddt, J=17.3, 11.2, 6.5 Hz, 12H), 3.52-3.41 (m, 5H), 3.28 (d, J=5.1 Hz, 1H), 2.90-2.81 (m, 1H), 2.79-2.66 (m, 5H), 2.44 (s, 3H), 2.16-2.09 (m, 1H), 1.69 (s, 3H). LCMS 889.38 (M+H). Example 50: Synthesis of dBET53 [0930] 0.020 mmol, 1 eq) were added. After 17.5 hours, additional HATU (7.6 mg) and DIPEA (10.5 microliters were added) and the mixture was stirred for an additional 5 hours. The mixture was diluted
with EtOAc and washed with saturated sodium bicarbonate, water and brine. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chro- [0931] A 0.1 M solution of N-(14-amino-3,6,9,12-tet-raoxatetradecyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (200 microliters, 0.020 mmol, 1 eq) was added to JQ-acid (8.0 mg, 0.020 mmol, 1 eq) at room temperature. DIPEA (10.5 microliters, 0.060 mmol, 3 eq) and HATU (7.6 mg, matography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product (3.66 mg). [0932] 1 H NMR (500 MHz, Methanol-d₄) δ 7.79 (dd, J=8.4, 7.4 Hz, 1H), 7.51 (d, J=7.3 Hz, 1H), 7.45 (d, J=7.7 Hz, 2H), 7.43-7.36 (m, 3H), 5.08 (ddd, J=12.7, 5.5, 2.2 Hz, 1H), 4.78-4.74 (m, 2H), 4.62 (dd, J=9.1, 5.1 Hz, 1H), 3.70-3.51 (m, 16H), 3.50-3.41 (m, 5H), 3.27 (dd, J=5.1, 2.3 Hz, 1H), 2.87 (ddt, J=18.2, 9.5, 4.9 Hz, 1H), 2.78-2.66 (m, 5H), 2.44 (s, 3H), 2.16-2.09 (m, 1H), 1.69 (s, 3H). LCMS 933.43 (M+H). Example 51: Synthesis of dBET54 [0933] 0.020 mmol, 1 eq) were added. After 16 hours the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 dBET54 [0934] A 0.1 M solution of N-(17-amino-3,6,9,12,15-pentaoxaheptadecyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (200 microliters, 0.020 mmol, 1 eq) was added to JQ-acid (8.0 mg, 0.020 mmol, 1 eq) at room temperature. DIPEA (10.5 microliters, 0.060 mmol, 3 eq) and HATU (7.6 mg, minute gradient) gave the desired product (6.27 mg, 0.00641 mmol, 32%). 1 H NMR (500 MHz, Methanol-d₄) δ 7.81-7.76 (m, 1H), 7.51 (d, J=7.1 Hz, 1H), 7.47-7.38 (m, 5H), 5.09 (dd, J=12.6, 5.5 Hz, 1H), 4.77 (s, 2H), 4.62 (dd, J=8.8, 5.0 Hz, 1H), 3.67-3.55 (m, 20H), 3.46 (ddd, J=20.1, 10.2, 4.7 Hz, 5H), 3.28 (d, J=5.1 Hz, 1H), 2.91-2.83 (m, 1H), 2.78-2.68 (m, 5H), 2.44 (s, 3H), 2.16-2.10 (m, 1H), 1.72-1.66 (m, 3H). LCMS 977.50 (M+H). Example 52: Synthesis of dBET55 [0935] sodium bicarbonate, water and brine. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product (10.55 mg, dBET55 [0936] A 0.1 M solution of N-(29-amino-3,6,9,12,15,18, 21,24,27-nonaoxanonacosyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (200 microliters, 0.020 mmol, 1 eq) was added to JQ-acid (8.0 mg, 0.020 mmol, 1 eq) at room temperature. DIPEA (10.5 microliters, 0.060 mmol, 3 eq) and HATU (7.6 mg, 0.020 mmol, 1 eq) were added. After 18 hours the mixture was diluted with EtOAc and washed with saturated 0.00914 mmol, 46%). 1 H NMR (500 MHz, Methanol-d₄) δ 7.82 (dd, J=8.4, 7.4 Hz, 1H), 7.55 (d, J=7.0 Hz, 1H), 7.49-7.41 (m, 5H), 5.13 (dd, J=12.6, 5.5 Hz, 1H), 4.80 (s, 2H), 4.65 (dd, J=9.1, 5.1 Hz, 1H), 3.68-3.58 (m, 36H), 3.53-3.44 (m, 5H), 2.94-2.86 (m, 1H), 2.81-2.70 (m, 5H), 2.46 (s, 3H), 2.19-2.13 (m, 1H), 1.74-1.69 (m, 3H). LCMS 1153.59 (M+H). Example 53: Synthesis of dBET56 [0937] [0938] A 0.1 M solution of N-(35-amino-3.6.9.12.15.18. 21,24,27,30,33-undecaoxapentatriacontyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate in DMF (200 microliters, 0.020 mmol, 1 eq) was added to JQ-acid (8.0 mg, 0.020 mmol, 1 eq) at room temperature. DIPEA (10.5 microliters, 0.060 mmol, 3 eq) and HATU (7.6 mg, 0.020 mmol, 1 eq) were added. After 20 hours the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-10% MeOH/DCM, 25 minute gradient) gave the desired product as an oily residue (9.03 mg, 0.00727 mmol, 36%). ¹H NMR (500 MHz, Methanol- d_4) δ 7.81 (dd, J=8.4, 7.4 Hz, 1H), 7.53 (d, J=7.1 Hz, 1H), 7.50-7.40 (m, 5H), 5.11 (dd, J=12.6, 5.5 Hz, 1H), 4.78 (s, 2H), 4.68 (dd, J=8.6, 5.0 Hz, 1H), 3.69-3.56 (m, 44H), 3.52-3.43 (m, 5H), 3.34 (dd, J=7.9, 3.5 Hz, 1H), 2.88 (ddd, J=18.0, 14.0, 5.2 Hz, 1H), 2.79-2.68 (m, 5H), 2.46 (s, 3H), 2.17-2.12 (m, 1H), 1.71 (s, 3H). LCMS 1241.60 (M+H). Example 54: Synthesis of dBET57 Step 1: Synthesis of 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione [0939] F O CI NH $$\frac{\text{KOAe (3.1 equiv)}}{\text{AcOH, 90° C.}}$$ (1.1equiv) F O NH [0940] A solution of 4-fluoroisobenzofuran-1,3-dione (200 mg, 1.20 mmol, 1 equiv) in AcOH (4.0 mL, 0.3 M) was added 2,6-dioxopiperidin-3-amine hydrochloride (218 mg, 1.32 mmol, 1.1 equiv) and potassium acetate (366 mg, 3.73 mmol, 3.1 equiv). The reaction mixture was heated to 90° C. overnight, whereupon it was diluted with water to 20 mL and cooled on ice for 30 min. The resulting slurry was filtered, and the black solid was purified by flash column chromatography on silica gel (2% MeOH in CH₂Cl₂, R_p =0.3) to afford the title compound as a white solid (288 mg, 86%). ¹H NMR (500 MHz, DMSO-d₆) δ 11.15 (s, 1H), 7.96 (ddd, J=8.3, 7.3, 4.5 Hz, 1H), 7.82-7.71 (m, 2H), 5.17 (dd, J=13.0, 5.4 Hz, 1H), 2.90 (ddd, J=17.1, 13.9, 5.4 Hz, 1H), 2.65-2.47 (m, 2H), 2.10-2.04 (m, 1H), MS (ESI) cald for $C_{13}H_{10}FN_2O_4$ [M+H]⁺ 277.06, found 277.25. Step 2: Synthesis of tert-butyl (2-((2-(2,6-dioxopip-eridin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl) carbamate [0941] [0942] A stirred solution of 2-(2,6-dioxopiperidin-3-yl)-4fluoroisoindoline-1,3-dione (174 mg, 0.630 mmol, 1 equiv) in DMF (6.3 mL, 0.1 M) was added DIPEA (220 µL, 1.26 mmol, 2 equiv) and 1-Boc-ethylendiamine (110 µL, 0.693 mmol, 1.1 equiv). The reaction mixture was heated to 90° C. overnight, whereupon it was cooled to room temperature and taken up in EtOAc (30 mL) and water (30 mL). The organic layer was washed with brine (3×20 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (0→10% MeOH in CH₂Cl₂) to give the title compound as a yellow solid (205 mg, 79%). ¹H NMR (500 MHz, CDCl₃) δ 8.08 (bs, 1H), 7.50 (dd, J=8.5, 7.1 Hz, 1H), 7.12 (d, J=7.1 Hz, 1H), 6.98 (d, J=8.5 Hz, 1H), 6.39 (t, J=6.1 Hz, 1H), 4.96-4.87 (m, 1H), 4.83 (bs, 1H), 3.50-3.41 (m, 2H), 3.41-3.35 (m, 2H), 2.92-2.66 (m, 3H), 2.16-2.09 (m, 1H), 1.45 (s, 9H); MS (ESI) cald for $C_{20}H_{25}N_4O_6$ [M+H]⁺ 417.18, found 417.58. Step 3: Synthesis of 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethan-1-aminium 2,2,2-trifluoroacetate [0943] -continued $$CF_3COO$$ H_3N^+ NH O NH O NH [0944] A stirred solution of tert-butyl (2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl)carbamate (205 mg, 0.492 mmol, 1 equiv) in dichloromethane (2.25 mL) was added trifluoroacetic acid (0.250 mL). The reaction mixture was stirred at room temperature for 4 h, whereupon the volatiles were removed in vacuo. The title compound was obtained as a yellow solid (226 mg, >95%), that was used without further purification. 1H NMR (500 MHz, MeOD) δ 7.64 (d, J=1.4 Hz, 1H), 7.27-7.05 (m, 2H), 5.10 (dd, J=12.5, 5.5 Hz, 1H), 3.70 (t, J=6.0 Hz, 2H), 3.50-3.42 (m, 2H), 3.22 (t, J=6.0 Hz, 1H), 2.93-2.85 (m, 1H), 2.80-2.69 (m, 2H), 2.17-2.10 (m, 1H); MS (ESI) cald for $\rm C_{15}H_{17}N_4O_4$ [M+H]* 317.12, found 317.53. Step 2: Synthesis of dBET57 [0945] -continued [0946] JQ-acid (8.0 mg, 0.0200 mmol, 1 eq) and 2-((2-(2, 6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino) ethan-1-aminium 2,2,2-trifluoroacetate (8.6 mg, 0.0200 mmol, 1 equiv) were dissolved in DMF (0.200 mL, 0.1 M) at room temperature. DIPEA (17.4 µL, 0.100 mmol, 5 equiv) and HATU (7.59 mg, 0.0200 mmol, 1 equiv) were then added and the mixture was stirred at room temperature overnight. The reaction mixture was taken up in EtOAc (15 mL), and washed with satd. NaHCO₃ (aq) (15 mL), water (15 mL) and brine (3×15 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (0→10% MeOH in CH₂Cl₂, R_f=0.3 (10% MeOH in CH₂Cl₂)) to give the title compound as a bright yellow solid (11.2 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 8.49 (bs, 0.6H), 8.39 (bs, 0.4H), 7.51-7.43 (m, 1H), 7.38 (d, J=7.8 Hz, 2H), 7.29 (dd, J=8.8, 1.7 Hz, 2H), 7.07 (dd, J=7.1, 4.9 Hz, 1H), 6.97 (dd, J=8.6, 4.9 Hz, 1H), 6.48 (t, J=5.9 Hz, 1H), 6.40 (t, J=5.8 Hz, 0.6H), 4.91-4.82 (m, 0.4H), 4.65-4.60 (m, 1H), 3.62-3.38 (m, 6H), 2.87-2.64 (m, 3H), 2.63 (s, 3H), 2.40 (s, 6H), 2.12-2.04 (m, 1H), 1.67 (s, 3H), rotamers; MS (ESI) calcd for C₃₄H₃₂ClN₈O₅S [M+H]⁺ 700.19, found 700.34. Example 55: Synthesis of dGR1 [0947] OH NaIO₄ $$2M \text{ H}_2\text{SO}_4$$ EtOH $H_2\text{O}$ dexamethasone $$\begin{array}{c} -\text{continued} \\ \text{H}_2\text{N} \\ \text{O} \\ \text{O} \\ \text{Dex-acid} \end{array}$$ Example 56: Synthesis of dGR2 [0948] #### Example 57: Synthesis of dGR3 [0949] DB-2-271 dGR3 Example 58: Synthesis of dFKBP-1 [0950] -continued dFKBP-1 #### (1) Synthesis of SLF-Succinate [0951] SLF (25 mg, 2.5 mL of a 10 mg/mL solution in MeOAc, 0.0477 mmol, 1 eq) was combined with DMF (0.48 mL, 0.1 M) and succinic anhydride (7.2 mg, 0.0715 mmol, 1.5 eq) and stirred at room temperature for 24 hours. Low conversion was observed and the mixture was placed under a stream of N2 to remove the MeOAc. An additional 0.48 mL of DMF was added, along with an additional 7.2 mg succinic anhydride and DMAP (5.8 mg, 0.0477 mmol, 1 eq). The mixture was then stirred for an additional 24 hours before being purified by preparative HPLC to give SLFsuccinate as a yellow oil (24.06 mg, 0.0385 mmol, 81%). [0952] 1 H NMR (400 MHz, Methanol-d₄) δ 7.62
(d, J=10.7 Hz, 1H), 7.44 (d, J=8.0 Hz, 1H), 7.26 (td, J=7.9, 2.7 Hz, 1H), 7.07-6.97 (m, 1H), 6.80 (dd, J=8.1, 2.1 Hz, 1H), 6.74-6.66 (m, 2H), 5.73 (dd, J=8.1, 5.5 Hz, 1H), 5.23 (d, J=4.8 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.39-3.29 (m, 4H), 3.21 (td, J=13.2, 3.0 Hz, 1H), 2.68-2.50 (m, 5H), 2.37-2.19 (m, 2H), 2.12-2.02 (m, 1H), 1.79-1.61 (m, 4H), 1.49-1.30 (m, 2H), 1.27-1.05 (m, 6H), 0.82 (dt, J=41.2, 7.5 Hz, 3H). LCMS 624.72 (M+H). #### (2) Synthesis of dFKBP-1 [0953] N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate (9.9 mg, 0.0192 mmol, 1 eq) was added to SLFsuccinate (11.98 mg, 0.0192 mmol, 1 eq) as a solution in 0.192 mL DMF (0.1 M). DIPEA (10.0 microliters, 0.0575 mmol, 3 eq) was added, followed by HATU (7.3 mg, 0.0192 mmol, 1 eq). The mixture was stirred for 17 hours, then diluted with MeOH and purified by preparative HPLC to give dFKBP-1 (7.7 mg, 0.00763 mmol, 40%) as a yellow solid. ¹H NMR (400 MHz, Methanol-d₄) δ 7.81 (s, 1H), 7.77-7.70 (m, 1H), 7.55-7.49 (m, 2H), 7.26 (dd, J=8.0, 5.3 Hz, 2H), 7.05-6.99 (m, 1H), 6.77 (d, J=8.8 Hz, 1H), 6.66 (d, J=6.8 Hz, 2H), 5.77-5.72 (m, 1H), 5.24 (d, J=4.8 Hz, 1H), 4.99 (dd, J=12.3, 5.7 Hz, 1H), 4.68-4.59 (m, 2H), 3.82 (s, 3H), 3.81 (s, 3H), 3.32 (dt, J=3.3, 1.6 Hz, 4H), 3.26-3.14 (m, 3H), 2.79 (dd, J=18.9, 10.2 Hz, 3H), 2.64-2.48 (m, 5H), 2.34 (d, J=14.4 Hz,1H), 2.22 (d, J=9.2 Hz, 1H), 2.14-2.02 (m, 2H), 1.78-1.49 (m, 9H), 1.43-1.30 (m, 2H), 1.20-1.04 (m, 6H), 0.90-0.76 (m, 3H). 13C NMR (100 MHz, cd3od) δ 208.51, 173.27, 172.64, 171.63, 169.93, 169.51, 168.04, 167.69, 167.09, 166.71, 154.92, 149.05, 147.48, 140.76, 138.89, 137.48, 133.91, 133.67, 129.36, 122.19, 120.61, 120.54, 119.82, 118.41, 118.12, 117.79, 112.12, 111.76, 68.54, 56.10, 55.98, 51.67, 46.94, 44.57, 39.32, 39.01, 38.23, 32.64, 31.55, 31.43, 26.68, 26.64, 25.08, 23.52, 23.21, 22.85, 21.27, 8.76. LCMS 1009.66 (M+H). Example 59: Synthesis of dFKBP-2 [0954] SLF-succinate dFKBP-2 ## (1) Synthesis of tert-butyl (1-chloro-2-oxo-7,10,13-trioxa-3-azahexadecan-16-yl)carbamate [0955] tert-butyl (3-(2-(2-(3-aminopropoxy)ethoxy) ethoxy)propyl)carbamate (1.0 g, 3.12 mmol, 1 eq) was dissolved in THF (31 mL, 0.1 M). DIPEA (0.543 mL, 3.12 mmol, 1 eq) was added and the solution was cooled to 0° C. Chloroacetyl chloride (0.273 mL, 3.43 mmol, 1.1 eq) was added and the mixture was warmed slowly to room temperature. After 24 hours, the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water then brine. The organic layer was dried over sodium sulfate, filtered and condensed to give a yellow oil (1.416 g) that was carried forward without further purification. [0956] 1 H NMR (400 MHz, Chloroform-d) δ 7.24 (s, 1H), 5.00 (s, 1H), 3.98-3.89 (m, 2H), 3.54 (dddt, J=17.0, 11.2, 5.9, 2.2 Hz, 10H), 3.47-3.40 (m, 2H), 3.37-3.31 (m, 2H), 3.17-3.07 (m, 2H), 1.79-1.70 (m, 2H), 1.67 (p, J=6.1 Hz, 2H), 1.35 (s, 9H). 13 C NMR (100 MHz, cdcl3) δ 165.83, 155.97, 78.75, 70.49, 70.47, 70.38, 70.30, 70.14, 69.48, 42.61, 38.62, 38.44, 29.62, 28.59, 28.40. LCMS 397.37 (M+H). ## (2) Synthesis of dimethyl 3-((2,2-dimethyl-4,20-dioxo-3,9,12,15-tetraoxa-5,19-diazahenicosan-21-yl) oxy)phthalate [0957] tert-butyl (1-chloro-2-oxo-7,10,13-trioxa-3-aza-hexadecan-16-yl)carbamate (1.41 g, 3.12 mmol, 1 eq) was dissolved in MeCN (32 mL, 0.1 M). Dimethyl 3-hydroxyphthalate (0.721 g, 3.43 mmol, 1.1 eq) and cesium carbonate (2.80 g, 8.58 mmol, 2.75 eq) were added. The flask was fitted with a reflux condenser and heated to 80° C. for 19 hours. The mixture was cooled to room temperature and diluted water and extracted once with chloroform and twice with EtOAc. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material was purified by column chromatography (ISCO, 24 g silica column, 0-15% MeOH/DCM 22 minute gradient) to give a yellow oil (1.5892 g, 2.78 mmol, 89% over two steps). [0958] ¹H NMR (400 MHz, Chloroform-d) δ 7.52 (d, J=7.8 Hz, 1H), 7.35 (t, J=8.1 Hz, 1H), 7.04 (d, J=8.3 Hz, 1H), 7.00 (t, J=5.3 Hz, 1H), 5.06 (s, 1H), 4.46 (s, 2H), 3.83 (s, 3H), 3.78 (s, 3H), 3.47 (ddd, J=14.9, 5.5, 2.8 Hz, 8H), 3.39 (dt, J=9.4, 6.0 Hz, 4H), 3.29 (q, J=6.5 Hz, 2H), 3.09 (d, J=9.4, 6.0 Hz, 4H), 3.29 (q, J=6.5 Hz, 2H), 3.09 (d, J=9.4, 6.0 Hz, 4H), 3.29 (q, J=6.5 Hz, 2H), 3.09 (d, 2H) J=6.0 Hz, 2H), 1.70 (p, J=6.5 Hz, 2H), 1.63 (p, J=6.3 Hz, 2H), 1.31 (s, 9H). ¹³C NMR (100 MHz, cdcl3) δ 167.68, 167.36, 165.45, 155.93, 154.41, 130.87, 129.60, 125.01, 123.20, 117.06, 78.60, 70.40, 70.17, 70.06, 69.39, 68.67, 68.25, 52.77, 52.57, 38.38, 36.58, 29.55, 29.20, 28.34. LCMS 571.47 (M+H). # (3) Synthesis of N-(3-(2-(2-(3-aminopropoxy) ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate [0959] Dimethyl 3-((2,2-dimethyl-4,20-dioxo-3,9,12,15-tetraoxa-5,19-diazahenicosan-21-yl)oxy)phthalate (1.589 g, 2.78 mmol, 1 eq) was dissolved in EtOH (14 mL, 0.2 M). Aqueous 3M NaOH (2.8 mL, 8.34 mmol, 3 eq) was added and the mixture was heated to 80° C. for 22 hours. The mixture was then cooled to room temperature, diluted with 50 mL DCM and 20 mL 0.5 M HCl. The layers were separated and the organic layer was washed with 25 mL water. The aqueous layers were combined and extracted three times with 50 mL chloroform. The combined organic layers were dried over sodium sulfate, filtered and condensed to give 1.53 g of material that was carried forward without further purification. LCMS 553.44. [0960] The resultant material (1.53 g) and 3-aminopiperidine-2,6-dione hydrochloride (0.480 g, 2.92 mmol, 1 eq) were dissolved in pyridine (11.7 mL, 0.25 M) and heated to 110° C. for 17 hours. The mixture was cooled to room temperature and concentrated under reduced pressure to give crude tert-butyl (1-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)-2-oxo-7,10,13-trioxa-3-azahexadecan-16-yl)carbamate as a black sludge (3.1491 g) that was carried forward without further purification. LCMS 635.47. [0961] The crude tert-butyl (1-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)-2-oxo-7,10,13-trioxa-3-azahexadecan-16-yl)carbamate (3.15 g) was dissolved in TFA (20 mL) and heated to 50° C. for 2.5 hours. The mixture was cooled to room temperature, diluted with MeOH and concentrated under reduced pressure. The material was purified by preparative HPLC to give N-(3-(2-(2-(3-amino-propoxy)ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate (1.2438 g, 1.9598 mmol, 71% over 3 steps) as a dark red oil. [0962] 1 H NMR (400 MHz, Methanol-d₄) δ 7.77 (dd, J=8.3, 7.5 Hz, 1H), 7.49 (d, J=7.3 Hz, 1H), 7.40 (d, J=8.5 Hz, 1H), 5.12 (dd, J=12.8, 5.5 Hz, 1H), 4.75 (s, 2H), 3.68-3.51 (m, 12H), 3.40 (t, J=6.8 Hz, 2H), 3.10 (t, J=6.4 Hz, 2H), 2.94-2.68 (m, 3H), 2.16 (dtd, J=12.6, 5.4, 2.5 Hz, 1H), 1.92 (p, J=6.1 Hz, 2H), 1.86-1.77 (m, 2H). 13 C NMR (100 MHz, cd3od) δ 173.17, 169.97, 168.48, 166.87, 166.30, 154.82, 136.89, 133.41, 120.29, 117.67, 116.58, 69.96, 69.68, 69.60, 68.87, 68.12, 67.92, 49.19, 38.62, 36.14, 30.80, 28.92, 26.63, 22.22. LCMS 536.41 (M+H). #### (4) Synthesis of dFKBP-2 [0963] N-(3-(2-(2-(3-aminopropoxy)ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate(12.5 mg, 0.0193 mmol, 1 eq) was added to SLF-succinate (12.08 mg, 0.0193 mmol, 1 eq) as a solution in 0.193 mL in DMF (0.1 M). DIPEA (10.1 microliters, 0.0580 mmol, 3 eq) and HATU (7.3 mg, 0.0193 mmol, 1 eq) were added and the mixture was stirred for 19 hours. The mixture was then diluted with MeOH and purified by preparative HPLC to give dFKBP-2 (9.34 mg, 0.00818 mmol, 42%) as a yellow oil. [0964] ¹H NMR (400 MHz, 50% MeOD/Chloroform-d) δ 7.76-7.70 (m, 1H), 7.58-7.45 (m, 3H), 7.26 (t, J=8.2 Hz, 2H), 7.05-6.98 (m, 1H), 6.77 (d, J=7.9 Hz, 1H), 6.71-6.63 (m, 2H), 5.73 (dd, J=8.1, 5.6 Hz, 1H), 5.23 (d, J=5.4 Hz, 1H), 5.03-4.95 (m, 1H), 4.64 (s, 2H), 3.82 (s, 3H), 3.80 (s, 3H), 3.62-3.52 (m, 8H), 3.47 (t, J=6.1 Hz, 2H), 3.44-3.33 (m, 3H), 3.27-3.14 (m, 3H), 2.84-2.70 (m, 3H), 2.64-2.47 (m, 6H), 2.34 (d, J=14.1 Hz, 1H), 2.24 (dd, J=14.3, 9.3 Hz, 2H), 2.13-2.00 (m, 2H), 1.83 (p, J=6.3 Hz, 2H), 1.67 (dtd, J=38.4, 16.8, 14.8, 7.0 Hz, 7H), 1.51-1.26 (m, 3H), 1.22-1. 05 (m, 6H), 0.80 (dt, J=39.8, 7.5 Hz, 3H). ¹³C NMR (100 MHz, cdcl3) δ 208.64, 173.39, 173.01, 171.76, 170.11, 169.62, 168.24, 167.92, 167.36, 166.69, 155.02, 149.23, 147.66, 140.94, 139.18, 137.57, 134.09, 133.91, 129.49, 122.32, 120.75, 120.52, 119.93, 118.42, 117.75, 112.33, 111.98, 70.77, 70.51, 70.40, 69.45, 69.04, 68.48, 56.20, 56.10, 51.88, 47.09, 44.78, 38.40, 37.48, 36.91, 32.80, 32.71, 31.70, 31.59, 31.55, 29.53, 29.30, 26.77, 25.22, 23.63, 23.33, 22.98, 21.43. LCMS 1141.71 (M+H). #### Example 60: Synthesis of dFKBP-3 [0965] SLF-succinate was prepared according to step (1) of the synthesis of dFKBP-1. [0966] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate (0.233 mL, 0.0233 mmol, 1 eq) was added to 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-(((S)-1-(3,3-dimethyl-2-oxopentanoyl)pyrrolidine-2-carbonyl)oxy)propyl)phenoxy)acetic acid (13.3 mg, 0.0233 mmol, 1 eq). DIPEA (12.2 microliters, 0.0700 mmol, 3 eq) was added, followed by HATU (8.9 mg, 0.0233 mmol, 1 eq). The mixture was stirred for 23 hours, then diluted with MeOH and purified by preparative HPLC to give a white solid (10.72 mg mg, 0.0112 mmol, 48%). [0967] 1 H NMR (400 MHz, Methanol-d₄) δ 7.79-7.74 (m, 1H), 7.52 (d, J=7.4 Hz, 1H), 7.33 (d, J=8.4 Hz, 1H), 7.26 (t, J=8.1 Hz, 1H), 6.97-6.90 (m, 2H), 6.89-6.84 (m, 1H), 6.79 (dd, J=8.2, 1.9 Hz, 1H), 6.73-6.64 (m, 2H), 5.73-5.65 (m, 1H), 5.07-4.99 (m, 1H), 4.67 (s, 2H), 4.57-4.51 (m, 1H), 4.48 (dd, J=5.7, 2.5 Hz, 2H), 3.82 (d, J=1.9 Hz, 3H), 3.80 (s, 3H), 3.66-3.39 (m, 3H), 2.88-2.48 (m, 6H), 2.42-1.87 (m, 9H), 1.73-1.51 (m, 6H), 1.19-0.92 (m, 6H), 0.75 (dt,
J=56.7, 7.5 Hz, 3H). LCMS 954.52 (M+H). #### Example 61: Synthesis of dFKBP-4 [0968] SLF-succinate was prepared according to step (1) of the synthesis of dFKBP-1. [0969] A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate (0.182 mL, 0.0182 mmol, 1 eq) was added to 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-(((S)-1-(3,3-dimethyl-2-oxopentanoyl)piperidine-2-carbonyl)oxy)propyl)phenoxy)acetic acid (10.6 mg, 0.0182 mmol, 1 eq). DIPEA (9.5 microliters, 0.0545 mmol, 3 eq) was added, followed by HATU (6.9 mg, 0.0182 mmol, 1 eq). The mixture was stirred for 26 hours, then diluted with MeOH and purified by preparative HPLC to give a white solid (9.74 mg, 0.01006 mmol, 55%). [0970] $^1\mathrm{H}$ NMR (400 MHz, Methanol-d_4) δ 7.75 (dd, J=8.3, 7.4 Hz, 1H), 7.53 (d, J=2.3 Hz, 1H), 7.33-7.25 (m, 2H), 7.00-6.84 (m, 3H), 6.79 (dd, J=8.1, 2.5 Hz, 1H), 6.72-6.65 (m, 2H), 5.75-5.70 (m, 1H), 5.23 (d, J=4.9 Hz, 1H), 5.05-4.96 (m, 1H), 4.66 (s, 2H), 4.46 (s, 2H), 3.82 (s, 3H), 3.81 (s, 3H), 3.39-3.32 (m, 4H), 3.20-3.12 (m, 1H), 2.82-2.69 (m, 3H), 2.62-2.49 (m, 2H), 2.37-2.00 (m, 5H), 1.78-1.30 (m, 11H), 1.24-1.08 (m, 6H), 0.81 (dt, J=32.9, 7.5 Hz, 3H). LCMS 968.55 (M+H). #### Example 62: Synthesis of dFKBP-5 [0971] SLF-succinate was prepared according to step (1) of the synthesis of dFKBP-1. A 0.1 M solution of N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate (0.205 mL, 0.0205 mmol, 1 eq) was added to 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-(((S)-1-(2-phenylacetyl)piperidine-2-carbonyl)oxy)propyl)phenoxy)acetic acid (11.8 mg, 0.0205 mmol, 1 eq). DIPEA (10.7 microliters, 0.0615 mmol, 3 eq) was added, followed by HATU (7.8 mg, 0.0205 mmol, 1 eq). The mixture was stirred for 29 hours, then diluted with MeOH and purified by preparative HPLC to give a white solid (10.62 mg, 0.01106 mmol, 54%). [0972] 1 H NMR (400 MHz, Methanol-d₄) δ 7.77-7.72 (m, 1H), 7.52 (s, 1H), 7.31-7.11 (m, 7H), 6.92-6.77 (m, 4H), 6.68-6.62 (m, 2H), 5.70-5.64 (m, 1H), 5.38 (d, J=3.8 Hz, 1H), 4.99 (d, J=4.6 Hz, 1H), 4.65 (s, 2H), 4.45-4.39 (m, 2H), 3.80 (dd, J=6.7, 2.4 Hz, 8H), 3.13-3.03 (m, 1H), 2.83-2.68 (m, 3H), 2.63-2.45 (m, 3H), 2.34-1.93 (m, 6H), 1.71-1.52 (m, 7H), 1.34-1.20 (m, 3H). LCMS 960.54 (M+H). Example 63: Synthesis of dFKBP-6 dFKBP*6 [0974] N-(4-aminobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate (11.9 mg, 0.0231 mmol, 1 eq) is added to 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-(((S)-1-((S)-2-(3,4,5-trimethoxyphenyl)phenoxy)) acetic acid (16.0 mg, 0.0231 mmol, 1 eq) as a solution in 0.231 mL DMF (0.1 M). DIPEA (12.1 microliters, 0.0692 mmol, 3 eq) and HATU (8.8 mg, 0.0231 mmol, 1 eq) are added and the mixture is stirred for 21 hours. The mixture is diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer is dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material is purified by column chromatography. Example 64: Synthesis of dFKBP-7 [0975] $$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{O} \text{O}$$ dFKBP*7 [0976] N-(3-(2-(2-(3-aminopropoxy)ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoracetate (12.3 mg, 0.0189 mmol, 1 eq) is added to 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-(((S)-1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl) piperidine-2-carbonyl)oxy)propyl)phenoxy)acetic acid (13.1 mg, 0.0189 mmol, 1 eq) as a solution in 0.189 mL DMF (0.1 M). DIPEA (9.9 microliters, 0.0566 mmol, 3 eq) and HATU (7.2 mg, 0.0189 mmol, 1 eq) are added and the mixture is stirred for 17 hours. The mixture is diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer is dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material is purified by column chromatography. Example 65: Synthesis of dFKBP-8 [0977] dFKBP*8 [0978] N-(6-aminohexyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoracetate (12.7 mg, 0.0233 mmol, 1.3 eq) is added to 2-(3-((R)-3-(3, 4-dimethoxyphenyl)-1-(((S)-1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carbonyl)oxy)propyl)phenoxy) acetic acid (12.4 mg, 0.0179 mmol, 1 eq) as a solution in 0.233 mL DMF (0.1 M). DIPEA (9.3 microliters, 0.0537 mmol, 3 eq) and HATU (6.8 mg, 0.0179 mmol, 1 eq) are added and the mixture is stirred for 22 hours. The mixture is diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer is dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material is purified by column chromatography. Example 66: Synthesis of dFKBP-9 [0979] [0980] N-(8-aminooctyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate (10.4 mg, 0.0181 mmol, 1 eq) is added to 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-(((S)-1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carbonyl)oxy)propyl)phenoxy) acetic acid (12.5 mg, 0.0181 mmol, 1 eq) as a solution in 0.181 mL DMF (0.1 M). DIPEA (9.5 microliters, 0.0543 mmol, 3 eq) and HATU (6.9 mg, 0.0181 mmol, 1 eq) are added and the mixture is stirred for 22 hours. The mixture is diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer is dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material is purified by column chromatography. $$MeO$$ MeO dFKBP*9 Example 67: Synthesis of dFKBP [0981] [0982] FKBP*-acid (14.0 mg, 0.0202 mmol, 1 eq) and 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl) amino)ethan-1-aminium 2,2,2-trifluoroacetate (8.7 mg, 0.0202 mmol, 1 equiv) are dissolved in DMF (0.202 mL, 0.1 M) at room temperature. DIPEA (17.6 \square L, 0.101 mmol, 5 equiv) and HATU (7.6 mg, 0.0200 mmol, 1 equiv) are then added and the mixture is stirred at room temperature overnight. The reaction mixture is taken up in EtOAc (15 mL), and washed with satd. NaHCO₃(aq) (15 mL), water (15 mL) and brine (3×15 mL). The organic layer is dried over Na₂SO₄ and concentrated in vacuo. The crude material is purified by column chromatography. Example 68: Synthesis of diaminoethyl-acetyl-O-thalidomide trifluoroacetate #### [0983] $$_{\mathrm{BocHN}}$$ $_{\mathrm{NH_{2}}}$ $_{\mathrm{DIPEA,\,THF}}^{\mathrm{Cl}}$ -continued OH $$CO_2Me$$ CO_2Me (1) Synthesis of text-Butyl (2-(2-chloroacetamido)ethyl)carbamate [0984] [0985] tert-butyl (2-aminoethyl)carbamate (0.40 mL, 2.5 mmol, 1 eq) was dissolved in THF (25 mL, 0.1 M) and DIPEA (0.44 mL, 2.5 mmol, 1 eq) at 0° C. Chloroacetyl chloride (0.21 mL, 2.75 mmol, 1.1 eq) was added and the mixture was allowed to warm to room temperature. After 22 hours, the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried with sodium sulfate, filtered and concentrated under reduced pressure to give a white solid (0.66 g, quantitative yield) that carried forward to the next step without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.16 (s, 1H), 4.83 (s, 1H), 4.04 (s, 2H), 3.42 (q, J=5.4 Hz, 2H), 3.32 (q, J=5.6 Hz, 2H), 1.45 (s, 9H). LCMS 237.30 (M+H). (2) Synthesis of dimethyl 3-(2-((2-((tert-butoxycarbonyl)amino)ethyl)amino)-2-oxoethoxy)phthalate [0986] [0987] tert-butyl (2-(2-chloroacetamido)ethyl)carbamate (0.66 g, 1 eq) was dissolved in MeCN (17 mL, 0.15 M). Dimethyl 3-hydroxyphthalate (0.578 g, 2.75 mmol, 1.1 eq) and cesium carbonate (2.24 g, 6.88 mmol, 2.75 eq) were then added. The flask was fitted with a reflux condenser and heated to 80° C. for 32 hours. The mixture was then cooled to room temperature, diluted with EtOAc and washed three times with water. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g silica column, 0-15% MeOH/DCM over a 15 minute gradient) gave a yellow solid (0.394 g, 0.960 mmol, 38% over 2 steps). ¹H NMR (400 MHz, Chloroform-d) δ 7.65-7.56 (m, 1H), 7.50-7.41 (m, 1H), 7.27 (s, 1H), 7.11 (dd, J=8.4, 4.1 Hz, 2H), 5.17 (s, 1H), 4.57 (d, J=6.3 Hz, 2H), 3.94 (s, 2H), 3.88 (s, 2H), 3.40 (p, J=5.8 Hz, 4H), 3.32-3.19 (m, 4H), 1.39 (d, J=5.7 Hz, 13H). 13 C NMR (100 MHz, cdcl₃) δ 168.37, 168.23, 165.73, 156.13, 154.71, 131.24, 130.09, 124.85, 123.49, 117.24, 79.42, 68.48, 53.22, 52.83, 40.43, 39.54, 28.44. LCMS 411.45 (M+H). ## (3) Synthesis of diaminoethyl-acetyl-O-thalidomide trifluoroacetate [0988] [0989] Dimethyl 3-(2-((2-((tert-butoxycarbonyl)amino) ethyl)amino)-2-oxoethoxy)phthalate (0.39 g, 0.970 mmol, 1 eq) was dissolved in EtOH (9.7 mL, 0.1 M). Aqueous 3M NaOH (0.97 mL, 2.91 mmol, 3 eq) was added and the mixture was heated to 80° C. for 3 hours. The mixture was cooled to room temperature, diluted with 50 mL DCM, 5 mL 1 M HCl and 20 mL water. The layers were separated and the organic layer was washed with 20 mL water. The combined aqueous layers were then extracted 3 times with 50 mL chloroform. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure to give a yellow solid (0.226 g) that was carried forward without further purification. LCMS 383.36. [0990] The resultant yellow solid (0.226 g) and 3-aminopiperidine-2,6-dione hydrochloride (0.102 g, 0.6197 mmol, 1 eq) were dissolved in pyridine (6.2 mL, 0.1 M) and heated to 110° C. for 16 hours. The mixture was cooled to room temperature and concentrated under reduced pressure to give tert-butyl (2-(2-((2-(2, 6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)ethyl)carbamate as a poorly soluble black tar (0.663 g) which was carried forward without purification (due to poor solubility). LCMS 475.42 (M+H). [0991] The crude tert-butyl (2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)ethyl)carbamate was dissolved in TFA (10 mL) and heated to 50° C. for 3.5
hours, then concentrated under reduced pressure. Purification by preparative HPLC gave a red oil (176.7 mg, 0.362 mmol, 37% over 3 steps). $^1\mathrm{H}$ NMR (400 MHz, Methanol-d₄) δ 7.85-7.76 (m, 1H), 7.57-7.50 (m, 1H), 7.48-7.41 (m, 1H), 5.13 (dd, J=12.6, 5.5 Hz, 1H), 4.81 (s, 2H), 3.62 (td, J=5.6, 1.8 Hz, 2H), 3.14 (t, J=5.8 Hz, 2H), 2.97 (s, 1H), 2.80-2.66 (m, 2H), 2.15 (dddd, J=10.1, 8.0, 5.8, 2.8 Hz, 1H). $^{13}\mathrm{C}$ NMR (100 MHz, cd₃od) δ 173.09, 170.00, 169.99, 166.78, 166.62, 154.93, 136.88, 133.46, 120.71, 117.93, 116.77, 68.29, 49.17, 39.37, 38.60, 30.73, 22.19. LCMS 375.30 (M+H for free base). Example 69: Synthesis of diaminobutyl-acetyl-O-thalidomide trifluoroacetate #### [0992] [0993] Diaminobutyl-acetyl-O-thalidomide trifluoroacetate was prepared according to the procedure in Fischer et al. *Nature*, 2014, 512, 49-53. Example 70: Synthesis of diaminohexyl-acetyl-O-thalidomide trifluoroacetate #### [0994] (1) Synthesis of tert-butyl (6-(2-chloroacetamido)hexyl)carbamate #### [0995] $$\underset{O}{\text{BocHN}} \overbrace{\hspace{1cm}}^{H} \underset{Cl}{\underbrace{\hspace{1cm}}$$ [0996] tert-butyl (6-aminohexyl)carbamate (0.224 mL, 1.0 mmol, 1 eq) was dissolved in THF (10 mL, 0.1 M). DIPEA (0.17 mL, 1.0 mmol, 1 eq) was added and the mixture was cooled to 0° C. Chloroacetyl chloride (88 microliters, 1.1 mmol, 1.1 eq) was added and the mixture was warmed to room temperature and stirred for 18 hours. The mixture was then diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give a white solid (0.2691 g, 0.919 mmol, 92%). $^1\mathrm{H}$ NMR (400 MHz, Chloroform-d) δ 6.60 (s, 1H), 4.51 (s, 1H), 4.05 (s, 2H), 3.30 (q, J=6.9 Hz, 2H), 3.11 (d, J=6.7 Hz, 2H), 1.57-1.46 (m, 4H), 1.44 (s, 9H), 1.38-1.32 (m, 4H). LCMS 293.39 (M+H). (2) Synthesis of dimethyl 3-(2-((6-((tert-butoxycarbonyl)amino)hexyl)amino)-2-oxoethoxy)phthalate #### [0997] [0998] tert-butyl (6-(2-chloroacetamido)hexyl)carbamate (0.2691 g, 0.919 mmol, 1 eq) was dissolved in MeCN (9.2 mL, 0.1 M). Dimethyl 3-hydroxyphthalate (0.212 g, 1.01 mmol, 1.1 eq) and cesium carbonate (0.823 g, 2.53 mmol, 2.75 eq) were added. The flask was fitted with a reflux condenser and heated to 80° C. for 14 hours. The mixture was cooled to room temperature and diluted with EtOAc. washed three times with water and back extracted once with EtOAc. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material was purified by column chromatography (ISCO, 12 g silica column, 0-15% MeOH/DCM 15 minute gradient) to give a yellow oil (0.304 g, 0.651 mmol, 71%). ¹H NMR (400 MHz, Chloroform-d) δ 7.66-7.58 (m, 1H), 7.44 (td, J=8.2, 1.6 Hz, 1H), 7.15-7.08 (m, 1H), 6.96 (s, 1H), 4.56 (s, 2H), 3.92 (t, J=1.6 Hz, 3H), 3.88 (t, J=1.6 Hz, 3H), 3.27 (q, J=6.9 Hz, 2H), 3.10-3.00 (m, 2H), 1.41 (s, 13H), 1.33-1.22 (m, 4H). ¹³C NMR (100 MHz, cdcl₃) 8 167.97, 167.37, 165.58, 155.95, 154.37, 130.97, 129.74, 124.94, 123.26, 116.81, 78.96, 68.04, 52.89, 52.87, 52.69, 52.67, 40.41, 38.96, 29.88, 29.13, 28.39, 26.33, 26.30. LCMS 467.49. ### (3) Synthesis of diaminohexyl-acetyl-O-thalidomide trifluoroacetate #### [0999] $$CF_3CO_2H \bullet H_2N \longrightarrow N \longrightarrow NH$$ [1000] Dimethyl 3-(2-((6-((tert-butoxycarbonyl)amino) hexyl)amino)-2-oxoethoxy)phthalate (0.304 g, 0.651 mmol, 1 eq) was dissolved in EtOH (6.5 mL, 0.1 M). Aqueous 3M NaOH (0.65 mL, 1.953 mmol, 3 eq) was added and the mixture was heated to 80° C. for 18 hours. The mixture was cooled to room temperature and diluted with 50 mL DCM and 10 mL 0.5 M HCl. The layers were separated and the organic layer was washed with 20 mL water. The combined aqueous layers were then extracted 3 times with chloroform. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure to give a yellow foam (0.290 g) that was carried forward without further purification. LCMS 439.47. [1001] The resultant yellow solid (0.290 g) and 3-aminopiperidine-2,6-dione hydrochloride (0.113 g, 0.69 mmol, 1 eq) were dissolved in pyridine (6.9 mL, 0.1 M) and heated to 110° C. for 17 hours. The mixture was cooled to room temperature and concentrated under reduced pressure to give tert-butyl (6-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)hexyl)carbamate as a black solid (0.4216 g) which was carried forward without purification (due to poor solubility). LCMS 531.41 (M+H). [1002] The crude tert-butyl (6-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)hexyl)carbamate (0.4216 g) was dissolved in TFA (10 mL) and heated to 50° C. for 2 hours. The mixture was concentrated under reduced pressure, then concentrated under reduced pressure. Purification by preparative HPLC gave a brown solid (379.2 mg). ¹H NMR (400 MHz, Methanol-d₄) & 7.79 (dd, J=8.4, 7.4 Hz, 1H), 7.52 (d, J=7.2 Hz, 1H), 7.42 (d, J=8.4 Hz, 1H), 5.13 (dd, J=12.6, 5.5 Hz, 1H), 4.75 (s, 2H), 3.32 (t, J=7.6 Hz, 2H), 2.96-2.89 (m, 2H), 2.89-2.65 (m, 3H), 2.16 (ddt, J=10.4, 5.4, 2.9 Hz, 1H), 1.63 (dp, J=20.6, 7.1 Hz, 4H), 1.51-1.34 (m, 4H). ¹³C NMR (100 MHz, cd₃od) & 174.57, 171.42, 169.90, 168.24, 167.79, 156.23, 138.23, 134.87, 121.69, 119.22, 117.98, 69.36, 50.53, 40.64, 39.91, 32.14, 30.01, 28.44, 27.23, 26.96, 23.63. LCMS 431.37 (M+H). Example 71: Synthesis of diaminooctyl-acetyl-O-thalidomide trifluoroacetate [1003] (1) Synthesis of tert-Butyl (8-(2-chloroacetamido)octyl)carbamate [1004] $$_{\rm BocHN}$$ $\stackrel{\rm H}{\sim}$ $_{\rm Cl}$ [1005] Octane-1,8-diamine (1.65 g, 11.45 mmol, 5 eq) was dissolved in chloroform (50 mL). A solution of di-tert-butyl dicarbonate (0.54 g, 2.291 mmol, 1 eq) in chloroform (10 mL) was added slowly at room temperature and stirred for 16 hours before being concentrated under reduced pressure. The solid material was resuspended in a mixture of DCM, MeOH, EtOAc and 0.5 N NH₃ (MeOH), filtered through celite and concentrated under reduced pressure. Purification by column chromatography (ISCO, 12 g NH2-silica column, 0-15% MeOH/DCM over a 15 minute gradient) gave a mixture (1.75 g) of the desired product and starting material which was carried forward without further purification. [1006] This mixture was dissolved in THF (72 mL) and DIPEA (1.25 mL, 7.16 mmol) and cooled to 0° C. Chloroacetyl chloride (0.63 mL, 7.88 mmol) was added and the mixture was allowed to warm to room temperature. After 16 hours, the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water and brine. The resultant mixture was purified by column chromatography (ISCO, dry load onto silica, 24 g column, 0-100% EtOAc/hexanes, over a 21 minute gradient) to give a white solid (0.56 g, 1.745 mmol, 76% over 2 steps). 1 H NMR (400 MHz, Chloroformd) δ 6.55 (s, 1H), 4.48 (s, 1H), 4.05 (s, 2H), 3.30 (q, J=6.9 Hz, 2H), 3.10 (d, J=6.2 Hz, 2H), 1.44 (s, 12H), 1.31 (s, 9H). 13 C NMR (100 MHz, cdcl $_{3}$) δ 165.86, 156.14, 77.36, 42.86, 40.73, 40.00, 30.18, 29.44, 29.26, 28.59, 26.86, 26.82. LCMS 321.34 (M+H). (2) Synthesis of dimethyl 3-(2((8-((tert-butoxycar-bonyl)amino)octyl)amino)-2-oxoethoxy)phthalate #### [1007] BoeHN $$O$$ CO_2Me CO_2Me [1008] tert-butyl (8-(2-chloroacetamido)octyl)carbamate (0.468 g, 1.46 mmol, 1 eq) was dissolved in MeCN (15 mL, 0.1 M). Dimethyl 3-hydroxyphthalate (0.337 g, 1.60 mmol, 1.1 eq) and cesium carbonate (1.308 g, 4.02 mmol, 2.75 eq) were added. The flask was fitted with a reflux condenser and heated to 80° C. for 18 hours. The mixture was cooled to room temperature and diluted water and extracted once with chloroform and twice with EtOAc. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. [1009] The crude material was purified by column chromatography (ISCO, 24 g silica column, 0-15% MeOH/DCM 20 minute gradient) to give a yellow oil (0.434 g, 0.878 mmol, 60%). ¹H NMR (400 MHz, Chloroform-d) δ 7.57 (dd, J=7.9, 0.8 Hz, 1H), 7.40 (t, J=8.1 Hz, 1H), 7.07 (dd, J=8.4, 0.7 Hz, 1H), 6.89 (t, J=5.3 Hz, 1H), 4.63 (s, 1H), 4.52 (s, 2H), 3.88 (s, 3H), 3.83 (s, 3H), 3.22 (q, J=6.9 Hz, 2H), 3.01 (q, J=6.4 Hz, 2H), 1.36 (s, 12H), 1.20 (s, 9H). ¹³C NMR (100 MHz, cdcl₃) δ 167.89, 167.29, 165.54, 155.97, 154.38, 130.95, 129.69, 124.96, 123.23, 116.86, 78.82, 68.05, 52.83, 52.82, 52.66, 52.64, 40.54, 39.06, 29.97, 29.19, 29.10, 29.06, 28.40, 26.66, 26.61. LCMS 495.42 (M+H). (3) Synthesis of diaminooctyl-acetyl-O-thalidomide trifluoroacetate # [1010] [1011] Dimethyl 3-(2-((8-((tert-butoxycarbonyl)amino) octyl)amino)-2-oxoethoxy)phthalate (0.434 g, 0.878 mmol, 1 eq) was dissolved in EtOH (8.8 mL, 0.1 M) Aqueous 3M NaOH (0.88 mL, 2.63 mmol, 3 eq) was added and the mixture was heated to 80° C. for 24 hours. The mixture was cooled to room temperature and diluted with 50 mL DCM and 10 mL 0.5 M HCl. The layers were separated and the organic layer was washed with 20 mL water. The combined aqueous layers were then extracted 3 times with chloroform. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure to give a yellow solid (0.329 g) that was carried forward without further purification. LCMS 467.41. [1012] The resultant yellow solid (0.329 g) and 3-aminopiperidine-2,6-dione hydrochloride (0.121 g, 0.734 mmol, 1 eq) were dissolved in pyridine (7.3 mL, 0.1 M) and heated to 110° C. for 20 hours. The mixture was cooled to room temperature and concentrated under reduced pressure to give tert-butyl (8-(2-((2-(2, 6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido) octyl) carbamate as a black tar (0.293 g) which was carried forward without purification (due to poor solubility). LCMS 559.45 (M+H). [1013] The crude tert-butyl (8-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamido)octyl)carbamate (0.293 g) was
dissolved in TFA (10 mL) and heated to 50° C. for 4 hours. The mixture was concentrated under reduced pressure, then concentrated under reduced pressure. Purification by preparative HPLC gave a brown residue (114.69 mg, 23% over 3 steps). ¹H NMR (400 MHz, Methanol-d₄) δ 7.84-7.78 (m, 1H), 7.54 (d, J=7.3 Hz, 1H), 7.43 (d, J=8.5 Hz, 1H), 5.13 (dd, J=12.5, 5.5 Hz, 1H), 4.76 (s, 2H), 3.32 (d, J=4.1 Hz, 1H), 3.30 (d, J=3.3 Hz, 1H), 2.94-2.84 (m, 3H), 2.80-2.70 (m, 2H), 2.19-2.12 (m, 1H), 1.67-1.55 (m, 4H), 1.40-1.34 (m, 8H). ¹³C NMR (100 MHz, cd₃od) δ 174.57, 171.37, 169.85, 168.26, 167.78, 156.26, 138.22, 134.91, 121.70, 119.28, 117.97, 69.37, 50.57, 40.76, 40.08, 32.17, 30.19, 30.05, 30.01, 28.52, 27.68, 27.33, 23.63. LCMS 459.41 (M+H). Example 72: Synthesis of N-(3-(2-(2-(3-amino-propoxy)ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate #### [1014] (1) Synthesis of tert-butyl (1-chloro-2-oxo-7,10,13-trioxa-3-azahexadecan-16-yl)carbamate # [1015] [1016] tert-butyl (3-(2-(2-(3-aminopropoxy)ethoxy) ethoxy)propyl)carbamate (1.0 g, 3.12 mmol, 1 eq) was dissolved in THF (31 mL, 0.1 M). DIPEA (0.543 mL, 3.12 mmol, 1 eq) was added and the solution was cooled to 0° C. Chloroacetyl chloride (0.273 mL, 3.43 mmol, 1.1 eq) was added and the mixture was warmed slowly to room temperature. After 24 hours, the mixture was diluted with EtOAc and washed with saturated sodium bicarbonate, water then brine. The organic layer was dried over sodium sulfate, filtered and condensed to give a yellow oil (1.416 g) that was carried forward without further purification. ¹H NMR (400 MHz, Chloroform-d) δ 7.24 (s, 1H), 5.00 (s, 1H), 3.98-3.89 (m, 2H), 3.54 (dddt, J=17.0, 11.2, 5.9, 2.2 Hz, 10H), 3.47-3.40 (m, 2H), 3.37-3.31 (m, 2H), 3.17-3.07 (m, 2H), 1.79-1.70 (m, 2H), 1.67 (p, J=6.1 Hz, 2H), 1.35 (s, 9H). ¹³C NMR (100 MHz, cdcl₃) δ 165.83, 155.97, 78.75, 70.49, 70.47, 70.38, 70.30, 70.14, 69.48, 42.61, 38.62, 38.44, 29.62, 28.59, 28.40. LCMS 397.37 (M+H). (2) Synthesis of dimethyl 3-((2,2-dimethyl-4,20-dioxo-3,9,12,15-tetraoxa-5,19-diazahenicosan-21-yl) oxy)phthalate [1017] [1018] tert-butyl (1-chloro-2-oxo-7,10,13-trioxa-3-azahexadecan-16-yl)carbamate (1.41 g, 3.12 mmol, 1 eq) was dissolved in MeCN (32 mL, 0.1 M). Dimethyl 3-hydroxyphthalate (0.721 g, 3.43 mmol, 1.1 eq) and cesium carbonate (2.80 g, 8.58 mmol, 2.75 eq) were added. The flask was fitted with a reflux condenser and heated to 80° C. for 19 hours. The mixture was cooled to room temperature and diluted water and extracted once with chloroform and twice with EtOAc. The combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude material was purified by column chromatography (ISCO, 24 g silica column, 0-15% MeOH/DCM 22 minute gradient) to give a yellow oil (1.5892 g, 2.78 mmol, 89% over two steps). ¹H NMR (400 MHz, Chloroform-d) δ 7.52 (d, J=7.8 Hz, 1H), 7.35 (t, J=8.1 Hz, 1H), 7.04 (d, J=8.3 Hz, 1H), 7.00 (t, J=5.3 Hz, 1H), 5.06 (s, 1H), 4.46 (s, 2H), 3.83 (s, 3H), 3.78 (s, 3H), 3.47 (ddd, J=14.9, 5.5, 2.8 Hz, 8H), 3.39 (dt, J=9.4, 6.0 Hz, 4H), 3.29 (q, J=6.5 Hz, 2H), 3.09 (d, J=6.0 Hz, 2H), 1.70 (p, J=6.5 Hz, 2H), 1.63 (p, J=6.3 Hz, 2H), 1.31 (s, 9H). ¹³C NMR (100 MHz, cdcl₃) δ 167.68, 167.36, 165.45, 155.93, 154.41, 130.87, 129.60, 125.01, 123.20, 117.06, 78.60, 70.40, 70.17, 70.06, 69.39, 68.67, 68.25, 52.77, 52.57, 38.38, 36.58, 29.55, 29.20, 28.34. LCMS 571.47 (M+H). (3) Synthesis of N-(3-(2-(2-(3-aminopropoxy) ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate [1019] [1020] dimethyl 3-((2,2-dimethyl-4,20-dioxo-3,9,12,15-tetraoxa-5,19-diazahenicosan-21-yl)oxy)phthalate (1.589 g, 2.78 mmol, 1 eq) was dissolved in EtOH (14 mL, 0.2 M). Aqueous 3M NaOH (2.8 mL, 8.34 mmol, 3 eq) was added and the mixture was heated to 80° C. for 22 hours. The mixture was then cooled to room temperature, diluted with $50~\mathrm{mL}$ DCM and $20~\mathrm{mL}$ 0.5 M HCl. The layers were separated and the organic layer was washed with $25~\mathrm{mL}$ water. The aqueous layers were combined and extracted three times with $50~\mathrm{mL}$ chloroform. The combined organic layers were dried over sodium sulfate, filtered and condensed to give 1.53 g of material that was carried forward without further purification. LCMS 553.44. [1021] The resultant material (1.53 g) and 3-aminopiperidine-2,6-dione hydrochloride (0.480 g, 2.92 mmol, 1 eq) were dissolved in pyridine (11.7 mL, 0.25 M) and heated to 110° C. for 17 hours. The mixture was cooled to room temperature and concentrated under reduced pressure to give crude tert-butyl (1-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)-2-oxo-7,10,13-trioxa-3-azahexadecan-16-yl)carbamate as a black sludge (3.1491 g) that was carried forward without further purification. LCMS 635.47. [1022] The crude tert-butyl (1-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)-2-oxo-7,10,13-trioxa-3-azahexadecan-16-yl)carbamate (3.15 g) was dissolved in TFA (20 mL) and heated to 50° C. for 2.5 hours. The mixture was cooled to room temperature, diluted with MeOH and concentrated under reduced pressure. The material was purified by preparative HPLC to give N-(3-(2-(2-(3-amino-propoxy)ethoxy)ethoxy)propyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide trifluoroacetate (1.2438 g, 1.9598 mmol, 71% over 3 steps) as a dark red oil. ¹H NMR (400 MHz, Methanol-d₄) & 7.77 (dd, J=8.3, 7.5 Hz, 1H), 7.49 (d, J=7.3 Hz, 1H), 7.40 (d, J=8.5 Hz, 1H), 5.12 (dd, J=12.8, 5.5 Hz, 1H), 4.75 (s, 2H), 3.68-3.51 (m, 12H), 3.40 (t, J=6.8 Hz, 2H), 3.10 (t, J=6.4 Hz, 2H), 2.94-2.68 (m, 3H), 2.16 (dtd, J=12.6, 5.4, 2.5 Hz, 1H), 1.92 (p, J=6.1 Hz, 2H), 1.86-1.77 (m, 2H). ¹³C NMR (100 MHz, cd₃od) δ 173.17, 169.97, 168.48, 166.87, 166.30, 154.82, 136.89, 133.41, 120.29, 117.67, 116.58, 69.96, 69.68, 69.60, 68.87, 68.12, 67.92, 49.19, 38.62, 36.14, 30.80, 28.92, 26.63, 22.22. LCMS 536.41 (M+H). Example 73: Synthesis of N-(6-aminohexyl)-2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindoline-5-carboxamide #### [1023] (1) Synthesis of 2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindoline-5-carboxylic acid (2) Synthesis of tert-butyl (6-(2-(2,6-dioxopiperi-din-3-yl)-1,3-dioxoisoindoline-5-carboxamido) hexyl)carbamate #### [1024] # HO₂C NH [1025] 1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid (0.192 g, 1 mmol, 1 eq) and 3-aminopiperidine-2,6-dione hydrochloride (0.165 g, 1 mmol, 1 eq) were dissolved in DMF (2.5 mL) and acetic acid (5 mL) and heated to 80° C. for 24 hours. The mixture was then concentrated under reduced pressure and diluted with EtOH, from which a precipitate slowly formed. The precipitate was washed twice with EtOH to give a white solid (84.8 mg, 0.28 mmol, 28%). 1 H NMR (400 MHz, DMSO-d₆) δ 13.74 (s, 1H), 11.12 (s, 1H), 8.39 (dd, J=7.8, 1.4 Hz, 1H), 8.26 (s, 1H), 8.04 (d, J=7.8 Hz, 1H), 5.18 (dd, J=12.8, 5.4 Hz, 1H), 2.93-2.88 (m, 1H), 2.84 (d, J=4.7 Hz, OH), 2.66-2.50 (m, 2H), 2.12-1.99 (m, 1H). LCMS 303.19 (M+H). ## [1026] [1027] 2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindoline-5-carboxylic acid (22.7 mg, 0.0751 mmol, 1 eq) and HATU (31.4 mg, 0.0826 mmol, 1.1 eq) were dissolved in DMF (0.75 mL). After 5 minutes, DIPA (39.2 microliters, 0.225 mmol, 3 eq) was added. After an additional 5 minutes, tert-butyl (6-aminohexyl)carbamate (19.5 mg, 0.0901 mmol, 1.2 eq) was added as a solution in DMF (0.75 mL). The mixture was stirred for 20 hours, then diluted with EtOAc. The organic layer was washed three times with brine, dried over sodium sulfate and concentrated under reduced pressure. Purification by column chromatography (ISCO, 4 g column, 0-10% MeOH/DCM, 25 minute gradient) to give a yellow oil (17.18 mg, 0.03432 mmol, 46%). ¹H NMR (400 MHz, Chloroform-d) δ 8.29 (d, J=6.2 Hz, 2H), 8.16 (s, 1H), 7.94 (d, J=8.4 Hz, 1H), 6.91 (s, 1H), 5.00 (dd, J=12.4, 5.3 Hz, 1H), 4.58 (s, 1H), 3.47 (q, J=6.7 Hz, 2H), 3.14 (q, J=8.5, 7.3 Hz, 2H), 2.97-2.69 (m, 3H), 2.17 (ddd, J=10.4, 4.8, 2.6 Hz, 1H), 1.65 (p, J=6.9 Hz, 2H), 1.53-1.32 (m, 15H). 13 C NMR (100 MHz, cdcl₃) δ 174.69, 170.77, 167.86, 166.67, 165.27, 156.49, 141.06, 133.95, 133.71, 132.13, 124.21, 122.27, 77.36, 49.71, 39.75, 31.54, 30.27, 29.22, 28.57, 25.70, 25.37, 22.73. LCMS 501.28 (M+H). (3) Synthesis of N-(6-aminohexyl)-2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindoline-5-carboxamide # [1028] $$CF_3CO_2H\bullet H_2N \longrightarrow NH \longrightarrow O$$ [1029] tert-butyl (6-(2-(2, 6-dioxopiperidin-3-yl)-1,3-dioxoisoindoline-5-carboxamido)hexyl)carbamate (17.18 mg, 0.343 mmol, 1 eq) was dissolved in TFA (1 mL) and heated to 50° C. for 2 hours. The mixture was concentrated under reduced pressure to give a yellow oil (13.29 mg) which was deemed sufficiently pure without further purification. ¹H NMR (400 MHz, Methanol-d₄) δ 8.27 (dd, J=9.3, 1.3 Hz, 2H), 7.99 (d, J=7.6 Hz, 1H), 5.18 (dd, J=12.5, 5.4 Hz, 1H), 3.48-3.40 (m, 2H), 2.96-2.84 (m, 3H), 2.76 (ddd, J=17.7, 8.1, 3.7 Hz, 2H), 2.20-2.12 (m, 1H), 1.75-1.63 (m, 4H), 1.53-1.43 (m, 4H). LCMS 401.31 (M+H). Example 74: Synthesis of 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetic acid # [1030] -continued (1) Synthesis of 2-(2,6-dioxopiperidin-3-yl)-4-hy-droxyisoindoline-1,3-dione #### [1031] [1032] 4-hydroxyisobenzofuran-1,3-dione (0.773 g, 4.71 mmol, 1 eq) and 3-aminopiperidine-2,6-dione hydrochloride (0.775 g, 4.71 mmol, 1 eq) were dissolved in pyridine (19 mL) and heated to 110° C. for 16 hours. The mixture was concentrated under reduced pressure and purified by column chromatography (ISCO, 12 g silica column, 0-10% MeOH/DCM, 25 minute gradient) to give an off white solid (1.14 g, 4.16 mmol, 88%). 1 H NMR (400 MHz, DMSO-d₆) δ 11.19 (s, 1H), 11.07 (s, 1H), 7.65 (dd, J=8.3, 7.3 Hz, 1H), 7.31 (d, J=7.2 Hz, 1H), 7.24 (d, J=8.4 Hz, 1H), 5.07 (dd, J=12.8, 5.4 Hz, 1H), 2.88 (ddd, J=17.7, 14.2, 5.4 Hz, 1H), 2.63-2.50 (m, 2H), 2.11-1.95 (m, 1H). LCMS
