(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2023/034419 Al

09 March 2023 (09.03.2023) WIPOIPCT

(51) International Patent Classification:
GO6F 21/55 (2013.01) Ho041 9/40 (2022.01)

(21) International Application Number:
PCT/US2022/042213

(22) International Filing Date:
31 August 2022 (31.08.2022)

95002 (US). JEYAKUMAR, Vimalkumar, 6201 America
Center Drive, Suite 200, San Jose, California 95002 (US).
TOCK, Theron; 6201 America Center Drive, Suite 200,
San Jose, California 95002 (US). XIE, Ying; 6201 America
Center Drive, Suite 200, San Jose, California 95002 (US).
CHEN, Yijou; 6201 America Center Drive, Suite 200, San
Jose, California 95002 (US).

(25) Filing Language: English (74) Agent: LENART, Edward; Kennedy Lenart Spraggins
LLP, 797 Sam Bass Road #2559, Round Rock, Texas 78681
(26) Publication Language: English (US) b X
(30) Priority Data: (. o
81) Designated States (unless otherwise indicated, for every
63/240,818 03 September 2021 (03.09.2021) US kind of national protection available). AE, AG, AL, AM,
17/810,946 06 July 2022 (06.07.2022) us

(71) Applicant: LACEWORK, INC. [US/US]; 6201 America
Center Drive, Suite 200, San Jose, California 95002 (US).

(72) Inventors: KAPOOR, Vikram; 6201 America Center Dri-
ve, Suite 200, San Jose, California 95002 (US). SINGH,
Harish Kumar Bharat; 6201 America Center Drive, Suite
200, San Jose, California 95002 (US). ZENG, Weifei;
6201 America Center Drive, Suite 200, San Jose, California

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, M, JO, JP, KE,
KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU,
LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,

(54) Title: DETECTING ANOMALOUS BEHAVIOR OF A DEVICE

101

Cloud Environment
14
Compute Compute Compute . .
Asset Asset Asset Computl;f Device
16-1 16-2 16-N =
]
24 ¥
Data Platform
12
A J Y

Data Ingestion
Resources
18

Data Processing Resources

20

User Interface
Resources
22

A

3

J

28— |
A A

32

y

30—
A

Data Store

30

Fig. 1A

woO 2023/034419 A1 |0 0000 KA1 0 0

(57) Abstract: Detecting anomalous behavior of a device, including: generating, using information describing historical activity asso-
ciated with a user device, a trained model for detecting normal activity for the user device; gathering information describing current
activity associated with the user device; and determining, by using the information describing current activity associated with the user
device as input to the trained model, whether the user device has deviated from normal activity.

[Continued on next page]

WO 2023/034419 A [IN00] 00000 00RO 00O

TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2023/034419

PCT/US2022/042213

DETECTING ANOMALOUS BEHAVIOR OF A DEVICE

BRIEF DESCRIPTION OF THE DRAWINGS

[0001] The accompanying drawings illustrate various embodiments and are a part of the

specification. The illustrated embodiments are merely examples and do not limit the scope of the

disclosure.

Throughout the drawings, identical or similar reference numbers designate identical

or similar elements.

[0002] Fig

. 1A shows an illustrative configuration in which a data platform is configured to

perform various operations with respect to a cloud environment that includes a plurality of

compute assets.

[0003] Fig
[0004] Fig
[0005] Fig

. 1B shows an illustrative implementation of the configuration of Fig. 1A.
. 1C illustrates an example computing device.

. 1D illustrates an example of an environment in which activities that occur within

datacenters are modeled.

[0006] Fig

. 2A illustrates an example of a process, used by an agent, to collect and report

information about a client.

[0007] Fig
[0008] Fig

[0009] Fig.
[0010] Fig.
[0011] Fig.
[0012] Fig.
[0013] Fig.
[0014] Fig.
[0015] Fig.
[0016] Fig.
[0017] Fig.
[0018] Fig.
[0019] Fig.
[0020] Fig.
[0021] Fig.

. 2B illustrates a S-tuple of data collected by an agent, physically and logically.

. 2C illustrates a portion of a polygraph.

2D illustrates a portion of a polygraph.

2E illustrates an example of a communication polygraph.

2F illustrates an example of a polygraph.

2@ illustrates an example of a polygraph as rendered in an interface.

2H illustrates an example of a portion of a polygraph as rendered in an interface.
21 illustrates an example of a portion of a polygraph as rendered in an interface.
2] illustrates an example of a portion of a polygraph as rendered in an interface.
2K illustrates an example of a portion of a polygraph as rendered in an interface.
2L illustrates an example of an insider behavior graph as rendered in an interface.
2M illustrates an example of a privilege change graph as rendered in an interface.
2N illustrates an example of a user login graph as rendered in an interface.

20 illustrates an example of a machine server graph as rendered in an interface.

3A illustrates an example of a process for detecting anomalies in a network

environment.

[0022] Fig
[0023] Fig
[0024] Fig
[0025] Fig

. 3B depicts a set of example processes communicating with other processes.
. 3C depicts a set of example processes communicating with other processes.
. 3D depicts a set of example processes communicating with other processes.

. 3E depicts two pairs of clusters.

WO 2023/034419

[0026] Fig

PCT/US2022/042213

. 3F 1s a representation of a user logging into a first machine, then into a second

machine from the first machine, and then making an external connection.

[0027] Fig
[0028] Fig
[0029] Fig

. 3G is an alternate representation of actions occurring in Fig. 3F.
. 3H illustrates an example of a process for performing extended user tracking.

.31 is a representation of a user logging into a first machine, then into a second

machine from the first machine, and then making an external connection.

[0030] Fig

[0031] Fig.
[0032] Fig.
[0033] Fig.
[0034] Fig.
[0035] Fig.
[0036] Fig.
[0037] Fig.
[0038] Fig.
[0039] Fig.
[0040] Fig.
[0041] Fig.
[0042] Fig.
[0043] Fig.
[0044] Fig.
[0045] Fig.
[0046] Fig.
[0047] Fig.
[0048] Fig.
[0049] Fig.
[0050] Fig.

. 3J illustrates an example of a process for performing extended user tracking.
3K illustrates example records.

3L illustrates example output from performing an ssh connection match.
3M illustrates example records.

3N illustrates example records.

30 illustrates example records.

3P illustrates example records.

3Q illustrates an adjacency relationship between two login sessions.

3R illustrates example records.

3S illustrates an example of a process for detecting anomalies.

4A illustrates a representation of an embodiment of an insider behavior graph.
4B illustrates an embodiment of a portion of an insider behavior graph.

4C illustrates an embodiment of a portion of an insider behavior graph.

4D illustrates an embodiment of a portion of an insider behavior graph.

4E illustrates a representation of an embodiment of a user login graph.

4F illustrates an example of a privilege change graph.

4G illustrates an example of a privilege change graph.

4H illustrates an example of a user interacting with a portion of an interface.
41 illustrates an example of a dossier for an event.

4] illustrates an example of a dossier for a domain.

4K depicts an example of an Entity Join graph by FilterKey and FilterKey Group

(implicit join).

[0051] Fig
query.

[0052] Fig
devices as

disclosure.

. 4L 1illustrates an example of a process for dynamically generating and executing a

. 5A sets forth a system for providing many of the features described herein for user

a distributed edge service in accordance with some embodiments of the present

WO 2023/034419 PCT/US2022/042213

[0053] Fig. SB sets forth a system for providing many of the features described herein for user
devices as a distributed edge service in accordance with some embodiments of the present
disclosure.

[0054] Fig. 6 sets forth a flow chart illustrating an example method of detecting deviations from
typical user behavior in accordance with some embodiments of the present disclosure.

[0055] Fig. 7 sets forth a flow chart illustrating an additional example method of detecting
deviations from typical behavior in accordance with some embodiments of the present disclosure.
[0056] Fig. 8 sets forth a flow chart illustrating an additional example method of detecting
deviations from typical behavior in accordance with some embodiments of the present disclosure.
[0057] Fig. 9 sets forth a flow chart illustrating an example method of detecting a location of a
user device in accordance with some embodiments of the present disclosure.

[0058] Fig. 10 sets forth a flow chart illustrating an additional example method of detecting a
location of a user device in accordance with some embodiments of the present disclosure.

[0059] Fig. 11 sets forth a flow chart illustrating an additional example method of detecting a
location of a user device in accordance with some embodiments of the present disclosure.

[0060] Fig. 12 sets forth a flow chart illustrating an example method of detecting deviation from
normal behavior of a device in accordance with some embodiments of the present disclosure.
[0061] Fig. 13 sets forth a flow chart illustrating an additional example method of detecting
deviation from normal behavior of a device according to embodiments of the present disclosure.
[0062] Fig. 14 sets forth a flow chart illustrating an additional example method of detecting
deviation from normal behavior of a device in some embodiments of the present disclosure.
[0063] Fig. 15A sets forth an example of a user-specific polygraph in accordance with some
embodiments of the present disclosure.

[0064] Fig. 15B sets forth an example of a user-specific polygraph in accordance with some
embodiments of the present disclosure.

DETAILED DESCRIPTION

[0065] Various illustrative embodiments are described herein with reference to the
accompanying drawings. It will, however, be evident that various modifications and changes may
be made thereto, and additional embodiments may be implemented, without departing from the
scope of the invention as set forth in the claims. For example, certain features of one embodiment
described herein may be combined with or substituted for features of another embodiment
described herein. The description and drawings are accordingly to be regarded in an illustrative
rather than a restrictive sense.

[0066] Fig. 1A shows an illustrative configuration 10 in which a data platform 12 is configured

to perform various operations with respect to a cloud environment 14 that includes a plurality of

WO 2023/034419 PCT/US2022/042213

compute assets 16-1 through 16-N (collectively “compute assets 16). For example, data platform
12 may include data ingestion resources 18 configured to ingest data from cloud environment 14
into data platform 12, data processing resources 20 configured to perform data processing
operations with respect to the data, user interface resources 22 configured to provide one or more
external users and/or compute resources (e.g., computing device 24) with access to an output of
data processing resources 20. Each of these resources are described in detail herein.

[0067] Cloud environment 14 may include any suitable network-based computing environment
as may serve a particular application. For example, cloud environment 14 may be implemented
by one or more compute resources provided and/or otherwise managed by one or more cloud
service providers, such as Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and/or any other cloud service provider configured to provide public and/or
private access to network-based compute resources.

[0068] Compute assets 16 may include, but are not limited to, containers (e.g., container images,
deployed and executing container instances, etc.), virtual machines, workloads, applications,
processes, physical machines, compute nodes, clusters of compute nodes, software runtime
environments (e.g., container runtime environments), and/or any other virtual and/or physical
compute resource that may reside in and/or be executed by one or more computer resources in
cloud environment 14. In some examples, one or more compute assets 16 may reside in one or
more datacenters.

[0069] A compute asset 16 may be associated with (e.g., owned, deployed, or managed by) a
particular entity, such as a customer or client of cloud environment 14 and/or data platform 12.
Accordingly, for purposes of the discussion herein, cloud environment 14 may be used by one or
more entities.

[0070] Data platform 12 may be configured to perform one or more data security monitoring
and/or remediation services, compliance monitoring services, anomaly detection services,
DevOps services, compute asset management services, and/or any other type of data analytics
service as may serve a particular implementation. Data platform 12 may be managed or
otherwise associated with any suitable data platform provider, such as a provider of any of the
data analytics services described herein. The various resources included in data platform 12 may
reside in the cloud and/or be located on-premises and be implemented by any suitable
combination of physical and/or virtual compute resources, such as one or more computing
devices, microservices, applications, etc.

[0071] Data ingestion resources 18 may be configured to ingest data from cloud environment 14
into data platform 12. This may be performed in various ways, some of which are described in

detail herein. For example, as illustrated by arrow 26, data ingestion resources 18 may be

WO 2023/034419 PCT/US2022/042213

configured to receive the data from one or more agents deployed within cloud environment 14,
utilize an event streaming platform (e.g., Kafka) to obtain the data, and/or pull data (e.g.,
configuration data) from cloud environment 14. In some examples, data ingestion resources 18
may obtain the data using one or more agentless configurations.

[0072] The data ingested by data ingestion resources 18 from cloud environment 14 may include
any type of data as may serve a particular implementation. For example, the data may include
data representative of configuration information associated with compute assets 16, information
about one or more processes running on compute assets 16, network activity information,
information about events (creation events, modification events, communication events, user-
initiated events, etc.) that occur with respect to compute assets 16, etc. In some examples, the
data may or may not include actual customer data processed or otherwise generated by compute
assets 16.

[0073] As illustrated by arrow 28, data ingestion resources 18 may be configured to load the data
ingested from cloud environment 14 into a data store 30. Data store 30 is illustrated in Fig. 1A as
being separate from and communicatively coupled to data platform 12. However, in some
alternative embodiments, data store 30 is included within data platform 12.

[0074] Data store 30 may be implemented by any suitable data warehouse, data lake, data mart,
and/or other type of database structure as may serve a particular implementation. Such data stores
may be proprietary or may be embodied as vendor provided products or services such as, for
example, Snowflake, Google BigQuery, Druid, Amazon Redshift, IBM Db2, Dremio, Databricks
Lakehouse Platform, Cloudera, Azure Synapse Analytics, and others.

[0075] Although the examples described herein largely relate to embodiments where data is
collected from agents and ultimately stored in a data store such as those provided by Snowflake,
in other embodiments data that is collected from agents and other sources may be stored in
different ways. For example, data that is collected from agents and other sources may be stored in
a data warehouse, data lake, data mart, and/or any other data store.

[0076] A data warehouse may be embodied as an analytic database (e.g., a relational database)
that is created from two or more data sources. Such a data warehouse may be leveraged to store
historical data, often on the scale of petabytes. Data warehouses may have compute and memory
resources for running complicated queries and generating reports. Data warehouses may be the
data sources for business intelligence (‘BI”) systems, machine learning applications, and/or other
applications. By leveraging a data warehouse, data that has been copied into the data warehouse
may be indexed for good analytic query performance, without affecting the write performance of
a database (e.g., an Online Transaction Processing (‘OLTP’) database). Data warehouses also

enable the joining data from multiple sources for analysis. For example, a sales OLTP application

WO 2023/034419 PCT/US2022/042213

probably has no need to know about the weather at various sales locations, but sales predictions
could take advantage of that data. By adding historical weather data to a data warehouse, it would
be possible to factor it into models of historical sales data.

[0077] Data lakes, which store files of data in their native format, may be considered as “schema
on read” resources. As such, any application that reads data from the lake may impose its own
types and relationships on the data. Data warehouses, on the other hand, are “schema on write,”
meaning that data types, indexes, and relationships are imposed on the data as it is stored in an
enterprise data warehouse (EDW). “Schema on read” resources may be beneficial for data that
may be used in several contexts and poses little risk of losing data. “Schema on write” resources
may be beneficial for data that has a specific purpose, and good for data that must relate properly
to data from other sources. Such data stores may include data that is encrypted using
homomorphic encryption, data encrypted using privacy-preserving encryption, smart contracts,
non-fungible tokens, decentralized finance, and other techniques.

[0078] Data marts may contain data oriented towards a specific business line whereas data
warehouses contain enterprise-wide data. Data marts may be dependent on a data warehouse,
independent of the data warehouse (e.g., drawn from an operational database or external source),
or a hybrid of the two. In embodiments described herein, different types of data stores (including
combinations thereof) may be leveraged.

[0079] Data processing resources 20 may be configured to perform various data processing
operations with respect to data ingested by data ingestion resources 18, including data ingested
and stored in data store 30. For example, data processing resources 20 may be configured to
perform one or more data security monitoring and/or remediation operations, compliance
monitoring operations, anomaly detection operations, DevOps operations, compute asset
management operations, and/or any other type of data analytics operation as may serve a
particular implementation. Various examples of operations performed by data processing
resources 20 are described herein.

[0080] As illustrated by arrow 32, data processing resources 20 may be configured to access data
in data store 30 to perform the various operations described herein. In some examples, this may
include performing one or more queries with respect to the data stored in data store 30. Such
queries may be generated using any suitable query language.

[0081] In some examples, the queries provided by data processing resources 20 may be
configured to direct data store 30 to perform one or more data analytics operations with respect to
the data stored within data store 30. These data analytics operations may be with respect to data
specific to a particular entity (e.g., data residing in one or more silos within data store 30 that are

associated with a particular customer) and/or data associated with multiple entities. For example,

WO 2023/034419 PCT/US2022/042213

data processing resources 20 may be configured to analyze data associated with a first entity and
use the results of the analysis to perform one or more operations with respect to a second entity.
[0082] One or more operations performed by data processing resources 20 may be performed
periodically according to a predetermined schedule. For example, one or more operations may be
performed by processing resources 20 every hour or any other suitable time interval. Additionally
or alternatively, one or more operations performed by data processing resources 20 may be
performed in substantially real-time (or near real-time) as data is ingested into data platform 12.
In this manner, the results of such operations (e.g., one or more detected anomalies in the data)
may be provided to one or more external entities (e.g., computing device 24 and/or one or more
users) in substantially real-time and/or in near real-time.

[0083] User interface resources 22 may be configured to perform one or more user interface
operations, examples of which are described herein. For example, user interface resources 22
may be configured to present one or more results of the data processing performed by data
processing resources 20 to one or more external entities (e.g., computing device 24 and/or one or
more users), as illustrated by arrow 34. As illustrated by arrow 36, user interface resources 22
may access data in data store 30 to perform the one or more user interface operations

[0084] Fig. 1B illustrates an implementation of configuration 10 in which an agent 38 (e.g., agent
38-1 through agent 38-N) is installed on each of compute assets 16. As used herein, an agent may
include a self-contained binary and/or other type of code or application that can be run on any
appropriate platforms, including within containers and/or other virtual compute assets. Agents 38
may monitor the nodes on which they execute for a variety of different activities, including but
not limited to, connection, process, user, machine, and file activities. In some examples, agents
38 can be executed in user space, and can use a variety of kernel modules (e.g., auditd, iptables,
netfilter, pcap, etc.) to collect data. Agents can be implemented in any appropriate programming
language, such as C or Golang, using applicable kernel APIs.

[0085] Agents 38 may be deployed in any suitable manner. For example, an agent 38 may be
deployed as a containerized application or as part of a containerized application. As described
herein, agents 38 may selectively report information to data platform 12 in varying amounts of
detail and/or with variable frequency.

[0086] Also shown in Fig. 1B is a load balancer 40 configured to perform one or more load
balancing operations with respect to data ingestion operations performed by data ingestion
resources 18 and/or user interface operations performed by user interface resources 22. Load
balancer 40 is shown to be included in data platform 12. However, load balancer 40 may

alternatively be located external to data platform 12. Load balancer 40 may be implemented by

WO 2023/034419 PCT/US2022/042213

any suitable microservice, application, and/or other computing resources. In some alternative
examples, data platform 12 may not utilize a load balancer such as load balancer 40.

[0087] Also shown in Fig. 1B is long term storage 42 with which data ingestion resources may
interface, as illustrated by arrow 44. Long term storage 42 may be implemented by any suitable
type of storage resources, such as cloud-based storage (e.g., AWS S3, etc.) and/or on-premises
storage and may be used by data ingestion resources 18 as part of the data ingestion process.
Examples of this are described herein. In some examples, data platform 12 may not utilize long
term storage 42.

[0088] The embodiments described herein can be implemented in numerous ways, including as a
process; an apparatus; a system; a composition of matter; a computer program product embodied
on a computer readable storage medium; and/or a processor, such as a processor configured to
execute instructions stored on and/or provided by a memory coupled to the processor. In this
specification, these implementations, or any other form that the invention may take, may be
referred to as techniques. In general, the order of the steps of disclosed processes may be altered
within the scope of the principles described herein. Unless stated otherwise, a component such as
a processor or a memory described as being configured to perform a task may be implemented as
a general component that is temporarily configured to perform the task at a given time or a
specific component that is manufactured to perform the task. As used herein, the term “processor’
refers to one or more devices, circuits, and/or processing cores configured to process data, such
as computer program instructions.

[0089] In some examples, a non-transitory computer-readable medium storing computer-readable
instructions may be provided in accordance with the principles described herein. The
instructions, when executed by a processor of a computing device, may direct the processor
and/or computing device to perform one or more operations, including one or more of the
operations described herein. Such instructions may be stored and/or transmitted using any of a
variety of known computer-readable media.

[0090] A non-transitory computer-readable medium as referred to herein may include any non-
transitory storage medium that participates in providing data (e.g., instructions) that may be read
and/or executed by a computing device (e.g., by a processor of a computing device). For
example, a non-transitory computer-readable medium may include, but is not limited to, any
combination of non-volatile storage media and/or volatile storage media. Exemplary non-volatile
storage media include, but are not limited to, read-only memory, flash memory, a solid-state
drive, a magnetic storage device (e.g. a hard disk, a floppy disk, magnetic tape, etc.), ferroelectric

random-access memory (“RAM”), and an optical disc (e.g., a compact disc, a digital video disc, a

WO 2023/034419 PCT/US2022/042213

Blu-ray disc, etc.). Exemplary volatile storage media include, but are not limited to, RAM (e.g.,
dynamic RAM).

[0091] Fig. 1C illustrates an example computing device 50 that may be specifically configured to
perform one or more of the processes described herein. Any of the systems, microservices,
computing devices, and/or other components described herein may be implemented by
computing device 50.

[0092] As shown in Fig. 1C, computing device SO may include a communication interface 52, a
processor 54, a storage device 56, and an input/output (“I/O””) module 58 communicatively
connected one to another via a communication infrastructure 60. While an exemplary computing
device 50 is shown in Fig. 1C, the components illustrated in Fig. 1C are not intended to be
limiting. Additional or alternative components may be used in other embodiments. Components
of computing device 50 shown in Fig. 1C will now be described in additional detail.

[0093] Communication interface 52 may be configured to communicate with one or more
computing devices. Examples of communication interface 52 include, without limitation, a wired
network interface (such as a network interface card), a wireless network interface (such as a
wireless network interface card), a modem, an audio/video connection, and any other suitable
interface.

[0094] Processor 54 generally represents any type or form of processing unit capable of
processing data and/or interpreting, executing, and/or directing execution of one or more of the
instructions, processes, and/or operations described herein. Processor 54 may perform operations
by executing computer-executable instructions 62 (e.g., an application, software, code, and/or
other executable data instance) stored in storage device 56.

[0095] Storage device 56 may include one or more data storage media, devices, or configurations
and may employ any type, form, and combination of data storage media and/or device. For
example, storage device 56 may include, but is not limited to, any combination of the non-
volatile media and/or volatile media described herein. Electronic data, including data described
herein, may be temporarily and/or permanently stored in storage device 56. For example, data
representative of computer-executable instructions 62 configured to direct processor 54 to
perform any of the operations described herein may be stored within storage device 56. In some
examples, data may be arranged in one or more databases residing within storage device 56.
[0096] 1/O module 58 may include one or more I/O modules configured to receive user input and
provide user output. I/O module 58 may include any hardware, firmware, software, or
combination thereof supportive of input and output capabilities. For example, I/O module 58 may

include hardware and/or software for capturing user input, including, but not limited to, a

WO 2023/034419 PCT/US2022/042213

keyboard or keypad, a touchscreen component (e.g., touchscreen display), a receiver (e.g., an RF
or infrared receiver), motion sensors, and/or one or more input buttons.

[0097] I/O module 58 may include one or more devices for presenting output to a user, including,
but not limited to, a graphics engine, a display (e.g., a display screen), one or more output drivers
(e.g., display drivers), one or more audio speakers, and one or more audio drivers. In certain
embodiments, I/O module 58 is configured to provide graphical data to a display for presentation
to a user. The graphical data may be representative of one or more graphical user interfaces
and/or any other graphical content as may serve a particular implementation.

[0098] Fig. 1D illustrates an example implementation 100 of configuration 10. As such, one
more components shown in Fig. 1D may implement one or more components shown in Fig. 1A
and/or Fig. 1B. In particular, implementation 100 illustrates an environment in which activities
that occur within datacenters are modeled using data platform 12. Using techniques described
herein, a baseline of datacenter activity can be modeled, and deviations from that baseline can be
identified as anomalous. Anomaly detection can be beneficial in a security context, a compliance
context, an asset management context, a DevOps context, and/or any other data analytics context
as may serve a particular implementation.

[0099] Two example datacenters (104 and 106) are shown in Fig. 1D, and are associated with
(e.g., belong to) entities named entity A and entity B, respectively. A datacenter may include
dedicated equipment (e.g., owned and operated by entity A, or owned/leased by entity A and
operated exclusively on entity A’s behalf by a third party). A datacenter can also include cloud-
based resources, such as infrastructure as a service (IaaS), platform as a service (PaaS), and/or
software as a service (SaaS) elements. The techniques described herein can be used in
conjunction with multiple types of datacenters, including ones wholly using dedicated
equipment, ones that are entirely cloud-based, and ones that use a mixture of both dedicated
equipment and cloud-based resources.

[00100] Both datacenter 104 and datacenter 106 include a plurality of nodes, depicted
collectively as set of nodes 108 and set of nodes 110, respectively, in Fig. 1D. These nodes may
implement compute assets 16. Installed on each of the nodes are in-server / in-virtual machine
(VM) / embedded in IoT device agents (e.g., agent 112), which are configured to collect data and
report it to data platform 12 for analysis. As described herein, agents may be small, self-
contained binaries that can be run on any appropriate platforms, including virtualized ones (and,
as applicable, within containers). Agents may monitor the nodes on which they execute for a
variety of different activities, including: connection, process, user, machine, and file activities.

Agents can be executed in user space, and can use a variety of kernel modules (e.g., auditd,

10

WO 2023/034419 PCT/US2022/042213

iptables, netfilter, pcap, etc.) to collect data. Agents can be implemented in any appropriate
programming language, such as C or Golang, using applicable kernel APIs.

[00101] As described herein, agents can selectively report information to data platform 12 in
varying amounts of detail and/or with variable frequency. As is also described herein, the data
collected by agents may be used by data platform 12 to create polygraphs, which are graphs of
logical entities, connected by behaviors. In some embodiments, agents report information directly
to data platform 12. In other embodiments, at least some agents provide information to a data
aggregator, such as data aggregator 114, which in turn provides information to data platform 12.
The functionality of a data aggregator can be implemented as a separate binary or other
application (distinct from an agent binary), and can also be implemented by having an agent
execute in an “aggregator mode” in which the designated aggregator node acts as a Layer 7 proxy
for other agents that do not have access to data platform 12. Further, a chain of multiple
aggregators can be used, if applicable (e.g., with agent 112 providing data to data aggregator 114,
which in turn provides data to another aggregator (not pictured) which provides data to data
platform 12). An example way to implement an aggregator is through a program written in an
appropriate language, such as C or Golang.

[00102] Use of an aggregator can be beneficial in sensitive environments (e.g., involving
financial or medical transactions) where various nodes are subject to regulatory or other
architectural requirements (e.g., prohibiting a given node from communicating with systems
outside of datacenter 104). Use of an aggregator can also help to minimize security exposure
more generally. As one example, by limiting communications with data platform 12 to data
aggregator 114, individual nodes in nodes 108 need not make external network connections (e.g.,
via Internet 124), which can potentially expose them to compromise (e.g., by other external
devices, such as device 118, operated by a criminal). Similarly, data platform 12 can provide
updates, configuration information, etc., to data aggregator 114 (which in turn distributes them to
nodes 108), rather than requiring nodes 108 to allow incoming connections from data platform 12
directly.

[00103] Another benefit of an aggregator model is that network congestion can be reduced (e.g.,
with a single connection being made at any given time between data aggregator 114 and data
platform 12, rather than potentially many different connections being open between various of
nodes 108 and data platform 12). Similarly, network consumption can also be reduced (e.g., with
the aggregator applying compression techniques/bundling data received from multiple agents).
[00104] One example way that an agent (e.g., agent 112, installed on node 116) can provide
information to data aggregator 114 is via a REST API, formatted using data serialization

protocols such as Apache Avro. One example type of information sent by agent 112 to data

11

WO 2023/034419 PCT/US2022/042213

aggregator 114 is status information. Status information may be sent by an agent periodically
(e.g., once an hour or once any other predetermined amount of time). Alternatively, status
information may be sent continuously or in response to occurrence of one or more events. The
status information may include, but is not limited to, a. an amount of event backlog (in bytes) that
has not yet been transmitted, b. configuration information, c. any data loss period for which data
was dropped, d. a cumulative count of errors encountered since the agent started, e. version
information for the agent binary, and/or f. cumulative statistics on data collection (e.g., number
of network packets processed, new processes seen, etc.).

[00105] A second example type of information that may be sent by agent 112 to data aggregator
114 is event data (described in more detail herein), which may include a UTC timestamp for each
event. As applicable, the agent can control the amount of data that it sends to the data aggregator
in each call (e.g., a maximum of 10MB) by adjusting the amount of data sent to manage the
conflicting goals of transmitting data as soon as possible, and maximizing throughput. Data can
also be compressed or uncompressed by the agent (as applicable) prior to sending the data.
[00106] Each data aggregator may run within a particular customer environment. A data
aggregator (e.g., data aggregator 114) may facilitate data routing from many different agents
(e.g., agents executing on nodes 108) to data platform 12. In various embodiments, data
aggregator 114 may implement a SOCKS 5 caching proxy through which agents can connect to
data platform 12. As applicable, data aggregator 114 can encrypt (or otherwise obfuscate)
sensitive information prior to transmitting it to data platform 12, and can also distribute key
material to agents which can encrypt the information (as applicable). Data aggregator 114 may
include a local storage, to which agents can upload data (e.g., pcap packets). The storage may
have a key-value interface. The local storage can also be omitted, and agents configured to
upload data to a cloud storage or other storage area, as applicable. Data aggregator 114 can, in
some embodiments, also cache locally and distribute software upgrades, patches, or configuration
information (e.g., as received from data platform 12).

[00107] Various examples associated with agent data collection and reporting will now be
described.

[00108] In the following example, suppose that a user (e.g., a network administrator) at entity A
(hereinafter “user A”) has decided to begin using the services of data platform 12. In some
embodiments, user A may access a web frontend (e.g., web app 120) using a computer 126 and
enrolls (on behalf of entity A) an account with data platform 12. After enrollment is complete,
user A may be presented with a set of installers, pre-built and customized for the environment of
entity A, that user A can download from data platform 12 and deploy on nodes 108. Examples of

such installers include, but are not limited to, a Windows executable file, an 10S app, a Linux

12

WO 2023/034419 PCT/US2022/042213

package (e.g., .deb or .rpm), a binary, or a container (e.g., a Docker container). When a user (e.g.,
a network administrator) at entity B (hereinafter “user B”) also signs up for the services of data
platform 12, user B may be similarly presented with a set of installers that are pre-built and
customized for the environment of entity B.

[00109] User A deploys an appropriate installer on each of nodes 108 (e.g., with a Windows
executable file deployed on a Windows-based platform or a Linux package deployed on a Linux
platform, as applicable). As applicable, the agent can be deployed in a container. Agent
deployment can also be performed using one or more appropriate automation tools, such as Chef,
Puppet, Salt, and Ansible. Deployment can also be performed using managed/hosted container
management/orchestration frameworks such as Kubernetes, Mesos, and/or Docker Swarm.
[00110] In various embodiments, the agent may be installed in the user space (i.e., is not a kernel
module), and the same binary is executed on each node of the same type (e.g., all Windows-
based platforms have the same Windows-based binary installed on them). An illustrative function
of an agent, such as agent 112, is to collect data (e.g., associated with node 116) and report it
(e.g., to data aggregator 114). Other tasks that can be performed by agents include data
configuration and upgrading.

[00111] One approach to collecting data as described herein is to collect virtually all information
available about a node (and, e.g., the processes running on it). Alternatively, the agent may
monitor for network connections, and then begin collecting information about processes
associated with the network connections, using the presence of a network packet associated with
a process as a trigger for collecting additional information about the process. As an example, if a
user of node 116 executes an application, such as a calculator application, which does not
typically interact with the network, no information about use of that application may be collected
by agent 112 and/or sent to data aggregator 114. If, however, the user of node 116 executes an
ssh command (e.g., to ssh from node 116 to node 122), agent 112 may collect information about
the process and provide associated information to data aggregator 114. In various embodiments,
the agent may always collect/report information about certain events, such as privilege
escalation, irrespective of whether the event is associated with network activity.

[00112] An approach to collecting information (e.g., by an agent) is as follows, and described in
conjunction with process 200 depicted in Fig. 2A. An agent (e.g., agent 112) monitors its node
(e.g., node 116) for network activity. One example way that agent 112 can monitor node 116 for
network activity is by using a network packet capture tool (e.g., listening using libpcap). As
packets are received (201), the agent obtains and maintains (e.g., in an in-memory cache)
connection information associated with the network activity (202). Examples of such information

include DNS query/response, TCP, UDP, and IP information.

13

WO 2023/034419 PCT/US2022/042213

[00113] The agent may also determine a process associated with the network connection (203).
One example approach is for the agent to use a kernel network diagnostic API (e.g., netlink_diag)
to obtain inode/process information from the kernel. Another example approach is for the agent
to scan using netstat (e.g., on /proc/net/tcp, /proc/net/tcp6, /proc/net/udp, and /proc/net/udp6) to
obtain sockets and relate them to processes. Information such as socket state (e.g., whether a
socket is connected, listening, etc.) can also be collected by the agent.

[00114] One way an agent can obtain a mapping between a given inode and a process identifier
is to scan within the /proc/pid directory. For each of the processes currently running, the agent
examines each of their file descriptors. If a file descriptor is a match for the inode, the agent can
determine that the process associated with the file descriptor owns the inode. Once a mapping is
determined between an inode and a process identifier, the mapping is cached. As additional
packets are received for the connection, the cached process information is used (rather than a new
search being performed).

[00115] In some cases, exhaustively scanning for an inode match across every file descriptor
may not be feasible (e.g., due to CPU limitations). In various embodiments, searching through
file descriptors is accordingly optimized. User filtering is one example of such an optimization. A
given socket is owned by a user. Any processes associated with the socket will be owned by the
same user as the socket. When matching an inode (identified as relating to a given socket) against
processes, the agent can filter through the processes and only examine the file descriptors of
processes sharing the same user owner as the socket. In various embodiments, processes owned
by root are always searched against (e.g., even when user filtering is employed).

[00116] Another example of an optimization is to prioritize searching the file descriptors of
certain processes over others. One such prioritization is to search through the subdirectories of
/proc/ starting with the youngest process. One approximation of such a sort order is to search
through /proc/ in reverse order (e.g., examining highest numbered processes first). Higher
numbered processes are more likely to be newer (i.e., not long-standing processes), and thus
more likely to be associated with new connections (i.e., ones for which inode-process mappings
are not already cached). In some cases, the most recently created process may not have the
highest process identifier (e.g., due to the kernel wrapping through process identifiers).

[00117] Another example prioritization is to query the kernel for an identification of the most
recently created process and to search in a backward order through the directories in /proc/ (e.g.,
starting at the most recently created process and working backwards, then wrapping to the
highest value (e.g., 32768) and continuing to work backward from there). An alternate approach

is for the agent to keep track of the newest process that it has reported information on (e.g., to

14

WO 2023/034419 PCT/US2022/042213

data aggregator 114), and begin its search of /proc/ in a forward order starting from the PID of
that process.

[00118] Another example prioritization is to maintain, for each user actively using node 116, a
list of the five (or any other number) most recently active processes. Those processes are more
likely than other processes (less active, or passive) on node 116 to be involved with new
connections, and can thus be searched first. For many processes, lower valued file descriptors
tend to correspond to non-sockets (e.g., stdin, stdout, stderr). Yet another optimization is to
preferentially search higher valued file descriptors (e.g., across processes) over lower valued file
descriptors (that are less likely to yield matches).

[00119] In some cases, while attempting to locate a process identifier for a given inode, an agent
may encounter a socket that does not correspond to the inode being matched against and is not
already cached. The identity of that socket (and its corresponding inode) can be cached, once
discovered, thus removing a future need to search for that pair.

[00120] In some cases, a connection may terminate before the agent is able to determine its
associated process (e.g., due to a very short-lived connection, due to a backlog in agent
processing, etc.). One approach to addressing such a situation is to asynchronously collect
information about the connection using the audit kernel API, which streams information to user
space. The information collected from the audit API (which can include PID/inode information)
can be matched by the agent against pcap/inode information. In some embodiments, the audit
API is always used, for all connections. However, due to CPU utilization considerations, use of
the audit API can also be reserved for short/otherwise problematic connections (and/or omitted,
as applicable).

[00121] Once the agent has determined which process is associated with the network connection
(203), the agent can then collect additional information associated with the process (204). As will
be described in more detail below, some of the collected information may include attributes of
the process (e.g., a process parent hierarchy, and an identification of a binary associated with the
process). As will also be described in more detail below, other of the collected information is
derived (e.g., session summarization data and hash values).

[00122] The collected information is then transmitted (205), e.g., by an agent (e.g., agent 112) to
a data aggregator (e.g., data aggregator 114), which in turn provides the information to data
platform 12. In some embodiments, all information collected by an agent may be transmitted
(e.g., to a data aggregator and/or to data platform 12). In other embodiments, the amount of data
transmitted may be minimized (e.g., for efficiency reasons), using various techniques.

[00123] One approach to minimizing the amount of data flowing from agents (such as agents

installed on nodes 108) to data platform 12 is to use a technique of implicit references with

15

WO 2023/034419 PCT/US2022/042213

unique keys. The keys can be explicitly used by data platform 12 to extract/derive relationships,
as necessary, in a data set at a later time, without impacting performance.

[00124] As previously mentioned, some data collected about a process is constant and does not
change over the lifetime of the process (e.g., attributes), and some data changes (e.g., statistical
information and other variable information). Constant data can be transmitted (210) once, when
the agent first becomes aware of the process. And, if any changes to the constant data are
detected (e.g., a process changes its parent), a refreshed version of the data can be transmitted
(210) as applicable.

[00125] In some examples, an agent may collect variable data (e.g., data that may change over
the lifetime of the process). In some examples, variable data can be transmitted (210) at periodic
(or other) intervals. Alternatively, variable data may be transmitted in substantially real time as it
is collected. In some examples, the variable data may indicate a thread count for a process, a total
virtual memory used by the process, the total resident memory used by the process, the total time
spent by the process executing in user space, and/or the total time spent by the process executing
in kernel space. In some examples, the data may include a hash that may be used within data
platform 12 to join process creation time attributes with runtime attributes to construct a full
dataset.

[00126] Below are additional examples of data that an agent, such as agent 112, can collect and
provide to data platform 12.

[00127] 1. User Data

[00128] Core User Data: user name, UID (user ID), primary group, other groups, home directory.
[00129] Failed Login Data: IP address, hostname, username, count.

[00130] User Login Data: user name, hostname, IP address, start time, TTY (terminal), UID
(user ID), GID (group ID), process, end time.

[00131] 2. Machine Data

[00132] Dropped Packet Data: source IP address, destination IP address, destination port,
protocol, count.

[00133] Machine Data: hostname, domain name, architecture, kernel, kernel release, kernel
version, OS, OS version, OS description, CPU, memory, model number, number of cores, last
boot time, last boot reason, tags (e.g., Cloud provider tags such as AWS, GCP, or Azure tags),
default router, interface name, interface hardware address, interface IP address and mask,
promiscuous mode.

[00134] 3. Network Data

[00135] Network Connection Data: source IP address, destination IP address, source port,

destination port, protocol, start time, end time, incoming and outgoing bytes, source process,

16

WO 2023/034419 PCT/US2022/042213

destination process, direction of connection, histograms of packet length, inter packet delay,
session lengths, etc.

[00136] Listening Ports in Server: source IP address, port number, protocol, process.

[00137] Dropped Packet Data: source IP address, destination IP address, destination port,
protocol, count.

[00138] Arp Data: source hardware address, source IP address, destination hardware address,
destination IP address.

[00139] DNS Data: source IP address, response code, response string, question (request), packet
length, final answer (response).

[00140] 4. Application Data

[00141] Package Data: exe path, package name, architecture, version, package path, checksums
(MDS, SHA-1, SHA-256), size, owner, owner ID.

[00142] Application Data: command line, PID (process ID), start time, UID (user ID), EUID
(effective UID), PPID (parent process ID), PGID (process group ID), SID (session ID), exe path,
username, container ID.

[00143] 5. Container Data

[00144] Container Image Data: image creation time, parent ID, author, container type, repo,
(AWS) tags, size, virtual size, image version.

[00145] Container Data: container start time, container type, container name, container ID,
network mode, privileged, PID mode, IP addresses, listening ports, volume map, process ID.
[00146] 6. File Data

[00147] File path, file data hash, symbolic links, file creation data, file change data, file
metadata, file mode.

[00148] As mentioned above, an agent, such as agent 112, can be deployed in a container (e.g., a
Docker container), and can also be used to collect information about containers. Collection about
a container can be performed by an agent irrespective of whether the agent is itself deployed in a
container or not (as the agent can be deployed in a container running in a privileged mode that
allows for monitoring).

[00149] Agents can discover containers (e.g., for monitoring) by listening for container create
events (e.g., provided by Docker), and can also perform periodic ordered discovery scans to
determine whether containers are running on a node. When a container is discovered, the agent
can obtain attributes of the container, e.g., using standard Docker API calls (e.g., to obtain IP
addresses associated with the container, whether there’s a server running inside, what port it is

listening on, associated PIDs, etc.). Information such as the parent process that started the

17

WO 2023/034419 PCT/US2022/042213

container can also be collected, as can information about the image (which comes from the
Docker repository).

[00150] In various embodiments, agents may use namespaces to determine whether a process is
associated with a container. Namespaces are a feature of the Linux kernel that can be used to
isolate resources of a collection of processes. Examples of namespaces include process ID (PID)
namespaces, network namespaces, and user namespaces. Given a process, the agent can perform
a fast lookup to determine whether the process is part of the namespace the container claims to be
its namespace.

[00151] As mentioned, agents can be configured to report certain types of information (e.g.,
attribute information) once, when the agent first becomes aware of a process. In various
embodiments, such static information is not reported again (or is reported once a day, every
twelve hours, etc.), unless it changes (e.g., a process changes its parent, changes its owner, or a
SHA-1 of the binary associated with the process changes).

[00152] In contrast to static/attribute information, certain types of data change constantly (e.g.,
network-related data). In various embodiments, agents are configured to report a list of current
connections every minute (or other appropriate time interval). In that connection list will be
connections that started in that minute interval, connections that ended in that minute interval,
and connections that were ongoing throughout the minute interval (e.g., a one minute slice of a
one hour connection).

[00153] In various embodiments, agents are configured to collect/compute statistical information
about connections (e.g., at the one minute level of granularity and or at any other time interval).
Examples of such information include, for the time interval, the number of bytes transferred, and
in which direction. Another example of information collected by an agent about a connection is
the length of time between packets. For connections that span multiple time intervals (e.g., a
seven minute connection), statistics may be calculated for each minute of the connection. Such
statistical information (for all connections) can be reported (e.g., to a data aggregator) once a
minute.

[00154] In various embodiments, agents are also configured to maintain histogram data for a
given network connection, and provide the histogram data (e.g., in the Apache Avro data
exchange format) under the Connection event type data. Examples of such histograms include: 1.
a packet length histogram (packet len hist), which characterizes network packet distribution; 2.
a session length histogram (session_len_hist), which characterizes a network session length; 3. a
session time histogram (session_time _hist), which characterizes a network session time; and 4. a
session switch time histogram (session switch time hist), which characterizes network session

switch time (i.e., incoming->outgoing and vice versa). For example, histogram data may include

18

WO 2023/034419 PCT/US2022/042213

one or more of the following fields: 1. count, which provides a count of the elements in the
sampling; 2. sum, which provides a sum of elements in the sampling; 3. max, which provides the
highest value element in the sampling; 4. std_dev, which provides the standard deviation of
elements in the sampling; and 5. buckets, which provides a discrete sample bucket distribution of
sampling data (if applicable).

[00155] For some protocols (e.g., HTTP), typically, a connection is opened, a string is sent, a
string is received, and the connection is closed. For other protocols (e.g., NFS), both sides of the
connection engage in a constant chatter. Histograms allow data platform 12 to model application
behavior (e.g., using machine learning techniques), for establishing baselines, and for detecting
deviations. As one example, suppose that a given HT'TP server typically sends/receives 1,000
bytes (in each direction) whenever a connection is made with it. If a connection generates 500
bytes of traffic, or 2,000 bytes of traffic, such connections would be considered within the typical
usage pattern of the server. Suppose, however, that a connection is made that results in 10G of
traffic. Such a connection is anomalous and can be flagged accordingly.

[00156] Returning to Fig. 1D, as previously mentioned, data aggregator 114 may be configured
to provide information (e.g., collected from nodes 108 by agents) to data platform 12. Data
aggregator 128 may be similarly configured to provide information to data platform 12. As
shown in Fig. 1D, both aggregator 114 and aggregator 128 may connect to a load balancer 130,
which accepts connections from aggregators (and/or as applicable, agents), as well as other
devices, such as computer 126 (e.g., when it communicates with web app 120), and supports fair
balancing. In various embodiments, load balancer 130 is a reverse proxy that load balances
accepted connections internally to various microservices (described in more detail below),
allowing for services provided by data platform 12 to scale up as more agents are added to the
environment and/or as more entities subscribe to services provided by data platform 12. Example
ways to implement load balancer 130 include, but are not limited to, using HaProxy, using nginx,
and using elastic load balancing (ELB) services made available by Amazon.

[00157] Agent service 132 is a microservice that is responsible for accepting data collected from
agents (e.g., provided by aggregator 114). In various embodiments, agent service 132 uses a
standard secure protocol, such as HTTPS to communicate with aggregators (and as applicable
agents), and receives data in an appropriate format such as Apache Avro. When agent service
132 receives an incoming connection, it can perform a variety of checks, such as to see whether
the data is being provided by a current customer, and whether the data is being provided in an
appropriate format. If the data is not appropriately formatted (and/or is not provided by a current

customer), it may be rejected.

19

WO 2023/034419 PCT/US2022/042213

[00158] If the data is appropriately formatted, agent service 132 may facilitate copying the
received data to a streaming data stable storage using a streaming service (e.g., Amazon Kinesis
and/or any other suitable streaming service. Once the ingesting into the streaming service is
complete, service 132 may send an acknowledgement to the data provider (e.g., data aggregator
114). If the agent does not receive such an acknowledgement, it is configured to retry sending the
data to data platform 12. One way to implement agent service 132 is as a REST API server
framework (e.g., Java DropWizard), configured to communicate with Kinesis (e.g., using a
Kinesis library).

[00159] In various embodiments, data platform 12 uses one or more streams (e.g., Kinesis
streams) for all incoming customer data (e.g., including data provided by data aggregator 114 and
data aggregator 128), and the data is sharded based on the node (also referred to herein as a
“machine”) that originated the data (e.g., node 116 vs. node 122), with each node having a
globally unique identifier within data platform 12. Multiple instances of agent service 132 can
write to multiple shards.

[00160] Kinesis is a streaming service with a limited period (e.g., 1-7 days). To persist data
longer than a day, the data may be copied to long term storage 42 (e.g., S3). Data loader 136 is a
microservice that is responsible for picking up data from a data stream (e.g., a Kinesis stream)
and persisting it in long term storage 42. In one example embodiment, files collected by data
loader 136 from the Kinesis stream are placed into one or more buckets, and segmented using a
combination of a customer identifier and time slice. Given a particular time segment, and a given
customer identifier, the corresponding file (stored in long term storage) contains five minutes (or
another appropriate time slice) of data collected at that specific customer from all of the
customer’s nodes. Data loader 136 can be implemented in any appropriate programming
language, such as Java or C, and can be configured to use a Kinesis library to interface with
Kinesis. In various embodiments, data loader 136 uses the Amazon Simple Queue Service (SQS)
(e.g., to alert DB loader 140 that there is work for it to do).

[00161] DB loader 140 is a microservice that is responsible for loading data into an appropriate
data store 30, such as SnowflakeDB or Amazon Redshift, using individual per-customer
databases. In particular, DB loader 140 is configured to periodically load data into a set of raw
tables from files created by data loader 136 as per above. DB loader 140 manages throughput,
errors, etc., to make sure that data is loaded consistently and continuously. Further, DB loader
140 can read incoming data and load into data store 30 data that is not already present in tables of
data store 30 (also referred to herein as a database). DB loader 140 can be implemented in any
appropriate programming language, such as Java or C, and an SQL framework such as jOOQ

(e.g., to manage SQLs for insertion of data), and SQL/JDBC libraries. In some examples, DB

20

WO 2023/034419 PCT/US2022/042213

loader 140 may use Amazon S3 and Amazon Simple Queue Service (SQS) to manage files being
transferred to and from data store 30.

[00162] Customer data included in data store 30 can be augmented with data from additional data
sources, such as AWS CloudTrail and/or other types of external tracking services. To this end,
data platform may include a tracking service analyzer 144, which is another microservice.
Tracking service analyzer 144 may pull data from an external tracking service (e.g., Amazon
CloudTrail) for each applicable customer account, as soon as the data is available. Tracking
service analyzer 144 may normalize the tracking data as applicable, so that it can be inserted into
data store 30 for later querying/analysis. Tracking service analyzer 144 can be written in any
appropriate programming language, such as Java or C. Tracking service analyzer 144 also makes
use of SQL/JDBC libraries to interact with data store 30 to insert/query data.

[00163] As described herein, data platform 12 can model activities that occur within datacenters,
such as datacenters 104 and 106. The model may be stable over time, and differences, even
subtle ones (e.g., between a current state of the datacenter and the model) can be surfaced. The
ability to surface such anomalies can be particularly beneficial in datacenter environments where
rogue employees and/or external attackers may operate slowly (e.g., over a period of months),
hoping that the elastic nature of typical resource use (e.g., virtualized servers) will help conceal
their nefarious activities.

[00164] Using techniques described herein, data platform 12 can automatically discover entities
(which may implement compute assets 16) deployed in a given datacenter. Examples of entities
include workloads, applications, processes, machines, virtual machines, containers, files, IP
addresses, domain names, and users. The entities may be grouped together logically (into
analysis groups) based on behaviors, and temporal behavior baselines can be established. In
particular, using techniques described herein, periodic graphs can be constructed (also referred to
herein as polygraphs), in which the nodes are applicable logical entities, and the edges represent
behavioral relationships between the logical entities in the graph. Baselines can be created for
every node and edge.

[00165] Communication (e.g., between applications/nodes) is one example of a behavior. A
model of communications between processes is an example of a behavioral model. As another
example, the launching of applications is another example of a behavior that can be modeled.
The baselines may be periodically updated (e.g., hourly) for every entity. Additionally or
alternatively, the baselines may be continuously updated in substantially real-time as data is
collected by agents. Deviations from the expected normal behavior can then be detected and
automatically reported (e.g., as anomalies or threats detected). Such deviations may be due to a

desired change, a misconfiguration, or malicious activity. As applicable, data platform 12 can

21

WO 2023/034419 PCT/US2022/042213

score the detected deviations (e.g., based on severity and threat posed). Additional examples of
analysis groups include models of machine communications, models of privilege changes, and
models of insider behaviors (monitoring the interactive behavior of human users as they operate
within the datacenter).

[00166] Two example types of information collected by agents are network level information and
process level information. As previously mentioned, agents may collect information about every
connection involving their respective nodes. And, for each connection, information about both
the server and the client may be collected (e.g., using the connection-to-process identification
techniques described above). DNS queries and responses may also be collected. The DNS query
information can be used in logical entity graphing (e.g., collapsing many different IP addresses to
a single service — e.g., s3.amazon.com). Examples of process level information collected by
agents include attributes (user ID, effective user ID, and command line). Information such as
what user/application is responsible for launching a given process and the binary being executed
(and its SHA-256 values) may also be provided by agents.

[00167] The dataset collected by agents across a datacenter can be very large, and many
resources (e.g., virtual machines, IP addresses, etc.) are recycled very quickly. For example, an
IP address and port number used at a first point in time by a first process on a first virtual
machine may very rapidly be used (e.g., an hour later) by a different process/virtual machine.
[00168] A dataset (and elements within it) can be considered at both a physical level, and a
logical level, as illustrated in Fig. 2B. In particular, Fig. 2B illustrates an example 5-tuple of data
210 collected by an agent, represented physically (216) and logically (217). The S-tuple includes
a source address 211, a source port 212, a destination address 213, a destination port 214, and a
protocol 215. In some cases, port numbers (e.g., 212, 214) may be indicative of the nature of a
connection (e.g., with certain port usage standardized). However, in many cases, and in particular
in datacenters, port usage is ephemeral. For example, a Docker container can listen on an
ephemeral port, which is unrelated to the service it will run. When another Docker container
starts (for the same service), the port may well be different. Similarly, particularly in a virtualized
environment, IP addresses may be recycled frequently (and are thus also potentially ephemeral)
or could be NATed, which makes identification difficult.

[00169] A physical representation of the 5-tuple is depicted in region 216. A process 218
(executing on machine 219) has opened a connection to machine 220. In particular, process 218
is in communication with process 221. Information such as the number of packets exchanged
between the two machines over the respective ports can be recorded.

[00170] As previously mentioned, in a datacenter environment, portions of the S-tuple may

change — potentially frequently — but still be associated with the same behavior. Namely, one

22

WO 2023/034419 PCT/US2022/042213

application (e.g., Apache) may frequently be in communication with another application (e.g.,
Oracle), using ephemeral datacenter resources. Further, either/both of Apache and Oracle may be
multi-homed. This can lead to potentially thousands of 5-tuples (or more) that all correspond to
Apache communicating with Oracle within a datacenter. For example, Apache could be executed
on a single machine, and could also be executed across fifty machines, which are variously spun
up and down (with different IP addresses each time). An alternate representation of the S-tuple of
data 210 is depicted in region 217, and is logical. The logical representation of the 5-tuple
aggregates the 5-tuple (along with other connections between Apache and Oracle having other 5-
tuples) as logically representing the same connection. By aggregating data from raw physical
connection information into logical connection information, using techniques described herein, a
size reduction of six orders of magnitude in the data set can be achieved.

[00171] Fig. 2C depicts a portion of a logical polygraph. Suppose a datacenter has seven
instances of the application update engine 225, executing as seven different processes on seven
different machines, having seven different IP addresses, and using seven different ports. The
instances of update engine variously communicate with update.core-os.net 226, which may have
a single IP address or many IP addresses itself, over the one hour time period represented in the
polygraph. In the example shown in Fig. 2C, update engine is a client, connecting to the server
update.core-os.net, as indicated by arrow 228.

[00172] Behaviors of the seven processes are clustered together, into a single summary. As
indicated in region 227, statistical information about the connections is also maintained (e.g.,
number of connections, histogram information, etc.). A polygraph such as is depicted in Fig. 2C
can be used to establish a baseline of behavior (e.g., at the one-hour level), allowing for the
future detection of deviations from that baseline. As one example, suppose that statistically an
update _engine instance transmits data at 11 bytes per second. If an instance were instead to
transmit data at 1000 bytes per second, such behavior would represent a deviation from the
baseline and could be flagged accordingly. Similarly, changes that are within the baseline (e.g.,
an eighth instance of update engine appears, but otherwise behaves as the other instances; or one
of the seven instances disappears) are not flagged as anomalous. Further, datacenter events, such
as failover, autobalancing, and A-B refresh are unlikely to trigger false alarms in a polygraph, as
at the logical level, the behaviors remain the same.

[00173] In various embodiments, polygraph data is maintained for every application in a
datacenter, and such polygraph data can be combined to make a single datacenter view across all
such applications. Fig. 2D illustrates a portion of a polygraph for a service that evidences more
complex behaviors than are depicted in Fig. 2C. In particular, Fig. 2D illustrates the behaviors of

S3 as a service (as used by a particular customer datacenter). Clients within the datacenter

23

WO 2023/034419 PCT/US2022/042213

variously connect to the S3 service using one of five fully qualified domains (listed in region
230). Contact with any of the domains is aggregated as contact with S3 (as indicated in region
231). Depicted in region 232 are various containers which (as clients) connect with S3. Other
containers (which do not connect with S3) are not included. As with the polygraph portion
depicted in Fig. 2C, statistical information about the connections is known and summarized, such
as the number of bytes transferred, histogram information, etc.

[00174] Fig. 2E illustrates a communication polygraph for a datacenter. In particular, the
polygraph indicates a one hour summary of approximately 500 virtual machines, which
collectively run one million processes, and make 100 million connections in that hour. As
illustrated in Fig. 2E, a polygraph represents a drastic reduction in size (e.g., from tracking
information on 100 million connections in an hour, to a few hundred nodes and a few hundred
edges). Further, as a datacenter scales up (e.g., from using 10 virtual machines to 100 virtual
machines as the datacenter uses more workers to support existing applications), the polygraph for
the datacenter will tend to stay the same size (with the 100 virtual machines clustering into the
same nodes that the 10 virtual machines previously clustered into). As new applications are
added into the datacenter, the polygraph may automatically scale to include behaviors involving
those applications.

[00175] In the particular polygraph shown in Fig. 2E, nodes generally correspond to workers,
and edges correspond to communications the workers engage in (with connection activity being
the behavior modeled in polygraph 235). Another example polygraph could model other
behavior, such as application launching. The communications graphed in Fig. 2E include traffic
entering the datacenter, traffic exiting the datacenter, and traffic that stays wholly within the
datacenter (e.g., traffic between workers). One example of a node included in polygraph 235 is
the sshd application, depicted as node 236. As indicated in Fig. 2E, 421 instances of sshd were
executing during the one hour time period of data represented in polygraph 235. As indicated in
region 237, nodes within the datacenter communicated with a total of 1349 IP addresses outside
of the datacenter (and not otherwise accounted for, e.g., as belonging to a service such as
Amazon AWS 238 or Slack 239).

[00176] In the following examples, suppose that user B, an administrator of datacenter 106, is
interacting with data platform 12 to view visualizations of polygraphs in a web browser (e.g., as
served to user B via web app 120). One type of polygraph user B can view is an application-
communication polygraph, which indicates, for a given one hour window (or any other suitable
time interval), which applications communicated with which other applications. Another type of
polygraph user B can view is an application launch polygraph. User B can also view graphs

related to user behavior, such as an insider behavior graph which tracks user connections (e.g., to

24

WO 2023/034419 PCT/US2022/042213

internal and external applications, including chains of such behavior), a privilege change graph
which tracks how privileges change between processes, and a user login graph, which tracks
which (logical) machines a user logs into.

[00177] Fig. 2F illustrates an example of an application-communication polygraph for a
datacenter (e.g., datacenter 100) for the one hour period of 9am-10am on June 5. The time slice
currently being viewed is indicated in region 240. If user B clicks his mouse in region 241, user
B will be shown a representation of the application-communication polygraph as generated for
the following hour (10am-11am on June 5).

[00178] Fig. 2G depicts what is shown in user B’s browser after he has clicked on region 241,
and has further clicked on region 242. The selection in region 242 turns on and off the ability to
compare two time intervals to one another. User B can select from a variety of options when
comparing the 9am-10am and 10am-11am time intervals. By clicking region 248, user B will be
shown the union of both graphs (i.e., any connections that were present in either time interval).
By clicking region 249, user B will be shown the intersection of both graphs (i.e., only those
connections that were present in both time intervals).

[00179] As shown in Fig. 2(G, user B has elected to click on region 250, which depicts
connections that are only present in the 9am-10am polygraph in a first color 251, and depicts
connections that are only present in the 10am-11am polygraph in a second color 252.
Connections present in both polygraphs are omitted from display. As one example, in the 9am-
10am polygraph (corresponding to connections made during the 9am-10am time period at
datacenter 106), a connection was made by a server to sshd (253) and also to systemd (254). Both
of those connections ended prior to 10am and are thus depicted in the first color. As another
example, in the 10am-11am polygraph (corresponding to connections made during the 10am-
11am time period at datacenter 106), a connection was made from a known bad external IP to
nginx (255). The connection was not present during the 9am-10am time slice and thus is depicted
in the second color. As yet another example, two different connections were made to a Slack
service between 9am and 11am. However, the first was made by a first client during the 9am-
10am time slice (256) and the second was made by a different client during the 10am-11am slice
(257), and so the two connections are depicted respectively in the first and second colors and
blue.

[00180] Returning to the polygraph depicted in Fig. 2F, suppose user B enters “etcd” into the
search box located in region 244. User B will then be presented with the interface illustrated in
Fig. 2H. As shown in Fig. 2H, three applications containing the term “etcd” were engaged in
communications during the 9am-10am window. One application is etcdctl, a command line client

for etcd. As shown in Fig. 2H, a total of three different etcdctl processes were executed during

25

WO 2023/034419 PCT/US2022/042213

the 9am-10am window, and were clustered together (260). Fig. 2H also depicts two different
clusters that are both named etcd2. The first cluster includes (for the 9am-10am window) five
members (261) and the second cluster includes (for the same window) eight members (262). The
reason for these two distinct clusters is that the two groups of applications behave differently
(e.g., they exhibit two distinct sets of communication patterns). Specifically, the instances of
etcd2 in cluster 261 only communicate with locksmithctl (263) and other etcd2 instances (in both
clusters 261 and 262). The instances of etcd2 in cluster 262 communicate with additional entities,
such as etcdetl and Docker containers. As desired, user B can click on one of the clusters (e.g.,
cluster 261) and be presented with summary information about the applications included in the
cluster, as is shown in Fig. 21 (e.g., in region 265). User B can also double click on a given
cluster (e.g., cluster 261) to see details on each of the individual members of the cluster broken
out.

[00181] Suppose user B now clicks on region 245 of the interface shown in Fig. 2F. User B will
then be shown an application launch polygraph. Launching an application is another example of
a behavior. The launch polygraph models how applications are launched by other applications.
Fig. 2] illustrates an example of a portion of a launch polygraph. In particular, user B has typed
“find” into region 266, to see how the “find” application is being launched. As shown in Fig. 2],
in the launch polygraph for the 10am-11am time period, find applications (267) are always
launched by bash (268), which is in turn always launched by systemd (269). If find is launched
by a different application, this would be anomalous behavior.

[00182] Fig. 2K illustrates another example of a portion of an application launch polygraph. In
Fig. 2K, user B has searched (270) for “python ma” to see how “python marathon 1b” (271) is
launched. As shown in Fig. 2K, in each case (during the one hour time slice of 10am-11am),
python marathon_1b is launched as a result of a chain of the same seven applications each time. If
python marathon_1b is ever launched in a different manner, this indicates anomalous behavior.
The behavior could be indicative of malicious activities, but could also be due to other reasons,
such as a misconfiguration, a performance-related issue, and/or a failure, etc.

[00183] Suppose user B now clicks on region 246 of the interface shown in Fig. 2F. User B will
then be shown an insider behavior graph. The insider behavior graph tracks information about
behaviors such as processes started by a user interactively using protocols such as ssh or telnet,
and any processes started by those processes. As one example, suppose an administrator logs into
a first virtual machine in datacenter 106 (e.g., using sshd via an external connection he makes
from a hotel), using a first set of credentials (e.g., first.last@example.com and an appropriate
password). From the first virtual machine, the administrator connects to a second virtual machine

(e.g., using the same credentials), then uses the sudo command to change identities to those of

26

WO 2023/034419 PCT/US2022/042213

another user, and then launches a program. graphs built by data platform 12 can be used to
associate the administrator with each of his actions, including launching the program using the
identity of another user.

[00184] Fig. 2L illustrates an example of a portion of an insider behavior graph. In particular, in
Fig. 2L, user B is viewing a graph that corresponds to the time slice of 3pm-4pm on June 1. Fig.
2L illustrates the internal/external applications that users connected to during the one hour time
slice. If a user typically communicates with particular applications, that information will become
part of a baseline. If the user deviates from his baseline behavior (e.g., using new applications, or
changing privilege in anomalous ways), such anomalies can be surfaced.

[00185] Fig. 2M illustrates an example of a portion of a privilege change graph, which identifies
how privileges are changed between processes. Typically, when a user launches a process (e.g.,
“Is”), the process inherits the same privileges that the user has. And, while a process can have
fewer privileges than the user (i.e., go down in privilege), it is rare (and generally undesirable)
for a user to escalate in privilege. Information included in the privilege change graph can be
determined by examining the parent of each running process, and determining whether there is a
match in privilege between the parent and the child. If the privileges are different, a privilege
change has occurred (whether a change up or a change down). The application ntpd is one rare
example of a scenario in which a process escalates (272) to root, and then returns back (273). The
sudo command is another example (e.g., used by an administrator to temporarily have a higher
privilege). As with the other examples, ntpd’s privilege change actions, and the legitimate actions
of various administrators (e.g., using sudo) will be incorporated into a baseline model by data
platform 12. When deviations occur, such as where a new application that is not ntpd escalates
privilege, or where an individual that has not previously/does not routinely use sudo does so,
such behaviors can be identified as anomalous.

[00186] Fig. 2N illustrates an example of a portion of a user login graph, which identifies which
users log into which logical nodes. Physical nodes (whether bare metal or virtualized) are
clustered into a logical machine cluster, for example, using yet another graph, a machine-server
graph, an example of which is shown in Fig. 20. For each machine, a determination is made as to
what type of machine it is, based on what kind(s) of workflows it runs. As one example, some
machines run as master nodes (having a typical set of workflows they run, as master nodes) and
can thus be clustered as master nodes. Worker nodes are different from master nodes, for
example, because they run Docker containers, and frequently change as containers move around.
Worker nodes can similarly be clustered.

[00187] As previously mentioned, the polygraph depicted in Fig. 2E corresponds to activities in a

datacenter in which, in a given hour, approximately 500 virtual machines collectively run one

27

WO 2023/034419 PCT/US2022/042213

million processes, and make 100 million connections in that hour. The polygraph represents a
drastic reduction in size (e.g., from tracking information on 100 million connections in an hour,
to a few hundred nodes and a few hundred edges). Using techniques described herein, such a
polygraph can be constructed (e.g., using commercially available computing infrastructure) in
less than an hour (e.g., within a few minutes). Thus, ongoing hourly snapshots of a datacenter can
be created within a two hour moving window (i.e., collecting data for the time period 8am-9am,
while also generating a snapshot for the time previous time period 7am-8am). The following
describes various example infrastructure that can be used in polygraph construction, and also
describes various techniques that can be used to construct polygraphs.

[00188] Returning to Fig. 1D, embodiments of data platform 12 may be built using any suitable
infrastructure as a service (IaaS) (e.g., AWS). For example, data platform 12 can use Simple
Storage Service (S3) for data storage, Key Management Service (KMS) for managing secrets,
Simple Queue Service (SQS) for managing messaging between applications, Simple Email
Service (SES) for sending emails, and Route 53 for managing DNS. Other infrastructure tools
can also be used. Examples include: orchestration tools (e.g., Kubernetes or Mesos/Marathon),
service discovery tools (e.g., Mesos-DNS), service load balancing tools (e.g., marathon-LB),
container tools (e.g., Docker or rkt), log/metric tools (e.g., collectd, fluentd, kibana, etc.), big data
processing systems (e.g., Spark, Hadoop, AWS Redshift, Snowflake etc.), and distributed key
value stores (e.g., Apache Zookeeper or etcd2).

[00189] As previously mentioned, in various embodiments, data platform 12 may make use of a
collection of microservices. Each microservice can have multiple instances, and may be
configured to recover from failure, scale, and distribute work amongst various such instances, as
applicable. For example, microservices are auto-balancing for new instances, and can distribute
workload if new instances are started or existing instances are terminated. In various
embodiments, microservices may be deployed as self-contained Docker containers. A Mesos-
Marathon or Spark framework can be used to deploy the microservices (e.g., with Marathon
monitoring and restarting failed instances of microservices as needed). The service etcd2 can be
used by microservice instances to discover how many peer instances are running, and used for
calculating a hash-based scheme for workload distribution. Microservices may be configured to
publish various health/status metrics to either an SQS queue, or etcd2, as applicable. In some
examples, Amazon DynamoDB can be used for state management.

[00190] Additional information on various microservices used in embodiments of data platform
12 is provided below.

[00191] Graph generator 146 is a microservice that may be responsible for generating raw

behavior graphs on a per customer basis periodically (e.g., once an hour). In particular, graph

28

WO 2023/034419 PCT/US2022/042213

generator 146 may generate graphs of entities (as the nodes in the graph) and activities between
entities (as the edges). In various embodiments, graph generator 146 also performs other
functions, such as aggregation, enrichment (e.g., geolocation and threat), reverse DNS resolution,
TF-IDF based command line analysis for command type extraction, parent process tracking, etc.
[00192] Graph generator 146 may perform joins on data collected by the agents, so that both
sides of a behavior are linked. For example, suppose a first process on a first virtual machine
(e.g., having a first [P address) communicates with a second process on a second virtual machine
(e.g., having a second IP address). Respective agents on the first and second virtual machines
may each report information on their view of the communication (e.g., the PID of their respective
processes, the amount of data exchanged and in which direction, etc.). When graph generator
performs a join on the data provided by both agents, the graph will include a node for each of the
processes, and an edge indicating communication between them (as well as other information,
such as the directionality of the communication — i.e., which process acted as the server and
which as the client in the communication).

[00193] In some cases, connections are process to process (e.g., from a process on one virtual
machine within the cloud environment associated with entity A to another process on a virtual
machine within the cloud environment associated with entity A). In other cases, a process may be
in communication with a node (e.g., outside of entity A) which does not have an agent deployed
upon it. As one example, a node within entity A might be in communication with node 172,
outside of entity A. In such a scenario, communications with node 172 are modeled (e.g., by
graph generator 146) using the IP address of node 172. Similarly, where a node within entity A
does not have an agent deployed upon it, the IP address of the node can be used by graph
generator in modeling.

[00194] Graphs created by graph generator 146 may be written to data store 30 and cached for
further processing. A graph may be a summary of all activity that happened in a particular time
interval. As each graph corresponds to a distinct period of time, different rows can be aggregated
to find summary information over a larger timestamp. In some examples, picking two different
graphs from two different timestamps can be used to compare different periods. If necessary,
graph generator can parallelize its workload (e.g., where its backlog cannot otherwise be handled
within a particular time period, such as an hour, or if is required to process a graph spanning a
long time period).

[00195] Graph generator 146 can be implemented in any appropriate programming language,
such as Java or C, and machine learning libraries, such as Spark’s MLLib. Example ways that
graph generator computations can be implemented include using SQL or Map-R, using Spark or

Hadoop.

29

WO 2023/034419 PCT/US2022/042213

[00196] SSH tracker 148 is a microservice that may be responsible for following ssh connections
and process parent hierarchies to determine trails of user ssh activity. Identified ssh trails are
placed by the SSH tracker 148 into data store 30 and cached for further processing.

[00197] SSH tracker 148 can be implemented in any appropriate programming language, such as
Java or C, and machine libraries, such as Spark’s MLLib. Example ways that SSH tracker
computations can be implemented include using SQL or Map-R, using Spark or Hadoop.

[00198] Threat aggregator 150 is a microservice that may be responsible for obtaining third party
threat information from various applicable sources, and making it available to other micro-
services. Examples of such information include reverse DNS information, GeolP information,
lists of known bad domains/IP addresses, lists of known bad files etc. As applicable, the threat
information is normalized before insertion into data store 30. Threat aggregator 150 can be
implemented in any appropriate programming language, such as Java or C, using SQL/JDBC
libraries to interact with data store 30 (e.g., for insertions and queries).

[00199] Scheduler 152 is a microservice that may act as a scheduler and that may run arbitrary
jobs organized as a directed graph. In some examples, scheduler 152 ensures that all jobs for all
customers are able to run during at a given time interval (e.g., every hour). Scheduler 152 may
handle errors and retrying for failed jobs, track dependencies, manage appropriate resource
levels, and/or scale jobs as needed. Scheduler 152 can be implemented in any appropriate
programming language, such as Java or C. A variety of components can also be used, such as
open source scheduler frameworks (e.g., Airflow), or AWS services (e.g., the AWS Data
pipeline) which can be used for managing schedules.

[00200] Graph Behavior Modeler (GBM) 154 is a microservice that may compute polygraphs. In
particular, GBM 154 can be used to find clusters of nodes in a graph that should be considered
similar based on some set of their properties and relationships to other nodes. As described
herein, the clusters and their relationships can be used to provide visibility into a datacenter
environment without requiring user specified labels. GBM 154 may track such clusters over time
persistently, allowing for changes to be detected and alerts to be generated.

[00201] GBM 154 may take as input a raw graph (e.g., as generated by graph generator 146).
Nodes are actors of a behavior, and edges are the behavior relationship itself. For example, in the
case of communication, example actors include processes, which communicate with other
processes. The GBM 154 clusters the raw graph based on behaviors of actors and produces a
summary (the polygraph). The polygraph summarizes behavior at a datacenter level. The GBM
also produces “observations” that represent changes detected in the datacenter. Such observations
may be based on differences in cumulative behavior (e.g., the baseline) of the datacenter with its

current behavior. The GBM 154 can be implemented in any appropriate programming language,

30

WO 2023/034419 PCT/US2022/042213

such as Java, C, or Golang, using appropriate libraries (as applicable) to handle distributed graph
computations (handling large amounts of data analysis in a short amount of time). Apache Spark
is another example tool that can be used to compute polygraphs. The GBM can also take
feedback from users and adjust the model according to that feedback. For example, if a given
user is interested in relearning behavior for a particular entity, the GBM can be instructed to
“forget” the implicated part of the polygraph.

[00202] GBM runner 156 is a microservice that may be responsible for interfacing with GBM
154 and providing GBM 154 with raw graphs (e.g., using a query language, such as SQL, to push
any computations it can to data store 30). GBM runner 156 may also insert polygraph output
from GBM 154 to data store 30. GBM runner 156 can be implemented in any appropriate
programming language, such as Java or C, using SQL/JDBC libraries to interact with data store
30 to insert and query data.

[00203] Alert generator 158 is a microservice that may be responsible for generating alerts. Alert
generator 158 may examine observations (e.g., produced by GBM 154) in aggregate, deduplicate
them, and score them. Alerts may be generated for observations with a score exceeding a
threshold. Alert generator 158 may also compute (or retrieves, as applicable) data that a customer
(e.g., user A or user B) might need when reviewing the alert. Examples of events that can be
detected by data platform 12 (and alerted on by alert generator 158) include, but are not limited
to the following;:

[00204] new user: This event may be created the first time a user (e.g., of node 116) is first
observed by an agent within a datacenter.

[002085] user launched new binary: This event may be generated when an interactive user
launches an application for the first time.

[00206] new privilege escalation: This event may be generated when user privileges are escalated
and a new application is run.