275.11 (M+H). (2) Synthesis of tert-butyl 2-((2-(2,6-dioxopiperi-din-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetate #### [1033] [1034] 2-(2,6-dioxopiperidin-3-yl)-4-hydroxyisoindoline-1,3-dione (218.8 mg, 0.798 mmol, 1 eq) was dissolved in DMF (8 mL). Potassium carbonate (165.9 mg, 1.20 mmol, 1.5 eq) was added, followed by tert-butyl bromoacetate (118 microliters, 0.798 mmol, 1 eq) and the mixture was stirred at room temperature for 3 hours. The mixture was diluted with EtOAc and washed once with water and twice with brine. Purification by column chromatography (ISCO, 12 g silica column, 0-100% EtOAc/hex, 17 minute gradient) gave a white solid (0.26 g, 0.669 mmol, 84%). ¹H NMR (400 MHz, Chloroform-d) δ 8.74 (s, 1H), 7.61 (dd, J=8.4, 7.3 Hz, 1H), 7.46-7.41 (m, 1H), 7.06 (d, J=8.3 Hz, 1H), 4.98-4.92 (m, 1H), 4.74 (s, 2H), 2.83-2.69 (m, 3H), 2.12-2.04 (m, 1H), 1.43 (s, 9H). ¹³C NMR (100 MHz, cdcl₃) δ 171.58, 168.37, 166.96, 166.87, 165.49, 155.45, 136.27, 133.89, 119.78, 117.55, 116.83, 83.05, 66.52, 49.20, 31.37, 28.03, 22.55. LCMS 411.23 (M+Na). (3) Synthesis of 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetic acid [1035] [1036] tert-butyl 2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetate (47.5 mg, 0.122 mmol, 1 eq) was dissolved in TFA (1.3 mL) at room temperature. After 3 hours, the mixture was diluted with DCM and concentrated under reduced pressure to yield a white solid (42.27 mg), which was deemed sufficiently pure without further purification. $^1\mathrm{H}$ NMR (400 MHz, Methanol-d₄) δ 7.76 (dd, J=8.5, 7.3 Hz, 1H), 7.50 (d, J=7.3 Hz, 1H), 7.34 (d, J=8.5 Hz, 1H), 5.11 (dd, J=12.5, 5.5 Hz, 1H), 4.96 (s, 2H), 2.87 (ddd, J=17.8, 14.2, 5.0 Hz, 1H), 2.80-2.65 (m, 2H), 2.18-2. 09 (m, 1H). LCMS 333.15 (M+H). # Heterobifunctional Compound Pharmaceutical Compositions [1037] In another aspect of the present application, pharmaceutical compositions are provided, which comprise any one of the heterobifunctional compounds described herein (or a prodrug, pharmaceutically acceptable salt or other pharmaceutically acceptable derivative thereof), and optionally comprise a pharmaceutically acceptable carrier. It will also be appreciated that certain of the heterobifunctional compounds of the present application can exist in free form for treatment, or where appropriate, as a pharmaceutically acceptable derivative thereof. According to the present application, a pharmaceutically acceptable derivative includes, but is not limited to, pharmaceutically acceptable salts, esters, salts of such esters, or a pro-drug or other adduct or derivative of a compound of this application which upon administration to a patient in need is capable of providing, directly or indirectly, a heterobifunctional compound as otherwise described herein, or a metabolite or residue thereof. [1038] As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts of amines, carboxylic acids, and other types of compounds, are well known in the art. For example, S. M. Berge, et al. describe pharmaceutically acceptable salts in detail in J Pharmaceutical Sciences 66 (1977):1-19, incorporated herein by reference. The salts can be prepared in situ during the final isolation and purification of the heterobifunctional compounds of the application, or separately by reacting a free base or free acid function with a suitable reagent, as described generally below. For example, a free base function can be reacted with a suitable acid. Furthermore, where the heterobifunctional compounds of the application carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may, include metal salts such as alkali metal salts, e.g. sodium or potassium salts; and alkaline earth metal salts, e.g. calcium or magnesium salts. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate. [1039] Additionally, as used herein, the term "pharmaceutically acceptable ester" refers to esters that hydrolyze in vivo and include those that break down readily in the human body to leave the parent heterobifunctional compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloal-kanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include formates, acetates, propionates, butyrates, acrylates and ethylsuccinates. [1040] Furthermore, the term "pharmaceutically acceptable prodrugs" as used herein refers to those prodrugs of the heterobifunctional compounds of the present application which are, within the scope of sound medical judgment, suitable for use in contact with the issues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the application. The term "prodrug" refers to compounds that are rapidly transformed in vivo to yield the parent compound of the above formula, for example by hydrolysis in blood. A thorough discussion is provided in T. Higuchi and V. Stella, *Pro-drugs as Novel Delivery Systems*, Vol. 14 of the A.C.S. Symposium Series, and in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, (1987), both of which are incorporated herein by reference. [1041] As described above, the pharmaceutical heterobifunctional compound compositions of the present application additionally comprise a pharmaceutically acceptable carrier, which, as used herein, includes any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's Pharmaceutical Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., (1980)) discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Except insofar as any conventional carrier medium is incompatible with the compounds of the application, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this application. Some examples of materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatine; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil, sesame oil; olive oil; corn oil and soybean oil; glycols; such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator. [1042] Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol,
1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents. [1043] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables. [1044] The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use. [1045] In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension or crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution that, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues. [1046] Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this application with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound. [1047] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents. [1048] Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. [1049] Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. [1050] The active heterobifunctional compounds can also be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active heterobifunctional compound may be admixed with at least one inert diluent such as sucrose, lactose and starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such as magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. [1051] The present application encompasses pharmaceutically acceptable topical formulations of inventive compounds. The term "pharmaceutically acceptable topical formulation", as used herein, means any formulation which is pharmaceutically acceptable for intradermal administration of a compound of the application by application of the formulation to the epidermis. In certain embodiments of the application, the topical formulation comprises a carrier system. Pharmaceutically effective carriers include, but are not limited to, solvents (e.g., alcohols, poly alcohols, water), creams, lotions, ointments, oils, plasters, liposomes, powders, emulsions, microemulsions, and buffered solutions (e.g., hypotonic or buffered saline) or any other carrier known in the art for topically administering pharmaceuticals. A more complete listing of art-known carriers is provided by reference texts that are standard in the art, for example, Remington's Pharmaceutical Sciences, 16th Edition, (1980) and 17th Edition, (1985), both published by Mack Publishing Company, Easton, Pa., the disclosures of which are incorporated herein by reference in their entireties. In certain other embodiments, the topical formulations of the application may comprise excipients. Any pharmaceutically acceptable excipient known in the art may be used to prepare the inventive pharmaceutically acceptable topical formulations. Examples of excipients that can be included in the topical formulations of the application include, but are not limited to, preservatives, antioxidants, moisturizers, emollients, buffering agents, solubilizing agents, other penetration agents, skin protectants, surfactants, and propellants, and/or additional therapeutic agents used in combination to the inventive compound. Suitable preservatives include, but are not limited to, alcohols, quaternary amines, organic acids, parabens, and phenols. Suitable antioxidants include, but are not limited to, ascorbic acid and its esters, sodium bisulfite, butylated hydroxytoluene, butylated hydroxyanisole, tocopherols, and chelating agents like EDTA and citric acid. Suitable moisturizers include, but are not limited to, glycerine, sorbitol, polyethylene glycols, urea, and propylene glycol. Suitable buffering agents for use with the application include, but are not limited to, citric, hydrochloric, and lactic acid buffers. Suitable solubilizing agents include, but are not limited to, quaternary ammonium chlorides, cyclodextrins, benzyl benzoate, lecithin, and polysorbates. Suitable skin protectants that can be used in the topical formulations of the application include, but are not limited to, vitamin E oil, allatoin, dimethicone, glycerin, petrolatum, and zinc oxide. [1052] In certain embodiments, the pharmaceutically acceptable topical formulations of the application comprise at least a compound of the application and a penetration enhancing agent. The choice of topical formulation will depend or several factors, including the condition to be treated, the physicochemical characteristics of the inventive compound and other excipients present, their stability in the formulation, available manufacturing equipment, and costs constraints. As used herein the term "penetration enhancing agent" means an agent capable of transporting a pharmacologically active compound through the stratum corneum and into the epidermis or dermis, preferably, with little or no systemic absorption. A wide variety of compounds have been evaluated as to their effectiveness in enhancing the rate of penetration of drugs through the skin. See, for example, Maibach H. I. and Smith H. E.
(eds.), Percutaneous Penetration Enhancers, CRC Press, Inc., Boca Raton, Fla. (1995), which surveys the use and testing of various skin penetration enhancers, and Buyuktimkin et al., Chemical Means of Transdermal Drug Permeation Enhancement in Transdermal and Topical Drug Delivery Systems, Gosh T. K., Pfister W. R., Yum S. I. (eds.), Interpharm Press Inc., Buffalo Grove, Ill. (1997). In certain exemplary embodiments, penetration agents for use with the application include, but are not limited to, triglycerides (e.g., soybean oil), aloe compositions (e.g., aloe-vera gel), ethyl alcohol, isopropyl alcohol, octolyphenylpolyethylene glycol, oleic acid, polyethylene glycol 400, propylene glycol, N-decylmethylsulfoxide, fatty acid esters (e.g., isopropyl myristate, methyl laurate, glycerol monooleate, and propylene glycol monooleate), and N-methylpyrrolidone. [1053] In certain embodiments, the compositions may be in the form of ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. In certain exemplary embodiments, formulations of the compositions according to the application are creams, which may further contain saturated or unsaturated fatty acids such as stearic acid, palmitic acid, oleic acid, palmito-oleic acid, cetyl or oleyl alcohols, and stearic acid being particularly preferred. Creams of the application may also contain a non-ionic surfactant, for example, polyoxy-40-stearate. In certain embodiments, the active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, eardrops, and eye drops are also contemplated as being within the scope of this application. Additionally, the present application contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms are made by dissolving or dispensing the compound in the proper medium. As discussed above, penetration enhancing agents can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel. [1054] It will also be appreciated that certain of the heterobifunctional compounds of present application can exist in free form for treatment, or where appropriate, as a pharmaceutically acceptable derivative thereof. According to the present application, a pharmaceutically acceptable derivative includes, but is not limited to, pharmaceutically acceptable salts, esters, salts of such esters, or a prodrug or other adduct or derivative of a compound of this application which upon administration to a patient in need is capable of providing, directly or indirectly, a compound as otherwise described herein, or a metabolite or residue thereof. #### Methods of Modulating CAR Expressing Cell Activity [1055] In general, methods of using the heterobifunctional compounds for modulating the activity of a CAR expressing cell as described in the present application comprise administering to a subject in need thereof a therapeutically effective amount of a heterobifunctional compound of the present application, wherein the heterobifunctional compound is administered in an amount sufficient to induce degradation of the CAR. [1056] In certain embodiments, heterobifunctional compounds are useful to modulate or downregulate the activation of the CAR expressing cell, for example a CAR T-cell, for example by degrading the intracellular signaling pathway of the CAR and thus reducing, for example, the release of cytokines by the CAR T-cell due to its activated state. In certain embodiments, according to the methods of treatment of the present application, levels of the CAR in the CAR expressing cell are modulated by contacting CAR expressing cells with a heterobifunctional compound, as described herein. [1057] Thus, in another aspect of the application, methods for the modulating of the activity of a CAR expressing cell, for example a CAR T-cell, are provided comprising administering a therapeutically effective amount of a heterobifunctional compound to a subject in need thereof. In certain embodiments, a method for the modulation of a CAR expressing cell, for example a CAR T-cell, is provided comprising administering a therapeutically effective amount of heterobifunctional compound, or a pharmaceutical composition comprising heterobifunctional compound to a subject in need thereof, in such amounts and for such time as is necessary to achieve the desired result. Preferably, the heterobifunctional compound is administered orally or intravenously. In certain embodiments of the present application a "therapeutically effective amount" of the heterobifunctional compound is that amount effective for reducing the activity of a CAR expressing cell so that an adverse inflammatory or immune response is modulated or reduced. The heterobifunctional compound s, according to the method of the present application, may be administered using any amount and any route of administration effective for modulating the activity of a CAR expressing cell. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the activity of the CAR expressing cell, the particular CAR expressing cell, and the like. In certain embodiments of the present application a "therapeutically effective amount" of the heterobifunctional compound is that amount effective for reducing the levels of CARs in a CAR expressing cell. [1058] The heterobifunctional compounds of the application are preferably formulated in dosage unit form for ease of administration and uniformity of dosage. The expression "dosage unit form" as used herein refers to a physically discrete unit of therapeutic agent appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the heterobifunctional compounds and compositions of the present application will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the adverse CAR expressing cell inflammatory response; the activity of the specific heterobifunctional compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific heterobifunctional compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific heterobifunctional compound employed; and like factors well known in the medical arts (see, for example, Goodman and Gilman's, "The Pharmacological Basis of Therapeutics", Tenth Edition, A. Gilman, J. Hardman and L. Limbird, eds., McGraw-Hill Press, (2001):155-173, which is incorporated herein by reference in its entirety). [1059] Furthermore, after formulation with an appropriate pharmaceutically acceptable carrier in a desired dosage, the pharmaceutical compositions of this application can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, creams or drops), bucally, as an oral or nasal spray, or the like, depending on the severity of the infection being treated. In certain embodiments, the heterobifunctional compound may be administered at dosage levels of about 0.001 mg/kg to about 50 mg/kg, from about 0.01 mg/kg to about 25 mg/kg, or from about 0.1 mg/kg to about 10 mg/kg of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect. It will also be appreciated that dosages smaller than 0.001 mg/kg or greater than 50 mg/kg (for example 50-100 mg/kg) can be administered to a subject. In certain embodiments, heterobifunctional compounds are administered orally or parenterally. [1060] Heterobifunctional compounds (e.g., the bifunctional compounds), once produced, can be characterized using a variety of assays known to those skilled in the art to determine whether the compounds have the desired biological activity. For example, the molecules can be characterized by conventional assays, including but not limited to those assays described below (e.g., treating cells of interest, such as MV4-11 cells, human cell line MM1S, or a human cell line MM1S that is deficient in cereblon, with a test compound and then performing immunoblotting against the indicated proteins such as BRD2, BRD3, and BRD4, or treating certain cells of interest with a test compound and then measuring BRD4 transcript levels via qRT-PCR), to determine whether they have a predicted activity, binding activity and/or binding specificity. [1061] One skilled in the art may refer to general reference texts for detailed descriptions of known techniques discussed herein or equivalent techniques. These texts include Ausubel et al., *Current Protocols in Molecular Biology*, John Wiley and Sons, Inc. (2005); Sambrook et al., *Molecular Cloning, A Laboratory Manual* (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (2000); Coligan et al., *Current Protocols in Immunology*, John Wiley & Sons, N.Y.; Enna et al., *Current Protocols in Pharmacological Basis of Therapeutics* (1975), *Remington's Pharmaceutical Sciences*, Mack Publishing Co., Easton, Pa., 18th edition (1990). These texts can, of course, also be referred to in making or using an aspect of the application. #### **EXAMPLES** [1062] Examples are provided of exemplary chimeric antigen receptor (CARs) molecules having an intracellular dTAG capable of being bound by or binding to a heterobifunctional compound, which, when exposed to the heterobifunctional
compound is degraded by the ubiquitin proteasomal pathway (UPP). The examples are exemplary only and are not intended to be limited, instead serving as illustrations of CAR structures incorporating a dTAG capable of being bound by a heterobifunctional compound and subsequently degraded. #### Example 1: CD19-CAR-dTAG [1063] FIG. 4 is a schematic of an exemplary CAR targeting the tumor antigen CD19. As illustrated, the CAR has an extracellular targeting ligand domain comprising a scFv to CD19. For example, the CD19 scFv has the amino acid sequence (SEQ ID NO: 10): MLLLVTSLLLCELPHPAFLLIPDIQMTQTTSSLSASLGDRVTISCRASQD ISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNL EQEDIATYFCQQGNTLPYTFGGGTKLEITGSTSGSGKPGSGEGSTKGEVK LQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGVIWG SETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGG SYAMDYWGQGTSVTVSS, where the GMCSF signal peptide is composed of amino acid sequence (SEQ ID NO: 11): MLLLVTSLLLCELPHPAFLLIP. [1064] The scFv to CD19 has a variable light chain (VL) composed of amino acid sequence (SEQ ID NO: 12): $$\label{thm:constraint} \begin{split} &\text{DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLLIYH} \\ &\text{TSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGG} \\ &\text{GTKLEIT}. \end{split}$$ [1065] The scFv variable light chain (VL) and variable heavy chain (VH) are connected by a Whitlow linker having the amino acid sequence (SEQ ID NO: 13): #### GSTSGSGKPGSGEGSTKG. [1066] The scFv to CD19 has a variable heavy chain (VH) composed of the amino acid sequence (SEQ ID NO: 14): $\label{thm:constraint} \begin{tabular}{l} EWLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGV\\ IWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYY\\ YGGSYAMDYWGQGTSVTVSS. \end{tabular}$ [1067] The scFv to CD19 is fused in frame with a modified CD8 alpha chain hinge region having the amino acid sequence (SEQ ID NO: 15): ${\tt ALSNSIYFSHFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAA} \\ {\tt GGAVHTrGLD} \; .$ [1068] The effector domain is comprised of a transmembrane domain cloned in frame with 1 or more cytoplasmic signaling domains. [1069] As exemplified herein, the Transmembrane domain (TM) can be a fragment of the co-stimulatory CD28 protein which includes the CD28 TM and cytoplasmic domain. The fragment is composed of the following amino acid sequence (SEQ ID NO: 16): $\label{lem:kpfwvlvwggvlacysllvtvafiifwvrskrsrllhsdymnmtprrpgpt $$ RKHYQPYAPPRDFAAYRS.$ [1070] The CD28 cytoplasmic domain is cloned in frame with the intracellular CD3-ζ domain. CD3-ζ domain is comprised of the following amino acid sequence (SEQ ID NO: 17): $\label{local_relation} RVKFSRSADAPAYQQQQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR\\ KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD\\ ALHMQALPPR.$ [1071] The functional CAR sequence is then linked by a triple glycine linker (GGG) and cloned in frame with a dTAG composed of the following amino acid sequence (SEQ ID NO: 18): $\label{thm:convergence} $$\operatorname{GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKVDSSRDRNKPFKFVLG}$$$ $$\operatorname{KQEVIRGWEEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPNATLIFDVE}$$$ $$\operatorname{LLKLE}.$ [1072] The dTAG amino acid sequence is a derivative of FKBP12 with the F36V mutation. [1073] As expressed, the complete amino acid sequence of the exemplary CD19-CAR-dTAG is (SEQ ID NO: 19): MLLLVTSLLLCELPHPAFLLIPDIQMTQTTSSLSASLGDRVTISCRASQDI SKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQ EDIATYFCQQGNTLPYTFGGGTKLEITGSTSGSGKPGSGEGSTKGEVKLQE SGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGVIWGSETT YYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSYAMD YWGQGTSVTVSSALSNSIYFSHFVPVFLPAKPTTTPAPRPPTPAPTIASQP LSLRPEACRPAAGGAVHTRGLDKPFWVLVWGGVLACYSLLVTVAFIIFWVR SKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAP AYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNEL QKDKMAEAYSEIGMKGERRGKGHDGLYQGLSTATKDTYDALHMQALPPRG GGGVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKVDSSRDRNKPFKFV LGKQEVIRGWEEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPNATLIFD VELLKLE. [1074] As described in more detail above, the synthetic DNA construct expressing the CAR amino acid sequence as described is introduced into an T-cell population from a subject having a disorder, for example a cancer (in this instance ALL, for example). Autologous T-cells are isolated from the subject's blood via apheresis and the propagated ex-vivo using any of the methods described above or known in the art. The synthetic CAR plasmid DNA, for example the plasmid encoding Cd19-CAR-dTAG illustrated in FIG. 5, is then introduced to the autologous T-cell population via a mechanism including, but not limited to, plasmid transfection, viral transduction, non-viral electroporation using transposable elements. The resultant CAR T-cells are expanded ex-vivo and then introduced to donor patients via transfusion. [1075] Upon receiving the CAR T-cell, subjects are monitored for development of CRS and other associated toxicities. Subjects suffering from CRS or other CAR T-cell associated toxicities are administered an effective amount of a heterobifunctional compound, for example dFKBP* which targets the dTAG of the exemplary CD19-CAR-dTAG of SEQ ID NO: 19. CAR degradation and T-cell load can be confirmed by FLOW cytometry. [1076] Upon reversal of CRS and/or other associated toxicities, administration of dFKBP* can be withdrawn and CAR re-expression on T-cells monitored by FLOW Cytometry. #### Example 2: ErbB2-CAR-dTAG [1077] As an alternative example, the CAR has an extracellular targeting ligand domain comprising an scFv to Erb-B2. The Erb-B2 scFv is cloned in frame with the C8 alpha chain linker, the CD28 TM and cytoplasmic domain, the CD3-\$\zeta\$ cytoplasmic domain and the dTAG sequence to form a functional ErbB2-CAR-dTAG. For example, the ERB2 scFv has a variable light chain (VL) composed of the amino acid sequence (SEQ ID NO: 20): DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYA SESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGT KLELKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNA LQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSP VTKSFNRGE, where the GMCSF signal peptide is composed of amino acid sequence (SEQ ID NO: 11): #### MLLLVTSLLLCELPHPAFLLIP. [1078] The scFv to ERB2 has a variable heavy chain (VH) composed of amino acid sequence (SEQ ID NO: 21): DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHT SRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGT KLEIT [1079] The scFv variable light chain (VL) and variable heavy chain (VH) are connected by a Whitlow linker having the amino acid sequence (SEQ ID NO: 13): #### GSTSGSGKPGSGEGSTKG. [1080] The scFv to Erb-B2 has a variable heavy chain (VH) composed of the amino acid sequence (SEQ ID NO: 22): QVQLKQSGPGLVQPSQSLSITCTVSGFSLTNYGVHWVRQSPGKGLEWLGVI WSGGNTDYNTPFTSRLSINKDNSKSQVFFKMNSLQSNDTAIYYCARALTYY DYEFAYWGQGTLVTVSAASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNV NHKPSNTKVDKKVEPKS. [1081] The scFv to Erb-B2 is fused in frame with a modified CD8 alpha chain hinge region having the amino acid sequence (SEQ ID NO: 15): ${\tt ALSNSIYFSHFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEACRPAA}$ ${\tt GGAVHTRGLD}.$ [1082] The effector domain is comprised of a transmembrane domain cloned in frame with 1 or more cytoplasmic signaling domains. [1083] As exemplified herein, the Transmembrane domain (TM) can be a fragment of the co-stimulatory CD28 protein which includes the CD28 TM and cytoplasmic domain. The fragment is composed of the following amino acid sequence (SEQ ID NO: 16): $\label{lem:kpfwvlvwggvlacysllvtvafiifwvrskrsrllhsdymnmtprrpgpt $$ RKHYQPYAPPRDFAAYRS.$ [1084] The CD28 cytoplasmic domain is cloned in frame with the intracellular CD3- ζ domain. CD3- ζ domain is comprised of the following amino acid sequence (SEQ ID NO: 17): $\label{lem:reconstruction} RVKFSRSADAPAYQQQQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR\\ KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD\\ ALHMOALPPR\,.$ [1085] The functional CAR sequence is then linked by a triple glycine linker (GGG) and cloned in frame with a dTAG composed of the following amino acid sequence (SEQ ID NO: 18): GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKVDSSRDRNKPFKFVLG KQEVIRGWEEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPNATLIFDVE LLKLE. [1086] The dTAG amino acid sequence is a derivative of FKBP12 with the F36V mutation. [1087] As expressed, the complete amino acid sequence of the exemplary ERB2-CAR-dTAG is (SEQ ID NO: 23): DILLTQSPVILSVSPGERVSFSCRASQSIGTNIHWYQQRTNGSPRLLIKYA SESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQNNNWPTTFGAGT KLELKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNA LQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSP VTKSFNRGEGSTSGSGKPGSGEGSTKGDIQMTQTTSSLSASLGDRVTISCR ASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTI SNLEQEDIATYFCQQGNTLPYTFGGGTKLEITALSNSIYFSHFVPVFLPAK PTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDKPFWVLVWG GVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAP PRDFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRD PEMGGKPRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL STATKDTYDALHMQALPPRGGGGVQVETISPGDGRTFPKRGQTCVVHYTGM LEDGKKVDSSRDRNKPFKFVLGKQEVIRGWEEGVAQMSVGQRAKLTISPDY AYGATGHPGIIPPNATLIFDVELLKLE. [1088] As described in more detail above, the synthetic DNA construct expressing the CAR amino acid sequence as described is introduced into an T-cell population from a subject having a disorder, for example a cancer (in this instance a solid breast cancer, for example). Autologous T-cells are isolated from the subject's blood via apheresis and the propagated ex-vivo using any of the methods described above. The synthetic CAR plasmid DNA is then introduced to the autologous T-cell population via a mechanism including, but not limited to, plasmid transfection, viral transduction, non-viral electroporation using transposable elements. The resultant CAR T-cells are expanded ex-vivo and then introduced to donor patients via transfusion. [1089] Upon receiving the CAR T-cell, subjects are monitored for development of CRS and other associated toxici- ties. Subjects suffering from CRS or other CAR T-cell associated toxicities are administered an effective amount
of a heterobifunctional compound, for example dFKBP* which targets the dTAG of the exemplary ERB2-CAR-dTAG of SEQ ID NO: 22. CAR degradation and T-cell load can be confirmed by FLOW cytometry. [1090] Upon reversal of CRS and/or other associated toxicities, administration of dFKBP* can be withdrawn and CAR re-expression on T-cells monitored by FLOW Cytometry. #### Example 3 [1091] FIG. 6 illustrates an example to confirm selective degradation of FKBP*-fused proteins with dFKBP7. [1092] The dTAG is predicated on the selectivity of FKBP* specific ligands over endogenous, wild type FKBP. In 293T cells expressing wild type FKBP12 or FKBP*, dFKBP7 induces targeted degradation only in FKBP* expressing cells. An immunoblot of cells treated with bifunctional molecules described in the present invention was performed. 293FT cells (CRBN-WT or CRBN-/-) expressing either HA-tagged FKBP12WT or FKBP* were treated with indicated concentrations of dFKBP7 for 4 hours. CRBN-dependent degradation of FKBP* and not FKBPWT confirms selective activity of dFKBP7 for mutant FKBP*. #### Example 4 [1093] FIGS. 7A-B illustrate an example of profiling of a panel of dFKBP heterobifunctional compounds to measure differential degradation activity. [1094] In an effort to identify potent and selective dFKPB heterobifunctional compounds, high throughput measurements of targeted FKBP* degradation were measured by surrogate levels of luciferase. Here, FKBP* is exogenously expressed as a multicistronic transcript with two types of luciferase: nano luciferase (NLuc) and firefly luciferase (FLuc) that allow for cell normalized quantification of FKBP* protein levels. Degradation of FKBP* is measured as a signal ration (Nluc/Fluc) in wild type (FIG. 7A) or CRBN-/- (FIG. 7B) 293FT cells treated with indicated concentrations of dFKBPs for 4 hours. A decrease in the signal ratio indicates FKBP* (Nluc) degradation and molecules that effectively degrade FKBP* in a cereblon dependent manner are observed (ex. dFKBP7). #### Example 5 [1095] FIG. 8 illustrates an example of selective degradation of FKBP*-fused proteins with heterobifunctional compounds dFKBP7 and dFKBP13. [1096] In 293T cells expressing wild type FKBP12 or FKBP*, treatment with dFKBP7 and dFKBP13 induces targeted degradation only in FKBP* expressing cells. Isogenic 293FT cells (CRBN-WT or CRBN-/-) were engineered to express either FKBP12WT or FKBP*. Cells were treated with 100 nM of either dFKBP7 or dFKBP13 for 4 hours before lysates were prepared for western immunoblot analysis. CRBN-dependent degradation of FKBP* and not FKBP12WT or endogenous FKBP12 confirms selectivity of dFKBP7 and dFKBP13 for mutant FKBP*. # Example 6 [1097] FIG. 9 illustrates an example of dose-dependent degradation of HA-tagged FKBP* with a heterobifunctional compound dFKBP13. [1098] In an effort to define the optimal concentration of dFKB13 heterobifunctional compounds to induce degradation of FKBP*, degradation was measured upon treatment with increasing concentrations of dFKBP13. Isogenic 293FT cells (CRBN-WT or CRBN-/-) were engineered to expressed HA-tagged FKBP*. Cells were treated with the indicated dose of dFKBP13 for 4 hours before lysates were prepared for western immunoblot analysis. These data confirm dose- and CRBN-dependent degradation of HA-tagged FKBP* by dFKBP13. #### Example 7 [1099] FIG. 10 illustrates the kinetic control of dFKBP13-dependent degradation of HA-tagged FKBP*. [1100] To evaluate the kinetic control of targeted degradation FKBP*, dFKBP13 was administered by increased duration. 293FT cells (CRBN-WT) were engineered to express HA-tagged FKBP*. Cells were treated with 100 nM dFKBP13 for the indicated times. Cells were harvested and protein lysates immunoblotted to measure the kinetics of HA-tagged FKBP* degradation induced by dFKBP13. #### Example 8 [1101] FIG. 11 illustrates an example to confirm CRBNand proteasome-dependent degradation of FKBP* by the heterobifunctional compound dFKBP13. [1102] 293FT cells (CRBN-WT) were engineered to express FKBP*. Cells were pretreated with 1 uM Carfilzomib (proteasome inhibitor), 0.5 uM MLN4924 (neddylation inhibitor), and 10 uM Lenalidomide (CRBN binding ligand) for two hours prior to a 4 hour treatment with dFKBP13. Lysates were prepared and western immunoblot analysis performed. Degradation of HA-tagged FKBP* by dFKBP13 was rescued by the proteasome inhibitor Carfilzomib, establishing a requirement for proteasome function. Pre-treatment with the NAE1 inhibitor MLN4924 rescued HA-tagged FKBP* establishing dependence on CRL activity, as expected for cullin-based ubiquitin ligases that require neddylation for processive E3 ligase activity. Pre-treatment with excess Lenalidomide abolished dFKBP13-dependent FKBP* degradation, confirming the requirement of CRBN engagement for degradation. #### Example 9 [1103] FIG. 12 is a schematic that illustrates the rheostat mechanism of CAR-dTAG. [1104] The CAR-dTAG fusion protein is expressed on the membrane of T-cells to form a functional CART-dTAG. The addition of the heterobifunctional compound described in the present invention (dFKBP) leads to efficient and targeted E3 ligase mediated degradation of the CAR via the proteasome. The removal of the dFKBP heterobifunctional compound results in the reactivation of CAR expression. This figure illustrates the principle behind the rheostat mechanism described in the present invention to chemically control CAR levels while leaving the T-cell unaffected. #### Example 10 [1105] FIG. 13 illustrates an experiment performed to confirm ectopic expression of a CD19-CAR-dTAG (SEQ ID NO: 19) in a human Jurkat T-cells. [1106] Jurkat T-cells were transduced with lentivirus expressing CD19-CAR-dTAG. Cells were selected with blasticidin and expanded. Stable expression of CD19-CAR-dTAG in Jurkat cells was confirmed by anti-HA western immunoblotting of whole cell lysates. #### Example 11 [1107] FIGS. 14A-B illustrate an example of dose-dependent degradation of CD19-CAR-dTAG in Jurkat T-cells with heterobifunctional compounds (dFKBP7 and dFKBP13). [1108] In an effort to define the optimal concentration of bifunctional molecules to induce degradation of CD19-CAR-dTAG, degradation was measured upon treatment with increasing concentrations of dFKBP7 and dFKBP13. Jurkat T-cells were engineered to express CD19-CAR-dTAG. Cells were treated with the indicated dose of dFKBP7 or dFKBP13 for 4 hours before lysates were prepared for western immunoblot analysis. These data confirm dose-dependent degradation of CD19-CAR-dTAG in Jurkat T-cells. #### Example 12 [1109] FIGS. 15A-B illustrate the kinetic control of CD19-CAR-dTAG degradation by heterobifunctional compounds dFKBP7 and dFKBP13 in Jurkat T-cells. [1110] To evaluate the kinetic control of targeted degradation of CD19-CAR-dTAG, a fixed concentration of bifunctional molecules dFKBP7 and dFKBP13 were administered at a fixed concentration for increased duration. Jurkat T-cells were engineered to express CD19-CAR-dTAG. Cells were treated with 250 nM dFKBP7 or dFKBP13 for the indicated time before lysates were prepared for immunoblot analysis. These data confirm time-dependent degradation of CD19-CAR-dTAG in Jurkat T-cells. ### Example 13 [1111] FIG. 16 illustrates the kinetics of CD19-CAR-dTAG re-expression following treatment with dFKBP7. [1112] Immunoblot illustrating the kinetics of re-expression of the CD19-CAR-dTAG protein following targeting degradation with dFKBP7. Jurkat T-cells engineered to express CD19-CAR-dTAG were treated with 250 nM of dFKBP7 for 4 hours. The dFKBP7 was then removed from the Jurkat cells via washouts and the re-expression of CD19-CAR-dTAG was monitored by immunoblot analysis at the indicated time points. Data suggest that CD19-CAR-dTAG protein levels recovered following removal of dFKBP7. #### Example 14 [1113] FIGS. 17A-B illustrate the rheostat chemical control of CD19-CAR-dTAG expression in T-cells. [1114] FIG. 17A illustrates the experimental design to measure the ability to control the expression CD19-CAR-dTAG in T-cells upon addition and removal of dFKBP7. Jurkat cells engineered to express CD19-CAR-dTAG were treated with 250 nM of dFKBP7 at the indicated time points (0 and 8 hours). At 4 and 12 hours, the dFKBP7 was washed out of the Jurkat cells. At each indicated timepoint, Jurkat cells were harvest to monitor CD19-CAR-dTAG expression levels via immunoblot analysis. [1115] FIG. 17B is an immunoblot illustrating the ability to toggle on and off expression of CD19-CAR-dTAG as described in FIG. 17A. The Heterbifunctional Compound dFKBP7 molecule allows for exquisite chemical control of CD19-CAR-dTAG protein levels allowing for modulation within hours. These data support the rheostat mechanism described in the current invention. #### Example 15 [1116] FIGS. 18A-B confirms targeted degradation of proteins of interest when fused to dTAG. [1117] To test the general utility of the dTAG technology across several protein types, the indicated proteins fused to the dTAG in MV4; 11 leukemia cells were expressed. Upon treatment with the indicated dFKBP bifunctional molecules (dFKBP7 and dFKBP13), targeted protein degradation was observed as measured by western blot. Cells were treated for 16 hours with indicated concentrations of FKBP* selective heterobifunctional compounds and degradation was observed with nanomolar concentrations. #### Example 16 [1118] FIG. 19 illustrates an example confirming degradation of N-terminal dTAG-KRAS. [1119] In N-terminal dTAG-KRAS, dFKBP7 treatment resulted in potent degradation as well as a downstream decrease in p-AKT signal suggesting the biological relevance of overexpressed dTAG fusion proteins. Cells were treated with 500 nM dFKBP7 for the indicated time. Cells were harvested and immunoblotted to measure degradation of FKBP*-KRAS and downstream surrogates of KRAS signaling (e.g. pMEK and pAKT). Overexpression of dTAG KRAS resulted in the activation of the relevant downstream
signaling pathways as an observed increase in p-AKT signal as measured by western blot. #### Example 17 [1120] FIG. 20 illustrates the profiling of dFKBP heterobifunctional compounds to induce degradation of dTAG-KRAS [1121] In an effort to identify the best performing dFKBP molecule, dTAG-KRAS degradation was profiled across a series of dFKBP molecules. Western blotting of NIH3T3 cells expressing dTAG-KRASG12V were treated with 1 µM of the indicated dFKBP heterobifunctional compounds for 24 hours. Cells were harvested and immunoblotted to measure degradation of FKBP*-KRAS and downstream surrogates of KRAS signaling (e.g. pMEK and pAKT). The data suggest that dFKBP9, dFKBP12, and dFKBP13 induce potent degradation of FKBP*-KRAS and inhibition of downstream signaling. #### Example 18 [1122] FIG. 21 illustrates an example confirming targeted degradation of dTAG-KRAS with dFKBP13. [1123] The dFKBP13 bifunctional molecule potently degrades dTAG-KRAS at nanomolar concentrations. West- ern blotting of NIH3T3 cells expressing FKBP* fused to the N-terminus of KRAS treated with the indicated concentrations of dFKBP13 for 24 hours. Cells were harvested and immunoblotted to measure degradation of FKBP*-KRAS and downstream surrogates of KRAS signaling (e.g. pMEK and pAKT). The data suggest that dFKBP13 induces potent degradation of FKBP*-KRAS and inhibits downstream signaling potently with an IC50>100 nM. #### Example 19 [1124] FIG. 22 illustrates an example of the kinetic control of targeted degradation of dTAG-KRAS with dFKBP13. [1125] To evaluate the kinetic control of targeted degradation of dTAG-KRAS, dFKBP13 was administered by increased duration. Western blotting of NIH3T3 cells expressing FKBP* fused to the N-terminus of KRAS treated with 1 μ M dFKBP13 for the indicated time. Cells were harvested and immunoblotted to measure degradation of FKBP*-KRAS and downstream surrogates of KRAS signaling (e.g. pMEK and pAKT). The data suggest that dFKBP13 induces potent degradation of FKBP*-KRAS and inhibition of downstream signaling as early as 1 hour post treatment. #### Example 20 [1126] FIGS. 23A-D illustrate an experiment performed to confirm phenotypical changes induced upon degradation of dTAG-KRAS. [1127] Morphological changes were observed in NIH3T3 cells upon overexpression of dTAG-KRAS as shown by phase contrast imaging. Upon treatment with dFKBP13 for 24 hours, cells morphologically revert back to the wild type (DMSO control) state. #### Example 21 [1128] FIGS. 24A-D illustrate the phenotypic consequence of dTAG-KRAS degradation on the viability of NIH3T3 cells. [1129] The ATPlite 1-step luminescence assay measures cell proliferation and cytotoxicity in cells based on the production of light caused by the reaction of ATP with added luciferase and D-luciferin. A decrease in signal indicates a reduction in cell number. To evaluate the effect of dFKBP13 on proliferation in NIH3T3 cells expressing dTAG-KRAS, viability was assessed by surrogate measurements of ATP levels. Cells were treated with the indicated concentrations of dFKBPs for 72 hours and cell viability was measured using an ATPlite assay. [1130] This specification has been described with reference to embodiments of the invention. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention. The specification is to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of invention. ``` SEQUENCE LISTING ``` ``` <160> NUMBER OF SEQ ID NOS: 58 <210> SEQ ID NO 1 <211> LENGTH: 107 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 1 Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe Pro 10 Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu Asp 25 Gly Lys Lys Phe Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys Phe 40 Met Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val Ala Gln Met Ser Val Gly Gln Arg Ala Lys Leu Thr Ile Ser Pro Asp Tyr 70 Ala Tyr Gly Ala Thr Gly His Pro Gly Ile Ile Pro Pro His Ala Thr 90 Leu Val Phe Asp Val Glu Leu Leu Lys Leu Glu 100 <210> SEQ ID NO 2 <211> LENGTH: 107 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: FKBP12 derived amino acid sequence with a mutation of the phenylalanine (F) at amino acid position 36 <400> SEQUENCE: 2 Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe Pro Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu Asp Gly Lys Lys Phe Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys Phe Met Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val Ala Gln Met Ser Val Gly Gln Arg Ala Lys Leu Thr Ile Ser Pro Asp Tyr Ala Tyr Gly Ala Thr Gly His Pro Gly Ile Ile Pro Pro His Ala Thr 85 <210> SEO ID NO 3 <211> LENGTH: 1362 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 3 Met Ser Ala Glu Ser Gly Pro Gly Thr Arg Leu Arg Asn Leu Pro Val 10 Met Gly Asp Gly Leu Glu Thr Ser Gln Met Ser Thr Thr Gln Ala Gln 20 25 ``` | Ala | Gln | Pro
35 | Gln | Pro | Ala | Asn | Ala
40 | Ala | Ser | Thr | Asn | Pro
45 | Pro | Pro | Pro | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Glu | Thr
50 | | Asn | Pro | Asn | Lys
55 | | Lys | Arg | Gln | Thr | Asn | Gln | Leu | Gln | | Tyr
65 | | Leu | Arg | Val | Val | | Lys | Thr | Leu | Trp
75 | | His | Gln | Phe | Ala
80 | | | Pro | Phe | Gln | Gln
85 | | Val | Asp | Ala | Val
90 | | Leu | Asn | Leu | Pro
95 | | | Tyr | Tyr | Lys | Ile
100 | | Lys | Thr | Pro | Met
105 | | Met | Gly | Thr | Ile
110 | | Lys | | Arg | Leu | Glu
115 | Asn | Asn | Tyr | Tyr | Trp
120 | Asn | Ala | Gln | Glu | Cys
125 | Ile | Gln | Asp | | Phe | Asn
130 | Thr | Met | Phe | Thr | Asn
135 | Cys | Tyr | Ile | Tyr | Asn
140 | ГЛа | Pro | Gly | Asp | | Asp
145 | Ile | Val | Leu | Met | Ala
150 | Glu | Ala | Leu | Glu | Lys
155 | Leu | Phe | Leu | Gln | Lys
160 | | Ile | Asn | Glu | Leu | Pro
165 | Thr | Glu | Glu | Thr | Glu
170 | Ile | Met | Ile | Val | Gln
175 | Ala | | ГЛа | Gly | Arg | Gly
180 | Arg | Gly | Arg | ГЛа | Glu
185 | Thr | Gly | Thr | Ala | Lys
190 | Pro | Gly | | Val | Ser | Thr
195 | Val | Pro | Asn | Thr | Thr
200 | Gln | Ala | Ser | Thr | Pro
205 | Pro | Gln | Thr | | Gln | Thr
210 | Pro | Gln | Pro | Asn | Pro
215 | Pro | Pro | Val | Gln | Ala
220 | Thr | Pro | His | Pro | | Phe
225 | Pro | Ala | Val | Thr | Pro
230 | Asp | Leu | Ile | Val | Gln
235 | Thr | Pro | Val | Met | Thr
240 | | Val | Val | Pro | Pro | Gln
245 | Pro | Leu | Gln | Thr | Pro
250 | Pro | Pro | Val | Pro | Pro
255 | Gln | | Pro | Gln | Pro | Pro
260 | Pro | Ala | Pro | Ala | Pro
265 | Gln | Pro | Val | Gln | Ser
270 | His | Pro | | Pro | Ile | Ile
275 | Ala | Ala | Thr | Pro | Gln
280 | Pro | Val | Lys | Thr | Lys
285 | ГЛа | Gly | Val | | Lys | Arg
290 | Lys | Ala | Asp | Thr | Thr
295 | Thr | Pro | Thr | Thr | Ile
300 | Asp | Pro | Ile | His | | Glu
305 | Pro | Pro | Ser | Leu | Pro
310 | Pro | Glu | Pro | Lys | Thr
315 | Thr | Lys | Leu | Gly | Gln
320 | | Arg | Arg | Glu | Ser | Ser
325 | Arg | Pro | Val | ГЛа | Pro
330 | Pro | ГЛа | ГЛа | Asp | Val
335 | Pro | | Asp | Ser | Gln | Gln
340 | His | Pro | Ala | Pro | Glu
345 | ГЛа | Ser | Ser | ГЛа | Val
350 | Ser | Glu | | Gln | Leu | 155
355 | Cya | Cys | Ser | Gly | Ile
360 | Leu | Lys | Glu | Met | Phe
365 | Ala | Lys | Lys | | His | Ala
370 | Ala | Tyr | Ala | Trp | Pro
375 | Phe | Tyr | Lys | Pro | Val
380 | Asp | Val | Glu | Ala | | Leu
385 | Gly | Leu | His | Asp | Tyr
390 | CÀa | Asp | Ile | Ile | Lys
395 | His | Pro | Met | Asp | Met
400 | | Ser | Thr | Ile | Lys | Ser
405 | Lys | Leu | Glu | Ala | Arg
410 | Glu | Tyr | Arg | Asp | Ala
415 | Gln | | Glu | Phe | Gly | Ala
420 | Asp | Val | Arg | Leu | Met
425 | Phe | Ser | Asn | Суз | Tyr
430 | Lys | Tyr | | _ | | | | | | | | | | | | | | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Asn | Pro | Pro
435 | Asp | His | Glu | Val | Val
440 | Ala | Met | Ala | Arg | Lys
445 | Leu | Gln | Asp | | Val | Phe
450 | Glu | Met | Arg | Phe | Ala
455 | Lys | Met | Pro | Asp | Glu
460 | Pro | Glu | Glu | Pro | | Val
465 | Val | Ala | Val | Ser | Ser
470 | Pro | Ala | Val | Pro | Pro
475 | Pro | Thr | Lys | Val | Val
480 | | Ala | Pro | Pro | Ser | Ser
485 | Ser | Asp | Ser | Ser | Ser
490 | Asp | Ser | Ser | Ser | Asp
495 | Ser | | Asp | Ser | Ser | Thr
500 | Asp | Asp | Ser | Glu | Glu
505 | Glu | Arg | Ala | Gln | Arg
510 | Leu | Ala | | Glu | Leu | Gln
515 | Glu | Gln | Leu | Lys | Ala
520 | Val | His | Glu | Gln | Leu
525 | Ala | Ala | Leu | | Ser | Gln
530 | Pro | Gln | Gln | Asn | Lys
535 | Pro | Lys | Lys | Lys | Glu
540 | Lys | Asp | Lys | ГЛа | | Glu
545 | Lys | ГÀа | Lys | Glu | 550 | His | Lys | Arg | ГЛа | Glu
555 | Glu | Val | Glu | Glu | Asn
560 | | Lys | Lys | Ser | Lys | Ala
565 | Lys | Glu | Pro | Pro | Pro
570 | Lys | Lys | Thr | Lys | Lys
575 | Asn | | Asn | Ser | Ser | Asn
580 | Ser | Asn | Val | Ser | Lys
585 | Lys | Glu | Pro | Ala | Pro
590 | Met | ГЛа | | Ser | Lys | Pro
595 | Pro | Pro | Thr | Tyr | Glu
600 | Ser | Glu | Glu | Glu | Asp
605 | Lys | Сла | ГЛа | | Pro | Met
610 | Ser | Tyr | Glu | Glu | Lys
615 | Arg | Gln | Leu | Ser | Leu
620 | Asp | Ile | Asn | Lys | | Leu
625 | Pro | Gly | Glu | Lys | Leu
630 | Gly | Arg | Val | Val | His
635 | Ile | Ile | Gln | Ser
 Arg
640 | | Glu | Pro | Ser | Leu | Lys
645 | Asn | Ser | Asn | Pro | Asp
650 | Glu | Ile | Glu | Ile | Asp
655 | Phe | | Glu | Thr | Leu | Lys
660 | Pro | Ser | Thr | Leu | Arg
665 | Glu | Leu | Glu | Arg | Tyr
670 | Val | Thr | | Ser | Cys | Leu
675 | Arg | ГЛа | ràa | Arg | FAs | Pro | Gln | Ala | Glu | 685 | Val | Asp | Val | | Ile | Ala
690 | Gly | Ser | Ser | rys | Met
695 | Lys | Gly | Phe | Ser | Ser
700 | Ser | Glu | Ser | Glu | | Ser
705 | Ser | Ser | Glu | Ser | Ser
710 | Ser | Ser | Asp | Ser | Glu
715 | Asp | Ser | Glu | Thr | Glu
720 | | Met | Ala | Pro | Lys | Ser
725 | Lys | Lys | Lys | Gly | His
730 | Pro | Gly | Arg | Glu | Gln
735 | Lys | | ГÀа | His | His | His
740 | His | His | His | Gln | Gln
745 | Met | Gln | Gln | Ala | Pro
750 | Ala | Pro | | Val | Pro | Gln
755 | Gln | Pro | Pro | Pro | Pro
760 | Pro | Gln | Gln | Pro | Pro
765 | Pro | Pro | Pro | | Pro | Pro
770 | Gln | Gln | Gln | Gln | Gln
775 | Pro | Pro | Pro | Pro | Pro
780 | Pro | Pro | Pro | Ser | | Met
785 | Pro | Gln | Gln | Ala | Ala
790 | Pro | Ala | Met | Lys | Ser
795 | Ser | Pro | Pro | Pro | Phe
800 | | Ile | Ala | Thr | Gln | Val
805 | Pro | Val | Leu | Glu | Pro
810 | Gln | Leu | Pro | Gly | Ser
815 | Val | | Phe | Asp | Pro | Ile
820 | Gly | His | Phe | Thr | Gln
825 | Pro | Ile | Leu | His | Leu
830 | Pro | Gln | | Pro | Glu | Leu | Pro | Pro | His | Leu | Pro | Gln | Pro | Pro | Glu | His | Ser | Thr | Pro | | Rest | _ | | | | | | | | | | | | | | | | |--|-----|-----|-----|-------|-------|-------|-----|-----|-------|------|------|------|-------|-------|-------|-------| | ## 1850 | | | 835 | | | | | 840 | | | | | 845 | | | | | ## 1870 875 880 Pro Pro Lys Pro Ala Arg Pro Pro Ala Val Ser Pro Ala Leu Thr Gln 885 880 | Pro | | Leu | Asn | Gln | His | | Val | Val | Ser | Pro | | | Leu | ı His | s Asr | | ## 1885 | | | Pro | Gln | Gln | | Ser | Arg | Pro | Ser | | | g Ala | Ala | a Ala | | | 1900 1905 1910 | Pro | Pro | Lys | Pro | | Arg | Pro | Pro | Ala | | Ser | Pro | Ala | . Leu | | | | 915 920 925 Gln Leu Tyr Leu Gln Gln Leu Gln Lys Val Gln Pro Pro Thr Pro Leu 930 930 78 Leu Pro 955 81 Ser Val Lys Val Gln Ser Gln Pro Pro Pro Pro Pro Pro Pro Pro 9645 950 960 965 Pro Pro His Pro Ser Val Gln Ser Gln Pro Pro Pro Pro Pro Pro 965 965 Pro Pro Pro His Pro Ser Val Gln Gln Gln Gln Leu Gln Gln Gln Fro Pro 975 975 Pro Pro Pro Pro Pro Gln Pro Gln Pro Pro Pro Pro Gln Gln Gln His Gln Pro 985 990 Pro Pro Arg Pro Val His Leu Gln Pro Pro Pro Met Gln Phe Ser Thr His I 1000 Gln Gln Pro Pro Pro Pro Pro Pro Gln Gln Gln Fro 1020 Pro Gly Gln Gln Pro Pro Pro Pro Pro Gln Pro Ala Lys Pro Gln Gln 1035 Val Ile Gln His His His Ser Pro Arg His His Lys Ser Asp Pro 1040 Tyr Ser Thr Gly His Leu Arg Glu Ala Pro Ser Pro Leu Met Ile 1065 His Ser Pro Gln Met Ser Gln Pro Lys Lys Gln Glu Leu Arg Ala 1095 Ala Ser Val Val Gln Pro Pro Gln Pro Leu Val Val Val Lys Glu Glu 1100 Lys Ile His Ser Pro I 1120 Arg Pro Val Ile Arg Pro Pro 1125 Leu Arg Pro Val Ile Arg Pro Pro Glu Met Lys Pro Val 1145 Arg Pro Val Ile Arg Pro Pro Glu Met Lys Pro Ser 1126 Ala Pro Asp Lys Asp Lys Gln Lys Gln Glu Pro Pro Pro Gly 1165 Ala Pro Lys Lys Asp Leu Lys Ile Lys Asn Met Gly Ser Trp Ala 1170 Ser Leu Val Gln Lys His Pro Tro Tro Tro Ser Ser Trr Ala Lys 1205 Ser Ser Ser Ser Asp Ser Phe Glu Gln Pro Arg Arg Ala Ala Arg Glu | Thr | Pro | Leu | | Pro | Gln | Pro | Pro | | Ala | Gln | Pro |) Pro | | | l Leu | | 1930 | Leu | | _ | Glu | Glu | Pro | | | Pro | Pro | Leu | Thr | | | : Glr | n Met | | 945 950 955 960 Pro Pro His Pro Ser Val Gln Gln Gln Leu Gln Gln Gln Pro Pro Pro 975 Pro Pro Pro Pro Pro Gln Pro Gln Pro Pro Pro 985 Pro Pro Pro Pro Pro Pro Gln Pro Gln Pro Pro Pro 985 Pro Pro Arg Pro Val His Leu Gln Gln Gln Gln His Gln Pro 995 Gln Gln Pro Pro Pro Pro Gln Gln Gln Gln Pro Pro 1005 Gln Gln Pro Pro Pro Pro Pro 1015 Pro Gly Gln Gln Pro Pro Pro Pro 1030 Val Ile Gln His His His Ser Pro Arg His His Lys Pro Gln Gln Gln 1045 Tyr Ser Thr Gly His Leu Arg Glu Ala Pro Ser Pro Leu Met Ile 1055 His Ser Pro Gln Met Ser Gln Pro Lys Lys Gln Glu Leu Arg Ala 1090 Pro Pro Pro Gln Asn Val Gln Pro Pro Lys Lys Gln Glu Leu Arg Ala 1000 Lys Ile His Ser Pro Ile Ile Arg Ser Glu Pro Phe Ser Pro Ser 1135 Leu Arg Pro Glu Pro Pro Lys His Pro Glu Ser Ile Lys Ala Pro 1130 Val His Leu Pro Gln Arg Pro 1165 Arg Pro Val Ile Arg Pro Pro Lys Glu Glu Asn Ala Pro Pro Ser Pro Gly Ilio Ala Pro Lys Lys Asp Lys Gln Lys Gln Glu Pro Lys Thr Pro Val 1175 Ala Pro Lys Lys Asp Lys Gln Lys Gln Glu Pro Lys Ilio Fro Leu Val Val Gln Lys His Pro Tro Thr Thr Pro Ser Ser Tro Ala Lys 1205 Fro Ser Ser Ser Asp Ser Phe Glu Gln Pro Pro Ser Ser Thr Ala Lys 1205 Fro Ser Ser Ser Asp Ser Phe Glu Gln Pro Pro Ser Ser Thr Ala Lys 1205 | Gln | | Tyr | Leu | Gln | Gln | | Gln | Lys | Val | Gln | | | Thi | r Pro |) Let | | Pro Pro Pro Pro Pro Gln Pro Gln Pro | | | Ser | Val | Lys | | Gln | Ser | Gln | Pro | | | Pro | Leu | ı Pro | | | Pro Pro Arg Pro Val His Leu Glm Pro Met Glm Pro Pro Fro In His In | Pro | Pro | His | Pro | | Val | Gln | Gln | Gln | | Gln | Glr | n Gln | Pro | | | | Secondary Seco | Pro | Pro | Pro | | Gln | Pro | Gln | Pro | |
Pro | Gln | Glr | n Gln | | | n Pro | | 1010 1015 1020 1021 1020 1020 1025 1020 1025 1020 1025 1020 1025 1020 1025 1020 1025 | Pro | | _ | Pro | Val | His | | | | o Me | t Gl | n Pł | | | hr E | His] | | 1025 1030 1035 Val Ile 1040 Gln His His His Ser 1045 Pro Arg His His Lys 1050 Ser Asp Pro 1055 Tyr Ser Thr Gly His Leu Arg 1060 Glu Ala Pro Ser Pro 1065 Leu Met Ile 1065 His Ser 1005 Pro Gln Met Ser Gln Pro 1075 Phe Gln Ser Leu Thr 1080 His Gln Ser Ser 1080 Pro Pro 1080 Gln Gln Asn Val Gln Pro 1090 Pro Leu Val Val Val Val Leu Arg Ala 1095 Leu Arg Ala 1095 Ala Ser 1100 Val Val Gln Pro Gln Pro 1000 Pro Leu Val Val Val Val Val Lys Glu Glu Glu 1110 Lys Glu Glu 1110 Lys Ile His Ser Pro Ile Ile Arg Ser Glu Pro Pro Pro 1125 Pro Glu Ser Ile Lys Ala Pro 1125 Leu Arg Pro Glu Pro Pro Lys 1135 His Pro Glu Ser Ile Lys Ala Pro 1140 Val His 1145 Leu Pro Gln Arg Pro 1150 Glu Met Lys Pro Val Asp Val Gly 1155 Arg Pro Val Ile Arg Pro Pro 1165 Glu Gln Asn Ala Pro Lys 1155 Pro Pro Pro Gly 1170 Ala Pro Asp Lys Asp Lys Gln 1880 Lys Gln Glu Pro Lys 1180 Thr Pro Val 1180 Ala Pro Lys Lys Asp Lys Asp Leu Lys 1180 The Lys Asn Met Gly 1200 Ser Trp Ala 1200 Ser Leu Val Gln Lys His Pro 1210 Thr Thr Pro Ser Ser Ser Thr Ala Lys 1210 | Gln | | | Pro | Pro | Pro | | | Ly G | ln G | ln P | | | His | Pro | Pro | | 1045 1050 Tyr Ser 1055 Thr Gly His Leu Arg 1060 Glu Ala Pro Ser Pro 1065 Leu Met Ile 1066 His Ser Pro Gln Met Ser Gln 1075 Phe Gln Ser Leu Thr 1080 His Gln Ser Ser 1075 Pro Pro 1075 Gln Gln Asn Val Gln 1090 Pro Lys Lys Gln Glu Glu Glu 1095 Leu Arg Ala 1095 Ala Ser Val Val Gln Pro Gln 1005 Pro Leu Val Val Val Val Val 1100 Lys Glu Glu 1110 Lys Ile 1115 His Ser Pro Ile Ile 1120 Arg Ser Glu Pro Pro Phe 1125 Ser Pro Ser 1125 Leu Arg Pro 1115 Pro Glu Pro Pro Lys His Pro Glu Met Lys Pro Val Asp Val Gly 1155 Asp Val Gly 1155 Val His Leu Pro Gln Arg Pro Pro 1165 Glu Met Lys Pro Val 1155 Asp Val Gly 1150 Arg Pro 1160 Val Ile Arg Pro Pro Pro 1165 Glu Gln Asn Ala Pro 1170 Pro Pro Pro Gly 1165 Ala Pro 1160 Asp Lys Asp Lys Gln Lys Gln Glu Pro Lys 1170 Thr Pro Val 1180 Ala Pro 1160 Lys Lys Asp Leu Lys 1195 Ile Lys Asn Met Gly Ser Trp Ala 1190 Ser Leu Val Gln Lys His Pro 1210 Thr Thr Pro Ser Ser Thr Ala Lys 1210 Ser Ser Ser Ser Asp Ser Phe Glu Gln Phe Arg Arg Ala Ala Ala Arg Glu | Pro | | | ı Glr | n Pro | Pro | | | ro G | ln P | ro A | | | Pro | Gln | Gln | | His Ser Pro Gln Met Ser Gln Phe Gln Ser Leu Thr His Gln Ser 1075 | Val | | | His | s His | s His | | | ro A | rg H | is H | | _ | Ser | Asp | Pro | | 1070 1080 1075 1080 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 1095 1080 | Tyr | | | Gly | / His | s Leu | | | Lu A | la P | ro S | | | Leu | Met | Ile | | 1095 | His | | | Glr | n Met | Ser | | | ne G | ln S | er L | | | His | Gln | Ser | | Lys Ile His Ser Pro Ile Ile Arg Ser Glu Pro Pro Ser Pro Ser Pro P | Pro | | | Glr | n Ası | n Val | | | ro L | ys L | ys G | | | Leu | Arg | Ala | | Leu Arg 1130 Pro Glu Pro Pro Lys 1135 His Pro Glu Ser Ile 1140 Lys Ala Pro 1130 Val His 1145 Leu Pro Gln Arg Pro 1150 Glu Met Lys Pro Val 1155 Asp Val Gly 1150 Arg Pro 1160 Val Ile Arg Pro Pro 1165 Glu Gln Asn Ala Pro 1170 Pro Pro Gly 1170 Ala Pro 1175 Asp Lys Asp Lys Gln 1180 Lys Gln Glu Pro Lys 1185 Thr Pro Val 1185 Ala Pro 1190 Lys Lys Asp Leu Lys 1195 Ile Lys Asn Met Gly 1200 Ser Trp Ala 1205 Ser Leu 1205 Val Gln Lys His Pro 1210 Thr Thr Pro Ser Ser Ser Thr Ala Lys 1205 Ser Ser Ser Ser Asp Ser Phe Glu Glu Phe Arg Arg Ala Ala Arg Glu | Ala | | | . Val | l Glr | n Pro | | | | eu V | al V | | | Lys | Glu | Glu | | Val His Leu Pro Gln Arg Pro Glu Met Lys Pro Val Asp Val Gly 1145 Arg Pro Val Ile Arg Pro Pro Glu Asn Ala Pro Pro Gly 1165 Ala Pro Asp Lys Asp Lys Gln Lys Gln Glu Pro Lys Thr Pro Val 1175 Ala Pro Lys Lys Asp Leu Lys Ile Lys Asn Met Gly Ser Trp Ala 1190 Ser Leu Val Gln Lys His Pro Thr Thr Pro Ser Ser Thr Ala Lys 1205 Ser Ser Ser Ser Asp Ser Phe Glu Gln Phe Arg Arg Ala Ala Arg Glu | ГÀа | | | Sei | r Pro |) Ile | | | rg S | er G | lu P | | | Ser | Pro | Ser | | Arg Pro Val Ile Arg Pro Pro 1165 Glu Gln Asn Ala Pro Pro Pro Gly 1160 Flow Pro Sulve Gln Glu Pro Lys 1175 Flow Pro Val 1175 Flow Pro Val 1175 Flow Pro Val 1180 Flow Pro Lys 1185 1 | Leu | | | Glu | ı Pro | Pro | | | is P | ro G | lu S | | | Lys | Ala | Pro | | Ala Pro 1170 Asp Lys Asp Lys Gln Glu Pro 1170 Lys Gln Glu Pro 1180 Lys Gln Glu Pro 1180 Lys Thr Pro Val 1180 Ala Pro 1170 Lys Lys Asp Leu Lys 1190 Ile Lys Asn Met Gly 1200 Ser Trp Ala 1200 Ser Leu 1205 Val Gln Lys His Pro 1210 Thr Thr Pro Ser Ser Ser Ser Asp Ser Phe Glu Gln Phe Arg Arg Ala Ala Arg Glu | Val | | | Pro | Glr | n Arg | | | Lu M | et L | Aa b | | | Asp | Val | Gly | | Ala Pro 1195 Lys Lys Asp Leu Lys 1195 Ile Lys Asn Met Gly 1200 Ser Trp Ala 1200 Ser Leu Val Gln Lys His Pro 1205 Thr Thr Pro Ser Ser Ser Thr Ala Lys 1215 Ser Ser Ser Ser Asp Ser Phe Glu Gln Phe Arg Arg Ala Ala Arg Glu | Arg | | | . Ile | e Arç | g Pro | | | Lu G | ln A | sn A | | | Pro | Pro | Gly | | 1190 | Ala | | _ | Lys | a Yal | p Lys | | _ | /a G | ln G | lu P | | - | Thr | Pro | Val | | 1205 1210 1215 1215 Ser Ser Ser Asp Ser Phe Glu Gln Phe Arg Arg Ala Arg Glu | Ala | | _ | Lys | a Asl | e Leu | _ | | le L | ys A | sn M | | _ | Ser | Trp | Ala | | | Ser | | | . Glr | ı Lys | ₹ His | | | nr T | hr P | ro S | | | Thr | Ala | Lys | | | Ser | | | Asp | Sei | r Phe | | | ln Pi | he A | rg A | - | | Ala | Arg | Glu | | Lys | Glu
1235 | | ı Arg | g Glu | ı Lys | Ala
124 | | eu L | ys A | Ala | Gln | Ala
1245 | | His | Ala | |--------------|----------------------------------|------------|--------------|------------|------------|--------------|------------|------------|-------------|------------|-------|-------------|--------------|-------------|------------| | Glu | Lys
1250 | | ı Lys | g Glu | ı Arg | Let
125 | | rg G | ln (| lu | Arg | Met
1260 | _ | Ser | Arg | | Glu | Asp
1265 | | ı Asp | Ala | a Leu | . Glu | | ln A | la A | Arg | Arg | Ala
1275 | | Glu | Glu | | Ala | Arg
1280 | _ | , Arg | g Glr | n Glu | . Glr
128 | | ln G | ln (| ln | Gln | Arg
1290 | | Glu | Gln | | Gln | Gln
1295 | | Glr | ı Glr | n Glr | Glr
130 | | la A | la <i>P</i> | Ala | Val | Ala
1305 | | Ala | Ala | | Thr | Pro
1310 | | n Ala | Glr | n Ser | Sei
131 | | ln P | ro (| ln | Ser | Met
1320 | | Asp | Gln | | Gln | Arg
1325 | | . Leu | ı Ala | a Arg | Lys
133 | | rg G | lu (| ∃ln | Glu | Arg
1335 | _ | Arg | Arg | | Glu | Ala
1340 | | . Ala | a Ala | a Thr | 11e | | sp M | et A | Asn | Phe | Gln
1350 | | Asp | Leu | | Leu | Ser
1355 | | Ph∈ | e Glu | ı Glu | . Asr
136 | | ∋u P | he | | | | | | | | <211
<212 |)> SE
.> LE
!> TY
!> OR | NGTH | I: 59
PRT | 95 | sap | iens | 3 | | | | | | | | | | |)> SE | - | | | | | | | | | | | | | | | Met
1 | Thr | Met | Thr | Leu
5 | His | Thr | Lys | Ala | Se1 | : G] | Ly M | et Al | a Lei | ı Lev
15 | . His | | Gln | Ile | Gln | Gly
20 | Asn | Glu | Leu | Glu | Pro
25 | Leu | ı As | en A: | rg Pr | o Glr
30 | n Leu | ı Lys | | Ile | | Leu
35 | Glu | Arg | Pro | Leu | Gly
40 | Glu | .Va] | L T | /r L | eu As
45 | | s Ser | . TAa | | Pro | Ala
50 | Val | Tyr | Asn | Tyr | Pro
55 | Glu | Gly | Ala | a Al | La T | yr
Gl
O | u Phe | e Asn | n Ala | | Ala
65 | Ala | Ala | Ala | Asn | Ala
70 | Gln | Val | Tyr | GlΣ | 7 G]
75 | | hr Gl | y Lei | ı Pro | Tyr
80 | | Gly | Pro | Gly | Ser | Glu
85 | Ala | Ala | Ala | Phe | GlΣ
90 | 7 S€ | er A | sn Gl | y Lei | 1 Gly
95 | Gly | | Phe | Pro | Pro | Leu
100 | Asn | Ser | Val | Ser | Pro
105 | | : Pi | ro Le | eu Me | t Leu
110 | | . His | | Pro | Pro | Pro
115 | Gln | Leu | Ser | Pro | Phe
120 | Leu | Glr | ı Pı | ro H | is Gl
12 | | n Glr | ı Val | | Pro | Tyr
130 | Tyr | Leu | Glu | Asn | Glu
135 | Pro | Ser | GlΣ | / Τ | | hr Va
40 | l Arg | g Glu | ı Ala | | Gly
145 | Pro | Pro | Ala | Phe | Tyr
150 | Arg | Pro | Asn | . Sei | : As | | sn Ar | g Arg | g Glr | Gly
160 | | Gly | Arg | Glu | Arg | Leu
165 | Ala | Ser | Thr | Asn | . Asp | | /s G | ly Se | r Met | 175 | | | Glu | Ser | Ala | Lys
180 | Glu | Thr | Arg | Tyr | Сув
185 | | a Va | al C | ys As | n Ası
190 | _ | Ala | | Ser | | Tyr
195 | His | Tyr | Gly | Val | Trp
200 | Ser | Cys | g G] | Lu G | ly Cy
20 | | a Ala | Phe | | Phe | Lys | Arg | Ser | Ile | Gln | Gly | His | Asn | . Asp | T | yr Me | et Cy | s Pro | Ala | Thr | | | 210 | | | | | 215 | | | | | 220 | | | | | | |------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|--| | Asn
225 | Gln | Cys | Thr | Ile | Asp
230 | Lys | Asn | Arg | Arg | Lys
235 | Ser | CAa | Gln | Ala | Cys
240 | | | Arg | Leu | Arg | Lys | Cys
245 | Tyr | Glu | Val | Gly | Met
250 | Met | Lys | Gly | Gly | Ile
255 | Arg | | | Lys | Asp | Arg | Arg
260 | Gly | Gly | Arg | Met | Leu
265 | Lys | His | Lys | Arg | Gln
270 | Arg | Asp | | | Asp | Gly | Glu
275 | Gly | Arg | Gly | Glu | Val
280 | Gly | Ser | Ala | Gly | Asp
285 | Met | Arg | Ala | | | Ala | Asn
290 | Leu | Trp | Pro | Ser | Pro
295 | Leu | Met | Ile | Lys | Arg
300 | Ser | Lys | Lys | Asn | | | Ser
305 | Leu | Ala | Leu | Ser | Leu
310 | Thr | Ala | Asp | Gln | Met
315 | Val | Ser | Ala | Leu | Leu
320 | | | Aap | Ala | Glu | Pro | Pro
325 | Ile | Leu | Tyr | Ser | Glu
330 | Tyr | Asp | Pro | Thr | Arg
335 | Pro | | | Phe | Ser | Glu | Ala
340 | Ser | Met | Met | Gly | Leu
345 | Leu | Thr | Asn | Leu | Ala
350 | Asp | Arg | | | Glu | Leu | Val
355 | His | Met | Ile | Asn | Trp
360 | Ala | Lys | Arg | Val | Pro
365 | Gly | Phe | Val | | | Asp | Leu
370 | Thr | Leu | His | Asp | Gln
375 | Val | His | Leu | Leu | Glu
380 | Сув | Ala | Trp | Leu | | | Glu
385 | Ile | Leu | Met | Ile | Gly
390 | Leu | Val | Trp | Arg | Ser
395 | Met | Glu | His | Pro | Gly
400 | | | ГÀа | Leu | Leu | Phe | Ala
405 | Pro | Asn | Leu | Leu | Leu
410 | Asp | Arg | Asn | Gln | Gly
415 | TÀa | | | CAa | Val | Glu | Gly
420 | Met | Val | Glu | Ile | Phe
425 | Asp | Met | Leu | Leu | Ala
430 | Thr | Ser | | | Ser | Arg | Phe
435 | Arg | Met | Met | Asn | Leu
440 | Gln | Gly | Glu | Glu | Phe
445 | Val | CÀa | Leu | | | Lys | Ser
450 | Ile | Ile | Leu | Leu | Asn
455 | Ser | Gly | Val | Tyr | Thr
460 | Phe | Leu | Ser | Ser | | | 465 | | - | | | Glu
470 | | - | _ | | 475 | | _ | | | 480 | | | Lys | Ile | Thr | Asp | Thr
485 | Leu | Ile | His | Leu | Met
490 | Ala | ГÀЗ | Ala | Gly | Leu
495 | Thr | | | | | | 500 | | Gln | | | 505 | | | | | 510 | | | | | | | 515 | | | Ser | | 520 | - | | | | 525 | - | | | | | ГÀа | Сув
530 | Lys | Asn | Val | Val | Pro
535 | Leu | Tyr | Asp | Leu | Leu
540 | Leu | Glu | Met | Leu | | | Asp
545 | Ala | His | Arg | Leu | His
550 | Ala | Pro | Thr | Ser | Arg
555 | Gly | Gly | Ala | Ser | Val
560 | | | Glu | Glu | Thr | Asp | Gln
565 | Ser | His | Leu | Ala | Thr
570 | Ala | Gly | Ser | Thr | Ser
575 | Ser | | | His | Ser | Leu | Gln
580 | ГÀа | Tyr | Tyr | Ile | Thr
585 | Gly | Glu | Ala | Glu | Gly
590 | Phe | Pro | | | Ala | Thr | Val
595 | | | | | | | | | | | | | | | ``` <211> LENGTH: 245 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <223> OTHER INFORMATION: estrogen receptor ligand-binding domain <400> SEQUENCE: 5 Ser Leu Ala Leu Ser Leu Thr Ala Asp Gln Met Val Ser Ala Leu Leu Asp Ala Glu Pro Pro Ile Leu Tyr Ser Glu Tyr Asp Pro Thr Arg Pro Phe Ser Glu Ala Ser Met Met Gly Leu Leu Thr Asn Leu Ala Asp Arg Glu Leu Val His Met Ile Asn Trp Ala Lys Arg Val Pro Gly Phe Val Asp Leu Thr Leu His Asp Gln Val His Leu Leu Glu Cys Ala Trp Leu Glu Ile Leu Met Ile Gly Leu Val Trp Arg Ser Met Glu His Pro Gly 90 Lys Leu Leu Phe Ala Pro Asn Leu Leu Leu Asp Arg Asn Gln Gly Lys 100 105 Cys Val Glu Gly Met Val Glu Ile Phe Asp Met Leu Leu Ala Thr Ser 120 Ser Arg Phe Arg Met Met Asn Leu Gln Gly Glu Glu Phe Val Cys Leu 135 Lys Ser Ile Ile Leu Leu Asn Ser Gly Val Tyr Thr Phe Leu Ser Ser 150 Thr Leu Lys Ser Leu Glu Glu Lys Asp His Ile His Arg Val Leu Asp 165 170 Lys Ile Thr Asp Thr Leu Ile His Leu Met Ala Lys Ala Gly Leu Thr Leu Gln Gln His Gln Arg Leu Ala Gln Leu Leu Leu Ile Leu Ser 200 His Ile Arg His Met Ser Asn Lys Gly Met Glu His Leu Tyr Ser Met Lys Cys Lys Asn Val Val Pro Leu Tyr Asp Leu Leu Leu Glu Met Leu Asp Ala His Arg Leu <210> SEQ ID NO 6 <211> LENGTH: 920 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 6 Met Glu Val Gln Leu Gly Leu Gly Arg Val Tyr Pro Arg Pro Pro Ser Lys Thr Tyr Arg Gly Ala Phe Gln Asn Leu Phe Gln Ser Val Arg Glu 25 Val Ile Gln Asn Pro Gly Pro Arg His Pro Glu Ala Ala Ser Ala Ala 40 Pro Pro Gly Ala Ser Leu Leu Leu Gln Gln Gln Gln Gln Gln 55 ``` | Gln
65 | Gln | Gln | Gln | Gln | Gln
70 | Gln | Gln | Gln | Gln | Gln
75 | Gln | Gln | Gln | Gln | Gln
80 | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Glu | Thr | Ser | Pro | Arg
85 | Gln | Gln | Gln | Gln | Gln
90 | Gln | Gly | Glu | Asp | Gly
95 | Ser | | Pro | Gln | Ala | His
100 | Arg | Arg | Gly | Pro | Thr
105 | Gly | Tyr | Leu | Val | Leu
110 | Asp | Glu | | Glu | Gln | Gln
115 | Pro | Ser | Gln | Pro | Gln
120 | Ser | Ala | Leu | Glu | Cys
125 | His | Pro | Glu | | Arg | Gly
130 | Сув | Val | Pro | Glu | Pro
135 | Gly | Ala | Ala | Val | Ala
140 | Ala | Ser | Lys | Gly | | Leu
145 | Pro | Gln | Gln | Leu | Pro
150 | Ala | Pro | Pro | Asp | Glu
155 | Asp | Asp | Ser | Ala | Ala
160 | | Pro | Ser | Thr | Leu | Ser
165 | Leu | Leu | Gly | Pro | Thr
170 | Phe | Pro | Gly | Leu | Ser
175 | Ser | | Cys | Ser | Ala | Asp
180 | Leu | ГÀа | Asp | Ile | Leu
185 | Ser | Glu | Ala | Ser | Thr
190 | Met | Gln | | Leu | Leu | Gln
195 | Gln | Gln | Gln | Gln | Glu
200 | Ala | Val | Ser | Glu | Gly
205 | Ser | Ser | Ser | | Gly | Arg
210 | Ala | Arg | Glu | Ala | Ser
215 | Gly | Ala | Pro | Thr | Ser
220 | Ser | Lys | Asp | Asn | | Tyr
225 | Leu | Gly | Gly | Thr | Ser
230 | Thr | Ile | Ser | Asp | Asn
235 | Ala | ГÀв | Glu | Leu | Cys
240 | | Lys | Ala | Val | Ser | Val
245 | Ser | Met | Gly | Leu | Gly
250 | Val | Glu | Ala | Leu | Glu
255 | His | | Leu | Ser | Pro | Gly
260 | Glu | Gln | Leu | Arg | Gly
265 | Asp | Сув | Met | Tyr | Ala
270 | Pro | Leu | | Leu | Gly | Val
275 | Pro | Pro | Ala | Val | Arg
280 | Pro | Thr | Pro | CAa | Ala
285 | Pro | Leu | Ala | | Glu | Cys
290 | Lys | Gly | Ser | Leu | Leu
295 | Asp | Asp | Ser | Ala | Gly
300 | Lys | Ser | Thr | Glu | | Asp
305 | Thr | Ala | Glu | Tyr | Ser
310 | Pro | Phe | Lys | Gly | Gly
315 | Tyr | Thr | Lys | Gly | Leu
320 | | Glu | Gly | Glu | Ser | Leu
325 | Gly | Cys | Ser | Gly | Ser
330 | Ala | Ala | Ala | Gly | Ser
335 | Ser | | Gly | Thr | Leu | Glu
340 | Leu | Pro | Ser | Thr | Leu
345 | Ser | Leu | Tyr | Lys | Ser
350 | Gly | Ala | | Leu | Asp | Glu
355 | Ala | Ala | Ala | Tyr | Gln
360 | Ser | Arg | Asp | Tyr | Tyr
365 | Asn | Phe | Pro | | Leu | Ala
370 | Leu | Ala | Gly | Pro | Pro
375 | Pro | Pro | Pro | Pro | Pro
380 | Pro | His | Pro | His | | Ala
385 | Arg | Ile | Lys | Leu | Glu
390 | Asn | Pro | Leu | Asp | Tyr
395 | Gly | Ser | Ala | Trp | Ala
400 | | Ala | Ala | Ala | Ala | Gln
405 | Cys | Arg | Tyr | Gly | Asp
410 | Leu | Ala | Ser | Leu | His
415 | Gly | | Ala | Gly | Ala | Ala
420 | Gly | Pro | Gly | Ser | Gly
425 | Ser | Pro | Ser | Ala | Ala
430 | Ala | Ser | | Ser | Ser | Trp
435 | His | Thr | Leu | Phe | Thr
440 | Ala | Glu | Glu | Gly | Gln
445 | Leu | Tyr | Gly | | Pro | Cys
450 | Gly | Gly | Gly | Gly | Gly
455 | Gly | Gly | Gly | Gly | Gly
460 | Gly | Gly | Gly | Gly | | Gly Glu | Ala | Gly | Ala | Val | Ala | Pro | | 4.05 | | | | | 450 | | | | | 455 | | | | | 400 | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 465 | | | | | 470 | | | | | 475 | | | | | 480 | | Tyr | Gly | Tyr | Thr | Arg
485 | Pro | Pro | Gln | Gly | Leu
490 | Ala | Gly | Gln | Glu | Ser
495 | Asp | | Phe | Thr | Ala | Pro
500 | Asp | Val | Trp | Tyr | Pro
505 | Gly | Gly | Met | Val | Ser
510 | Arg | Val | | Pro | Tyr | Pro
515 | Ser | Pro | Thr | Cys | Val
520 | Lys | Ser | Glu | Met | Gly
525 | Pro | Trp | Met | | Asp | Ser
530 | Tyr | Ser | Gly | Pro | Tyr
535 | Gly | Asp | Met | Arg | Leu
540 | Glu | Thr | Ala | Arg | | Asp
545 | His | Val | Leu | Pro | Ile
550 | Asp | Tyr | Tyr | Phe | Pro
555 | Pro | Gln | Lys | Thr | Cys
560 | | Leu | Ile | Cys | Gly | Asp
565 | Glu | Ala | Ser | Gly | Cys
570 | His | Tyr | Gly | Ala | Leu
575 | Thr | | CÀa |
Gly | Ser | Cys
580 | Lys | Val | Phe | Phe | Lys
585 | Arg | Ala | Ala | Glu | Gly
590 | Lys | Gln | | ГÀа | Tyr | Leu
595 | Cys | Ala | Ser | Arg | Asn
600 | Asp | Сув | Thr | Ile | Asp
605 | Lys | Phe | Arg | | Arg | Lys
610 | Asn | Cys | Pro | Ser | Cys
615 | Arg | Leu | Arg | Lys | Cys
620 | Tyr | Glu | Ala | Gly | | Met
625 | Thr | Leu | Gly | Ala | Arg
630 | Lys | Leu | Lys | Lys | Leu
635 | Gly | Asn | Leu | Lys | Leu
640 | | Gln | Glu | Glu | Gly | Glu
645 | Ala | Ser | Ser | Thr | Thr
650 | Ser | Pro | Thr | Glu | Glu
655 | Thr | | Thr | Gln | Lys | Leu
660 | Thr | Val | Ser | His | Ile
665 | Glu | Gly | Tyr | Glu | Cys
670 | Gln | Pro | | Ile | Phe | Leu
675 | Asn | Val | Leu | Glu | Ala
680 | Ile | Glu | Pro | Gly | Val
685 | Val | Сув | Ala | | Gly | His
690 | Asp | Asn | Asn | Gln | Pro
695 | Asp | Ser | Phe | Ala | Ala
700 | Leu | Leu | Ser | Ser | | Leu
705 | Asn | Glu | Leu | Gly | Glu
710 | Arg | Gln | Leu | Val | His
715 | Val | Val | ГÀз | Trp | Ala
720 | | Lys | Ala | Leu | Pro | Gly
725 | Phe | Arg | Asn | Leu | His
730 | Val | Asp | Asp | Gln | Met
735 | Ala | | Val | Ile | Gln | Tyr
740 | Ser | Trp | Met | Gly | Leu
745 | Met | Val | Phe | Ala | Met
750 | Gly | Trp | | Arg | Ser | Phe
755 | Thr | Asn | Val | Asn | Ser
760 | Arg | Met | Leu | Tyr | Phe
765 | Ala | Pro | Asp | | Leu | Val
770 | Phe | Asn | Glu | Tyr | Arg
775 | Met | His | Lys | Ser | Arg
780 | Met | Tyr | Ser | Gln | | Сув
785 | Val | Arg | Met | Arg | His
790 | Leu | Ser | Gln | Glu | Phe
795 | Gly | Trp | Leu | Gln | Ile
800 | | Thr | Pro | Gln | Glu | Phe
805 | Leu | CÀa | Met | Lys | Ala
810 | Leu | Leu | Leu | Phe | Ser
815 | Ile | | Ile | Pro | Val | Asp
820 | Gly | Leu | Lys | Asn | Gln
825 | Lys | Phe | Phe | Asp | Glu
830 | Leu | Arg | | Met | Asn | Tyr
835 | Ile | Lys | Glu | Leu | Asp
840 | Arg | Ile | Ile | Ala | Cys
845 | Lys | Arg | Lys | | Asn | Pro
850 | Thr | Ser | СЛа | Ser | Arg
855 | Arg | Phe | Tyr | Gln | Leu
860 | Thr | Lys | Leu | Leu | | Asp
865 | Ser | Val | Gln | Pro | Ile
870 | Ala | Arg | Glu | Leu | His
875 | Gln | Phe | Thr | Phe | Asp
880 | Leu Leu Ile Lys Ser His Met Val Ser Val Asp Phe Pro Glu Met Met 890 Ala Glu Ile Ile Ser Val Gln Val Pro Lys Ile Leu Ser Gly Lys Val Lys Pro Ile Tyr Phe His Thr Gln 915 <210> SEQ ID NO 7 <211> LENGTH: 462 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 7 Met Asp Thr Lys His Phe Leu Pro Leu Asp Phe Ser Thr Gln Val Asn Ser Ser Leu Thr Ser Pro Thr Gly Arg Gly Ser Met Ala Ala Pro Ser 20 25 30 Leu His Pro Ser Leu Gly Pro Gly Ile Gly Ser Pro Gly Gln Leu His Ser Pro Ile Ser Thr Leu Ser Ser Pro Ile Asn Gly Met Gly Pro Pro 55 Phe Ser Val Ile Ser Ser Pro Met Gly Pro His Ser Met Ser Val Pro 70 Thr Thr Pro Thr Leu Gly Phe Ser Thr Gly Ser Pro Gln Leu Ser Ser Pro Met Asn Pro Val Ser Ser Glu Asp Ile Lys Pro Pro Leu Gly 105 Leu Asn Gly Val Leu Lys Val Pro Ala His Pro Ser Gly Asn Met Ala 120 Ser Phe Thr Lys His Ile Cys Ala Ile Cys Gly Asp Arg Ser Ser Gly Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys Arg Thr Val Arg Lys Asp Leu Thr Tyr Thr Cys Arg Asp Asn Lys Asp 170 Cys Leu Ile Asp Lys Arg Gln Arg Asn Arg Cys Gln Tyr Cys Arg Tyr \$180\$ \$185\$ \$190Gln Lys Cys Leu Ala Met Gly Met Lys Arg Glu Ala Val Gl
n Glu Glu 195 200 205 Arg Gln Arg Gly Lys Asp Arg Asn Glu Asn Glu Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala 265 Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val | 305 | | | | | 310 | | | | | 315 | | | | | 320 | | | |--------------------------------------|----------------------|----------------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|--| | Lys i | Asp | Gly | Ile | Leu
325 | Leu | Ala | Thr | Gly | Leu
330 | His | Val | His | Arg | Asn
335 | Ser | | | | Ala 1 | His | Ser | Ala
340 | Gly | Val | Gly | Ala | Ile
345 | Phe | Asp | Arg | Val | Leu
350 | Thr | Glu | | | | Leu ' | Val | Ser
355 | Lys | Met | Arg | Asp | Met
360 | Gln | Met | Asp | Lys | Thr
365 | Glu | Leu | Gly | | | | | Leu
370 | Arg | Ala | Ile | Val | Leu
375 | Phe | Asn | Pro | Asp | Ser
380 | Lys | Gly | Leu | Ser | | | | Asn 1
385 | Pro | Ala | Glu | Val | Glu
390 | Ala | Leu | Arg | Glu | Lys
395 | Val | Tyr | Ala | Ser | Leu
400 | | | | Glu A | Ala | Tyr | Cys | Lys
405 | His | Lys | Tyr | Pro | Glu
410 | Gln | Pro | Gly | Arg | Phe
415 | Ala | | | | Lys : | Leu | Leu | Leu
420 | Arg | Leu | Pro | Ala | Leu
425 | Arg | Ser | Ile | Gly | Leu
430 | Lys | Сув | | | | ∍eu (| Glu | His
435 | Leu | Phe | Phe | Phe | Lys
440 | Leu | Ile | Gly | Asp | Thr
445 | Pro | Ile | Asp | | | | | Phe
450 | Leu | Met | Glu | Met | Leu
455 | Glu | Ala | Pro | His | Gln
460 | Met | Thr | | | | | | 211 | > LE
> TY | NGTI
PE: | | 55 | nerio | chia | col | Ĺ | | | | | | | | | | | 400 | > SE | QUEN | ICE : | 8 | | | | | | | | | | | | | | | let i | Asn | Ser | Glu | Ser
5 | Val | Arg | Ile | Tyr | Leu
10 | Val | Ala | Ala | Met | Gly
15 | Ala | | | | sn i | Arg | Val | Ile
20 | Gly | Asn | Gly | Pro | Asn
25 | Ile | Pro | Trp | ГÀз | Ile
30 | Pro | Gly | | | | lu (| Gln | Lув
35 | Ile | Phe | Arg | Arg | Leu
40 | Thr | Glu | Gly | Lys | Val
45 | Val | Val | Met | | | | | Arg
50 | Lys | Thr | Phe | Glu | Ser
55 | Ile | Gly | ГÀа | Pro | Leu
60 | Pro | Asn | Arg | His | | | | hr 1 | Leu | Val | Ile | Ser | Arg
70 | Gln | Ala | Asn | Tyr | Arg
75 | Ala | Thr | Gly | Cys | Val
80 | | | | al ' | Val | Ser | Thr | Leu
85 | Ser | His | Ala | Ile | Ala
90 | Leu | Ala | Ser | Glu | Leu
95 | Gly | | | | sn (| Glu | Leu | Tyr
100 | Val | Ala | Gly | Gly | Ala
105 | Glu | Ile | Tyr | Thr | Leu
110 | Ala | Leu | | | | Pro 1 | His | Ala
115 | His | Gly | Val | Phe | Leu
120 | Ser | Glu | Val | His | Gln
125 | Thr | Phe | Glu | | | | _ | Asp
130 | Ala | Phe | Phe | Pro | Met
135 | Leu | Asn | Glu | Thr | Glu
140 | Phe | Glu | Leu | Val | | | | Ser '
.45 | Thr | Glu | Thr | Ile | Gln
150 | Ala | Val | Ile | Pro | Tyr
155 | Thr | His | Ser | Val | Tyr
160 | | | | ala i | Arg | Arg | Asn | Gly
165 | | | | | | | | | | | | | | | <210
<211
<212
<213
<220 | > LE
> TY
> OF | NGTH
PE:
RGANI | H: 29
PRT
ISM: | 97 | lfic | ial S | Seque | ence | | | | | | | | | | <223> OTHER INFORMATION: bacterial dehalogenase <400> SEQUENCE: 9 Met Ala Glu Ile Gly Thr Gly Phe Pro Phe Asp Pro His Tyr Val Glu Val Leu Gly Glu Arg Met His Tyr Val Asp Val Gly Pro Arg Asp Gly 25 Thr Pro Val Leu Phe Leu His Gly Asn Pro Thr Ser Ser Tyr Val Trp Arg Asn Ile Ile Pro His Val Ala Pro Thr His Arg Cys Ile Ala Pro Asp Leu Ile Gly Met Gly Lys Ser Asp Lys Pro Asp Leu Gly Tyr Phe Phe Asp Asp His Val Arg Phe Met Asp Ala Phe Ile Glu Ala Leu Gly 90 Leu Glu Glu Val Val Leu Val Ile His Asp Trp Gly Ser Ala Leu Gly 100 105 Phe His Trp Ala Lys Arg Asn Pro Glu Arg Val Lys Gly Ile Ala Phe 120 Met Glu Phe Ile Arg Pro Ile Pro Thr Trp Asp Glu Trp Pro Glu Phe 135 Ala Arg Glu Thr Phe Gln Ala Phe Arg Thr Thr Asp Val Gly Arg Lys 150 155 Leu Ile Ile Asp Gln Asn Val Phe Ile Glu Gly Thr Leu Pro Met Gly 165 170 Val Val Arg Pro Leu Thr Glu Val Glu Met Asp His Tyr Arg Glu Pro 185 Phe Leu Asn Pro Val Asp Arg Glu Pro Leu Trp Arg Phe Pro Asn Glu 200 Leu Pro Ile Ala Gly Glu Pro Ala Asn Ile Val Ala Leu Val Glu Glu 215 Tyr Met Asp Trp Leu His Gln Ser Pro Val Pro Lys Leu Leu Phe Trp Gly Thr Pro Gly Val Leu Ile Pro Pro Ala Glu Ala Ala Arg Leu Ala Lys Ser Leu Pro Asn Cys Lys Ala Val Asp Ile Gly Pro Gly Leu Asn 260 265 Leu Leu Gln Glu Asp Asn Pro Asp Leu Ile Gly Ser Glu Ile Ala Arg Trp Leu Ser Thr Leu Glu Ile Ser Gly <210> SEQ ID NO 10 <211> LENGTH: 267 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: CD19 scFv <400> SEQUENCE: 10 Met Leu Leu Val Thr Ser Leu Leu Cys Glu Leu Pro His Pro 10 Ala Phe Leu Leu Ile Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser 20 25 Leu Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr Gly Ser Thr Ser Gly Ser Gly Lys Pro Gly Ser Gly Glu Gly Ser 130 135 140 Thr Lys Gly Glu Val Lys Leu Gln Glu Ser Gly Pro Gly Leu Val Ala 150 155 Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly Val Ser Leu 170 Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg Lys Gly Leu 185 Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr Tyr Asn Ser 200 Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser Lys Ser Gln 215 Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr Ala Ile Tyr 230 Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala Met Asp Tyr 245 250 Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser <210> SEQ ID NO 11 <211> LENGTH: 22 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: GMCSF signal peptide <400> SEQUENCE: 11 Met Leu Leu Val Thr Ser Leu Leu Cys Glu Leu Pro His Pro Ala Phe Leu Leu Ile Pro 20 <210> SEQ ID NO 12 <211> LENGTH: 107 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: scFv to CD19 variable light chain <400> SEQUENCE: 12 Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
Ser Ala Ser Leu Gly 1 5 Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Ser Lys Tyr ``` 25 3.0 Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr <210> SEQ ID NO 13 <211> LENGTH: 18 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Whitlow linker <400> SEQUENCE: 13 Gly Ser Thr Ser Gly Ser Gly Lys Pro Gly Ser Gly Glu Gly Ser Thr 10 Lys Gly <210> SEQ ID NO 14 <211> LENGTH: 120 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: scFv to CD19 variable heavy chain <400> SEQUENCE: 14 Glu Val Lys Leu Gln Glu Ser Gly Pro Gly Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala Met Asp Tyr Trp Gly Gln 105 Gly Thr Ser Val Thr Val Ser Ser 115 <210> SEQ ID NO 15 <211> LENGTH: 61 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: modified CD8 alpha chain hinge region <400> SEQUENCE: 15 ``` ``` Ala Leu Ser Asn Ser Ile Tyr Phe Ser His Phe Val Pro Val Phe Leu Pro Ala Lys Pro Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala 25 Pro Thr Ile Ala Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly Gly Ala Val His Thr Arg Gly Leu Asp <210> SEQ ID NO 16 <211> LENGTH: 69 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: fragment of the co-stimulatory CD28 protein <400> SEQUENCE: 16 Lys Pro Phe Trp Val Leu Val Trp Gly Gly Val Leu Ala Cys Tyr Ser 1 10 15 Leu Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg 20 25 30 Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro 40 Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser <210> SEQ ID NO 17 <211> LENGTH: 112 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: CD3-zeta domain <400> SEQUENCE: 17 Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg 105 <210> SEQ ID NO 18 <211> LENGTH: 107 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: dTAG ``` <400> SEOUENCE: 18 ``` Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe Pro Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu Asp Gly Lys Lys Val Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys Phe Val Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val Ala Gln Met Ser Val Gly Gln Arg Ala Lys Leu Thr Ile Ser Pro Asp Tyr Ala Tyr Gly Ala Thr Gly His Pro Gly Ile Ile Pro Pro Asn Ala Thr 85 \hspace{0.5cm} 90 \hspace{0.5cm} 95 \hspace{0.5cm} Leu Ile Phe Asp Val Glu Leu Leu Lys Leu Glu <210> SEQ ID NO 19 <211> LENGTH: 619 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: CD19-CAR-dTAG <400> SEOUENCE: 19 Met Leu Leu Val Thr Ser Leu Leu Cys Glu Leu Pro His Pro Ala Phe Leu Leu Ile Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser 25 Leu Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr Gly Ser Thr Ser Gly Ser Gly Lys Pro Gly Ser Gly Glu Gly Ser Thr Lys Gly Glu Val Lys Leu Gln Glu Ser Gly Pro Gly Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg Lys Gly Leu 185 Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr Ala Ile Tyr ``` | 225 | | | | | 230 | | | | | 235 | | | | | 240 | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Tyr | Cys | Ala | Lys | His
245 | Tyr | Tyr | Tyr | Gly | Gly
250 | Ser | Tyr | Ala | Met | Asp
255 | Tyr | | Trp | Gly | Gln | Gly
260 | Thr | Ser | Val | Thr | Val
265 | Ser | Ser | Ala | Leu | Ser
270 | Asn | Ser | | Ile | Tyr | Phe
275 | Ser | His | Phe | Val | Pro
280 | Val | Phe | Leu | Pro | Ala
285 | Lys | Pro | Thr | | Thr | Thr
290 | Pro | Ala | Pro | Arg | Pro
295 | Pro | Thr | Pro | Ala | Pro
300 | Thr | Ile | Ala | Ser | | Gln
305 | Pro | Leu | Ser | Leu | Arg
310 | Pro | Glu | Ala | Cys | Arg
315 | Pro | Ala | Ala | Gly | Gly
320 | | Ala | Val | His | Thr | Arg
325 | Gly | Leu | Asp | Lys | Pro
330 | Phe | Trp | Val | Leu | Val
335 | Trp | | Gly | Gly | Val | Leu
340 | Ala | Cys | Tyr | Ser | Leu
345 | Leu | Val | Thr | Val | Ala
350 | Phe | Ile | | Ile | Phe | Trp
355 | Val | Arg | Ser | Lys | Arg
360 | Ser | Arg | Leu | Leu | His
365 | Ser | Asp | Tyr | | Met | Asn
370 | Met | Thr | Pro | Arg | Arg
375 | Pro | Gly | Pro | Thr | Arg
380 | ГÀа | His | Tyr | Gln | | Pro
385 | Tyr | Ala | Pro | Pro | Arg
390 | Asp | Phe | Ala | Ala | Tyr
395 | Arg | Ser | Arg | Val | Lys
400 | | Phe | Ser | Arg | Ser | Ala
405 | Asp | Ala | Pro | Ala | Tyr
410 | Gln | Gln | Gly | Gln | Asn
415 | Gln | | Leu | Tyr | Asn | Glu
420 | Leu | Asn | Leu | Gly | Arg
425 | Arg | Glu | Glu | Tyr | Asp
430 | Val | Leu | | Asp | Lys | Arg
435 | Arg | Gly | Arg | Asp | Pro
440 | Glu | Met | Gly | Gly | Lys
445 | Pro | Arg | Arg | | ГÀа | Asn
450 | Pro | Gln | Glu | Gly | Leu
455 | Tyr | Asn | Glu | Leu | Gln
460 | ГÀа | Asp | Lys | Met | | Ala
465 | Glu | Ala | Tyr | Ser | Glu
470 | Ile | Gly | Met | ГÀа | Gly
475 | Glu | Arg | Arg | Arg | Gly
480 | | ГÀз | Gly | His | Asp | Gly
485 | Leu | Tyr | Gln | Gly | Leu
490 | Ser | Thr | Ala | Thr | Lys
495 | Asp | | Thr | Tyr | Asp | Ala
500 | Leu | His | Met | Gln | Ala
505 | Leu | Pro | Pro | Arg | Gly
510 | Gly | Gly | | Gly | Val | Gln
515 | Val | Glu | Thr | Ile | Ser
520 | Pro | Gly | Asp | Gly | Arg
525 | Thr | Phe | Pro | | ГÀа | Arg
530 | Gly | Gln | Thr | CAa | Val
535 | Val | His | Tyr | Thr | Gly
540 | Met | Leu | Glu | Asp | | Gly
545 | Lys | ГÀа | Val | Asp | Ser
550 | Ser | Arg | Asp | Arg | Asn
555 | ГÀа | Pro | Phe | Lys | Phe
560 | | Val | Leu | Gly | Lys | Gln
565 | Glu | Val | Ile | Arg | Gly
570 | Trp | Glu | Glu | Gly | Val
575 | Ala | | Gln | Met | Ser | Val
580 | Gly | Gln | Arg | Ala | Lys
585 | Leu | Thr | Ile | Ser | Pro
590 | Asp | Tyr | | Ala | Tyr | Gly
595 | Ala | Thr | Gly | His | Pro
600 | Gly | Ile | Ile | Pro | Pro
605 | Asn | Ala | Thr | | Leu | Ile
610 | Phe | Asp | Val | Glu | Leu
615 | Leu | Lys | Leu | Glu | <211> LENGTH: 213 ``` <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: ERB2 scFV variable light chain <400> SEQUENCE: 20 Asp Ile Leu Leu Thr Gln Ser Pro Val Ile Leu Ser Val Ser Pro Gly Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Ser Ile Gly Thr Asn Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Glu Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Ser Val Glu Ser Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Asn Asn Asn Trp Pro Thr Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Thr Val Ala Ala 100 105 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 120 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 135 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 150 155 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 170 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 200 Phe Asn Arg Gly Glu <210> SEQ ID NO 21 <211> LENGTH: 107 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: scFv to ERB2 variable heavy chain <400> SEQUENCE: 21 Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Ser Lys Tyr 25 Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Lys Leu Leu Ile 40 Tyr His Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Tyr ``` | | | -continue | ed | |------------------------|----------------------------|-------------------------------|---------------| | | 85 | 90 9 | 5 | | Thr Phe Gly Gly
100 | Gly Thr Lys Leu Glu
105 | | | | <220> FEATURE: | 21
Artificial Sequence | b-B2 variable heavy ch | ain | | <400> SEQUENCE: | 22 | | | | Gln Val Gln Leu
1 | Lys Gln Ser Gly Pro
5 | Gly Leu Val Gln Pro S | | | Ser Leu Ser Ile
20 | Thr Cys Thr Val Ser
25 | Gly Phe Ser Leu Thr A | sn Tyr | | Gly Val His Trp
35 | Val Arg Gln Ser Pro
40 | Gly Lys Gly Leu Glu T
45 | rp Leu | |
Gly Val Ile Trp
50 | Ser Gly Gly Asn Thr
55 | Asp Tyr Asn Thr Pro P | he Thr | | Ser Arg Leu Ser
65 | Ile Asn Lys Asp Asn
70 | . Ser Lys Ser Gln Val P
75 | he Phe
80 | | Lys Met Asn Ser | Leu Gln Ser Asn Asp
85 | Thr Ala Ile Tyr Tyr C | | | Arg Ala Leu Thr
100 | | Phe Ala Tyr Trp Gly G
110 | ln Gly | | Thr Leu Val Thr
115 | Val Ser Ala Ala Ser
120 | Thr Lys Gly Pro Ser V
125 | al Phe | | Pro Leu Ala Pro
130 | Ser Ser Lys Ser Thr
135 | Ser Gly Gly Thr Ala A
140 | la Leu | | Gly Cys Leu Val
145 | Lys Asp Tyr Phe Pro
150 | Glu Pro Val Thr Val S
155 | er Trp
160 | | - | 165 | | 75 | | Gln Ser Ser Gly
180 | • | Ser Val Val Thr Val P
190 | ro Ser | | 195 | 200 | Cys Asn Val Asn His L
205 | ys Pro | | Ser Asn Thr Lys
210 | Val Asp Lys Lys Val
215 | Glu Pro Lys Ser
220 | | | <220> FEATURE: | 90 | | | | <400> SEQUENCE: | 23 | | | | Asp Ile Leu Leu
1 | Thr Gln Ser Pro Val | Ile Leu Ser Val Ser P | | | Glu Arg Val Ser
20 | Phe Ser Cys Arg Ala
25 | Ser Gln Ser Ile Gly T | hr Asn | | Ile His Trp Tyr
35 | Gln Gln Arg Thr Asn
40 | Gly Ser Pro Arg Leu L
45 | eu Ile | | ГÀв | Tyr
50 | Ala | Ser | Glu | Ser | Ile
55 | Ser | Gly | Ile | Pro | Ser
60 | Arg | Phe | Ser | Gly | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ser
65 | Gly | Ser | Gly | Thr | Asp
70 | Phe | Thr | Leu | Ser | Ile
75 | Asn | Ser | Val | Glu | Ser
80 | | Glu | Asp | Ile | Ala | Asp
85 | Tyr | Tyr | Сув | Gln | Gln
90 | Asn | Asn | Asn | Trp | Pro
95 | Thr | | Thr | Phe | Gly | Ala
100 | Gly | Thr | Lys | Leu | Glu
105 | Leu | Lys | Arg | Thr | Val
110 | Ala | Ala | | Pro | Ser | Val
115 | Phe | Ile | Phe | Pro | Pro
120 | Ser | Asp | Glu | Gln | Leu
125 | Lys | Ser | Gly | | Thr | Ala
130 | Ser | Val | Val | Cys | Leu
135 | Leu | Asn | Asn | Phe | Tyr
140 | Pro | Arg | Glu | Ala | | Lys
145 | Val | Gln | Trp | Lys | Val
150 | Asp | Asn | Ala | Leu | Gln
155 | Ser | Gly | Asn | Ser | Gln
160 | | Glu | Ser | Val | Thr | Glu
165 | Gln | Asp | Ser | Lys | Asp
170 | Ser | Thr | Tyr | Ser | Leu
175 | Ser | | Ser | Thr | Leu | Thr
180 | Leu | Ser | Lys | Ala | Asp
185 | Tyr | Glu | Lys | His | Lys
190 | Val | Tyr | | Ala | Cys | Glu
195 | Val | Thr | His | Gln | Gly
200 | Leu | Ser | Ser | Pro | Val
205 | Thr | Lys | Ser | | Phe | Asn
210 | Arg | Gly | Glu | Gly | Ser
215 | Thr | Ser | Gly | Ser | Gly
220 | ГÀв | Pro | Gly | Ser | | Gly
225 | Glu | Gly | Ser | Thr | Lys
230 | Gly | Asp | Ile | Gln | Met
235 | Thr | Gln | Thr | Thr | Ser
240 | | Ser | Leu | Ser | Ala | Ser
245 | Leu | Gly | Asp | Arg | Val
250 | Thr | Ile | Ser | Cys | Arg
255 | Ala | | Ser | Gln | Asp | Ile
260 | Ser | rys | Tyr | Leu | Asn
265 | Trp | Tyr | Gln | Gln | Lys
270 | Pro | Asp | | Gly | Thr | Val
275 | Lys | Leu | Leu | Ile | Tyr
280 | His | Thr | Ser | Arg | Leu
285 | His | Ser | Gly | | Val | Pro
290 | Ser | Arg | Phe | Ser | Gly
295 | Ser | Gly | Ser | Gly | Thr
300 | Asp | Tyr | Ser | Leu | | Thr
305 | Ile | Ser | Asn | Leu | Glu
310 | Gln | Glu | Asp | Ile | Ala
315 | Thr | Tyr | Phe | CAa | Gln
320 | | Gln | Gly | Asn | Thr | Leu
325 | Pro | Tyr | Thr | Phe | Gly
330 | Gly | Gly | Thr | Lys | Leu
335 | Glu | | Ile | Thr | Ala | Leu
340 | Ser | Asn | Ser | Ile | Tyr
345 | Phe | Ser | His | Phe | Val
350 | Pro | Val | | Phe | Leu | Pro
355 | Ala | Lys | Pro | Thr | Thr
360 | Thr | Pro | Ala | Pro | Arg
365 | Pro | Pro | Thr | | Pro | Ala
370 | Pro | Thr | Ile | Ala | Ser
375 | Gln | Pro | Leu | Ser | Leu
380 | Arg | Pro | Glu | Ala | | Сув
385 | Arg | Pro | Ala | Ala | Gly
390 | Gly | Ala | Val | His | Thr
395 | Arg | Gly | Leu | Asp | Lys
400 | | Pro | Phe | Trp | Val | Leu
405 | Val | Trp | Gly | Gly | Val
410 | Leu | Ala | CAa | Tyr | Ser
415 | Leu | | Leu | Val | Thr | Val
420 | Ala | Phe | Ile | Ile | Phe
425 | Trp | Val | Arg | Ser | Lys
430 | Arg | Ser | | Arg | Leu | Leu
435 | His | Ser | Asp | Tyr | Met
440 | Asn | Met | Thr | Pro | Arg
445 | Arg | Pro | Gly | | Pro | Thr | Arg | Lys | His | Tyr | Gln | Pro | Tyr | Ala | Pro | Pro | Arg | Asp | Phe | Ala | | | 450 | | | | | 455 | | | | | 460 | | | | | |------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ala
465 | Tyr | Arg | Ser | Arg | Val
470 | Lys | Phe | Ser | Arg | Ser
475 | Ala | Asp | Ala | Pro | Ala
480 | | Tyr | Gln | Gln | Gly | Gln
485 | Asn | Gln | Leu | Tyr | Asn
490 | Glu | Leu | Asn | Leu | Gly
495 | Arg | | Arg | Glu | Glu | Tyr
500 | Asp | Val | Leu | Asp | Lys
505 | _ | Arg | Gly | Arg | Asp
510 | Pro | Glu | | Met | Gly | Gly
515 | ГЛа | Pro | Arg | Arg | Lys | Asn | Pro | Gln | Glu | Gly
525 | Leu | Tyr | Asn | | Glu | Leu
530 | Gln | Lys | Asp | Lys | Met
535 | Ala | Glu | Ala | Tyr | Ser
540 | Glu | Ile | Gly | Met | | Lys
545 | Gly | Glu | Arg | Arg | Arg
550 | Gly | Lys | Gly | His | Asp
555 | Gly | Leu | Tyr | Gln | Gly
560 | | Leu | Ser | Thr | Ala | Thr
565 | _ | Asp | Thr | Tyr | Asp
570 | Ala | Leu | His | Met | Gln
575 | Ala | | Leu | Pro | Pro | Arg
580 | Gly | Gly | Gly | Gly | Val
585 | Gln | Val | Glu | Thr | Ile
590 | Ser | Pro | | Gly | Asp | Gly
595 | Arg | Thr | Phe | Pro | e00
Ta | Arg | Gly | Gln | Thr | Cys | Val | Val | His | | Tyr | Thr
610 | | Met | Leu | Glu | Asp
615 | | ГÀа | Lys | Val | Asp | | Ser | Arg | Asp | | Arg
625 | Asn | Lys | Pro | Phe | Lys | | Val | Leu | Gly | Lys
635 | | Glu | Val | Ile | Arg
640 | | | Trp | Glu | Glu | Gly
645 | Val | Ala | Gln | Met | Ser
650 | | Gly | Gln | Arg | Ala
655 | | | Leu | Thr | Ile | Ser
660 | | | Tyr | Ala | Tyr
665 | Gly | Ala | Thr | Gly | His | | Gly | | Ile | Ile | Pro
675 | | Asn | Ala | Thr | Leu
680 | | | Asp | Val | Glu
685 | | Leu | Lys | | Leu | Glu
690 | .,, | | | | | 200 | | | | | 503 | | | | | | 090 | | | | | | | | | | | | | | | | | 0> SI
1> LI | | | | | | | | | | | | | | | | <212 | 2 > T
3 > OF | PE: | PRT | | ific | ial : | Sequ | ence | | | | | | | | | | 0> FE
3> O | | | ORMA' | TION | : an | drog | en r | ecep | tor | liga | nd-b: | indiı | ng do | omain | | < 400 | 0> SI | EQUEI | ICE : | 24 | | | | | | | | | | | | | Asp
1 | Asn | Asn | Gln | Pro
5 | Asp | Ser | Phe | Ala | Ala
10 | Leu | Leu | Ser | Ser | Leu
15 | Asn | | Glu | Leu | Gly | Glu
20 | Arg | Gln | Leu | Val | His
25 | Val | Val | Lys | Trp | Ala
30 | Lys | Ala | | Leu | Pro | Gly
35 | Phe | Arg | Asn | Leu | His
40 | Val | Asp | Asp | Gln | Met
45 | Ala | Val | Ile | | Gln | Tyr
50 | Ser | Trp | Met | Gly | Leu
55 | Met | Val | Phe | Ala | Met
60 | Gly | Trp | Arg | Ser | | Phe
65 | Thr | Asn | Val | Asn | Ser
70 | Arg | Met | Leu | Tyr | Phe | Ala | Pro | Asp | Leu | Val
80 | | | Asn | Glu | Tyr | _ | | His | Lys | Ser | _ | | Tyr | Ser | Gln | _ | | | Arg | Met | Arg | His | 85
Leu | Ser | Gln | Glu | Phe | 90
Gly | Trp | Leu | Gln | Ile | 95
Thr | Pro | | | | | | | | | | | | | | | | | | | 100 105 110 | | | | | | | | | | | | | | | | | | |--|------------------------------|----------------------------------|-------------------------------------|-----------------------------|------------|-----|-----|-----|-----|-------|------|-------|-------|-------|-------|-------|--| | 115 | | | | 100 | | | | | 105 | | | | | 110 | | | | | Tyr Ile Lys Glu Leu Asp Arg Ile Ile Ala Cys Lys Arg Lys Asn Pro 155 160 Thr Ser
Cys Ser Arg Arg Phe Tyr Gln Leu Thr Lys Leu Leu Asp Ser 175 175 Val Gln Pro Ile Ala Arg Glu Leu His Gln Phe Thr Phe Asp Leu Leu 180 180 180 180 190 180 180 190 180 180 190 180 180 190 180 180 190 180 180 190 180 180 190 180 180 190 180 180 190 180 180 190 180 180 180 180 180 180 180 180 180 18 | Gln | Glu | | Leu | Cys | Met | Lys | | Leu | Leu | Leu | Phe | | Ile | Ile | Pro | | | 145 | Val | _ | Gly | Leu | Lys | Asn | | ГÀз | Phe | Phe | Asp | | Leu | Arg | Met | Asn | | | Val Gln Pro Ile Ala Arg Glu Leu His Gln Phe Thr Phe Asp Leu Leu 180 Ile Lys Ser His Met Val Ser Val Asp Phe Pro Glu Met Met Ala Glu 200 Ile Ile Ser Val Gln Val Pro Lys Ile Leu Ser Gly Lys Val Lys Pro 210 215 | _ | Ile | Lys | Glu | Leu | _ | Arg | Ile | Ile | Ala | _ | Lys | Arg | Lys | Asn | | | | 180 | Thr | Ser | Cys | Ser | _ | Arg | Phe | Tyr | Gln | | Thr | Lys | Leu | Leu | _ | Ser | | | 195 200 205 205 216 216 217 218 219 215 220 | Val | Gln | Pro | | Ala | Arg | Glu | Leu | | Gln | Phe | Thr | Phe | _ | Leu | Leu | | | 210 215 220 | Ile | Lys | | His | Met | Val | Ser | | Asp | Phe | Pro | Glu | | Met | Ala | Glu | | | <pre> <210> SEQ ID NO 25 <211- LENSTH: 238 <212- TYPE: PRT <213- ORGANISM: Artificial Sequence <220> FEATURE: <223- OTHER INFORMATION: Retinoic Receptor ligand-binding domain <400- SEQUENCE: 25 Ser Ala Asn Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala Glu Leu 1</pre> | Ile | | Ser | Val | Gln | Val | | Lys | Ile | Leu | Ser | _ | Lys | Val | Lys | Pro | | | <pre><211> LENGTH: 238 <212> TYPE: PRT <213: ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Retinoic Receptor ligand-binding domain <400> SEQUENCE: 25 Ser Ala Asn Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala Glu Leu 1</pre> | | Tyr | Phe | His | Thr | | | | | | | | | | | | | | Ser Ala Asn Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala Glu Leu 1 15 Ala Val Glu Pro Lys Thr Glu Thr 25 Val Glu Ala Asn Met Gly Leu 20 Asn Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Ala Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His 50 Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly 65 Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val 85 Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser 100 Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu 125 Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly 130 Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser 160 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 165 Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 195 | <211
<212
<213
<220 | .> LH
!> T?