[00207] new application or container: This event may be generated when an application or
container is seen for the first time.

[00208] new external connection: This event may be generated when a connection to an external
IP/domain is made from a new application.

[00209] new external host or IP: This event may be generated when a new external host or IP is
involved in a connection with a datacenter.

[00210] new internal connection: This event may be generated when a connection between
internal-only applications is seen for the first time.

[00211] new external client: This event may be generated when a new external connection is

seen for an application which typically does not have external connections.

31

WO 2023/034419 PCT/US2022/042213

[00212] new parent: This event may be generated when an application is launched by a different
parent.

[00213] connection to known bad IP/domain: Data platform 12 maintains (or can otherwise
access) one or more reputation feeds. If an environment makes a connection to a known bad IP or
domain, an event will be generated.

[00214] login from a known bad IP/domain: An event may be generated when a successful
connection to a datacenter from a known bad IP is observed by data platform 12.

[00215] Alert generator 158 can be implemented in any appropriate programming language, such
as Java or C, using SQL/JDBC libraries to interact with data store 30 to insert and query data. In
various embodiments, alert generator 158 also uses one or more machine learning libraries, such
as Spark’s MLLib (e.g., to compute scoring of various observations). Alert generator 158 can
also take feedback from users about which kinds of events are of interest and which to suppress.
[00216] QsJobServer 160 is a microservice that may look at all the data produced by data
platform 12 for an hour, and compile a materialized view (MV) out of the data to make queries
faster. The MV helps make sure that the queries customers most frequently run, and data that
they search for, can be easily queried and answered. QsJobServer 160 may also precompute and
cache a variety of different metrics so that they can quickly be provided as answers at query time.
QsJobServer 160 can be implemented using any appropriate programming language, such as Java
or C, using SQL/JDBC libraries. In some examples, QsJobServer 160 is able to compute an MV
efficiently at scale, where there could be a large number of joins. An SQL engine, such as Oracle,
can be used to efficiently execute the SQL, as applicable.

[00217] Alert notifier 162 is a microservice that may take alerts produced by alert generator 158
and send them to customers’ integrated Security Information and Event Management (SIEM)
products (e.g., Splunk, Slack, etc.). Alert notifier 162 can be implemented using any appropriate
programming language, such as Java or C. Alert notifier 162 can be configured to use an email
service (e.g., AWS SES or pagerduty) to send emails. Alert notifier 162 may also provide
templating support (e.g., Velocity or Moustache) to manage templates and structured
notifications to SIEM products.

[00218] Reporting module 164 is a microservice that may be responsible for creating reports out
of customer data (e.g., daily summaries of events, etc.) and providing those reports to customers
(e.g., via email). Reporting module 164 can be implemented using any appropriate programming
language, such as Java or C. Reporting module 164 can be configured to use an email service
(e.g., AWS SES or pagerduty) to send emails. Reporting module 164 may also provide
templating support (e.g., Velocity or Moustache) to manage templates (e.g., for constructing

HTML-based email).

32

WO 2023/034419 PCT/US2022/042213

[00219] Web app 120 is a microservice that provides a user interface to data collected and
processed on data platform 12. Web app 120 may provide login, authentication, query, data
visualization, etc. features. Web app 120 may, in some embodiments, include both client and
server elements. Example ways the server elements can be implemented are using Java
DropWizard or Node.Js to serve business logic, and a combination of JSON/HTTP to manage the
service. Example ways the client elements can be implemented are using frameworks such as
React, Angular, or Backbone. JSON, jQuery, and JavaScript libraries (e.g., underscore) can also
be used.

[00220] Query service 166 is a microservice that may manage all database access for web app
120. Query service 166 abstracts out data obtained from data store 30 and provides a JSON-based
REST API service to web app 120. Query service 166 may generate SQL queries for the REST
APIs that it receives at run time. Query service 166 can be implemented using any appropriate
programming language, such as Java or C and SQL/JDBC libraries, or an SQL framework such
as JOOQ. Query service 166 can internally make use of a variety of types of databases, including
a relational database engine 168 (e.g., AWS Aurora) and/or data store 30 to manage data for
clients. Examples of tables that query service 166 manages are OLTP tables and data
warehousing tables.

[00221] Cache 170 may be implemented by Redis and/or any other service that provides a key-
value store. Data platform 12 can use cache 170 to keep information for frontend services about
users. Examples of such information include valid tokens for a customer, valid cookies of
customers, the last time a customer tried to login, etc.

[00222] Fig. 3A illustrates an example of a process for detecting anomalies in a network
environment. In various embodiments, process 300 is performed by data platform 12. The
process begins at 301 when data associated with activities occurring in a network environment
(such as entity A’s datacenter) is received. One example of such data that can be received at 301
is agent-collected data described above (e.g., in conjunction with process 200).

[00223] At 302, alogical graph model is generated, using at least a portion of the monitored
activities. A variety of approaches can be used to generate such logical graph models, and a
variety of logical graphs can be generated (whether using the same, or different approaches). The
following is one example of how data received at 301 can be used to generate and maintain a
model.

[00224] During bootstrap, data platform 12 creates an aggregate graph of physical connections
(also referred to herein as an aggregated physical graph) by matching connections that occurred
in the first hour into communication pairs. Clustering is then performed on the communication

pairs. Examples of such clustering, described in more detail below, include performing Matching

33

WO 2023/034419 PCT/US2022/042213

Neighbor clustering and similarity (e.g., SimRank) clustering. Additional processing can also be
performed (and is described in more detail below), such as by splitting clusters based on
application type, and annotating nodes with DNS query information. The resulting graph (also
referred to herein as a base graph or common graph) can be used to generate a variety of models,
where a subset of node and edge types (described in more detail below) and their properties are
considered in a given model. One example of a model is a UID to UID model (also referred to
herein as a Uid2Uid model) which clusters together processes that share a username and show
similar privilege change behavior. Another example of a model is a CType model, which clusters
together processes that share command line similarity. Yet another example of a model is a
PType model, which clusters together processes that share behaviors over time.

[00225] Each hour (or any other predetermined time interval) after bootstrap, a new snapshot is
taken (i.e., data collected about a datacenter in the last hour is processed) and information from
the new snapshot is merged with existing data to create and (as additional data is
collected/processed) maintain a cumulative graph. The cumulative graph (also referred to herein
as a cumulative PType graph and a polygraph) is a running model of how processes behave over
time. Nodes in the cumulative graph are PType nodes, and provide information such as a list of
all active processes and PIDs in the last hour, the number of historic total processes, the average
number of active processes per hour, the application type of the process (e.g., the CType of the
PType), and historic CType information/frequency. Edges in the cumulative graph can represent
connectivity and provide information such as connectivity frequency. The edges can be weighted
(e.g., based on number of connections, number of bytes exchanged, etc.). Edges in the
cumulative graph (and snapshots) can also represent transitions.

[00226] One approach to merging a snapshot of the activity of the last hour into a cumulative
graph is as follows. An aggregate graph of physical connections is made for the connections
included in the snapshot (as was previously done for the original snapshot used during bootstrap).
And, clustering/splitting is similarly performed on the snapshot’s aggregate graph. Next, PType
clusters in the snapshot’s graph are compared against PType clusters in the cumulative graph to
identify commonality.

[00227] One approach to determining commonality is, for any two nodes that are members of a
given CmdType (described in more detail below), comparing internal neighbors and calculating a
set membership Jaccard distance. The pairs of nodes are then ordered by decreasing similarity
(i.e., with the most similar sets first). For nodes with a threshold amount of commonality (e.g., at
least 66% members in common), any new nodes (i.e., appearing in the snapshot’s graph but not
the cumulative graph) are assigned the same PType identifier as is assigned to the corresponding

node in the cumulative graph. For each node that is not classified (i.e., has not been assigned a

34

WO 2023/034419 PCT/US2022/042213

PType identifier), a network signature is generated (i.e., indicative of the kinds of network
connections the node makes, who the node communicates with, etc.). The following processing is
then performed until convergence. If a match of the network signature is found in the cumulative
graph, the unclassified node is assigned the PType identifier of the corresponding node in the
cumulative graph. Any nodes which remain unclassified after convergence are new PTypes and
are assigned new identifiers and added to the cumulative graph as new. As applicable, the
detection of a new PType can be used to generate an alert. If the new PType has a new
CmdType, a severity of the alert can be increased. If any surviving nodes (i.e., present in both the
cumulative graph and the snapshot graph) change PTypes, such change is noted as a transition,
and an alert can be generated. Further, if a surviving node changes PType and also changes
CmdType, a severity of the alert can be increased.

[00228] Changes to the cumulative graph (e.g., a new PType or a new edge between two PTypes)
can be used (e.g., at 303) to detect anomalies (described in more detail below). Two example
kinds of anomalies that can be detected by data platform 12 include security anomalies (e.g., a
user or process behaving in an unexpected manner) and devops/root cause anomalies (e.g.,
network congestion, application failure, etc.). Detected anomalies can be recorded and surfaced
(e.g., to administrators, auditors, etc.), such as through alerts which are generated at 304 based on
anomaly detection.

[00229] Additional detail regarding processing performed, by various components depicted in
Fig. 1D (whether performed individually or in combination), in conjunction with
model/polygraph construction (e.g., as performed at 302) are provided below.

[00230] As explained above, an aggregated physical graph can be generated on a per customer
basis periodically (e.g., once an hour) from raw physical graph information, by matching
connections (e.g., between two processes on two virtual machines). In various embodiments, a
deterministic fixed approach is used to cluster nodes in the aggregated physical graph (e.g.,
representing processes and their communications). As one example, Matching Neighbors
Clustering (MNC) can be performed on the aggregated physical graph to determine which
entities exhibit identical behavior and cluster such entities together.

[00231] Fig. 3B depicts a set of example processes (pl, p2, p3, and p4) communicating with
other processes (p10 and p11). Fig. 3B is a graphical representation of a small portion of an
aggregated physical graph showing (for a given time period, such as an hour) which processes in
a datacenter communicate with which other processes. Using MNC, processes pl, p2, and p3 will
be clustered together (305), as they exhibit identical behavior (they communicate with p10 and
only p10). Process p4, which communicates with both p10 and p11, will be clustered separately.

35

WO 2023/034419 PCT/US2022/042213

[00232] In MNC, only those processes exhibiting identical (communication) behavior will be
clustered. In various embodiments, an alternate clustering approach can also/instead be used,
which uses a similarity measure (e.g., constrained by a threshold value, such as a 60% similarity)
to cluster items. In some embodiments, the output of MNC is used as input to SimRank, in other
embodiments, MNC is omitted.

[00233] Fig. 3C depicts a set of example processes (p4, pS, p6) communicating with other
processes (p7, p8, p9). As illustrated, most of nodes p4, pS, and p6 communicate with most of
nodes p7, p8, and p9 (as indicated in Fig. 3C with solid connection lines). As one example,
process p4 communicates with process p7 (310), process p8 (311), and process p9 (312). An
exception is process p6, which communicates with processes p7 and p8, but does not
communicate with process p9 (as indicated by dashed line 313). If MNC were applied to the
nodes depicted in Fig. 3C, nodes p4 and p5 would be clustered (and node p6 would not be
included in their cluster).

[00234] One approach to similarity clustering is to use SimRank. In an embodiment of the
SimRank approach, for a given node v in a directed graph, /(v) and O(v) denote the respective set
of in-neighbors and out-neighbors of v. Individual in-neighbors are denoted as /i(v), for 1<G</(v)),
and individual out-neighbors are denoted as O:(v), for 1<i<|O(v)|. The similarity between two
objects a and b can be denoted by s(a,b) € [1,0]. A recursive equation (hereinafter “the SimRank
equation”) can be written for s(a,b), where, if a=b, then s(a,b) is defined as 1, otherwise,

I I(b
Zl (a)|2|]

s(a,by———— s(1;(a), I;(b)) where C is a constant between 0 and 1. One example

HE)III]
value for the decay factor C is 0.8 (and a fixed number of iterations such as five). Another
example value for the decay factor C is 0.6 (and/or a different number of iterations). In the event
that a or b has no in-neighbors, similarity is set to s(a,6)=0, so the summation is defined to be 0
when /(a)=0 or I(b)=0.

[00235] The SimRank equations for a graph G can be solved by iteration to a fixed point.
Suppose 7 is the number of nodes in G. For each iteration #, #” entries si(*,*) are kept, where
si(a,b) gives the score between @ and b on iteration k. Successive computations of Sj,.q (*,%) are

made based on si(*,*). Starting with so(*,*), where each so(a,b) is a lower bound on the actual

1,ifa = b,

SimRank score s(a,b): so(a, b) = {0 ifa=b

[00236] The SimRank equation can be used to compute s;44(a, b) from se(*,*) with

si(a,b) = ———SV OISV Ol (1,(a), 1;(b)) for ab, and 5.1 (a, b)=1 for a=b. On each

II(a)III(b)I
iteration k+1, the similarity of (a,b) is updated using the similarity scores of the neighbors of
(a,b) from the previous iteration k according to the SimRank equation. The values si(*,*) are

nondecreasing as k increases.

36

WO 2023/034419 PCT/US2022/042213

[00237] Returning to Fig. 3C, while MNC would cluster nodes p4 and p5 together (and not
include node p6 in their cluster), application of SimRank would cluster nodes p4-p6 into one
cluster (314) and also cluster nodes p7-p9 into another cluster (315).

[00238] Fig. 3D depicts a set of processes, and in particular server processes sl and s2, and client
processes cl, c2, ¢3, ¢4, ¢S5, and c6. Suppose only nodes s1, s2, cl, and c2 are present in the
graph depicted in Fig. 3D (and the other nodes depicted are omitted from consideration). Using
MNC, nodes s1 and s2 would be clustered together, as would nodes c1 and ¢2. Performing
SimRank clustering as described above would also result in those two clusters (s1 and s2, and cl
and c2). As previously mentioned, in MNC, identical behavior is required. Thus, if node c3 were
now also present in the graph, MNC would not include ¢3 in a cluster with ¢2 and c1 because
node ¢3 only communicates with node s2 and not node sl. In contrast, a SimRank clustering of a
graph that includes nodes s1, s2, c1, c2, and ¢3 would result (based, e.g., on an applicable
selected decay value and number of iterations) in a first cluster comprising nodes sl and s2, and a
second cluster of c1, ¢2, and ¢3. As an increasing number of nodes which communicate with
server process s2, and do not also communicate with server process s1, are included in the graph
(e.g., as ¢4, c5, and c6 are added), under SimRank, nodes s1 and s2 will become decreasingly
similar (i.e., their intersection is reduced).

[00239] In various embodiments, SimRank is modified (from what is described above) to
accommodate differences between the asymmetry of client and server connections. As one
example, SimRank can be modified to use different thresholds for client communications (e.g.,
an 80% match among nodes c1-c6) and for server communications (e.g., a 60% match among
nodes s1 and s2). Such modification can also help achieve convergence in situations such as
where a server process dies on one node and restarts on another node.

[00240] The application of MNC/SimRank to an aggregated physical graph results in a smaller
graph, in which processes which are determined to be sufficiently similar are clustered together.
Typically, clusters generated as output of MNC will be underinclusive. For example, for the
nodes depicted in Fig. 3C, process p6 will not be included in a cluster with processes p4 and p5,
despite substantial similarity in their communication behaviors. The application of SimRank
(e.g., to the output of MNC) helps mitigate the underinclusiveness of MNC, but can result in
overly inclusive clusters. As one example, suppose (returning to the nodes depicted in Fig. 3B)
that as a result of applying SimRank to the depicted nodes, nodes p1-p4 are all included in a
single cluster. Both MNC and SimRank operate agnostically of which application a given process
belongs to. Suppose processes pl-p3 each correspond to a first application (e.g., an update
engine), and process p4 corresponds to a second application (e.g., sshd). Further suppose process

p10 corresponds to contact with AWS. Clustering all four of the processes together (e.g., as a

37

WO 2023/034419 PCT/US2022/042213

result of SimRank) could be problematic, particularly in a security context (e.g., where granular
information useful in detecting threats would be lost).

[00241] As previously mentioned, data platform 12 may maintain a mapping between processes
and the applications to which they belong. In various embodiments, the output of SimRank (e.g.,
SimRank clusters) is split based on the applications to which cluster members belong (such a
split is also referred to herein as a “CmdType split”). If all cluster members share a common
application, the cluster remains. If different cluster members originate from different
applications, the cluster members are split along application-type (CmdType) lines. Using the
nodes depicted in Fig. 3D as an example, suppose that nodes cl1, c2, ¢3, and c5 all share “update
engine” as the type of application to which they belong (sharing a CmdType). Suppose that node
¢4 belongs to “ssh,” and suppose that node ¢6 belongs to “bash.” As a result of SimRank, all six
nodes (c1-c6) might be clustered into a single cluster. After a CmdType split is performed on the
cluster, however, the single cluster will be broken into three clusters (c1, ¢2, ¢3, ¢5; c¢4; and c6).
Specifically, the resulting clusters comprise processes associated with the same type of
application, which exhibit similar behaviors (e.g., communication behaviors). Each of the three
clusters resulting from the CmdType split represents, respectively, a node (also referred to herein
as a PType) of a particular CmdType. Each PType is given a persistent identifier and stored
persistently as a cumulative graph.

[00242] A variety of approaches can be used to determine a CmdType for a given process. As
one example, for some applications (e.g., sshd), a one-to-one mapping exists between the
CmdType and the application/binary name. Thus, processes corresponding to the execution of
sshd will be classified using a CmdType of sshd. In various embodiments, a list of common
application/binary names (e.g., sshd, apache, etc.) is maintained by data platform 12 and
manually curated as applicable. Other types of applications (e.g., Java, Python, and Ruby) are
multi-homed, meaning that several very different applications may all execute using the binary
name, “java.” For these types of applications, information such as command line / execution path
information can be used in determining a CmdType. In particular, the subapplication can be used
as the CmdType of the application, and/or term frequency analysis (e.g., TF/IDF) can be used on
command line information to group, for example, any marathon related applications together
(e.g., as a python.marathon CmdType) and separately from other Python applications (e.g., as a
python.airflow CmdType).

[00243] In various embodiments, machine learning techniques are used to determine a CmdType.
The CmdType model is constrained such that the execution path for each CmdType is unique.
One example approach to making a CmdType model is a random forest based approach. An

initial CmdType model is bootstrapped using process parameters (e.g., available within one

38

WO 2023/034419 PCT/US2022/042213

minute of process startup) obtained using one hour of information for a given customer (e.g.,
entity A). Examples of such parameters include the command line of the process, the command
line of the process’s parent(s) (if applicable), the uptime of the process, UID/EUID and any
change information, TTY and any change information, listening ports, and children (if any).
Another approach is to perform term frequency clustering over command line information to
convert command lines into cluster identifiers.

[00244] The random forest model can be used (e.g., in subsequent hours) to predict a CmdType
for a process (e.g., based on features of the process). If a match is found, the process can be
assigned the matching CmdType. If a match is not found, a comparison between features of the
process and its nearest CmdType (e.g., as determined using a Levenstein distance) can be
performed. The existing CmdType can be expanded to include the process, or, as applicable, a
new CmdType can be created (and other actions taken, such as generating an alert). Another
approach to handling processes which do not match an existing CmdType is to designate such
processes as unclassified, and once an hour, create a new random forest seeded with process
information from a sampling of classified processes (e.g., 10 or 100 processes per CmdType) and
the new processes. If a given new process winds up in an existing set, the process is given the
corresponding CmdType. If a new cluster is created, a new CmdType can be created.

[00245] Conceptually, a polygraph represents the smallest possible graph of clusters that
preserve a set of rules (e.g., in which nodes included in the cluster must share a CmdType and
behavior). As a result of performing MNC, SimRank, and cluster splitting (e.g., CmdType
splitting) many processes are clustered together based on commonality of behavior (e.g.,
communication behavior) and commonality of application type. Such clustering represents a
significant reduction in graph size (e.g., compared to the original raw physical graph).
Nonetheless, further clustering can be performed (e.g., by iterating on the graph data using the
GBM to achieve such a polygraph). As more information within the graph is correlated, more
nodes can be clustered together, reducing the size of the graph, until convergence is reached and
no further clustering is possible.

[00246] Fig. 3E depicts two pairs of clusters. In particular, cluster 320 represents a set of client
processes sharing the same CmdType (“al”), communicating (collectively) with a server process
having a CmdType (“a2”). Cluster 322 also represents a set of client processes having a
CmdType al communicating with a server process having a CmdType a2. The nodes in clusters
320 and 322 (and similarly nodes in 321 and 323) remain separately clustered (as depicted) after
MNC/SimRank/CmdType splitting — isolated islands. One reason this could occur is where

server process 321 corresponds to processes executing on a first machine (having an IP address

39

WO 2023/034419 PCT/US2022/042213

of 1.1.1.1). The machine fails and a new server process 323 starts, on a second machine (having
an IP address of 2.2.2.2) and takes over for process 321.

[00247] Communications between a cluster of nodes (e.g., nodes of cluster 320) and the first IP
address can be considered different behavior from communications between the same set of
nodes and the second IP address, and thus communications 324 and 325 will not be combined by
MNC/SimRank in various embodiments. Nonetheless, it could be desirable for nodes of clusters
320/322 to be combined (into cluster 326), and for nodes of clusters 321/323 to be combined
(into cluster 327), as representing (collectively) communications between al and a2. One task
that can be performed by data platform 12 is to use DNS query information to map IP addresses
to logical entities. As will be described in more detail below, GBM 154 can make use of the DNS
query information to determine that graph nodes of cluster 320 and graph nodes of cluster 322
both made DNS queries for “appserverabc.example.com,” which first resolved to 1.1.1.1 and
then to 2.2.2.2, and to combine nodes 320/322 and 321/323 together into a single pair of nodes
(326 communicating with 327).

[00248] In various embodiments, GBM 154 operates in a batch manner in which it receives as
input the nodes and edges of a graph for a particular time period along with its previous state, and
generates as output clustered nodes, cluster membership edges, cluster-to-cluster edges, events,
and its next state.

[00249] GBM 154 may not try to consider all types of entities and their relationships that may be
available in a conceptual common graph all at once. Instead, GBM uses a concept of models
where a subset of node and edge types and their properties are considered in a given model. Such
an approach is helpful for scalability, and also to help preserve detailed information (of particular
importance in a security context) — as clustering entities in a more complex and larger graph
could result in less useful results. In particular, such an approach allows for different types of
relationships between entities to be preserved/more easily analyzed.

[00250] While GBM 154 can be used with different models corresponding to different
subgraphs, core abstractions remain the same across types of models.

[00251] For example, each node type in a GBM model is considered to belong to a class. The
class can be thought of as a way for the GBM to split nodes based on the criteria it uses for the
model. The class for a node is represented as a string whose value is derived from the node’s key
and properties depending on the GBM Model. Note that different GBM models may create
different class values for the same node. For each node type in a given GBM model, GBM 154
can generate clusters of nodes for that type. A GBM generated cluster for a given member node
type cannot span more than one class for that node type. GBM 154 generates edges between

clusters that have the same types as the edges between source and destination cluster node types.

40

WO 2023/034419 PCT/US2022/042213

[00252] Additionally or alternatively, the processes described herein as being used for a
particular model can be used (can be the same) across models, and different models can also be
configured with different settings.

[00253] Additionally or alternatively, the node types and the edge types may correspond to
existing types in the common graph node and edge tables but this is not necessary. Even when
there is a correspondence, the properties provided to GBM 154 are not limited to the properties
that are stored in the corresponding graph table entries. They can be enriched with additional
information before being passed to GBM 154.

[00254] Logically, the input for a GBM model can be characterized in a manner that is similar to
other graphs. Edge triplets can be expressed, for example, as an array of source node type, edge
type, and destination node type. And, each node type is associated with node properties, and each
edge type is associated with edge properties. Other edge triplets can also be used (and/or edge
triplets can be extended) in accordance with various embodiments.

[00255] Note that the physical input to the GBM model need not (and does not, in various
embodiments) conform to the logical input. For example, the edges in the PtypeConn model
correspond to edges between Matching Neighbors (MN) clusters, where each process node has
an MN cluster identifier property. In the User ID to User ID model (also referred to herein as the
Uid2Uid model), edges are not explicitly provided separately from nodes (as the euid array in the
node properties serves the same purpose). In both cases, however, the physical information
provides the applicable information necessary for the logical input.

[00256] The state input for a particular GBM model can be stored in a file, a database, or other
appropriate storage. The state file (from a previous run) is provided, along with graph data,
except for when the first run for a given model is performed, or the model is reset. In some cases,
no data may be available for a particular model in a given time period, and GBM may not be run
for that time period. As data becomes available at a future time, GBM can run using the latest
state file as input.

[00257] GBM 154 outputs cluster nodes, cluster membership edges, and inter-cluster relationship
edges that are stored (in some embodiments) in the graph node tables: node c, node cm, and
node _icr, respectively. The type names of nodes and edges may conform to the following rules:
[00258] * A given node type can be used in multiple different GBM models. The type names of
the cluster nodes generated by two such models for that node type will be different. For instance,
process type nodes will appear in both PtypeConn and Uid2Uid models, but their cluster nodes
will have different type names.

[00259] * The membership edge type name is “MemberOf.”

41

WO 2023/034419 PCT/US2022/042213

[00260] * The edge type names for cluster-to-cluster edges will be the same as the edge type
names in the underlying node-to-node edges in the input.

[00261] The following are example events GBM 154 can generate: new class, new cluster, new
edge from class to class, split class (the notion that GBM 154 considers all nodes of a given type
and class to be in the same cluster initially and if GBM 154 splits them into multiple clusters, it is
splitting a class), new edge from cluster and class, new edge between cluster and cluster, and/or
new edge from class to cluster.

[00262] One underlying node or edge in the logical input can cause multiple types of events to be
generated. Conversely, one event can correspond to multiple nodes or edges in the input. Not
every model generates every event type.

[00263] Additional information regarding examples of data structures/models that can be used in
conjunction with models used by data platform 12 is now provided.

[00264] In some examples, a PTypeConn Model clusters nodes of the same class that have
similar connectivity relationships. For example, if two processes had similar incoming neighbors
of the same class and outgoing neighbors of the same class, they could be clustered.

[00265] The node input to the PTypeConn model for a given time period includes non-interactive
(i.e., not associated with tty) process nodes that had connections in the time period and the base
graph nodes of other types (IP Service Endpoint (IPSep) comprising an IP address and a port),
DNS Service Endpoint (DNSSep) and IPAddress) that have been involved in those connections.
The base relationship is the connectivity relationship for the following type triplets:

[00266] * Process, ConnectedTo, Process

[00267] * Process, ConnectedTo, IP Service Endpoint (IPSep)

[00268] * Process, ConnectedTo, DNS Service Endpoint (DNSSep)

[00269] * TPAddress, ConnectedTo, ProcessProcess, DNS, ConnectedTo, Process

[00270] The edge inputs to this model are the ConnectedTo edges from the MN cluster, instead
of individual node-to-node ConnectedTo edges from the base graph. The membership edges
created by this model refer to the base graph node type provided in the input.

[00271] Class Values:

[00272] The class values of nodes are determined as follows depending on the node type (e.g.,
Process nodes, IPSep nodes, DNSSep nodes, and [P Address nodes).

[00273] Process nodes:

ks

[00274] if exe_path contains java then “java <cmdline term 1> ..
[00275] else if exe path contains python then “python <cmdline term 1> ..”
[00276] else “last part of exe path”

[00277] IPSep nodes:

42

WO 2023/034419 PCT/US2022/042213

[00278] if IP_internal then “IntIPS”

[00279] else if severity = O then “<IP_addr>:<protocol>:<port>"

[00280] else “<IP_addr>:<port> BadIP”

[00281] DNSSep nodes:

[00282] if IP_internal = 1 then “<hostname>"

[00283] else if severity = O then “<hostname>:<protocol>:port”

[00284] else “<hostname>:<port> BadIP”

[00285] [PAddress nodes (will appear only on client side):

[00286] if IP_internal = 1 then “IPIntC”

[00287] else if severity = O then “ExtIPC”

[00288] else “ExtBadIPC”

[00289] Events:

[00290] A new class event in this model for a process node is equivalent to seeing a new CType
being involved in a connection for the first time. Note that this does not mean the CType was not
seen before. It is possible that it was previously seen but did not make a connection at that time.
[00291] A new class event in this model for an IPSep node with IP_internal = 0 is equivalent to
seeing a connection to a new external IP address for the first time.

[00292] A new class event in this model for a DNSSep node is equivalent to seeing a connection
to a new domain for the first time.

[00293] A new class event in this model for an IPAddress node with IP_internal = 0 and severity
= 0 1s equivalent to seeing a connection from any external IP address for the first time.

[00294] A new class event in this model for an IPAddress node with IP_internal = 0 and severity
> 0 1s equivalent to seeing a connection from any bad external IP address for the first time.
[00295] A new class to class to edge from a class for a process node to a class for a process node
is equivalent to seeing a communication from the source CType making a connection to the
destination CType for the first time.

[00296] A new class to class to edge from a class for a process node to a class for a DNSSep
node is equivalent to seeing a communication from the source CType making a connection to the
destination domain name for the first time.

[00297] An IntPConn Model may be similar to the PtypeConn Model, except that connection
edges between parent/child processes and connections between processes where both sides are
not interactive are filtered out.

[00298] A Uid2Uid Model may cluster processes with the same username that show similar

privilege change behavior. For instance, if two processes with the same username had similar

43

WO 2023/034419 PCT/US2022/042213

effective user values, launched processes with similar usernames, and were launched by
processes with similar usernames, then they could be clustered.

[00299] An edge between a source cluster and destination cluster generated by this model means
that all of the processes in the source cluster had a privilege change relationship to at least one
process in the destination cluster.

[00300] The node input to this model for a given time period includes process nodes that are
running in that period. The value of a class of process nodes is “<username>”.

[00301] The base relationship that is used for clustering is privilege change, either by the process
changing its effective user ID, or by launching a child process which runs with a different user.
[00302] The physical input for this model includes process nodes (only), with the caveat that the
complete ancestor hierarchy of process nodes active (i.e., running) for a given time period is
provided as input even if an ancestor is not active in that time period. Note that effective user IDs
of a process are represented as an array in the process node properties, and launch relationships
are available from ppid_hash fields in the properties as well.

[00303] A new class event in this model is equivalent to seeing a user for the first time.

[00304] A new class to class edge event is equivalent to seeing the source user making a
privilege change to the destination user for the first time.

[00305] A Ct2Ct Model may cluster processes with the same CType that show similar launch
behavior. For instance, if two processes with the same CType have launched processes with
similar CTypes, then they could be clustered.

[00306] The node input to this model for a given time period includes process nodes that are
running in that period. The value class of process nodes is CType (similar to how it is created for
the PtypeConn Model).

[00307] The base relationship that is used for clustering is a parent process with a given CType
launching a child process with another given destination CType.

[00308] The physical input for this model includes process nodes (only) with the caveat that the
complete ancestor hierarchy active process nodes (i.e., that are running) for a given time period 1s
provided as input even if an ancestor is not active in that time period. Note that launch
relationships are available from ppid_hash fields in the process node properties.

[00309] An edge between a source cluster and destination cluster generated by this model means
that all of the processes in the source cluster launched at least one process in the destination
cluster.

[00310] A new class event in this model is equivalent to seeing a CType for the first time. Note

that the same type of event will be generated by the PtypeConn Model as well.

44

WO 2023/034419 PCT/US2022/042213

[00311] A new class to class edge event is equivalent to seeing the source CType launching the
destination CType for the first time.

[00312] An MTypeConn Model may cluster nodes of the same class that have similar
connectivity relationships. For example, if two machines had similar incoming neighbors of the
same class and outgoing neighbors of the same class, they could be clustered.

[00313] A new class event in this model will be generated for external IP addresses or (as
applicable) domain names seen for the first time. Note that a new class to class to edge Machine,
class to class for an IPSep or DNSName node will also be generated at the same time.

[00314] The membership edges generated by this model will refer to Machine, IPAddress,
DNSName, and [PSep nodes in the base graph. Though the nodes provided to this model are
IPAddress nodes instead of IPSep nodes, the membership edges it generates will refer to IPSep
type nodes. Alternatively, the base graph can generate edges between Machine and IPSep node
types. Note that the Machine to IPAddress edges have tcp_dst ports/udp dst ports properties
that can be used for this purpose.

[00315] The node input to this model for a given time period includes machine nodes that had
connections in the time period and the base graph nodes of other types (IPAddress and
DNSName) that were involved in those connections.

[00316] The base relationship is the connectivity relationship for the following type triplets:
[00317] * Machine, ConnectedTo, Machine

[00318] * Machine, ConnectedTo, IPAddress

[00319] * Machine, ConnectedTo, DNSName

[00320] * IPAddress, ConnectedTo, Machine, DNS, ConnectedTo, Machine

[00321] The edge inputs to this model are the corresponding ConnectedTo edges in the base

graph.
[00322] Class Values:
[00323] Machine:

[00324] The class value for all Machine nodes is “Machine.”

[00325] The machine terms property in the Machine nodes is used, in various embodiments, for
labeling machines that are clustered together. If a majority of the machines clustered together
share a term in the machine terms, that term can be used for labeling the cluster.

[00326] IPSep:

[00327] The class value for IPSep nodes is determined as follows:

[00328] if IP_internal then “IntIPS”

[00329] else

[00330] if severity = O then “<ip_addr>:<protocol>:<port>"

45

WO 2023/034419 PCT/US2022/042213

[00331] else “<IP_addr BadIP>”

[00332] IPAddress:

[00333] The class value for IpAddress nodes is determined as follows:
[00334] if IP_internal then “IntIPC”

[00335] else

[00336] if severity = O then “ExtIPC”

[00337] else “ExtBadIPC”

[00338] DNSName:

[00339] The class value for DNSName nodes is determined as follows:
[00340] if severity = 0 then “<hostname>”

[00341] else then “<hostname> BadIP”

[00342] An example structure for a New Class Event is now described.

[00343] The key field for this event type looks as follows (using the PtypeConn model as an
example):

[00344] {

[00345] "node": {

[00346] "class": {

[00347] "cid": "httpd"

[00348] 1},

[00349] "key": {

[00350] "cid": "29654"

[00351] 1,

[00352] "type": "PtypeConn"

[00353] }

[00354] }

[00355] It contains the class value and also the ID of the cluster where that class value is

observed. Multiple clusters can be observed with the same value in a given time period. It

contains the class value and also the ID of the cluster where that class value is observed. Multiple

clusters can be observed with the same value in a given time period. Accordingly, in some
embodiments, GBM 154 generates multiple events of this type for the same class value.
[00356] The properties field looks as follows:

[00357] {

[00358] "set size": S

[00359] }

[00360] The set_size indicates the size of the cluster referenced in the keys field.

46

WO 2023/034419 PCT/US2022/042213

[00361] Conditions:

[00362] For a given model and time period, multiple NewClass events can be generated if there
is more than one cluster in that class. NewNode events will not be generated separately in this
case.

[00363] Example New Class to Class Edge Event structure:

[00364] The key field for this event type looks as follows (using the PtypeConn model as an
example):

[00365] "edge": {

[00366] "dst node": {

[00367] "class": {

[00368] "cid": "java war"

[00369] 1,

[00370] "key": {

[00371] "cid": "27635"

[00372] 1,

[00373] "type": "PtypeConn"

[00374] },

[00375] "src_node": {

[00376] "class": {

[00377] "cid": "IntIPC"

[00378] 1,

[00379] "key": {

[00380] "cid": "20881"

[00381] },

[00382] "type": "PtypeConn"

[00383] },

[00384] "type": "ConnectedTo"

[00385] }

[00386] }

[00387] The key field contains source and destination class values and also source and
destination cluster identifiers (i.e., the src/dst node:key.cid represents the src/dst cluster
identifier).

[00388] In a given time period for a given model, an event of this type could involve multiple

edges between different cluster pairs that have the same source and destination class values.

47

WO 2023/034419 PCT/US2022/042213

GBM 154 can generate multiple events in this case with different source and destination cluster
identifiers.

[00389] The props fields look as follows for this event type:

[00390] {

[00391] "dst set size": 2,

[00392] "src set size": 1

[00393] }

[00394] The source and destination sizes represent the sizes of the clusters given in the keys
field.

[00395] Conditions:

[00396] For a given model and time period, multiple NewClassToClass events can be generated
if there are more than one pair of clusters in that class pair. NewNodeToNode events are not
generated separately in this case.

[00397] Combining Events at the Class Level: for a given model and time period, the following
example types of events can represent multiple changes in the underlying GBM cluster level
graph in terms of multiple new clusters or multiple new edges between clusters:

[00398] * NewClass

[00399] * NewEdgeClassToClass

[00400] * NewEdgeNodeToClass

[00401] * NewEdgeClassToNode

[00402] Multiple NewClass events with the same model and class can be output if there are
multiple clusters in that new class.

[00403] Multiple NewEdgeClassToClass events with the same model and class pair can be
output if there are multiple new cluster edges within that class pair.

[00404] Multiple NewEdgeNodeToClass events with the same model and destination class can
be output if there are multiple new edges from the source cluster to the destination clusters in that
destination class (the first time seeing this class as a destination cluster class for the source
cluster).

[00405] Multiple NewEdgeClassToNode events with the same model and source class can be
output if there are multiple new edges from source clusters to the destination clusters in that
source class (the first time seeing this class as a source cluster class for the destination cluster).
[00406] These events may be combined at the class level and treated as a single event when it is
desirable to view changes at the class level, e.g., when one wants to know when there is a new

CType.

48

WO 2023/034419 PCT/US2022/042213

[00407] In some examples, different models may have partial overlap in the types of nodes they
use from the base graph. Therefore, they can generate NewClass type events for the same class.
NewClass events can also be combined across models when it is desirable to view changes at the
class level.

[00408] Using techniques herein, actions can be associated with processes and (e.g., by
associating processes with users) actions can thus also be associated with extended user sessions.
Such information can be used to track user behavior correctly, even where a malicious user
attempts to hide his trail by changing user identities (e.g., through lateral movement). Extended
user session tracking can also be useful in operational use cases without malicious intent, e.g.,
where users make original logins with distinct usernames (e.g., “charlie” or “dave”) but then
perform actions under a common username (e.g., “admin” or “support”). One such example is
where multiple users with administrator privileges exist, and they need to gain superuser
privilege to perform a particular type of maintenance. It may be desirable to know which
operations are performed (as the superuser) by which original user when debugging issues. In the
following examples describing extended user session tracking, reference is generally made to
using the secure shell (ssh) protocol as implemented by openssh (on the server side) as the
mechanism for logins. However, extended user session tracking is not limited to the ssh protocol
or a particular limitation and the techniques described herein can be extended to other login
mechanisms.

[00409] On any given machine, there will be a process that listens for and accepts ssh
connections on a given port. This process can run the openssh server program running in daemon
mode or it could be running another program (e.g., initd on a Linux system). In either case, a new
process running openssh will be created for every new ssh login session and this process can be
used to identify an ssh session on that machine. This process is called the “privileged” process in
openssh.

[00410] After authentication of the ssh session, when an ssh client requests a shell or any other
program to be run under that ssh session, a new process that runs that program will be created
under (i.e., as a child of) the associated privileged process. If an ssh client requests port
forwarding to be performed, the connections will be associated with the privileged process.
[00411] In modern operating systems such as Linux and Windows, each process has a parent
process (except for the very first process) and when a new process is created the parent process is
known. By tracking the parent-child hierarchy of processes, one can determine if a particular
process is a descendant of a privileged openssh process and thus if it is associated with an ssh

login session.

49

WO 2023/034419 PCT/US2022/042213

[00412] For user session tracking across machines (or on a single machine with multiple logins)
in a distributed environment, it is established when two login sessions have a parent-child
relationship. After that, the “original” login session, if any, for any given login session can be
determined by following the parent relationship recursively.

[00413] Fig. 3F is a representation of a user logging into a first machine and then into a second
machine from the first machine, as well as information associated with such actions. In the
example of Fig. 3F, a user, Charlie, logs into Machine A (331) from a first IP address (332). As
part of the login process, he provides a username (333). Once connected to Machine A, an
openssh privileged process (334) is created to handle the connection for the user, and a terminal
session is created and a bash process (335) is created as a child. Charlie launches an ssh client
(336) from the shell, and uses it to connect (337) to Machine B (338). As with the connection he
makes to Machine A, Charlie’s connection to Machine B will have an associated incoming IP
address (339), in this case, the IP address of Machine A. And, as part of the login process with
Machine B, Charlie will provide a username (340) which need not be the same as username 333.
An openssh privileged process (341) is created to handle the connection, and a terminal session
and child bash process (342) will be created. From the command line of Machine B, Charlie
launches a curl command (343), which opens an HTTP connection (2028) to an external Machine
C (345).

[00414] Fig. 3G is an alternate representation of actions occurring in Fig. 3F, where events
occurring on Machine A are indicated along line 350, and events occurring on Machine B are
indicated along line 351. As shown in Fig. 3G, an incoming ssh connection is received at
Machine A (352). Charlie logs in (as user “x”) and an ssh privileged process is created to handle
Charlie’s connection (353). A terminal session is created and a bash process is created (354) as a
child of process 353. Charlie wants to ssh to Machine B, and so executes an ssh client on
Machine A (355), providing credentials (as user “y”’) at 356. Charlie logs into Machine B, and an
ssh privileged process is created to handle Charlie’s connection (357). A terminal session is
created and a bash process is created (358) as a child of process 357. Charlie then executes curl
(359) to download content from an external domain (via connection 360).

[00415] The external domain could be a malicious domain, or it could be benign. Suppose the
external domain is malicious (and, e.g., Charlie has malicious intent). It would be advantageous
(e.g., for security reasons) to be able to trace the contact with the external domain back to
Machine A, and then back to Charlie’s IP address. Using techniques described herein (e.g., by
correlating process information collected by various agents), such tracking of Charlie’s activities

back to his original login (330) can be accomplished. In particular, an extended user session can

50

WO 2023/034419 PCT/US2022/042213

be tracked that associates Charlie’s ssh processes together with a single original login and thus
original user.

[00416] As described herein, software agents (such as agent 112) may run on machines (such as
a machine that implements one of nodes 116) and detect new connections, processes, and/or
logins. As also previously explained, such agents send associated records to data platform 12
which includes one or more datastores (e.g., data store 30) for persistently storing such data.
Such data can be modeled using logical tables, also persisted in datastores (e.g., in a relational
database that provides an SQL interface), allowing for querying of the data. Other datastores such
as graph oriented databases and/or hybrid schemes can also be used.

[00417] The following identifiers are commonly used in the tables:

[00418] * MID

[00419] * PID_hash

[00420] An ssh login session can be identified uniquely by an (MID, PID hash) tuple. The MID
is a machine identifier that is unique to each machine, whether physical or virtual, across time
and space. Operating systems use numbers called process identifiers (PIDs) to identify processes
running at a given time. Over time processes may die and new processes may be started on a
machine or the machine itself may restart. The PID is not necessarily unique across time in that
the same PID value can be reused for different processes at different times. In order to track
process descendants across time, one should therefore account for time as well. In order to be
able to identify a process on a machine uniquely across time, another number called a PID hash
is generated for the process. In various embodiments, the PID hash is generated using a
collision-resistant hash function that takes the PID, start time, and (in various embodiments, as
applicable) other properties of a process.

[00421] Input data collected by agents comprises the input data model and is represented by the
following logical tables:

[00422] * connections

[00423] * processes

[00424] * logins

[00425] A connections table may maintain records of TCP/IP connections observed on each

machine. Example columns included in a connections table are as follows:

Column Name | Description

MID Identifier of the machine that the connection was observed on.

start_time Connection start time.

51

WO 2023/034419 PCT/US2022/042213
PID hash Identifier of the process that was associated with the connection.

src_IP addr Source IP address (the connection was initiated from this IP address).
src_port Source port.

dst IP_addr Destination IP address (the connection was made to this IP address).
dst_port Destination port.

Prot Protocol (TCP or UDP).

Dir Direction of the connection (incoming or outgoing) with respect to this

machine.

[00426] The source fields (IP address and port) correspond to the side from which the connection

was initiated. On the destination side, the agent associates an ssh connection with the privileged

ssh process that is created for that connection.

[00427] For each connection in the system, there will be two records in the table, assuming that

the machines on both sides of the connection capture the connection. These records can be

matched based on equality of the tuple (src_IP addr, src_port, dst IP_addr, dst_port, Prot) and

proximity of the start time fields (e.g., with a one minute upper threshold between the start time

tields).

[00428] A processes table maintains records of processes observed on each machine. It may have

the following columns:

Column Name | Description

MID Identifier of the machine that the process was observed on.
PID hash Identifier of the process.

start_time Start time of the process.

exe path The executable path of the process.

PPID hash Identifier of the parent process.

[00429] A logins table may maintain records of logins to machines. It may have the following

columns:

Column Name

Description

52

WO 2023/034419 PCT/US2022/042213

MID Identifier of the machine that the login was observed on.

sshd PID hash Identifier of the sshd privileged process associated with login.

login_time Time of login.

login_username Username used in login.

[00430] Output data generated by session tracking is represented with the following logical
tables:

[00431] * login-local-descendant

[00432] * login-connection

[00433] * login-lincage

[00434] Using data in these tables, it is possible to determine descendant processes of a given ssh
login session across the environment (i.e., spanning machines). Conversely, given a process, it is
possible to determine if it is an ssh login descendant as well as the original ssh login session for it
if so.

[00435] A login-local-descendant table maintains the local (i.e., on the same machine)

descendant processes of each ssh login session. It may have the following columns:

Column Name | Description

MID Identifier of the machine that the login was observed on.

sshd PID hash | Identifier of the sshd privileged process associated with login.

login_time Time of login.

login_username | Username used in login.

[00436] A login-connections table may maintain the connections associated with ssh logins. It

may have the following columns:

Column Name Description

MID Identifier of the machine that the process was observed on.

sshd PID hash Identifier of the sshd privileged process associated with the login.
login_time Time of login.

login_username The username used in the login.

53

WO 2023/034419 PCT/US2022/042213

src_IP_addr Source IP address (connection was initiated from this IP address).
src_port Source port.

dst IP addr Destination IP address (connection was made to this IP address).
dst_port Destination port.

[00437] A login-lineage table may maintain the lineage of ssh login sessions. It may have the

following columns:

Column Name Description

MID Identifier of the machine that the ssh login was observed on.

sshd PID hash Identifier of the sshd privileged process associated with the login.
parent MID Identifier of the machine that the parent ssh login was observed on.

parent sshd PID hash | Identifier of the sshd privileged process associated with the parent

login.

origin MID Identifier of the machine that the origin ssh login was observed on.

origin_sshd PID hash | Identifier of the sshd privileged process associated with the origin

login.

[00438] The parent MID and parent_sshd PID hash columns can be null if there is no parent
ssh login. In that case, the (MID, sshd PID hash) tuple will be the same as the (origin_ MID,
origin_sshd PID hash) tuple.

[00439] Fig. 3H illustrates an example of a process for performing extended user tracking. In
various embodiments, process 361 is performed by data platform 12. The process begins at 362
when data associated with activities occurring in a network environment (such as entity A’s
datacenter) is received. One example of such data that can be received at 362 is agent-collected
data described above (e.g., in conjunction with process 200). At 363, the received network
activity is used to identify user login activity. And, at 364, a logical graph that links the user
login activity to at least one user and at least one process is generated (or updated, as applicable).
Additional detail regarding process 361, and in particular, portions 363 and 364 of process 361
are described in more detail below (e.g., in conjunction with discussion of Fig. 3J).

[00440] Fig. 31 depicts a representation of a user logging into a first machine, then into a second

machine from the first machine, and then making an external connection. The scenario depicted

54

WO 2023/034419 PCT/US2022/042213

in Fig. 31 is used to describe an example of processing that can be performed on data collected by
agents to generate extended user session tracking information. Fig. 31 is an alternate depiction of
the information shown in Figs. 3F and 3G.

[00441] At time t1 (365), a first ssh connection is made to Machine A (366) from an external
source (367) by a user having a username of “X.” In the following example, suppose the external
source has an IP address of 1.1.1.10 and uses source port 10000 to connect to Machine A (which
has an IP address of 2.2.2.20 and a destination port 22). External source 367 is considered an
external source because its IP address is outside of the environment being monitored (e.g., is a
node outside of entity A’s datacenter, connecting to a node inside of entity A’s datacenter).
[00442] A first ssh login session LS1 is created on machine A for user X. The privileged openssh
process for this login is A1 (368). Under the login session LS1, the user creates a bash shell
process with PID hash A2 (369).

[00443] At time t2 (370), inside the bash shell process A2, the user runs an ssh program under a
new process A3 (371) to log in to machine B (372) with a different username (“Y”). In particular,
an ssh connection is made from source IP address 2.2.2.20 and source port 10001 (Machine A’s
source information) to destination IP address 2.2.2.21 and destination port 22 (Machine B’s
destination information).

[00444] A second ssh login session LS2 is created on machine B for user Y. The privileged
openssh process for this login is B1 (373). Under the login session LS2, the user creates a bash
shell process with PID hash B2 (374).

[00445] At time t3 (376), inside the bash shell process B2, the user runs a curl command under a
new process B3 (377) to download a file from an external destination (378). In particular, an
HTTPS connection is made from source IP address 2.2.2.21 and source port 10002 (Machine B’s
source information) to external destination IP address 3.3.3.30 and destination port 443 (the
external destination’s information).

[00446] Using techniques described herein, it is possible to determine the original user who
initiated the connection to external destination 378, which in this example is a user having the
username X on machine A (where the extended user session can be determined to start with ssh
login session LS1).

[00447] Based on local descendant tracking, the following determinations can be on machine A
and B without yet having performed additional processing (described in more detail below):
[00448] * A3 is a descendant of A1 and thus associated with LS1.

[00449] * The connection to the external domain from machine B is initiated by B3.

[00450] * B3 is a descendant of B1 and is thus associated with LS2.

[00451] * Connection to the external domain is thus associated with LS2.

55

WO 2023/034419 PCT/US2022/042213

[00452] An association between A3 and LS2 can be established based on the fact that LS2 was
created based on an ssh connection initiated from A3. Accordingly, it can be determined that LS2
is a child of LS1.

[00453] To determine the user responsible for making the connection to the external destination
(e.g., if it were a known bad destination), first, the process that made the connection would be
traced, i.e., from B3 to LS2. Then LS2 would be traced to LS1 (i.e., LS1 is the origin login
session for LS2). Thus the user for this connection is the user for LS1, i.e., X. As represented in
Fig. 31, one can visualize the tracing by following the links (in the reverse direction of arrows)
from external destination 378 to A1 (368).

[00454] In the example scenario, it is assumed that both ssh connections occur in the same
analysis period. However, the approaches described herein will also work for connections and
processes that are created in different time periods.

[00455] Fig. 3] illustrates an example of a process for performing extended user tracking. In
various embodiments, process 380 is performed periodically (e.g., once an hour in a batch
fashion) by ssh tracker 148 to generate new output data. In general, batch processing allows for
efficient analysis of large volumes of data. However, the approach can be adapted, as applicable,
to process input data on a record-by-record fashion while maintaining the same logical data
processing flow. As applicable the results of a given portion of process 380 are stored for use in a
subsequent portion.

[00456] The process begins at 381 when new ssh connection records are identified. In particular,
new ssh connections started during the current time period are identified by querying the
connections table. The query uses filters on the start time and dst_port columns. The values of
the range filter on the start time column are based on the current time period. The dst_port
column is checked against ssh listening port(s). By default, the ssh listening port number is 22.
However, as this could vary across environments, the port(s) that openssh servers are listening to
in the environment can be determined by data collection agents dynamically and used as the filter
value for the dst_port as applicable. In the scenario depicted in Fig. 31, the query result will
generate the records shown in Fig. 3K. Note that for the connection between machine A and B,
the two machines are likely to report start_time values that are not exactly the same but close
enough to be considered matching (e.g., within one minute or another appropriate amount of
time). In the above table, they are shown to be the same for simplicity.

[00457] At 382, ssh connection records reported from source and destination sides of the same
connection are matched. The ssh connection records (e.g., returned from the query at 381) are

matched based on the following criteria:

56

WO 2023/034419 PCT/US2022/042213

[00458] * The five tuples (src_IP, dst IP, IP prot, src_port, dst_port) of the connection records
must match.

[00459] * The delta between the start times of the connections must be within a limit that would
account for the worst case clock difference expected between two machines in the environment
and typical connection setup latency.

[00460] * If there are multiple matches possible, then the match with the smallest time delta is
chosen.

[00461] Note that record 390 from machine A for the incoming connection from the external
source cannot be matched with another record as there is an agent only on the destination side for
this connection. Example output of portion 382 of process 380 is shown in Fig. 3L. The values in
the dst PID hash column (391) are that of the sshd privileged process associated with ssh logins.
[00462] At 383, new logins during the current time period are identified by querying the logins
table. The query uses a range filter on the login_time column with values based on the current
time period. In the example depicted in Fig. 31, the query result will generate the records depicted
in Fig. 3M.

[00463] At 384, matched ssh connection records created at 382 and new login records created at
383 are joined to create new records that will eventually be stored in the login-connection table.
The join condition is that dst MID of the matched connection record is equal to the MID of the
login record and the dst PID hash of the matched connection record is equal to the
sshd PID hash of the login record. In the example depicted in Fig. 31, the processing performed
at 384 will generate the records depicted in Fig. 3N.

[00464] At 385, login-local-descendant records in the lookback time period are identified. It is
possible that a process that is created in a previous time period makes an ssh connection in the
current analysis batch period. Although not depicted in the example illustrated in Fig. 31,
consider a case where bash process A2 does not create ssh process A3 right away but instead that
the ssh connection A3 later makes to machine B is processed in a subsequent time period than the
one where A2 was processed. While processing this subsequent time period in which processes
A3 and B1 are seen, knowledge of A2 would be useful in establishing that B1 is associated with
A3 (via ssh connection) which is associated with A2 (via process parentage) which in turn would
be useful in establishing that the parent of the second ssh login is the first ssh login. The time
period for which look back is performed can be limited to reduce the amount of historical data
that is considered. However, this is not a requirement (and the amount of look back can be
determined, e.g., based on available processing resources). The login local descendants in the
lookback time period can be identified by querying the login-local-descendant table. The query

uses a range filter on the login_time column where the range is from

57

WO 2023/034419 PCT/US2022/042213

start_time of current period - lookback time to start time of current period. (No records as a
result of performing 385 on the scenario depicted in Fig. 31 are obtained, as only a single time
period is applicable in the example scenario.)

[00465] At 386, new processes that are started in the current time period are identified by
querying the processes table. The query uses a range filter on the start time column with values
based on the current time period. In the example depicted in Fig. 31, the processing performed at
386 will generate the records depicted in Fig. 30.

[00466] At 387, new login-local-descendant records are identified. The purpose is to determine
whether any of the new processes in the current time period are descendants of an ssh login
process and if so to create records that will be stored in the login-local-descendant table for them.
In order to do so, the parent-child relationships between the processes are recursively followed.
Either a top down or bottom up approach can be used. In a top down approach, the ssh local
descendants in the lookback period identified at 385, along with new ssh login processes in the
current period identified at 384 are considered as possible ancestors for the new processes in the
current period identified at 386.

[00467] Conceptually, the recursive approach can be considered to include multiple sub-steps
where new processes that are identified to be ssh local descendants in the current sub-step are
considered as ancestors for the next step. In the example scenario depicted in Fig. 31, the
following descendancy relationships will be established in two sub-steps:

[00468] Sub-step 1:

[00469] Process A2 is a local descendant of LS1 (i.e., MID = A, sshd PID hash = A1) because it
is a child of process A1 which is the login process for LS1.

[00470] Process B2 is a local descendant of LS2 (i.e.,, MID =B, sshd PID hash = B1) because it
is a child of process B1 which is the login process for LS2.

[00471] Sub-step 2:

[00472] Process A3 is a local descendant of LS1 because it is a child of process A2 which is
associated to LS1 in sub-step 1.

[00473] Process B3 is a local descendant of LS2 because it is a child of process B1 which is
associated to LS2 in sub-step 1.

[00474] Implementation portion 387 can use a datastore that supports recursive query
capabilities, or, queries can be constructed to process multiple conceptual sub-steps at once. In
the example depicted in Fig. 31, the processing performed at 387 will generate the records
depicted in Fig. 3P. Note that the ssh privileged processes associated with the logins are also

included as they are part of the login session.

58

WO 2023/034419 PCT/US2022/042213

[00475] At 388, the lineage of new ssh logins created in the current time period is determined by
associating their ssh connections to source processes that may be descendants of other ssh logins
(which may have been created in the current period or previous time periods). In order to do so,
first an attempt is made to join the new ssh login connections in the current period (identified at
384) with the combination of the login local descendants in the lookback period (identified at
385) and the login local descendants in the current time period (identified at 386). This will
create adjacency relationships between child and parent logins. In the example depicted in Fig.
31, the second ssh login connection will be associated with process A3 and an adjacency
relationship between the two login sessions will be created (as illustrated in Fig. 3Q).

[00476] Next, the adjacency relationships are used to find the original login sessions. While not
shown in the sample scenario, there could be multiple ssh logins in a chain in the current time
period, in which case a recursive approach (as in 387) could be used. At the conclusion of portion
388, the login lineage records depicted in Fig. 3R will be generated.

[00477] Finally, at 389, output data is generated. In particular, the new login-connection, login-
local-descendant, and login-lineage records generated at 384, 387, and 388 are inserted into their
respective output tables (e.g., in a transaction manner).

[00478] An alternate approach to matching TCP connections between machines running an agent
is for the client to generate a connection GUID and send it in the connection request (e.g., the
SYN packet) it sends and for the server to extract the GUID from the request. If two connection
records from two machines have the same GUID, they are for the same connection. Both the
client and server will store the GUID (if it exists) in the connection records they maintain and
report. On the client side, the agent can configure the network stack (e.g., using IP tables
functionality on Linux) to intercept an outgoing TCP SYN packet and modify it to add the
generated GUID as a TCP option. On the server side, the agent already extracts TCP SYN
packets and thus can look for this option and extract the GUID if it exists.

[00479] Example graph-based user tracking and threat detection embodiments associated with
data platform 12 will now be described. Administrators and other users of network environments
(e.g., entity A’s datacenter 104) often change roles to perform tasks. As one example, suppose
that at the start of a workday, an administrator (hereinafter “Joe Smith™) logs in to a console,
using an individualized account (e.g., username=joe.smith). Joe performs various tasks as
himself (e.g., answering emails, generating status reports, writing code, etc.). For other tasks
(e.g., performing updates), Joe may require different/additional permission than his individual
account has (e.g., root privileges). One way Joe can gain access to such permissions is by using
sudo, which will allow Joe to run a single command with root privileges. Another way Joe can

gain access to such permissions is by su or otherwise logging into a shell as root. After gaining

59

WO 2023/034419 PCT/US2022/042213

root privileges, another thing that Joe can do is switch identities. As one example, to perform
administrative tasks, Joe may use “su help” or “su database-admin” to become (respectively) the
help user or the database-admin user on a system. He may also connect from one machine to
another, potentially changing identities along the way (e.g., logging in as joe smith at a first
console, and connecting to a database server as database-admin). When he’s completed various
administrative tasks, Joe can relinquish his root privileges by closing out of any additional shells
created, reverting back to a shell created for user joe.smith.

[00480] While there are many legitimate reasons for Joe to change his identity throughout the
day, such changes may also correspond to nefarious activity. Joe himself may be nefarious, or
Joe’s account (joe.smith) may have been compromised by a third party (whether an “outsider”
outside of entity A’s network, or an “insider”). Using techniques described herein, the behavior
of users of the environment can be tracked (including across multiple accounts and/or multiple
machines) and modeled (e.g., using various graphs described herein). Such models can be used to
generate alerts (e.g., to anomalous user behavior). Such models can also be used forensically,
e.g., helping an investigator visualize various aspects of a network and activities that have
occurred, and to attribute particular types of actions (e.g., network connections or file accesses)
to specific users.

[00481] In a typical day in a datacenter, a user (e.g., Joe Smith) will log in, run various
processes, and (optionally) log out. The user will typically log in from the same set of IP
addresses, from IP addresses within the same geographical area (e.g., city or country), or from
historically known IP addresses/geographical areas (i.e., ones the user has
previously/occasionally used). A deviation from the user’s typical (or historical) behavior
indicates a change in login behavior. However, it does not necessarily mean that a breach has
occurred. Once logged into a datacenter, a user may take a variety of actions. As a first example,
a user might execute a binary/script. Such binary/script might communicate with other nodes in
the datacenter, or outside of the datacenter, and transfer data to the user (e.g., executing “curl” to
obtain data from a service external to the datacenter). As a second example, the user can similarly
transfer data (e.g., out of the datacenter), such as by using POST. As a third example, a user
might change privilege (one or more times), at which point the user can send/receive data as per
above. As a fourth example, a user might connect to a different machine within the datacenter
(one or more times), at which point the user can send/receive data as per the above.

[00482] In various embodiments, the above information associated with user behavior is broken
into four tiers. The tiers represent example types of information that data platform 12 can use in

modeling user behavior:

60

WO 2023/034419 PCT/US2022/042213

[00483] 1. The user’s entry point (e.g., domains, IP addresses, and/or geolocation information
such as country/city) from which a user logs in.

[00484] 2. The login user and machine class.

[00485] 3. Binaries, executables, processes, etc. a user launches.

[00486] 4. Internal servers with which the user (or any of the user’s processes, child processes,
etc.) communicates, and external contacts (e.g., domains, IP addresses, and/or geolocation
information such as country/city) with which the user communicates (i.e., transfers data).
[00487] In the event of a security breach, being able to concretely answer questions about such
information can be very important. And, collectively, such information is useful in providing an
end-to-end path (e.g., for performing investigations).

[00488] In the following example, suppose a user (“UserA”) logs into a machine (“Machine01”)
from a first IP address (“IP01”). MachineO1 is inside a datacenter. UserA then launches a script
(“runnable.sh”) on MachineO1. From MachineO1, UserA next logs into a second machine
(“Machine02”) via ssh, also as UserA, also within the datacenter. On Machine02, UserA again
launches a script (“new_runnable.sh™). On Machine02, UserA then changes privilege, becoming
root on Machine02. From Machine02, UserA (now as root) logs into a third machine
(“Machine03”) in the datacenter via ssh, as root on Machine03. As root on Machine03, the user
executes a script (“collect data.sh”) on Machine03. The script internally communicates (as root)
to a MySQL-based service internal to the datacenter, and downloads data from the MySQL-based
service. Finally, as root on Machine03, the user externally communicates with a server outside
the datacenter (“External01), using a POST command. To summarize what has occurred, in this
example, the source/entry point is [PO1. Data is transferred to an external server ExternalO1. The
machine performing the transfer to ExternalO01 is Machine03. The user transferring the data is
“root” (on Machine03), while the actual user (hiding behind root) is UserA.

[00489] In the above scenario, the “original user” (ultimately responsible for transmitting data to
ExternalO1) is UserA, who logged in from IPO1. Each of the processes ultimately started by
UserA, whether started at the command line (tty) such as “runnable.sh” or started after an ssh
connection such as “new runnable.sh,” and whether as UserA, or as a subsequent identity, are all
examples of child processes which can be arranged into a process hierarchy.

[00490] As previously mentioned, machines can be clustered together logically into machine
clusters. One approach to clustering is to classify machines based on information such as the
types of services they provide/binaries they have installed upon them/processes they execute.
Machines sharing a given machine class (as they share common binaries/services/etc.) will
behave similarly to one another. Each machine in a datacenter can be assigned to a machine

cluster, and each machine cluster can be assigned an identifier (also referred to herein as a

61

WO 2023/034419 PCT/US2022/042213

machine class). One or more tags can also be assigned to a given machine class (e.g.,

database servers west or prod_web frontend). One approach to assigning a tag to a machine
class is to apply term frequency analysis (e.g., TF/IDF) to the applications run by a given
machine class, selecting as tags those most unique to the class. Data platform 12 can use
behavioral baselines taken for a class of machines to identify deviations from the baseline (e.g.,
by a particular machine in the class).

[00491] Fig. 38 illustrates an example of a process for detecting anomalies. In various
embodiments, process 392 is performed by data platform 12. As explained above, a given session
will have an original user. And, each action taken by the original user can be tied back to the
original user, despite privilege changes and/or lateral movement throughout a datacenter. Process
392 begins at 393 when log data associated with a user session (and thus an original user) is
received. At 394, alogical graph is generated, using at least a portion of the collected data. When
an anomaly is detected (395), it can be recorded, and as applicable, an alert is generated (396).
The following are examples of graphs that can be generated (e.g., at 394), with corresponding
examples of anomalies that can be detected (e.g., at 395) and alerted upon (e.g., at 396).

[00492] Fig. 4A illustrates a representation of an embodiment of an insider behavior graph. In the
example of Fig. 4A, each node in the graph can be: (1) a cluster of users; (2) a cluster of launched
processes; (3) a cluster of processes/servers running on a machine class; (4) a cluster of external
IP addresses (of incoming clients); or (5) a cluster of external servers based on DNS/IP/etc. As
depicted in Fig. 4A, graph data is vertically tiered into four tiers. Tier 0 (400) corresponds to
entry point information (e.g., domains, IP addresses, and/or geolocation information) associated
with a client entering the datacenter from an external entry point. Entry points are clustered
together based on such information. Tier 1 (401) corresponds to a user on a machine class, with a
given user on a given machine class represented as a node. Tier 2 (402) corresponds to launched
processes, child processes, and/or interactive processes. Processes for a given user and having
similar connectivity (e.g., sharing the processes they launch and the machines with which they
communicate) are grouped into nodes. Finally, Tier 3 (403) corresponds to the
services/servers/domains/IP addresses with which processes communicate. A relationship
between the tiers can be stated as follows: Tier 0 nodes log in to tier 1 nodes. Tier 1 nodes launch
tier 2 nodes. Tier 2 nodes connect to tier 3 nodes.

[00493] The inclusion of an original user in both Tier 1 and Tier 2 allows for horizontal tiering.
Such horizontal tiering ensures that there is no overlap between any two users in Tier 1 and Tier
2. Such lack of overlap provides for faster searching of an end-to-end path (e.g., one starting with
a Tier 0 node and terminating at a Tier 3 node). Horizontal tiering also helps in establishing

baseline insider behavior. For example, by building an hourly insider behavior graph, new

62

WO 2023/034419 PCT/US2022/042213

edges/changes in edges between nodes in Tier 1 and Tier 2 can be identified. Any such changes
correspond to a change associated with the original user. And, any such changes can be surfaced
as anomalous and alerts can be generated.

[00494] As explained above, Tier 1 corresponds to a user (e.g., user “U”) logging into a machine
having a particular machine class (e.g., machine class “M”). Tier 2 is a cluster of processes
having command line similarity (e.g., CType “C”), having an original user “U,” and running as a
particular effective user (e.g., user “U1”). The value of Ul may be the same as U (e.g., joe.smith
in both cases), or the value of Ul may be different (e.g., U=joe.smith and Ul=root). Thus, while
an edge may be present from a Tier 1 node to a Tier 2 node, the effective user in the Tier 2 node
may or may not match the original user (while the original user in the Tier 2 node will match the
original user in the Tier 1 node).

[00495] A change from a user U into a user U1 can take place in a variety of ways. Examples
include where U becomes U1 on the same machine (e.g., via su), and also where U sshes to other
machine(s). In both situations, U can perform multiple changes, and can combine approaches.
For example, U can become U1 on a first machine, ssh to a second machine (as U1), become U2
on the second machine, and ssh to a third machine (whether as user U2 or user U3). In various
embodiments, the complexity of how user U ultimately becomes U3 (or U5, etc.) is hidden from
a viewer of an insider behavior graph, and only an original user (e.g., U) and the effective user of
a given node (e.g., U5) are depicted. As applicable (e.g., if desired by a viewer of the insider
behavior graph), additional detail about the path (e.g., an end-to-end path of edges from user U to
user US5) can be surfaced (e.g., via user interactions with nodes).

[00496] Fig. 4B illustrates an example of a portion of an insider behavior graph (e.g., as rendered
in a web browser). In the example shown, node 405 (the external IP address, 52.32.40.231) is an
example of a Tier 0 node, and represents an entry point into a datacenter. As indicated by
directional arrows 406 and 407, two users, “aruneli_prod” and “harish_prod,” both made use of
the source IP 52.32.40.231 when logging in between Spm and 6pm on Sunday July 30 (408).
Nodes 409 and 410 are examples of Tier 1 nodes, having aruneli_prod and harish_prod as
associated respective original users. As previously mentioned, Tier 1 nodes correspond to a
combination of a user and a machine class. In the example depicted in Fig. 4B, the machine class
associated with nodes 409 and 410 is hidden from view to simplify visualization, but can be
surfaced to a viewer of interface 404 (e.g., when the user clicks on node 409 or 410).

[00497] Nodes 414-423 are examples of Tier 2 nodes — processes that are launched by users in
Tier 1 and their child, grandchild, etc. processes. Note that also depicted in Fig. 4B is a Tier 1
node 411 that corresponds to a user, “root,” that logged in to a machine cluster from within the

datacenter (i.e., has an entry point within the datacenter). Nodes 425-1 and 425-2 are examples of

63

WO 2023/034419 PCT/US2022/042213

Tier 3 nodes — internal/external IP addresses, servers, etc., with which Tier 2 nodes
communicate.

[00498] In the example shown in Fig. 4B, a viewer of interface 404 has clicked on node 423. As
indicated in region 426, the user running the marathon container is “root.” However, by
following the directional arrows in the graph backwards from node 423 (i.e. from right to left),
the viewer can determine that the original user, responsible for node 423, is “aruneli_prod,” who
logged into the datacenter from IP 52.32.40.231.

[00499] The following are examples of changes that can be tracked using an insider behavior
graph model:

[00500] * A user logs in from a new IP address.

[00501] * A user logs in from a geolocation not previously used by that user.

[00502] * A user logs into a new machine class.

[00503] * A user launches a process not previously used by that user.

[00504] * A user connects to an internal server to which the user has not previously connected.
[00505] * An original user communicates with an external server (or external server known to be
malicious) with which that user has not previously communicated.

[00506] * A user communicates with an external server which has a geolocation not previously
used by that user.

[00507] Such changes can be surfaced as alerts, e.g., to help an administrator determine
when/what anomalous behavior occurs within a datacenter. Further, the behavior graph model
can be used (e.g., during forensic analysis) to answer questions helpful during an investigation.
Examples of such questions include:

[00508] * Was there any new login activity (Tier 0) in the timeframe being investigated? As one
example, has a user logged in from an IP address with unknown geolocation information?
Similarly, has a user started communicating externally with a new Tier 3 node (e.g., one with
unknown geolocation information).

[00509] * Has there been any suspicious login activity (Tier 0) in the timeframe being
investigated? As one example, has a user logged in from an IP address that corresponds to a
known bad IP address as maintained by Threat aggregator 150? Similarly, has there been any
suspicious Tier 3 activity?

[00510] * Were any anomalous connections made within the datacenter during the timeframe
being investigated? As one example, suppose a given user (“Frank™) typically enters a datacenter
from a particular IP address (or range of IP addresses), and then connects to a first machine type

(e.g., bastion), and then to a second machine type (e.g., database prod). If Frank has directly

64

WO 2023/034419 PCT/US2022/042213

connected to database prod (instead of first going through bastion) during the timeframe, this can
be surfaced using the insider graph.

[00511] * Who is (the original user) responsible for running a particular process?

[00512] An example of an insider behavior graph being used in an investigation is depicted in
Figs. 4C and 4D. Fig. 4C depicts a baseline of behavior for a user, “Bill.” As shown in Fig. 4C,
Bill typically logs into a datacenter from the IP address, 71.198.44.40 (427). He typically makes
use of ssh (428), and sudo (429), makes use of a set of typical applications (430) and connects (as
root) with the external service, api.lacework.net (431).

[00513] Suppose Bill’s credentials are compromised by a nefarious outsider (“Eve”). Fig. 4D
depicts an embodiment of how the graph depicted in Fig. 4C would appear once Eve begins
exfiltrating data from the datacenter. Eve logs into the datacenter (using Bill’s credentials) from
52.5.66.8 (432). As Bill, Eve escalates her privilege to root (e.g., via su), and then becomes a
different user, Alex (e.g., via su alex). As Alex, Eve executes a script, “sneak.sh” (433), which
launches another script, “post.sh” (434), which contacts external server 435 which has an IP
address of 52.5.66.7, and transmits data to it. Edges 436-439 each represent changes in Bill’s
behavior. As previously mentioned, such changes can be detected as anomalies and associated
alerts can be generated. As a first example, Bill logging in from an IP address he has not
previously logged in from (436) can generate an alert. As a second example, while Bill does
typically make use of sudo (429), he has not previously executed sneak.sh (433) or post.sh (434)
and the execution of those scripts can generate alerts as well. As a third example, Bill has not
previously communicated with server 435, and an alert can be generated when he does so (439).
Considered individually, each of edges 436-439 may indicate nefarious behavior, or may be
benign. As an example of a benign edge, suppose Bill begins working from a home office two
days a week. The first time he logs in from his home office (i.e., from an IP address that is not
71.198.44.40), an alert can be generated that he has logged in from a new location. Over time,
however, as Bill continues to log in from his home office but otherwise engages in typical
activities, Bill’s graph will evolve to include logins from both 71.198.44.40 and his home office
as baseline behavior. Similarly, if Bill begins using a new tool in his job, an alert can be
generated the first time he executes the tool, but over time will become part of his baseline.
[00514] In some cases, a single edge can indicate a serious threat. For example, if server 432 (or
435) is included in a known bad IP listing, edge 436 (or 439) indicates compromise. An alert that
includes an appropriate severity level (e.g., “threat level high”) can be generated. In other cases, a
combination of edges could indicate a threat (where a single edge might otherwise resultin a
lesser warning). In the example shown in Fig. 4D, the presence of multiple new edges is

indicative of a serious threat. Of note, even though “sneak.sh” and “post.sh” were executed by

65

WO 2023/034419 PCT/US2022/042213

Alex, because data platform 12 also keeps track of an original user, the compromise of user B’s
account will be discovered.

[00515] Fig. 4E illustrates a representation of an embodiment of a user login graph. In the
example of Fig. 4E, tier 0 (440) clusters source [P addresses as belonging to a particular country
(including an “unknown” country) or as a known bad IP. Tier 1 (441) clusters user logins, and
tier 2 (442) clusters type of machine class into which a user is logging in. The user login graph
tracks the typical login behavior of users. By interacting with a representation of the graph,
answers to questions such as the following can be obtained:

[00516] * Where is a user logging in from?