!> OH
!> FH | -
ENGTH
PE:
RGANI
EATUR | H: 23
PRT
ISM:
RE: | 38
Art: | | | _ | | ecept | or : | ligaı | nd-b: | indir | ng do | omain | | | 1 | < 400 |)> SI | EQUE | ICE : | 25 | | | | | | | | | | | | | | Asn Pro Ser Ser Pro Asn Asp Pro Val Thr Asn IIe Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg IIe Pro His 50 Phe Ser Glu Leu Pro Leu Asp Asp Gln Val IIe Leu Leu Arg Ala Gly 80 Trp Asn Glu Leu Leu IIe Ala Ser Phe Ser His Arg Ser IIe Ala Val 95 Lys Asp Gly IIe Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser 1100 Ala His Ser Ala Gly Val Gly Ala IIe Phe Asp Arg Val Leu Thr Glu 125 Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly 130 Cys Leu Arg Ala IIe Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser 145 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 165 Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 Lys Leu Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser IIe Gly Leu Lys Cys 195 Lys Leu Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser IIe Gly Leu Lys Cys 195 | | Ala | Asn | Glu | _ | Met | Pro | Val | Glu | _ | Ile | Leu | Glu | Ala | | Leu | | | Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His 50 Phe Ser Glu Leu Pro Leu Asp Asp Gln Val IIe Leu Leu Arg Ala Gly 80 Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val 95 Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser 110 Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu 115 Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly 130 Try Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 160 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 175 Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Glu Fro Gly Leu Lys Cys 195 Leu Leu Leu Arg Leu Arg Leu Arg Leu Arg Leu Arg Phe Ala 180 Leu Arg Leu Arg Ser Ile Gly Leu Lys Cys 200 Leu Leu Leu Lys Cys 205 Leu Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 205 Lys Leu Lys Cys 205 Leu Lys Cys 205 Leu Lys Cys 205 Leu Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 205 Lys Leu Lys Cys 205 L | Ala | Val | Glu | | Lys | Thr | Glu | Thr | _ | Val | Glu | Ala | Asn | | Gly | Leu | | | Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly 80 Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val 95 Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser 1100 Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu 115 Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly 130 Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser 145 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 165 Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 200 Lys Leu Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 200 | Asn | Pro | | Ser | Pro | Asn | Asp | | Val | Thr | Asn | Ile | _ | Gln | Ala | Ala | | | 65 70 75 80 Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val 95 Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser 110 Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu 125 Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly 130 Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser 145 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 165 Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 200 | Asp | _ | Gln | Leu | Phe | Thr | | Val | Glu | Trp | Ala | _ | Arg | Ile | Pro | His | | | Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser 110 Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu 115 Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly 130 Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser 145 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 160 Asn Pro Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 200 Lys Leu Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 200 Lys Leu Leu Leu Lys Cys 200 Lys Lys Lys Lys Lys His Lys 200 Lys Lys Lys Lys Lys Cys 200 Lys Lys Lys Lys Lys Lys Ala Leu Arg Ser Ile Gly Leu Lys Cys 200 Lys | | Ser | Glu | Leu | Pro | | Asp | Asp | Gln | Val | | Leu | Leu | Arg | Ala | - | | | Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu 115 Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly 130 Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser 145 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 165 Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 200 Lys Leu Leu Leu Lys Cys 200 | Trp | Asn | Glu | Leu | | Ile | Ala | Ser | Phe | | His | Arg | Ser | Ile | | Val | | | Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly 130 Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser 145 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 165 Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 200 Lys Leu Leu Lys Cys 200 | Lys | Asp | Gly | | Leu | Leu | Ala | Thr | - | Leu | His | Val | His | _ | Asn | Ser | | | Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser 145 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 165 Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 200 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 200 | Ala | His | | Ala | Gly | Val | Gly | | Ile | Phe | Asp | Arg | | Leu | Thr | Glu | | | 145 150 155 160 Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu 165 170 175 Glu Ala Tyr
Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 185 190 Lys Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 195 200 205 | Leu | | Ser | Lys | Met | Arg | | Met | Gln | Met | Asp | | Thr | Glu | Leu | Gly | | | Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 185 190 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 195 200 205 | _ | Leu | Arg | Ala | Ile | | Leu | Phe | Asn | Pro | _ | Ser | Lys | Gly | Leu | | | | Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala 180 185 190 Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys 195 200 205 | Asn | Pro | Ala | Glu | | Glu | Ala | Leu | Arg | | Lys | Val | Tyr | Ala | | Leu | | | Lys Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys
195 200 205 | Glu | Ala | Tyr | _ | | His | Lys | Tyr | | | Gln | Pro | Gly | _ | | Ala | | | | ГÀв | Leu | | | Arg | Leu | Pro | | | Arg | Ser | Ile | _ | | Lys | Сув | | | | Leu | Glu | | Leu | Phe | Phe | Phe | | Leu | Ile | Gly | Asp | | Pro | Ile | Asp | | | | 210 | | | | | 215 | | | | | 220 | | | | | |--|------------------------------|----------------------------------|-----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Thr
225 | Phe | Leu | Met | Glu | Met
230 | Leu | Glu | Ala | Pro | His
235 | Gln | Met | Thr | | | | <210
<211
<212
<213
<220
<223 | > LE
> T\
> OF
> FE | ENGTI
(PE :
RGAN)
EATUI | H: 1:
PRT
ISM:
RE: | 10
Art: | | | Seque | | of l | MDM2 | | | | | | | <400 | > SE | EQUEI | ICE : | 26 | | | | | | | | | | | | | Met
1 | Cys | Asn | Thr | Asn
5 | Met | Ser | Val | Pro | Thr | Asp | Gly | Ala | Val | Thr
15 | Thr | | Ser | Gln | Ile | Pro
20 | Ala | Ser | Glu | Gln | Glu
25 | Thr | Leu | Val | Arg | Pro
30 | Lys | Pro | | Leu | Leu | Leu
35 | Lys | Leu | Leu | Lys | Ser
40 | Val | Gly | Ala | Gln | Lys
45 | Asp | Thr | Tyr | | Thr | Met
50 | Lys | Glu | Val | Leu | Phe
55 | Tyr | Leu | Gly | Gln | Tyr
60 | Ile | Met | Thr | Lys | | Arg
65 | Leu | Tyr | Asp | Glu | Lys
70 | Gln | Gln | His | Ile | Val
75 | Tyr | Сув | Ser | Asn | Asp
80 | | Leu | Leu | Gly | Asp | Leu
85 | Phe | Gly | Val | Pro | Ser
90 | Phe | Ser | Val | Lys | Glu
95 | His | | Arg | Lys | Ile | Tyr
100 | Thr | Met | Ile | Tyr | Arg
105 | Asn | Leu | Val | Val | Val
110 | | | | <210
<211
<212
<213 | > LE
> TY | ENGTI
(PE : | H: 80
PRT | 01 | o saj | pien | s | | | | | | | | | | < 400 | > SE | EQUEI | ICE : | 27 | | | | | | | | | | | | | Met
1 | Leu | Gln | Asn | Val
5 | Thr | Pro | His | Asn | Lys
10 | Leu | Pro | Gly | Glu | Gly
15 | Asn | | Ala | Gly | Leu | Leu
20 | Gly | Leu | Gly | Pro | Glu
25 | Ala | Ala | Ala | Pro | Gly
30 | Lys | Arg | | Ile | Arg | Lув
35 | Pro | Ser | Leu | Leu | Tyr
40 | Glu | Gly | Phe | Glu | Ser
45 | Pro | Thr | Met | | Ala | Ser
50 | Val | Pro | Ala | Leu | Gln
55 | Leu | Thr | Pro | Ala | Asn
60 | Pro | Pro | Pro | Pro | | Glu
65 | Val | Ser | Asn | Pro | Lys
70 | Lys | Pro | Gly | Arg | Val
75 | Thr | Asn | Gln | Leu | Gln
80 | | Tyr | Leu | His | Lys | Val
85 | Val | Met | Lys | Ala | Leu
90 | Trp | Lys | His | Gln | Phe
95 | Ala | | Trp | Pro | Phe | Arg
100 | Gln | Pro | Val | Asp | Ala
105 | Val | Lys | Leu | Gly | Leu
110 | Pro | Asp | | Tyr | His | Lys
115 | Ile | Ile | ГÀа | Gln | Pro
120 | Met | Asp | Met | Gly | Thr
125 | Ile | Lys | Arg | | Arg | Leu
130 | Glu | Asn | Asn | Tyr | Tyr
135 | Trp | Ala | Ala | Ser | Glu
140 | CÀa | Met | Gln | Asp | | Phe . | Asn | Thr | Met | Phe | Thr
150 | Asn | Cys | Tyr | Ile | Tyr
155 | Asn | Lys | Pro | Thr | Asp
160 | | Asp | Ile | Val | Leu | Met
165 | Ala | Gln | Thr | Leu | Glu
170 | Lys | Ile | Phe | Leu | Gln
175 | ГЛа | | Val | Ala | Ser | Met
180 | Pro | Gln | Glu | Glu | Gln
185 | Glu | Leu | Val | Val | Thr
190 | Ile | Pro | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Lys | Asn | Ser
195 | His | ràa | ràs | Gly | Ala
200 | Lys | Leu | Ala | Ala | Leu
205 | Gln | Gly | Ser | | Val | Thr
210 | Ser | Ala | His | Gln | Val
215 | Pro | Ala | Val | Ser | Ser
220 | Val | Ser | His | Thr | | Ala
225 | Leu | Tyr | Thr | Pro | Pro
230 | Pro | Glu | Ile | Pro | Thr
235 | Thr | Val | Leu | Asn | Ile
240 | | Pro | His | Pro | Ser | Val
245 | Ile | Ser | Ser | Pro | Leu
250 | Leu | ГЛа | Ser | Leu | His
255 | Ser | | Ala | Gly | Pro | Pro
260 | Leu | Leu | Ala | Val | Thr
265 | Ala | Ala | Pro | Pro | Ala
270 | Gln | Pro | | Leu | Ala | Lys
275 | Lys | Lys | Gly | Val | Lys
280 | Arg | Lys | Ala | Asp | Thr
285 | Thr | Thr | Pro | | Thr | Pro
290 | Thr | Ala | Ile | Leu | Ala
295 | Pro | Gly | Ser | Pro | Ala
300 | Ser | Pro | Pro | Gly | | Ser
305 | Leu | Glu | Pro | Lys | Ala
310 | Ala | Arg | Leu | Pro | Pro
315 | Met | Arg | Arg | Glu | Ser
320 | | Gly | Arg | Pro | Ile | Lys
325 | Pro | Pro | Arg | Lys | Asp
330 | Leu | Pro | Asp | Ser | Gln
335 | Gln | | Gln | His | Gln | Ser
340 | Ser | ГÀа | Lys | Gly | Lys
345 | Leu | Ser | Glu | Gln | Leu
350 | Lys | His | | Cys | Asn | Gly
355 | Ile | Leu | Lys | Glu | Leu
360 | Leu | Ser | Lys | Lys | His
365 | Ala | Ala | Tyr | | Ala | Trp
370 | Pro | Phe | Tyr | ГÀз | Pro
375 | Val | Asp | Ala | Ser | Ala
380 | Leu | Gly | Leu | His | | 385 | Tyr | His | Asp | Ile | Ile
390 | Lys | His | Pro | Met | Asp
395 | Leu | Ser | Thr | Val | Lys
400 | | Arg | Lys | Met | Glu | Asn
405 | Arg | Asp | Tyr | Arg | Asp
410 | Ala | Gln | Glu | Phe | Ala
415 | Ala | | Asp | Val | Arg | Leu
420 | Met | Phe | Ser | Asn | Cys
425 | Tyr | ГÀз | Tyr | Asn | Pro
430 | Pro | Asp | | His | Asp | Val
435 | Val | Ala | Met | Ala | Arg
440 | Lys | Leu | Gln | Asp | Val
445 | Phe | Glu | Phe | | Arg | Tyr
450 | Ala | ГЛа | Met | Pro | Asp
455 | Glu | Pro | Leu | Glu | Pro
460 | Gly | Pro | Leu | Pro | | Val
465 | Ser | Thr | Ala | Met | Pro
470 | Pro | Gly | Leu | Ala | Lys
475 | Ser | Ser | Ser | Glu | Ser
480 | | Ser | Ser | Glu | Glu | Ser
485 | Ser | Ser | Glu | Ser | Ser
490 | Ser | Glu | Glu | Glu | Glu
495 | Glu | | Glu | Asp | Glu | Glu
500 | Asp | Glu | Glu | Glu | Glu
505 | Glu | Ser | Glu | Ser | Ser
510 | Asp | Ser | | Glu | Glu | Glu
515 | Arg | Ala | His | Arg | Leu
520 | Ala | Glu | Leu | Gln | Glu
525 | Gln | Leu | Arg | | Ala | Val
530 | His | Glu | Gln | Leu | Ala
535 | Ala | Leu | Ser | Gln | Gly
540 | Pro | Ile | Ser | ГЛа | | Pro
545 | Lys | Arg | Lys | Arg | Glu
550 | Lys | Lys | Glu | Lys | Lys
555 | Lys | Lys | Arg | Lys | Ala
560 | | Glu | Lys | His | Arg | Gly
565 | Arg | Ala | Gly | Ala | Asp
570 | Glu | Asp | Asp | Lys | Gly
575 | Pro | | AIG | AIA | FIO | 580 | FIO | FIO | GIII | FIO | 585 | цув | Ser | пуъ | пуъ | 590 | 261 | GIY | |--------------|--------------------------------------|----------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ser | Gly | Gly
595 | Gly | Ser | Ala | Ala | Leu
600 | Gly | Pro | Ser | Gly | Phe
605 | Gly | Pro | Ser | | Gly | Gly
610 | Ser | Gly | Thr | Lys | Leu
615 | Pro | Lys | Lys | Ala | Thr
620 | ГЛа | Thr | Ala | Pro | | Pro
625 | Ala | Leu | Pro | Thr | Gly
630 | Tyr | Asp | Ser | Glu | Glu
635 | Glu | Glu | Glu | Ser | Arg
640 | | Pro | Met | Ser | Tyr | Asp
645 | Glu | Lys | Arg | Gln | Leu
650 | Ser | Leu | Asp | Ile | Asn
655 | Lys | | Leu | Pro | Gly | Glu
660 | ГÀа | Leu | Gly | Arg | Val
665 | Val | His | Ile | Ile | Gln
670 | Ala | Arg | | Glu | Pro | Ser
675 | Leu | Arg | Asp | Ser | Asn
680 | Pro | Glu | Glu | Ile | Glu
685 | Ile | Asp | Phe | | Glu | Thr
690 | Leu | Lys | Pro | Ser | Thr
695 | Leu | Arg | Glu | Leu | Glu
700 | Arg | Tyr | Val | Leu | | Ser
705 | Cys | Leu | Arg | ГÀа | Lys
710 | Pro | Arg | Lys | Pro | Tyr
715 | Thr | Ile | Lys | ГÀа | Pro
720 | | Val | Gly | Lys | Thr | Lys
725 | Glu | Glu | Leu | Ala | Leu
730 | Glu | ГÀв | ГÀа | Arg | Glu
735 | Leu | | Glu | Lys | Arg | Leu
740 | Gln | Asp | Val | Ser | Gly
745 | Gln | Leu | Asn | Ser | Thr
750 | Lys | Lys | | Pro | Pro | Lys
755 | Lys | Ala | Asn | Glu | Lys
760 | Thr | Glu | Ser | Ser | Ser
765 | Ala | Gln | Gln | | Val | Ala
770 | Val | Ser | Arg | Leu | Ser
775 | Ala | Ser | Ser | Ser | Ser
780 | Ser | Asp | Ser | Ser | | 785 | Ser | Ser | Ser | Ser | Ser
790 | Ser | Ser | Ser | Asp | Thr
795 | Ser | Asp | Ser | Asp | Ser
800 | | Gly | | | | | | | | | | | | | | | | | <211
<212 | 0 > SI
L > LI
2 > TY
3 > OF | ENGTI
(PE : | 1: 72
PRT | 26 | sar | piens | 3 | | | | | | | | | | < 400 |)> SI | EQUE | ICE : | 28 | | | | | | | | | | | | | Met
1 | Ser | Thr | Ala | Thr
5 | Thr | Val | Ala | Pro | Ala
10 | Gly | Ile | Pro | Ala | Thr
15 | Pro | | Gly | Pro | Val | Asn
20 | Pro | Pro | Pro | Pro | Glu
25 | Val | Ser | Asn | Pro | Ser
30 | ГÀа | Pro | | Gly | Arg | Lys
35 | Thr | Asn | Gln | Leu | Gln
40 | Tyr | Met | Gln | Asn | Val
45 | Val | Val | Lys | | Thr | Leu
50 | Trp | Lys | His | Gln | Phe
55 | Ala | Trp | Pro | Phe | Tyr
60 | Gln | Pro | Val | Asp | | Ala
65 | Ile | ГЛа | Leu | Asn | Leu
70 | Pro | Asp | Tyr | His | Lys
75 | Ile | Ile | ГЛа | Asn | Pro
80 | | Met | Asp | Met | Gly |
Thr
85 | Ile | Lys | Lys | Arg | Leu
90 | Glu | Asn | Asn | Tyr | Tyr
95 | Trp | | | | | | | | | | | | | | | | | | | Ser | Ala | Ser | Glu
100 | СЛа | Met | Gln | Asp | Phe
105 | Asn | Thr | Met | Phe | Thr
110 | Asn | CÀa | | | | | 100 | | | | | 105 | | | | | 110 | Asn
Gln | | Arg Ala Pro Arg Pro Pro Gln Pro Lys Lys Ser Lys Lys Ala Ser Gly | Leu | Glu
130 | Lys | Ile | Phe | Leu | Gln
135 | Lys | Val | Ala | Gln | Met
140 | Pro | Gln | Glu | Glu | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Val
145 | Glu | Leu | Leu | Pro | Pro
150 | Ala | Pro | Lys | Gly | Lys
155 | Gly | Arg | Lys | Pro | Ala
160 | | Ala | Gly | Ala | Gln | Ser
165 | Ala | Gly | Thr | Gln | Gln
170 | Val | Ala | Ala | Val | Ser
175 | Ser | | Val | Ser | Pro | Ala
180 | Thr | Pro | Phe | Gln | Ser
185 | Val | Pro | Pro | Thr | Val
190 | Ser | Gln | | Thr | Pro | Val
195 | Ile | Ala | Ala | Thr | Pro
200 | Val | Pro | Thr | Ile | Thr
205 | Ala | Asn | Val | | Thr | Ser
210 | Val | Pro | Val | Pro | Pro
215 | Ala | Ala | Ala | Pro | Pro
220 | Pro | Pro | Ala | Thr | | Pro
225 | Ile | Val | Pro | Val | Val
230 | Pro | Pro | Thr | Pro | Pro
235 | Val | Val | Lys | Lys | Lys
240 | | Gly | Val | Lys | Arg | Lys
245 | Ala | Asp | Thr | Thr | Thr
250 | Pro | Thr | Thr | Ser | Ala
255 | Ile | | Thr | Ala | Ser | Arg
260 | Ser | Glu | Ser | Pro | Pro
265 | Pro | Leu | Ser | Asp | Pro
270 | Lys | Gln | | Ala | Lys | Val
275 | Val | Ala | Arg | Arg | Glu
280 | Ser | Gly | Gly | Arg | Pro
285 | Ile | Lys | Pro | | Pro | Lys
290 | Lys | Asp | Leu | Glu | Asp
295 | Gly | Glu | Val | Pro | Gln
300 | His | Ala | Gly | Lys | | Lys
305 | Gly | Lys | Leu | Ser | Glu
310 | His | Leu | Arg | Tyr | Сув
315 | Asp | Ser | Ile | Leu | Arg
320 | | Glu | Met | Leu | Ser | Lys
325 | ГÀа | His | Ala | Ala | Tyr
330 | Ala | Trp | Pro | Phe | Tyr
335 | Lys | | Pro | Val | Asp | Ala
340 | Glu | Ala | Leu | Glu | Leu
345 | His | Asp | Tyr | His | Asp
350 | Ile | Ile | | Lys | His | Pro
355 | Met | Asp | Leu | Ser | Thr
360 | Val | Lys | Arg | Lys | Met
365 | Asp | Gly | Arg | | Glu | Tyr
370 | Pro | Asp | Ala | Gln | Gly
375 | Phe | Ala | Ala | Asp | Val
380 | Arg | Leu | Met | Phe | | Ser
385 | Asn | Сув | Tyr | Lys | Tyr
390 | Asn | Pro | Pro | Asp | His
395 | Glu | Val | Val | Ala | Met
400 | | Ala | Arg | Lys | Leu | Gln
405 | Asp | Val | Phe | Glu | Met
410 | Arg | Phe | Ala | Lys | Met
415 | Pro | | Asp | Glu | Pro | Val
420 | Glu | Ala | Pro | Ala | Leu
425 | Pro | Ala | Pro | Ala | Ala
430 | Pro | Met | | Val | Ser | Lys
435 | Gly | Ala | Glu | Ser | Ser
440 | Arg | Ser | Ser | Glu | Glu
445 | Ser | Ser | Ser | | Asp | Ser
450 | Gly | Ser | Ser | Asp | Ser
455 | Glu | Glu | Glu | Arg | Ala
460 | Thr | Arg | Leu | Ala | | Glu
465 | Leu | Gln | Glu | Gln | Leu
470 | Lys | Ala | Val | His | Glu
475 | Gln | Leu | Ala | Ala | Leu
480 | | Ser | Gln | Ala | Pro | Val
485 | Asn | Lys | Pro | Lys | Lys
490 | Lys | ГÀз | Glu | Lys | Lys
495 | Glu | | Lys | Glu | Lys | Lys | Lys | Lys | Asp | Lys | Glu
505 | Lys | Glu | Lys | Glu | Lys
510 | His | Lys | | Val | ГЛа | Ala
515 | Glu | Glu | Glu | ГЛа | Lys
520 | Ala | Lys | Val | Ala | Pro
525 | Pro | Ala | Lys | | Gln | Ala | Gln | Gln | Lys | Lys | Ala | Pro | Ala | Lys | Lys | Ala | Asn | Ser | Thr | Thr | | | 530 | | | | | 535 | | | | | 540 | | | | | |--------------|----------------------------------|--------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Thr
545 | Ala | Gly | Arg | Gln | Leu
550 | Lys | Lys | Gly | Gly | Lys
555 | Gln | Ala | Ser | Ala | Ser
560 | | Tyr | Asp | Ser | Glu | Glu
565 | Glu | Glu | Glu | Gly | Leu
570 | Pro | Met | Ser | Tyr | Asp
575 | Glu | | Lys | Arg | Gln | Leu
580 | Ser | Leu | Asp | Ile | Asn
585 | Arg | Leu | Pro | Gly | Glu
590 | Lys | Leu | | Gly | Arg | Val
595 | Val | His | Ile | Ile | Gln
600 | Ser | Arg | Glu | Pro | Ser
605 | Leu | Arg | Asp | | Ser | Asn
610 | Pro | Asp | Glu | Ile | Glu
615 | Ile | Asp | Phe | Glu | Thr
620 | Leu | ГЛа | Pro | Thr | | Thr
625 | Leu | Arg | Glu | Leu | Glu
630 | Arg | Tyr | Val | Lys | Ser
635 | CAa | Leu | Gln | Lys | Lys
640 | | | Arg | Lys | Pro | Phe
645 | | Ala | Ser | Gly | Lys
650 | | Gln | Ala | Ala | Lys
655 | | | ГÀа | Glu | Glu | Leu
660 | | Gln | Glu | Lys | Lys
665 | | Glu | Leu | Glu | Lys
670 | | Leu | | Gln | Asp | Val
675 | | Gly | Gln | Leu | Ser
680 | | Ser | Lys | ГЛа | Pro
685 | | Arg | Lys | | Glu | Lys | | Gly | Ser | Ala | Pro | | Gly | Gly | Pro | Ser
700 | | Leu | Ser | Ser | | Ser
705 | Ser | Ser | Ser | Glu | Ser
710 | | Ser | Ser | Ser | Ser
715 | | Gly | Ser | Ser | Ser
720 | | | Ser | Ser | Asp | Ser
725 | | | | | | ,10 | | | | | ,20 | | <211
<212 | O> SE
L> LE
2> TY
3> OF | ENGTI
PE: | H: 94
PRT | 17 | o saj | pien | s | | | | | | | | | | < 400 |)> SE | EQUEI | ICE : | 29 | | | | | | | | | | | | | Met
1 | Ser | Leu | Pro | Ser
5 | Arg | Gln | Thr | Ala | Ile
10 | Ile | Val | Asn | Pro | Pro
15 | Pro | | Pro | Glu | Tyr | Ile
20 | Asn | Thr | ГÀа | Lys | Asn
25 | Gly | Arg | Leu | Thr | Asn
30 | Gln | Leu | | Gln | Tyr | Leu
35 | Gln | Lys | Val | Val | Leu
40 | Lys | Asp | Leu | Trp | Lys
45 | His | Ser | Phe | | Ser | Trp
50 | Pro | Phe | Gln | Arg | Pro
55 | Val | Asp | Ala | Val | Lys | Leu | Gln | Leu | Pro | | Asp
65 | Tyr | Tyr | Thr | Ile | Ile
70 | Lys | Asn | Pro | Met | Asp
75 | Leu | Asn | Thr | Ile | Lys | | ГАв | Arg | Leu | Glu | Asn
85 | Lys | Tyr | Tyr | Ala | Lys
90 | Ala | Ser | Glu | Cys | Ile
95 | Glu | | Asp | Phe | Asn | Thr | Met | Phe | Ser | Asn | Cys
105 | Tyr | Leu | Tyr | Asn | Lys
110 | Pro | Gly | | Asp | Asp | Ile
115 | Val | Leu | Met | Ala | Gln
120 | Ala | Leu | Glu | Lys | Leu
125 | Phe | Met | Gln | | Lys | Leu
130 | Ser | Gln | Met | Pro | Gln
135 | Glu | Glu | Gln | Val | Val
140 | Gly | Val | Lys | Glu | | Arg | Ile | Lys | Lys | Gly | Thr | Gln | Gln | Asn | Ile | | Val | Ser | Ser | Ala | _ | | 145 | | | | | 150 | | | | | 155 | | | | | 160 | | Glu | Lys | Ser | Ser | Pro
165 | Ser | Ala | Thr | Glu | Lys
170 | Val | Phe | ГÀв | Gln | Gln
175 | Glu | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ile | Pro | Ser | Val
180 | Phe | Pro | Lys | Thr | Ser
185 | Ile | Ser | Pro | Leu | Asn
190 | Val | Val | | Gln | Gly | Ala
195 | Ser | Val | Asn | Ser | Ser
200 | Ser | Gln | Thr | Ala | Ala
205 | Gln | Val | Thr | | ГÀа | Gly
210 | Val | Lys | Arg | Lys | Ala
215 | Asp | Thr | Thr | Thr | Pro
220 | Ala | Thr | Ser | Ala | | Val
225 | Lys | Ala | Ser | Ser | Glu
230 | Phe | Ser | Pro | Thr | Phe
235 | Thr | Glu | ГЛа | Ser | Val
240 | | Ala | Leu | Pro | Pro | Ile
245 | rys | Glu | Asn | Met | Pro
250 | Lys | Asn | Val | Leu | Pro
255 | Asp | | Ser | Gln | Gln | Gln
260 | Tyr | Asn | Val | Val | Lys
265 | Thr | Val | Lys | Val | Thr
270 | Glu | Gln | | Leu | Arg | His
275 | CÀa | Ser | Glu | Ile | Leu
280 | Lys | Glu | Met | Leu | Ala
285 | ГЛа | Lys | His | | Phe | Ser
290 | Tyr | Ala | Trp | Pro | Phe
295 | Tyr | Asn | Pro | Val | 300 | Val | Asn | Ala | Leu | | Gly
305 | Leu | His | Asn | Tyr | Tyr
310 | Asp | Val | Val | Lys | Asn
315 | Pro | Met | Asp | Leu | Gly
320 | | Thr | Ile | Lys | Glu | Lys
325 | Met | Asp | Asn | Gln | Glu
330 | Tyr | ГÀв | Asp | Ala | Tyr
335 | Lys | | Phe | Ala | Ala | Asp
340 | Val | Arg | Leu | Met | Phe
345 | Met | Asn | CAa | Tyr | 150
150 | Tyr | Asn | | Pro | Pro | Asp
355 | His | Glu | Val | Val | Thr
360 | Met | Ala | Arg | Met | Leu
365 | Gln | Asp | Val | | Phe | Glu
370 | Thr | His | Phe | Ser | Lys
375 | Ile | Pro | Ile | Glu | Pro
380 | Val | Glu | Ser | Met | | Pro
385 | Leu | Сла | Tyr | Ile | 390
Lys | Thr | Asp | Ile | Thr | Glu
395 | Thr | Thr | Gly | Arg | Glu
400 | | Asn | Thr | Asn | Glu | Ala
405 | Ser | Ser | Glu | Gly | Asn
410 | Ser | Ser | Asp | Asp | Ser
415 | Glu | | Asp | Glu | Arg | Val
420 | ГÀа | Arg | Leu | Ala | Lys
425 | Leu | Gln | Glu | Gln | Leu
430 | Lys | Ala | | Val | His | Gln
435 | Gln | Leu | Gln | Val | Leu
440 | Ser | Gln | Val | Pro | Phe
445 | Arg | ГÀа | Leu | | Asn | Lys
450 | Lys | Lys | Glu | Lys | Ser
455 | Lys | Lys | Glu | Lys | Lys
460 | Lys | Glu | Lys | Val | | Asn
465 | Asn | Ser | Asn | Glu | Asn
470 | Pro | Arg | Lys | Met | Cys
475 | Glu | Gln | Met | Arg | Leu
480 | | ГÀв | Glu | Lys | Ser | Lys
485 | Arg | Asn | Gln | Pro | Lys
490 | Lys | Arg | ГÀв | Gln | Gln
495 | Phe | | Ile | Gly | Leu | Lys
500 | Ser | Glu | Asp | Glu | Asp
505 | Asn | Ala | Lys | Pro | Met
510 | Asn | Tyr | | Asp | Glu | Lys
515 | Arg | Gln | Leu | Ser | Leu
520 | Asn | Ile | Asn | Lys | Leu
525 | Pro | Gly | Asp | | Lys | Leu
530 | Gly | Arg | Val | Val | His
535 | Ile | Ile | Gln | Ser | Arg
540 | Glu | Pro | Ser | Leu | | Ser
545 | Asn | Ser | Asn | Pro | Asp
550 | Glu | Ile | Glu | Ile | Asp
555 | Phe | Glu | Thr | Leu | Lys | | | Ser | Thr | Leu | Arg | Glu | Leu | Glu | Lys | Tyr | | Ser | Ala | Cys | Leu | 565 | | | | |
570 | | | | | 575 | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Lys | Arg | Pro | Leu
580 | ГÀа | Pro | Pro | Ala | Lys
585 | ГЛЗ | Ile | Met | Met | Ser
590 | Lys | Glu | | Glu | Leu | His
595 | Ser | Gln | ràa | Lys | Gln
600 | Glu | Leu | Glu | ГЛа | Arg
605 | Leu | Leu | Asp | | Val | Asn
610 | Asn | Gln | Leu | Asn | Ser
615 | Arg | Lys | Arg | Gln | Thr
620 | Lys | Ser | Asp | Lys | | Thr
625 | Gln | Pro | Ser | Lys | Ala
630 | Val | Glu | Asn | Val | Ser
635 | Arg | Leu | Ser | Glu | Ser
640 | | Ser | Ser | Ser | Ser | Ser
645 | Ser | Ser | Ser | Glu | Ser
650 | Glu | Ser | Ser | Ser | Ser
655 | Asp | | Leu | Ser | Ser | Ser
660 | Asp | Ser | Ser | Asp | Ser
665 | Glu | Ser | Glu | Met | Phe
670 | Pro | Lys | | Phe | Thr | Glu
675 | Val | Lys | Pro | Asn | Asp
680 | Ser | Pro | Ser | ГÀЗ | Glu
685 | Asn | Val | Lys | | Lys | Met
690 | Lys | Asn | Glu | Cys | Ile
695 | Pro | Pro | Glu | Gly | Arg
700 | Thr | Gly | Val | Thr | | Gln
705 | Ile | Gly | Tyr | Сув | Val
710 | Gln | Asp | Thr | Thr | Ser
715 | Ala | Asn | Thr | Thr | Leu
720 | | Val | His | Gln | Thr | Thr
725 | Pro | Ser | His | Val | Met
730 | Pro | Pro | Asn | His | His
735 | Gln | | Leu | Ala | Phe | Asn
740 | Tyr | Gln | Glu | Leu | Glu
745 | His | Leu | Gln | Thr | Val
750 | Lys | Asn | | Ile | Ser | Pro
755 | Leu | Gln | Ile | Leu | Pro
760 | Pro | Ser | Gly | Asp | Ser
765 | Glu | Gln | Leu | | Ser | Asn
770 | Gly | Ile | Thr | Val | Met
775 | His | Pro | Ser | Gly | Asp
780 | Ser | Asp | Thr | Thr | | Met
785 | Leu | Glu | Ser | Glu | Сув
790 | Gln | Ala | Pro | Val | Gln
795 | ГÀз | Asp | Ile | ГÀЗ | Ile
800 | | Lys | Asn | Ala | Asp | Ser
805 | Trp | ГÀа | Ser | Leu | Gly
810 | Lys | Pro | Val | Lys | Pro
815 | Ser | | Gly | Val | Met | Lys
820 | Ser | Ser | Asp | Glu | Leu
825 | Phe | Asn | Gln | Phe | Arg
830 | Lys | Ala | | Ala | Ile | Glu
835 | Lys | Glu | Val | ГÀа | Ala
840 | Arg | Thr | Gln | Glu | Leu
845 | Ile | Arg | Lys | | His | Leu
850 | Glu | Gln | Asn | Thr | 855
855 | Glu | Leu | Lys | Ala | Ser
860 | Gln | Glu | Asn | Gln | | Arg
865 | Asp | Leu | Gly | Asn | Gly
870 | Leu | Thr | Val | Glu | Ser
875 | Phe | Ser | Asn | Lys | Ile
880 | | Gln | Asn | Lys | Cys | Ser
885 | Gly | Glu | Glu | Gln | Ьув
890 | Glu | His | Gln | Gln | Ser
895 | Ser | | Glu | Ala | Gln | Asp | Lys | Ser | Lys | Leu | Trp
905 | Leu | Leu | Lys | Asp | Arg
910 | Asp | Leu | | Ala | Arg | Gln
915 | Lys | Glu | Gln | Glu | Arg
920 | Arg | Arg | Arg | Glu | Ala
925 | Met | Val | Gly | | Thr | Ile
930 | Asp | Met | Thr | Leu | Gln
935 | Ser | Asp | Ile | Met | Thr
940 | Met | Phe | Glu | Asn | | Asn
945 | Phe | Asp | | | | | | | | | | | | | | <211> LENGTH: 233 <212> TYPE: PRT ``` <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 30 Met Ser Gln Ser Asn Arg Glu Leu Val Val Asp Phe Leu Ser Tyr Lys Leu Ser Gln Lys Gly Tyr Ser Trp Ser Gln Phe Ser Asp Val Glu Glu 20 25 30 Asn Arg Thr Glu Ala Pro Glu Gly Thr Glu Ser Glu Met Glu Thr Pro Ser Ala Ile Asn Gly Asn Pro Ser Trp His Leu Ala Asp Ser Pro Ala Val Asn Gly Ala Thr Gly His Ser Ser Ser Leu Asp Ala Arg Glu Val 65 70 75 80 Ile Pro Met Ala Ala Val Lys Gln Ala Leu Arg Glu Ala Gly Asp Glu Phe Glu Leu Arg Tyr Arg Arg Ala Phe Ser Asp Leu Thr Ser Gln Leu His Ile Thr Pro Gly Thr Ala Tyr Gln Ser Phe Glu Gln Val Val Asn 120 Glu Leu Phe Arg Asp Gly Val Asn Trp Gly Arg Ile Val Ala Phe Phe 135 Ser Phe Gly Gly Ala Leu Cys Val Glu Ser Val Asp Lys Glu Met Gln Val Leu Val Ser Arg Ile Ala Ala Trp Met Ala Thr Tyr Leu Asn Asp 170 His Leu Glu Pro Trp Ile Gln Glu Asn Gly Gly Trp Asp Thr Phe Val 185 Glu Leu Tyr Gly Asn Asn Ala Ala Glu Ser Arg Lys Gly Gln Glu 200 Arg Phe Asn Arg Trp Phe Leu Thr Gly Met Thr Val Ala Gly Val Val Leu Leu Gly Ser Leu Phe Ser Arg Lys 230 <210> SEQ ID NO 31 <211> LENGTH: 404 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 31 Met Ser Asp Ser Lys Glu Pro Arg Leu Gln Gln Leu Gly Leu Leu Glu Glu Glu Gln Leu Arg Gly Leu Gly Phe Arg Gln Thr Arg Gly Tyr Lys Ser Leu Ala Gly Cys Leu Gly His Gly Pro Leu Val Leu Gln Leu Leu 40 Ser Phe Thr Leu Leu Ala Gly Leu Leu Val Gln Val Ser Lys Val Pro Ser Ser Ile Ser Gl
n Glu Gl
n Ser Arg Gl
n Asp Ala Ile Tyr Gl
n Asn \, Leu Thr Gln Leu Lys Ala Ala Val Gly Glu Leu Ser Glu Lys Ser Lys 90 ``` Leu Gln Glu Ile Tyr Gln Glu Leu Thr Gln Leu Lys Ala Ala Val Gly 105 Glu Leu Pro Glu Lys Ser Lys Leu Gln Glu Ile Tyr Gln Glu Leu Thr Arg Leu Lys Ala Ala Val Gly Glu Leu Pro Glu Lys Ser Lys Leu Gln Glu Ile Tyr Gln Glu Leu Thr Trp Leu Lys Ala Ala Val Gly Glu Leu Pro Glu Lys Ser Lys Met Gln Glu Ile Tyr Gln Glu Leu Thr Arg Leu Lys Ala Ala Val Gly Glu Leu Pro Glu Lys Ser Lys Gln Gln Glu Ile Tyr Gln Glu Leu Thr Arg Leu Lys Ala Ala Val Gly Glu Leu Pro Glu 195 200 Lys Ser Lys Gln Glu Glu Ile Tyr Gln Glu Leu Thr Arg Leu Lys Ala 215 Ala Val Gly Glu Leu Pro Glu Lys Ser Lys Gln Gln Glu Ile Tyr Gln 230 Glu Leu Thr Gln Leu Lys Ala Ala Val Glu Arg Leu Cys His Pro Cys 250 Pro Trp Glu Trp Thr Phe Phe Gln Gly Asn Cys Tyr Phe Met Ser Asn 265 Ser Gln Arg Asn Trp His Asp Ser Ile Thr Ala Cys Lys Glu Val Gly 280 Ala Gln Leu Val Val Ile Lys Ser Ala Glu Glu Gln Asn Phe Leu Gln Leu Gln Ser Ser Arg Ser Asn Arg Phe Thr Trp Met Gly Leu Ser Asp 315 310 Leu Asn Gln Glu Gly Thr Trp Gln Trp Val Asp Gly Ser Pro Leu Leu 330 Pro Ser Phe Lys Gln Tyr Trp Asn Arg Gly Glu Pro Asn Asn Val Gly Glu Glu Asp Cys Ala Glu Phe Ser Gly Asn Gly Trp Asn Asp Asp Lys Cys Asn Leu Ala Lys Phe Trp Ile Cys Lys Lys Ser Ala Ala Ser Cys Ser Arg Asp Glu Glu Gln Phe Leu Ser Pro Ala Pro Ala Thr Pro Asn 390 Pro Pro Pro Ala <210> SEQ ID NO 32 <211> LENGTH: 497 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 32 Met Thr Phe Asn Ser Phe Glu Gly Ser Lys Thr Cys Val Pro Ala Asp Ile Asn Lys Glu Glu Glu Phe Val Glu Glu Phe Asn Arg Leu Lys Thr 25 Phe Ala Asn Phe Pro Ser Gly Ser Pro Val Ser Ala Ser Thr Leu Ala 40 | Arg | Ala
50 | Gly | Phe | Leu | Tyr | Thr
55 | Gly | Glu | Gly | Asp | Thr
60 | Val | Arg | Cys | Phe | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ser
65 | Сув | His | Ala | Ala | Val
70 | Asp | Arg | Trp | Gln | Tyr
75 | Gly | Asp | Ser | Ala | Val
80 | | Gly | Arg | His | Arg | Lys
85 | Val | Ser | Pro | Asn | Cys | Arg | Phe | Ile | Asn | Gly
95 | Phe | | Tyr | Leu | Glu | Asn
100 | Ser | Ala | Thr | Gln | Ser
105 | Thr | Asn | Ser | Gly | Ile
110 | Gln | Asn | | Gly | Gln | Tyr
115 | Lys | Val | Glu | Asn | Tyr
120 | Leu | Gly | Ser | Arg | Asp
125 | His | Phe | Ala | | Leu | Asp
130 | Arg | Pro | Ser | Glu | Thr
135 | His | Ala | Asp | Tyr | Leu
140 | Leu | Arg | Thr | Gly | | Gln
145 | Val | Val | Asp | Ile | Ser
150 | Asp | Thr | Ile | Tyr | Pro
155 | Arg | Asn | Pro | Ala | Met
160 | | Tyr | Ser | Glu | Glu | Ala
165 | Arg | Leu | Lys | Ser | Phe
170 | Gln | Asn | Trp | Pro | Asp
175 | Tyr | | Ala | His | Leu | Thr
180 | Pro | Arg | Glu | Leu | Ala
185 | Ser | Ala | Gly | Leu | Tyr
190 | Tyr | Thr | | Gly | Ile | Gly
195 | Asp | Gln | Val | Gln | Cys
200 | Phe | Cys | Cys | Gly | Gly
205 | Lys | Leu | ГЛа | | Asn | Trp
210 | Glu | Pro | Cys | Asp | Arg
215 | Ala | Trp | Ser | Glu | His
220 | Arg | Arg | His | Phe | | Pro
225 | Asn | Сув | Phe | Phe | Val
230 | Leu | Gly | Arg | Asn | Leu
235 | Asn | Ile | Arg | Ser | Glu
240 | | Ser | Asp | Ala | Val | Ser
245 | Ser | Asp | Arg | Asn | Phe
250 | Pro | Asn | Ser | Thr | Asn
255 | Leu | | Pro | Arg | Asn | Pro
260 | Ser | Met | Ala | Asp | Tyr
265 | Glu | Ala | Arg | Ile | Phe
270 | Thr | Phe | | Gly | Thr | Trp
275 | Ile | Tyr | Ser | Val | Asn
280 | Lys | Glu | Gln | Leu | Ala
285 | Arg | Ala | Gly | | Phe | Tyr
290 | Ala | Leu | Gly | Glu | Gly
295 | Asp | Lys | Val | Lys | 300
GÀa | Phe | His | CÀa | Gly | | Gly
305 | Gly | Leu | Thr | Asp | Trp
310 | ГÀа | Pro | Ser | Glu | Asp
315 | Pro | Trp | Glu | Gln | His
320 | | Ala | Lys | Trp | Tyr | Pro
325 | Gly | CÀa | Lys | Tyr | Leu
330 | Leu | Glu | Gln | Lys | Gly
335 | Gln | | Glu | Tyr | Ile | Asn
340 | Asn | Ile | His | Leu | Thr
345 | His | Ser | Leu | Glu | Glu
350 | CÀa | Leu | | Val | Arg | Thr
355 | Thr | Glu | ràa | Thr | Pro
360 | Ser | Leu | Thr | Arg | Arg
365 | Ile | Aap | Asp | | Thr | Ile
370 | Phe | Gln | Asn | Pro | Met
375 | Val | Gln | Glu | Ala | Ile
380 | Arg | Met | Gly | Phe | | Ser
385 | Phe | Lys | Asp | Ile | 390
Lys | Lys | Ile | Met | Glu | Glu
395 | Lys | Ile | Gln | Ile | Ser
400 | | Gly | Ser | Asn | Tyr | Lys
405 | Ser | Leu | Glu | Val | Leu
410 | Val | Ala | Asp | Leu | Val
415 | Asn | | Ala | Gln | Lys | Asp
420 | Ser | Met | Gln | Asp | Glu
425 | Ser | Ser | Gln | Thr | Ser
430 | Leu | Gln | | ГЛа | Glu | Ile
435 | Ser | Thr | Glu | Glu | Gln
440 | Leu | Arg | Arg | Leu | Gln
445 | Glu | Glu | Lys | | Cys Gly His Leu Val Thr Cys Lys Gln Cys Ala Glu Ala Val Asp
465 470 475 Cys Pro Met Cys Tyr Thr Val Ile Thr Phe Lys Gln Lys Ile Phe
485 490 495 Ser | 480 | |---|------------| | 485 490 495
Ser | Met | | | | | | | | <210> SEQ ID NO 33
<211> LENGTH: 618
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens | | | <400> SEQUENCE: 33 | | | Met His Lys Thr Ala Ser Gln Arg Leu Phe Pro Gly Pro Ser Tyr
1 5 10 | Gln | | Asn Ile Lys
Ser Ile Met Glu Asp Ser Thr Ile Leu Ser Asp Trp
20 25 30 | Thr | | Asn Ser Asn Lys Gln Lys Met Lys Tyr Asp Phe Ser Cys Glu Leu
35 40 45 | Tyr | | Arg Met Ser Thr Tyr Ser Thr Phe Pro Ala Gly Val Pro Val Ser
50 55 60 | Glu | | Arg Ser Leu Ala Arg Ala Gly Phe Tyr Tyr Thr Gly Val Asn Asp
65 70 75 | 80
Fåa | | Val Lys Cys Phe Cys Cys Gly Leu Met Leu Asp Asn Trp Lys Leu
85 90 95 | Gly | | Asp Ser Pro Ile Gln Lys His Lys Gln Leu Tyr Pro Ser Cys Ser
100 105 110 | Phe | | Ile Gln Asn Leu Val Ser Ala Ser Leu Gly Ser Thr Ser Lys Asn
115 120 125 | Thr | | Ser Pro Met Arg Asn Ser Phe Ala His Ser Leu Ser Pro Thr Leu
130 135 140 | Glu | | His Ser Ser Leu Phe Ser Gly Ser Tyr Ser Ser Leu Ser Pro Asn
145 150 155 | Pro
160 | | Leu Asn Ser Arg Ala Val Glu Asp Ile Ser Ser Ser Arg Thr Asn
165 170 175 | Pro | | Tyr Ser Tyr Ala Met Ser Thr Glu Glu Ala Arg Phe Leu Thr Tyr
180 185 190 | His | | Met Trp Pro Leu Thr Phe Leu Ser Pro Ser Glu Leu Ala Arg Ala
195 200 205 | Gly | | Phe Tyr Tyr Ile Gly Pro Gly Asp Arg Val Ala Cys Phe Ala Cys
210 215 220 | Gly | | Gly Lys Leu Ser Asn Trp Glu Pro Lys Asp Asp Ala Met Ser Glu
225 230 235 | His
240 | | Arg Arg His Phe Pro Asn Cys Pro Phe Leu Glu Asn Ser Leu Glu
245 250 250 | Thr | | Leu Arg Phe Ser Ile Ser Asn Leu Ser Met Gln Thr His Ala Ala
260 265 270 | Arg | | Met Arg Thr Phe Met Tyr Trp Pro Ser Ser Val Pro Val Gln Pro
275 280 285 | Glu | | Gln Leu Ala Ser Ala Gly Phe Tyr Tyr Val Gly Arg Asn Asp Asp
290 295 300 | Val | | Asp | Pro | Trp | Val | Glu
325 | His | Ala | Lys | Trp | Phe
330 | Pro | Arg | Cys | Glu | Phe
335 | Leu | |------------|-------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ile | Arg | Met | Lys
340 | Gly | Gln | Glu | Phe | Val
345 | Asp | Glu | Ile | Gln | Gly
350 | Arg | Tyr | | Pro | His | Leu
355 | Leu | Glu | Gln | Leu | Leu
360 | Ser | Thr | Ser | Asp | Thr
365 | Thr | Gly | Glu | | Glu | Asn
370 | Ala | Asp | Pro | Pro | Ile
375 | Ile | His | Phe | Gly | Pro
380 | Gly | Glu | Ser | Ser | | Ser
385 | Glu | Asp | Ala | Val | Met
390 | Met | Asn | Thr | Pro | Val
395 | Val | ГÀа | Ser | Ala | Leu
400 | | Glu | Met | Gly | Phe | Asn
405 | Arg | Asp | Leu | Val | Lys
410 | Gln | Thr | Val | Gln | Ser
415 | Lys | | Ile | Leu | Thr | Thr
420 | Gly | Glu | Asn | Tyr | Lys
425 | Thr | Val | Asn | Asp | Ile
430 | Val | Ser | | Ala | Leu | Leu
435 | Asn | Ala | Glu | Asp | Glu
440 | Lys | Arg | Glu | Glu | Glu
445 | Lys | Glu | Lys | | Gln | Ala
450 | Glu | Glu | Met | Ala | Ser
455 | Asp | Asp | Leu | Ser | Leu
460 | Ile | Arg | Lys | Asn | | Arg
465 | Met | Ala | Leu | Phe | Gln
470 | Gln | Leu | Thr | СЛа | Val
475 | Leu | Pro | Ile | Leu | Asp
480 | | Asn | Leu | Leu | Lys | Ala
485 | Asn | Val | Ile | Asn | Lys
490 | Gln | Glu | His | Asp | Ile
495 | Ile | | ГÀз | Gln | Lys | Thr
500 | Gln | Ile | Pro | Leu | Gln
505 | Ala | Arg | Glu | Leu | Ile
510 | Asp | Thr | | Ile | Leu | Val
515 | Lys | Gly | Asn | Ala | Ala
520 | Ala | Asn | Ile | Phe | Lys
525 | Asn | Cys | Leu | | ГÀз | Glu
530 | Ile | Asp | Ser | Thr | Leu
535 | Tyr | Lys | Asn | Leu | Phe
540 | Val | Asp | Lys | Asn | | Met
545 | Lys | Tyr | Ile | Pro | Thr
550 | Glu | Asp | Val | Ser | Gly
555 | Leu | Ser | Leu | Glu | Glu
560 | | Gln | Leu | Arg | Arg | Leu
565 | Gln | Glu | Glu | Arg | Thr
570 | Сув | Lys | Val | Сув | Met
575 | Asp | | rys | Glu | Val | Ser
580 | Val | Val | Phe | Ile | Pro
585 | Cys | Gly | His | Leu | Val
590 | Val | Cys | | Gln | Glu | Сув
595 | Ala | Pro | Ser | Leu | Arg
600 | Lys | Cys | Pro | Ile | Cys
605 | Arg | Gly | Ile | | | Lys
610 | | Thr | Val | Arg | Thr
615 | | Leu | Ser | | | | | | | | <211 |)> SI
L> LI
2> TY | ENGTI | H: 19 | | | | | | | | | | | | | | | | | | | sa] | piens | 3 | | | | | | | | | | | Dme | | | | T - | m¹- | m | Di- | 7 | M - : | 7 | a. | 7 | 7.7 | G7 | | 1 | | | | 5 | Leu | | | | 10 | | | | | 15 | | | Ile | Ile | Arg | Tyr
20 | Ile | Phe | Ala | Tyr | Leu
25 | Asp | Ile | Gln | Tyr | Glu
30 | Asp | His | | Arg | Ile | Glu
35 | Gln | Ala | Asp | Trp | Pro
40 | Glu | Ile | ГЛа | Ser | Thr
45 | Leu | Pro | Phe | Lys Cys Phe Cys Cys Asp Gly Gly Leu Arg Cys Trp Glu Ser Gly Asp 305 310 315 320 Gly Lys Ile Pro Ile Leu Glu Val Asp Gly Leu Thr Leu His Gln Ser Leu Ala Ile Ala Arg Tyr Leu Thr Lys Asn Thr Asp Leu Ala Gly Asn Thr Glu Met Glu Gln Cys His Val Asp Ala Ile Val Asp Thr Leu Asp Asp Phe Met Ser Cys Phe Pro Trp Ala Glu Lys Lys Gln Asp Val Lys Glu Gln Met Phe Asn Glu Leu Leu Thr Tyr Asn Ala Pro His Leu Met Gln Asp Leu Asp Thr Tyr Leu Gly Gly Arg Glu Trp Leu Ile Gly Asn Ser Val Thr Trp Ala Asp Phe Tyr Trp Glu Ile Cys Ser Thr Thr Leu 155 Leu Val Phe Lys Pro Asp Leu Leu Asp Asn His Pro Arg Leu Val Thr 170 165 Leu Arg Lys Lys Val Gln Ala Ile Pro Ala Val Ala Asn Trp Ile Lys Arg Arg Pro Gln Thr Lys Leu 195 <210> SEQ ID NO 35 <211> LENGTH: 189 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 35 Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Val Asp Glu Tyr 25 Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Val Ile Asp Gly Glu Thr Cys Leu Leu Asp Ile Leu Asp Thr Ala Gly Gln Glu Glu Tyr Ser Ala Met Arg Asp Gln Tyr Met Arg Thr Gly Glu Gly Phe Leu Cys Val Phe Ala Ile Asn Asn Thr Lys Ser Phe Glu Asp Ile His His Tyr Arg Glu Gln Ile Lys Arg Val Lys Asp Ser Glu Asp Val Pro Met Val Leu Val Gly Asn Lys Cys Asp Leu Pro Ser Arg Thr Val Asp Thr Lys Gln Ala Gln Asp Leu Ala Arg Ser Tyr Gly Ile Pro Phe Ile Glu Thr Ser Ala Lys Thr Arg Gln Arg Val Glu Asp Ala Phe Tyr Thr Leu Val 155 Arg Glu Ile Arg Gln Tyr Arg Leu Lys Lys Ile Ser Lys Glu Glu Lys Thr Pro Gly Cys Val Lys Ile Lys Lys Cys Ile Ile Met | <211 | D> SE | ENGTH | I: 67 | | | | | | | | | | | | | |------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | 2 > TY