[00517] * Have any users logged in from a known bad address?

[00518] * Have any non-developer users accessed development machines?

[00519] * Which machines does a particular user access?

[00520] Examples of alerts that can be generated using the user login graph include:

[00521] * A user logs in from a known bad IP address.

[00522] * A user logs in from a new country for the first time.

[00523] * A new user logs into the datacenter for the first time.

[00524] * A user accesses a machine class that the user has not previously accessed.

[00525] One way to track privilege changes in a datacenter is by monitoring a process hierarchy
of processes. To help filter out noisy commands/processes such as “su —u,” the hierarchy of
processes can be constrained to those associated with network activity. In a *nix system, each
process has two identifiers assigned to it, a process identifier (PID) and a parent process identifier
(PPID). When such a system starts, the initial process is assigned a PID 0. Each user process has
a corresponding parent process.

[00526] Using techniques described herein, a graph can be constructed (also referred to herein as
a privilege change graph) which models privilege changes. In particular, a graph can be
constructed which identifies where a process P1 launches a process P2, where P1 and P2 each
have an associated user Ul and U2, with U1 being an original user, and U2 being an effective
user. In the graph, each node is a cluster of processes (sharing a CType) executed by a particular
(original) user. As all the processes in the cluster belong to the same user, a label that can be used
for the cluster is the user’s username. An edge in the graph, from a first node to a second node,
indicates that a user of the first node changed its privilege to the user of the second node.

[00527] Fig. 4F illustrates an example of a privilege change graph. In the example shown in Fig.
4F, each node (e.g., nodes 444 and 445) represents a user. Privilege changes are indicated by

edges, such as edge 446.

66

WO 2023/034419 PCT/US2022/042213

[00528] As with other graphs, anomalies in graph 443 can be used to generate alerts. Three
examples of such alerts are as follows:

[00529] * New user entering the datacenter. Any time a new user enters the datacenter and runs a
process, the graph will show a new node, with a new CType. This indicates a new user has been
detected within the datacenter. Fig. 4F is a representation of an example of an interface that
depicts such an alert. Specifically, as indicated in region 447, an alert for the time period 1pm-
2pm on June 8 was generated. The alert identifies that a new user, Bill (448) executed a process.
[00530] *Privilege change. As explained above, a new edge, from a first node (user A) to a
second node (user B) indicates that user A has changed privilege to user B.

[00531] * Privilege escalation. Privilege escalation is a particular case of privilege change, in
which the first user becomes root.

[00532] An example of an anomalous privilege change and an example of an anomalous
privilege escalation are each depicted in graph 450 of Fig. 4G. In particular, as indicated in
region 451, two alerts for the time period 2pm-3pm on June 8 were generated (corresponding to
the detection of the two anomalous events). In region 452, root has changed privilege to the user
“daemon,” which root has not previously done. This anomaly is indicated to the user by
highlighting the daemon node (e.g., outlining it in a particular color, e.g., red). As indicated by
edge 453, Bill has escalated his privilege to the user root (which can similarly be highlighted in
region 454). This action by Bill represents a privilege escalation.

[00533] An Extensible query interface for dynamic data compositions and filter applications will
now be described.

[00534] As described herein, datacenters are highly dynamic environments. And, different
customers of data platform 12 (e.g., entity A vs. entity B) may have different/disparate
needs/requirements of data platform 12, e.g., due to having different types of assets, different
applications, etc. Further, as time progresses, new software tools will be developed, new types of
anomalous behavior will be possible (and should be detectable), etc. In various embodiments,
data platform 12 makes use of predefined relational schema (including by having different
predefined relational schema for different customers). However, the complexity and cost of
maintaining/updating such predefined relational schema can rapidly become problematic —
particularly where the schema includes a mix of relational, nested, and hierarchical (graph)
datasets. In other embodiments, the data models and filtering applications used by data platform
12 are extensible. As will be described in more detail below, in various embodiments, data
platform 12 supports dynamic query generation by automatic discovery of join relations via static
or dynamic filtering key specifications among composable data sets. This allows a user of data

platform 12 to be agnostic to modifications made to existing data sets as well as creation of new

67

WO 2023/034419 PCT/US2022/042213

data sets. The extensible query interface also provides a declarative and configurable
specification for optimizing internal data generation and derivations.

[00535] As will also be described in more detail below, data platform 12 is configured to
dynamically translate user interactions (e.g., received via web app 120) into SQL queries (and
without the user needing to know how to write queries). Such queries can then be performed
(e.g., by query service 166) against any compatible backend (e.g., data store 30).

[00536] Fig. 4H illustrates an example of a user interacting with a portion of an interface. When
a user visits data platform 12 (e.g., via web app 120 using a browser), data is extracted from data
store 30 as needed (e.g., by query service 166), to provide the user with information, such as the
visualizations depicted variously herein). As the user continues to interact with such
visualizations (e.g., clicking on graph nodes, entering text into search boxes, navigating between
tabs (e.g., tab 455 vs. 465)), such interactions act as triggers that cause query service 166 to
continue to obtain information from data store 30 as needed (and as described in more detail
below).

[00537] In the example shown in Fig. 4H, user A is viewing a dashboard that provides various
information about entity A users (455), during the time period March 2 at midnight — March 25 at
7pm (which she selected by interacting with region 456). Various statistical information is
presented to user A in region 457. Region 458 presents a timeline of events that occurred during
the selected time period. User A has opted to list only the critical, high, and medium events
during the time period by clicking on the associated boxes (459-461). A total of 55 low severity,
and 155 info-only events also occurred during the time period. Each time user A interacts with an
element in Fig. 4H (e.g., clicks on box 461, clicks on link 464-1, or clicks on tab 465), her
actions are translated/formalized into filters on the data set and used to dynamically generate
SQL queries. The SQL queries are generated transparently to user A (and also to a designer of
the user interface shown in Fig. 4H).

[00538] User A notes in the timeline (462) that a user, Harish, connected to a known bad server
(examplebad.com) using wget, an event that has a critical severity level. User A can click on
region 463 to expand details about the event inline (which will display, for example, the text
“External connection made to known bad host examplebad.com at port 80 from application
‘wget’ running on host dev1.lacework.internal as user harish™) directly below line 462. User A
can also click on link 464-1, which will take her to a dossier for the event (depicted in Fig. 41).
As will be described in more detail below, a dossier is a template for a collection of
visualizations.

[00539] As shown in interface 466, the event of Harish using wget to contact examplebad.com

on March 16 was assigned an event ID of 9291 by data platform 12 (467). For convenience to

68

WO 2023/034419 PCT/US2022/042213

user A, the event is also added to her dashboard in region 476 as a bookmark (468). A summary
of the event is depicted in region 469. By interacting with boxes shown in region 470, user A can
see a timeline of related events. In this case, user A has indicated that she would like to see other
events involving the wget application (by clicking box 471). Events of critical and medium
security involving wget occurred during the one hour window selected in region 472.

[00540] Region 473 automatically provides user A with answers to questions that may be helpful
to have answers to while investigating event 9291. If user A clicks on any of the links in the
event description (474), she will be taken to a corresponding dossier for the link. As one
example, suppose user A clicks on link 475. She will then be presented with interface 477 shown
in Fig. 4].

[00541] Interface 477 is an embodiment of a dossier for a domain. In this example, the domain is
“examplebad.com,” as shown in region 478. Suppose user A would like to track down more
information about interactions entity A resources have made with examplebad.com between
January 1 and March 20. She selects the appropriate time period in region 479 and information in
the other portions of interface 477 automatically update to provide various information
corresponding to the selected time frame. As one example, user A can see that contact was made
with examplebad.com a total of 17 times during the time period (480), as well as a list of each
contact (481). Various statistical information is also included in the dossier for the time period
(482). If she scrolls down in interface 477, user A will be able to view various polygraphs
associated with examplebad.com, such as an application-communication polygraph (483).
[00542] Data stored in data store 30 can be internally organized as an activity graph. In the
activity graph, nodes are also referred to as Entities. Activities generated by Entities are modeled
as directional edges between nodes. Thus, each edge is an activity between two Entities. One
example of an Activity is a “login” Activity, in which a user Entity logs into a machine Entity
(with a directed edge from the user to the machine). A second example of an Activity is a
“launch” Activity, in which a parent process launches a child process (with a directed edge from
the parent to the child). A third example of an Activity is a “DNS query” Activity, in which
either a process or a machine performs a query (with a directed edge from the requestor to the
answer, e.g., an edge from a process to www.example.com). A fourth example of an Activity is a
network “connected to” Activity, in which processes, IP addresses, and listen ports can connect
to each other (with a directed edge from the initiator to the server).

[00543] As will be described in more detail below, query service 166 provides either relational
views or graph views on top of data stored in data store 30. Typically, a user will want to see data
filtered using the activity graph. For example, if an entity was not involved in an activity in a

given time period, that entity should be filtered out of query results. Thus, a request to show “all

69

WO 2023/034419 PCT/US2022/042213

machines” in a given time frame will be interpreted as “show distinct machines that were active”
during the time frame.

[00544] Query service 166 relies on three main data model elements: fields, entities, and filters.
As used herein, a field is a collection of values with the same type (logical and physical). A field
can be represented in a variety of ways, including: 1. a column of relations (table/view), 2. a
return field from another entity, 3. an SQL aggregation (e.g., COUNT, SUM, etc.), 4. an SQL
expression with the references of other fields specified, and 5. a nested field of a JSON object. As
viewed by query service 166, an entity is a collection of fields that describe a data set. The data
set can be composed in a variety of ways, including: 1. a relational table, 2. a parameterized SQL
statement, 3. DynamicSQL created by a Java function, and 4. join/project/aggregate/subclass of
other entities. Some fields are common for all entities. One example of such a field is a “first
observed” timestamp (when first use of the entity was detected). A second example of such a
field is the entity classification type (e.g., one of: 1. Machine (on which an agent is installed), 2.
Process, 3. Binary, 4. UID, 5. IP, 6. DNS Information, 7. ListenPort, and 8. PType). A third
example of such a field is a “last observed” timestamp.

[00545] A filter is an operator that: 1. takes an entity and field values as inputs, 2. a valid SQL
expression with specific reference(s) of entity fields, or 3. is a conjunct/disjunct of filters. As will
be described in more detail below, filters can be used to filter data in various ways, and limit data
returned by query service 166 without changing the associated data set.

[00546] As mentioned above, a dossier is a template for a collection of visualizations. Each
visualization (e.g., the box including chart 484) has a corresponding card, which identifies
particular target information needed (e.g., from data store 30) to generate the visualization. In
various embodiments, data platform 12 maintains a global set of dossiers/cards. Users of data
platform 12 such as user A can build their own dashboard interfaces using preexisting
dossiers/cards as components, and/or they can make use of a default dashboard (which
incorporates various of such dossiers/cards).

[00547] A JSON file can be used to store multiple cards (e.g., as part of a query service catalog).
A particular card is represented by a single JSON object with a unique name as a field name.
[00548] Each card may be described by the following named fields:

[00549] TYPE: the type of the card. Example values include:

[00550] * Entity (the default type)

[00551] * SQL

[00552] * Filters

[00553] * DynamicSQL

[00554] * graphFilter

70

WO 2023/034419 PCT/US2022/042213

[00555] * graph

[00556] * Function

[00557] * Template

[00558] PARAMETERS: a JSON array object that contains an array of parameter objects with
the following fields:

[00559] * name (the name of the parameter)

[00560] * required (a Boolean flag indicating whether the parameter is required or not)
[00561] * default (a default value of the parameter)

[00562] * props (a generic JSON object for properties of the parameter. Possible values are:
“utype” (a user defined type), and “scope” (an optional property to configure a namespace of the
parameter))

[00563] * value (a value for the parameter - non-null to override the default value defined in
nested source entities)

[00564] SOURCES: a JSON array object explicitly specifying references of input entities. Each
source reference has the following attributes:

[00565] * name (the card/entity name or fully-qualified Table name)

[00566] * type (required for base Table entity)

[00567] * alias (an alias to access this source entity in other fields (e.g., returns, filters, groups,
etc))

[00568] RETURNS: a required JSON array object of a return field object. A return field object
can be described by the following attributes:

[00569] * field (a valid field name from a source entity)

[00570] * expr (a valid SQL scalar expression. References to input fields of source entities are
specified in the format of #{Entity.Field}. Parameters can also be used in the expression in the
format of ${ParameterName})

[00571] * type (the type of field, which is required for return fields specified by expr. It is also
required for all return fields of an Entity with an SQL type)

[00572] * alias (the unique alias for return field)

[00573] * aggr (possible aggregations are: COUNT, COUNT_DISTINCT, DISTINCT, MAX,
MIN, AVG, SUM, FIRST VALUE, LAST VALUE)

[00574] * case (JSON array object represents conditional expressions “when” and “expr”)
[00575] * fieldsFrom, and, except (specification for projections from a source entity with
excluded fields)

[00576] * props (general JSON object for properties of the return field. Possible properties

include: “filterGroup,” “title,” “format,” and “utype”)

71

WO 2023/034419 PCT/US2022/042213

[00577] PROPS: generic JSON objects for other entity properties

[00578] SQL: a JSON array of string literals for SQL statements. Each string literal can contain
parameterized expressions ${ParameterName} and/or composable entity by #{EntityName}
[00579] GRAPH: required for graph entity. Has the following required fields:

2

[00580] * source (including “type,” “props,” and “keys”)

[00581] * target (including “type,” “props,” and “keys”)

[00582] * edge (including “type” and “props”)

[00583] JOINS: a JSON array of join operators. Possible fields for a join operator include:
[00584] * type (possible join types include: “loj” - Left Outer Join, “join” - Inner Join, “in” -
Semi Join, “implicit” - Implicit Join)

[00585] * left (a left hand side field of join)

[00586] * right (a right hand side field of join)

[00587] * keys (key columns for multi-way joins)

[00588] * order (a join order of multi-way joins)

[00589] FKEYS: a JSON array of FilterKey(s). The fields for a FilterKey are:

[00590] * type (type of FilterKey)

[00591] * fieldRefs (reference(s) to return fields of an entity defined in the sources field)
[00592] * alias (an alias of the FilterKey, used in implicit join specification)

[00593] FILTERS: a JSON array of filters (conjunct). Possible fields for a filter include:
[00594] * type (types of filters, including: “eq” - equivalent to SQL =, “ne” - equivalent to SQL
<>, “ge” - equivalent to SQL >=, “gt” - equivalent to SQL >, “le” - equivalent to SQL <=, “It” -
equivalent to SQL <, “like” - equivalent to SQL LIKE, “not_like” - equivalent to SQL NOT
LIKE, “rlike” - equivalent to SQL RLIKE (Snowflake specific), “not_rlike” - equivalent to SQL
NOT RLIKE (Snowflake specific), “in” - equivalent to SQL IN, “not_in” - equivalent to SQL
NOT IN)

[00595] * expr (generic SQL expression)

[00596] * field (field name)

[00597] * value (single value)

[00598] * values (for both IN and NOT IN)

[00599] ORDERS: a JSON array of ORDER BY for returning fields. Possible attributes for the
ORDER BY clause include:

[00600] * field (field ordinal index (1 based) or field alias)

[00601] * order (asc/desc, default is ascending order)

[00602] GROUPS: a JSON array of GROUP BY for returning fields. Field attributes are:
[00603] * field (ordinal index (1 based) or alias from the return fields)

72

WO 2023/034419 PCT/US2022/042213

[00604] LIMIT: a limit for the number of records to be returned

[00605] OFFSET: an offset of starting position of returned data. Used in combination with limit
for pagination.

[00606] Suppose customers of data platform 12 (e.g., entity A and entity B) request new data
transformations or a new aggregation of data from an existing data set (as well as a
corresponding visualization for the newly defined data set). As mentioned above, the data models
and filtering applications used by data platform 12 are extensible. Thus, two example scenarios
of extensibility are (1) extending the filter data set, and (2) extending a FilterKey in the filter data
set.

[00607] Data platform 12 includes a query service catalog that enumerates cards available to
users of data platform 12. New cards can be included for use in data platform 12 by being added
to the query service catalog (e.g., by an operator of data platform 12). For reusability and
maintainability, a single external-facing card (e.g., available for use in a dossier) can be
composed of multiple (nested) internal cards. Each newly added card (whether external or
internal) will also have associated FilterKey(s) defined. A user interface (UI) developer can then
develop a visualization for the new data set in one or more dossier templates. The same external
card can be used in multiple dossier templates, and a given external card can be used multiple
times in the same dossier (e.g., after customization). Examples of external card customization
include customization via parameters, ordering, and/or various mappings of external data fields
(columns).

[00608] As mentioned above, a second extensibility scenario is one in which a FilterKey in the
filter data set is extended (i.e., existing template functions are used to define a new data set). As
also mentioned above, data sets used by data platform 12 are composable/reusable/extensible,
irrespective of whether the data sets are relational or graph data sets. One example data set is the
User Tracking polygraph, which is generated as a graph data set (comprising nodes and edges).
Like other polygraphs, User Tracking is an external data set that can be visualized both as a
graph (via the nodes and edges) and can also be used as a filter data set for other cards, via the
cluster identifier (CID) field.

[00609] As mentioned above, as users such as user A navigate through/interact with interfaces
provided by data platform 12 (e.g., as shown in Fig. 4H), such interactions trigger query service
166 to generate and perform queries against data store 30. Dynamic composition of filter datasets
can be implemented using FilterKeys and FilterKey Types. A FilterKey can be defined as a list
of columns and/or fields in a nested structure (e.g., JSON). Instances of the same FilterKey Type
can be formed as an Implicit Join Group. The same instance of a FilterKey can participate in

different Implicit Join Groups. A list of relationships among all possible Implicit Join Groups is

73

WO 2023/034419 PCT/US2022/042213

represented as a Join graph for the entire search space to create a final data filter set by traversing
edges and producing Join Path(s).

[00610] Each card (e.g., as stored in the query service catalog and used in a dossier) can be
introspected by a /card/describe/CardID REST request.

[00611] At runtime (e.g., whenever it receives a request from web app 120), query service 166
parses the list of implicit joins and creates a Join graph to manifest relationships of FilterKeys
among Entities. A Join graph (an example of which is depicted in Fig. 4K) comprises a list of
Join Link(s). A Join Link represents each implicit join group by the same FilterKey type. A Join
Link maintains a reverse map (Entity-to-FilterKey) of FilterKeys and their Entities. As
previously mentioned, Entities can have more than one FilterKey defined. The reverse map
guarantees one FilterKey per Entity can be used for each JoinLink. Each JoinLink also maintains
a list of entities for the priority order of joins. Each JoinLink is also responsible for creating and
adding directional edge(s) to graphs. An edge represents a possible join between two Entities.
[00612] At runtime, each Implicit Join uses the Join graph to find all possible join paths. The
search of possible join paths starts with the outer FilterKey of an implicit join. One approach is to
use a shortest path approach, with breadth first traversal and subject to the following criteria:
[00613] * Use the priority order list of Join Links for all entities in the same implicit join group.
[00614] * Stop when a node (Entity) is reached which has local filter(s).

[00615] * Include all join paths at the same level (depth).

[00616] * Exclude join paths based on the predefined rules (path of edges).

[00617] Fig. 4L illustrates an example of a process for dynamically generating and executing a
query. In various embodiments, process 485 is performed by data platform 12. The process
begins at 486 when a request is received to filter information associated with activities within a
network environment. One example of such a request occurs in response to user A clicking on
tab 465. Another example of such a request occurs in response to user A clicking on link 464-1.
Yet another example of such a request occurs in response to user A clicking on link 464-2 and
selecting (e.g., from a dropdown) an option to filter (e.g., include, exclude) based on specific
criteria that she provides (e.g., an IP address, a username, a range of criteria, etc.).

[00618] At 487, a query is generated based on an implicit join. One example of processing that
can be performed at 487 is as follows. As explained above, one way dynamic composition of
filter datasets can be implemented is by using FilterKeys and FilterKey Types. And, instances of
the same FilterKey Type can be formed as an Implicit Join Group. A Join graph for the entire
search space can be constructed from a list of all relationships among all possible Join Groups.
And, a final data filter set can be created by traversing edges and producing one or more Join

Paths. Finally, the shortest path in the join paths is used to generate an SQL query string.

74

WO 2023/034419 PCT/US2022/042213

[00619] One approach to generating an SQL query string is to use a query building library
(authored in an appropriate language such as Java). For example, a common interface “sqlGen”
may be used in conjunction with process 485 is as follows. First, a card/entity is composed by a
list of input cards/entities, where each input card recursively is composed by its own list of input
cards. This nested structure can be visualized as a tree of query blocks(SELECT) in standard
SQL constructs. SQL generation can be performed as the traversal of the tree from root to leaf
entities (top-down), calling the sqlGen of each entity. Each entity can be treated as a subclass of
the Java class(Entity). An implicit join filter (EntityFilter) is implemented as a subclass of Entity,
similar to the right hand side of a SQL semi-join operator. Unlike the static SQL semi-join
construct, it is conditionally and recursively generated even if it is specified in the input sources
of the JSON specification. Another recursive interface can also be used in conjunction with
process 485, preSQLGen, which is primarily the entry point for EntityFilter to run a search and
generate nested implicit join filters. During preSQLGen recursive invocations, the applicability
of implicit join filters is examined and pushed down to its input subquery list. Another top-down
traversal, pullUpCachable, can be used to pull up common sub-query blocks, including those
dynamically generated by preSQLGen, such that SELECT statements of those cacheable blocks
are generated only once at top-level WITH clauses. A recursive interface, sqlWith, is used to
generate nested subqueries inside WITH clauses. The recursive calls of a sqlWith function can
generate nested WITH clauses as well. An sqlFrom function can be used to generate SQL. FROM
clauses by referencing those subquery blocks in the WITH clauses. It also produces
INNER/OUTER join operators based on the joins in the specification. Another recursive
interface, sqlWhere, can be used to generate conjuncts and disjuncts of local predicates and semi-
join predicates based on implicit join transformations. Further, sqlProject, sqlGroupBy,
sqlOrderBy, and sqlLimitOffset can respectively be used to translate the corresponding directives
in JSON spec to SQL SELECT list, GROUP BY, ORDER BY, and LIMIT/OFFSET clauses.
[00620] Returning to process 485, at 488, the query (generated at 487) is used to respond to the
request. As one example of the processing performed at 488, the generated query is used to query
data store 30 and provide (e.g., to web app 120) fact data formatted in accordance with a schema
(e.g., as associated with a card associated with the request received at 486).

[00621] Although the examples described herein largely relate to embodiments where data is
collected from agents and ultimately stored in a data store such as those provided by Snowflake,
in other embodiments data that is collected from agents and other sources may be stored in
different ways. For example, data that is collected from agents and other sources may be stored in

a data warehouse, data lake, data mart, and/or any other data store.

75

WO 2023/034419 PCT/US2022/042213

[00622] A data warehouse may be embodied as an analytic database (e.g., a relational database)
that is created from two or more data sources. Such a data warehouse may be leveraged to store
historical data, often on the scale of petabytes. Data warehouses may have compute and memory
resources for running complicated queries and generating reports. Data warehouses may be the
data sources for business intelligence (‘BI’) systems, machine learning applications, and/or other
applications. By leveraging a data warehouse, data that has been copied into the data warehouse
may be indexed for good analytic query performance, without affecting the write performance of
a database (e.g., an Online Transaction Processing (‘OLTP’) database). Data warehouses also
enable the joining data from multiple sources for analysis. For example, a sales OLTP application
probably has no need to know about the weather at various sales locations, but sales predictions
could take advantage of that data. By adding historical weather data to a data warehouse, it would
be possible to factor it into models of historical sales data.

[00623] Data lakes, which store files of data in their native format, may be considered as
“schema on read” resources. As such, any application that reads data from the lake may impose
its own types and relationships on the data. Data warehouses, on the other hand, are “schema on
write,” meaning that data types, indexes, and relationships are imposed on the data as it 1s stored
in the EDW. “Schema on read” resources may be beneficial for data that may be used in several
contexts and poses little risk of losing data. “Schema on write” resources may be beneficial for
data that has a specific purpose, and good for data that must relate properly to data from other
sources. Such data stores may include data that is encrypted using homomorphic encryption, data
encrypted using privacy-preserving encryption, smart contracts, non-fungible tokens,
decentralized finance, and other techniques.

[00624] Data marts may contain data oriented towards a specific business line whereas data
warehouses contain enterprise-wide data. Data marts may be dependent on a data warehouse,
independent of the data warehouse (e.g., drawn from an operational database or external source),
or a hybrid of the two. In embodiments described herein, different types of data stores (including
combinations thereof) may be leveraged. Such data stores may be proprietary or may be
embodied as vendor provided products or services such as, for example, Google BigQuery,
Druid, Amazon Redshift, IBM Db2, Dremio, Databricks Lakehouse Platform, Cloudera, Azure
Synapse Analytics, and others.

[00625] The deployments (e.g., a customer’s cloud deployment) that are analyzed, monitored,
evaluated, or otherwise observed by the systems described herein (e.g., systems that include
components such as the platform 12 of Fig. 1D, the data collection agents described herein,
and/or other components) may be provisioned, deployed, and/or managed using infrastructure as

code (‘TaC’). TaC involves the managing and/or provisioning of infrastructure through code

76

WO 2023/034419 PCT/US2022/042213

instead of through manual processes. With IaC, configuration files may be created that include
infrastructure specifications. IaC can be beneficial as configurations may be edited and
distributed, while also ensuring that environments are provisioned in a consistent manner. IaC
approaches may be enabled in a variety of ways including, for example, using laC software tools
such as Terraform by HashiCorp. Through the usage of such tools, users may define and provide
data center infrastructure using JavaScript Object Notation (‘JSON’), YAML, proprietary
formats, or some other format. In some embodiments, the configuration files may be used to
emulate a cloud deployment for the purposes of analyzing the emulated cloud deployment using
the systems described herein. Likewise, the configuration files themselves may be used as inputs
to the systems described herein, such that the configuration files may be inspected to identify
vulnerabilities, misconfigurations, violations of regulatory requirements, or other issues. In fact,
configuration files for multiple cloud deployments may even be used by the systems described
herein to identify best practices, to identify configuration files that deviate from typical
configuration files, to identify configuration files with similarities to deployments that have been
determined to be deficient in some way, or the configuration files may be leveraged in some
other ways to detect vulnerabilities, misconfigurations, violations of regulatory requirements, or
other issues prior to deploying an infrastructure that is described in the configuration files. In
some embodiments the techniques described herein may be use in multi-cloud, multi-tenant,
cross-cloud, cross-tenant, cross-user, industry cloud, digital platform, and other scenarios
depending on specific need or situation.

[00626] In some embodiments, the deployments that are analyzed, monitored, evaluated, or
otherwise observed by the systems described herein (e.g., systems that include components such
as the platform 12 of Fig. 1D, the data collection agents described herein, and/or other
components) may be monitored to determine the extent to which a particular component has
experienced “drift” relative to its associated IaC configuration. Discrepancies between how cloud
resources were defined in an [aC configuration file and how they are currently configured in
runtime may be identified and remediation workflows may be initiated to generate an alert,
reconfigure the deployment, or take some other action. Such discrepancies may occur for a
variety of reasons. Such discrepancies may occur, for example, due to maintenance operations
being performed, due to incident response tasks being carried out, or for some other reason.
Readers will appreciate that while TaC helps avoid initial misconfigurations of a deployment by
codifying and enforcing resource creation, resource configuration, security policies, and so on,
the systems described herein may prevent unwanted drift from occurring during runtime and after

a deployment has been created in accordance with an TaC configuration.

77

WO 2023/034419 PCT/US2022/042213

[00627] In some embodiments, the deployments (e.g., a customer’s cloud deployment) that are
analyzed, monitored, evaluated, or otherwise observed by the systems described herein (e.g.,
systems that include components such as the platform 12 of Fig. 1D, the data collection agents
described herein, and/or other components) may also be provisioned, deployed, and/or managed
using security as code (‘SaC’). SaC extends IaC concepts by defining cybersecurity policies
and/or standards programmatically, so that the policies and/or standards can be referenced
automatically in the configuration scripts used to provision cloud deployments. Stated
differently, SaC can automate policy implementation and cloud deployments may even be
compared with the policies to prevent “drift.” For example, if a policy is created where all
personally identifiable information (‘PII") or personal health information (‘PHI") must be
encrypted when it is stored, that policy is translated into a process that is automatically launched
whenever a developer submits code, and code that violates the policy may be automatically
rejected.

[00628] In some embodiments, SaC may be implemented by initially classifying workloads (e.g.,
by sensitivity, by criticality, by deployment model, by segment). Policies that can be instantiated
as code may subsequently be designed. For example, compute-related policies may be designed,
access-related policies may be designed, application-related policies may be designed, network-
related policies may be designed, data-related policies may be designed, and so on. Security as
code may then be instantiated through architecture and automation, as successful implementation
of SaC can benefit from making key architectural-design decisions and executing the right
automation capabilities. Next, operating model protections may be built and supported. For
example, an operating model may “shift left” to maximize self-service and achieve full-life-cycle
security automation (e.g., by standardizing common development toolchains, CI/CD pipelines,
and the like). In such an example, security policies and access controls may be part of the
pipeline, automatic code review and bug/defect detection may be performed, automated build
processes may be performed, vulnerability scanning may be performed, checks against a risk-
control framework may be made, and other tasks may be performed all before deploying an
infrastructure or components thereof.

[00629] The systems described herein may be useful in analyzing, monitoring, evaluating, or
otherwise observing a GitOps environment. In a GitOps environment, Git may be viewed as the
one and only source of truth. As such, GitOps may require that the desired state of infrastructure
(e.g., a customer’s cloud deployment) be stored in version control such that the entire audit trail
of changes to such infrastructure can be viewed or audited. In a GitOps environment, all changes
to infrastructure are embodied as fully traceable commits that are associated with committer

information, commit IDs, time stamps, and/or other information. In such an embodiment, both an

78

WO 2023/034419 PCT/US2022/042213

application and the infrastructure (e.g., a customer’s cloud deployment) that supports the
execution of the application are therefore versioned artifacts and can be audited using the gold
standards of software development and delivery. Readers will appreciate that while the systems
described herein are described as analyzing, monitoring, evaluating, or otherwise observing a
GitOps environment, in other embodiments other source control mechanisms may be utilized for
creating infrastructure, making changes to infrastructure, and so on. In these embodiments, the
systems described herein may similarly be used for analyzing, monitoring, evaluating, or
otherwise observing such environments.

[00630] As described in other portions of the present disclosure, the systems described herein
may be used to analyze, monitor, evaluate, or otherwise observe a customer’s cloud deployment.
While securing traditional datacenters requires managing and securing an IP-based perimeter
with networks and firewalls, hardware security modules (‘HSMs’), security information and
event management (‘SIEM”) technologies, and other physical access restrictions, such solutions
are not particularly useful when applied to cloud deployments. As such, the systems described
herein may be configured to interact with and even monitor other solutions that are appropriate
for cloud deployments such as, for example, “zero trust” solutions.

[00631] A zero trust security model (a.k.a., zero trust architecture) describes an approach to the
design and implementation of IT systems. A primary concept behind zero trust is that devices
should not be trusted by default, even if they are connected to a managed corporate network such
as the corporate LAN and even if they were previously verified. Zero trust security models help
prevent successful breaches by eliminating the concept of trust from an organization's network
architecture. Zero trust security models can include multiple forms of authentication and
authorization (e.g., machine authentication and authorization, human/user authentication and
authorization) and can also be used to control multiple types of accesses or interactions (e.g.,
machine-to-machine access, human-to-machine access).

[00632] In some embodiments, the systems described herein may be configured to interact with
zero trust solutions in a variety of ways. For example, agents that collect input data for the
systems described herein (or other components of such systems) may be configured to access
various machines, applications, data sources, or other entity through a zero trust solution,
especially where local instances of the systems described herein are deployed at edge locations.
Likewise, given that zero trust solutions may be part of a customer’s cloud deployment, the zero
trust solution itself may be monitored to identify vulnerabilities, anomalies, and so on. For
example, network traffic to and from the zero trust solution may be analyzed, the zero trust
solution may be monitored to detect unusual interactions, log files generated by the zero trust

solution may be gathered and analyzed, and so on.

79

WO 2023/034419 PCT/US2022/042213

[00633] In some embodiments, the systems described herein may leverage various tools and
mechanisms in the process of performing its primary tasks (e.g., monitoring a cloud deployment).
For example, Linux eBPF is mechanism for writing code to be executed in the Linux kernel
space. Through the usage of eBPF, user mode processes can hook into specific trace points in the
kernel and access data structures and other information. For example, eBPF may be used to
gather information that enables the systems described herein to attribute the utilization of
networking resources or network traffic to specific processes. This may be useful in analyzing
the behavior of a particular process, which may be important for observability/SIEM.

[00634] The systems described may be configured to collect security event logs (or any other
type of log or similar record of activity) and telemetry in real time for threat detection, for
analyzing compliance requirements, or for other purposes. In such embodiments, the systems
described herein may analyze telemetry in real time (or near real time), as well as historical
telemetry, to detect attacks or other activities of interest. The attacks or activities of interest may
be analyzed to determine their potential severity and impact on an organization. In fact, the
attacks or activities of interest may be reported, and relevant events, logs, or other information
may be stored for subsequent examination.

[00635] In one embodiment, systems described herein may be configured to collect security
event logs (or any other type of log or similar record of activity) and telemetry in real time to
provide customers with a SIEM or STEM-like solution. SIEM technology aggregates event data
produced by security devices, network infrastructure, systems, applications, or other source.
Centralizing all of the data that may be generated by a cloud deployment may be challenging for
a traditional SIEM, however, as each component in a cloud deployment may generate log data or
other forms of machine data, such that the collective amount of data that can be used to monitor
the cloud deployment can grow to be quite large. A traditional SIEM architecture, where data is
centralized and aggregated, can quickly result in large amounts of data that may be expensive to
store, process, retain, and so on. As such, SIEM technologies may frequently be implemented
such that silos are created to separate the data.

[00636] In some embodiments of the present disclosure, data that is ingested by the systems
described herein may be stored in a cloud-based data warehouse such as those provided by
Snowflake and others. Given that companies like Snowflake offer data analytics and other
services to operate on data that is stored in their data warehouses, in some embodiments one or
more of the components of the systems described herein may be deployed in or near Snowflake
as part of a secure data lake architecture (a.k.a., a security data lake architecture, a security data
lake/warehouse). In such an embodiment, components of the systems described herein may be

deployed in or near Snowflake to collect data, transform data, analyze data for the purposes of

80

WO 2023/034419 PCT/US2022/042213

detecting threats or vulnerabilities, initiate remediation workflows, generate alerts, or perform
any of the other functions that can be performed by the systems described herein. In such
embodiments, data may be received from a variety of sources (e.g., EDR or EDR-like tools that
handle endpoint data, cloud access security broker (‘CASB’) or CASB-like tools that handle data
describing interactions with cloud applications, Identity and Access Management (‘IAM”) or
TAM-like tools, and many others), normalized for storage in a data warehouse, and such
normalized data may be used by the systems described herein. In fact, the systems described
herein may actually implement the data sources (e.g., an EDR tool, a CASB tool, an IAM tool)
described above.

[00637] In some embodiments one data source that is ingested by the systems described herein is
log data, although other forms of data such as network telemetry data (flows and packets) and/or
many other forms of data may also be utilized. In some embodiments, event data can be
combined with contextual information about users, assets, threats, vulnerabilities, and so on, for
the purposes of scoring, prioritization and expediting investigations. In some embodiments, input
data may be normalized, so that events, data, contextual information, or other information from
disparate sources can be analyzed more efficiently for specific purposes (e.g., network security
event monitoring, user activity monitoring, compliance reporting). The embodiments described
here offer real-time analysis of events for security monitoring, advanced analysis of user and
entity behaviors, querying and long-range analytics for historical analysis, other support for
incident investigation and management, reporting (for compliance requirements, for example),
and other functionality.

[00638] In some embodiments, the systems described herein may be part of an application
performance monitoring (‘ APM’) solution. APM software and tools enable the observation of
application behavior, observation of its infrastructure dependencies, observation of users and
business key performance indicators (‘KPIs’) throughout the application’s life cycle, and more.
The applications being observed may be developed internally, as packaged applications, as
software as a service (‘SaaS’), or embodied in some other ways. In such embodiments, the
systems described herein may provide one or more of the following capabilities:

[00639] The ability to operate as an analytics platform that ingests, analyzes, and builds context
from traces, metrics, logs, and other sources.

[00640] Automated discovery and mapping of an application and its infrastructure components.
[00641] Observation of an application’s complete transactional behavior, including interactions
over a data communications network.

[00642] Monitoring of applications running on mobile (native and browser) and desktop devices.

81

WO 2023/034419 PCT/US2022/042213

[00643] Identification of probable root causes of an application’s performance problems and
their impact on business outcomes.

[00644] Integration capabilities with automation and service management tools.

[00645] Analysis of business KPIs and user journeys (for example, login to check-out).

[00646] Domain-agnostic analytics capabilities for integrating data from third-party sources.
[00647] Endpoint monitoring to understand the user experience and its impact on business
outcomes.

[00648] Support for virtual desktop infrastructure (‘VDI’) monitoring.