3 > OF | | | Homo | sap | piens | 3 | | | | | | | | | | < 400 |)> SE | EQUEN | ICE : | 36 | | | | | | | | | | | | | Met
1 | Ala | Ala | Pro | Gly
5 | Pro | Leu | Pro | Ala | Ala
10 | Ala | Leu | Ser | Pro | Gly
15 | Ala | | Pro | Thr | Pro | Arg
20 | Glu | Leu | Met | His | Gly
25 | Val | Ala | Gly | Val | Thr
30 | Ser | Arg | | Ala | Gly | Arg
35 | Asp | Arg | Glu | Ala | Gly
40 | Ser | Val | Leu | Pro | Ala
45 | Gly | Asn | Arg | | Gly | Ala
50 | Arg | ГЛа | Ala | Ser | Arg
55 | Arg | Ser | Ser | Ser | Arg
60 | Ser | Met | Ser | Arg | | Asp
65 | Asn | Lys | Phe | Ser | Lys
70 | Lys | Asp | Сув | Leu | Ser
75 | Ile | Arg | Asn | Val | Val
80 | | Ala | Ser | Ile | Gln | Thr
85 | Lys | Glu | Gly | Leu | Asn
90 | Leu | Lys | Leu | Ile | Ser
95 | Gly | | Asp | Val | Leu | Tyr
100 | Ile | Trp | Ala | Asp | Val
105 | Ile | Val | Asn | Ser | Val
110 | Pro | Met | | Asn | Leu | Gln
115 | Leu | Gly | Gly | Gly | Pro
120 | Leu | Ser | Arg | Ala | Phe
125 | Leu | Gln | ГÀа | | Ala | Gly
130 | Pro | Met | Leu | Gln | Lys
135 | Glu | Leu | Asp | Asp | Arg
140 | Arg | Arg | Glu | Thr | | Glu
145 | Glu | Lys | Val | Gly | Asn
150 | Ile | Phe | Met | Thr | Ser
155 | Gly | Сла | Asn | Leu | Asp
160 | | CAa | Lys | Ala | Val | Leu
165 | His | Ala | Val | Ala | Pro
170 | Tyr | Trp | Asn | Asn | Gly
175 | Ala | | Glu | Thr | Ser | Trp
180 | Gln | Ile | Met | Ala | Asn
185 | Ile | Ile | Lys | Lys | Сув
190 | Leu | Thr | | Thr | Val | Glu
195 | Val | Leu | Ser | Phe | Ser
200 | Ser | Ile | Thr | Phe | Pro
205 | Met | Ile | Gly | | Thr | Gly
210 | Ser | Leu | Gln | Phe | Pro
215 | Lys | Ala | Val | Phe | Ala
220 | ГÀа | Leu | Ile | Leu | | Ser
225 | Glu | Val | Phe | Glu | Tyr
230 | Ser | Ser | Ser | Thr | Arg
235 | Pro | Ile | Thr | Ser | Pro
240 | | Leu | Gln | Glu | Val | His
245 | Phe | Leu | Val | Tyr | Thr
250 | Asn | Asp | Asp | Glu | Gly
255 | CÀa | | Gln | Ala | Phe | Leu
260 | Asp | Glu | Phe | Thr | Asn
265 | Trp | Ser | Arg | Ile | Asn
270 | Pro | Asn | | Lys | Ala | Arg
275 | Ile | Pro | Met | Ala | Gly
280 | Asp | Thr | Gln | Gly | Val
285 | Val | Gly | Thr | | Val | Ser
290 | TÀa | Pro | CAa | Phe | Thr
295 | Ala | Tyr | Glu | Met | 300
TÀa | Ile | Gly | Ala | Ile | | Thr
305 | Phe | Gln | Val | Ala | Thr
310 | Gly | Asp | Ile | Ala | Thr
315 | Glu | Gln | Val | Asp | Val
320 | | Ile | Val | Asn | Ser | Thr
325 | Ala | Arg | Thr | Phe | Asn
330 | Arg | Lys | Ser | Gly | Val
335 | Ser | | Arg | Ala | Ile | Leu
340 | Glu | Gly | Ala | Gly | Gln
345 | Ala | Val | Glu | Ser | Glu
350 | Сув | Ala | | Val | Leu | Ala
355 | Ala | Gln | Pro | His | Arg
360 | Asp | Phe | Ile | Ile | Thr
365 | Pro | Gly | Gly | | CAa | Leu
370 | Lys | Cys | Lys | Ile | Ile
375 | Ile | His | Val | Pro | Gly
380 | Gly | Lys | Asp | Val | |------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Arg
385 | Lys | Thr | Val | Thr | Ser
390 | Val | Leu | Glu | Glu | Сув
395 | Glu | Gln | Arg | Lys | Tyr
400 | | Thr | Ser | Val | Ser | Leu
405 | Pro | Ala | Ile | Gly | Thr
410 | Gly | Asn | Ala | Gly | Lys
415 | Asn | | Pro | Ile | Thr | Val
420 | Ala | Asp | Asn | Ile | Ile
425 | Asp | Ala | Ile | Val | Asp
430 | Phe | Ser | | Ser | Gln | His
435 | Ser | Thr | Pro | Ser | Leu
440 | Lys | Thr | Val | ГÀз | Val
445 | Val | Ile | Phe | | Gln | Pro
450 | Glu | Leu | Leu | Asn | Ile
455 | Phe |
Tyr | Asp | Ser | Met
460 | Lys | Lys | Arg | Asp | | Leu
465 | Ser | Ala | Ser | Leu | Asn
470 | Phe | Gln | Ser | Thr | Phe
475 | Ser | Met | Thr | Thr | Cys
480 | | Asn | Leu | Pro | Glu | His
485 | Trp | Thr | Asp | Met | Asn
490 | His | Gln | Leu | Phe | Cys
495 | Met | | Val | Gln | Leu | Glu
500 | Pro | Gly | Gln | Ser | Glu
505 | Tyr | Asn | Thr | Ile | Lys
510 | Asp | Lys | | Phe | Thr | Arg
515 | Thr | CÀa | Ser | Ser | Tyr
520 | Ala | Ile | Glu | ГÀа | Ile
525 | Glu | Arg | Ile | | Gln | Asn
530 | Ala | Phe | Leu | Trp | Gln
535 | Ser | Tyr | Gln | Val | Lys
540 | ГЛа | Arg | Gln | Met | | Asp
545 | Ile | Lys | Asn | Asp | His
550 | ГÀв | Asn | Asn | Glu | Arg
555 | Leu | Leu | Phe | His | Gly
560 | | Thr | Asp | Ala | Asp | Ser
565 | Val | Pro | Tyr | Val | Asn
570 | Gln | His | Gly | Phe | Asn
575 | Arg | | Ser | CÀa | Ala | Gly
580 | Lys | Asn | Ala | Val | Ser
585 | Tyr | Gly | Lys | Gly | Thr
590 | Tyr | Phe | | Ala | Val | Asp
595 | Ala | Ser | Tyr | Ser | Ala
600 | Lys | Asp | Thr | Tyr | Ser
605 | Lys | Pro | Asp | | Ser | Asn
610 | Gly | Arg | Lys | His | Met
615 | Tyr | Val | Val | Arg | Val
620 | Leu | Thr | Gly | Val | | Phe
625 | Thr | Lys | Gly | Arg | Ala
630 | Gly | Leu | Val | Thr | Pro
635 | Pro | Pro | Lys | Asn | Pro
640 | | His | Asn | Pro | Thr | Asp
645 | Leu | Phe | Asp | Ser | Val
650 | Thr | Asn | Asn | Thr | Arg
655 | Ser | | Pro | ГЛа | Leu | Phe
660 | Val | Val | Phe | Phe | Asp
665 | Asn | Gln | Ala | Tyr | Pro
670 | Glu | Tyr | | Leu | Ile | Thr
675 | Phe | Thr | Ala | 0> SE
1> LE | - | | | | | | | | | | | | | | | <212 | 2 > TY
3 > OF | PE: | PRT | | sa] | piens | 3 | | | | | | | | | | < 400 | O> SI | EQUEI | ICE : | 37 | | | | | | | | | | | | | Met
1 | Ala | Val | Pro | Gly
5 | Ser | Phe | Pro | Leu | Leu
10 | Val | Glu | Gly | Ser | Trp
15 | Gly | | Pro | Asp | Pro | Pro
20 | Lys | Asn | Leu | Asn | Thr
25 | Lys | Leu | Gln | Met | Tyr
30 | Phe | Gln | | Ser | Pro | Lуз
35 | Arg | Ser | Gly | Gly | Gly
40 | Glu | Cys | Glu | Val | Arg
45 | Gln | Asp | Pro | | | | | | | | | | | | | | | | | | | Arg | Ser
50 | Pro | Ser | Arg | Phe | Leu
55 | Val | Phe | Phe | Tyr | Pro
60 | Glu | Asp | Val | Arg | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Gln
65 | Lys | Val | Leu | Glu | Arg
70 | ГÀз | Asn | His | Glu | Leu
75 | Val | Trp | Gln | Gly | 80
Tàa | | Gly | Thr | Phe | Lys | Leu
85 | Thr | Val | Gln | Leu | Pro
90 | Ala | Thr | Pro | Asp | Glu
95 | Ile | | Asp | His | Val | Phe
100 | Glu | Glu | Glu | Leu | Leu
105 | Thr | Lys | Glu | Ser | Lys
110 | Thr | ГЛа | | Glu | Asp | Val
115 | Lys | Glu | Pro | Asp | Val
120 | Ser | Glu | Glu | Leu | Asp
125 | Thr | Lys | Leu | | Pro | Leu
130 | Asp | Gly | Gly | Leu | Asp
135 | Lys | Met | Glu | Asp | Ile
140 | Pro | Glu | Glu | Cha | | Glu
145 | Asn | Ile | Ser | Ser | Leu
150 | Val | Ala | Phe | Glu | Asn
155 | Leu | ГЛа | Ala | Asn | Val
160 | | Thr | Asp | Ile | Met | Leu
165 | Ile | Leu | Leu | Val | Glu
170 | Asn | Ile | Ser | Gly | Leu
175 | Ser | | Asn | Asp | Asp | Phe
180 | Gln | Val | Glu | Ile | Ile
185 | Arg | Asp | Phe | Asp | Val
190 | Ala | Val | | Val | Thr | Phe
195 | Gln | ГÀа | His | Ile | Asp
200 | Thr | Ile | Arg | Phe | Val
205 | Asp | Asp | CÀa | | Thr | Lys
210 | His | His | Ser | Ile | Lys
215 | Gln | Leu | Gln | Leu | Ser
220 | Pro | Arg | Leu | Leu | | Glu
225 | Val | Thr | Asn | Thr | Ile
230 | Arg | Val | Glu | Asn | Leu
235 | Pro | Pro | Gly | Ala | Asp
240 | | Asp | Tyr | Ser | Leu | Lys
245 | Leu | Phe | Phe | Glu | Asn
250 | Pro | Tyr | Asn | Gly | Gly
255 | Gly | | Arg | Val | Ala | Asn
260 | Val | Glu | Tyr | Phe | Pro
265 | Glu | Glu | Ser | Ser | Ala
270 | Leu | Ile | | Glu | Phe | Phe
275 | Asp | Arg | Lys | Val | Leu
280 | Asp | Thr | Ile | Met | Ala
285 | Thr | Lys | Leu | | Asp | Phe
290 | Asn | ГÀа | Met | Pro | Leu
295 | Ser | Val | Phe | Pro | Tyr
300 | Tyr | Ala | Ser | Leu | | Gly
305 | Thr | Ala | Leu | Tyr | Gly
310 | ГÀа | Glu | Lys | Pro | Leu
315 | Ile | Lys | Leu | Pro | Ala
320 | | Pro | Phe | Glu | Glu | Ser
325 | Leu | Asp | Leu | Pro | Leu
330 | Trp | Lys | Phe | Leu | Gln
335 | ГЛа | | Lys | Asn | His | Leu
340 | Ile | Glu | Glu | Ile | Asn
345 | Asp | Glu | Met | Arg | Arg
350 | Cys | His | | Cys | Glu | Leu
355 | Thr | Trp | Ser | Gln | Leu
360 | Ser | Gly | Lys | Val | Thr
365 | Ile | Arg | Pro | | Ala | Ala
370 | Thr | Leu | Val | Asn | Glu
375 | Gly | Arg | Pro | Arg | Ile
380 | Lys | Thr | Trp | Gln | | Ala
385 | Asp | Thr | Ser | Thr | Thr
390 | Leu | Ser | Ser | Ile | Arg
395 | Ser | Lys | Tyr | Lys | Val
400 | | Asn | Pro | Ile | Lys | Val
405 | Asp | Pro | Thr | Met | Trp
410 | Asp | Thr | Ile | Lys | Asn
415 | Asp | | Val | Lys | Asp | Asp
420 | Arg | Ile | Leu | Ile | Glu
425 | Phe | Asp | Thr | Leu | Lys
430 | Glu | Met | | Val | Ile | Leu
435 | Ala | Gly | Lys | Ser | Glu
440 | Asp | Val | Gln | Ser | Ile
445 | Glu | Val | Gln | | Val | Arg
450 | Glu | Leu | Ile | Glu | Ser
455 | Thr | Thr | Gln | Lys | Ile
460 | ГÀа | Arg | Glu | Glu | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Gln
465 | Ser | Leu | Lys | Glu | Lys
470 | Met | Ile | Ile | Ser | Pro
475 | Gly | Arg | Tyr | Phe | Leu
480 | | Leu | Cys | His | Ser | Ser
485 | Leu | Leu | Asp | His | Leu
490 | Leu | Thr | Glu | Cys | Pro
495 | Glu | | Ile | Glu | Ile | Cys
500 | Tyr | Asp | Arg | Val | Thr
505 | Gln | His | Leu | CAa | Leu
510 | Lys | Gly | | Pro | Ser | Ala
515 | Asp | Val | Tyr | Lys | Ala
520 | Lys | Cys | Glu | Ile | Gln
525 | Glu | Lys | Val | | Tyr | Thr
530 | Met | Ala | Gln | ГÀа | Asn
535 | Ile | Gln | Val | Ser | Pro
540 | Glu | Ile | Phe | Gln | | Phe
545 | Leu | Gln | Gln | Val | Asn
550 | Trp | Lys | Glu | Phe | Ser
555 | Lys | Cys | Leu | Phe | Ile
560 | | Ala | Gln | Lys | Ile | Leu
565 | Ala | Leu | Tyr | Glu | Leu
570 | Glu | Gly | Thr | Thr | Val
575 | Leu | | Leu | Thr | Ser | Cys | Ser | Ser | Glu | Ala | Leu
585 | Leu | Glu | Ala | Glu | Lys
590 | Gln | Met | | Leu | Ser | Ala
595 | Leu | Asn | Tyr | Lys | Arg
600 | Ile | Glu | Val | Glu | Asn
605 | Lys | Glu | Val | | Leu | His
610 | Gly | Lys | rys | Trp | Lys
615 | Gly | Leu | Thr | His | Asn
620 | Leu | Leu | Lys | Lys | | Gln
625 | Asn | Ser | Ser | Pro | Asn
630 | Thr | Val | Ile | Ile | Asn
635 | Glu | Leu | Thr | Ser | Glu
640 | | Thr | Thr | Ala | Glu | Val
645 | Ile | Ile | Thr | Gly | Сув
650 | Val | ГЛа | Glu | Val | Asn
655 | Glu | | Thr | Tyr | Lys | Leu
660 | Leu | Phe | Asn | Phe | Val
665 | Glu | Gln | Asn | Met | Lys
670 | Ile | Glu | | Arg | Leu | Val
675 | Glu | Val | Lys | Pro | Ser
680 | Leu | Val | Ile | Asp | Tyr
685 | Leu | Lys | Thr | | Glu | Lys
690 | Lys | Leu | Phe | Trp | Pro
695 | Lys | Ile | Lys | Lys | Val
700 | Asn | Val | Gln | Val | | Ser
705 | Phe | Asn | Pro | Glu | Asn
710 | Lys | Gln | Lys | Gly | Ile
715 | Leu | Leu | Thr | Gly | Ser
720 | | ГÀа | Thr | Glu | Val | Leu
725 | ràa | Ala | Val | Asp | Ile
730 | Val | ГЛа | Gln | Val | Trp
735 | Asp | | Ser | Val | Сув | Val
740 | Lys | Ser | Val | His | Thr
745 | Asp | Lys | Pro | Gly | Ala
750 | Lys | Gln | | Phe | Phe | Gln
755 | Asp | Lys | Ala | Arg | Phe
760 | Tyr | Gln | Ser | Glu | Ile
765 | ГÀа | Arg | Leu | | Phe | Gly
770 | CÀa | Tyr | Ile | Glu | Leu
775 | Gln | Glu | Asn | Glu | Val
780 | Met | ГÀа | Glu | Gly | | Gly
785 | Ser | Pro | Ala | Gly | Gln
790 | Lys | Сув | Phe | Ser | Arg
795 | Thr | Val | Leu | Ala | Pro
800 | | Gly | Val | Val | Leu | Ile
805 | Val | Gln | Gln | Gly | Asp
810 | Leu | Ala | Arg | Leu | Pro
815 | Val | | Asp | Val | Val | Val
820 | Asn | Ala | Ser | Asn | Glu
825 | Asp | Leu | Lys | His | Tyr
830 | Gly | Gly | | Leu | Ala | Ala
835 | Ala | Leu | Ser | Lys | Ala
840 | Ala | Gly | Pro | Glu | Leu
845 | Gln | Ala | Asp | | Cys | Asp | Gln | Ile | Val | ГХа | Arg | Glu | Gly | Arg | Leu | Leu | Pro | Gly | Asn | Ala | | | 850 | | | | | 855 | | | | | 860 |) | | | | |------------|-------------|------------|------------|------------|------------|--------------------------|-------------|------------|------------|------------|-----------------|-------------|--------------|--------------|------------| | Thr
865 | Ile | Ser | Lys | Ala | Gly
870 | Lys | Leu | Pro | Tyr | His
875 | | s Vai | l Ile | e His | 880 | | Val | Gly | Pro | Arg | Trp
885 | | Gly | Tyr | Glu | Ala
890 | Pro | Arç | g Cy | s Val | L Tyr
895 | Leu | | Leu | Arg | Arg | Ala
900 | Val | Gln | Leu | | Leu
905 | Cys | Leu | Ala | a Gl | ı Lys
910 | | Lys | | Tyr | Arg | Ser
915 | Ile | Ala | Ile | Pro | Ala
920 | Ile | Ser | Ser | Gly | y Va: | | e Gly | Phe | | Pro | Leu
930 | | Arg | | | Glu
935 | Thr | Ile | Val | Ser | Ala
940 | | e Lys | Glu | ı Asn | | Phe
945 | Gln | Phe | Lys | Lys | Asp
950 | | His | | | Lys
955 | | | э Туг | | Val
960 | | Asp | Val | Ser | Glu | Lys
965 | Thr | Val | Glu | Ala | Phe
970 | Ala | Glı | ı Ala | a Val | L Lys
975 | Thr | | Val | Phe | Lys | Ala
980 | Thr | Leu | Pro | _ | Thr
985 | Ala | Ala | Pro | o Pro |
990 | | ı Pro | | Pro | Ala | Ala
995 | | Gly | | Gly | Lys
1000 | | | r Tr | _ | | ys (
)05 | Gly S | Ser Le | | Val | Ser
1010 | | Gly | | | ı Glr
101 | | t Le | eu Le | eu V | | .ys | Glu | Gly | Val | | Gln | Asn
1025 | | Lys | | - | Val
103 | | .1 Vá | al As | an S | | /al
1035 | Pro | Leu | Asp | | Leu | Val
1040 | | ı Ser | r Arç | | 7 Pro | | | er Ly | | | Leu
1050 | Leu | Glu | Lys | | Ala | Gly
1055 | | Glu | ı Let | ı Glr | n Glu
106 | | | eu As | | | /al
1065 | Gly | Gln | Gly | | Val | Ala
1070 | | . Sei | Met | : Gl | 7 Thi
107 | | | eu Ly | | | Ser
1080 | Ser | Trp | Asn | | Leu | Asp
1085 | | | у Туз | | L Let
109 | | s Va | al Va | al A | | Pro
1095 | Glu | Trp | Arg | | Asn | Gly
1100 | | Thr | s Sei | r Sei | Leu
110 | | s II | Le Me | et G | | Asp
1110 | Ile | Ile | Arg | | Glu | Cys
1115 | | : Glu | ı Ile | e Thi | Glu
112 | | r Le | eu Se | er L | | Ув
1125 | Ser | Ile | Ala | | Phe | Pro
1130 | | | e Gly | | Gly
113 | | n Le | | Ly P | | Pro
1140 | Lys | Asn | Ile | | Phe | Ala
1145 | | ı Lev | ı Ile | e Ile | 9 Sei
115 | | u Vá | al Ph | ne L | | Phe
1155 | Ser | Ser | Lys | | Asn | Gln
1160 | | ı Lys | ; Thi | r Leu | ı Glr
116 | | u Vá | al Hi | is P | | Leu
1170 | Leu | His | Pro | | Ser | Asp
1175 | | g Glu | ı Ası | ı Ile | e Glr
118 | | a Pl | ne Se | er A | - | Glu
1185 | Phe | Ala | Arg | | Arg | Ala
1190 | | n Gly | / Ası | ı Lev | ı Val | | r As | ap Ly | /s I | | Pro
1200 | Lys | Ala | Lys | | Asp | Thr
1205 | | ı Gly | ⁄ Ph∈ | э Туг | c Gl _y
121 | | ır Va | al Se | er S | | Pro
1215 | Asp | Ser | Gly | | Val | Tyr | Glu | ı Met | Ly: | ∃ Ile | | , Se | r II | le II | Le P | he (| | Val | Ala | Ser | | Gly | Asp | Il∈ | e Thi | r Lys | s Glu | ı Glu | ı Al | a As | sp Va | al I | le ^v | /al | Asn | Ser | Thr | | | 1235 | | | | | 124 | · U | | | | | 1245 | | | | | Ser | Asn | Ser | Phe | Asn | Leu | Lys | Ala | Gly | Val | Ser | Lys | Ala | Ile | Leu | |-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | | 1250 | | | | | 1255 | | | | | 1260 | | | | | Glu | Cys
1265 | Ala | Gly | Gln | Asn | Val
1270 | Glu | Arg | Glu | CAa | Ser
1275 | Gln | Gln | Ala | | Gln | Gln
1280 | Arg | Lys | Asn | Asp | Tyr
1285 | Ile | Ile | Thr | Gly | Gly
1290 | Gly | Phe | Leu | | Arg | Сув
1295 | Lys | Asn | Ile | Ile | His
1300 | Val | Ile | Gly | Gly | Asn
1305 | Asp | Val | Lys | | Ser | Ser
1310 | Val | Ser | Ser | Val | Leu
1315 | Gln | Glu | Cys | Glu | Lys
1320 | Lys | Asn | Tyr | | Ser | Ser
1325 | Ile | CAa | Leu | Pro | Ala
1330 | Ile | Gly | Thr | Gly | Asn
1335 | Ala | Lys | Gln | | His | Pro
1340 | Asp | ГÀа | Val | Ala | Glu
1345 | Ala | Ile | Ile | Asp | Ala
1350 | Ile | Glu | Asp | | Phe | Val
1355 | Gln | ГÀв | Gly | Ser | Ala
1360 | Gln | Ser | Val | rys | Lys
1365 | Val | Lys | Val | | Val | Ile
1370 | Phe | Leu | Pro | Gln | Val
1375 | Leu | Asp | Val | Phe | Tyr
1380 | Ala | Asn | Met | | Lys | Lys
1385 | Arg | Glu | Gly | Thr | Gln
1390 | Leu | Ser | Ser | Gln | Gln
1395 | Ser | Val | Met | | Ser | Lys
1400 | Leu | Ala | Ser | Phe | Leu
1405 | Gly | Phe | Ser | ГÀа | Gln
1410 | Ser | Pro | Gln | | Lys | Lys
1415 | Asn | His | Leu | Val | Leu
1420 | Glu | Lys | Lys | Thr | Glu
1425 | Ser | Ala | Thr | | Phe | Arg
1430 | Val | CAa | Gly | Glu | Asn
1435 | Val | Thr | Сув | Val | Glu
1440 | Tyr | Ala | Ile | | Ser | Trp
1445 | Leu | Gln | Asp | Leu | Ile
1450 | Glu | Lys | Glu | Gln | Cys
1455 | Pro | Tyr | Thr | | Ser | Glu
1460 | Asp | Glu | Сув | Ile | Lys
1465 | Asp | Phe | Asp | Glu | Lys
1470 | Glu | Tyr | Gln | | Glu | Leu
1475 | Asn | Glu | Leu | Gln | Lys
1480 | Lys | Leu | Asn | Ile | Asn
1485 | Ile | Ser | Leu | | Asp | His
1490 | Lys | Arg | Pro | Leu | Ile
1495 | Lys | Val | Leu | Gly | Ile
1500 | Ser | Arg | Asp | | Val | Met
1505 | Gln | Ala | Arg | Asp | Glu
1510 | Ile | Glu | Ala | Met | Ile
1515 | Lys | Arg | Val | | Arg | Leu
1520 | Ala | Lys | Glu | Gln | Glu
1525 | Ser | Arg | Ala | Asp | Cys
1530 | Ile | Ser | Glu | | Phe | Ile
1535 | Glu | Trp | Gln | Tyr | Asn
1540 | Asp | Asn | Asn | Thr | Ser
1545 | His | Cys | Phe | | Asn | Lys
1550 | Met | Thr | Asn | Leu | Lys
1555 | Leu | Glu | Asp | Ala | Arg
1560 | Arg | Glu | Lys | | Lys | Lys
1565 | Thr | Val | Asp | Val | Lys
1570 | Ile | Asn | His | Arg | His
1575 | Tyr | Thr | Val | | Asn | Leu
1580 | Asn | Thr | Tyr | Thr | Ala
1585 | Thr | Asp | Thr | Lys | Gly
1590 | His | Ser | Leu | | Ser | Val
1595 | Gln | Arg | Leu | Thr | Lys
1600 | Ser | Lys | Val | Asp | Ile
1605 | Pro | Ala | His | | Trp | Ser
1610 | Asp | Met | Lys | Gln | Gln
1615 | Asn | Phe | Сув | Val | Val
1620 | Glu | Leu | Leu | | Pro | Ser
1625 | _ | Pro | Glu | Tyr | Asn
163 | | Va: | l Ala | a Se | | າສ
35 | Phe | Asn | Gln | |------------|-------------------------|------------|------------|-----------|-----------|------------|-------|-------|-------------|-------|------------|------------|-----|-------|-------------| | Thr | Суз
1640 | | His | Phe | Arg | 11e | | Ly: | s Ile | e Gl | | g
50 | Ile | Gln | Asn | | Pro | Asp
1655 | | Trp | Asn | Ser | Tyr
166 | | ı Ala | a Ly: | s Ly | | វន
65 | Thr | Met | Asp | | Ala | Lys
1670 | | Gly | Gln | Thr | Met
167 | | Gl: | u Lys | s Gl: | | eu
80 | Phe | His | Gly | | Thr | Asp
1685 | | Gly | Ser | Val | Pro
169 | | Va: | l Ası | n Ar | | n
195 | Gly | Phe | Asn | | Arg | Ser
1700 | _ | Ala | Gly | . Tàs | 170 | | Va: | l Ala | а Ту | | .у
'10 | Lys | Gly | Thr | | Tyr | Phe
1715 | | Val | Asn | ı Ala | Asn
172 | _ | Se: | r Ala | a As: | | p
25 | Thr | Tyr | Ser | | Arg | Pro
1730 | _ | Ala | Asn | Gly | Arg
173 | | Hi: | s Val | l Ty | | r
'40 | Val | Arg | Val | | Leu | Thr
1745 | _ | Ile | Tyr | Thr | His
175 | | Ası | n His | s Se | | eu
'55 | Ile | Val | Pro | | Pro | Ser
1760 | - | Asn | Pro | Gln | 176 | | Th: | r Ası | o Le | - | r
70 | Asp | Thr | Val | | Thr | Asp
1775 | | Val | His | His | Pro
178 | | Le | u Phe | e Va | | .a
'85 | Phe | Tyr | Asp | | Tyr | Gln
1790 | | Tyr | Pro | Glu | Tyr
179 | | ı Ile | e Thi | r Ph | | :g | Lys | | | | |)> SE | | | | | | | | | | | | | | | | <212 | l> LE
2> TY
3> OR | PE: | PRT | | sap | iens | | | | | | | | | | | < 400 |)> SE | QUEN | CE: | 38 | | | | | | | | | | | | | Met
1 | Ala | Thr | | Ala
5 | Val | CAa , | Val L | | Lув (
10 | Gly . | Asp | Gly | Pro | Va] | l Gln | | Gly | Ile | | Asn
20 | Phe | Glu | Gln : | _ | lu : | Ser A | Asn | Gly | Pro | Val | . Lys | val | | Trp | Gly | Ser
35 | Ile | Lys | Gly | | Thr G | lu (| Gly 1 | Leu : | | Gly
45 | Phe | His | val | | His | Glu
50 | Phe | Gly | Asp | | Thr 2 | Ala G | ly (| Cys ' | | Ser
60 | Ala | Gly | Pro | His | | Phe
65 | Asn | Pro | Leu | | Arg
70 | Lys 1 | His G | ly (| _ | Pro : | Lys | Asp | Glu | Glu | ı Arg
80 | | His | Val | Gly | _ | Leu
85 | Gly | Asn ' | Val T | | Ala i
90 | Asp | Lys | Asp | Gly | Va] | l Ala | | Asp | Val | | Ile
100 | Glu | Asp | Ser ' | | le : | Ser 1 | Leu | Ser | Gly | Asp | | з Сув | | Ile | | Gly
115 | Arg | Thr | Leu | | Val H | lis (| Glu 1 | Гув . | | Asp
125 | _ | Leu | ı Gly | | ГЛа | Gly
130 | Gly | Asn | Glu | | Ser ' | Thr L | ys ' | Thr (| _ | Asn
140 | Ala | Gly | Sei | Arg | | Leu
145 | Ala | Cys | Gly | | | | Ile A | la (| Gln | ``` <211> LENGTH: 150 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 39 Met Ser Ala Lys Asp Glu Arg Ala Arg Glu Ile Leu Arg Gly Phe Lys Leu Asn Trp Met Asn Leu Arg Asp Ala Glu Thr Gly Lys Ile Leu Trp 20252530 Gln Gly Thr Glu Asp Leu Ser Val Pro Gly Val Glu His Glu Ala Arg Val Pro Lys Lys Ile Leu Lys Cys Lys Ala Val Ser Arg Glu Leu Asn Phe Ser Ser Thr Glu Gln Met Glu Lys Phe Arg Leu Glu Gln Lys Val Tyr Phe Lys Gly Gln Cys Leu Glu Glu Trp Phe Phe Glu Phe Gly Phe Val Ile Pro Asn Ser Thr Asn Thr Trp Gln Ser Leu Ile Glu Ala Ala 105 Pro Glu Ser Gln Met Met Pro Ala Ser Val Leu Thr Gly Asn Val Ile 115 120 Ile Glu Thr Lys Phe Phe Asp Asp Asp Leu Leu Val Ser Thr Ser Arg 130 135 Val Arg Leu Phe Tyr Val 145 <210> SEQ ID NO 40 <211> LENGTH: 350 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 40 Met Phe Gly Leu Lys Arg Asn Ala Val Ile Gly Leu Asn Leu Tyr Cys Gly Gly Ala Gly Leu Gly Ala Gly Ser Gly Gly Ala Thr Arg Pro Gly Gly Arg Leu Leu Ala Thr Glu Lys Glu Ala Ser Ala Arg Arg Glu Ile Gly Gly Gly Glu Ala Gly Ala Val Ile Gly Gly Ser Ala Gly Ala Ser Pro Pro Ser Thr Leu Thr Pro Asp Ser Arg Arg Val Ala Arg Pro Pro 65 70 75 80 Pro Ile Gly Ala Glu Val Pro Asp Val Thr Ala Thr Pro Ala Arg Leu Leu Phe Phe Ala Pro Thr Arg Arg Ala Ala Pro Leu Glu Glu Met Glu 105 Ala Pro Ala Ala Asp Ala Ile Met Ser Pro Glu Glu Glu Leu Asp Gly 120 Tyr Glu Pro Glu Pro Leu Gly Lys Arg Pro Ala Val Leu Pro Leu Leu 135 Glu Leu Val Gly Glu Ser Gly Asn Asn Thr Ser Thr Asp Gly Ser Leu 150 155 Pro Ser Thr Pro Pro Pro Ala Glu Glu Glu Asp Glu Leu Tyr Arg 170 175 ``` Ala Lys Asp Thr Lys Pro Met Gly Arg Ser Gly Ala Thr Ser Arg Lys Ala Leu Glu Thr Leu Arg Arg Val Gly Asp Gly Val Gln Arg Asn His Glu Thr Ala Phe Gln Gly Met Leu Arg Lys Leu Asp Ile Lys Asn Glu Asp Asp Val Lys Ser Leu Ser Arg Val Met Ile His Val Phe Ser Asp Gly Val Thr Asn Trp Gly Arg Ile Val Thr Leu Ile Ser Phe Gly Ala Phe Val Ala Lys His Leu Lys Thr Ile Asn Gln Glu Ser Cys Ile Glu 280 Pro Leu Ala Glu Ser Ile Thr Asp Val Leu Val Arg Thr Lys Arg Asp 295 Trp Leu Val Lys Gln Arg Gly Trp Asp Gly Phe Val Glu Phe Phe His 310 Val Glu Asp Leu Glu Gly Gly Ile Arg Asn Val Leu Leu Ala Phe Ala 330
Gly Val Ala Gly Val Gly Ala Gly Leu Ala Tyr Leu Ile Arg 345 <210> SEQ ID NO 41 <211> LENGTH: 239 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 41 Met Ala His Ala Gly Arg Thr Gly Tyr Asp Asn Arg Glu Ile Val Met Lys Tyr Ile His Tyr Lys Leu Ser Gln Arg Gly Tyr Glu Trp Asp Ala Gly Asp Val Gly Ala Ala Pro Pro Gly Ala Ala Pro Ala Pro Gly Ile Phe Ser Ser Gln Pro Gly His Thr Pro His Pro Ala Ala Ser Arg Asp Pro Val Ala Arg Thr Ser Pro Leu Gln Thr Pro Ala Ala Pro Gly Ala Ala Ala Gly Pro Ala Leu Ser Pro Val Pro Pro Val Val His Leu Thr Leu Arg Gln Ala Gly Asp Asp Phe Ser Arg Arg Tyr Arg Arg Asp Phe Ala Glu Met Ser Ser Gln Leu His Leu Thr Pro Phe Thr Ala Arg Gly 120 Arg Phe Ala Thr Val Val Glu Glu Leu Phe Arg Asp Gly Val Asn Trp 135 Gly Arg Ile Val Ala Phe Phe Glu Phe Gly Gly Val Met Cys Val Glu 155 Ser Val Asn Arg Glu Met Ser Pro Leu Val Asp Asn Ile Ala Leu Trp Met Thr Glu Tyr Leu Asn Arg His Leu His Thr Trp Ile Gln Asp Asn Gln Ser Leu Glu Ile Ile Ser Arg Tyr Leu Arg Glu Gln Ala Thr Gly | | | | 180 | | | | | 185 | | | | | 190 | | | |--------------|-----------------|----------------------------------|------------|-----------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|-----------|------------| | Gly | Gly | Trp
195 | Asp | Ala | Phe | Val | Glu
200 | Leu | Tyr | Gly | Pro | Ser
205 | Met | Arg | Pro | | Leu | Phe
210 | Asp | Phe | Ser | Trp | Leu
215 | Ser | Leu | ГЛа | Thr | Leu
220 | Leu | Ser | Leu | Ala | | Leu
225 | Val | Gly | Ala | CAa | Ile
230 | Thr | Leu | Gly | Ala | Tyr
235 | Leu | Gly | His | Lys | | | <213
<213 | l > LI
2 > T | EQ II
ENGTI
YPE :
RGANI | H: 1 | | o saj | pien | ₹ | | | | | | | | | | < 40 | O> SI | EQUEI | ICE : | 42 | | | | | | | | | | | | | Met
1 | Ala | Asp | Glu | Glu
5 | LÀa | Leu | Pro | Pro | Gly
10 | Trp | Glu | ГÀв | Arg | Met
15 | Ser | | Arg | Ser | Ser | Gly
20 | Arg | Val | Tyr | Tyr | Phe
25 | Asn | His | Ile | Thr | Asn
30 | Ala | Ser | | Gln | Trp | Glu
35 | Arg | Pro | Ser | Gly | Asn
40 | Ser | Ser | Ser | Gly | Gly
45 | ГЛа | Asn | Gly | | Gln | Gly
50 | Glu | Pro | Ala | Arg | Val
55 | Arg | Cys | Ser | His | Leu
60 | Leu | Val | Lys | His | | Ser
65 | Gln | Ser | Arg | Arg | Pro
70 | Ser | Ser | Trp | Arg | Gln
75 | Glu | ГÀа | Ile | Thr | Arg
80 | | Thr | Lys | Glu | Glu | Ala
85 | Leu | Glu | Leu | Ile | Asn
90 | Gly | Tyr | Ile | Gln | Lys
95 | Ile | | Lys | Ser | Gly | Glu
100 | Glu | Asp | Phe | Glu | Ser
105 | Leu | Ala | Ser | Gln | Phe
110 | Ser | Asp | | Сув | Ser | Ser
115 | Ala | ГÀа | Ala | Arg | Gly
120 | Asp | Leu | Gly | Ala | Phe
125 | Ser | Arg | Gly | | Gln | Met
130 | Gln | Lys | Pro | Phe | Glu
135 | Asp | Ala | Ser | Phe | Ala
140 | Leu | Arg | Thr | Gly | | Glu
145 | Met | Ser | Gly | Pro | Val
150 | Phe | Thr | Asp | Ser | Gly
155 | Ile | His | Ile | Ile | Leu
160 | | Arg | Thr | Glu | | | | | | | | | | | | | | | <21: | L> LI
2> T | EQ II
ENGTI
YPE:
RGANI | H: 1 | | o saj | pien: | 3 | | | | | | | | | | < 40 | D> SI | EQUEI | ICE : | 43 | | | | | | | | | | | | | Met
1 | Ala | Ala | Ser | Arg
5 | Arg | Ser | Gln | His | His
10 | His | His | His | His | Gln
15 | Gln | | Gln | Leu | Gln | Pro
20 | Ala | Pro | Gly | Ala | Ser
25 | Ala | Pro | Pro | Pro | Pro
30 | Pro | Pro | | Pro | Pro | Leu
35 | Ser | Pro | Gly | Leu | Ala
40 | Pro | Gly | Thr | Thr | Pro
45 | Ala | Ser | Pro | | Thr | Ala
50 | Ser | Gly | Leu | Ala | Pro
55 | Phe | Ala | Ser | Pro | Arg
60 | His | Gly | Leu | Ala | | Leu
65 | Pro | Glu | Gly | Asp | Gly
70 | Ser | Arg | Asp | Pro | Pro
75 | Asp | Arg | Pro | Arg | Ser
80 | | Pro | Asp | Pro | Val | Asp | Gly | Thr | Ser | Сув | Сув
90 | Ser | Thr | Thr | Ser | Thr
95 | Ile | | _ | | | | | | | | | | | | | | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | СЛа | Thr | Val | Ala
100 | Ala | Ala | Pro | Val | Val
105 | Pro | Ala | Val | Ser | Thr
110 | Ser | Ser | | Ala | Ala | Gly
115 | Val | Ala | Pro | Asn | Pro
120 | Ala | Gly | Ser | Gly | Ser
125 | Asn | Asn | Ser | | Pro | Ser
130 | Ser | Ser | Ser | Ser | Pro
135 | Thr | Ser | Ser | Ser | Ser
140 | Ser | Ser | Pro | Ser | | Ser
145 | Pro | Gly | Ser | Ser | Leu
150 | Ala | Glu | Ser | Pro | Glu
155 | Ala | Ala | Gly | Val | Ser
160 | | Ser | Thr | Ala | Pro | Leu
165 | Gly | Pro | Gly | Ala | Ala
170 | Gly | Pro | Gly | Thr | Gly
175 | Val | | Pro | Ala | Val | Ser
180 | Gly | Ala | Leu | Arg | Glu
185 | Leu | Leu | Glu | Ala | Сув
190 | Arg | Asn | | Gly | Asp | Val
195 | Ser | Arg | Val | Lys | Arg
200 | Leu | Val | Asp | Ala | Ala
205 | Asn | Val | Asn | | Ala | Lys
210 | Asp | Met | Ala | Gly | Arg
215 | ГЛа | Ser | Ser | Pro | Leu
220 | His | Phe | Ala | Ala | | Gly
225 | Phe | Gly | Arg | ГЛа | Asp
230 | Val | Val | Glu | His | Leu
235 | Leu | Gln | Met | Gly | Ala
240 | | Asn | Val | His | Ala | Arg
245 | Asp | Asp | Gly | Gly | Leu
250 | Ile | Pro | Leu | His | Asn
255 | Ala | | CÀa | Ser | Phe | Gly
260 | His | Ala | Glu | Val | Val
265 | Ser | Leu | Leu | Leu | Сув
270 | Gln | Gly | | Ala | Asp | Pro
275 | Asn | Ala | Arg | Asp | Asn
280 | Trp | Asn | Tyr | Thr | Pro
285 | Leu | His | Glu | | Ala | Ala
290 | Ile | Lys | Gly | Lys | Ile
295 | Asp | Val | Сув | Ile | Val
300 | Leu | Leu | Gln | His | | Gly
305 | Ala | Asp | Pro | Asn | Ile
310 | Arg | Asn | Thr | Asp | Gly
315 | ГÀа | Ser | Ala | Leu | Asp
320 | | Leu | Ala | Asp | Pro | Ser
325 | Ala | Lys | Ala | Val | Leu
330 | Thr | Gly | Glu | Tyr | Lys
335 | Lys | | Asp | Glu | Leu | Leu
340 | Glu | Ala | Ala | Arg | Ser
345 | Gly | Asn | Glu | Glu | 350
Lys | Leu | Met | | Ala | Leu | Leu
355 | Thr | Pro | Leu | Asn | Val
360 | Asn | Cys | His | Ala | Ser
365 | Asp | Gly | Arg | | ГÀа | Ser
370 | Thr | Pro | Leu | His | Leu
375 | Ala | Ala | Gly | Tyr | Asn
380 | Arg | Val | Arg | Ile | | Val
385 | Gln | Leu | Leu | Leu | Gln
390 | His | Gly | Ala | Asp | Val
395 | His | Ala | Lys | Asp | Lys
400 | | Gly | Gly | Leu | Val | Pro
405 | Leu | His | Asn | Ala | Cys
410 | Ser | Tyr | Gly | His | Tyr
415 | Glu | | Val | Thr | Glu | Leu
420 | Leu | Leu | Lys | His | Gly
425 | Ala | Сув | Val | Asn | Ala
430 | Met | Asp | | Leu | Trp | Gln
435 | Phe | Thr | Pro | Leu | His
440 | Glu | Ala | Ala | Ser | Lys
445 | Asn | Arg | Val | | Glu | Val
450 | Cys | Ser | Leu | Leu | Leu
455 | Ser | His | Gly | Ala | Asp
460 | Pro | Thr | Leu | Val | | Asn
465 | Сув | His | Gly | Lys | Ser
470 | Ala | Val | Asp | Met | Ala
475 | Pro | Thr | Pro | Glu | Leu
480 | | Arg | Glu | Arg | Leu | Thr
485 | Tyr | Glu | Phe | Lys | Gly
490 | His | Ser | Leu | Leu | Gln
495 | Ala | | | | | | | | | | | | | | | | | | | Ala | Arg | Glu | Ala
500 | Asp | Leu | Ala | Lys | Val
505 | Lys | Lys | Thr | Leu | Ala
510 | Leu | Glu | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ile | Ile | Asn
515 | Phe | Lys | Gln | Pro | Gln
520 | Ser | His | Glu | Thr | Ala
525 | Leu | His | Cys | | Ala | Val
530 | Ala | Ser | Leu | His | Pro
535 | Lys | Arg | Lys | Gln | Val
540 | Thr | Glu | Leu | Leu | | Leu
545 | Arg | Lys | Gly | Ala | Asn
550 | Val | Asn | Glu | ГЛа | Asn
555 | ГÀа | Asp | Phe | Met | Thr
560 | | Pro | Leu | His | Val | Ala
565 | Ala | Glu | Arg | Ala | His
570 | Asn | Asp | Val | Met | Glu
575 | Val | | Leu | His | Lys | His
580 | Gly | Ala | Lys | Met | Asn
585 | Ala | Leu | Asp | Thr | Leu
590 | Gly | Gln | | Thr | Ala | Leu
595 | His | Arg | Ala | Ala | Leu
600 | Ala | Gly | His | Leu | Gln
605 | Thr | Cys | Arg | | Leu | Leu
610 | Leu | Ser | Tyr | Gly | Ser
615 | Asp | Pro | Ser | Ile | Ile
620 | Ser | Leu | Gln | Gly | | Phe
625 | Thr | Ala | Ala | Gln | Met
630 | Gly | Asn | Glu | Ala | Val
635 | Gln | Gln | Ile | Leu | Ser
640 | | Glu | Ser | Thr | Pro | Ile
645 | Arg | Thr | Ser | Asp | Val
650 | Asp | Tyr | Arg | Leu | Leu
655 | Glu | | Ala | Ser | Lys | Ala
660 | Gly | Asp | Leu | Glu | Thr
665 | Val | Lys | Gln | Leu | Cys
670 | Ser | Ser | | Gln | Asn | Val
675 | Asn | CAa | Arg | Asp | Leu
680 | Glu | Gly | Arg | His | Ser
685 | Thr | Pro | Leu | | His | Phe
690 | Ala | Ala | Gly | Tyr | Asn
695 | Arg | Val | Ser | Val | Val
700 | Glu | Tyr | Leu | Leu | | His
705 | His | Gly | Ala | Asp | Val
710 | His | Ala | Lys | Asp | Lys
715 | Gly | Gly | Leu | Val | Pro
720 | | Leu | His | Asn | Ala | Сув
725 | Ser | Tyr | Gly | His | Tyr
730 | Glu | Val | Ala | Glu | Leu
735 | Leu | | Val | Arg | His | Gly
740 | Ala | Ser | Val | Asn | Val
745 | Ala | Asp | Leu | Trp | Lys
750 | Phe | Thr | | Pro | Leu | His
755 | Glu | Ala | Ala | Ala | Lys
760 | Gly | Lys | Tyr | Glu | Ile
765 | Cys | Lys | Leu | | Leu | Leu
770 | Lys | His | Gly | Ala | Asp
775 | Pro | Thr | Lys | Lys | Asn
780 | Arg | Asp | Gly | Asn | | Thr
785 | Pro | Leu | Asp | Leu | Val
790 | Lys | Glu | Gly | Asp | Thr
795 | Asp | Ile | Gln | Asp | Leu
800 | | Leu | Arg | Gly | Asp | Ala
805 | Ala | Leu | Leu | Asp | Ala
810 | Ala | Lys | Lys | Gly | Cys
815 | Leu | | Ala | Arg | Val | Gln
820 | ГÀа | Leu | CAa | Thr | Pro
825 | Glu | Asn | Ile | Asn | Cys | Arg | Asp | | Thr | Gln | Gly
835 | Arg | Asn | Ser | Thr | Pro
840 |
Leu | His | Leu | Ala | Ala
845 | Gly | Tyr | Asn | | Asn | Leu
850 | Glu | Val | Ala | Glu | Tyr
855 | Leu | Leu | Glu | His | Gly
860 | Ala | Asp | Val | Asn | | Ala
865 | Gln | Asp | Lys | Gly | Gly
870 | Leu | Ile | Pro | Leu | His
875 | Asn | Ala | Ala | Ser | Tyr
880 | | Gly | His | Val | Asp | Ile
885 | Ala | Ala | Leu | Leu | Ile
890 | Lys | Tyr | Asn | Thr | Cys
895 | Val | | Asn | Ala | Thr | Asp | ГЛа | Trp | Ala | Phe | Thr | Pro | Leu | His | Glu | Ala | Ala | Gln | | | | | 900 | | | | 2 | 05 | | | | | 91 | 0 | | |------------|-------------|------------|------------|------------|------------|---------------|--------------|-----------|------------|------------|-----|--------------|-------------|--------------|--------------| | ГÀа | Gly | Arg
915 | Thr | Gln | Leu | | Ala I
920 | eu | Leu | Leu | Ala | a Hi:
92! | | y Ala | a Asp | | Pro | Thr
930 | Met | Lys | Asn | Gln | Glu (
935 | Gly (| ln | Thr | Pro | Le: | | o Le | u Ala | a Thr | | Ala
945 | Asp | Asp | Ile | Arg | Ala
950 | Leu 1 | Leu I | le | Asp | Ala
955 | Me | : Pro | o Pro | o Glu | 1 Ala
960 | | Leu | Pro | Thr | Cys | Phe
965 | ГÀа | Pro (| Gln <i>I</i> | | Thr
970 | Val | Va: | l Se: | r Al | a Sei
975 | r Leu
5 | | Ile | Ser | Pro | Ala
980 | Ser | Thr | Pro : | | Уs
985 | Leu | Ser | Ala | a Ala | a Se: | | r Ile | | Asp | Asn | Leu
995 | Thr | Gly | Pro | | Ala
1000 | Glu | Let | ı Al | a V | | ly (
005 | Gly A | Ala Ser | | Asn | Ala
1010 | _ | / Asp | Gly | / Ala | 101 | _ | 7 Th | r G | lu A | | :уs
1020 | Glu | Gly | Glu | | Val | Ala
1025 | _ | / Let | ı Asp |) Met | 103 | | e Se | r G | ln P | | Leu
1035 | Lys | Ser | Leu | | Gly | Leu
1040 | | ı His | s Leu | ı Arg | 104! | | e Ph | e Gl | lu T | | Glu
1050 | Gln | Ile | Thr | | Leu | Asp
1055 | | . Lev | ı Ala | a Asp | Met
106 | | 7 Hi | s Gl | Lu G | | Leu
1065 | ГÀз | Glu | Ile | | Gly | Ile
1070 | | n Ala | а Туг | Gly | His
107 | | , Hi | s Ly | /s L | | Ile
1080 | Lys | Gly | Val | | Glu | Arg
1085 | | ı Lev | ı Gly | / Gly | 109 | | n Gl | y Tł | nr A | | Pro
1095 | Tyr | Leu | Thr | | Phe | His
1100 | _ | val | l Asr | n Gln | 110! | | : Il | e Le | eu L | | Asp
1110 | Leu | Ala | Pro | | Glu | Asp
1115 | | Glu | і Туг | Gln | Ser
112 | | . Gl | u G | lu G | | Met
1125 | Gln | Ser | Thr | | Ile | Arg
1130 | | ı His | s Arg | g Asp | Gly
113! | | / As | n Al | La G | | Gly
1140 | Ile | Phe | Asn | | Arg | Tyr
1145 | | n Val | l Il∈ | e Arg | 115 | | ь Ьу | s Va | al V | | Asn
1155 | Lys | Lys | Leu | | Arg | Glu
1160 | | y Phe | e Cys | His | 116 | | ı Ly | ន GI | Lu V | | Ser
1170 | Glu | Glu | Asn | | His | Asn
1175 | | His | a Asr | n Glu | Arg | | : Le | u Pł | ne H | | 31y
1185 | Ser | Pro | Phe | | Ile | Asn
1190 | | ı Ile | e Ile | e His | 119! | | 7 Ph | e As | ap G | | Arg
1200 | | Ala | Tyr | | Ile | Gly
1205 | | Met | : Phe | e Gly | Ala
121 | - | , Il | е Ту | r P | | Ala
1215 | | Asn | Ser | | Ser | Lys
1220 | | Asr | n Glr | n Tyr | Val
122! | - | Gl | у II | Le G | - | Gly
1230 | - | Thr | Gly | | Cys | Pro
1235 | | His | s Lys | a Asp | Arg
124 | | : Су | s Ty | /r I | | Cys
1245 | His | Arg | Gln | | Met | Leu
1250 | | е Сув | a Arg | y Val | Thr
125! | | ı Gl | у Г | 78 S | | Phe
1260 | Leu | Gln | Phe | | Ser | Thr
1265 | | : Lys | s Met | Ala | His
127 | | ı Pr | 0 P1 | co G | - | His
1275 | | Ser | Val | | Ile | Gly
1280 | | g Pro | Ser | . Val | . Asn
128! | | / Le | u Al | la T | - | Ala
1290 | | Tyr | Val | | | | | | | | | | | | | | | | | | | Ile Tyr Arg Gly Glu Gln Ala Tyr Pro Glu Tyr Leu Ile Thr Tyr
1295 1300 1305 | |---| | Gln Ile Met Lys Pro Glu Ala Pro Ser Gln Thr Ala Thr Ala Ala
1310 1315 1320 | | Glu Gln Lys Thr
1325 | | <210> SEQ ID NO 44
<211> LENGTH: 1166
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens | | <400> SEQUENCE: 44 | | Met Ser Gly Arg Arg Cys Ala Gly Gly Gly Ala Ala Cys Ala Ser Ala
1 5 10 15 | | Ala Ala Glu Ala Val Glu Pro Ala Ala Arg Glu Leu Phe Glu Ala Cys
20 25 30 | | Arg Asn Gly Asp Val Glu Arg Val Lys Arg Leu Val Thr Pro Glu Lys 35 40 45 | | Val Asn Ser Arg Asp Thr Ala Gly Arg Lys Ser Thr Pro Leu His Phe 50 55 60 | | Ala Ala Gly Phe Gly Arg Lys Asp Val Val Glu Tyr Leu Leu Gln Asn 65 70 75 80 | | Gly Ala Asn Val Gln Ala Arg Asp Asp Gly Gly Leu Ile Pro Leu His 85 90 95 | | Asn Ala Cys Ser Phe Gly His Ala Glu Val Val Asn Leu Leu Leu Arg | | His Gly Ala Asp Pro Asn Ala Arg Asp Asn Trp Asn Tyr Thr Pro Leu 115 120 125 | | His Glu Ala Ala Ile Lys Gly Lys Ile Asp Val Cys Ile Val Leu Leu
130 135 140 | | Gln His Gly Ala Glu Pro Thr Ile Arg Asn Thr Asp Gly Arg Thr Ala
145 150 155 160 | | Leu Asp Leu Ala Asp Pro Ser Ala Lys Ala Val Leu Thr Gly Glu Tyr 165 170 175 | | Lys Lys Asp Glu Leu Leu Glu Ser Ala Arg Ser Gly Asn Glu Glu Lys
180 185 190 | | Met Met Ala Leu Leu Thr Pro Leu Asn Val Asn Cys His Ala Ser Asp
195 200 205 | | Gly Arg Lys Ser Thr Pro Leu His Leu Ala Ala Gly Tyr Asn Arg Val
210 215 220 | | Lys Ile Val Gln Leu Leu Gln His Gly Ala Asp Val His Ala Lys
225 230 235 240 | | Asp Lys Gly Asp Leu Val Pro Leu His Asn Ala Cys Ser Tyr Gly His 245 250 255 | | Tyr Glu Val Thr Glu Leu Leu Val Lys His Gly Ala Cys Val Asn Ala 260 265 270 | | Met Asp Leu Trp Gln Phe Thr Pro Leu His Glu Ala Ala Ser Lys Asn 275 280 285 | | Arg Val Glu Val Cys Ser Leu Leu Leu Ser Tyr Gly Ala Asp Pro Thr 290 295 300 | | Leu Leu Asn Cys His Asn Lys Ser Ala Ile Asp Leu Ala Pro Thr Pro | | 305 | | | | | 310 | | | | | 315 | | | | | 320 | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Gln | Leu | Lys | Glu | Arg
325 | Leu | Ala | Tyr | Glu | Phe
330 | Lys | Gly | His | Ser | Leu
335 | Leu | | Gln | Ala | Ala | Arg
340 | Glu | Ala | Asp | Val | Thr
345 | Arg | Ile | Lys | Lys | His
350 | Leu | Ser | | Leu | Glu | Met
355 | Val | Asn | Phe | Lys | His
360 | Pro | Gln | Thr | His | Glu
365 | Thr | Ala | Leu | | His | Сув
370 | Ala | Ala | Ala | Ser | Pro