[00649] In embodiments where the systems described herein are used for APM, some
components of the system may be modified, other components may be added, some components
may be removed, and other components may remain the same. In such an example, similar
mechanisms as described elsewhere in this disclosure may be used to collect information from
the applications, network resources used by the application, and so on. The graph based
modelling techniques may also be leveraged to perform some of the functions mentioned above,
or other functions as needed.

[00650] In some embodiments, the systems described herein may be part of a solution for
developing and/or managing artificial intelligence (‘AI’) or machine learning (‘ML’)
applications. For example, the systems described herein may be part of an AutoML tool that
automate the tasks associated with developing and deploying ML models. In such an example,
the systems described herein may perform various functions as part of an AutoML tool such as,
for example, monitoring the performance of a series of processes, microservices, and so on that
are used to collectively form the AutoML tool. In other embodiments, the systems described
herein may perform other functions as part of an AutoML tool or may be used to monitor,
analyze, or otherwise observe an environment that the AutoML tool is deployed within.

[00651] In some embodiments, the systems described herein may be used to manage, analyze, or
otherwise observe deployments that include other forms of AI/ML tools. For example, the
systems described herein may manage, analyze, or otherwise observe deployments that include
Al services. Al services are, like other resources in an as-a-service model, ready-made models
and Al applications that are consumable as services and made available through APIs. In such an
example, rather than using their own data to build and train models for common activities,
organizations may access pre-trained models that accomplish specific tasks. Whether an
organization needs natural language processing (‘NLP’), automatic speech recognition (‘ASR’),
image recognition, or some other capability, Al services simply plug-and-play into an application
through an API. Likewise, the systems described herein may be used to manage, analyze, or

otherwise observe deployments that include other forms of AI/ML tools such as Amazon

82

WO 2023/034419 PCT/US2022/042213

Sagemaker (or other cloud machine-learning platform that enables developers to create, train, and
deploy ML models) and related services such as Data Wrangler (a service to accelerate data prep
for ML) and Pipelines (a CI/CD service for ML).

[00652] In some embodiments, the systems described herein may be used to manage, analyze, or
otherwise observe deployments that include various data services. For example, data services
may include secure data sharing services, data marketplace services, private data exchanges
services, and others. Secure data sharing services can allow access to live data from its original
location, where those who are granted access to the data simply reference the data in a controlled
and secure manner, without latency or contention from concurrent users. Because changes to data
are made to a single version, data remains up-to-date for all consumers, which ensures data
models are always using the latest version of such data. Data marketplace services operate as a
single location to access live, ready-to-query data (or data that is otherwise ready for some other
use). A data marketplace can even include a “feature stores,” which can allow data scientists to
repurpose existing work. For example, once a data scientist has converted raw data into a metric
(e.g., costs of goods sold), this universal metric can be found quickly and used by other data
scientists for quick analysis against that data.

[00653] In some embodiments, the systems described herein may be used to manage, analyze, or
otherwise observe deployments that include distributed training engines or similar mechanisms
such as, for example, such as tools built on Dask. Dask is an open source library for parallel
computing that is written in Python. Dask is designed to enable data scientists to improve model
accuracy faster, as Dask enables data scientists can do everything in Python end-to-end, which
means that they no longer need to convert their code to execute in environments like Apache
Spark. The result is reduced complexity and increased efficiency. The systems described herein
may also be used to manage, analyze, or otherwise observe deployments that include
technologies such as RAPIDS (an open source Python framework which is built on top of Dask).
RAPIDS optimizes compute time and speed by providing data pipelines and executing data
science code entirely on graphics processing units (GPUs) rather than CPUs. Multi-cluster,
shared data architecture, DataFrames, Java user-defined functions (UDF) are supported to enable
trained models to run within a data warehouse.

[00654] In some embodiments, the systems described herein may be leveraged for the specific
use case of detecting and/or remediating ransomware attacks and/or other malicious action taken
with respect to data, systems, and/or other resources associated with one or more entities.
Ransomware is a type of malware from cryptovirology that threatens to publish the victim’s data
or perpetually block access to such data unless a ransom is paid. In such embodiments,

ransomware attacks may be carried out in a manner such that patterns (e.g., specific process-to-

83

WO 2023/034419 PCT/US2022/042213

process communications, specific data access patterns, unusual amounts of encryption/re-
encryption activities) emerge, where the systems described herein may monitor for such patterns.
Alternatively, ransomware attacks may involve behavior that deviates from normal behavior of a
cloud deployment that is not experiencing a ransomware attack, such that the mere presence of
unusual activity may trigger the systems described herein to generate alerts or take some other
action, even without explicit knowledge that the unusual activity is associated with a ransomware
attack.

[00655] In some embodiments, particular policies may be put in place the systems described
herein may be configured to enforce such policies as part of an effort to thwart ransomware
attacks. For example, particular network sharing protocols (e.g., Common Internet File System
(‘CIFS’), Network File System (‘NFS’)) may be avoided when implementing storage for backup
data, policies that protect backup systems may be implemented and enforced to ensure that
usable backups are always available, multifactor authentication for particular accounts may be
utilized and accounts may be configured with the minimum privilege required to function,
isolated recovery environments may be created and isolation may be monitored and enforced to
ensure the integrity of the recovery environment, and so on. As described in the present
disclosure, the systems described herein may be configured to explicitly enforce such policies or
may be configured to detect unusual activity that represents a violation of such policies, such that
the mere presence of unusual activity may trigger the systems described herein to generate alerts
or take some other action, even without explicit knowledge that the unusual activity is associated
with a violation of a particular policy.

[00656] Readers will appreciate that ransomware attacks are often deployed as part of a larger
attack that may involve, for example:

[00657] Penetration of the network through means such as, for example, stolen credentials and
remote access malware.

[00658] Stealing of credentials for critical system accounts, including subverting critical
administrative accounts that control systems such as backup, Active Directory (‘AD’), DNS,
storage admin consoles, and/or other key systems.

[00659] Attacks on a backup administration console to turn off or modify backup jobs, change
retention policies, or even provide a roadmap to where sensitive application data is stored.
[00660] Data theft attacks.

[00661] As a result of the many aspects that are part of a ransomware attack, embodiments of the
present disclosure may be configured as follows:

[00662] The systems may include one or more components that detect malicious activity based

on the behavior of a process.

84

WO 2023/034419 PCT/US2022/042213

[00663] The systems may include one or more components that store indicator of compromise
(‘IOC?) or indicator of attack (‘IOA’) data for retrospective analysis.

[00664] The systems may include one or more components that detect and block fileless malware
attacks.

[00665] The systems may include one or more components that remove malware automatically
when detected.

[00666] The systems may include a cloud-based, SaaS-style, multitenant infrastructure.

[00667] The systems may include one or more components that identify changes made by
malware and provide the recommended remediation steps or a rollback capability.

[00668] The systems may include one or more components that detect various application
vulnerabilities and memory exploit techniques.

[00669] The systems may include one or more components that continue to collect suspicious
event data even when a managed endpoint is outside of an organization’s network.

[00670] The systems may include one or more components that perform static, on-demand
malware detection scans of folders, drives, devices, or other entities.

[00671] The systems may include data loss prevention (DLP) functionality.

[00672] In some embodiments, the systems described herein may manage, analyze, or otherwise
observe deployments that include deception technologies. Deception technologies allow for the
use of decoys that may be generated based on scans of true network areas and data. Such decoys
may be deployed as mock networks running on the same infrastructure as the real networks, but
when an intruder attempts to enter the real network, they are directed to the false network and
security is immediately notified. Such technologies may be useful for detecting and stopping
various types of cyber threats such as, for example, Advanced Persistent Threats (‘APTs’),
malware, ransomware, credential dumping, lateral movement and malicious insiders. To continue
to outsmart increasingly sophisticated attackers, these solutions may continuously deploy,
support, refresh and respond to deception alerts.

[00673] In some embodiments, the systems described herein may manage, analyze, or otherwise
observe deployments that include various authentication technologies, such as multi-factor
authentication and role-based authentication. In fact, the authentication technologies may be
included in the set of resources that are managed, analyzed, or otherwise observed as interactions
with the authentication technologies may monitored. Likewise, log files or other information
retained by the authentication technologies may be gathered by one or more agents and used as
input to the systems described herein.

[00674] In some embodiments, the systems described herein may be leveraged for the specific

use case of detecting supply chain attacks. More specifically, the systems described herein may

85

WO 2023/034419 PCT/US2022/042213

be used to monitor a deployment that includes software components, virtualized hardware
components, and other components of an organization’s supply chain such that interactions with
an outside partner or provider with access to an organization’s systems and data can be
monitored. In such embodiments, supply chain attacks may be carried out in a manner such that
patterns (e.g., specific interactions between internal and external systems) emerge, where the
systems described herein may monitor for such patterns. Alternatively, supply chain attacks may
involve behavior that deviates from normal behavior of a cloud deployment that is not
experiencing a supply chain attack, such that the mere presence of unusual activity may trigger
the systems described herein to generate alerts or take some other action, even without explicit
knowledge that the unusual activity is associated with a supply chain attack.

[00675] In some embodiments, the systems described herein may be leveraged for other specific
use cases such as, for example, detecting the presence of (or preventing infiltration from)
cryptocurrency miners (e.g., bitcoin miners), token miners, hashing activity, non-fungible token
activity, other viruses, other malware, and so on. As described in the present disclosure, the
systems described herein may monitor for such threats using known patterns or by detecting
unusual activity, such that the mere presence of unusual activity may trigger the systems
described herein to generate alerts or take some other action, even without explicit knowledge
that the unusual activity is associated with a particular type of threat, intrusion, vulnerability, and
SO on.

[00676] The systems described herein may also be leveraged for endpoint protection, such the
systems described herein form all of or part of an endpoint protection platform. In such an
embodiment, agents, sensors, or similar mechanisms may be deployed on or near managed
endpoints such as computers, servers, virtualized hardware, internet of things (‘TotT’) devices,
mobile devices, phones, tablets, watches, other personal digital devices, storage devices, thumb
drives, secure data storage cards, or some other entity. In such an example, the endpoint
protection platform may provide functionality such as:

[00677] Prevention and protection against security threats including malware that uses file-based
and fileless exploits.

[00678] The ability to apply control (allow/block) to access of software, scripts, processes,
microservices, and so on.

[00679] The ability to detect and prevent threats using behavioral analysis of device activity,
application activity, user activity, and/or other data.

[00680] The ability for facilities to investigate incidents further and/or obtain guidance for

remediation when exploits evade protection controls

86

WO 2023/034419 PCT/US2022/042213

[00681] The ability to collect and report on inventory, configuration and policy management of
the endpoints.

[00682] The ability to manage and report on operating system security control status for the
monitored endpoints.

[00683] The ability to scan systems for vulnerabilities and report/manage the installation of
security patches.

[00684] The ability to report on internet, network and/or application activity to derive additional
indications of potentially malicious activity.

[00685] Example embodiments are described in which policy enforcement, threat detection, or
some other function is carried out by the systems described herein by detecting unusual activity,
such that the mere presence of unusual activity may trigger the systems described herein to
generate alerts or take some other action, even without explicit knowledge that the unusual
activity is associated with a particular type of threat, intrusion, vulnerability, and so on. Although
these examples are largely described in terms of identifying unusual activity, in these examples
the systems described herein may be configured to learn what constitutes ‘normal activity’ —
where ‘normal activity’ is activity observed, modeled, or otherwise identified in the absence of a
particular type of threat, intrusion, vulnerability, and so on. As such, detecting ‘unusual activity’
may alternatively be viewed as detecting a deviation from ‘normal activity’ such that ‘unusual
activity’ does not need to be identified and sought out. Instead, deviations from ‘normal activity’
may be assumed to be ‘unusual activity’.

[00686] Readers will appreciate that while specific examples of the functionality that the systems
described herein can provide are included in the present disclosure, such examples are not to be
interpreted as limitations as to the functionality that the systems described herein can provide.
Other functionality may be provided by the systems described herein, all of which are within the
scope of the present disclosure. For the purposes of illustration and not as a limitation, additional
examples can include governance, risk, and compliance (‘GRC’), threat detection and incident
response, identity and access management, network and infrastructure security, data protection
and privacy, identity and access management (‘'TAM”), and many others.

[00687] In order to provide the functionality described above, the systems described herein or the
deployments that are monitored by such systems may implement a variety of techniques. For
example, the systems described herein or the deployments that are monitored by such systems
may tag data and logs to provide meaning or context, persistent monitoring techniques may be
used to monitor a deployment at all times and in real time, custom alerts may be generated based

on rules, tags, and/or known baselines from one or more polygraphs, and so on.

87

WO 2023/034419 PCT/US2022/042213

[00688] Although examples are described above where data may be collected from one or more
agents, in some embodiments other methods and mechanisms for obtaining data may be utilized.
For example, some embodiments may utilize agentless deployments where no agent (or similar
mechanism) is deployed on one or more customer devices, deployed within a customer’s cloud
deployment, or deployed at another location that is external to the data platform. In such
embodiments, the data platform may acquire data through one or more APIs such as the APIs
that are available through various cloud services. For example, one or more APIs that enable a
user to access data captured by Amazon CloudTrail may be utilized by the data platform to
obtain data from a customer’s cloud deployment without the use of an agent that is deployed on
the customer’s resources. In some embodiments, agents may be deployed as part of a data
acquisition service or tool that does not utilize a customer’s resources or environment. In some
embodiments, agents (deployed on a customer’s resources or elsewhere) and mechanisms in the
data platform that can be used to obtain data from through one or more APIs such as the APIs
that are available through various cloud services may be utilized. In some embodiments, one or
more cloud services themselves may be configured to push data to some entity (deployed
anywhere), which may or may not be an agent. In some embodiments, other data acquisition
techniques may be utilized, including combinations and variations of the techniques described
above, each of which is within the scope of the present disclosure.

[00689] Readers will appreciate that while specific examples of the cloud deployments that may
be monitored, analyzed, or otherwise observed by the systems described herein have been
provided, such examples are not to be interpreted as limitations as to the types of deployments
that may be monitored, analyzed, or otherwise observed by the systems described herein. Other
deployments may be monitored, analyzed, or otherwise observed by the systems described
herein, all of which are within the scope of the present disclosure. For the purposes of illustration
and not as a limitation, additional examples can include multi-cloud deployments, on-premises
environments, hybrid cloud environments, sovereign cloud environments, heterogeneous
environments, DevOps environments, DevSecOps environments, GitOps environments, quantum
computing environments, data fabrics, composable applications, composable networks,
decentralized applications, and many others.

[00690] Readers will appreciate that while specific examples of the types of data that may be
collected, transformed, stored, and/or analyzed by the systems described herein have been
provided, such examples are not to be interpreted as limitations as to the types of data that may
be collected, transformed, stored, and/or analyzed by the systems described herein. Other types
of data can include, for example, data collected from different tools (e.g., DevOps tools,

DevSecOps, GitOps tools), different forms of network data (e.g., routing data, network

88

WO 2023/034419 PCT/US2022/042213

translation data, message payload data, Wi-Fi data, Bluetooth data, personal area networking
data, payment device data, near field communication data, metadata describing interactions
carried out over a network, and many others), data describing processes executing in a container,
lambda, EC2 instance, virtual machine, or other execution environment), information describing
the execution environment itself, and many other types of data.

[00691] For further explanation, Fig. SA sets forth a system for providing many of the features
described herein for user devices as a distributed edge service in accordance with some
embodiments of the present disclosure. The system depicted in Fig. 5A includes a distributed
edge platform 510. The distributed edge platform 510 may be similar to the systems described
above where the distributed edge platform 510 can be used to perform tasks such as, for example,
anomaly detection, threat detection, vulnerability detection, compliance monitoring, and many
others. The distributed edge platform 510 may be deployed in a distributed fashion, such that
instances of the distributed edge platform 510 are deployed on geographically distributed
execution environments, as will be described in greater detail below.

[00692] The distributed edge platform 510 depicted in Fig. SA may be utilized to provide for
continuous risk behavior based security to user devices. Such security is ‘continuous’ in the sense
that data regarding the activity of a user device is continuously gathered and evaluated in real-
time (or near real-time) rather than performing batch-based evaluation. Such security is ‘behavior
based’ in the sense that various behaviors of the user device are used as the primary inputs into
security evaluations. In many cases, such behaviors may not be concerning on their own, but
instead may represent a deviation from typical device activity that warrants additional
investigation. For example, if the user device is connecting to a cloud deployment, creating EC2
instances, and executing software on those EC2 instances, those steps alone may not be
concerning. If this happens at hours when the user is known to be asleep and the user has never
logged into the cloud deployment nor deployed software on EC2 instances in the cloud, however,
this behavior may be deemed to be suspicious.

[00693] The example depicted in Fig. SA includes a private environment 502 that is supporting a
plurality of resources 504a-n. The private environment 502 may be embodied as a customer’s
datacenter, as a virtual private cloud for a particular customer, as co-located resources, or in some
other way. The private environment 502 may include a collection of hardware resources,
software resources, networking resources, and other resources so that the private environment
502 can be used to provide an organization or some other entity with an environment to execute
their secure applications, store their secure data, and so on. In this example, the private
environment 502 is ‘private’ in the sense that it is not available for public consumption. The

private environment 502 depicted in Fig. SA is supporting a plurality of resources 504a-n that

89

WO 2023/034419 PCT/US2022/042213

may include, for example, software applications, databases, file systems, various services (e.g.,
whether local SaaS offerings), development tools (e.g., automation servers, code repositories,
etc...), and so on.

[00694] The private environment 502 also includes a connector 506 that can be used to connect
the private environment to the distributed edge platform 510 via a zero trust 508 authentication
service. The connecter 506 may be embodied, for example, as one or more modules of computer
program instructions executing on computer hardware, virtualized hardware, or in some other
execution environment (including on resources in a dedicated networking components such as a
router). The connector may be configured to act as a communications interface between the
private environment 502 and the distributed edge platform 510. In such an example, access
between the private environment 502 and the distributed edge platform 510 may involve the zero
trust 508 authentication service, as any participants in data communications between the private
environment 502, the distributed edge platform 510, and the user devices 512, 514, 522 that are
monitored by the distributed edge platform 510 must be authenticated by the zero trust 508
authentication service. The zero trust 508 authentication service may be embodied, for example,
as a third party authentication service such as Okta, or in some other way. In fact, readers will
appreciate that the distributed edge platform 510 may be integrated with (and may leverage) a
variety of third party tools such as identity and access management tools, Mobile device
management (‘MDM”) tools, and so on.

[00695] In the example depicted in Fig. SA, a user device 512 can access the resources 504a-n in
the private environment 502 via the zero trust 508 authentication service. In such an example,
because all access occurs through the zero trust 508 authentication service, the user device 512
need not connect to a VPN, go through a firewall, or use a similar mechanism in order to securely
access the resources 504a-n in the private environment 502. In fact, the distributed edge platform
510 may implement policies that identify which users may access which resources 504a-n, what
privileges each user has, and other policies so that the user device 512 is only routed to (and
given access to) a particular resource 504a-n in the private environment 502 if the policies allow
for such access. The distributed edge platform 510 can do all sorts of behavior analysis (i.e.,
analysis of device activity and user activity as described below) to add in anomaly detection
capabilities, threat assessment, risk assessment, and other security related capabilities as
described elsewhere in the present disclosure.

[00696] The example depicted in Fig. SA also includes a SaaS environment 518 that is
supporting a plurality of resources 520a-n. The SaaS environment 518 may be embodied, for
example, as a public cloud that is accessible using a particular account, as an environment

provided by the vendor of some SaaS offering, or in some other way. The SaaS environment 518

90

WO 2023/034419 PCT/US2022/042213

may include a collection of hardware resources, software resources, networking resources, and
other resources so that the SaaS environment 518 can be used to provide a vendor of software
that is consumed as-a-service to offer their SaaS products. The SaaS offerings can include any
software offered as-a-service including, for example, Salesforce, Office365, and many others. In
this example, the resources 520a-n that may include software applications, databases, file
systems, or anything else offered as-a-service.

[00697] In the example depicted in Fig. SA, a user device 514 can access the resources 520a-n in
the SaaS environment 518 via a SaaS security 516 module. The SaaS security 516 module may
be embodied, for example, as a login service or similar service that is implemented by a cloud
computing environment or service vendor to control access to one or more SaaS offerings. In
such a way, access to the SaaS environment 518 may only occur in accordance with the
requirements put in place by the cloud computing environment, the service vendor, or similar
entity that controls access to one or more SaaS offerings.

[00698] The example depicted in Fig. SA also includes a public internet 528 that is supporting a
plurality of resources 526a-n. The public internet 528 may include a collection of hardware
resources, software resources, networking resources, and other resources that can be used to offer
resources 526a-n such as websites, social media platforms, and anything else publicly accessible
via a web browser, mobile application, or other appropriate interface.

[00699] In the example depicted in Fig. SA, a user device 522 can access the resources 526a-n in
the public internet 528 via a network security 524 module. The network security 524 module may
be embodied, for example, as one or more modules of computer program instructions that are
configured to perform tasks such as SSL inspection, DNS inspection, and other tasks described in
the present disclosure. In such an example, the network security module may be configured to
protect the user device 522 from malware intrusions, computer viruses, or other threats that can
originate from the public internet 528.

[00700] The distributed edge platform 510 may implement policies that identify which users may
access which resources 520a-n, what privileges each user has, and other policies so that the user
device 514 is only able to access various resources if the policies allow for such access. In fact,
the distributed edge platform 510 can do all sorts of behavior analysis (i.e., analysis of device
activity and user activity as described below) to add in anomaly detection capabilities, threat
assessment, risk assessment, and other security related capabilities as described elsewhere in the
present disclosure.

[00701] The distributed edge platform 510 depicted in Fig. SA includes a real-time visibility and
policy enforcement 530 module. The real-time visibility and policy enforcement 530 module

may be embodied, for example, as one or more modules of computer program instructions

91

WO 2023/034419 PCT/US2022/042213

executing on computer hardware, virtualized hardware, or in some other execution environment.
The real-time visibility and policy enforcement 530 module may be configured to carry out many
of the steps described above such as, for example, monitoring user activity (e.g., via data
communications involving a user device or in some other way) to enforce various policies
describing how the user devices may be utilized, what resources the user devices may access,
what privileges the user device has, and so on. The real-time visibility and policy enforcement
530 module may also enable an administrator to have visibility into the activities associated with
the monitored user devices. The real-time visibility and policy enforcement 530 module may be
used to populate a monitoring interface used by the administrator, the real-time visibility and
policy enforcement 530 module may enable the administrator to query the distributed edge
platform 510 for information related to user activity or device activity, and so on.

[00702] The distributed edge platform 510 depicted in Fig. SA also includes a user behavior
anomaly detection 532 module. The user behavior anomaly detection 532 module may be
embodied, for example, as one or more modules of computer program instructions executing on
computer hardware, virtualized hardware, or in some other execution environment. The user
behavior anomaly detection 532 may be configured to analyze user behavior, user device
activity, or other information to detect anomalous behavior as described in greater detail
elsewhere in the present disclosure.

[00703] The distributed edge platform 510 depicted in Fig. SA also includes an events,
workflows, and auto management 534 module. The events, workflows, and auto management
534 module may be embodied, for example, as one or more modules of computer program
instructions executing on computer hardware, virtualized hardware, or in some other execution
environment. The events, workflows, and auto management 534 module may be configured to
generate alerts, initiate a remediation workflow (or some other workflow), or perform other
automatic remediation tasks as described in greater detail elsewhere in the present disclosure.
[00704] For further explanation, Fig. 5B sets forth a system for providing many of the features
described herein for user devices as a distributed edge service in accordance with some
embodiments of the present disclosure. The example depicted in Fig. 5B illustrates the
distributed nature of the distributed edge service. The example depicted in Fig. 5B illustrates
instances of the distributed edge platform 510a, 510b, 510c, 510d that are executing at distinct
population centers 540a, 540b, 540c¢, 540d. Each of the population centers 540a, 540b, 540c,
540d may be embodied, for example, as a geographically distributed execution environment such
as a distinct availability zone that is provided by a cloud services provider such as AWS, GCP,
Azure, or others. In fact, the geographically distributed execution environments (represented here

as population centers 540a, 540b, 540c, 540d) may even be provided by multiple cloud services

92

WO 2023/034419 PCT/US2022/042213

providers (e.g., population center 540a is supported by AWS and population center 540b is
supported by GCP).

[00705] Readers will appreciate that each instance of the distributed edge platform 510a, 510b,
510c, 510d may, in some embodiments, be deployed on a set of appliances that are deployed in
various locations. Each appliance may include, for example, one or more servers or other
computing devices, one or more networking devices, one or more storage devices, and so on. In
such an example, each appliance may be configured to execute a particular instance of the
distributed edge platform 510a, 510b, 510¢, 510d.

[00706] In the example depicted in Fig. 5B, the instance of the distributed edge platform 510a,
510b, 510c¢, 510d that is accessed by a particular user device 512, 514, 522, 542 may be
dependent upon the relative proximity between each population center 540a, 540b, 540c, 540d
and each user device 512, 514, 522, 542. For example, each user device 512, 514, 522, 542 may
connect to the instance of the distributed edge platform 510a, 510b, 510¢, 510d that is supported
by the population center 540a, 540b, 540c, 540d that is most physically proximate to the user
device 512, 514, 522, 542. The various instances of the distributed edge platform 510a, 510b,
510c¢, 510d may be updated in a coordinated fashion and may share access to the same
information such that each instance operates in the same manner as any other instance, even if
two instances are deployed in different ways (e.g., on different underlying resources).

[00707] For further explanation, Fig. 6 sets forth a flow chart illustrating an example method of
detecting deviations from typical user behavior in accordance with some embodiments of the
present disclosure. As will be described in greater detail below, detecting deviations from typical
user behavior can be carried out with respect to end user devices. For example, detecting
deviations from typical user behavior can include detecting typical user behavior as reflected by
the manner in which a particular device (e.g., a laptop, a smartphone) is typically used and
identifying situations in which the particular device is being used in a manner that deviates from
the typical usage pattern. Although not expressly illustrated in Fig. 6, the methods described in
Fig. 6 and elsewhere in the present disclosure may be carried out by one or more modules of
computer program instructions executing on computer hardware, virtualized computer hardware,
containers, or in some other execution environment.

[00708] The example method depicted in Fig. 6 includes identifying 602 a location of a device
that is associated with a user. The device that is associated with a user may be embodied, for
example, as a smartphone, as a tablet computer, as a laptop computer, or as some other device.
The device may be associated with the user because the user is logged into the device, the device
has been designated for use by the user (e.g., the device is a company issued laptop provided by

the user’s employer), or the device is otherwise associated with the user. The location of the

93

WO 2023/034419 PCT/US2022/042213

device may be embodied, for example, as a city and state (e.g., Los Angeles, CA), as a label of a
known location (e.g., “home’), or designated in some other way.

[00709] Identifying 602 a location of a device that is associated with a user may be carried out in
a variety of ways. In fact, identifying 602 a location of the device may be carried out using any of
multiple mechanisms for determining a device’s location and (in some embodiments) verifying
that each mechanism yields the same outcome, or at least the same outcome within a
predetermined threshold. For example, identifying 602 a location of the device may be carried
out by identifying wireless networks or wireless access points that the device can connect to and
determining the location of the available wireless networks or wireless access points. Once the
locations of wireless networks or wireless access points that the device can connect to have been
identified, other mechanisms may be used to verify the location of the device. For example, the
source IP address of a data communications packet generated by the device may be used to
determine the location of the device. In such an example, if the locations of wireless networks or
wireless access points that the device can connect to and the location of the source IP address of a
data communications packet generated by the device match each other, the matching locations
may be identified 602 as being the location of a device. The mechanisms for determining a
device’s location will be explained in greater detail below.

[00710] The example method depicted in Fig. 6 also includes determining 604 device activity
associated with the user. The device activity associated with the user can include information
describing the usage of the device. The device activity can include, for example, information
describing applications that are being executed or utilized on the device, information describing
how those applications are being utilized, information describing files being accessed via the
device, information describing data sources being accessed via the device, information describing
data communications coming into and flowing out of the device, and many others. In general, the
device activity can be used to ascertain how a device is being used, when the device is being
used, where the device is being used, or any other quantifiable aspect of device usage.

[00711] Determining 604 device activity associated with the user may be carried out, for
example, by one or more data collection agents that are executing on the device, by one or more
data collection agents that executing at some other location off of the device, or in some other
way. That is, while some information describing device activity may come from the device (OS
version, what apps are running locally, etc.), the information describing device activity may also
come from outside the device. For example, other cloud services that report what users are doing
may be leveraged (e.g., activity logs from Office 365 may be used, activity logs from Dropbox
may be used). In such an example, even if no agents or other data collection programs were

deployed on the device itself, information describing device activity may still be obtained. As

%4

WO 2023/034419 PCT/US2022/042213

such, determining 604 device activity associated with the user may be carried out by local agents
executing on the monitored device itself, by agents executing elsewhere, or by combinations and
variations thereof. The data collection agents (whether deployed on the user’s device or
elsewhere) may include, for example, one or more programs that can carry out a stream-based
capture of network traffic in and out of the device (i.e., stream-oriented traffic processing), one or
more programs that capture the usage of a device interface (e.g., a keystroke recorder, a
recording program for capturing data acquired via a microphone), or other programs. In such a
way, the agents may capture various aspects describing how the device is being used, when it is
being used, by whom it is being used, where the device is located when being used, and so on.
[00712] The example method depicted in Fig. 6 also includes determining 606, based on a profile
associated with the user, that the device activity associated with the user deviates from normal
activity for the user. The profile associated with the user may include information describing
normal activity for the user. The normal activity for the user may be determined, for example,
based on historical usage of the device (or some other device) associated with the user. That is,
normal activity may be learned through an analysis of how the device has historically been used
rather than being specified exclusively as a set of rules. The normal activity may include, for
example, an identification of applications on the device that are accessed by the user, the times
that those applications are accessed, the locations from which those applications are accessed, the
order in which the applications on the device are typically accessed by the user, and so on. The
particular mechanics of creating a user profile and learning what is normal activity for the device
will be described in greater detail below.

[00713] In the example method depicted in Fig. 6, determining 606, based on a profile associated
with the user, that the device activity associated with the user deviates from normal activity for
the user may be carried out by comparing the device activity with the profile associated with the
user. A comparison between the device activity and the profile associated with the user may
reveal that device activity does not align with the profile associated with the user, which may be
treated as a detection of abnormal activity.

[00714] Readers will appreciate that comparisons the device activity and the profile associated
with the user may utilize ranges, thresholds, or similar concepts to allow for minor deviations
between the device activity and the profile associated with the user. For example, if the profile
associated with the user indicates that the device is typically located at the user’s office between
the hours of 9 AM and 5 PM on weekdays, but the device activity reveals that the user is still at
the office at 6 PM on a particular Tuesday evening, this minor deviation may be tolerated and
may not rise to the level of triggering an alarm. In contrast, if the device activity reveals that the

user is at the office at 2:30 AM on a Sunday morning, this may be viewed as being a larger

95

WO 2023/034419 PCT/US2022/042213

deviation. In this example, a threshold may be utilized such that the user deviating from their
normal activity by 90 minutes (as a very simplified example used for ease of explanation) does
not rise to the level of abnormal activity that would trigger an alarm or cause some other
remediation workflow to be initiated. In other embodiments, other mechanisms may be used to
allow for minor deviations between the device activity and the profile associated with the user,
where such minor deviations do not result in determining 606 that the device activity associated
with the user deviates from normal activity for the user.

[00715] For further explanation, Fig. 7 sets forth a flow chart illustrating an additional example
method of detecting deviations from typical user behavior in accordance with some embodiments
of the present disclosure. The example method depicted in Fig. 7 is similar to the example
method depicted in Fig. 6, as the example method depicted in Fig. 7 also includes identifying 602
a location of a device that is associated with a user, determining 604 device activity associated
with the user, and determining 606 that the device activity associated with the user deviates from
normal activity for the user.

[00716] The example method depicted in Fig. 7 also includes generating 702 the profile
associated with the user. Generating 702 the profile associated with the user may be carried out,
for example, by utilizing data gathered by the agents described above as input to one or more
machine learning algorithms. In such a way, patterns may be identified and correlations may be
detected that represent the normal activity of the user. Such machine learning algorithms may
detect, for example, that a particular application is normally only used at certain times and from
certain locations. For example, the data gathered by the agents described above may reveal that a
VPN client on the device is typically only used during traditional business hours (e.g., 8 AM — 6
PM) on weekdays and when the device is located at a location other than the user’s office (as the
private network may be directly accessible when the device is being used at the user’s office).
Readers will appreciate that in other embodiments, the profile associated with the user may be
generated 702 in some other way. In such an example, the profile associated with the user may be
expressed as a trained machine learning model that may be deployed to differentiate between
normal activity and abnormal activity associated with a user (or a user device).

[00717] In the example method depicted in Fig. 7, determining 604 device activity associated
with the user can include identifying 704 one or more applications being accessed on the device.
Identifying 704 one or more applications being accessed on the device may be carried out, for
example, by an agent that is executing on the device. For example, the agent may identify all
running processes on the device and map (by the agent or by some other entity) the running
processes to particular applications, the agent may identify all binaries that are loaded on the

device and map (by the agent or by some other entity) the binaries to particular applications, the

96

WO 2023/034419 PCT/US2022/042213

agent may query a device management application, or the agent may identify 704 one or more
applications accessed by the device in some other way. In other embodiments, especially those in
which the applications are SaaS offerings that are executed externally to the device (e.g., in a
cloud environment), identifying 704 one or more applications being accessed on the device may
be carried out in other ways such as, for example, by examining activity logs generated by the
creator of the SaaS offering, by monitoring the device for calls to the application, through the use
of an agent that monitors traffic in and out of the SaaS offering, or in some other way.

[00718] In the example method depicted in Fig. 7, determining 604 device activity associated
with the user can also include identifying 706 application behavior for the one or more
applications. Identifying 706 application behavior for the one or more applications can include,
for example, identifying the data communications endpoints that the applications have
communicated with, identifying data that has been accessed by the applications, identifying users
or accounts that have utilized the applications, identifying the time that the application was used,
and so on. Such application behavior can include any quantifiable aspect describing how the
application was used, when the application was used, by whom the application was used, and so
on.

[00719] The example method depicted in Fig. 7 also includes, responsive to determining that the
device activity associated with the user deviates from normal activity for the user, generating 708
an alert. The alert that is generated 708 may include contextual information including the specific
actions (e.g., accessing a VPN client on a during non-business hours on a weekend from a
previously unknown location) that caused the alert to be generated. In such an example, the alert
may be issued to the user of the device, issued to a system administrator or similar entity that
oversees a company’s deployment, or issued elsewhere. In fact, the alert may be presented as part
of a user-specific polygraph as will be described in greater detail herein.

[00720] For further explanation, Fig. 8 sets forth a flow chart illustrating an additional example
method of detecting deviations from typical user behavior in accordance with some embodiments
of the present disclosure. The example method depicted in Fig. 8 is similar to the examples
method depicted in Figures 6 and 7, as the example method depicted in Fig. 8 also includes
identifying 602 a location of a device that is associated with a user, determining 604 device
activity associated with the user, and determining 606 that the device activity associated with the
user deviates from normal activity for the user.

[00721] The example method depicted in Fig. 8 also includes generating 802 a user-specific
polygraph. The user-specific polygraph may be generated 802 in a manner that is similar to the
manner in which polygraphs are created as described above. Although the user-specific

polygraphs may be similar to the polygraphs described above, the user-specific polygraph may be

97

WO 2023/034419 PCT/US2022/042213

distinct by virtue of each entity in the user-specific polygraph being specific to a particular user
or user device. As one example of a user specific polygraph, Figures 15A and 15B include
examples of a user-specific polygraph. As is depicted in greater detail below, the user-specific
polygraph can include the geographic location of the device and the device activity associated
with the user, among other possible entities. In some embodiments, the user-specific polygraph
can also include one or more alerts, as described in greater detail below.

[00722] In the examples described herein, the device activity associated with the user may be
continuously monitored for deviation from normal activity. The device activity may be
continuously monitored for deviation from normal activity, for example, by determining whether
device activity associated with the user deviates from normal activity for the user (as specified in
a user profile) every time that a change to the device activity associated with the user occurs, as
part of a process that is always executing on some computing resources, or in some other way. In
such a way, the systems described herein may be provide real-time or near real-time detection of
a deviation from normal activity — rather than batch processing or other form of delayed
processing of device activity to determine whether such activity deviates from normal activity.
[00723] In the examples described herein, the device activity associated with the user and the
profile associated with the user include temporal information. The temporal information may be
embodied, for example, as specific dates or times when some activity occurred or normally
occurs, as relative times when some activity occurred or normally occurs, ranges of times when
some activity occurred or normally occurs, as durations of time when some activity occurred or
normally occurs, and so on. As such, the time at which some activity occurred may factor into an
evaluation as to whether the activity represents normal activity.

[00724] For further explanation, Fig. 9 sets forth a flow chart illustrating an example method of
establishing a location profile for a user device in accordance with some embodiments of the
present disclosure. The example method depicted in Fig. 9 includes gathering 902 information
associated with the location of a user device. Gathering 902 information associated with the
location of a user device may be carried out not only by gathering geolocation information, but
also gathering information that may be useful in determining the nature of a particular location.
For example, information may be gathered 902 to determine whether the location of the user
device is a location where the user device is frequently utilized, information may be gathered 902
to determine whether the location of the user device is a location where utilizing the user device
to perform certain functions is allowed or prohibited, and so on. As such, the information
associated with the location of a user device may be gathered 902 not just for the purposes of
determining where the device would be located on a map, but to use the location of the device as

an input to determining whether a user or a user device is exhibiting anomalous behavior.