375 | Tyr | Pro | Lys | Arg | Lys | Gln | Ile | Cys | Glu | | Leu
385 | Leu | Leu | Arg | Lys | Gly
390 | Ala | Asn | Ile | Asn | Glu
395 | Lys | Thr | Lys | Glu | Phe
400 | | Leu | Thr | Pro | Leu | His
405 | Val | Ala | Ser | Glu | Lys
410 | Ala | His | Asn | Asp | Val
415 | Val | | Glu | Val | Val | Val
420 | Lys | His | Glu | Ala | Lys
425 | Val | Asn | Ala | Leu | Asp
430 | Asn | Leu | | Gly | Gln | Thr
435 | Ser | Leu | His | Arg | Ala
440 | Ala | Tyr | Сув | Gly | His
445 | Leu | Gln | Thr | | Càa | Arg
450 | Leu | Leu | Leu | Ser | Tyr
455 | Gly | Cys | Asp | Pro | Asn
460 | Ile | Ile | Ser | Leu | | Gln
465 | Gly | Phe | Thr | Ala | Leu
470 | Gln | Met | Gly | Asn | Glu
475 | Asn | Val | Gln | Gln | Leu
480 | | Leu | Gln | Glu | Gly | Ile
485 | Ser | Leu | Gly | Asn | Ser
490 | Glu | Ala | Asp | Arg | Gln
495 | Leu | | Leu | Glu | Ala | Ala
500 | Lys | Ala | Gly | Asp | Val
505 | Glu | Thr | Val | Lys | Lys
510 | Leu | Cha | | Thr | Val | Gln
515 | Ser | Val | Asn | Cys | Arg
520 | Asp | Ile | Glu | Gly | Arg
525 | Gln | Ser | Thr | | Pro | Leu
530 | His | Phe | Ala | Ala | Gly
535 | Tyr | Asn | Arg | Val | Ser
540 | Val | Val | Glu | Tyr | | Leu
545 | Leu | Gln | His | Gly | Ala
550 | Asp | Val | His | Ala | Lув
555 | Asp | ГЛа | Gly | Gly | Leu
560 | | Val | Pro | Leu | His | Asn
565 | Ala | CAa | Ser | Tyr | Gly
570 | His | Tyr | Glu | Val | Ala
575 | Glu | | Leu | Leu | Val | Lys
580 | His | Gly | Ala | Val | Val
585 | Asn | Val | Ala | Asp | Leu
590 | Trp | Lys | | Phe | Thr | Pro
595 | Leu | His | Glu | Ala | Ala
600 | Ala | Lys | Gly | Lys | Tyr
605 | Glu | Ile | Cha | | Lys | Leu
610 | Leu | Leu | Gln | His | Gly
615 | Ala | Asp | Pro | Thr | Lys
620 | Lys | Asn | Arg | Asp | | Gly
625 | Asn | Thr | Pro | Leu | Asp
630 | Leu | Val | Lys | Asp | Gly
635 | Asp | Thr | Asp | Ile | Gln
640 | | Asp | Leu | Leu | Arg | Gly
645 | Asp | Ala | Ala | Leu | Leu
650 | Asp | Ala | Ala | Lys | Lys
655 | Gly | | Cys | Leu | Ala | Arg
660 | Val | Lys | Lys | Leu | Ser
665 | Ser | Pro | Asp | Asn | Val
670 | Asn | Cys | | Arg | Asp | Thr
675 | Gln | Gly | Arg | His | Ser
680 | Thr | Pro | Leu | His | Leu
685 | Ala | Ala | Gly | | Tyr | Asn
690 | Asn | Leu | Glu | Val | Ala
695 | Glu | Tyr | Leu | Leu | Gln
700 | His | Gly | Ala | Asp | | Val
705 | Asn | Ala | Gln | Asp | Lys
710 | Gly | Gly | Leu | Ile | Pro
715 | Leu | His | Asn | Ala | Ala
720 | | Ser | Tyr | Gly | His | Val | Asp | Val | Ala | Ala | Leu | Leu | Ile | Lys | Tyr | Asn | Ala | |------------|-------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|-------------|------------|------------------|------------| | | | | | 725 | | | | | 730 | | | | | 735 | | | Cys | Val | Asn | Ala
740 | Thr | Asp | Lys | Trp | Ala
745 | Phe | Thr | Pro | Leu | His
750 | Glu | Ala | | Ala | Gln | Lys
755 | Gly | Arg | Thr | Gln | Leu
760 | Cys | Ala | Leu | Leu | Leu
765 | Ala | His | Gly | | Ala | Asp
770 | Pro | Thr | Leu | Lys | Asn
775 | Gln | Glu | Gly | Gln | Thr
780 | Pro | Leu | Asp | Leu | | Val
785 | Ser | Ala | Asp | Asp | Val
790 | Ser | Ala | Leu | Leu | Thr
795 | Ala | Ala | Met | Pro | Pro
800 | | Ser | Ala | Leu | Pro | Ser
805 | Cys | Tyr | Lys | Pro | Gln
810 | Val | Leu | Asn | Gly | Val
815 | Arg | | Ser | Pro | Gly | Ala
820 | Thr | Ala | Asp | Ala |
Leu
825 | Ser | Ser | Gly | Pro | Ser
830 | Ser | Pro | | Ser | Ser | Leu
835 | Ser | Ala | Ala | Ser | Ser
840 | Leu | Asp | Asn | Leu | Ser
845 | Gly | Ser | Phe | | Ser | Glu
850 | Leu | Ser | Ser | Val | Val
855 | Ser | Ser | Ser | Gly | Thr
860 | Glu | Gly | Ala | Ser | | Ser
865 | Leu | Glu | Lys | Lys | Glu
870 | Val | Pro | Gly | Val | Asp
875 | Phe | Ser | Ile | Thr | Gln
880 | | Phe | Val | Arg | Asn | Leu
885 | Gly | Leu | Glu | His | Leu
890 | Met | Asp | Ile | Phe | Glu
895 | Arg | | Glu | Gln | Ile | Thr
900 | Leu | Asp | Val | Leu | Val
905 | Glu | Met | Gly | His | Lys
910 | Glu | Leu | | Lys | Glu | Ile
915 | Gly | Ile | Asn | Ala | Tyr
920 | Gly | His | Arg | His | Lys
925 | Leu | Ile | Lys | | Gly | Val
930 | Glu | Arg | Leu | Ile | Ser
935 | Gly | Gln | Gln | Gly | Leu
940 | Asn | Pro | Tyr | Leu | | Thr
945 | Leu | Asn | Thr | Ser | Gly
950 | Ser | Gly | Thr | Ile | Leu
955 | Ile | Asp | Leu | Ser | Pro
960 | | Asp | Asp | Lys | Glu | Phe
965 | Gln | Ser | Val | Glu | Glu
970 | Glu | Met | Gln | Ser | Thr
975 | Val | | Arg | Glu | His | Arg
980 | Aap | Gly | Gly | His | Ala
985 | Gly | Gly | Ile | Phe | Asn
990 | Arg | Tyr | | Asn | Ile | Leu
995 | Lys | Ile | Gln | Lys | Val | | s Ası | ı Ly: | a Ly: | s Le | | rp G | lu Arg | | Tyr | Thr
1010 | | a Arg | g Arg | J Lys | Gl: | | al Se | er G | lu G | | sn 1
020 | His A | Asn l | His | | Ala | Asn
1025 | | ı Arg | g Met | Leu | 1 Phe | | is G | ly Se | er P: | | ne ' | Val 1 | Asn i | Ala | | Ile | Ile
1040 | | s Lys | Gl | / Phe | Asp
104 | | lu A | rg H: | is A | | yr :
050 | Ile (| Gly (| Gly | | Met | Phe
1055 | - | / Ala | a Gly | ⁄ Il∈ | Ty: | | ne Al | la G | lu A | | er : | Ser 1 | jās : | Ser | | Asn | Gln
1070 | | r Val | l Tyı | Gly | 7 Ile
10 | | ly G | ly G | ly Tl | | ly (| Cys 1 | ?ro ^v | Val | | His | Lys
1085 | _ | Arg | g Sei | Cys | Ty: | | le Cy | ys H: | is A: | - | ln 1 | Leu 1 | Leu 1 | Phe | | CÀa | Arg | | l Thi | . Let | ı Gly | ' Ly: | | er Pl | ne Le | eu Gi | | ne : | Ser A | Ala I | Met | ``` Lys Met Ala His Ser Pro Pro Gly His His Ser Val Thr Gly Arg 1120 Pro Ser Val Asn Gly Leu Ala Leu Ala Glu Tyr Val Ile Tyr Arg 1135 Gly Glu Gln Ala Tyr Pro Glu Tyr Leu Ile Thr Tyr Gln Ile Met 1150 Arg Pro Glu Gly Met Val Asp Gly <210> SEQ ID NO 45 <211> LENGTH: 197 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 45 Met Tyr Trp Ser Asn Gln Ile Thr Arg Arg Leu Gly Glu Arg Val Gln Gly Phe Met Ser Gly Ile Ser Pro Gln Gln Met Gly Glu Pro Glu Gly Ser Trp Ser Gly Lys Asn Pro Gly Thr Met Gly Ala Ser Arg Leu Tyr 40 Thr Leu Val Leu Val Leu Gln Pro Gln Arg Val Leu Leu Gly Met Lys Lys Arg Gly Phe Gly Ala Gly Arg Trp Asn Gly Phe Gly Gly Lys Val Gln Glu Gly Glu Thr Ile Glu Asp Gly Ala Arg Arg Glu Leu Gln Glu 90 Glu Ser Gly Leu Thr Val Asp Ala Leu His Lys Val Gly Gln Ile Val 105 Phe Glu Phe Val Gly Glu Pro Glu Leu Met Asp Val His Val Phe Cys Thr Asp Ser Ile Gln Gly Thr Pro Val Glu Ser Asp Glu Met Arg Pro 135 Cys Trp Phe Gln Leu Asp Gln Ile Pro Phe Lys Asp Met Trp Pro Asp Asp Ser Tyr Trp Phe Pro Leu Leu Gln Lys Lys Lys Phe His Gly Tyr Phe Lys Phe Gln Gly Gln Asp Thr Ile Leu Asp Tyr Thr Leu Arg Glu Val Asp Thr Val 195 <210> SEQ ID NO 46 <211> LENGTH: 536 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 Met Gly Ser Asn Lys Ser Lys Pro Lys Asp Ala Ser Gln Arg Arg Ser Leu Glu Pro Ala Glu Asn Val His Gly Ala Gly Gly Ala Phe 25 Pro Ala Ser Gln Thr Pro Ser Lys Pro Ala Ser Ala Asp Gly His Arg 40 ``` | Gly | Pro
50 | Ser | Ala | Ala | Phe | Ala
55 | Pro | Ala | Ala | Ala | Glu
60 | Pro | ГÀа | Leu | Phe | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Gly
65 | Gly | Phe | Asn | Ser | Ser
70 | Asp | Thr | Val | Thr | Ser
75 | Pro | Gln | Arg | Ala | Gly
80 | | Pro | Leu | Ala | Gly | Gly
85 | Val | Thr | Thr | Phe | Val
90 | Ala | Leu | Tyr | Asp | Tyr
95 | Glu | | Ser | Arg | Thr | Glu
100 | Thr | Asp | Leu | Ser | Phe
105 | Lys | Lys | Gly | Glu | Arg
110 | Leu | Gln | | Ile | Val | Asn
115 | Asn | Thr | Glu | Gly | Asp
120 | Trp | Trp | Leu | Ala | His
125 | Ser | Leu | Ser | | Thr | Gly
130 | Gln | Thr | Gly | Tyr | Ile
135 | Pro | Ser | Asn | Tyr | Val
140 | Ala | Pro | Ser | Asp | | Ser
145 | Ile | Gln | Ala | Glu | Glu
150 | Trp | Tyr | Phe | Gly | Lys
155 | Ile | Thr | Arg | Arg | Glu
160 | | Ser | Glu | Arg | Leu | Leu
165 | Leu | Asn | Ala | Glu | Asn
170 | Pro | Arg | Gly | Thr | Phe
175 | Leu | | Val | Arg | Glu | Ser
180 | Glu | Thr | Thr | Lys | Gly
185 | Ala | Tyr | Cys | Leu | Ser
190 | Val | Ser | | Asp | Phe | Asp
195 | Asn | Ala | Lys | Gly | Leu
200 | Asn | Val | Lys | His | Tyr
205 | Lys | Ile | Arg | | ГÀв | Leu
210 | Asp | Ser | Gly | Gly | Phe
215 | Tyr | Ile | Thr | Ser | Arg
220 | Thr | Gln | Phe | Asn | | Ser
225 | Leu | Gln | Gln | Leu | Val
230 | Ala | Tyr | Tyr | Ser | Lys
235 | His | Ala | Asp | Gly | Leu
240 | | CAa | His | Arg | Leu | Thr
245 | Thr | Val | Cys | Pro | Thr
250 | Ser | ГÀа | Pro | Gln | Thr
255 | Gln | | Gly | Leu | Ala | Lys
260 | Asp | Ala | Trp | Glu | Ile
265 | Pro | Arg | Glu | Ser | Leu
270 | Arg | Leu | | Glu | Val | Lys
275 | Leu | Gly | Gln | Gly | Cys
280 | Phe | Gly | Glu | Val | Trp
285 | Met | Gly | Thr | | Trp | Asn
290 | Gly | Thr | Thr | Arg | Val
295 | Ala | Ile | Lys | Thr | Leu
300 | Lys | Pro | Gly | Thr | | Met
305 | Ser | Pro | Glu | Ala | Phe
310 | Leu | Gln | Glu | Ala | Gln
315 | Val | Met | Lys | Lys | Leu
320 | | Arg | His | Glu | Lys | Leu
325 | Val | Gln | Leu | Tyr | Ala
330 | Val | Val | Ser | Glu | Glu
335 | Pro | | Ile | Tyr | Ile | Val
340 | Thr | Glu | Tyr | Met | Ser
345 | Lys | Gly | Ser | Leu | Leu
350 | Asp | Phe | | Leu | Lys | Gly
355 | Glu | Thr | Gly | Lys | Tyr
360 | Leu | Arg | Leu | Pro | Gln
365 | Leu | Val | Asp | | Met | Ala
370 | Ala | Gln | Ile | Ala | Ser
375 | Gly | Met | Ala | Tyr | Val
380 | Glu | Arg | Met | Asn | | Tyr
385 | Val | His | Arg | Asp | Leu
390 | Arg | Ala | Ala | Asn | Ile
395 | Leu | Val | Gly | Glu | Asn
400 | | Leu | Val | Сув | Lys | Val
405 | Ala | Asp | Phe | Gly | Leu
410 | Ala | Arg | Leu | Ile | Glu
415 | Asp | | Asn | Glu | Tyr | Thr
420 | Ala | Arg | Gln | Gly | Ala
425 | Lys | Phe | Pro | Ile | Lys
430 | Trp | Thr | | Ala | Pro | Glu
435 | Ala | Ala | Leu | Tyr | Gly
440 | Arg | Phe | Thr | Ile | Lys
445 | Ser | Asp | Val | | Trp | Ser | | Gly | Ile | Leu | Leu | Thr | Glu | Leu | Thr | Thr | Lys | Gly | Arg | Val | | | 450 | | | | | 455 | | | | | 460 | | | | | |------------|--------------------------------------|----------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Pro
465 | Tyr | Pro | Gly | Met | Val
470 | Asn | Arg | Glu | Val | Leu
475 | Asp | Gln | Val | Glu | Arg
480 | | Gly | Tyr | Arg | Met | Pro
485 | | Pro | Pro | Glu | Cys
490 | Pro | Glu | Ser | Leu | His
495 | Asp | | Leu | Met | CAa | Gln
500 | | Trp | Arg | Lys | Glu
505 | Pro | Glu | Glu | Arg | Pro
510 | Thr | Phe | | Glu | Tyr | Leu
515 | Gln | Ala | Phe | Leu | Glu
520 | Asp | Tyr | Phe | Thr | Ser
525 | Thr | Glu | Pro | | Gln | Tyr
530 | | Pro | Gly | Glu | Asn
535 | Leu | | | | | | | | | | <21: | 0 > SI
1 > LI
2 > TI
3 > OI | ENGTI
YPE : | H: 1
PRT | 52 | o saj | pien: | s | | | | | | | | | | < 40 | 0 > S | EQUE | NCE: | 47 | | | | | | | | | | | | | Met
1 | Pro | Ala | His | Ser
5 | Leu | Val | Met | Ser | Ser
10 | Pro | Ala | Leu | Pro | Ala
15 | Phe | | Leu | Leu | Сла | Ser
20 | Thr | Leu | Leu | Val | Ile
25 | Lys | Met | Tyr | Val | Val
30 | Ala | Ile | | Ile | Thr | Gly
35 | Gln | Val | Arg | Leu | Arg
40 | Lys | Lys | Ala | Phe | Ala
45 | Asn | Pro | Glu | | Asp | Ala
50 | Leu | Arg | His | Gly | Gly
55 | Pro | Gln | Tyr | Cys | Arg
60 | Ser | Asp | Pro | Asp | | Val
65 | Glu | Arg | Cha | Leu | Arg
70 | Ala | His | Arg | Asn | Asp
75 | Met | Glu | Thr | Ile | Tyr
80 | | Pro | Phe | Leu | Phe | Leu
85 | Gly | Phe | Val | Tyr | Ser
90 | Phe | Leu | Gly | Pro | Asn
95 | Pro | | Phe | Val | Ala | Trp | | His | Phe | Leu | Val
105 | Phe | Leu | Val | Gly | Arg
110 | Val | Ala | | His | Thr | Val
115 | Ala | Tyr | Leu | Gly | Lys
120 | Leu | Arg | Ala | Pro | Ile
125 | Arg | Ser | Val | | Thr | Tyr
130 | Thr | Leu | Ala | Gln | Leu
135 | Pro | Cys | Ala | Ser | Met
140 | Ala | Leu | Gln | Ile | | Leu
145 | Trp | Glu | Ala | Ala | Arg
150 | His | Leu | | | | | | | | | | <21: | 0 > Sl
1 > Ll
2 > Tl
3 > Ol | ENGT
YPE : | H: 1
PRT | 61 | o saj | pien | s | | | | | | | | | | < 40 | 0> S1 | EQUE | NCE: | 48 | | | | | | | | | | | | | Met
1 | Asp | Gln | Glu | Thr
5 | Val | Gly | Asn | Val | Val
10 | Leu | Leu | Ala | Ile | Val
15 | Thr | | Leu | Ile | Ser | Val
20 | Val | Gln | Asn | Gly | Phe
25 | Phe | Ala | His | Lys | Val
30 | Glu | His | | Glu | Ser | Arg
35 | Thr | Gln | Asn | Gly | Arg
40 | Ser | Phe | Gln | Arg | Thr
45 | Gly | Thr | Leu | | Ala | Phe
50 | Glu | Arg | Val | Tyr | Thr | Ala | Asn | Gln | Asn | Cys | Val | Asp | Ala | Tyr | | Pro | Thr | Phe | Leu | Ala | Val | | Trp | Ser | Ala | Gly | Leu | Leu | Cys | Ser | Gln | ``` 75 Val Pro Ala Ala Phe Ala Gly Leu Met Tyr Leu Phe Val Arg Gln Lys Tyr Phe Val Gly Tyr Leu Gly Glu Arg Thr Gln Ser Thr Pro Gly Tyr Ile Phe Gly Lys Arg Ile Ile Leu Phe Leu Phe Leu Met Ser Val Ala Gly Ile Phe Asn Tyr Tyr Leu
Ile Phe Phe Phe Gly Ser Asp Phe Glu Asn Tyr Ile Lys Thr Ile Ser Thr Thr Ile Ser Pro Leu Leu Leu Ile <210> SEQ ID NO 49 <211> LENGTH: 132 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 49 Met Cys Asp Ala Phe Val Gly Thr Trp Lys Leu Val Ser Ser Glu Asn Phe Asp Asp Tyr Met Lys Glu Val Gly Val Gly Phe Ala Thr Arg Lys 25 Val Ala Gly Met Ala Lys Pro Asn Met Ile Ile Ser Val Asn Gly Asp 40 Val Ile Thr Ile Lys Ser Glu Ser Thr Phe Lys Asn Thr Glu Ile Ser 55 Phe Ile Leu Gly Gln Glu Phe Asp Glu Val Thr Ala Asp Asp Arg Lys Val Lys Ser Thr Ile Thr Leu Asp Gly Gly Val Leu Val His Val Gln Lys Trp Asp Gly Lys Ser Thr Thr Ile Lys Arg Lys Arg Glu Asp Asp Lys Leu Val Val Glu Cys Val Met Lys Gly Val Thr Ser Thr Arg Val 120 Tyr Glu Arg Ala <210> SEQ ID NO 50 <211> LENGTH: 1821 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 50 Met Ser Cys Glu Arg Lys Gly Leu Ser Glu Leu Arg Ser Glu Leu Tyr Phe Leu Ile Ala Arg Phe Leu Glu Asp Gly Pro Cys Gln Gln Ala Ala 25 Gln Val Leu Ile Arg Glu Val Ala Glu Lys Glu Leu Leu Pro Arg Arg 40 Thr Asp Trp Thr Gly Lys Glu His Pro Arg Thr Tyr Gln Asn Leu Val 55 Lys Tyr Tyr Arg His Leu Ala Pro Asp His Leu Leu Gln Ile Cys His ``` | Arg | Leu | Gly | Pro | Leu | Leu | Glu | Gln | Glu | Ile | Pro | Gln | Ser | Val | Pro | Gly | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | | 85 | | | | | 90 | | | | | 95 | | | Val | Gln | Thr | Leu
100 | Leu | Gly | Ala | Gly | Arg
105 | Gln | Ser | Leu | Leu | Arg
110 | Thr | Asn | | ГÀа | Ser | Cys
115 | ГÀа | His | Val | Val | Trp
120 | ГÀа | Gly | Ser | Ala | Leu
125 | Ala | Ala | Leu | | His | Cys
130 | Gly | Arg | Pro | Pro | Glu
135 | Ser | Pro | Val | Asn | Tyr
140 | Gly | Ser | Pro | Pro | | Ser
145 | Ile | Ala | Asp | Thr | Leu
150 | Phe | Ser | Arg | Lys | Leu
155 | Asn | Gly | ГÀа | Tyr | Arg
160 | | Leu | Glu | Arg | Leu | Val
165 | Pro | Thr | Ala | Val | Tyr
170 | Gln | His | Met | ràa | Met
175 | His | | Lys | Arg | Ile | Leu
180 | Gly | His | Leu | Ser | Ser
185 | Val | Tyr | CAa | Val | Thr
190 | Phe | Asp | | Arg | Thr | Gly
195 | Arg | Arg | Ile | Phe | Thr
200 | Gly | Ser | Asp | Asp | Сув
205 | Leu | Val | ГЛа | | Ile | Trp
210 | Ala | Thr | Asp | Asp | Gly
215 | Arg | Leu | Leu | Ala | Thr
220 | Leu | Arg | Gly | His | | Ala
225 | Ala | Glu | Ile | Ser | Asp
230 | Met | Ala | Val | Asn | Tyr
235 | Glu | Asn | Thr | Met | Ile
240 | | Ala | Ala | Gly | Ser | Cys
245 | Asp | Lys | Met | Ile | Arg
250 | Val | Trp | Cys | Leu | Arg
255 | Thr | | Cys | Ala | Pro | Leu
260 | Ala | Val | Leu | Gln | Gly
265 | His | Ser | Ala | Ser | Ile
270 | Thr | Ser | | Leu | Gln | Phe
275 | Ser | Pro | Leu | CÀa | Ser
280 | Gly | Ser | Lys | Arg | Tyr
285 | Leu | Ser | Ser | | Thr | Gly
290 | Ala | Asp | Gly | Thr | Ile
295 | СЛа | Phe | Trp | Leu | Trp
300 | Asp | Ala | Gly | Thr | | Leu
305 | Lys | Ile | Asn | Pro | Arg
310 | Pro | Ala | Lys | Phe | Thr
315 | Glu | Arg | Pro | Arg | Pro
320 | | Gly | Val | Gln | Met | Ile
325 | CAa | Ser | Ser | Phe | Ser
330 | Ala | Gly | Gly | Met | Phe
335 | Leu | | Ala | Thr | Gly | Ser
340 | Thr | Asp | His | Ile | Ile
345 | Arg | Val | Tyr | Phe | Phe
350 | Gly | Ser | | Gly | Gln | Pro
355 | Glu | Lys | Ile | Ser | Glu
360 | Leu | Glu | Phe | His | Thr
365 | Asp | Lys | Val | | Asp | Ser
370 | Ile | Gln | Phe | Ser | Asn
375 | Thr | Ser | Asn | Arg | Phe
380 | Val | Ser | Gly | Ser | | Arg
385 | Asp | Gly | Thr | Ala | Arg
390 | Ile | Trp | Gln | Phe | Lys
395 | Arg | Arg | Glu | Trp | Lys
400 | | Ser | Ile | Leu | Leu | Asp
405 | Met | Ala | Thr | Arg | Pro
410 | Ala | Gly | Gln | Asn | Leu
415 | Gln | | Gly | Ile | Glu | Asp
420 | Lys | Ile | Thr | Lys | Met
425 | Lys | Val | Thr | Met | Val
430 | Ala | Trp | | Asp | Arg | His
435 | Asp | Asn | Thr | Val | Ile
440 | Thr | Ala | Val | Asn | Asn
445 | Met | Thr | Leu | | Lys | Val
450 | Trp | Asn | Ser | Tyr | Thr
455 | Gly | Gln | Leu | Ile | His
460 | Val | Leu | Met | Gly | | His
465 | Glu | Asp | Glu | Val | Phe
470 | Val | Leu | Glu | Pro | His
475 | Pro | Phe | Asp | Pro | Arg
480 | | _ | | | | | | | | | | | | | | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Val | Leu | Phe | Ser | Ala
485 | Gly | His | Asp | Gly | Asn
490 | Val | Ile | Val | Trp | Asp
495 | Leu | | Ala | Arg | Gly | Val
500 | ГЛа | Ile | Arg | Ser | Tyr
505 | Phe | Asn | Met | Ile | Glu
510 | Gly | Gln | | Gly | His | Gly
515 | Ala | Val | Phe | Asp | Cys
520 | Lys | Cys | Ser | Pro | Asp
525 | Gly | Gln | His | | Phe | Ala
530 | Сув | Thr | Asp | Ser | His
535 | Gly | His | Leu | Leu | Ile
540 | Phe | Gly | Phe | Gly | | Ser
545 | Ser | Ser | Lys | Tyr | Asp
550 | Lys | Ile | Ala | Asp | Gln
555 | Met | Phe | Phe | His | Ser
560 | | Asp | Tyr | Arg | Pro | Leu
565 | Ile | Arg | Asp | Ala | Asn
570 | Asn | Phe | Val | Leu | Asp
575 | Glu | | Gln | Thr | Gln | Gln
580 | Ala | Pro | His | Leu | Met
585 | Pro | Pro | Pro | Phe | Leu
590 | Val | Asp | | Val | Asp | Gly
595 | Asn | Pro | His | Pro | Ser
600 | Arg | Tyr | Gln | Arg | Leu
605 | Val | Pro | Gly | | Arg | Glu
610 | Asn | Cys | Arg | Glu | Glu
615 | Gln | Leu | Ile | Pro | Gln
620 | Met | Gly | Val | Thr | | Ser
625 | Ser | Gly | Leu | Asn | Gln
630 | Val | Leu | Ser | Gln | Gln
635 | Ala | Asn | Gln | Glu | Ile
640 | | Ser | Pro | Leu | Asp | Ser
645 | Met | Ile | Gln | Arg | Leu
650 | Gln | Gln | Glu | Gln | Asp
655 | Leu | | Arg | Arg | Ser | Gly
660 | Glu | Ala | Val | Ile | Ser
665 | Asn | Thr | Ser | Arg | Leu
670 | Ser | Arg | | Gly | Ser | Ile
675 | Ser | Ser | Thr | Ser | Glu
680 | Val | His | Ser | Pro | Pro
685 | Asn | Val | Gly | | Leu | Arg
690 | Arg | Ser | Gly | Gln | Ile
695 | Glu | Gly | Val | Arg | Gln
700 | Met | His | Ser | Asn | | Ala
705 | Pro | Arg | Ser | Glu | Ile
710 | Ala | Thr | Glu | Arg | Asp
715 | Leu | Val | Ala | Trp | Ser
720 | | Arg | Arg | Val | Val | Val
725 | Pro | Glu | Leu | Ser | Ala
730 | Gly | Val | Ala | Ser | Arg
735 | Gln | | Glu | Glu | Trp | Arg
740 | Thr | Ala | ГÀз | Gly | Glu
745 | Glu | Glu | Ile | ГÀа | Thr
750 | Tyr | Arg | | Ser | Glu | Glu
755 | Lys | Arg | ГЛа | His | Leu
760 | Thr | Val | Pro | ГЛа | Glu
765 | Asn | ГÀа | Ile | | Pro | Thr
770 | Val | Ser | Lys | Asn | His
775 | Ala | His | Glu | His | Phe
780 | Leu | Asp | Leu | Gly | | Glu
785 | Ser | Lys | Lys | Gln | Gln
790 | Thr | Asn | Gln | His | Asn
795 | Tyr | Arg | Thr | Arg | Ser
800 | | Ala | Leu | Glu | Glu | Thr
805 | Pro | Arg | Pro | Ser | Glu
810 | Glu | Ile | Glu | Asn | Gly
815 | Ser | | Ser | Ser | Ser | Asp
820 | Glu | Gly | Glu | Val | Val
825 | Ala | Val | Ser | Gly | Gly
830 | Thr | Ser | | Glu | Glu | Glu
835 | Glu | Arg | Ala | Trp | His
840 | Ser | Asp | Gly | Ser | Ser
845 | Ser | Asp | Tyr | | Ser | Ser
850 | Asp | Tyr | Ser | Asp | Trp
855 | Thr | Ala | Asp | Ala | Gly
860 | Ile | Asn | Leu | Gln | | Pro
865 | Pro | ГЛа | Lys | Val | Pro
870 | ГЛа | Asn | Lys | Thr | Lys
875 | ГЛа | Ala | Glu | Ser | Ser
880 | | Ser | Asp | Glu | Glu | Glu | Glu | Ser | Glu | Lys | Gln | Lys | Gln | Lys | Gln | Ile | Lys | | | | | | 885 | | | | 8 | 390 | | | | 89 | 5 | |------------|-------------|------------|-------|------------|------------|---------------|--------------|-----------------|--------------|--------------|--------------|-------------|-------|--------------| | Lys | Glu | Lys | Lys | Lys | Val | Asn (| | lu I
05 | ya y | Asp (| Gly P | ro Il
91 | | r Pro | | Lys | Lys | Lys
915 | Lys | Pro | Lys | | Arg L
920 | ys (| 3ln 1 | Lys i | | eu Al
25 | a Vai | l Gly | | Glu | Leu
930 | Thr | Glu | Asn | | Leu '
935 | Thr L | eu (| 3lu (| | Гтр L
940 | eu Pr | o Se: | r Thr | | Trp
945 | Ile | Thr | Asp | Thr | Ile
950 | Pro i | Arg A | rg (| - | Pro 1
955 | Phe V | al Pr | o Gli | n Met
960 | | Gly | Asp | Glu | Val | Tyr
965 | Tyr | Phe i | Arg G | | 31y 1
970 | His (| 3lu A | la Ty | r Vai | | | Met | Ala | Arg | PAs | Asn | ГÀа | Ile ' | | er 1
85 | le i | Asn 1 | Pro L | ys Ly
99 | | n Pro | | Trp | His | Lys
995 | Met | Glu | Leu | | Glu
1000 | Gln | Glu | Leu | Met | Lys
1005 | Ile ' | Val Gly | | Ile | Lys
1010 | | c Glu | ı Val | l Gly | Leu
101! | | Thi | . Lei | u Cy | 7 Cys | Leu
0 | Lys | Leu | | Ala | Phe
1025 | | ı Asl | Pro | Asp | Thr
103 | | Lys | E Lei | u Th: | r Gly
103 | Gly
5 | Ser | Phe | | Thr | Met
1040 | | з Туз | r His | a Asp | Met
104! | | Ası | Va: | 1 I1 | 2 Asp | Phe
0 | Leu | Val | | Leu | Arg
1055 | | n Glr | n Phe | e Asp | 106 | | Lys | з Ту: | r Ar | g Arg
106 | | Asn | Ile | | Gly | Asp
1070 | | g Phe | e Arç | g Ser | Val
107! | | . Asl | As] | p Ala | a Trp
108 | | Phe | Gly | | Thr | Ile
1085 | | ı Sei | r Glr | n Glu | Pro
109 | | Glr | ı Lei | u Glı | 1 Tyr
109 | Pro
5 | Asp | Ser | | Leu | Phe
1100 | | n Cys | з Туз | r Asn | Val
110 | | Trp | As] | p Ası | n Gly
111 | Asp
0 | Thr | Glu | | Lys | Met
1115 | | r Pro | o Trp |) Asp | Met
112 | | . Let | ı Ile | e Pro | Asn
112 | | Ala | Val | | Phe | Pro
1130 | | ı Glı | ı Let | ı Gly | Thr
113 | | Va] | l Pro | o Lei | 1 Thr
114 | | Gly | Glu | | Cys | Arg
1145 | | . Let | ı Ile | e Tyr | Lys
115 | | Let | ı Asj | p Gl | / Glu
115 | | Gly | Thr |
 Asn | Pro
1160 | | g Asl | Glu | ı Glu | . Cys
116! | | Arg | g Ile | e Vai | l Ala
117 | | Ile | Asn | | Gln | Leu
1175 | | Thi | r Lei | ı Asp | 11e | | Sei | r Ala | a Phe | 9 Val
118 | Ala
5 | Pro | Val | | Asp | Leu
1190 | | n Ala | а Туз | r Pro | Met
119 | | Cys | Th: | r Val | l Val
120 | Ala
O | Tyr | Pro | | Thr | Asp
1205 | | ı Sei | r Thi | r Ile | Lys
121 | | Arç | g Lei | u Gli | 1 Asn
121 | Arg
5 | Phe | Tyr | | Arg | Arg
1220 | | l Sei | r Sei | r Leu | Met
122! | _ | Glu | ı Vai | l Ar | g Tyr
123 | Ile
O | Glu | His | | Asn | Thr
1235 | | g Thi | r Phe | e Asn | Glu
124 | | Gl _y | / Se: | r Pro | 11e
124 | Val
5 | Lys | Ser | | Ala | Lys
1250 | | e Val | l Thi | r Asp | Leu
125! | | . Le | ı Hi: | s Pho | 11e | Lys
0 | Asp | Gln | | Thr | Cys
1265 | | a Ası | ı Ile | e Ile | Pro
127 | | . Туз | Ası | n Se: | r Met
127 | Lys
5 | Lys | Lys | | | | | | | | | | | | | | | | | | Val | Leu
1280 | Ser | Asp | Ser | Glu | Asp
1285 | Glu | Glu | Lys | Asp | Ala
1290 | Asp | Val | Pro | |-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | Gly | Thr
1295 | Ser | Thr | Arg | Lys | Arg
1300 | Lys | Asp | His | Gln | Pro
1305 | Arg | Arg | Arg | | Leu | Arg
1310 | Asn | Arg | Ala | Gln | Ser
1315 | Tyr | Asp | Ile | Gln | Ala
1320 | Trp | Lys | Lys | | Gln | Cys
1325 | Glu | Glu | Leu | Leu | Asn
1330 | Leu | Ile | Phe | Gln | Сув
1335 | Glu | Asp | Ser | | Glu | Pro
1340 | Phe | Arg | Gln | Pro | Val
1345 | Asp | Leu | Leu | Glu | Tyr
1350 | Pro | Asp | Tyr | | Arg | Asp
1355 | Ile | Ile | Asp | Thr | Pro
1360 | Met | Asp | Phe | Ala | Thr
1365 | Val | Arg | Glu | | Thr | Leu
1370 | Glu | Ala | Gly | Asn | Tyr
1375 | Glu | Ser | Pro | Met | Glu
1380 | Leu | Cys | ГÀа | | Asp | Val
1385 | Arg | Leu | Ile | Phe | Ser
1390 | Asn | Ser | Lys | Ala | Tyr
1395 | Thr | Pro | Ser | | Lys | Arg
1400 | Ser | Arg | Ile | Tyr | Ser
1405 | Met | Ser | Leu | Arg | Leu
1410 | Ser | Ala | Phe | | Phe | Glu
1415 | Glu | His | Ile | Ser | Ser
1420 | Val | Leu | Ser | Asp | Tyr
1425 | Lys | Ser | Ala | | Leu | Arg
1430 | Phe | His | Lys | Arg | Asn
1435 | Thr | Ile | Thr | Lys | Arg
1440 | Arg | Lys | ГÀа | | Arg | Asn
1445 | Arg | Ser | Ser | Ser | Val
1450 | Ser | Ser | Ser | Ala | Ala
1455 | Ser | Ser | Pro | | Glu | Arg
1460 | Lys | Lys | Arg | Ile | Leu
1465 | ГÀв | Pro | Gln | Leu | Lys
1470 | Ser | Glu | Ser | | Ser | Thr
1475 | Ser | Ala | Phe | Ser | Thr
1480 | Pro | Thr | Arg | Ser | Ile
1485 | Pro | Pro | Arg | | His | Asn
1490 | Ala | Ala | Gln | Ile | Asn
1495 | Gly | Lys | Thr | Glu | Ser
1500 | Ser | Ser | Val | | Val | Arg
1505 | Thr | Arg | Ser | Asn | Arg
1510 | Val | Val | Val | Asp | Pro
1515 | Val | Val | Thr | | Glu | Gln
1520 | Pro | Ser | Thr | Ser | Ser
1525 | Ala | Ala | Lys | Thr | Phe
1530 | Ile | Thr | ГÀа | | Ala | Asn
1535 | Ala | Ser | Ala | Ile | Pro
1540 | Gly | Lys | Thr | Ile | Leu
1545 | Glu | Asn | Ser | | Val | Lys
1550 | His | Ser | Lys | Ala | Leu
1555 | Asn | Thr | Leu | Ser | Ser
1560 | Pro | Gly | Gln | | Ser | Ser
1565 | | Ser | His | Gly | Thr
1570 | | Asn | Asn | Ser | Ala
1575 | | Glu | Asn | | Met | Glu
1580 | ГÀа | Glu | Lys | Pro | Val
1585 | Lys | Arg | Lys | Met | Lys
1590 | | Ser | Val | | Leu | Pro
1595 | Lys | Ala | Ser | Thr | Leu
1600 | Ser | Lys | Ser | Ser | Ala
1605 | Val | Ile | Glu | | Gln | Gly
1610 | Asp | Cys | Lys | Asn | Asn
1615 | Ala | Leu | Val | Pro | Gly
1620 | Thr | Ile | Gln | | Val | Asn
1625 | Gly | His | Gly | Gly | Gln
1630 | | Ser | Lys | Leu | Val
1635 | Lys | Arg | Gly | | Pro | Gly
1640 | Arg | Lys | Pro | Lys | Val
1645 | Glu | Val | Asn | Thr | Asn
1650 | Ser | Gly | Glu | | 1655 1660 1665 | | |--|--| | Ala Lys Pro Glu Asp Leu Glu Gln Asn Asn Val His Pro Ile Arg
1670 1675 1680 | | | Asp Glu Val Leu Pro Ser Ser Thr Cys Asn Phe Leu Ser Glu Thr 1685 | | | Asn Asn Val Lys Glu Asp Leu Leu Gln Lys Lys Asn Arg Gly Gly 1700 1705 | | | Arg Lys Pro Lys Arg Lys Met Lys Thr Gln Lys Leu Asp Ala Asp 1715 1720 1725 | | | Leu Leu Val Pro Ala Ser Val Lys Val Leu Arg Arg Ser Asn Arg
1730 1735 1740 | | | Lys Lys Ile Asp Asp Pro Ile Asp Glu Glu Glu Phe Glu Glu 1745 | | | Leu Lys Gly Ser Glu Pro His Met Arg Thr Arg Asn Gln Gly Arg 1760 1765 1770 | | | Arg Thr Ala Phe Tyr Asn Glu Asp Asp Ser Glu Glu Glu Gln Arg 1775 1780 1785 | | | Gln Leu Leu Phe Glu Asp Thr Ser Leu Thr Phe Gly Thr Ser Ser 1790 1795 1800 | | | Arg Gly Arg Val Arg Lys Leu Thr Glu Lys Ala Lys Ala Asn Leu
1805 1810 1815 | | | Ile Gly Trp
1820 | | | <210> SEQ ID NO 51
<211> LENGTH: 158 | | | <212> TYPE: PRT
<213> ORGANISM: Homo sapiens | | | | | | <213> ORGANISM: Homo sapiens <400> SEQUENCE: 51 | | | <213> ORGANISM: Homo sapiens <400> SEQUENCE: 51 Met Ser Gly Ile Ala Leu Ser Arg Leu Ala Gln Glu Arg Lys Ala Trp 1 5 10 15 | | | <pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 51 Met Ser Gly Ile Ala Leu Ser Arg Leu Ala Gln Glu Arg Lys Ala Trp 1</pre> | | | <pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 51 Met Ser Gly Ile Ala Leu Ser Arg Leu Ala Gln Glu Arg Lys Ala Trp 1</pre> | | | <pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 51 Met Ser Gly Ile Ala Leu Ser Arg Leu Ala Gln Glu Arg Lys Ala Trp 1</pre> | | | <pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 51 Met Ser Gly Ile Ala Leu Ser Arg Leu Ala Gln Glu Arg Lys Ala Trp 1 Arg Lys Asp His Pro Phe Gly Phe Val Ala Val Pro Thr Lys Asn Pro 25 Asp Gly Thr Met Asn Leu Met Asn Trp Glu Cys Ala Ile Pro Gly Lys 45 Lys Gly Thr Pro Trp Glu Gly Gly Leu Phe Lys Leu Arg Met Leu Phe 50 Lys Asp Asp Asp Tyr Pro Ser Ser Pro Pro Lys Cys Lys Phe Glu Pro Pro 65 Leu Phe His Pro Asn Val Tyr Pro Ser Gly Thr Val Cys Leu Ser Ile 95</pre> | | | <pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 51 Met Ser Gly Ile Ala Leu Ser Arg Leu Ala Gln Glu Arg Lys Ala Trp 1</pre> | | | <pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 51 Met Ser Gly Ile Ala Leu Ser Arg Leu Ala Gln Glu Arg Lys Ala Trp 1 Arg Lys Asp His Pro Phe Gly Phe Val Ala Val Pro Thr Lys Asn Pro 25 Asp Gly Thr Met Asn Leu Met Asn Trp Glu Cys Ala Ile Pro Gly Lys 45 Lys Gly Thr Pro Trp Glu Gly Gly Leu Phe Lys Leu Arg Met Leu Phe 50 Lys Asp Asp Tyr Pro Ser Ser Pro Pro Lys Cys Lys Phe Glu Pro Pro 65 Leu Phe His Pro Asn Val Tyr Pro Ser Gly Thr Val Cys Leu Ser Ile 90 Leu Glu Glu Asp Lys Asp Trp Arg Pro Ala Ile Thr Ile Lys Gln Ile 100 Leu Leu Gly Ile Gln Glu Leu Leu Asn Glu Pro Asn Ile Gln Asp Pro 115</pre> | | | <pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 51 Met Ser Gly Ile Ala Leu Ser Arg Leu Ala Gln Glu Arg Lys Ala Trp 1</pre> | | ``` <211> LENGTH: 101 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 52 Met Ser Asn Thr Gln Ala Glu Arg Ser Ile Ile Gly Met Ile Asp Met Phe His Lys Tyr Thr Arg Arg Asp Asp Lys Ile Glu Lys Pro Ser Leu 20 25 30 Leu Thr Met Met Lys Glu Asn Phe Pro Asn Phe Leu Ser Ala Cys Asp Lys Lys Gly Thr Asn Tyr Leu Ala Asp Val Phe Glu Lys Lys Asp Lys Asn Glu Asp Lys Lys Ile Asp Phe Ser Glu Phe Leu Ser Leu Leu Gly 65 70 75 80 Asp Ile Ala Thr Asp Tyr His Lys Gln Ser His Gly Ala Ala Pro Cys 85 90 95 Ser Gly Gly Ser Gln 100 <210> SEQ ID NO 53 <211> LENGTH: 144 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 53 Met Lys Thr Leu Leu Leu Leu Ala Val Ile Met Ile Phe Gly Leu Leu 10 Gln Ala His Gly Asn Leu Val Asn Phe His Arg Met Ile Lys Leu Thr 25 Thr Gly Lys Glu Ala Ala Leu Ser Tyr Gly Phe Tyr Gly Cys His Cys Gly Val Gly Gly Arg Gly Ser Pro Lys Asp Ala Thr Asp Arg Cys Cys Val Thr His Asp Cys Cys Tyr Lys Arg Leu Glu Lys Arg Gly Cys Gly 65 70 75 80 Thr Lys Phe Leu Ser Tyr Lys Phe Ser Asn Ser Gly Ser Arg Ile Thr Cys Ala Lys Gln Asp Ser Cys Arg Ser Gln Leu Cys Glu Cys Asp Lys Ala Ala Ala Thr Cys Phe Ala Arg Asn Lys Thr Thr Tyr Asn Lys Lys 115 120 125 Tyr Gln Tyr Tyr Ser Asn Lys His Cys Arg Gly Ser Thr Pro Arg Cys <210> SEQ ID NO 54 <211> LENGTH: 1215 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 54 Met Thr Ser Thr Gly Gln Asp Ser Thr Thr Thr Arg Gln Arg Arg Ser 10 Arg Gln Asn Pro Gln Ser Pro Pro Gln Asp Ser Ser Val Thr Ser Lys 25 ``` | Arg | Asn | Ile
35 | Lys | Lys | Gly | Ala | Val
40 | Pro | Arg | Ser | Ile | Pro
45 | Asn | Leu | Ala | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Glu | Val
50 | Lys | Lys | Lys | Gly | Lys
55 | Met | Lys | Lys | Leu | Gly
60 | Gln | Ala | Met | Glu | | Glu
65 | Asp | Leu | Ile | Val | Gly
70 | Leu | Gln | Gly | Met | Asp
75 | Leu | Asn | Leu | Glu | Ala
80 | | Glu | Ala | Leu | Ala | Gly
85 | Thr | Gly | Leu | Val | Leu
90 | Asp | Glu | Gln | Leu | Asn
95 | Glu | | Phe | His | Cys | Leu
100 | Trp | Asp | Asp | Ser | Phe
105 | Pro | Glu | Gly | Pro | Glu
110 | Arg | Leu | | His | Ala | Ile
115 | Lys | Glu | Gln | Leu | Ile
120 | Gln | Glu | Gly | Leu | Leu
125 | Asp | Arg | Cha | | Val | Ser
130 | Phe | Gln | Ala | Arg | Phe
135 | Ala | Glu |
Lys | Glu | Glu
140 | Leu | Met | Leu | Val | | His
145 | Ser | Leu | Glu | Tyr | Ile
150 | Asp | Leu | Met | Glu | Thr
155 | Thr | Gln | Tyr | Met | Asn
160 | | Glu | Gly | Glu | Leu | Arg
165 | Val | Leu | Ala | Asp | Thr
170 | Tyr | Asp | Ser | Val | Tyr
175 | Leu | | His | Pro | Asn | Ser
180 | Tyr | Ser | Cys | Ala | Cys
185 | Leu | Ala | Ser | Gly | Ser
190 | Val | Leu | | Arg | Leu | Val
195 | Asp | Ala | Val | Leu | Gly
200 | Ala | Glu | Ile | Arg | Asn
205 | Gly | Met | Ala | | Ile | Ile
210 | Arg | Pro | Pro | Gly | His
215 | His | Ala | Gln | His | Ser
220 | Leu | Met | Asp | Gly | | Tyr
225 | Cys | Met | Phe | Asn | His
230 | Val | Ala | Val | Ala | Ala
235 | Arg | Tyr | Ala | Gln | Gln
240 | | Lys | His | Arg | Ile | Arg
245 | Arg | Val | Leu | Ile | Val
250 | Asp | Trp | Asp | Val | His
255 | His | | Gly | Gln | Gly | Thr
260 | Gln | Phe | Thr | Phe | Asp
265 | Gln | Asp | Pro | Ser | Val
270 | Leu | Tyr | | Phe | Ser | Ile
275 | His | Arg | Tyr | Glu | Gln
280 | Gly | Arg | Phe | Trp | Pro
285 | His | Leu | Lys | | Ala | Ser
290 | Asn | Trp | Ser | Thr | Thr
295 | Gly | Phe | Gly | Gln | Gly
300 | Gln | Gly | Tyr | Thr | | Ile
305 | Asn | Val | Pro | Trp | Asn
310 | Gln | Val | Gly | Met | Arg
315 | Asp | Ala | Asp | Tyr | Ile
320 | | Ala | Ala | Phe | Leu | His
325 | Val | Leu | Leu | Pro | Val
330 | Ala | Leu | Glu | Phe | Gln
335 | Pro | | Gln | Leu | Val | Leu
340 | Val | Ala | Ala | Gly | Phe
345 | Asp | Ala | Leu | Gln | Gly
350 | Asp | Pro | | ГÀа | Gly | Glu
355 | Met | Ala | Ala | Thr | Pro
360 | Ala | Gly | Phe | Ala | Gln
365 | Leu | Thr | His | | Leu | Leu
370 | Met | Gly | Leu | Ala | Gly
375 | Gly | Lys | Leu | Ile | Leu
380 | Ser | Leu | Glu | Gly | | Gly
385 | Tyr | Asn | Leu | Arg | Ala
390 | Leu | Ala | Glu | Gly | Val
395 | Ser | Ala | Ser | Leu | His
400 | | Thr | Leu | Leu | Gly | Asp
405 | Pro | Cya | Pro | Met | Leu
410 | Glu | Ser | Pro | Gly | Ala
415 | Pro | | Cys | Arg | Ser | Ala
420 | Gln | Ala | Ser | Val | Ser
425 | Cys | Ala | Leu | Glu | Ala
430 | Leu | Glu | | Pro | Phe | Trp | Glu | Val | Leu | Val | Arg | Ser | Thr | Glu | Thr | Val | Glu | Arg | Asp | | | | 435 | | | | | 440 | | | | | 445 | | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Asn | Met
450 | Glu | Glu | Asp | Asn | Val
455 | Glu | Glu | Ser | Glu | Glu
460 | Glu | Gly | Pro | Trp | | Glu
465 | Pro | Pro | Val | Leu | Pro
470 | Ile | Leu | Thr | Trp | Pro
475 | Val | Leu | Gln | Ser | Arg
480 | | Thr | Gly | Leu | Val | Tyr
485 | Asp | Gln | Asn | Met | Met
490 | Asn | His | CAa | Asn | Leu
495 | Trp | | Asp | Ser | His | His
500 | Pro | Glu | Val | Pro | Gln
505 | Arg | Ile | Leu | Arg | Ile
510 | Met | CÀa | | Arg | Leu | Glu
515 | Glu | Leu | Gly | Leu | Ala
520 | Gly | Arg | Сув | Leu | Thr
525 | Leu | Thr | Pro | | Arg | Pro
530 | Ala | Thr | Glu | Ala | Glu
535 | Leu | Leu | Thr | Cys | His
540 | Ser | Ala | Glu | Tyr | | Val
545 | Gly | His | Leu | Arg | Ala
550 | Thr | Glu | Lys | Met | Lув
555 | Thr | Arg | Glu | Leu | His
560 | | Arg | Glu | Ser | Ser | Asn
565 | Phe | Asp | Ser | Ile | Tyr
570 | Ile | CÀa | Pro | Ser | Thr
575 | Phe | | Ala | Cha | Ala | Gln
580 | Leu | Ala | Thr | Gly | Ala
585 | Ala | Cys | Arg | Leu | Val
590 | Glu | Ala | | Val | Leu | Ser
595 | Gly | Glu | Val | Leu | Asn
600 | Gly | Ala | Ala | Val | Val
605 | Arg | Pro | Pro | | Gly | His
610 | His | Ala | Glu | Gln | Asp
615 | Ala | Ala | Cys | Gly | Phe
620 | CAa | Phe | Phe | Asn | | Ser
625 | Val | Ala | Val | Ala | Ala
630 | Arg | His | Ala | Gln | Thr
635 | Ile | Ser | Gly | His | Ala
640 | | Leu | Arg | Ile | Leu | Ile
645 | Val | Asp | Trp | Asp | Val
650 | His | His | Gly | Asn | Gly
655 | Thr | | Gln | His | Met | Phe
660 | Glu | Asp | Asp | Pro | Ser
665 | Val | Leu | Tyr | Val | Ser
670 | Leu | His | | Arg | Tyr | Asp
675 | His | Gly | Thr | Phe | Phe
680 | Pro | Met | Gly | Asp | Glu
685 | Gly | Ala | Ser | | Ser | Gln
690 | Ile | Gly | Arg | Ala | Ala
695 | Gly | Thr | Gly | Phe | Thr
700 | Val | Asn | Val | Ala | | Trp
705 | Asn | Gly | Pro | Arg | Met
710 | Gly | Asp | Ala | Asp | Tyr
715 | Leu | Ala | Ala | Trp | His
720 | | Arg | Leu | Val | Leu | Pro
725 | Ile | Ala | Tyr | Glu | Phe
730 | Asn | Pro | Glu | Leu | Val
735 | Leu | | Val | Ser | Ala | Gly
740 | Phe | Asp | Ala | Ala | Arg
745 | Gly | Asp | Pro | Leu | Gly
750 | Gly | Cys | | Gln | Val | Ser
755 | Pro | Glu | Gly | Tyr | Ala
760 | His | Leu | Thr | His | Leu
765 | Leu | Met | Gly | | Leu | Ala
770 | Ser | Gly | Arg | Ile | Ile
775 | Leu | Ile | Leu | Glu | Gly
780 | Gly | Tyr | Asn | Leu | | Thr
785 | Ser | Ile | Ser | Glu | Ser
790 | Met | Ala | Ala | Сув | Thr
795 | Arg | Ser | Leu | Leu | Gly
800 | | Asp | Pro | Pro | Pro | Leu
805 | Leu | Thr | Leu | Pro | Arg
810 | Pro | Pro | Leu | Ser | Gly
815 | Ala | | Leu | Ala | Ser | Ile
820 | Thr | Glu | Thr | Ile | Gln
825 | Val | His | Arg | Arg | Tyr
830 | Trp | Arg | | Ser | Leu | Arg
835 | Val | Met | Lys | Val | Glu
840 | Asp | Arg | Glu | Gly | Pro
845 | Ser | Ser | Ser | | | | | | | | | | | | | | | | | | | Lys | Leu
850 | Val | Thr | Lys | Lys | Ala
855 | Pro | Gln | Pro | Ala | 860
Lys | Pro | Arg | Leu | Ala | |------------|-------------|------------|------------|------------|------------|--------------|-------------|------------|------------|------------|------------|-------------|------------|------------|------------| | Glu
865 | Arg | Met | Thr | Thr | Arg
870 | Glu | Lys | Lys | Val | Leu
875 | Glu | Ala | Gly | Met | Gly
880 | | Lys | Val | Thr | Ser | Ala
885 | Ser | Phe | Gly | Glu | Glu
890 | Ser | Thr | Pro | Gly | Gln
895 | Thr | | Asn | Ser | Glu | Thr
900 | Ala | Val | Val | Ala | Leu
905 | Thr | Gln | Asp | Gln | Pro
910 | Ser | Glu | | Ala | Ala | Thr
915 | Gly | Gly | Ala | Thr | Leu
920 | Ala | Gln | Thr | Ile | Ser
925 | Glu | Ala | Ala | | Ile | Gly
930 | Gly | Ala | Met | Leu | Gly
935 | Gln | Thr | Thr | Ser | Glu
940 | Glu | Ala | Val | Gly | | Gly
945 | Ala | Thr | Pro | Asp | Gln
950 | Thr | Thr | Ser | Glu | Glu
955 | Thr | Val | Gly | Gly | Ala
960 | | Ile | Leu | Asp | Gln | Thr
965 | Thr | Ser | Glu | Asp | Ala
970 | Val | Gly | Gly | Ala | Thr
975 | Leu | | Gly | Gln | Thr | Thr
980 | Ser | Glu | Glu | Ala | Val
985 | Gly | Gly | Ala | Thr | Leu
990 | Ala | Gln | | Thr | Thr | Ser
995 | Glu | Ala | Ala | Met | Glu
1000 | | y Ala | a Th: | r Le | u Asj | | ln T | hr Thr | | Ser | Glu
1010 | | ı Ala | a Pro | Gly | 7 Gl | | nr G | lu Le | eu I | | ln
020 | Thr | Pro | Leu | | Ala | Ser
1025 | | Thi | r Asp | His | Gl: | | nr P: | ro Pi | ro Tl | | er : | Pro ' | Val | Gln | | Gly | Thr
1040 | | Pro | o Glr | ı Ile | Se: | | ro S | er Th | ar Le | | le (
050 | Gly | Ser | Leu | | Arg | Thr
1055 | | ı Glı | ı Lev | ı Gly | 7 Se: | | lu S | er G | ln G | - | la .