98

WO 2023/034419 PCT/US2022/042213

[00725] Readers will appreciate that many forms of information associated with the location of a
user device may gathered 902 through a variety of mechanisms. Gathering 902 information
associated with the location of a user device may be carried out, for example, using location-
related capabilities of the user device such as a global positioning system (‘GPS’) receiver, an
Assisted GPS (‘AGPS’) chip, and so on. In other embodiments, gathering 902 information
associated with the location of a user device may be carried out using data communications
related capabilities of the user device. For example, a Wi-Fi adapter in the user device may detect
nearby networks and the Service Set Identifier (‘SSID’) associated with a detected network may
be mapped to a geolocation through the use of tools such as Google Geolocation API. Likewise,
examining data communications traffic sent by the user device and extracting the client IP
address that is associated with the data communications traffic may be used in gathering 902
information associated with the location of the user device. In such an example, the client IP
address may be used to query one or more of a variety of services that convert [P addresses to
geolocation information (e.g., a city/state, latitude and longitude, and so on). In fact, other
embodiments could leverage image sensors or other capabilities of the user device to gather 902
information that may be informative for the purposes of identify a user device’s location.

[00726] Readers will appreciate that because the information associated with the location of a
user device may be gathered 902 for reasons that extend well beyond the context of a
geolocation, the information associated with the location of a user device may be information
that is more useful in describing the nature of a location rather than an absolute physical location.
For example, the particular set of device types that the user device can communicate with may be
indicative of a location. Consider an example in which the user device can detect the presence of
a thermostat, a smart refrigerator, multiple smart TVs, a router, and the entertainment system of
an automobile via its Wi-Fi adapter or Bluetooth adapter. In such an example, this combination
of reachable device types may be taken as an indication that the user device is at a private
residence. In an example where the user device can only detect the presence of other personal
communications devices and also detect the presence of a wireless network that includes a phrase

7

such as “free,” “public,” or “starbucks” in its network name, this combination of reachable
devices may be taken as an indication that the user device is at a public location (perhaps a coffee
shop). In these examples, rather than attempting to determine a geolocation, information may be
gathered 902 that can be used to determine a relative location, a type of location, characteristics
of a location, or some other information that may be associated with a particular location.

[00727] The example method depicted in Fig. 9 also includes determining 904, based on the
information associated with the location of a user device, whether the user device is being

accessed at a known location. A ‘known’ location, as the term is used here, can refer to a location

99

WO 2023/034419 PCT/US2022/042213

that 1s associated with an expected profile of device utilization based on previously observing
how the user device (or some other device such as a similar device, a device that is associated
with similar users, and so on) is utilized at the ‘known’ location. For example, a user device may
be expected to be used in one way when the user device is located at the user’s home, the user
device may be expected to be used in another way when the user device is located at the user’s
office, the user device may be expected to be used in yet another way when the user device is
located in the user’s automobile, and so on. As such, in some embodiments a location may only
be determined 904 to be a ‘known location’ if the location has an associated set of user behaviors
that would be expected to be observed when the user device is located at the ‘known location’.
[00728] Readers will appreciate that a location is not necessarily ‘known’ in the sense that the
device’s geolocation is known, although in some embodiments a known location may include a
specific geolocation (e.g., 123 Avenue A, San Francisco, CA). For example, while it may not be
possible to determine the mailing address or street address where the user device is located, the
detected presence of a particular set of other devices may be sufficient to determine that the user
device is at a “home’ location, even if the exact street address of the home cannot be determined.
Likewise, detecting that the user device is located at a particular set of GPS coordinates may be
insufficient for determining that the location of the user device is ‘known’ if the set of GPS
coordinates has no known relationship to a location where the user device has previously been
used or is otherwise associated with a set of behaviors that would be expected to be observed
when the user device is at the GPS coordinates. In fact, in some embodiments, the location of the
user device may only be determined to be a ‘known’ location if the user device has previously
been accessed at the location or at some other location where utilization of the user device would
be expected to be similar. For example, if the location of the user device is at a hotel, this
location may be determined to be a *known’ location by virtue of the fact that the user device has
been used in the past at other hotels (even if the user device has not been previously used at the
exact hotel that it is now located at).

[00729] The example method depicted in Fig. 9 also includes, responsive to affirmatively 906
determining that the user device is being accessed at a known location, determining 908 a
characterization of the known location. A ‘characterization’ of the known location may be
embodied as description of the location that can be associated with some set of behaviors that
would be expected from the user device or the user by virtue of the user device being located at a
location that is characterized in a certain way. Consider an example in which the characterization
is a ‘home’ location. In this example, a set of expected behaviors may be associated with the user
or the user device by virtue of the user device being at home. For example, it may be expected

that the user device accesses streaming media services (e.g., Netflix) while the user device is at

100

WO 2023/034419 PCT/US2022/042213

home, it may be expected that the user device accesses the public internet while the user device is
at home, and so on. Alternatively, consider an example in which the characterization is a ‘work’
location. In this example, a set of expected behaviors may be associated with the user or the user
device by virtue of the user device being at home. For example, it may be expected that the user
device accesses their employer’s internal bill payment systems, it may be expected that the user
device accesses their employer’s code repository and internal networks while at work, and so on.
[00730] In the example depicted in Figure 9, various ‘characterizations’ of locations may be
generated through the use of one or more machine learning models. Machine learning models
may be used, for example, to detect clusters (e.g., clusters of devices that can be reached via
relatively short distance communications adapters in the devices) that can be identified as being
at least a logical location. Such machine learning models may take data gathered by one or more
devices to identify clusters that correspond to some location. For example, if information is
gathered indicating that a collection of user devices are located in a relatively small area and that
a large percentage of those devices are connected to an internal corporate network for company
ABC, the machine learning models may learn that the locations each device (and possibly some
corresponding area surrounding each device) can be characterized as being an office for company
ABC. Readers will appreciate that other ‘characterizations’ may be generated using a variety of
information, machine learning techniques, other labelling techniques, or generated in some other
way (e.g., by asking the user of the device or some administrator of the device to characterize
their current location through some interface).

[00731] Determining 908 a characterization of the known location may be carried, for example,
through the use of a table, database, or some other data structure/repository that associates known
locations with characterizations of each known location. Such a repository can be constructed
over time by monitoring the behavior of the user device and other devices. As part of a process of
generating characterizations of various locations, the activity of the user device (and other
devices) may also be monitored to learn what behavior constitutes ‘normal’ behavior for the user
or user device in various locations, using techniques such as those described herein.

[00732] The example method depicted in Fig. 9 also includes determining 910, based on the
characterization of the known location, whether device utilization is anomalous. Determining 910
whether device utilization is anomalous may be carried out as described above, generally by
determining the extent to which device activity is consistent with normal activity that would be
expected to be observed when the user device is at a known location that is characterized in a
particular way. Readers will appreciate that a determination so to whether device utilization is
anomalous may only be based in part on the characterization of the location, as other information

may also be taken into consideration (e.g., information from other devices, specific details

101

WO 2023/034419 PCT/US2022/042213

around how the device is being used, policies that restrict how a device should be utilized at
certain locations, etc...).

[00733] The example method depicted in Fig. 9 also includes, responsive to determining that the
user device s not 912 being accessed at a known location, determining 914 a characterization of
the unknown location. Determining 914 a characterization of the unknown location may be
carried out, for example, by performing some workflow to attempt to determine whether the
unknown location is similar to a known characterization. For example, one characterization for
various locations may be an ‘in transit to work’ (or something similar) characterization that is
generally associated with locations between a user’s home location and a user’s work location, so
long as there is some indication that the user device is moving at an appropriate rate from the
user’s home location and the user’s work location. In such an example, if the workflow
determines that the user device was located at the user’s home 10 minutes ago, a route between
the user’s home and the user’s office takes 20 minutes to traverse, and the user device is currently
located near a midpoint of that route, the unknown location may be characterized as being ‘in
transit to work’ or something similar. Likewise, an unknown location may be characterized in
accordance with various environmental attributes detected by the user device. For example, if the
user device is at an unknown public location with no Wi-Fi networks that the user device is
configured to access but the user device can access a cellular network, the unknown location may
be consistent with a known characterization of a device being at a ‘public location without secure
Wi-Fi access,” such that the user device can be characterized as being at a “public location
without secure Wi-Fi access.’

[00734] In these examples, readers will appreciate that a library or catalog of known
characterizations may be created by observing many devices over time. In fact, each entry (i.e.,
each known characterization of a location) in the catalog may associated with location
information that tends to be associated with a particular characterization. For example, devices
may be monitored to determine that when a device is placed in a silent mode between the hours
of 8 AM — 1 PM on a Sunday, and a touch screen display for the device is not being interacted
with by the user, and a microphone in the device detects periods of singing, the device is at a
location that is characterized as a ‘religious services’ location. As such, information that was
gathered 902 and is associated with an unknown location may be compared to signatures for the
entries in the catalog of characterizations to determine whether the unknown location should be
characterized using one of the entries in the catalog.

[00735] Readers will appreciate that the characterization of an unknown location may be
associated with a set of expected device behaviors. For example, when a user device is

characterized as being ‘in transit to work’, it may be expected that utilization of the user device

102

WO 2023/034419 PCT/US2022/042213

may be extremely limited as the user may be operating a vehicle. Likewise, when a user device is
characterized as being at a ‘public location without secure Wi-Fi access’, it may be expected that
the user device will not be used to access sensitive financial data or initiate substantial monetary
transactions on behalf of the user’s employer.

[00736] The example method depicted in Fig. 9 also includes determining 916, based on the
characterization of the unknown location, whether device utilization is anomalous. Determining
916 whether device utilization is anomalous may be carried out described above, generally by
determining the extent to which device activity is consistent with normal activity that would be
expected to occur when the user device is at an unknown location that is characterized in a
particular way. Readers will appreciate that a determination so to whether device utilization is
anomalous may only be based in part on the characterization of the location, as other information
may also be taken into consideration (e.g., information from other devices, specific details
around how the device is being used, policies that restrict how a device should be utilized at
certain locations, etc...).

[00737] For further explanation, Fig. 10 sets forth a flow chart illustrating an additional example
method of establishing a location profile for a user device in accordance with some embodiments
of the present disclosure. The example method depicted in Fig. 10 is similar to the example
method depicted in Fig. 9, as the example depicted in Fig. 10 also includes gathering 902
information associated with the location of a user device, determining 904 whether the user
device is being accessed at a known location, determining 908 a characterization of a location,
and determining 910 whether device utilization is anomalous.

[00738] In the example method depicted in Fig. 10, determining 904 whether the user device is
being accessed at a known location can include determining 1002 whether the information
associated with the location of a user device matches, at least within a predetermined threshold,
location information associated with one or more location profiles. A location profile may be
embodied, for example, as a data structure that associates one or more known locations with
information associated with the known locations. The information that is associated with the
known locations can include, for example, one or more device behaviors that are typically
encountered when a device is at the known location, a geographic boundary that defines the
known location, one or more characterizations of the known location, temporal aspects of device
and user behavior that are typically observed at the known location, and so on. As such, the
location profile may be used to correlate such information with a known location, so that the
location profile can be used to determine whether a particular device is at the known location.
[00739] In the example method depicted in Fig. 10, the one or more location profiles may be

created based on activity associated with the user device. For example, a location profile that is

103

WO 2023/034419 PCT/US2022/042213

associated with the user device being at a hotel, on an airplane, at a coffee shop, at home, at
work, or at some other location may be based on monitored or observed device activity or user
activity associated with the user device itself. Alternatively, the one or more location profiles
may be created based on activity associated with other devices. Such other devices may be
embodied as, for example, similar devices for users that are part of the same organization (e.g.,
the same company, the same department within a company), devices for users that are
determined to perform similar roles (e.g., engineers, accountants, legal team members) within an
organization, and so on. In such a way, a particular user device may be monitored with the
benefit of knowledge gleaned from monitoring other devices, which may be particularly useful
when a particular user device is new and does not have a long history of monitored behavior.
[00740] In some embodiments, determining 910, 914 whether device utilization is anomalous
may be further based on a temporal profile of device activity. The temporal profile of device
activity may include, for example, information describing days and times that particular
applications are used on the user device, information describing days and times that the user
device is typically being accessed or not being accessed, information describing the relative
timing of different user or device activities (e.g., updated code is committed from the user’s
device to a code repository after text editing software or some other software used to write code
has been utilized), or any other information that associates user behavior or device behavior with
times at which such behavior is common, permitted, prohibited, and so on. The temporal profile
may be embodied as a database, table, or some other data structure. In such embodiments, the
relationship between times and device or user activities may be identified through the usage of
one or more machine learning models that take activities (and the times associated with the
activities) as inputs to the machine learning models.

[00741] For further explanation, Fig. 11 sets forth a flow chart illustrating an additional example
method of establishing a location profile for a user device in accordance with some embodiments
of the present disclosure. The example method depicted in Fig. 11 is similar to the example
methods depicted in Fig. 9 and Fig. 10, as the example depicted in Fig. 11 also includes gathering
902 information associated with the location of a user device, determining 904 whether the user
device is being accessed at a known location, determining 908 a characterization of a location,
and determining 910 whether device utilization is anomalous based on the characterization of the
known location. The example method depicted in Fig. 11 also includes creating 1102 a polygraph
associated with the user device. Creating 1102 a polygraph associated with the user device may
be carried out as described elsewhere in the present disclosure. Examples of such device-specific

polygraphs are included herein.

104

WO 2023/034419 PCT/US2022/042213

[00742] In the example depicted in Fig. 11, determining 904 whether the user device is being
accessed at a known location can include determining 1104, based on one or more devices that
are physically proximate to the user device, a location of the user device. Readers will appreciate
that the exact distance between the user device and the one or more other devices (e.g., one or
more routers that emit a Wi-Fi signal) may not be needed in order to determine 1104 a location of
the user device. The term ‘physically proximate’ that is used here can be a threshold value that
may even be a function of the particular wireless communications protocol that is being used. For
example, if the user device can detect the presence of another device using a Bluetooth adapter,
the user device may be assumed to be within 20 feet of the other device. If the user device can
detect the presence of another device using a Wi-Fi adapter, however, the user device may be
assumed to be within 100 feet of the other device. Readers will appreciate that these distance and
technologies are included only as examples.

[00743] Consider an example in which a user device is embodied as a laptop computer and the
laptop computer can detect the presence of five distinct networks using its Wi-Fi adapter. In such
an example, upon detecting the presence of each network, resources may be accessed that
associate the access ID of the network with a physical location associated with the network. For
example, Google maintains a database that can be accessed via various APIs to determine the
latitude and longitude associated with a wireless network’s access ID. In some examples, this
database may be queried with the access ID of the detected network to receive latitude and
longitude information associated with the network. Readers will appreciate that, over time, the
results obtained from querying such a database may be cached such and reused. For example, if
location information for each of the five distinct networks is obtained and the same user turns on
a smartphone that detects the same five networks, the cached results of the previously executed
queries may be utilized to determine the first geolocation of the smartphone. Cached results may
similarly be used for other users whose devices detect the same networks.

[00744] In the example depicted in Fig. 11, determining 904 whether the user device is being
accessed at a known location can include determining 1106, based on data communications
involving the user device, a location of the user device. Determining 1106 a location of the user
device based on data communications involving the user device may be carried out, for example,
by examining data communications traffic sent by the device and extracting the client IP address
that is associated with the data communications traffic. The client IP address may be used, for
example, to query one or more of a variety of services that convert IP addresses to location
information (e.g., a city/state, latitude and longitude, and so on). In an alternative embodiment,
the IP address of the user device may be identified in other ways other than inspecting network

traffic (e.g., through the use of CLI commands such as ipconfig).

105

WO 2023/034419 PCT/US2022/042213

[00745] Readers will appreciate that the location of a user device may be misidentified, for
example, if the user device is connected to a virtual private network or if the user device is being
operated in some other way where its IP address (or other data communications attribute) would
not be an accurate representation of the device’s location. As such, in some embodiments
multiple pieces of information that are associated with a location can be used rather than relying
exclusively on a single piece of information when determining a user device’s location.

[00746] In some embodiments, a location cache may be maintained. As described above, as part
of the process of determining a location of the user device, external resources may be accessed.
For example, resources such as those maintained by Google may be accessed that associate the
access ID of a network with a physical location associated with the network. Such resources,
however, may not be free to access, may be timely to access, the resource may return location
information in a less than ideal format (e.g., the resource return latitude and longitude
information when the desired format of the location is a zip code), or may be undesirable to
access for other reasons. As such, the results obtained from querying such resources may be
cached and reused in a local location cache.

[00747] Such alocation cache may be a data repository such as a database, a file, a table, or
embodied in some other way. In some embodiments, the location cache may be ‘local’ in the
sense that it is stored on the user device itself or stored in some location that does not suffer from
the same undesirable characteristics as the original resource. Continuing with the example where
a Google database may be accessed (for a monetary charge) that associate the access ID of a
network with a physical location associated with the network, after that initial access the location
information associated with the access ID of the network may be maintained in a database that
the user device can access free of charge. Readers will appreciate that in these examples, the
content contained in the local location cache may be stored in the format desired by the user
device (e.g., stored as city/state information rather than GPS coordinates).

[00748] Readers will appreciate that some embodiments may include a different combination of
the steps described above, including variations of such steps. For example, some embodiments of
establishing a location profile for a user device may include gathering information associated
with a location of a user device, determining a characterization of the location, and determining,
based on a characterization of the known location, whether device utilization is anomalous such
that the step of determining whether a location is known is optional.

[00749] For further explanation, Fig. 12 sets forth a flow chart illustrating an example method of
detecting deviation from normal behavior of a user device in accordance with some embodiments

of the present disclosure.

106

WO 2023/034419 PCT/US2022/042213

[00750] The example method depicted in Fig. 12 includes generating 1202, using information
describing historical activity associated with a user device, a trained model for detecting normal
activity for the user device. The trained model may be embodied, for example, as a model artifact
that is created by a training process in which machine learning algorithms are provided with
training data to learn from. The trained model, once deployed, can make predictions, identify
patterns, and perform other functions on new data (i.e., data that was not part of the training
data). Generating 1202 a trained model for detecting normal activity for the user device using
information describing historical activity associated with a user device may therefore be carried
out, for example, by applying one or more machine learning algorithms to a training dataset that
includes the information describing the historical activity associated with the user device. The
information describing the historical activity associated with the user device can include, for
example, information describing the locations at which the user device was utilized at some point
in the past, information describing the applications on the user device that were executed at some
point in the past, information describing the dates and times the applications on the user device
that were executed, and so on. In such an example, activity associated with the user device may
be deemed to be ‘historical’ if the activity occurred at some point before training occurred.
[00751] Consider an example in which training occurred at time to. In such an example, any
activity associated with the user device that occurred prior to time to would be ‘historical’ activity
associated with the user device. Further assume that additional training occurred at time t1, which
is later than time to. In this example, activity associated with the user device that occurred prior to
time t1 would be ‘historical’ activity associated with the user device, at least with respect to the
additional training (whereas activity that occurred between time to and time t1 would not be
‘historical’ activity with respect to the original training that occurred at time to).

[00752] The example method depicted in Fig. 12 also includes gathering 1204 information
describing current activity associated with the user device. The information current activity
associated with the user device may be embodied, for example, as information describing activity
associated with the user device that was gathered 1204 at a point in time such that it was not
available for inclusion in the set of training data that was used to generate (or further refine via
additional training) the trained model. The information describing current activity of the user
device may include the types of information described above (e.g., location of the user device,
applications executed by the user device, and much more). The information describing the
current activity of the user device may be gathered 1204, for example, by the agents described
above including agents that are executing on the user device itself.

[00753] The example method depicted in Fig. 12 also includes determining 1206, by using the

information describing current activity associated with the user device as input to the trained

107

WO 2023/034419 PCT/US2022/042213

model, whether the user device has deviated from normal activity. Determining 1206 whether the
user device has deviated from normal activity by using the information describing current
activity associated with the user device as input to the trained model may be carried out, for
example, by executing the trained model on the user device and coupling the trained model to a
data stream, data repository, or other source for the information describing current activity
associated with the user device. In such an example, such information may describe ‘current’
activity in the sense that the information represents activity that has occurred in some recent
period of time (e.g., the last minute, the last second), activity that is being monitored in real-time,
activity that has occurred since the model was most recently trained, or activity that is ‘current’
as determined by some other rule or heuristic.

[00754] For further explanation, Fig. 13 sets forth a flow chart illustrating an example method of
sets forth a flow chart illustrating an example method of detecting deviation from normal
behavior of a user device in accordance with some embodiments of the present disclosure. The
example method depicted in Fig. 13 is similar to the example method depicted in Fig. 12, as Fig.
13 also includes generating 1202 a trained model for detecting normal activity for the user
device, gathering 1204 information describing current activity associated with the user device,
and determining 1206 whether the user device has deviated from normal activity.

[00755] In the example method depicted in Fig. 13, generating 1202 a trained model for
detecting normal activity for the user device can include generating 1302 the trained model using
information describing physical locations at which the user device was utilized. As described
above, the physical locations at which the user device was utilized may be determined from a
combination of sources (e.g., the location of physically proximate devices, data communications
characteristics of the user device, user input, location-detecting devices that are embedded within
the user device). Such locations at which the user device was utilized may be included in a
training dataset that is used to generate the trained model. In fact, the trained model may
ultimately identify density clusters such that locations that are not identical matches are
determined to be the same location. For example, a cluster of locations at which the user device
was utilized may be identified as locations within the user’s office complex, such that the user
being on the northeast side of the office building and the user being on the southwest side of the
office building are not treated as distinct locations, but are instead treated as the user being within
the same density area that represents a single logical location. Likewise, a cluster of locations
that represent a commonly traversed path may be treated as a single entity. For example, the
trained model may learn a user’s daily route to work and may treat all of the individual locations
along that route as a single entity. In some embodiments, particular locations may be labelled

(e.g., home, office, etc...) as part of the training process or after the model has been trained.

108

WO 2023/034419 PCT/US2022/042213

[00756] In the example method depicted in Fig. 13, generating 1202 a trained model for
detecting normal activity for the user device can include generating 1304 the trained model using
information describing usage of one or more applications executed on the user device. The
information describing usage of one or more applications executed on the user device may
include, for example, information describing when the applications were used, information
describing what features of the applications were used, information describing what external data
sources were accessed when the applications were being used, information describing what data
communications occurred when the applications were being used, and so on. Such information
may be included in a training dataset that is used to generate the trained model. In fact, training
the model using the training datasets may reveal relationships between different applications,
patterns related to how the user utilizes the applications, actions that trigger the usage of the
application (e.g., the user typically accesses an email application after receiving a notification),
and many other patterns that represent normal activity. As such, the trained model may be
configured to identify deviations from normal activity.

[00757] In the example method depicted in Fig. 13, generating 1202 a trained model for
detecting normal activity for the user device can include generating 1306 the trained model using
information describing times at which activity previously occurred. The information describing
times at which activity previously occurred may be embodied, for example, as absolute values
(e.g., at 12:36 PM on a specific date), as relative values (e.g., after using application X, within 30
minutes after turning on the user device), as a value that is expressed in its relationship to some
other activity or detected condition (e.g., while the user was in transit to work, while the user was
at work), or in some other way. Such information may be included in a training dataset that is
used to generate the trained model. In fact, training the model using the training datasets may
reveal temporal relationships between different activities, patterns related to an ordering of a set
of activities or detected conditions, and many other patterns that represent normal activity. As
such, the trained model may be configured to identify deviations from normal activity.

[00758] Readers will appreciate that while the embodiments described above are largely
described as individual types of information (e.g., location information, temporal information,
device usage information) that may be used to generate 1202 a trained model for detecting
normal activity for the user device, readers will appreciate that the process of generating 1202 a
trained model for detecting normal activity for the user device may actually include one or more
machine learning algorithms ingesting combinations of these types of information. In fact, other
types of information may also be used in the process of generating 1202 a trained model for
detecting normal activity for the user device. Readers will appreciate that any information that

can be captured by an agent that is executing on the user device, including combinations thereof,

109

WO 2023/034419 PCT/US2022/042213

can be used when generating 1202 a trained model for detecting normal activity for the user
device.

[00759] In the example method depicted in Fig. 13, gathering 1204 information describing
current activity associated with the user device can include gathering 1308 information
describing a physical location at which the user device is currently being used. The information
describing a physical location at which the user device is currently being used may be gathered
1308, for example, by one or more agents that are executing on the user device, by one or more
agents that are executing on other devices (e.g., on a device that communicates with the user
device over a local network). Such information may include, for example, information that itself
does not represent a location of the user device but which may be used to determine the location
of the user device as described above. Such information may include information describing
other devices or network that are detected by the user device, information describing data
communications characteristics of the device, and so on. In other embodiments, the information
itself may represent a location of the user device. For example, such information may include
global positioning system (‘GPS’) coordinates obtained from a GPS receiver in the user device.
[00760] In the example method depicted in Fig. 13, gathering 1204 information describing
current activity associated with the user device can include gathering 1310 information
describing usage of applications that are being accessed by the user device. The information
describing usage of applications that are being accessed by the user device may be gathered
1310, for example, by one or more agents that are executing on the user device, by one or more
agents that are executing on a device/service that executes the application, or in other ways
described above. Such information may include, for example, information describing which
applications are being executed, information describing what data communications networks are
being accessed when executing an application, information describing particular features of the
application that are being utilized, and many others.

[00761] In the example method depicted in Fig. 13, gathering 1204 information describing
current activity associated with the user device can include gathering 1312 information
describing times at which current activity occurred on the device. The information describing
times at which current activity occurred on the device may be gathered 1312, for example, by one
or more agents that are executing on the user device, by one or more agents that are executing
elsewhere, by inspecting activity logs, or in some other way. Such information may include, for
example, information describing the exact time that some activity occurred, a range of times
during which the activity occurred, a relative time during which the activity occurred, and so on.
[00762] For further explanation, Fig. 14 sets forth a flow chart illustrating an example method of

sets forth a flow chart illustrating an example method of detecting deviation from normal

110

WO 2023/034419 PCT/US2022/042213

behavior of a user device in accordance with some embodiments of the present disclosure. The
example method depicted in Fig. 14 is similar to the example method depicted in Figs. 12 and 13,
as Fig. 14 also includes generating 1202 a trained model for detecting normal activity for the user
device, gathering 1204 information describing current activity associated with the user device,
and determining 1206 whether the user device has deviated from normal activity.

[00763] The example method depicted in Fig. 14 also includes periodically 1402 retraining the
trained model. Periodically 1402 retraining the trained model may be carried out, for example, by
including recently acquired data describing various aspects of the user device’s operation and
usage into a training data that is used to train the model. Such data may be ‘recently acquired’ in
the sense that it was not included in training data that was previously used to train the model. The
recently acquired data may be used either alone or in combination with training data that was
previously used to train the model as part of a process to retraining the trained model, at which
point the retrained model may be deployed on the user device. Readers will appreciate that
retraining the trained model periodically such as, for example, according to a predetermined
schedule, upon the satisfaction of some condition (e.g., a threshold amount of new data has been
acquired, sufficient resources to carry out the retraining have become available, alerts are being
generated at a threshold level indicating that perhaps the trained model does not sufficiently
understand normal behavior), upon request from a user or administrator, or in some other way.
Through such periodically 1402 retraining the trained model, the trained model may be an
evolving entity that can differentiate between normal and abnormal activity even as a user’s
interactions with the device or usage of the device change over time.

[00764] The example method depicted in Fig. 14 also includes generating 1404 an alert after
determining that the user device has deviated from normal activity. The alert may be generated
1404 and expressed through one or more of the polygraphs described above. In other
embodiments, alerts may be delivered in some other way (e.g., as a notification that is sent to
some predetermined recipient using some predetermined delivery mechanism).

[00765] The example method depicted in Fig. 14 also includes initiating 1406 a remediation
workflow after determining that the user device has deviated from normal activity. Initiating
1406 a remediation workflow may be carried out as part of an auto-remediation capability that
may be provided to the monitored devices. The remediation workflow may be configured to
perform a variety of tasks including, for example, restricting the access of the user device to
certain data, restricting the usage of certain applications on the user device, enabling some
feature on the user device (e.g., communications over an unsecured network is detected so a data
encryption feature for data communications is enabled), or performing some other function. In

some embodiments, the remediation workflow may be designed to either prevent the abnormal

111

WO 2023/034419 PCT/US2022/042213

activity from occurring or even enabling the abnormal activity upon the satisfaction of some
condition (e.g., an administrator approves the activity, the user authenticates their identity).
[00766] For further explanation, Fig. 15A sets forth an example of a user-specific polygraph
1500 in accordance with some embodiments of the present disclosure. The user-specific
polygraph 1500 depicted in Fig. 15A may be generated in a similar manner as the polygraphs
described above and may have similar features and capabilities. The user-specific polygraph
1500 depicted in Fig. 15A includes a representation of a user and information describing the user,
in this case designated as User ABC 1502. The representation of the user may include, for
example, a user’s name, a user’s handle, or any other information associated with the user. Such
information associated with the user may be visible in the original presentation of the polygraph
or may be accessible in other ways (e.g., hovering a mouse over the user icon).

[00767] The user-specific polygraph 1500 depicted in Fig. 15A also includes information
describing the location of the user (as represented by the location of the device that is being used
by the user), depicted here as San Francisco, CA 1504. The location may be obtained as
described in greater detail above. The representation of the location of the user may include, for
example, an identification of a city, geographical coordinates, an identification of a known
location (e.g., home, office), or any other location information associated with the user. Such
location information associated with the user may be visible in the original presentation of the
polygraph or may be accessible in other ways (e.g., hovering a mouse over the user icon).
[00768] The user-specific polygraph 1500 depicted in Fig. 15A also includes information
describing the user device, depicted here as user device MRD1 1506. The information describing
the user device may include, for example, a device name, a label for the device (e.g., phone,
laptop, work laptop) or any other information describing the device. Such device information
may be visible in the original presentation of the polygraph or may be accessible in other ways
(e.g., hovering a mouse over the user icon).

[00769] The user-specific polygraph 1500 depicted in Fig. 15A also includes information
describing applications accessed by the device, depicted here as internal sales application 1508,
web browser application 1510, ad messaging application 1512. Information describing the
applications that are accessed by the user device may be obtained as described in greater detail
above. The representation of the applications may include, for example, a name of the
application, a name of the binary, a custom label for the application, or any other information
associated with the application including information describing the usage of the application.
Such application-related information may be visible in the original presentation of the polygraph

or may be accessible in other ways (e.g., hovering a mouse over the user icon).

112

WO 2023/034419 PCT/US2022/042213

[00770] The user-specific polygraph 1500 depicted in Fig. 15A also includes information
describing specific details regarding how a particular application is being used. For example, the
internal sales application 1508 is depicted as connecting to an internal sales database 1514.
Information associated with the internal sales database (e.g., where the database is hosted, what
credentials were used to access the database, how many queries have been directed to the
database) may also be depicted or may be accessible in other ways (e.g., hovering a mouse over
the user icon). Likewise, the web browser application 1510 is depicted as being connected to
different endpoints, which may be carried out through the usage of different tabs or different
instances of the web browser application 1510. For example, the web browser application 1510 is
depicted as accessing a social media 1514 site, a productivity 1518 site (e.g., Salesforce, a web-
based repository), a bandwidth intensive 1520 site such as a streaming video site, and a site that
requires private information 1522 such as a banking site. In some embodiments, additional
information associated with each endpoint 1516, 1518, 1520, 1522 may be displayed or may be
accessible in other ways (e.g., hovering a mouse over the user icon). In fact, the links between
different icons in polygraph may also be enriched with data. For example, the links between the
web browser application 1510 and the endpoints 1516, 1518, 1520, 1522 may include
information describing how long the connection has been established, how much data has been
transferred since the connection was established, and so on. In other embodiments, other data
associated with the links between two icons may also be enriched with data that may be visible in
the default view of the polygraph or accessible in some other way as described above.

[00771] For further explanation, Fig. 15B sets forth an example of a user-specific polygraph
1500 in accordance with some embodiments of the present disclosure. The example depicted in
Fig. 15B illustrates an embodiment in which an alert 1526 is presented in the polygraph 1500. In
this particular example, the alert 1526 is generated for a messaging application 1512 that is
connected to an unknown network 1524. As illustrated in the alert 1526, a malicious IP address
has been identified in the unknown network 1524. Although not illustrated in this example, the
alert 1526 may be coupled with functionality that is accessible in the displayed 1526 alert, which
such functionality can include ignoring the alert, terminating the application, initiating a
remediation workflow, or taking some other action.

[00772] Advantages and features of the present disclosure can be further described by the
following statements:

[00773] 1. A method of detecting anomalous behavior of a device, the method comprising:
generating, using information describing historical activity associated with a user device, a
trained model for detecting normal activity for the user device; gathering information describing

current activity associated with the user device; and determining, by using the information

113

WO 2023/034419 PCT/US2022/042213

describing current activity associated with the user device as input to the trained model, whether
the user device has deviated from normal activity.

[00774] 2. The method of statement 1 wherein: generating a trained model for detecting normal
activity for the user device further comprises generating the trained model using information
describing locations at which the user device was utilized; and gathering information describing
current activity associated with the user device further comprises gathering information
describing a location at which the user device is currently being used.

[00775] 3. The method of statement 2 or 1 wherein: generating a trained model for detecting
normal activity for the user device further comprises generating the trained model using
information describing usage of one or more applications accessed by the device; and gathering
information describing current activity associated with the user device further comprises
gathering information describing usage of applications accessed by the device.

[00776] 4. The method of statement 3, 2, or 1 wherein: generating a trained model for detecting
normal activity for the user device further comprises generating the trained model using
information describing times at which activity previously occurred; and gathering information
describing current activity associated with the user device further comprises gathering
information describing times at which current activity occurred on the device.

[00777] 5. The method of statement 4, 3, 2, or 1 further comprising periodically retraining the
trained model.

[00778] 6. The method of statement 5, 4, 3, 2, or 1 further comprising generating an alert after
determining that the user device has deviated from normal activity.

[00779] 7. The method of statement 6, 5, 4, 3, 2, or 1 further comprising initiating a remediation
workflow after determining that the user device has deviated from normal activity.

[00780] 8. A system for detecting anomalous behavior of a device, the system including
computer program instructions that, when executed, cause the system to carry out the steps of
generating, using information describing historical activity associated with a user device, a
trained model for detecting normal activity for the user device; gathering information describing
current activity associated with the user device; and determining, by using the information
describing current activity associated with the user device as input to the trained model, whether
the user device has deviated from normal activity.

[00781] 9. The system of statement 8 wherein: generating a trained model for detecting normal
activity for the user device further comprises generating the trained model using information
describing physical locations at which the user device was utilized; and gathering information
describing current activity associated with the user device further comprises gathering

information describing a location at which the user device is currently being used.

114

WO 2023/034419 PCT/US2022/042213

[00782] 10. The system of statement 9 or 8 wherein: generating a trained model for detecting
normal activity for the user device further comprises generating the trained model using
information describing usage of one or more applications accessed by the device; and gathering
information describing current activity associated with the user device further comprises
gathering information describing usage of applications accessed by the device.

[00783] 11. The system of statement 10, 9, or 8 wherein: generating a trained model for detecting
normal activity for the user device further comprises generating the trained model using
information describing times at which activity previously occurred; and gathering information
describing current activity associated with the user device further comprises gathering
information describing times at which current activity occurred on the device.

[00784] 12. The system of statement 11, 10, 9, or 8 further comprising computer program
instructions that, when executed, cause the system to carry out the step of periodically retraining
the trained model.

[00785] 13. The system of statement 12, 11, 10, 9, or 8 further comprising computer program
instructions that, when executed, cause the system to carry out the step of generating an alert
after determining that the user device has deviated from normal activity.

[00786] 14. The system of statement 13, 12, 11, 10, 9, or 8 further comprising computer program
instructions that, when executed, cause the system to carry out the step of initiating a remediation
workflow after determining that the user device has deviated from normal activity.

[00787] Readers will appreciate that the polygraph 1500 depicted in Fig. 15A and 15B is just one
example of a user-specific polygraph that may be generated and utilized as described above. In
other embodiments, less or additional information may be included in the polygraph 1500,
different information may be included in the polygraph 1500, different actions may be initiated
via the polygraph 1500, or the polygraph 1500 may otherwise differ from the depicted examples.
[00788] One or more embodiments may be described herein with the aid of method steps
illustrating the performance of specified functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method steps have been arbitrarily defined
herein for convenience of description. Alternate boundaries and sequences can be defined so long
as the specified functions and relationships are appropriately performed. Any such alternate
boundaries or sequences are thus within the scope and spirit of the claims. Further, the
boundaries of these functional building blocks have been arbitrarily defined for convenience of
description. Alternate boundaries could be defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined

herein to illustrate certain significant functionality.

115

WO 2023/034419 PCT/US2022/042213

[00789] To the extent used, the flow diagram block boundaries and sequence could have been
defined otherwise and still perform the certain significant functionality. Such alternate definitions
of both functional building blocks and flow diagram blocks and sequences are thus within the
scope and spirit of the claims. One of average skill in the art will also recognize that the
functional building blocks, and other illustrative blocks, modules and components herein, can be
implemented as illustrated or by discrete components, application specific integrated circuits,
processors executing appropriate software and the like or any combination thereof.