065 | Ser | Glu | Ser | | Gln | Ala
1070 | | Gly | y Glu | ı Glu | 1 Ası
10' | | eu L∈ | eu G | ly G | | la .
080 | Ala | Gly | Gly | | Gln | Asp
1085 | | : Ala | a Asp | Ser | 109 | | ∋u Mo | et G | ln G | _ | er .
095 | Arg | Gly | Leu | | Thr | Asp
1100 | | n Ala | a Ile | e Phe | Ty: | | la V | al Th | nr P: | | eu : | Pro | Trp | Cys | | Pro | His
1115 | | ı Val | l Alá | a Val | . Cy: | | ro I | le Pi | ro A | | la (
125 | Gly : | Leu | Asp | | Val | Thr
1130 | | n Pro | o Cys | s Glγ | 7 Asj
113 | | ys G | ly Ti | nr I | | ln
140 | Glu . | Asn | Trp | | Val | Cys
1145 | | ı Sei | r Cys | г Туг | Gl: | | al T | yr Cy | ys G | | rg
155 | Tyr | Ile | Asn | | Gly | His
1160 | | : Le | ı Glr | n His | Hi: | | ly A | sn Se | er G | - | is :
170 | Pro : | Leu | Val | | Leu | Ser
1175 | _ | î Ile | e Asp | Leu | 118 | | la T: | rp Cy | ys T | | yr
185 | Cys | Gln | Ala | | Tyr | Val
1190 | | Hi: | s Glr | n Ala | Le: | | eu A: | ab As | al Ly | | sn
200 | Ile . | Ala | His | | Gln | Asn
1205 | _ | Phe | e Gly | / Glu | 12: | | et P: | ro H: | is P: | | is
215 | PE: | PRT | | | | | | | | | | | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | RGANI | ISM: | Homo | sar | iens | 3 | | | | | | | | | | < 400 |)> SI | EQUE | ICE : | 55 | | | | | | | | | | | | | Met
1 | Tyr | Ala | Leu | Phe
5 | Leu | Leu | Ala | Ser | Leu
10 | Leu | Gly | Ala | Ala | Leu
15 | Ala | | Gly | Pro | Val | Leu
20 | Gly | Leu | Lys | Glu | Сув
25 | Thr | Arg | Gly | Ser | Ala
30 | Val | Trp | | Сув | Gln | Asn
35 | Val | Lys | Thr | Ala | Ser
40 | Asp | Сув | Gly | Ala | Val
45 | Lys | His | Cya | | Leu | Gln
50 | Thr | Val | Trp | Asn | Lys
55 | Pro | Thr | Val | Lys | Ser
60 | Leu | Pro | Cys | Asp | | Ile
65 | Cys | Lys | Asp | Val | Val
70 | Thr | Ala | Ala | Gly | Asp
75 | Met | Leu | Lys | Asp | Asn
80 | | Ala | Thr | Glu | Glu | Glu
85 | Ile | Leu | Val | Tyr | Leu
90 | Glu | Lys | Thr | Cys | Asp
95 | Trp | | Leu | Pro | Lys | Pro
100 | Asn | Met | Ser | Ala | Ser
105 | Cys | Lys | Glu | Ile | Val
110 | Asp | Ser | | Tyr | Leu | Pro
115 | Val | Ile | Leu | Asp | Ile
120 | Ile | Lys | Gly | Glu | Met
125 | Ser | Arg | Pro | | Gly | Glu
130 | Val | Cys | Ser | Ala |
Leu
135 | Asn | Leu | Cys | Glu | Ser
140 | Leu | Gln | Lys | His | | Leu
145 | Ala | Glu | Leu | Asn | His
150 | Gln | Lys | Gln | Leu | Glu
155 | Ser | Asn | Lys | Ile | Pro
160 | | Glu | Leu | Asp | Met | Thr
165 | Glu | Val | Val | Ala | Pro
170 | Phe | Met | Ala | Asn | Ile
175 | Pro | | Leu | Leu | Leu | Tyr
180 | Pro | Gln | Asp | Gly | Pro
185 | Arg | Ser | ГЛа | Pro | Gln
190 | Pro | Lys | | Asp | Asn | Gly
195 | Asp | Val | Cys | Gln | Asp
200 | Суз | Ile | Gln | Met | Val
205 | Thr | Asp | Ile | | Gln | Thr
210 | Ala | Val | Arg | Thr | Asn
215 | Ser | Thr | Phe | Val | Gln
220 | Ala | Leu | Val | Glu | | His
225 | Val | Lys | Glu | Glu | Сув
230 | Asp | Arg | Leu | Gly | Pro
235 | Gly | Met | Ala | Asp | Ile
240 | | Сув | Lys | Asn | Tyr | Ile
245 | Ser | Gln | Tyr | Ser | Glu
250 | Ile | Ala | Ile | Gln | Met
255 | Met | | Met | His | Met | Gln
260 | Pro | Lys | Glu | Ile | Сув
265 | Ala | Leu | Val | Gly | Phe
270 | Cys | Asp | | Glu | Val | Lys
275 | Glu | Met | Pro | Met | Gln
280 | Thr | Leu | Val | Pro | Ala
285 | Lys | Val | Ala | | Ser | Lys
290 | Asn | Val | Ile | Pro | Ala
295 | Leu | Glu | Leu | Val | Glu
300 | Pro | Ile | Lys | ГÀа | | His
305 | Glu | Val | Pro | Ala | Lys
310 | Ser | Asp | Val | Tyr | Сув
315 | Glu | Val | Cha | Glu | Phe
320 | | Leu | Val | Lys | Glu | Val
325 | Thr | Lys | Leu | Ile | Asp
330 | Asn | Asn | Lys | Thr | Glu
335 | ГХа | | Glu | Ile | Leu | Asp
340 | Ala | Phe | Asp | Lys | Met
345 | Сув | Ser | Lys | Leu | Pro
350 | Lys | Ser | | Leu | Ser | Glu
355 | Glu | СЛа | Gln | Glu | Val
360 | Val | Asp | Thr | Tyr | Gly
365 | Ser | Ser | Ile | | Leu | Ser
370 | Ile | Leu | Leu | Glu | Glu
375 | Val | Ser | Pro | Glu | Leu
380 | Val | Сув | Ser | Met | | Leu His Leu Cys
385 | Ser Gly Thr
390 | Arg Leu Pro | Ala Leu Thr
395 | Val His Val
400 | |--|--------------------|----------------------|----------------------|--------------------| | Thr Gln Pro Lys | Asp Gly Gly
405 | Phe Cys Glu
410 | | Lys Leu Val
415 | | Gly Tyr Leu Asp
420 | | ı Glu Lys Ası
425 | n Ser Thr Lys | Gln Glu Ile
430 | | Leu Ala Ala Leu
435 | Glu Lys Gly | Cys Ser Phe | e Leu Pro Asp
445 | Pro Tyr Gln | | Lys Gln Cys Asp
450 | Gln Phe Val | _ | Glu Pro Val
460 | Leu Ile Glu | | Ile Leu Val Glu
465 | Val Met Asp
470 | Pro Ser Phe | Val Cys Leu
475 | Lys Ile Gly
480 | | Ala Cys Pro Ser | Ala His Lys
485 | Pro Leu Leu
490 | | Lys Cys Ile
495 | | Trp Gly Pro Ser | | Gln Asn Th | Glu Thr Ala | Ala Gln Cys
510 | | Asn Ala Val Glu
515 | His Cys Lys | Arg His Val | Trp Asn | | | <210> SEQ ID NO
<211> LENGTH: 4
<212> TYPE: PRI
<213> ORGANISM: | 548 | ns | | | | <400> SEQUENCE: | 56 | | | | | Met Glu His Lys
1 | Glu Val Val
5 | . Leu Leu Leu
10 | ı Leu Leu Phe | Leu Lys Ser
15 | | Ala Ala Pro Glu
20 | Gln Ser His | Val Val Gli
25 | n Asp Cys Tyr | His Gly Asp
30 | | Gly Gln Ser Tyr
35 | Arg Gly Thr | Tyr Ser Thi | Thr Val Thr | Gly Arg Thr | | Cys Gln Ala Trp
50 | Ser Ser Met
55 | Thr Pro His | Gln His Asn
60 | Arg Thr Thr | | Glu Asn Tyr Pro
65 | Asn Ala Gly
70 | Leu Ile Met | Asn Tyr Cys
75 | Arg Asn Pro
80 | | Asp Ala Val Ala | Ala Pro Tyr
85 | Cys Tyr Thi | Arg Asp Pro | Gly Val Arg
95 | | Trp Glu Tyr Cys | | Gln Cys Sen
105 | Asp Ala Glu | Gly Thr Ala
110 | | Val Ala Pro Pro
115 | Thr Val Thr | Pro Val Pro | Ser Leu Glu
125 | Ala Pro Ser | | Glu Gln Ala Pro
130 | Thr Glu Glr | | Val Gln Glu
140 | Cys Tyr His | | Gly Asn Gly Glr
145 | Ser Tyr Arg
150 | g Gly Thr Ty | Ser Thr Thr | Val Thr Gly
160 | | Arg Thr Cys Glr | Ala Trp Ser
165 | r Ser Met Thi | | His Ser Arg
175 | | Thr Pro Clu Tur | Tvr Pro Asr | _ | ı Ile Met Asn | Tyr Cys Arg | | 180 180 180 180 | - | 185 | | 190 | | _ | _ | | Tyr Thr Arg
205 | | | | 210 | | | | | 215 | | | | | 220 | | | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Thr
225 | Ala | Val | Ala | Pro | Pro
230 | Thr | Val | Thr | Pro | Val
235 | Pro | Ser | Leu | Glu | Ala
240 | | Pro | Ser | Glu | Gln | Ala
245 | Pro | Thr | Glu | Gln | Arg
250 | Pro | Gly | Val | Gln | Glu
255 | Cha | | Tyr | His | Gly | Asn
260 | Gly | Gln | Ser | Tyr | Arg
265 | Gly | Thr | Tyr | Ser | Thr
270 | Thr | Val | | Thr | Gly | Arg
275 | Thr | CÀa | Gln | Ala | Trp
280 | Ser | Ser | Met | Thr | Pro
285 | His | Ser | His | | Ser | Arg
290 | Thr | Pro | Glu | Tyr | Tyr
295 | Pro | Asn | Ala | Gly | Leu
300 | Ile | Met | Asn | Tyr | | 305
Cya | Arg | Asn | Pro | Asp | Ala
310 | Val | Ala | Ala | Pro | Tyr
315 | Cys | Tyr | Thr | Arg | Asp
320 | | Pro | Gly | Val | Arg | Trp
325 | Glu | Tyr | Сув | Asn | Leu
330 | Thr | Gln | Сув | Ser | Asp
335 | Ala | | Glu | Gly | Thr | Ala
340 | Val | Ala | Pro | Pro | Thr
345 | Val | Thr | Pro | Val | Pro
350 | Ser | Leu | | Glu | Ala | Pro
355 | Ser | Glu | Gln | Ala | Pro
360 | Thr | Glu | Gln | Arg | Pro
365 | Gly | Val | Gln | | Glu | Сув
370 | Tyr | His | Gly | Asn | Gly
375 | Gln | Ser | Tyr | Arg | Gly
380 | Thr | Tyr | Ser | Thr | | Thr
385 | Val | Thr | Gly | Arg | Thr
390 | CAa | Gln | Ala | Trp | Ser
395 | Ser | Met | Thr | Pro | His
400 | | Ser | His | Ser | Arg | Thr
405 | Pro | Glu | Tyr | Tyr | Pro
410 | Asn | Ala | Gly | Leu | Ile
415 | Met | | Asn | Tyr | Сла | Arg
420 | Asn | Pro | Asp | Ala | Val
425 | Ala | Ala | Pro | Tyr | Сув
430 | Tyr | Thr | | Arg | Asp | Pro
435 | Gly | Val | Arg | Trp | Glu
440 | Tyr | СЛа | Asn | Leu | Thr
445 | Gln | Cys | Ser | | Asp | Ala
450 | Glu | Gly | Thr | Ala | Val
455 | Ala | Pro | Pro | Thr | Val
460 | Thr | Pro | Val | Pro | | Ser
465 | Leu | Glu | Ala | Pro | Ser
470 | Glu | Gln | Ala | Pro | Thr
475 | Glu | Gln | Arg | Pro | Gly
480 | | Val | Gln | Glu | Сув | Tyr
485 | His | Gly | Asn | Gly | Gln
490 | Ser | Tyr | Arg | Gly | Thr
495 | Tyr | | Ser | Thr | Thr | Val
500 | Thr | Gly | Arg | Thr | Сув
505 | Gln | Ala | Trp | Ser | Ser
510 | Met | Thr | | Pro | His | Ser
515 | His | Ser | Arg | Thr | Pro
520 | Glu | Tyr | Tyr | Pro | Asn
525 | Ala | Gly | Leu | | Ile | Met
530 | Asn | Tyr | CÀa | Arg | Asn
535 | Pro | Asp | Ala | Val | Ala
540 | Ala | Pro | Tyr | Cys | | Tyr
545 | Thr | Arg | Asp | Pro | Gly
550 | Val | Arg | Trp | Glu | Tyr
555 | CAa | Asn | Leu | Thr | Gln
560 | | CÀa | Ser | Asp | Ala | Glu
565 | Gly | Thr | Ala | Val | Ala
570 | Pro | Pro | Thr | Val | Thr
575 | Pro | | Val | Pro | Ser | Leu
580 | Glu | Ala | Pro | Ser | Glu
585 | Gln | Ala | Pro | Thr | Glu
590 | Gln | Arg | | Pro | Gly | Val
595 | Gln | Glu | CÀa | Tyr | His
600 | Gly | Asn | Gly | Gln | Ser
605 | Tyr | Arg | Gly | | Thr | Tyr
610 | Ser | Thr | Thr | Val | Thr
615 | Gly | Arg | Thr | Сув | Gln
620 | Ala | Trp | Ser | Ser | | Met
625 | Thr | Pro | His | Ser | His
630 | Ser | Arg | Thr | Pro | Glu
635 | Tyr | Tyr | Pro | Asn | Ala
640 | |------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | Leu | Ile | Met | Asn
645 | | Cys | Arg | Asn | Pro
650 | | Ala | Val | Ala | Ala
655 | | | Tyr | Сув | Tyr | Thr | Arg | Asp | Pro | Gly | Val | | Trp | Glu | Tyr | Cys
670 | | Leu | | Thr | Gln | Cys
675 | Ser | Asp | Ala | Glu | Gly
680 | | Ala | Val | Ala | Pro
685 | | Thr | Val | | Thr | Pro
690 | | Pro | Ser | Leu | Glu
695 | | Pro | Ser | Glu | Gln
700 | | Pro | Thr | Glu | | Gln
705 | | Pro | Gly | Val | Gln
710 | | Cys | Tyr | His | Gly
715 | | Gly | Gln | Ser | Tyr
720 | | | Gly | Thr | Tyr | Ser
725 | | Thr | Val | Thr | Gly
730 | | Thr | Cha | Gln | Ala
735 | | | Ser | Ser | Met | Thr | Pro | His | Ser | His | Ser
745 | | Thr | Pro | Glu | Tyr
750 | | Pro | | Asn | Ala | Gly
755 | | Ile | Met | Asn | Tyr
760 | | Arg | Asn | Pro | Asp
765 | | Val | Ala | | Ala | Pro
770 | Tyr | Cys | Tyr | Thr | Arg
775 | Aap | Pro | Gly | Val | Arg
780 | Trp | Glu | Tyr | Cys | | Asn
785 | Leu | Thr | Gln | Cya | Ser
790 | Asp | Ala | Glu | Gly | Thr
795 | Ala | Val | Ala | Pro | Pro
800 | | Thr | Val | Thr | Pro | Val
805 | Pro | Ser | Leu | Glu | Ala
810 | Pro | Ser | Glu | Gln | Ala
815 | Pro | | Thr | Glu | Gln | Arg
820 | Pro | Gly | Val | Gln | Glu
825 | Сла | Tyr | His | Gly | Asn
830 | Gly | Gln | | Ser | Tyr | Arg
835 | Gly | Thr | Tyr | Ser | Thr
840 | Thr | Val | Thr | Gly | Arg
845 | Thr | CAa | Gln | | Ala | Trp
850 | Ser | Ser | Met | Thr | Pro
855 | His | Ser | His | Ser | Arg
860 | Thr | Pro | Glu | Tyr | | Tyr
865 | Pro | Asn | Ala | Gly | Leu
870 | Ile | Met | Asn | Tyr | Cys
875 | Arg | Asn | Pro | Asp | Ala
880 | | Val | Ala | Ala | Pro | Tyr
885 | Cys | Tyr | Thr | Arg | Asp | Pro | Gly | Val | Arg | Trp
895 | Glu | | Tyr | Сув | Asn | Leu
900 | Thr | Gln | Cys | Ser | Asp
905 | Ala | Glu | Gly | Thr | Ala
910 | Val | Ala | | Pro | Pro | Thr
915 | Val | Thr | Pro | Val | Pro
920 | Ser | Leu | Glu | Ala | Pro
925 | Ser | Glu | Gln | | Ala | Pro
930 | Thr | Glu | Gln | Arg | Pro
935 | Gly | Val | Gln | Glu | Cys
940 | Tyr | His | Gly | Asn | | Gly
945 | Gln | Ser | Tyr | Arg | Gly
950 | Thr | Tyr | Ser | Thr | Thr
955 | Val | Thr | Gly | Arg | Thr
960 | | CÀa | Gln | Ala | Trp | Ser
965
 Ser | Met | Thr | Pro | His
970 | Ser | His | Ser | Arg | Thr
975 | Pro | | Glu | Tyr | Tyr | Pro
980 | Asn | Ala | Gly | Leu | Ile
985 | Met | Asn | Tyr | Сла | Arg
990 | Asn | Pro | | Asp | Ala | Val
995 | Ala | Ala | Pro | Tyr | Cys | | r Thi | r Arç | g Asl | Pro
100 | | ly Va | al Arg | | Trp | Glu
1010 | _ | c Cys | a Ası | ı Leı | 1 Thi | | ln Cz | ∕a Se | er As | - | La (| Glu (| Gly 1 | [hr | | | | | | | | | | | | | -001 | | -uc | - | |-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | Ala | Val
1025 | | Pro | Pro | Thr | Val
1030 | | Pro | Val | Pro | Ser
1035 | Leu | Glu | Al | | Pro | Ser
1040 | | Gln | Ala | Pro | Thr
1045 | | Gln | Arg | Pro | Gly
1050 | Val | Gln | Glu | | CAa | Tyr
1055 | | Gly | Asn | Gly | Gln
1060 | | Tyr | Arg | Gly | Thr
1065 | Tyr | Ser | Thr | | Thr | Val
1070 | | Gly | Arg | Thr | Сув
1075 | | Ala | Trp | Ser | Ser
1080 | Met | Thr | Pro | | His | Ser
1085 | | Ser | Arg | Thr | Pro
1090 | | Tyr | Tyr | Pro | Asn
1095 | Ala | Gly | Leu | | Ile | Met
1100 | | Tyr | Cys | Arg | Asn
1105 | | Asp | Ala | Val | Ala
1110 | Ala | Pro | Tyr | | CÀa | Tyr
1115 | | Arg | Asp | Pro | Gly
1120 | | Arg | Trp | Glu | Tyr
1125 | Cys | Asn | Leu | | Thr | Gln
1130 | | | | | Glu
1135 | | Thr | Ala | Val | Ala
1140 | Pro | Pro | Thr | | Val | Thr
1145 | | Val | Pro | Ser | Leu
1150 | | Ala | Pro | Ser | Glu
1155 | Gln | Ala | Pro | | Thr | Glu
1160 | | Arg | Pro | Gly | Val
1165 | | Glu | CÀa | Tyr | His
1170 | Gly | Asn | Gly | | Gln | Ser
1175 | | | | | Tyr
1180 | | Thr | Thr | Val | Thr
1185 | Gly | Arg | Thr | | Cys | Gln
1190 | | Trp | Ser | Ser | Met
1195 | | Pro | His | Ser | His
1200 | Ser | Arg | Thr | | Pro | Glu
1205 | | | | Asn | Ala
1210 | _ | Leu | Ile | Met | Asn
1215 | Tyr | Cys | Arg | | Asn | Pro
1220 | _ | Ala | Val | Ala | Ala
1225 | Pro | Tyr | Cys | Tyr | Thr
1230 | Arg | Asp | Pro | | Gly | Val
1235 | _ | Trp | | _ | Cys
1240 | | Leu | Thr | Gln | Cys
1245 | Ser | Asp | Ala | | Glu | Gly
1250 | | Ala | Val | Ala | Pro
1255 | Pro | Thr | Val | Thr | Pro
1260 | Val | Pro | Ser | | Leu | Glu
1265 | | Pro | Ser | Glu | Gln
1270 | Ala | Pro | Thr | Glu | Gln
1275 | Arg | Pro | Gly | | Val | Gln
1280 | Glu | Сув | Tyr | His | Gly
1285 | Asn | Gly | Gln | Ser | Tyr
1290 | Arg | Gly | Thr | | Tyr | Ser
1295 | Thr | Thr | Val | Thr | Gly
1300 | | Thr | Cys | Gln | Ala
1305 | Trp | Ser | Ser | | Met | Thr
1310 | | His | Ser | His | Ser
1315 | | Thr | Pro | Glu | Tyr
1320 | | Pro | Asn | | Ala | Gly
1325 | Leu | Ile | Met | Asn | Tyr
1330 | | Arg | Asn | Pro | Asp
1335 | Ala | Val | Ala | | Ala | Pro
1340 | _ | CÀa | Tyr | Thr | Arg
1345 | _ | Pro | Gly | Val | Arg
1350 | _ | Glu | Tyr | | Cys | Asn
1355 | Leu | Thr | Gln | Cys | Ser
1360 | - | Ala | Glu | Gly | Thr
1365 | Ala | Val | Ala | | Pro | | Thr | Val | Thr | Pro | | | Ser | Leu | Glu | Ala
1380 | Pro | Ser | Glu | | Gln | Ala | | Thr | Glu | Gln | Arg | | Gly | Val | Gln | Glu | Сув | Tyr | His | | Gly | 1385
Asn | | Gln | Ser | Tyr | 1390
Arg | | Thr | Tyr | Ser | 1395
Thr | Thr | Val | Thr | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | |----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | | | 1400 | | | | | 1405 | | | | | 1410 | | | | | G | ly | Arg
1415 | | CAa | Gln | Ala | Trp
1420 | | Ser | Met | Thr | Pro
1425 | His | Ser | His | | S | er | Arg
1430 | | Pro | Glu | Tyr | Tyr
1435 | | Asn | Ala | Gly | Leu
1440 | Ile | Met | Asn | | T | yr | Cys
1445 | | Asn | Pro | Asp | Ala
1450 | | Ala | Ala | Pro | Tyr
1455 | Cys | Tyr | Thr | | A | rg | Asp
1460 | | Gly | Val | Arg | Trp
1465 | | Tyr | Cys | Asn | Leu
1470 | Thr | Gln | Cys | | S | er | Asp
1475 | | Glu | Gly | Thr | Ala
1480 | | Ala | Pro | Pro | Thr
1485 | Val | Thr | Pro | | V | al | Pro
1490 | | Leu | Glu | Ala | Pro
1495 | | Glu | Gln | Ala | Pro
1500 | Thr | Glu | Gln | | A | rg | Pro
1505 | _ | | | Glu | Cys
1510 | _ | | _ | | Gly
1515 | Gln | Ser | Tyr | | Α | rg | Gly
1520 | | Tyr | Ser | Thr | Thr
1525 | | Thr | Gly | Arg | Thr
1530 | _ | Gln | Ala | | Т | rp | Ser
1535 | | Met | Thr | Pro | His
1540 | | His | Ser | Arg | Thr
1545 | Pro | Glu | Tyr | | T | yr | | Asn | | Gly | | Ile
1555 | | Asn | Tyr | Cys | | Asn | Pro | Asp | | Α | la. | | Ala | | | | Cys | | | | | | Gly | Val | Arg | | т | rp | | Tyr | | Asn | | Thr
1585 | Gln | | Ser | Asp | | Glu | Gly | Thr | | Α | la. | Val | Ala | | | | Val | | | | | Ser | Leu | Glu | Ala | | Р | ro | | Glu | Gln | Ala | Pro | 1600
Thr | | | | | _ | Val | Gln | Glu | | C. | уs | | His | | | | 1615
Gln | Ser | | Arg | Gly | Thr | Tyr | Ser | Thr | | T | hr | 1625
Val | | | Arg | | 1630
Cys | | Ala | | | | Met | Thr | Pro | | | | 1640 | | - | _ | | 1645
Pro | | | _ | | 1650 | | | | | | | 1655 | | | _ | | 1660 | | - | - | | 1665 | | _ | | | | | 1670 | | | | | Asn
1675 | | | | | 1680 | | | | | C. | Уs | Tyr
1685 | | Arg | Asp | Pro | Gly
1690 | | Arg | Trp | Glu | Tyr
1695 | | Asn | Leu | | T | hr | Gln
1700 | | Ser | Asp | Ala | Glu
1705 | | Thr | Ala | Val | Ala
1710 | | Pro | Thr | | V | al | Thr
1715 | | Val | Pro | Ser | Leu
1720 | Glu | Ala | Pro | Ser | Glu
1725 | Gln | Ala | Pro | | T | hr | Glu
1730 | Gln | Arg | Pro | Gly | Val
1735 | Gln | Glu | CÀa | Tyr | His
1740 | Gly | Asn | Gly | | G | ln | Ser
1745 | _ | Arg | Gly | Thr | Tyr
1750 | | Thr | Thr | Val | Thr
1755 | _ | Arg | Thr | | C. | Уs | Gln | Ala | Trp | Ser | Ser | Met | | Pro | His | Ser | His | Ser | Arg | Thr | | P | ro | 1760
Glu | | Tyr | Pro | Asn | 1765
Ala | Gly | Leu | Ile | Met | 1770
Asn | | Cys | Arq | | | - | 1775 | - | 2 - | | | 1780 | _ | | | | 1785 | _ | 2 | - 5 | | Asn | Pro
1790 | Asp | Ala | Val | Ala | Ala
1795 | Pro | Tyr | СЛа | Tyr | Thr
1800 | Arg | Asp | Pro | |-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | Gly | Val
1805 | Arg | Trp | Glu | Tyr | Cys
1810 | Asn | Leu | Thr | Gln | Cys
1815 | Ser | Asp | Ala | | Glu | Gly
1820 | Thr | Ala | Val | Ala | Pro
1825 | Pro | Thr | Val | Thr | Pro
1830 | Val | Pro | Ser | | Leu | Glu
1835 | Ala | Pro | Ser | Glu | Gln
1840 | Ala | Pro | Thr | Glu | Gln
1845 | Arg | Pro | Gly | | Val | Gln
1850 | Glu | Cys | Tyr | His | Gly
1855 | Asn | Gly | Gln | Ser | Tyr
1860 | Arg | Gly | Thr | | Tyr | Ser
1865 | Thr | Thr | Val | Thr | Gly
1870 | Arg | Thr | Cys | Gln | Ala
1875 | Trp | Ser | Ser | | Met | Thr
1880 | Pro | His | Ser | His | Ser
1885 | Arg | Thr | Pro | Glu | Tyr
1890 | Tyr | Pro | Asn | | Ala | Gly
1895 | Leu | Ile | Met | Asn | Tyr
1900 | Cys | Arg | Asn | Pro | Asp
1905 | Ala | Val | Ala | | Ala | Pro
1910 | Tyr | CAa | Tyr | Thr | Arg
1915 | Asp | Pro | Gly | Val | Arg
1920 | Trp | Glu | Tyr | | CÀa | Asn
1925 | Leu | Thr | Gln | CÀa | Ser
1930 | Asp | Ala | Glu | Gly | Thr
1935 | Ala | Val | Ala | | Pro | Pro
1940 | Thr | Val | Thr | Pro | Val
1945 | Pro | Ser | Leu | Glu | Ala
1950 | Pro | Ser | Glu | | Gln | Ala
1955 | Pro | Thr | Glu | Gln | Arg
1960 | Pro | Gly | Val | Gln | Glu
1965 | Сла | Tyr | His | | Gly | Asn
1970 | Gly | Gln | Ser | Tyr | Arg
1975 | Gly | Thr | Tyr | Ser | Thr
1980 | Thr | Val | Thr | | Gly | Arg
1985 | Thr | CAa | Gln | Ala | Trp
1990 | Ser | Ser | Met | Thr | Pro
1995 | His | Ser | His | | Ser | Arg
2000 | Thr | Pro | Glu | Tyr | Tyr
2005 | Pro | Asn | Ala | Gly | Leu
2010 | Ile | Met | Asn | | Tyr | Cys
2015 | Arg | Asn | Pro | Asp | Ala
2020 | Val | Ala | Ala | Pro | Tyr
2025 | Cys | Tyr | Thr | | Arg | Asp
2030 | Pro | Gly | Val | Arg | Trp
2035 | Glu | Tyr | Cys | Asn | Leu
2040 | Thr | Gln | CÀa | | Ser | Asp
2045 | Ala | Glu | Gly | Thr | Ala
2050 | Val | Ala | Pro | Pro | Thr
2055 | Val | Thr | Pro | | Val | Pro
2060 | Ser | Leu | Glu | Ala | Pro
2065 | Ser | Glu | Gln | Ala | Pro
2070 | Thr | Glu | Gln | | Arg | Pro
2075 | Gly | Val | Gln | Glu | Cys
2080 | Tyr | His | Gly | Asn | Gly
2085 | Gln | Ser | Tyr | | Arg | Gly
2090 | Thr | Tyr | Ser | Thr | Thr
2095 | Val | Thr | Gly | Arg | Thr
2100 | Cys | Gln | Ala | | Trp | Ser
2105 | Ser | Met | Thr | Pro | His
2110 | Ser | His | Ser | Arg | Thr
2115 | Pro | Glu | Tyr | | Tyr | Pro
2120 | Asn | Ala | Gly | Leu | Ile
2125 | Met | Asn | Tyr | CÀa | Arg
2130 | Asn | Pro | Asp | | Ala | Val
2135 | Ala | Ala | Pro | Tyr | Cys
2140 | Tyr | Thr | Arg | Asp | Pro
2145 | Gly | Val | Arg | | Trp | Glu
2150 | Tyr | СЛа | Asn | Leu | Thr
2155 | Gln | Cys | Ser | Asp | Ala
2160 | Glu | Gly | Thr | | | | | | | | | | | | | -001 | | iacc | | |-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|------|-----| | Ala | Val
2165 | | Pro | Pro | | Val
2170 | | Pro | Val | | Ser
2175 | Leu | Glu | Ala | | Pro | Ser
2180 | | Gln | Ala | | Thr
2185 | | Gln | Arg | | Gly
2190 | Val | Gln | Glu | | Cys | Tyr
2195 | | Gly | Asn | Gly | Gln
2200 | | Tyr | Arg | - | Thr
2205 | Tyr | Ser | Thr | | Thr | Val
2210 | | Gly | Arg | Thr | Cys
2215 | | Ala | Trp | | Ser
2220 | Met | Thr | Pro | | His | Ser
2225 | | Ser | Arg | Thr | Pro
2230 | | Tyr | Tyr | | Asn
2235 | Ala | Gly | Leu | | Ile | Met
2240 | | Tyr | CÀa | Arg | Asn
2245 | | Asp | Ala | | Ala
2250 | Ala | Pro | Tyr | | Cys | | Thr | | | | | Val | Arg | Trp | Glu | Tyr
2265 | Cys | Asn | Leu | |
Thr | | Cys | Ser | Asp | Ala | | Gly | | | Val | Ala
2280 | Pro | Pro | Thr | | Val | | Pro | | | | | Glu | | | Ser | Glu
2295 | Gln | Ala | Pro | | Thr | | Gln | Arg | Pro | _ | | Gln | | - | Tyr | His
2310 | Gly | Asn | Gly | | Gln | Ser | Tyr | _ | - | Thr | Tyr | Ser | | | Val | Thr | - | Arg | Thr | | Cys | | Ala | | | | Met | Thr | Pro | His | | 2325
His | | Arg | Thr | | Pro | | Tyr | | | Asn | | Gly | | | Met | 2340
Asn | Tyr | Сув | Arg | | Asn | | Asp | | | Ala | | Pro | Tyr | Cys | | 2355
Thr | Arg | Asp | Pro | | Gly | 2360
Val | | Trp | Glu | Tyr | 2365
Cys | | | | | 2370
Cys | Ser | Asp | Ala | | Glu | | | | | | 2380
Pro | | Thr | Val | | 2385
Pro | Val | Pro | Ser | | | 2390 | | | | | 2395 | | | | | 2400
Gln | | | | | | 2405 | | | | | 2410 | | | | | 2415
Tyr | | | | | | 2420 | | | _ | | 2425 | | - | | | 2430 | | _ | | | | 2435 | | | | | 2440 | | | | | Ala
2445 | | | | | Met | Thr
2450 | | His | Ser | His | Ser
2455 | | Thr | Pro | Glu | Tyr
2460 | | Pro | Asn | | Ala | Gly
2465 | Leu | Ile | Met | Asn | Tyr
2470 | | Arg | Asn | Pro | Asp
2475 | Ala | Val | Ala | | Ala | Pro
2480 | _ | CAa | Tyr | Thr | Arg
2485 | | Pro | Gly | Val | Arg
2490 | | Glu | Tyr | | Cya | Asn
2495 | Leu | Thr | Gln | Сув | Ser
2500 | - | Ala | Glu | Gly | Thr
2505 | Ala | Val | Ala | | Pro | Pro
2510 | Thr | Val | Thr | Pro | Val
2515 | | Ser | Leu | Glu | Ala
2520 | Pro | Ser | Glu | | Gln | Ala
2525 | | Thr | Glu | Gln | Arg
2530 | | Gly | Val | Gln | Glu
2535 | CAa | Tyr | His | | Gly | | | Gln | Ser | Tyr | | | Thr | Tyr | Ser | Thr | Thr | Val | Thr | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | |-----|---------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | | 2540 | | | | | 2545 | _ | | | | 2550 | | _ | | | Glγ | 2555
2555 | | Cys | Gln | Ala | Trp
2560 | | Ser | Met | Thr | Pro
2565 | His | Ser | His | | Ser | Arg
2570 | | Pro | Glu | Tyr | Tyr
2575 | | Asn | Ala | Gly | Leu
2580 | Ile | Met | Asn | | Туг | Сув
2585 | _ | Asn | Pro | Asp | Ala
2590 | | Ala | Ala | Pro | Tyr
2595 | CAa | Tyr | Thr | | Arg | 2600 | | Gly | Val | Arg | Trp
2605 | | Tyr | Cys | Asn | Leu
2610 | Thr | Gln | CAa | | Ser | Asp
2615 | | Glu | Gly | Thr | Ala
2620 | | Ala | Pro | Pro | Thr
2625 | Val | Thr | Pro | | Val | Pro
2630 | | Leu | Glu | Ala | Pro
2635 | Ser | Glu | Gln | Ala | Pro
2640 | Thr | Glu | Gln | | Arg | Pro
2645 | _ | Val | Gln | Glu | Cys
2650 | _ | His | Gly | Asn | Gly
2655 | Gln | Ser | Tyr | | Arg | Gly
2660 | Thr | Tyr | Ser | Thr | | | Thr | Gly | Arg | | _ | Gln | Ala | | Trp | Ser | Ser | Met | Thr | Pro | His | | His | Ser | Arg | Thr | | Glu | Tyr | | Tyr | 2675 | Asn | | | | | | | | | | Asn | Pro | Asp | | Ala | 2690
. Val | | | Pro | | 2695
Cys | Tyr | | Arg | | 2700
Pro | Gly | Val | Arg | | | 2705 | | | | - | 2710 | | | · | - | 2715 | • | | | | | 9 Glu
2720 | - | - | | | 2725 | | - | | _ | 2730 | | | | | Ala | Val
2735 | | Pro | Pro | Thr | Val
2740 | | Pro | Val | | Ser
2745 | Leu | Glu | Ala | | Pro | Ser
2750 | | Gln | Ala | Pro | Thr
2755 | Glu | | Arg | | Gly
2760 | Val | Gln | Glu | | Суя | Tyr
2765 | | | | | Gln
2770 | | | | | Thr
2775 | Tyr | Ser | Thr | | Thr | Val
2780 | | | | | Сув
2785 | | | | | | Met | Thr | Pro | | His | Ser
2795 | | | | | Pro
2800 | | | | | Asn
2805 | Ala | Gly | Leu | | Ile | Met
2810 | Asn | Tyr | Cys | Arg | | Pro | Asp | Ala | Val | Ala | | Pro | Tyr | | Суя | Tyr | Thr | | | | Gly | Val | | | | Tyr | Cys | Asn | Leu | | Thr | 2825
Gln | | Ser | Asp | Ala | 2830
Glu | | Thr | Ala | Val | 2835
Ala | | Pro | Thr | | | 2840
. Thr | | | | | 2845 | | | | | 2850 | | | | | | 2855 | | | | | 2860 | | | | | 2865 | | | | | Thr | Glu
2870 | | Arg | Pro | Gly | Val
2875 | Gln | Glu | Cya | Tyr | His
2880 | Gly | Asn | Gly | | Glr | Ser
2885 | Tyr | Arg | Gly | Thr | Tyr
2890 | Ser | Thr | Thr | Val | Thr
2895 | Gly | Arg | Thr | | Суя | Gln
2900 | Ala | Trp | Ser | Ser | Met
2905 | Thr | Pro | His | Ser | His
2910 | Ser | Arg | Thr | | Pro | Glu | - | Tyr | Pro | Asn | Ala | _ | Leu | Ile | Met | Asn | Tyr | CAa | Arg | | | 2915 | | | | | 2920 | | | | | 2925 | | | | | Asn | Pro
2930 | Asp | Ala | Val | Ala | Ala
2935 | Pro | Tyr | Сув | Tyr | Thr
2940 | Arg | Asp | Pro | |-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | Gly | Val
2945 | Arg | Trp | Glu | Tyr | Сув
2950 | Asn | Leu | Thr | Gln | Cys
2955 | Ser | Asp | Ala | | Glu | Gly
2960 | Thr | Ala | Val | Ala | Pro
2965 | Pro | Thr | Val | Thr | Pro
2970 | Val | Pro | Ser | | Leu | Glu
2975 | Ala | Pro | Ser | Glu | Gln
2980 | Ala | Pro | Thr | Glu | Gln
2985 | Arg | Pro | Gly | | Val | Gln
2990 | Glu | Cys | Tyr | His | Gly
2995 | Asn | Gly | Gln | Ser | Tyr
3000 | Arg | Gly | Thr | | Tyr | Ser
3005 | Thr | Thr | Val | Thr | Gly
3010 | Arg | Thr | Сув | Gln | Ala
3015 | Trp | Ser | Ser | | Met | Thr
3020 | Pro | His | Ser | His | Ser
3025 | Arg | Thr | Pro | Glu | Tyr
3030 | Tyr | Pro | Asn | | Ala | Gly
3035 | Leu | Ile | Met | Asn | Tyr
3040 | Сув | Arg | Asn | Pro | Asp
3045 | Ala | Val | Ala | | Ala | Pro
3050 | Tyr | Cys | Tyr | Thr | Arg
3055 | Asp | Pro | Gly | Val | Arg
3060 | Trp | Glu | Tyr | | Cys | Asn
3065 | Leu | Thr | Gln | Cys | Ser
3070 | Asp | Ala | Glu | Gly | Thr
3075 | Ala | Val | Ala | | Pro | Pro
3080 | Thr | Val | Thr | Pro | Val
3085 | Pro | Ser | Leu | Glu | Ala
3090 | Pro | Ser | Glu | | Gln | Ala
3095 | Pro | Thr | Glu | Gln | Arg
3100 | Pro | Gly | Val | Gln | Glu
3105 | Cys | Tyr | His | | Gly | Asn
3110 | Gly | Gln | Ser | Tyr | Arg
3115 | Gly | Thr | Tyr | Ser | Thr
3120 | Thr | Val | Thr | | Gly | Arg
3125 | Thr | Сув | Gln | Ala | Trp
3130 | Ser | Ser | Met | Thr | Pro
3135 | His | Ser | His | | Ser | Arg
3140 | Thr | Pro | Glu | Tyr | Tyr
3145 | Pro | Asn | Ala | Gly | Leu
3150 | Ile | Met | Asn | | Tyr | Сув
3155 | Arg | Asn | Pro | Asp | Ala
3160 | Val | Ala | Ala | Pro | Tyr
3165 | Cys | Tyr | Thr | | Arg | Asp
3170 | Pro | Gly | Val | Arg | Trp
3175 | Glu | Tyr | CÀa | Asn | Leu
3180 | Thr | Gln | CAa | | Ser | Asp
3185 | Ala | Glu | Gly | Thr | Ala
3190 | Val | Ala | Pro | Pro | Thr
3195 | Val | Thr | Pro | | Val | Pro
3200 | Ser | Leu | Glu | Ala | Pro
3205 | Ser | Glu | Gln | Ala | Pro
3210 | Thr | Glu | Gln | | Arg | Pro
3215 | Gly | Val | Gln | Glu | Cys
3220 | Tyr | His | Gly | Asn | Gly
3225 | Gln | Ser | Tyr | | Arg | Gly
3230 | Thr | Tyr | Ser | Thr | Thr
3235 | Val | Thr | Gly | Arg | Thr
3240 | Cys | Gln | Ala | | Trp | Ser
3245 | Ser | Met | Thr | Pro | His
3250 | Ser | His | Ser | Arg | Thr
3255 | Pro | Glu | Tyr | | Tyr | Pro
3260 | Asn | Ala | Gly | Leu | Ile
3265 | Met | Asn | Tyr | Cys | Arg
3270 | Asn | Pro | Asp | | Ala | Val
3275 | Ala | Ala | Pro | Tyr | Cys
3280 | Tyr | Thr | Arg | Asp | Pro
3285 | Gly | Val | Arg | | Trp | Glu
3290 | Tyr | СЛа | Asn | Leu | Thr
3295 | Gln | CAa | Ser | Asp | Ala
3300 | Glu | Gly | Thr | | Ala Val Ala Pro Pro Thr Val Thr Val Pro Ser Leu Glu Ala Pro Pro Ser Glu Glu Ala Pro Pro 3325 Cue Glu Ala Arg Pro Ala Glu Ala Pro Ala Glu Arg Pro Ala Glu Arg Thr Tyr Ser Thr Pro Ala Glu Arg Thr Pro Ala Glu Pro Ala Glu Fro Ala Glu Fro Ala Glu Fro Ala Glu Fro Ala Glu Leu Glu Ala Pro Pro Pro Ala Glu Ala Pro Ala Glu Ala Pro | |--| | 3325 3330 Cys Tyr His Gly Asn Gly Gln Ser Tyr Arg Gly Thr Tyr Ser Thr 3345 Thr Gly Arg Thr Cys Gln Ala Trp Ser Ser Met Thr Pro 3365 His Ser Arg Thr Pro 3375 Glu Tyr Tyr Pro Asn 3375 Ala Gly Let 3375
Tile Met Asn Tyr Cys Arg Asn 3885 Pro Asp Pro Val Ala Ala Ala Pro Tyr 3395 Cys Tyr Thr Arg Asp Pro Ser Val Arg Trp Glu Tyr Cys Asn Let 3405 Cys Tyr Thr Arg Asp Pro Ser Asp Ala Glu Glu Ala Pro Ser Glu Tyr Glu Gly Asn Gly 3445 Thr Glu Gln Arg Pro Gly Val 3465 Glu Ala Pro Ser Lyr His Gly Asn Gly 3445 Gly Ser Tyr Gln Gly Thr Tyr Ash Pro His Ser His 3480 Cys Gln Ala Trp Ser Ser Met 3475 Thr Pro His Ser His Ser Arg Thr 3480 Fro Asn Ala 3480 Gly Leu Ile Lys Asn Tyr Cys Arg 3480 Pro Ala Tyr Tyr Pro Asn Ala 3505 Asp Pro Val Ala Ala 35 Pro Trp Cys Tyr Thr Thr Asp Pro 3501 Ser Val Arg Trp Glu Tyr Cys Asn Leu Thr Arg Cys Ser Asp Ala 3515 Ser Val Arg Trp Glu Tyr Cys Asn Leu Thr Glu Glu Glu Tyr 3540 Asp Pro Val Ala Ala Sa Pro Tyr Gly Gln Ser Tyr Arg Gly Thr 3550 | | ### The State of t | | ### 3350 ### 3355 ### 3360 ### 3375 ### 3360 ### 3375 ### 3360 ### 3375 ### | | 11e Met Asn Tyr Cys Arg Asn Arg Tro Asp Pro Val Ala Ala Pro Tyr 3395 | | 3380 | | Thr Gln Cys Ser Asp Ala Glu Gly Thr Ala Val Ala Jazo Pro Pro Thr 3410 Thr Gln Cys Ser Asp Ala Glu Gly Thr Ala Val Ala Jazo Pro Pro Thr 3410 The Thr Glu Gln Arg Pro Gly Val Gln Glu Cys Tyr His Gly Asn Gly Jay Gln Ser Tyr Gln Gly Thr Tyr Jay Phe Ile Thr Val Thr Gly Arg Thr Jay Pro Ala Jay Jay Gly Leu Ile Lys Asn Jay Jay Gly Ash Gly Jay Jay Gly Gln Ala Try Pro Asn Ala Gly Leu Ile Lys Asn Jay Gly | | 3410 3415 3420 Ille Thr Pro Ile Pro Ser Leu 3430 Glu Ala Pro Ser Glu 3435 Thr Glu Gln Arg Pro Gly Val 3445 Gln Glu Cys Tyr His 3450 Gln Ser Tyr Gln Gly Thr Tyr 3460 Pro His Ser His 3465 Cys Gln Ala Trp Ser Ser Met 3475 Pro Ala Tyr Tyr Pro Asn Ala 3490 Asn Pro 3500 Ser Val Arg Trp Glu Tyr Cys 3500 Glu Trp Thr Ala Phe Val Pro 3535 Glu Trp Thr Ala Phe Glu Gln 3550 Leu Glu Ala Phe Phe Glu Gln 3550 Val Gln Asp Cys Tyr Tyr His 3550 Val Gln Asp Cys Tyr Tyr His 3560 Tyr Ser Thr Thr Val Thr Gly 3550 Met Thr Pro His Gln His Ser 3550 Arg Thr 3600 Arg Trp Cys Tyr Thr Met 3500 Ala Gly Leu Thr Glu Asn Tyr Pro Asn 3500 Ala Gly Leu Thr Arg Asn Tyr Cys 3560 Arg Thr Arg Asn Pro Glu Tyr Cys 3560 Arg Thr Pro His Gln His Ser 3610 Arg Pro Trp Cys Tyr Thr Met 3600 Ala Gly Leu Thr Arg Asn Tyr Cys Arg Asn Pro Asp 3610 Arg Pro Trp Cys Tyr Thr Met 3600 Ala Gly Leu Thr Glu Glu Tyr 3660 Cys Asn Leu Thr Glu Cys Leu 3660 Glu Ala Pro Thr Glu Gln Ser Pro Ser Thr Glu Ala 3660 Glu Ala Pro Thr Glu Gln Ser Pro Ser Thr Glu Ala 3660 Glu Ala Pro Thr Glu Gln Ser Pro Ser Thr Glu Ala 3660 Glu Ala Pro Thr Glu Gln Ser Pro Ser Thr Glu Ala 3660 Glu Ala Pro Thr Glu Gln Ser Pro Ser Thr Glu Ala 3660 Glu Ala Pro Thr Glu Gln Ser Pro Ser Thr Glu Ala 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | 3425 3430 3435 3435 3435 3445 3446 3446 3446 3446 | | 3440 Gln Ser Tyr Gln Gly Thr Tyr 3460 Cys Gln Ala Trp Ser Ser Met 3475 Pro Ala Tyr Tyr Pro Asn Ala 3490 Asn Pro Asp Pro Val Ala Ala 3505 Ser Val Arg Trp Glu Tyr Cys 3510 Ser Val Arg Trp Glu Tyr Cys 3530 Leu Glu Ala Phe Phe Glu Gln 3555 Val Gln Asp Cys Tyr Tyr His 3565 Tyr Ser Thr Thr Val Thr Gly 3560 Met Thr Pro His Gln His Ser Arg Thr 3580 Met Thr Pro His Gln His Ser Arg Thr Pro Glu Asn 3590 Asn Cys Arg 3560 Ala Gly Leu Thr Arg Asn Tyr Cys Arg 3630 Cys Asn Leu Thr Glu Ser Ser Asp Ala 3650 Arg Pro Trp Cys Tyr Thr Met 3650 Arg Pro Trp Cys Tyr Thr Met 3660 Cys Asn Leu Thr Glu Ala Ser Ser Asp Ala 3650 Cys Asn Leu Thr Glu Ser Ser Asp Ala 3660 Glu Ala Pro Thr Glu Gln Ser Trp Glu Tyr Arg Asp Ala 3660 Glu Ala Pro Thr Glu Gln Ser Thr Glu Ala Glu Ite Arg Asn Tyr Arg Asp Ala 3660 Cys Asn Leu Thr Gln Cys Leu 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His 3660 | | Gln Ser 3455 Tyr Gln Gly Thr Tyr 3460 Thr 3465 Gly Arg Thr 3465 Gly Gln Ala Trp Ser Ser Met 3475 Thr Pro His Ser His 3480 Ser Arg Thr 3480 Fro Ala Tyr Tyr Pro Asn Ala 3490 Gly Leu Ile Lys Asn 3495 Tyr Cys Arg 3500 Asn Pro Asp Pro Val Ala Ala 3505 Pro Trp Cys Tyr Thr 3510 Thr Asp Pro 3515 Fro Ala Pro 3520 Asn Leu Thr Arg Cys 3525 Ser Asp Ala 3535 Fro Asn Val Ile Leu 3540 Ala Pro Ser 3530 Ala Leu Thr Glu Glu 3540 Ala Pro Gly 3550 Fro Asn Val Ile Leu 3540 Ala Pro Gly 3550 Fro Asn Val Ile Leu 3540 Ala Pro Gly 3550 Ala Leu Thr Glu Glu 3555 Thr Pro Gly 3550 Arg Thr Thr Val Thr Gly 3565 Tyr Gly Gln Ser Tyr 3570 Arg Gly Thr 3570 Arg Gly Thr 3570 Arg Gly Thr 3580 Arg Thr Pro Glu Asn 3580 Tyr Pro Asr 3590 Ala Gly Leu Thr Arg Asn Tyr Cys Arg Asn Pro Asp 3605 Ala Glu Ile 3620 Trp Cys Tyr Thr Met 3625 Asp Pro Ser Val Arg Trp Glu Tyr 3620 Trp Cys Tyr Thr Met 3640 Trp Cys Asn Leu Thr Glu Asa 3630 Trp Glu Tyr 3630 Trp Cys Asn Leu Thr Glu Asa 3630 Trp Glu Tyr 3630 Trp Cys Asn Leu Thr Glu Ala Glu Ile 3630 Trp Cys Asn Leu Thr Gln Cys Leu 3640 Trp Cys Tyr His 3630 Trp Cys Tyr His 3640 Trp Cys Tyr His 3640 Trp Cys Tyr His 3645 Trp Cys Tyr His 3645 Trp Cys Tyr His 3645 Trp Cys Cys Tyr His | | Cys Gln
3470 Ala Trp Ser Met
3475 Thr Pro His Ser Arg Thr Pro Ala
3485 Tyr Tyr Pro Asn Ala
3490 Gly Leu Ile Lys Asn Tyr Cys Arg Asn Pro Asn Ala Ala Ala Ala Pro Trp Cys Arg Thr Arg Pro Asn Leu Thr Arg Trp Glu Tyr Cys Asn Leu Thr Arg | | Pro Ala 3485 Tyr Tyr Pro Asn Ala 3490 Gly Leu Ile Lys Asn 3495 Tyr Cys Ard 3495 Asn Pro 3485 Asp Pro Val Ala Ala Ala 3505 Pro Trp Cys Tyr Thr 3510 Thr Asp Pro 3510 Ser Val 3515 Arg Trp Glu Tyr Cys 3520 Asn Leu Thr Arg Cys 3525 Ser Asp Ala 3525 Glu Trp 3530 Thr Ala Phe Val Pro 3535 Pro Asn Val Ile Leu 3540 Ala Pro Ser 3540 Leu Glu 3545 Ala Phe Phe Glu Gln 3550 Ala Leu Thr Glu Glu Glu 3555 Thr Pro Gly 3550 Val Gln 3545 Asp Cys Tyr Tyr His 3565 Tyr Gly Gln Ser Tyr 3570 Arg Gly Thr 3570 Tyr Ser Thr Thr Val Thr Gly 3580 Arg Thr Cys Gln Ala 7570 Trp Ser Ser 3575 Met Thr Arg Asn Tyr 3580 Arg Thr Pro Glu Asn 7571 Tyr Pro Asr 3600 Ala Gly Leu Thr Arg Asn Tyr 3690 Cys Arg Asn Pro Asp 3600 Ala Glu Ile 3611 Arg Pro 3620 Tyr Cys Tyr Thr Met 3625 Asp Pro Ser Val Arg 3630 Trp Glu Tyr 3640 Cys Asn Leu Thr Gln Cys Leu 3640 Val Thr Glu Ser Ser 3645 Val Leu Ala 3660 Thr Leu Thr Val Val Pro Asp 3655 Pro Ser Thr Glu Ala Ser Ser Glu 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp C | | Asn Pro 3500 Asp Pro Val Ala Ala 3505 Pro Trp Cys Tyr Thr 3510 Thr Asp Pro 3510 Ser Val 3515 Arg Trp Glu Tyr Cys 3520 Asn Leu Thr Arg Cys 3525 Ser Asp Ala 3525 Glu Trp Thr Ala Phe Val Pro 3530 Pro Asn Val IIe Leu Ala Pro Ser 3540 Ala Pro Ser 3540 Leu Glu 3545 Ala Phe Phe Glu Gln 3550 Ala Leu Thr Glu Glu 3555 Thr Pro Gly 3555 Val Gln Asp Cys Tyr Tyr His 3560 Tyr Gly Gln Ser Tyr Arg Gly Thr 3570 Arg Gly Thr 3570 Tyr Ser Thr Thr Val Thr Gly 3580 Arg Thr Cys Gln Ala Trp Ser Ser 3585 Met Thr Pro His Gln His Ser 3595 Arg Thr Pro Glu Asn Tyr Pro Asr 3600 Ala Gly Leu Thr Arg Asn Tyr 3620 Cys Arg Asn Pro Asp 3615 Arg Pro Trp Cys Tyr Thr Met 3625 Asp Pro Ser Val Arg 3630 Trp Glu Tyr 3630 Cys Asn Leu Thr Gln Cys Leu 3640 Val Thr Glu Ser Ser Val Leu Ala 3630 Thr Leu Thr Val Val Pro Asp 3650 Pro Ser Thr Glu Ala Ser Ser Glu 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | Ser Val
3515 Arg Trp Glu Tyr Cys
3520 Asn Leu Thr Arg Cys
3525 Ser Asp Ala Glu Trp Thr Ala Phe Val Pro Asn Val IIe Leu
3540 Ala Pro Ser Leu Glu Ala Phe Glu Gln Ala Leu Thr Glu Glu Thr Pro Gly Val Gln Asp Cys Tyr Tyr His
3560 Tyr Tyr His
3580 Tyr Gly Gln Ser Tyr Arg Gly Arg Thr Cys Gly Arg Thr Pro Gly Arg Thr Pro Arg Thr Pro Arg Arg Thr Pro Arg Arg Arg Pro Arg Arg Thr Pro Arg Arg Thr Glu Arg A | | Glu Trp 3530 Thr Ala Phe Val Pro 3535 Pro Asn Val Ile Leu 3540 Ala Pro Ser 3535 Leu Glu Ala Phe Phe Glu Gln 3550 Ala Leu Thr Glu Glu 3555 Thr Pro Gly 3556 Val Gln Asp Cys Tyr Tyr His 3560 Arg Thr Cys Gln Ser Tyr 3570 Arg Gly Thr 3560 Tyr Ser Thr Thr Val Thr Gly 3580 Arg Thr Cys Gln Ala 3585 Trp Ser Ser 3595 Met Thr Pro His Gln His Ser 3595 Arg Thr Pro Glu Asn 3600 Tyr Pro Asr 3605 Ala Gly Leu Thr Arg Asn Tyr Cys Arg Asn Pro Asp 3615 Arg Pro Ser Val Arg 3630 Trp Glu Tyr 3620 Cys Asn Leu Thr Gln Cys Leu Val Thr Glu Ser Ser Ser
3645 Thr Leu Thr Val Val Pro Asp 3655 Pro Ser Thr Glu Ala Ser Ser Glu 3650 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | Leu Glu 3545 Ala Phe Phe Glu Gln 3550 Ala Leu Thr Glu Glu 3555 Thr Pro Gly 3550 Val Gln Asp Cys Tyr Tyr His 3560 Tyr Gly Gln Ser Tyr 3570 Arg Gly Thr 3570 Tyr Ser 3575 Thr Thr Val Thr Gly 3580 Arg Thr Cys Gln Ala 3585 Trp Ser Ser 3585 Met Thr 3590 Pro His Gln His Ser 3595 Arg Thr Pro Glu Asn 3600 Tyr Pro Asr 3600 Ala Gly Leu Thr Arg Asn Tyr 3600 Cys Arg Asn Pro Asp 3615 Ala Glu Ile 3625 Arg Pro 3620 Tyr Thr Met 3625 Asp Pro Ser Val Arg 3630 Trp Glu Tyr 3635 Cys Asn Leu Thr Gln Cys Leu 3635 Val Thr Glu Ser Ser Val Leu Ala 3645 Thr Leu Thr Val Val Pro Asp 3655 Pro Ser Thr Glu Ala Ser Ser Glu 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | Val Gln Asp Cys Tyr Tyr His Tyr Gly Gln Ser Tyr Arg Gly Thr Arg Gly Thr Arg Gly Thr Arg Thr Ser Tyr Ser Ser Tyr Ser Arg Thr Cys Gln Ala Tyr Pro Arg Thr Pro Glu Asn Tyr Pro Arg Arg Pro Arg Arg Pro Asp Ala Glu Ila Glu Arg Tyr Pro Arg Arg Pro Asp Ala Glu Ila Glu Ala Glu Ila Ila Glu Arg Pro Arg Arg Pro Asp Arg Arg Pro Arg Pro Arg Arg Pro Arg | | Tyr Ser Thr Thr Val Thr Gly 3580 Arg Thr Cys Gln Ala 3585 Trp Ser Ser 3595 Met Thr Pro His Gln His Ser 3595 Arg Thr Pro Glu Asn 3600 Tyr Pro Asr 3690 Ala Gly Leu Thr Arg Asn Tyr Cys Arg Asn Pro Asp 3615 Arg Pro Trp Cys Tyr Thr Met 3625 Asp Pro Ser Val Arg 3630 Trp Glu Tyr 3620 Cys Asn Leu Thr Gln Cys Leu Val Thr Glu Ser Ser Val Leu Ala 3635 Thr Leu Thr Val Val Pro Asp 3655 Pro Ser Thr Glu Ala Ser Ser Glu 3650 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | 3575 3580 3585 Met Thr 3590 Pro His Gln His Ser 3595 Arg Thr Pro Glu Asn 3600 Tyr Pro Asr 3600 Ala Gly Leu Thr Arg Asn Tyr 3605 Cys Arg Asn Pro Asp 3615 Ala Glu Ile 3615 Arg Pro Trp Cys Tyr Thr Met 3625 Asp Pro Ser Val Arg 3630 Trp Glu Tyr 3630 Cys Asn Leu Thr Gln Cys Leu 3635 Val Thr Glu Ser Ser Val Leu Ala 3645 Thr Leu Thr Val Val Pro Asp 3655 Pro Ser Thr Glu Ala Ser Ser Glu 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | 3590 3595 3600 Ala Gly Leu Thr Arg Asn Tyr Cys Arg Asn Pro Asp 3615 Arg Pro Trp Cys Tyr Thr Met 3625 Asp Pro Ser Val Arg 3630 Cys Asn Leu Thr Gln Cys Leu Val Thr Glu Ser Ser 3645 Thr Leu Thr Val Val Pro Asp 3655 Pro Ser Thr Glu Ala Ser Ser Glu 3650 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | 3605 3610 3615 Arg Pro Trp Cys Tyr Thr Met Asp Pro Ser Val Arg Trp Glu Tyr 3620 3630 Cys Asn Leu Thr Gln Cys Leu Val Thr Glu Ser Ser Val Leu Ala 3635 Thr Leu Thr Val Val Pro Asp Pro Ser Thr Glu Ala Ser Ser Glu 3650 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | 3620 Cys Asn Leu Thr Gln Cys Leu Val Thr Glu Ser Ser Val Leu Ala 3635 Thr Leu Thr Val Val Pro Asp Pro Ser Thr Glu Ala Ser Ser Glu 3650 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | 3635 3640 3645 Thr Leu Thr Val Val Pro Asp Pro Ser Thr Glu Ala Ser Ser Glu 3650 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | 3650 3655 3660 Glu Ala Pro Thr Glu Gln Ser Pro Gly Val Gln Asp Cys Tyr His | | | | | | Gly Asp Gly Gln Ser Tyr Arg Gly Ser Phe Ser Thr Thr Val Thr | | _ | | | | | | | | | | | | | | | |-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | | 3680 | | | | | 3685 | | | | | 3690 | | | | | Gly | Arg
3695 | | Cys | Gln | Ser | Trp
3700 | | Ser | Met | Thr | Pro
3705 | His | Trp | His | | Gln | Arg
3710 | | Thr | Glu | Tyr | Tyr
3715 | | Asn | Gly | Gly | Leu
3720 | Thr | Arg | Asn | | Tyr | Cys
3725 | _ | Asn | Pro | Asp | Ala
3730 | | Ile | Ser | Pro | Trp
3735 | Cys | Tyr | Thr | | Met | Asp
3740 | | Asn | Val | Arg | Trp
3745 | | Tyr | Cys | Asn | Leu
3750 | Thr | Gln | CAa | | Pro | Val
3755 | | Glu | Ser | Ser | Val
3760 | | Ala | Thr | Ser | Thr
3765 | Ala | Val | Ser | | Glu | Gln
3770 | | Pro | Thr | Glu | Gln
3775 | | Pro | Thr | Val | Gln
3780 | Asp | CÀa | Tyr | | His | Gly
3785 | _ | Gly | Gln | Ser | Tyr
3790 | Arg | Gly | Ser | Phe | Ser
3795 | Thr | Thr | Val | | Thr | Gly
3800 | _ | | | | | Trp | Ser | Ser | Met | Thr
3810 | Pro | His | Trp | | His | Gln
3815 | Arg | Thr | Thr | Glu | | Tyr | Pro | Asn | - | | Leu | Thr | Arg | | Asn | Tyr
3830 | CAa | Arg | Asn | Pro | | Ala | Glu | Ile | Arg | | Trp | СЛа | Tyr | | Thr | Met | Asp | Pro | Ser | Val | Arg | Trp | | | Cys | Asn | Leu | Thr | Gln | | Cys | 3845
Pro | | Met | Glu | Ser | 3850
Thr | | | Thr | | 3855
Pro | Thr | Val | Val | | Pro | 3860
Val | | Ser | Thr | Glu | 3865
Leu | | Ser | Glu | | 3870
Ala | Pro | Thr | Glu | | | 3875 | | | | | 3880 | | | | | 3885 | | | | | | Ser
3890 | | | | | 3895 | | | | | 3900 | | | | | Tyr | Arg
3905 | | | Leu | | Thr
3910 | | | | _ | Arg
3915 | Thr | CAa | Gln | | Ser | Trp
3920 | | | | | Pro
3925 | His | | | | Arg
3930 | Ile | Pro | Leu | | Tyr | Tyr
3935 | | | | | Leu
3940 | | | | | | Arg | Asn | Pro | | Asp | Ala
3950 | | | | | Trp
3955 | | | | | | | Ser | Val | | Arg | Trp
3965 | | Tyr | Cys | Asn | Leu
3970 | | Arg | Cya | Pro | Val
3975 | Thr | Glu | Ser | | Ser | Val
3980 | | Thr | Thr | Pro | Thr
3985 | Val | Ala | Pro | Val | Pro
3990 | Ser | Thr | Glu | | Ala | Pro
3995 | Ser | Glu | Gln | Ala | Pro
4000 | Pro | Glu | Lys | Ser | Pro
4005 | Val | Val | Gln | | Asp | Cys | _ | His | Gly | Asp | Gly | Arg | Ser | Tyr | Arg | Gly | Ile | Ser | Ser | | Thr | 4010
Thr | | Thr | Gly | Arg | 4015
Thr | Cys | Gln | Ser | Trp | 4020
Ser | Ser | Met | Ile | | | 4025 | | | | | 4030 | | | | | 4035 | | | | | Pro | His
4040 | _ | His | Gln | Arg | Thr
4045 | Pro | Glu | Asn | Tyr | Pro
4050 | Asn | Ala | Gly | | Leu | Thr
4055 | | Asn | Tyr | Cys | Arg
4060 | | Pro | Asp | Ser | Gly
4065 | Lys | Gln | Pro | | Trp | Cys
4070 | • | Thr | Thr | Asp | Pro
4075 | Cys | Val | Arg | Trp | Glu
4080 | - | CÀa | Asn | |-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | Leu | Thr
4085 | Gln | Cys | Ser | Glu | Thr
4090 | Glu | Ser | Gly | Val | Leu
4095 | Glu | Thr | Pro | | Thr | Val
4100 | Val | Pro | Val | Pro | Ser
4105 | Met | Glu | Ala | His | Ser
4110 | Glu | Ala | Ala | | Pro | Thr
4115 | Glu | Gln | Thr | Pro | Val
4120 | Val | Arg | Gln | СЛа | Tyr
4125 | His | Gly | Asn | | Gly | Gln
4130 | Ser | Tyr | Arg | Gly | Thr
4135 | Phe | Ser | Thr | Thr | Val
4140 | Thr | Gly | Arg | | Thr | Cys
4145 | Gln | Ser | Trp | Ser | Ser
4150 | Met | Thr | Pro | His | Arg
4155 | His | Gln | Arg | | Thr | Pro
4160 | Glu | Asn | Tyr | Pro | Asn
4165 | Asp | Gly | Leu | Thr | Met
4170 | Asn | Tyr | CÀa | | Arg | Asn
4175 | Pro | Asp | Ala | Asp | Thr
4180 | Gly | Pro | Trp | Cys | Phe
4185 | Thr | Met | Asp | | Pro | Ser
4190 | Ile | Arg | Trp | Glu | Tyr
4195 | Сув | Asn | Leu | Thr | Arg
4200 | Cys | Ser | Asp | | Thr | Glu
4205 | Gly | Thr | Val | Val | Ala
4210 | Pro | Pro | Thr | Val | Ile
4215 | Gln | Val | Pro | | Ser | Leu
4220 | Gly | Pro | Pro | Ser | Glu
4225 | Gln | Asp | CÀa | Met | Phe
4230 | Gly | Asn | Gly | | Lys | Gly
4235 | Tyr | Arg | Gly | Lys | Lys
4240 | Ala | Thr | Thr | Val | Thr
4245 | Gly | Thr | Pro | | Cys | Gln
4250 | Glu | Trp | Ala | Ala | Gln
4255 | Glu | Pro | His | Arg | His
4260 | Ser | Thr | Phe | | Ile | Pro
4265 | Gly | Thr | Asn | Lys | Trp
4270 | Ala | Gly | Leu | Glu | Lys
4275 | Asn | Tyr | CÀa | | Arg | Asn
4280 | Pro | Asp | Gly | Asp | Ile
4285 | Asn | Gly | Pro | Trp | Cys
4290 | Tyr | Thr | Met | | Asn | Pro
4295 | Arg | Lys | Leu | Phe | Asp
4300 | Tyr | Cys | Asp | Ile | Pro
4305 | Leu | CÀa | Ala | | Ser | Ser
4310 | Ser | Phe | Asp | Cys | Gly
4315 | Lys | Pro | Gln | Val | Glu
4320 | Pro | Lys | ГÀа | | CÀa | Pro
4325 | Gly | Ser | Ile | Val | Gly
4330 | Gly | Cys | Val | Ala | His
4335 | Pro | His | Ser | | Trp | Pro
4340 | Trp | Gln | Val | Ser | Leu
4345 | Arg | Thr | Arg | Phe | Gly
4350 | Lys | His | Phe | | CÀa | Gly
4355 | Gly | Thr | Leu | Ile | Ser
4360 | Pro | Glu | Trp | Val | Leu
4365 | Thr | Ala | Ala | | His | Cys
4370 | Leu | Lys | Lys | Ser | Ser
4375 | Arg | Pro | Ser | Ser | Tyr
4380 | _ | Val | Ile | | Leu | Gly
4385 | Ala | His | Gln | Glu | Val
4390 | Asn | Leu | Glu | Ser | His
4395 | Val | Gln | Glu | | Ile | Glu
4400 | Val | Ser | Arg | Leu | Phe
4405 | Leu | Glu | Pro | Thr | Gln
4410 | Ala | Asp | Ile | | Ala | Leu
4415 | Leu | Lys | Leu | Ser | Arg
4420 | Pro | Ala | Val | Ile | Thr
4425 | Asp | Lys | Val | | Met | Pro
4430 | Ala | Cys | Leu | Pro | Ser
4435 | Pro | Asp | Tyr | Met | Val
4440 | Thr | Ala | Arg | ``` Thr Glu Cys Tyr Ile Thr Gly Trp Gly Glu Thr Gln Gly Thr Phe 4450 Gly Thr Gly Leu Leu Lys Glu Ala Gln Leu Leu Val Ile Glu Asn 4465 Glu Val Cys Asn His Tyr Lys Tyr Ile Cys Ala Glu His Leu Ala 4480 Arg Gly Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val 4495 Cys Phe Glu Lys Asp Lys Tyr Ile Leu Gln Gly Val Thr Ser Trp Gly Leu Gly Cys Ala Arg Pro Asn Lys Pro Gly Val Tyr Ala Arg 4525 Val Ser Arg Phe Val Thr Trp Ile Glu Gly Met Met Arg Asn Asn 4540 <210> SEQ ID NO 57 <211> LENGTH: 184 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 57 Met Ala Glu Pro Gln Pro Pro Ser Gly Gly Leu Thr Asp Glu Ala Ala Leu Ser Cys Cys Ser Asp Ala Asp Pro Ser Thr Lys Asp Phe Leu Leu Gln Gln Thr Met Leu Arg Val Lys Asp Pro Lys Lys Ser Leu Asp Phe 40 Tyr Thr Arg Val Leu Gly Met Thr Leu Ile Gln Lys Cys Asp Phe Pro 55 Ile Met Lys Phe Ser Leu Tyr Phe Leu Ala Tyr Glu Asp Lys Asn Asp Ile Pro Lys Glu Lys Asp Glu Lys Ile Ala Trp Ala Leu Ser Arg Lys Ala Thr Leu Glu Leu Thr His Asn Trp Gly Thr Glu Asp Asp Glu Thr Gln Ser
Tyr His Asn Gly Asn Ser Asp Pro Arg Gly Phe Gly His Ile Gly Ile Ala Val Pro Asp Val Tyr Ser Ala Cys Lys Arg Phe Glu Glu Leu Gly Val Lys Phe Val Lys Lys Pro Asp Asp Gly Lys Met Lys Gly 150 155 Leu Ala Phe Ile Gln Asp Pro Asp Gly Tyr Trp Ile Glu Ile Leu Asn 165 Pro Asn Lys Met Ala Thr Leu Met 180 <210> SEQ ID NO 58 <211> LENGTH: 1824 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 58 Met Ser Ala Gly Gly Arg Asp Glu Glu Arg Arg Lys Leu Ala Asp Ile ``` | Ile | His | His | Trp
20 | Asn | Ala | Asn | Arg | Leu
25 | Asp | Leu | Phe | Glu | Ile
30 | Ser | Gln | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Pro | Thr | Glu
35 | Asp | Leu | Glu | Phe | His
40 | Gly | Val | Met | Arg | Phe
45 | Tyr | Phe | Gln | | Asp | Lуз
50 | Ala | Ala | Gly | Asn | Phe
55 | Ala | Thr | Lys | Сув | Ile
60 | Arg | Val | Ser | Ser | | Thr
65 | Ala | Thr | Thr | Gln | Asp
70 | Val | Ile | Glu | Thr | Leu
75 | Ala | Glu | Lys | Phe | Arg
80 | | Pro | Asp | Met | Arg | Met
85 | Leu | Ser | Ser | Pro | Lys
90 | Tyr | Ser | Leu | Tyr | Glu
95 | Val | | His | Val | Ser | Gly
100 | Glu | Arg | Arg | Leu | Asp
105 | Ile | Asp | Glu | Lys | Pro
110 | Leu | Val | | Val | Gln | Leu
115 | Asn | Trp | Asn | Lys | Asp
120 | Asp | Arg | Glu | Gly | Arg
125 | Phe | Val | Leu | | Lys | Asn
130 | Glu | Asn | Asp | Ala | Ile
135 | Pro | Pro | Lys | Lys | Ala
140 | Gln | Ser | Asn | Gly | | Pro
145 | Glu | Lys | Gln | Glu | Lys
150 | Glu | Gly | Val | Ile | Gln
155 | Asn | Phe | Lys | Arg | Thr
160 | | Leu | Ser | Lys | Lys | Glu
165 | Lys | Lys | Glu | Lys | Lys
170 | Lys | Arg | Glu | Lys | Glu
175 | Ala | | Leu | Arg | Gln | Ala
180 | Ser | Asp | Lys | Asp | Asp
185 | Arg | Pro | Phe | Gln | Gly
190 | Glu | Asp | | Val | Glu | Asn
195 | Ser | Arg | Leu | Ala | Ala
200 | Glu | Val | Tyr | Lys | Asp
205 | Met | Pro | Glu | | Thr | Ser
210 | Phe | Thr | Arg | Thr | Ile
215 | Ser | Asn | Pro | Glu | Val
220 | Val | Met | Lys | Arg | | Arg
225 | Arg | Gln | Gln | Lys | Leu
230 | Glu | Lys | Arg | Met | Gln
235 | Glu | Phe | Arg | Ser | Ser
240 | | Asp | Gly | Arg | Pro | Asp
245 | Ser | Gly | Gly | Thr | Leu
250 | Arg | Ile | Tyr | Ala | Asp
255 | Ser | | Leu | Lys | Pro | Asn
260 | Ile | Pro | Tyr | Lys | Thr
265 | Ile | Leu | Leu | Ser | Thr
270 | Thr | Asp | | Pro | Ala | Asp
275 | Phe | Ala | Val | Ala | Glu
280 | Ala | Leu | Glu | Lys | Tyr
285 | Gly | Leu | Glu | | Lys | Glu
290 | Asn | Pro | Lys | Asp | Tyr
295 | Cys | Ile | Ala | Arg | Val
300 | Met | Leu | Pro | Pro | | Gly
305 | Ala | Gln | His | Ser | Asp
310 | Glu | Lys | Gly | Ala | Lys
315 | Glu | Ile | Ile | Leu | Asp
320 | | Asp | Asp | Glu | Cys | Pro
325 | Leu | Gln | Ile | Phe | Arg
330 | Glu | Trp | Pro | Ser | Asp
335 | Lys | | Gly | Ile | Leu | Val
340 | Phe | Gln | Leu | Lys | Arg
345 | Arg | Pro | Pro | Asp | His
350 | Ile | Pro | | Lys | Lys | Thr
355 | Lys | Lys | His | Leu | Glu
360 | Gly | Lys | Thr | Pro | Lys
365 | Gly | Lys | Glu | | Arg | Ala
370 | Asp | Gly | Ser | Gly | Tyr
375 | Gly | Ser | Thr | Leu | Pro
380 | Pro | Glu | Lys | Leu | | Pro
385 | Tyr | Leu | Val | Glu | Leu
390 | Ser | Pro | Gly | Arg | Arg
395 | Asn | His | Phe | Ala | Tyr
400 | | Tyr | Asn | Tyr | His | Thr
405 | Tyr | Glu | Asp | Gly | Ser
410 | Asp | Ser | Arg | Asp | Lys
415 | Pro | | Lys | Leu | Tyr | Arg | Leu | Gln | Leu | Ser | Val | Thr | Glu | Val | Gly | Thr | Glu | Lys | | | | | 420 | | | | | 425 | | | | | 430 | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Leu | Asp | Asp
435 | Asn | Ser | Ile | Gln | Leu
440 | Phe | Gly | Pro | Gly | Ile
445 | Gln | Pro | His | | His | Cys
450 | Asp | Leu | Thr | Asn | Met
455 | Asp | Gly | Val | Val | Thr
460 | Val | Thr | Pro | Arg | | Ser
465 | Met | Asp | Ala | Glu | Thr
470 | Tyr | Val | Glu | Gly | Gln
475 | Arg | Ile | Ser | Glu | Thr
480 | | Thr | Met | Leu | Gln | Ser
485 | Gly | Met | Lys | Val | Gln
490 | Phe | Gly | Ala | Ser | His
495 | Val | | Phe | Lys | Phe | Val
500 | Asp | Pro | Ser | Gln | Asp
505 | His | Ala | Leu | Ala | Lys
510 | Arg | Ser | | Val | Asp | Gly
515 | Gly | Leu | Met | Val | Lys
520 | Gly | Pro | Arg | His | Lys
525 | Pro | Gly | Ile | | Val | Gln
530 | Glu | Thr | Thr | Phe | Asp
535 | Leu | Gly | Gly | Asp | Ile
540 | His | Ser | Gly | Thr | | Ala
545 | Leu | Pro | Thr | Ser | Lys
550 | Ser | Thr | Thr | Arg | Leu
555 | Asp | Ser | Asp | Arg | Val
560 | | Ser | Ser | Ala | Ser | Ser
565 | Thr | Ala | Glu | Arg | Gly
570 | Met | Val | ГЛа | Pro | Met
575 | Ile | | Arg | Val | Glu | Gln
580 | Gln | Pro | Asp | Tyr | Arg
585 | Arg | Gln | Glu | Ser | Arg
590 | Thr | Gln | | Asp | Ala | Ser
595 | Gly | Pro | Glu | Leu | Ile
600 | Leu | Pro | Ala | Ser | Ile
605 | Glu | Phe | Arg | | Glu | Ser
610 | Ser | Glu | Asp | Ser | Phe
615 | Leu | Ser | Ala | Ile | Ile
620 | Asn | Tyr | Thr | Asn | | Ser
625 | Ser | Thr | Val | His | Phe
630 | Lys | Leu | Ser | Pro | Thr
635 | Tyr | Val | Leu | Tyr | Met
640 | | Ala | Сла | Arg | Tyr | Val
645 | Leu | Ser | Asn | Gln | Tyr
650 | Arg | Pro | Asp | Ile | Ser
655 | Pro | | Thr | Glu | Arg | Thr
660 | His | rys | Val | Ile | Ala
665 | Val | Val | Asn | ГÀа | Met
670 | Val | Ser | | Met | Met | Glu
675 | Gly | Val | Ile | Gln | Lys | Gln | Lys | Asn | Ile | Ala
685 | Gly | Ala | Leu | | Ala | Phe
690 | Trp | Met | Ala | Asn | Ala
695 | Ser | Glu | Leu | Leu | Asn
700 | Phe | Ile | ГÀз | Gln | | Asp
705 | Arg | Asp | Leu | Ser | Arg
710 | Ile | Thr | Leu | Asp | Ala
715 | Gln | Asp | Val | Leu | Ala
720 | | His | Leu | Val | Gln | Met
725 | Ala | Phe | Lys | Tyr | Leu
730 | Val | His | Cys | Leu | Gln
735 | Ser | | Glu | Leu | Asn | Asn
740 | Tyr | Met | Pro | Ala | Phe
745 | Leu | Asp | Asp | Pro | Glu
750 | Glu | Asn | | Ser | Leu | Gln
755 | Arg | Pro | ГÀа | Ile | Asp
760 | Asp | Val | Leu | His | Thr
765 | Leu | Thr | Gly | | Ala | Met
770 | Ser | Leu | Leu | Arg | Arg
775 | Cha | Arg | Val | Asn | Ala
780 | Ala | Leu | Thr | Ile | | Gln
785 | Leu | Phe | Ser | Gln | Leu
790 | Phe | His | Phe | Ile | Asn
795 | Met | Trp | Leu | Phe | Asn
800 | | Arg | Leu | Val | Thr | Asp
805 | Pro | Asp | Ser | Gly | Leu
810 | Cys | Ser | His | Tyr | Trp
815 | Gly | | Ala | Ile | Ile | Arg
820 | Gln | Gln | Leu | Gly | His
825 | Ile | Glu | Ala | Trp | Ala
830 | Glu | Lys | | | | | | | | | | | | | | | | | | | Gln | Gly | Leu
835 | Glu | Leu | Ala | Ala | Asp
840 | Cys | His | Leu | Ser | Arg
845 | | · Val | Gln | |------------|-------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ala | Thr
850 | Thr | Leu | Leu | Thr | Met
855 | Asp | Lys | Tyr | Ala | Pro
860 | _ | Asp | Ile | Pro | | Asn
865 | Ile | Asn | Ser | Thr | Cys
870 | Phe | Lys | Leu | Asn | Ser
875 | Leu | Gln | Leu | Gln | Ala
880 | | Leu | Leu | Gln | Asn | Tyr
885 | His | CAa | Ala | Pro | Asp
890 | Glu | Pro | Phe | Ile | Prc
895 | | | Asp | Leu | Ile | Glu
900 | Asn | Val | Val | Thr | Val
905 | Ala | Glu | Asn | Thr | Ala
910 | | Glu | | Leu | Ala | Arg
915 | Ser | Asp | Gly | Arg | Glu
920 | Val | Gln | Leu | Glu | Glu
925 | _ | Pro | Asp | | Leu | Gln
930 | Leu | Pro | Phe | Leu | Leu
935 | Pro | Glu | Asp | Gly | Tyr
940 | | Cys | Asp | Val | | Val
945 | Arg | Asn | Ile | Pro | Asn
950 | Gly | Leu | Gln | Glu | Phe
955 | Leu | Asp | Pro | Leu | 960
960 | | Gln | Arg | Gly | Phe | Cys
965 | Arg | Leu | Ile | Pro | His
970 | Thr | Arg | Ser | Pro | Gly
975 | Thr | | Trp | Thr | Ile | Tyr
980 | Phe | Glu | Gly | Ala | Asp
985 | Tyr | Glu | Ser | His | Leu
990 | | Arg | | Glu | Asn | Thr
995 | Glu | Leu | Ala | Gln | Pro | | u Ar | g Ly: | s Gl | | o G | lu I | le Ile | | Thr | Val
1010 | | : Leu | ı Lys | s Lys | Glr
101 | | sn G | ly M | et G | - | eu
020 | Ser | Ile | Val | | Ala | Ala
1025 | _ | Gly | / Ala | a Gly | Glr
103 | | sp L | ys L | eu G | | le
035 | Tyr | Val | Lys | | Ser | Val
1040 | | . Lys | Gly | / Gly | 7 Ala
104 | | la A | sp V | al A | _ | ly
050 | Arg | Leu | Ala | | Ala | Gly
1055 | | Glr | ı Leı | ı Lev | 106 | | al A | sp G | ly A: | _ | er
065 | Leu | Val | Gly | | Leu | Ser
1070 | | n Glu | ı Arg | g Ala | 107 | | lu L | eu M | et Tl | | rg
080 | Thr | Ser | Ser | | Val | Val
1085 | | : Leu | ı Glu | ı Val | . Ala | _ | ys G | ln G | ly A | | le
095 | Tyr | His | Gly | | Leu | Ala
1100 | | : Leu | ı Lev | ı Asr | Glr
110 | | ro S | er P | ro Me | | et
110 | Gln | Arg | Ile | | Ser | Asp
1115 | | g Arg | g Gl | / Ser | Gly | | ys P | ro A | rg P: | | ys
125 | Ser | Glu | Gly | | Phe | Glu
1130 | | і Туг | : Asr | n Asn | 113 | | hr G | ln A | sn G | - | er
140 | Pro | Glu | Ser | | Pro | Gln
1145 | | ı Pro | Trp |) Ala | Glu
115 | | yr S | er G | lu P: | | ув
155 | Lys | Leu | Pro | | Gly | Asp
1160 | _ | Arç | J Lev | ı Met | Lys
116 | | sn A | rg A | la A | _ | is
170 | Arg | Ser | Ser | | Pro | Asn
1175 | | . Ala | a Asr | n Glr | Pro | | ro S | er P | ro G | | ly
185 | Lys | Ser | Ala | | Tyr | Ala
1190 | | : Gly | 7 Thi | r Thr | Ala | _ | ys I | le T | hr
S | | al
200 | Ser | Thr | Gly | | Asn | Leu
1205 | _ | Thr | Glu | ı Glu | Glr
121 | | hr P | ro P | ro P: | | rg
215 | Pro | Glu | Ala | | Tyr | Pro
1220 | Ile | Pro | Thr | Gln | Thr
1225 | Tyr | Thr | Arg | Glu | Tyr
1230 | Phe | Thr | Phe | |-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | Pro | Ala
1235 | Ser | Lys | Ser | Gln | Asp
1240 | Arg | Met | Ala | Pro | Pro
1245 | Gln | Asn | Gln | | Trp | Pro
1250 | Asn | Tyr | Glu | Glu | Lys
1255 | Pro | His | Met | His | Thr
1260 | Asp | Ser | Asn | | His | Ser
1265 | Ser | Ile | Ala | Ile | Gln
1270 | Arg | Val | Thr | Arg | Ser
1275 | Gln | Glu | Glu | | Leu | Arg
1280 | Glu | Asp | Lys | Ala | Tyr
1285 | Gln | Leu | Glu | Arg | His
1290 | Arg | Ile | Glu | | Ala | Ala
1295 | Met | Asp | Arg | Lys | Ser
1300 | Asp | Ser | Asp | Met | Trp
1305 | Ile | Asn | Gln | | Ser | Ser
1310 | Ser | Leu | Asp | Ser | Ser
1315 | Thr | Ser | Ser | Gln | Glu
1320 | His | Leu | Asn | | His | Ser
1325 | Ser | Lys | Ser | Val | Thr
1330 | Pro | Ala | Ser | Thr | Leu
1335 | Thr | Lys | Ser | | Gly | Pro
1340 | Gly | Arg | Trp | Lys | Thr
1345 | Pro | Ala | Ala | Ile | Pro
1350 | Ala | Thr | Pro | | Val | Ala
1355 | Val | Ser | Gln | Pro | Ile
1360 | Arg | Thr | Asp | Leu | Pro
1365 | Pro | Pro | Pro | | Pro | Pro
1370 | Pro | Pro | Val | His | Tyr
1375 | Ala | Gly | Asp | Phe | Asp
1380 | Gly | Met | Ser | | Met | Asp
1385 | Leu | Pro | Leu | Pro | Pro
1390 | Pro | Pro | Ser | Ala | Asn
1395 | Gln | Ile | Gly | | Leu | Pro
1400 | Ser | Ala | Gln | Val | Ala
1405 | Ala | Ala | Glu | Arg | Arg
1410 | ГÀв | Arg | Glu | | Glu | His
1415 | Gln | Arg | Trp | Tyr | Glu
1420 | Lys | Glu | Lys | Ala | Arg
1425 | Leu | Glu | Glu | | Glu | Arg
1430 | Glu | Arg | Lys | Arg | Arg
1435 | Glu | Gln | Glu | Arg | Lys
1440 | Leu | Gly | Gln | | Met | Arg
1445 | Thr | Gln | Ser | Leu | Asn
1450 | Pro | Ala | Pro | Phe | Ser
1455 | Pro | Leu | Thr | | Ala | Gln
1460 | Gln | Met | Lys | Pro | Glu
1465 | Lys | Pro | Ser | Thr | Leu
1470 | Gln | Arg | Pro | | Gln | Glu
1475 | Thr | Val | Ile | Arg | Glu
1480 | Leu | Gln | Pro | Gln | Gln
1485 | Gln | Pro | Arg | | Thr | Ile
1490 | Glu | Arg | Arg | Asp | Leu
1495 | Gln | Tyr | Ile | Thr | Val
1500 | Ser | Lys | Glu | | Glu | Leu
1505 | Ser | Ser | Gly | Asp | Ser
1510 | Leu | Ser | Pro | Asp | Pro
1515 | Trp | Lys | Arg | | Asp | Ala
1520 | Lys | Glu | Lys | Leu | Glu
1525 | Lys | Gln | Gln | Gln | Met
1530 | His | Ile | Val | | Asp | Met
1535 | Leu | Ser | Lys | Glu | Ile
1540 | Gln | Glu | Leu | Gln | Ser
1545 | Lys | Pro | Asp | | Arg | Ser
1550 | Ala | Glu | Glu | Ser | Asp
1555 | Arg | Leu | Arg | Lys | Leu
1560 | Met | Leu | Glu | | Trp | Gln
1565 | Phe | Gln | Lys | Arg | Leu
1570 | Gln | Glu | Ser | Lys | Gln
1575 | Lys | Asp | Glu | | Asp | Asp
1580 | Glu | Glu | Glu | Glu | Asp
1585 | Asp | Asp | Val | Asp | Thr
1590 | Met | Leu | Ile | | Met | | Arg | Leu | Glu | Ala | Glu | Arg | Arg | Ala | Arg | | Gln | Asp | Glu | | | 1595 | | | | | 1600 | | | | | 1605 | | | | |-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----| | Glu | Arg
1610 | Arg | Arg | Gln | Gln | Gln
1615 | Leu | Glu | Glu | Met | Arg
1620 | Lys | Arg | Glu | | Ala | Glu
1625 | Asp | Arg | Ala | Arg | Gln
1630 | Glu | Glu | Glu | Arg | Arg
1635 | Arg | Gln | Glu | | Glu | Glu
1640 | Arg | Thr | ГÀз | Arg | Asp
1645 | Ala | Glu | Glu | Lys | Arg
1650 | Arg | Gln | Glu | | Glu | Gly
1655 | Tyr | Tyr | Ser | Arg | Leu
1660 | Glu | Ala | Glu | Arg | Arg
1665 | Arg | Gln | His | | Asp | Glu
1670 | Ala | Ala | Arg | Arg | Leu
1675 | Leu | Glu | Pro | Glu | Ala
1680 | Pro | Gly | Leu | | CÀa | Arg
1685 | Pro | Pro | Leu | Pro | Arg
1690 | | Tyr | Glu | Pro | Pro
1695 | Ser | Pro | Ser | | Pro | Ala
1700 | Pro | Gly | Ala | Pro | Pro
1705 | Pro | Pro | Pro | Gln | Arg
1710 | Asn | Ala | Ser | | Tyr | Leu
1715 | Lys | Thr | Gln | Val | Leu
1720 | Ser | Pro | Asp | Ser | Leu
1725 | Phe | Thr | Ala | | Lys | Phe
1730 | Val | Ala | Tyr | Asn | Glu
1735 | Glu | Glu | Glu | Glu | Glu
1740 | Asp | Cys | Ser | | Leu | Ala
1745 | Gly | Pro | Asn | Ser | Tyr
1750 | Pro | Gly | Ser | Thr | Gly
1755 | Ala | Ala | Val | | Gly | Ala
1760 | His | Asp | Ala | Cys | Arg
1765 | Asp | Ala | ГÀа | Glu | Lys
1770 | Arg | Ser | Lys | | Ser | Gln
1775 | Asp | Ala | Asp | Ser | Pro
1780 | Gly | Ser | Ser | Gly | Ala
1785 | Pro | Glu | Asn | | Leu | Thr
1790 | Phe | Lys | Glu | Arg | Gln
1795 | Arg | Leu | Phe | Ser | Gln
1800 | Gly | Gln | Asp | | Val | Ser
1805 | Asn | Lys | Val | Lys | Ala
1810 | Ser | Arg | ГÀа | Leu | Thr
1815 | Glu | Leu | Glu | | Asn | Glu
1820 | Leu | Asn | Thr | Lys | | | | | | | | | | - 1. A method of reducing an adverse immune response in a subject caused by an activated immune effector cell that expresses a chimeric antigen receptor polypeptide comprising: - administering to the subject experiencing an adverse immune response an effective amount of a heterobifunctional compound; - wherein the subject has previously been administered an immune effector cell capable of expressing a chimeric antigen receptor polypeptide; - wherein the chimeric antigen receptor polypeptide comprises: - i) an extracellular ligand binding protein; - ii) a transmembrane protein; - iii) a cytoplasmic protein comprising at least one intracellular signaling protein; and, - iv) a heterobifunctional compound targeting protein capable of being bound by a heterobifunctional compound; - wherein the administered heterobifunctional compound binds to i) the chimeric receptor antigen polypeptide through the heterobifunctional compound targeting - protein and ii) a ubiquitin ligase in a manner that brings the chimeric antigen receptor polypeptide into proximity of the ubiquitin ligase; and - wherein the chimeric antigen receptor polypeptide, when bound by the heterobifunctional compound, is ubiquitinated and then degraded by a proteasome. - 2. The method of claim 1, wherein the immune effector cell is an autologous human cell. - 3. The method of claim 1, wherein the heterobifunctional compound targeting protein comprises an amino acid sequence from a non-endogenous peptide. - **4**. The method of claim **1**, wherein the heterobifunctional compound targeting protein comprises an amino acid sequence selected from SEQ ID NO: 1-9 and 24-58. - **5**. The method of claim **4**, wherein the heterobifunctional compound targeting protein comprises an amino acid sequence of SEQ ID NO: 1. - **6**. The method of claim **5**, wherein the heterobifunctional compound targeting protein is capable of being bound by a heterobifunctional compound selected from dFKBP1 to dFKBP13. - 7. The method of claim 4, wherein the heterobifunctional compound targeting protein comprises an amino acid sequence of SEQ ID NO: 2. - **8**. The method of claim **4**, wherein the heterobifunctional compound targeting protein comprises an amino acid sequence of SEQ ID NO: 3. - 9. The method of claim 8, wherein the heterobifunctional compound targeting protein is capable of being bound by a heterobifunctional compound selected from dBET1 to dBET18. - 10. The method of claim 4, wherein the heterobifunctional compound targeting protein comprises an amino acid sequence of SEQ ID NO: 9. - 11. The method of claim 10, wherein the heterobifunctional compound targeting protein is capable of being bound by a heterobifunctional compound selected from dHalo1 to dHalo2. - 12. The method of claim 4, wherein the heterobifunctional compound targeting protein comprises an amino acid sequence of SEQ ID NO: 45. - 13.-30. (canceled) - **31**. The method of claim **1**, wherein the extracellular ligand binding protein binds CD19. - **32**. The method of claim **1**, wherein the transmembrane protein comprises the transmembrane region of CD28. - **33**. The method of claim **1**, wherein the at least one intracellular signaling protein is derived from CD3 zeta. - **34**. The method of claim **1**, wherein the at least one intracellular signaling protein further comprises a costimulatory molecule selected from the group consisting of CD27, CD28, 4-1BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, and a ligand that specifically binds with CD83. - 35. The method of claim 1, wherein the heterobifunctional compound targeting protein comprises an amino acid sequence of SEQ ID NO: 2 and the heterobifunctional compound targeting protein is capable of being bound by a heterobifunctional compound selected from dFKBP6 to dFKBP13. * * * * *