[00790] While particular combinations of various functions and features of the one or more
embodiments are expressly described herein, other combinations of these features and functions
are likewise possible. The present disclosure is not limited by the particular examples disclosed

herein and expressly incorporates these other combinations.

116

WO 2023/034419 PCT/US2022/042213

CLAIMS

What is claimed is:

1.

A method of detecting anomalous behavior of a device, the method comprising:
generating, using information describing historical activity associated with a user device,
a trained model for detecting normal activity for the user device;

gathering information describing current activity associated with the user device; and
determining, by using the information describing current activity associated with the user
device as input to the trained model, whether the user device has deviated from normal
activity.

The method of claim 1 wherein:

generating a trained model for detecting normal activity for the user device further
comprises generating the trained model using information describing locations at which
the user device was utilized; and

gathering information describing current activity associated with the user device further
comprises gathering information describing a location at which the user device is
currently being used.

The method of claim 1 wherein:

generating a trained model for detecting normal activity for the user device further
comprises generating the trained model using information describing usage of one or
more applications accessed by the device; and

gathering information describing current activity associated with the user device further
comprises gathering information describing usage of applications accessed by the device.
The method of claim 1 wherein:

generating a trained model for detecting normal activity for the user device further
comprises generating the trained model using information describing times at which
activity previously occurred; and

gathering information describing current activity associated with the user device further
comprises gathering information describing times at which current activity occurred on
the device.

The method of claim 1 further comprising periodically retraining the trained model.
The method of claim 1 further comprising generating an alert after determining that the
user device has deviated from normal activity.

The method of claim 1 further comprising initiating a remediation workflow after

determining that the user device has deviated from normal activity.

117

WO 2023/034419 PCT/US2022/042213

10.

11.

12.

13.

A system for detecting anomalous behavior of a device, the system including computer
program instructions that, when executed, cause the system to carry out the steps of:
generating, using information describing historical activity associated with a user device,
a trained model for detecting normal activity for the user device;

gathering information describing current activity associated with the user device; and
determining, by using the information describing current activity associated with the user
device as input to the trained model, whether the user device has deviated from normal
activity.

The system of claim 8 wherein:

generating a trained model for detecting normal activity for the user device further
comprises generating the trained model using information describing physical locations at
which the user device was utilized; and

gathering information describing current activity associated with the user device further
comprises gathering information describing a location at which the user device is
currently being used.

The system of claim 8 wherein:

generating a trained model for detecting normal activity for the user device further
comprises generating the trained model using information describing usage of one or
more applications accessed by the device; and

gathering information describing current activity associated with the user device further
comprises gathering information describing usage of applications accessed by the device.
The system of claim 8 wherein:

generating a trained model for detecting normal activity for the user device further
comprises generating the trained model using information describing times at which
activity previously occurred; and

gathering information describing current activity associated with the user device further
comprises gathering information describing times at which current activity occurred on
the device.

The system of claim 8 further comprising computer program instructions that, when
executed, cause the system to carry out the step of periodically retraining the trained
model.

The system of claim 8 further comprising computer program instructions that, when
executed, cause the system to carry out the step of generating an alert after determining

that the user device has deviated from normal activity.

118

WO 2023/034419 PCT/US2022/042213

14.

15.

16.

17.

18.

The system of claim 8 further comprising computer program instructions that, when
executed, cause the system to carry out the step of initiating a remediation workflow after
determining that the user device has deviated from normal activity.

A computer program product for detecting anomalous behavior of a device, the computer
program product disposed on a computer readable medium, the computer program
product including computer program instructions that, when executed, carry out the steps
of:

generating, using information describing historical activity associated with a user device,
a trained model for detecting normal activity for the user device;

gathering information describing current activity associated with the user device; and
determining, by using the information describing current activity associated with the user
device as input to the trained model, whether the user device has deviated from normal
activity.

The computer program product of claim 15 wherein:

generating a trained model for detecting normal activity for the user device further
comprises generating the trained model using information describing locations at which
the user device was utilized; and

gathering information describing current activity associated with the user device further
comprises gathering information describing a location at which the user device 1s
currently being used.

The computer program product of claim 15 wherein:

generating a trained model for detecting normal activity for the user device further
comprises generating the trained model using information describing usage of one or
more applications accessed by the device; and

gathering information describing current activity associated with the user device further
comprises gathering information describing usage of applications accessed by the device.
The computer program product of claim 15 wherein:

generating a trained model for detecting normal activity for the user device further
comprises generating the trained model using information describing times at which
activity previously occurred; and

gathering information describing current activity associated with the user device further
comprises gathering information describing times at which current activity occurred on

the device.

119

WO 2023/034419 PCT/US2022/042213

19.

20.

The computer program product of claim 15 further comprising computer program
instructions that, when executed, carry out the step of periodically retraining the trained
model.

The computer program product of claim 15 further comprising computer program
instructions that, when executed, carry out the step of initiating a remediation workflow

after determining that the user device has deviated from normal activity.

120

PCT/US2022/042213

WO 2023/034419

1/54

v} ‘014

0¢
210)S Bleq
Tom 43 ﬂfrwm
144 4 8l
$92IN0S?Y S92IN0STY

9oepau| Jasn

$80In0s9Yy BuISSa001d BB

cl
Uuopeld eleq

uonsabu| ereq

123

74
991n9(] Bunndwon

R

N-OL
195SY '
aindwo)

91 191
o 1955y 1985y
aindwo) gindwo)
vl

JusWUOJIAUT PNOjD)

PCT/US2022/042213

WO 2023/034419

2/54

g} ‘04

0¢
31015 eleq
Y v v
144 W 8l h—
S9a.nosey $90In0S9Y BUISS300.d BlR(S90Inosay < w7
90BUBU| JBSN uonsabu| eyeq oBel0}g
wia] BuoT

0

:

(1]7
Jaouejeg peot

cl
wliofjeld eleq

74
9aIne(bunndwo)

N-8€
Juaby

N9}
19SSy
aindwo)

JUSWUOJIAUT PNOJD)

¢8¢ 18¢
Juaby waby
o ol 191
19sSy Jossy
aindwo) andwon
iz

WO 2023/034419

3/54
Communication
Processor
Interface 54
5_2 T

PCT/US2022/042213

fSO

A

e

v

Storage Device

56

| Instructions

/

[0 Module
58

62—

Fig. 1C

PCT/US2022/042213

WO 2023/034419

4/54

al b

auibug —
aseqeleq 0¢
[euoneey 2I0)S Bleqd
P\ 1\ \ I \\ | | [|
144 oyl
ﬁwﬁ I m/yo Jouuny S ;e
ISIJBON
NG9 itéi" JazAeu 1apeo gd
90Inlag A1anp) vol yaly 7 g 05hV ¢ wo_\,_go% -
99 Tk\ N 961\ | Joyebaubby | || JH0ELL Bupyoes] | abeio)g
02} aIPOp eyl HSS 13pROT BRR(Q wis |
N Buioday Weo wﬁlﬁ I\ fuo
9Yded C G Jojesouss) | 9€)
val I0jeIaUsg) e T L
JOAIBSGOrSD Valy Yydeip ol
|m / \ \Imm ! 90IM8g Juaby
ddy gapn 09} ls|npayog L\
7 0zl cel
180uefeg peon
omFIW

i
! ¢erwﬁ

o

|\A l101eb8166Yy B1RQ _
8¢l

0Ll

74}
g Amu3

Rwov
0l

v Apug

001

WO 2023/034419 PCT/US2022/042213

5/54
5—201
Receive packet.

A

5—202
Get connection information associated with packet.

A

5—203
Determine process associated with connection.

204
Determine information about process (e.g., parents, binary, user). y

205
Transmit information. 5_

Fig. 2A

WO 2023/034419 PCT/US2022/042213

6/54

Im 220
219 221 /ﬁ 5
(PID1) j 1

\ / > 216

10.10.10.10, 24256, 11.11.11.11, 45167, TCP

App1 - App2

(Apache) g (Oracle) 217

Fig. 2B

WO 2023/034419 PCT/US2022/042213

7/54

227\

(Connections: 7
Sent:10.5 KB
Received: 29.3 KB

228 kTCP: 100%

Update_engine (7)

/ Update.core-os.net

225 /

226

Fig. 2C

PCT/US2022/042213

WO 2023/034419

8/54

i

az 014 % BRSSO
e (7 BpeorEonace
N
LANG _ ~
(5 oy setozeys b
g 1) e \eﬁ_ | i\ gan
SV \‘ @ _,M___mmﬁm,_m
T N
{00 SHELOZBLR 7558450 _ \M\\“\M ©
LS Woncteriogaio-Bubess cuey sweuorede s e
UOSTHSHIS U0 SHEUOTBU TSoM ; QVV/‘< ws/®
STHS SOOI SIS Lo SHBLOTELE 7500 ,I\\) rw@ /—
1M HLI00 SHRLOZELE 7590515 YOAE DG '~ LR
[N oy \,.
_ | USRI TR \ o0 i
LLYSHRLOTRLE S BURHUGEORR
/ ol . \) e safponce
Ea_%gNmEm_N.ﬁﬁﬂ.mE_é
0ee ez TS O @
sl s gouey O % () ey
% PRSI ONcR
r«J\|\

(AT

®

(i
UK

~O
[A
Deg oy

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/042213

06 oy s

WO 2023/034419

9/54

Ry '
s @NN: g Jz b4
. ,O O s sp
{6700 5B
0 [
RS
A M
RS 4
% %O &) f o5 Wyl
£ S @ mmmm e, e ﬂ i sz
T @MN
w%tﬁJ //\ k| oy o . f/
_— J o iy
852wy e L i\, B / K o
f@ O LA SaaSamas @ AN e e O
./ e R s P’ {41 s\\ MWEWMNM
S = _ L i gw@q_% A
/ my = o1 W b _ .\&\ 2 r\v
o [TR e A L
o Appuehed S Pa = 1) 9y waerd e i)
o (@) P REAT Auu— v a— ib———s 22 - booron) 7708 SRl of fEy
AR \ﬁ / :mwmumm . R TR
iy 2 “.w
N/ ERRHTE
sy R]
£l) v
ctle it) b
A (e
grpse) .
AIED O&\\ /
7) SR
"0
7 Boq 1A 194

A

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/042213

WO 2023/034419

10/54

4z 014

Y 0L

WY 80,

SUNP G L0

Y 80,
i

Y L0,
h_me&e,%mmi%&mm

Y 80 Y 50 WY ¥0; WY £0: WY 20 Ny 10 Ny ¢l

&
S
®

RUSSRIOMA0R] ¥
Cuspodiionaoe, {c)) Josipea/DiguajeRes
) I @
0T SMBUOTEIE 7-150M-8 mw.ﬁogmuum@w_:mu X J,.H.\:\.\IH\ \\@ hmﬂmmE 2 mmm% Am: af w0 .”EmE mmnfﬁ
YR, e T A
spReR mm«/ \N_\wxwg_ £5 PIOMEDE] ﬁﬁv DRIOMBL- DUISISAS
) s8peoy
00" sHBUoZEUIR Z-15em-sn Bunioymious
. . (2 Ty 4 i) pusts ;
O OLBAE @ﬁwwam ORI _%ammm&“ N @v/w W
Exfyomene e, LN @fﬁw e
Es.m%mﬁwm%w\ §) ik Em\mmé%%m 56
.ﬁe SHBLOZBILE 7-1SaM- 51T 5 (D \\\
T SREUOTEWE 7150 SIS (0} Sy i pusons
I e A ,ﬁ\ e , =) pugpssyooy
K SMBHOTRALE 7-150M-8N wmmaw T aesone s mmmm@v m" B
Eoo.wa,mcommﬁm,wnwwmknwn,wumw b %Nm&m 0MRR] mﬁ .mxo.mmmm ? | Ighmamw,ﬁmm\ﬁa&mumm
L0 SMBLOTRIIR 7-1904- 8 GDOUIRLAD § _ Bre-aypmousponene; (¢} Ponje
ouso-aiooapdn / {E4MORE|CoEEDMONE0E
e @
/ BB7 157502 474 e
& i
i ydeso B J/ o yomess
\\
PR o7 IONEUSE gy, { %%S W UOGEDILINUHLO? J
BS o N 1BpIsk H@ uopeoydd Q uoeoddy O {8 mxmqmwﬁ@m:

SUBSTITUTE SHEET (RULE 26)

0z ‘bl

PCT/US2022/042213

11/54

WO 2023/034419

aunr G Uop
NY wo_ NY S_ AV oo_ Y mo_ NY g_ Y mo_ [\ No_ WY 8_ WY ¢l
ClOIC
O A4 IS¢ ®
. 0S¢
) 74
m bese]
o o9 UnLOngy nsont ere
ovz Tfigunion !
oo BugncuiconyeyHOLS YOMRDR
UL NN O SEESTAUOARCE
@%/a 152 95T) umaponte; @ [sty
(U0 SHEUOZELLE 7458M: 725 9 zmsw 98 (¢) unBuceaBpomace

, , () wonoeipponcy
@ﬂ. /// (7) somas __c%;sm_: G

E%E___m%z%) Eg&?é 1’1 Sz

._u_v
LU SHEOZELIE 7-JS3M-STHCS YUOME0R}: _%___5

P~
(1
o <%

(2) wuibu
® S [BuIap peg umouy

Arw.ié

(2) wox smeuozewe gs (e

SUBSTITUTE SHEET (RULE 26)

g 552
UOYSHEWTRLE T35S S/ BIEDER EOUEIS| —_ j
/ e o O Suoneaydde)00
b HOJIBIOHEDR
OO SHBLOZELE 7- S90S B (O]
0K ¥ @
® NSuefeponade
W@ ydess pf) Yo1eag
JoIneyag youne UONEIUNWILLOY
A %4
o Japisu| @ 7 uoneoyddy @ 7 uoneoiddy @ m_._n_<~_w>._on_=

Hz ‘014

PCT/US2022/042213

12/54

WO 2023/034419

aunQ G Uop
WY L, WYok WY60, IV wo_ _>_<B_ _>_<8_ _>_<mo_ _>_<g_ _>_<8_ _>_<No_ Ny s_ WY Z1
SIOIC]
®
19peo|-gpHOMaoe|
+§ Axoudey (€) poLILSY00]
6£2°€°09°01
(
(€) popoje €%
79¢
192

mq ydeis RE] poje

loneysg 4 youne uonesuNWWo)
e Japisu| @ ; uoneoiddy @ 7 uoneoiddy @ w_._n_<~_o>._on_=

PCT/US2022/042213

WO 2023/034419

13/54

IAE

aunp G uop
><:_ Y 0l Y 60y Y wo_ Y B_ Y @o_ Y mo_ WY g_ AV mo_ Y No_ NY S_ WY 1
®0O CIOIS)
@ ®
Japeo-qp/yiomsoe|
() xuibu
+§ Axoudey nis)usbe pomade) (€) pouws3{00]
6£C'€°09°01L
(€) popare anoio
SISAjeUy SS3001d ajebnsanu)
aX 6'qs PaAIRISY
ax L'Gy s
G SJaqUIB
(shesn |\ g9z
¢eepin Pajeloossy
) uonednddy
110 ydess b poje
Jloineyag youne UONBIIUNLLILIOY)
B v
< w Japisu| @ ; uoneoijddy @ 7 uoneoijddy @ w_._n_<~_®>._on_=

rg b4

PCT/US2022/042213

14/54

WO 2023/034419

aunf G Uo
W;A.A.A_\./A_<A.F_. v _8_ _>_<%_ WY wo_ _>_<8_ Y 8_ Y 8_ _>_<g_ WY 8_ i\ No_ Y 5_ _2<N__
PO ®®®
® ®
(1) pwaisis
69"
992
P
¥a ydeorer <]
{oneysg Yaunen UORBDIUNWILIOY
o E Japisuj ®; uonelddy @7 uonei|ddy @ m_._a<m©>._on__

NIALYE

PCT/US2022/042213

15/54

aunp G Uop
WY LY WO V6e0, WYB0 WYZ0, WV90, AVSO, WVER0, IWVED, WVZ0 AV L0, WY)
&] [[[[[[[[_
©®®
®
(01) aI"uoypesew
uowAd (01) gruoyesrew (¢1) p1aurejuoo
\ ® HIOM32E
W4
(€1) pwaishs
(01) JipAsuny (01) WIYS-PIUIBILOD
042
|
uia ydeis Pp] “ ewuoysd
loneyag youne UONBIIUNWWOY)
b v
< Japisu| @ ; uoneoddy @ 7 uonesiddy @ w_._n_<~_w>._on_=

WO 2023/034419

PCT/US2022/042213

WO 2023/034419

16/54

¢ 614

anfz 1
NVE0, WvZ0, Wyl; Wyl Wdll, WO Wd60, Wd80, Wdi0, Wd90, WdSO, Wdvl; Wd80; Wd20, Wd IO, WdZh WV Il WvOb Wye0, WYsh WYI0 W90, VG0, WV#0
_ _ _ _ _ _ _ _ _ _ BEEE _ _ _ _ _ _ _ _ _ _
©CJO, CIOIS,
@ ®
100
(¢) puss
[
Wooes 80IAieS-Ianb uoMaDE|
19520P
G poudUsuey
suofedidde sj00)
poJd"jounie
g ydesy o] g
Joneyag 4oune UoRBIUNILIOY
»]
o« Japisu| @ ; uoneayddy @ i Uoyeaiddy @ m_._n_<~_w>._on_=

PCT/US2022/042213

WO 2023/034419

17/54

Wz ‘014

8Unf yung
Wdbh WO AdB0; WAB0, Wdlb; WA90 WASh, Wdiy, WSO, WdZ0, Wdl0, WdZh WYih WWOK WWeO, WYe0, Wyl0, Wy90, Wy, WY¥0, WWE0, Y20, WY M0, WYl
[[
®0O CIOIC]
o ®
(1) ¥2=Pn
(¢) 666=Pi Q
[<]
(z26) poud Wy 217 (¢ pdy
(81 z8z=pn
{Lz2)100 T
(1) #6559=PIN
(€1) 10z=Pn
yavden R IReg
onepg oune LogeaunLLILo?)
SN Japisy) @ i Uopeoidy @ 7 Uopeaiddy @ w_._n_<~_w>._on_=

PCT/US2022/042213

WO 2023/034419

18/54

Jaudey [of

upoid—yIomage| uonseq

poidysuey

(XA AANAY

(eag

Q
L}

uibo 1asn @ 7

loineyag
Japisu|

2] shomig

&)

SHAVY9AT0d]

Oz ‘014

aunp G Uofy
Y60 | Wy 80| WY 10| Y90 WY 40| WY 0 AV ED | AV 2D | WY 10, el

PCT/US2022/042213

19/54

_
| | | | | | | | | |
L o
CIOIC)

@
RRFREXERRE &

SXERNFERNF e

FYFFLFF RN LY @

FEARRER AR RRR)

ﬁﬁ:ﬁﬁ@ . “ s‘/ : \ \‘ Y Pr———

FRRRRERRN , Q’V‘\M \&@\’ [2)xxssnrnnnsnnn A sjuang
Ve

ARRRRES RN (, ’\\ sw (2] ernrnnnrnerss A 598580014 é

REXERLIRRR(23 7 ‘m*ii?:ﬁ: A QmEmES@

SUBSTITUTE SHEET (RULE 26)

srrvrsnrer (G , A HOMEN @
, @ FLERNERRNY A w._ww: m
FRRERRRERR E
A suoneoyddy Sk
140 ydes9 [of] WIRS| || sauljoe (2)

sBuums yojew o} (,) asn ‘siayy ppe o)yl A NdZ'Sour == WYZh'sounr AQ 1) e 3

WO 2023/034419

soujyoel (2] syeby

WO 2023/034419 PCT/US2022/042213

20/54

3001

301
Receive data associated with activities occurring within a network j_
environment.

A 4

302
Generate a logical graph model using at least a portion of the j_

activities.
A 4
j_ 303
Detect an anomaly using the logical graph.
A
Generate an alert based on detecting the anomaly.

Fig. 3A

WO 2023/034419 PCT/US2022/042213

21/54

PCT/US2022/042213

WO 2023/034419

22/54

Qoumoen | S

[euls)xg

‘Aud yssuado

6¢¢c

ssaJppe
dl

ssao0.d

g sulyoey

)72

4¢ 014

oce A%

ssaJppe
dl

0€e R

JuaIp yss oep

ss8901d
‘aud yssuado

Gee

A

gee R

UON93UUOD YSS Vv auIyoep
s

(% Iﬂ

WO 2023/034419

ssh connection
(username =x)

352

23/54

350

/M

ssh priv.

process created

/N

bash process

created

2N

ssh client started

N\

ssh connection

(username =y)

356

Fig. 3G

PCT/US2022/042213

f 351

\ j 357

ssh priv.
process created

.
\ 358

bash process
created

359
curl started

external connect7—>

360

WO 2023/034419 PCT/US2022/042213

24/54

3611

362
Receive data associated with activities occurring within a network j_
environment.

363
Use the received data to identify a user login activity. j_

A

364
Generate a logical graph that links the user login activity to at least j_
one user and at least one process.

Fig. 3H

PCT/US2022/042213

WO 2023/034419

25/54

[MYE
0.€ GoE
9/¢ NS . 7 ~_ n
swi |

| | |

_ “ |

" | “

_ “ |

| _ “

uagdBuU0) dpy Z Uonosuuos yss | don9suu0) yss

_ | “

_ | _

" | “

_ “ |

" | “

“ “ |

" | “
o i |
S | " |
D m \ £g sse8doid [InD ! £V $58001d UsS | &
W) | | 1 =
2 | T m \ b S | @
W. 7g 5599014 yseg ! 7\ $599014 Yseg \m\ m

a o yl€ \ F _ 69¢ \
1 g $S8901d yssuadp L $S890.d yssuadp
- ¢lg \- go¢

- gl¢ - zue - g9¢ - Jg¢

WO 2023/034419 PCT/US2022/042213

26/54
3801‘
),— 381
|dentify new ssh connection records.
¥ s 382
Match ssh connection records.
¥ s 383
Identify new login records.
j_ 384
Identify new login-connection records.
j_ 385
Identify login-local-descendant records in the lookback time period.

y

),— 386
|dentify new processes.
A
J— 387
Identify new login-local-descendant records.

4

I 388
Identify new login-lineage records.
j_ 389
Generate output data.

Fig. 3J

WO 2023/034419 PCT/US2022/042213
27/54
MID start time | PID hash | src IP addr src_port dst_IP addr dst_port prot dir 390
A tl Al 1.1.1.10 10000 2.2.2.20 22 TCP Incoming)_
A t2 A3 2.2.2.20 10001 2.2.2.21 22 TCP Outgoing
B t2 Bl 2.2.2.20 10001 2.2.2.21 22 TCP Incoming
src MID src PID hash dst MID dst PID hash dst start time src IP addr src_port dst IP addr dst port
null null A Al tl 1.1.1.10 10000 2.2.2.20 22
A A3 B Bl t2 2.2.2.20 10001 2.2.2.21 22
MID login_time sshd PID hash
A tl Al
B t2 Bl
MID sshd PID_ hash login_time login_username sre_TIP_addr src_port | dst IP addr dst_port
A Al tl X 1.1.1.10 10000 2.2.2.20 22
B Bl t2 Y 2.2.2.20 10001 2.2.2.21 22

Fig. 3N

SUBSTITUTE SHEET (RULE 26)

WO 2023/034419

PCT/US2022/042213

28/54
MID start_time PID_hash exe_path parent PID hash
A tl Al /usr/sbin/sshd A0
A tl A2 /bin/bash Al
A t2 A3 /usr/bin/ssh A2
B t2 B1 /usr/sbin/sshd BO
B t2 B2 /bin/bash B1
B t3 B3 /usr/bin/curl B2
Fig. 30
MID sshd_PID hash PID_ hash
A Al Al
A Al A2
A Al A3
B B1 Bl
B Bl B2
B B1 B3
Fig. 3P
parent_ MID parent_ sshd PID_ hash child MID origin sshd PID_hash

A

Al

B

Bl

Fig. 3Q

MID sshd_PID hash parent_ MID parent_sshd PID_hash origin_ MID origin_sshd PID_hash
A Al null null A Al
B Bl A Al A Al

Fig. 3R

SUBSTITUTE SHEET (RULE 26)

WO 2023/034419

29/54

PCT/US2022/042213

Receive log data associated with at least one user session
associated with an original user.

393
o

Use the received log data to generate a logical graph.

394
o

Use the logical graph to detect an anomaly.

395
J

Generate alert.

396
j_

Fig. 3S

PCT/US2022/042213

30/54

1asn (urewop
UoIe20j099) 9AIj0BYT / $$9901d SSe|D) SUIYIB ‘sS8.ppe d| PEq
| 19AJBS d| [euJaxg payoune / Jasn [euibuo UMOoUY ‘SSaIppe d|

/ 18sM [euibLo ‘UoIE20|099)) 82IN0S

Josn
UIeWOQ [T 9A0Y] / $S990I1d
payoune
/ 18sM [euibL Vi .@_ 1
Josn
9A0YT / $$990I1d
payoune
/ 1asn [euibLO
SSB[D) QUIYIB[
(urewop
| $S9001d JONIOS o sse[D) auIyoRpy '$S3Ippe o] PEq
OAN09YT / 559901 /83 [euIbuo umouy ‘ssaippe d|
payoune uoIe90|0995)) 82IN0g

/ 19sn [euibLQ

%

Jasn
SSE|D) BUIYIBI 9AIJ09)] / $$8901d
/ UrBWOoQ [eulsu| payoune

/ 18sM [euibLo

)\

)

WO 2023/034419

€0y 0y L0V 00%

PCT/US2022/042213

WO 2023/034419

31/54

gy ‘014

e B
¥ OB ¥ K W EH BMoOM OB OB OM M MoK MO 8 B OB N W WOR W
& 0 8 &k wm by W @ & & % 9 o & & w 4 4 4 4 B 4 9
; m a ! | | P i ; _ T] | _ _ i i ; “ a !
DO Y . \\ Avmze
& 1625~ 307 ®
oA
ST JIIII/////////!W%é&
-« @J
1A
el
&
HOLEM0ME) A
1 s
@4/ i). Ly
. L0
{1} sl f oo) , WL
&W £ ops s \ 5%_ A4
L2l
OO S whomaumioy sefsony
152y — | Ay
)] .
g Py RO 8Ly 8ly oLy oo e
7y \@\ WRBLNE | BB
Jayn &b ey
m e (8 B g e
3 oy s @ i @ samuy @ wmmﬁm%mm

Jl¢o¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/042213

WO 2023/034419

32/54

VAR

Jou-yomaoe|de

(%7 I%

(z)suoneaydde s ool

8cy

Obvy861°1L

Joneyag
Japisu|

S
1

SHAVH9OATOd]

PCT/US2022/042213

WO 2023/034419

33/54

ay ‘014

8y ys'yesus

65y ysisod
: 8'99'G'¢S

£1'99°GCS ey
H vEY 1457
Sey (z)suoneoydde soo1
v vy'86L 1.
Jousjiomaoe| ide
joneyag 4
opsu) & SHAV49ATOd]

PCT/US2022/042213

WO 2023/034419

34/54

3y ‘014

SSaIpPPY d| peg umouy

6 4asn
1es
HINHOM el
epeue?) - 4| [eussjxJ
J 1asn
9 Jas
H31SYIN eIpu| - d [eussix3
G Jasn
¥ Jasn
VSN - dl [euisixg
A3d ¢ 1asn
Z 1asn
UMOUNU(- df [eUIoIXg _
| 3ovaviva |« el
J))
y '
v 4747 1147
w0 Jas SHAVY9A10d]

PCT/US2022/042213

WO 2023/034419

35/54

4 Bi4

aunp § 14 aunf § 1y
W WY, Ad Wd Wd Wd Wd Wd Wd Wd WNd W W4 Bd WY WY WY WY W W W W W I
oW W0 8, % O, % % w o @ w0 ou W 0 & W W W %N W @ Wn
O O S S RN 7y o IR IR I E E H B N
D - Iy A
DO fdl © oUnp Yig UD URBS JUBAS | ©®
& vy &
{¢} BoisAs
{02} exep-mmm /
O plels
(0%) puss™_ _
\ S S pobuous
{ze8) 1000 {y} sngabesssw
p— ¥ &) agny
- iBAR)
66601 e st
{21} 1001=pin C
. {2) snap
Vi \
" WiXe-UBIGRg
O
abueyn @
sbopuiy & SHAYHDATOM M

Jfﬂ%

PCT/US2022/042213

WO 2023/034419

36/54

Oy bl

S B4 LG IYL
WO W WM MO RIB BN BHI MR RdY W0 IR I W0 R WL RWOL WWED WVRD WD WO WD WM BN
I ! _ ; I ! I !] ! TR _ ! ! _ I I “ _ m
S \ SIOIS
i ¢
® 47 2

e — (e ;
I —
o (11 =P a0 ol
womss e TS
o \@ﬁ%@\ o
O 20 pofison
o
. % {shsngabesesi
ey //D | (ol
e . \O e
¢ {8} UOWaeD W
A A/O B8
> . e
S 25y i
D Emm.mm_@m&
By B
s g SHAY¥9AT0d |

Losy

PCT/US2022/042213
37/54

WO 2023/034419

Hy D14

]
@
@ —
z L S T s ey
a bt s o evgcen) il 4 N % _ e A - =
- IR OB SO B BRI ’ ERAY il
i i | STPMHY D mBON gt | | R v
ST 1 U sfgropEE Mo W &
<3 LR B WIS < SRR 8
¢ iy =
< m b T LB oo ‘ g &
f 1‘
i | < oy
= by | %%%
N DR 00 LA S SRS BB 0O 08 o _
: 1 LR R 1 R
w R 0] sy
mww =
\ v B i ey O i)
Aﬁ SR LR B S RUSIA . B OB P A ; R BE R W m
j,] i] Y i i i
I 3 O
m <; {8 NI R
& @) 2 @ i
LW i utgoy B) “ — J
- ¥ b i g VN BN oy RO B -
“ 7 7 7 syt sty | | "
1 Op 00Y 6y , MR WY ¥
/ ey S A | ML [l ~o W ©
m 7 7 T HOLNOH
Y 2h9p o Y

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/042213

WO 2023/034419

38/54

Iy D14

99t

L 106 56 A 0 S o O 3
G160 % 9 YEACR) el 0 s dopmdde o pg
0 FRIRAE0G 0aflsIR U 08 R 2 g Looonlce o &
® o 9%
® [— A ~
s b @
ol 8
< T e I L il ®
| m | 0w)
<@ e shaay o popaco ik o pu g | REOE A4 Eiy
_ O g ¢
T @ oalaipen o eI R o B g | <
| uodepmy0 ppln s | R TR s RLEERGE) ¢
0 s R, N@. <
h “ . mehu g iR e R, 7 <
| sk penoople SR e | T SRR R S/h s <
* i eapace: o i el sy L ol ey
(i etz QU
b fiag
mm_sm m mmﬁm HA 081 - Kl IS ol et
,F ¢ wm N,w. el BL0EIR S| e
v winsen #l 89y
Ik \m
LIy W 1 A OV 4 60 oy s B gy ~_ _— o i .
il A PR G ong i
) Y 4 s &) Wy moRns | UL RN ﬂFMc
/ /s wmmgs Y
f 7 f
0y 7 A

SUBSTITUTE SHEET (RULE 26)

PCT/US2022/042213

WO 2023/034419

39/54

My 014

!

e | : €8y I
ey VIR A
ag O“ ﬁmr__ﬁmm@ﬁ i @W iRy @\\ L8 sl
gk _ YW ® TR ™
<4 R B Sy B e | WY m | m 9
<@ U whze g P A s R g e | RO A
_ ‘B BRI RO PR g Y PR g M i - el
1w | . g%ﬁ%: W vaY
fEibeigt R
a e R e | A " iR e — L
L UsEBn R pRT R Y S PR | Ky m] I T
e _ “MM W%W o impmiEme
‘B I G e B S B g | WY o o SR |
7 BB L ogy o B oL
e L wipmag | © Wme
& R A RO 3 P P i H . mme
= o U R A LR 0 Y P : 3 ! ol j
<& A LSO R P © " - B s
m A MO SR 1 P | " m WY sl
m BB R L GRS R | AL DYOTRIO
WAL, B sehgee, i
L R A B 0 6 Bl g W %
u “ 0
e B CoC P , 1e Ws |
g 4 ¢ ¢ b 6y e R R R Y
| s \ ey g why 9
L L (-~ (e M @
[Hees | Qi e SRR 6 L L

PCT/US2022/042213

WO 2023/034419

40/54

My D14

)

AJY dagsugadiig
‘AN Q1D degsugadild e,
]: showy &'}

_” S

qlo dagsugadiig
]: sumpal

s

~

[
- AN VdIssaippydjadiid
pdr ‘AIN Q1D sseppydjediidel |
i] show
/a0
A Y \ \ H
Ly \ \\ B
X. NS 10~ ssaippydjedhig
v/

]: mEBEK

ssaippydjpdiyd "a_:@

-~
s [."
¢ AN VdI vdiZd \ o AN INYNLSOH SNded
‘AIM dld vdlZd ‘A3 dld SNazd
]: skow]: skoy
[[
HAav dI vdied JWVYNLSOH SNazd

]: swma \ /

]: mEBSK

vdizd _a_ﬂ_m@

ﬁ SNaed _a_zm@

) \ ° EVD&E-U

» ‘A3 INYNLSOH
———e AN Ald d
]: skow

[3dALd
‘Y3SN NIDYO
‘IdALD

/]: 2_._32k

ﬁ dAI :Rpu3 w

WO 2023/034419 PCT/US2022/042213
41/54

486
_Q

. . . . AR 486
Receive request to filter information associated with activities within ;
a network environment.

Generate a query based on an implicit join.

Use the query to respond to the request.

Fig. 4L

PCT/US2022/042213

42/54

¢G JsulBu| dand

ug¢s
90In0S8Y

e9¢S
90IN0S8Y

VS ‘D14

[G JusWUOJIAUT SeeS

uocs
90In0S8Y

e0CS
90IN0S8Y

Z0G JusWuoJAug [B90T

Uy0g
90IN0S8Y

700
90In0s8Y

¥25 Aunodag yJomeN

.
*ssaersaenseons

sesssenseensae

'

016 Aunodag gees

A

0ES Juswaolouz Aoljod puy AUJIQISIA swi | -[esy

7¢G uonos}aq Alewouy Joineyag Jasn

R N R I R N I N I I A I A A N R I I A I A A A

$€G Juawabeuepy 0Ny puy ‘SMO[MIOAL ‘SIUSAT

D R R R R R A R I N R N R R I I I I SN I A

440 0 400NN LEO N LEIPLEIRNEUEOINIEOINLIEORIEODNTLEE

0G 1sni] 0197

015 wuogeld
9bp3 painquisiq

44

1S

90187 J9sN

218
9019 J9sN

WO 2023/034419

9019 J9sN

\ e— /

PCT/US2022/042213

WO 2023/034419

43/54

POTS wuopeld
9bp3 panguisiq

2%
90IA8(JasN

A%
90IA3(] JasN

\ e—)

G01G wuope|d
abp3 panguisiq

POYS J8ua)
uoneindod

q0pS 19)ua)
uonendog

g6 ‘014

O0FG J0Iud)
uonendod

B0pS Japua)
uonendog

301G wuopeld
9bp3 painguisiq

1444
991A8(Jas(

e
991A3(] Jas

BQJS wuopeld
abp3 panqgusiq

WO 2023/034419 PCT/US2022/042213
44/54

|dentify A Location Of A Device That Is Associated With A User 602

Determine Device Activity Associated With The User 604

y
Determine, Based On A Profile Associated With The User, That The

Device Activity Associated With The User Deviates From Normal
Activity For The User 606

Fig. 6

WO 2023/034419 PCT/US2022/042213
45/54

Generate A Profile Associated With The User 702

|dentify A Location Of A Device That Is Associated With A User 602

Determine Device Activity Associated With The User 604

Identify One Or More Applications Accessed By The Device 704

|dentify Application Behavior For The One Or More Applications 706

Determine, Based On A Profile Associated With The User, That The Device Activity
Associated With The User Deviates From Normal Activity For The User 606

Responsive To Determining That The Device Activity Associated With The User
Deviates From Normal Activity For The User, Generate An Alert 708

Fig. 7

WO 2023/034419 PCT/US2022/042213
46/54

|dentify A Location Of A Device That Is Associated With A User 602

Determine Device Activity Associated With The User 604

y
Determine, Based On A Profile Associated With The User, That The

Device Activity Associated With The User Deviates From Normal
Activity For The User 606

Generate A User-Specific Polygraph That Includes The Geographic
Location Of The Device And The Device Activity Associated With
The User 802

Fig. 8

WO 2023/034419 PCT/US2022/042213
47/54

Identify One Or More Devices That Are Physically Proximate To The
User Device 902

Determine, Based On One Or More Devices That Are Physically
Proximate To The User Device, A First Geolocation Of The User
Device 904

Determine, Based On Data Communications Involving The User
Device, A Second Geolocation Of The User Device 906

Determine Whether The First Geolocation Of The User Device And
The Second Geolocation Of The User Device Are Sufficiently
Proximate To Each Other 908

Fig. 9

WO 2023/034419 PCT/US2022/042213
48/54

Identify One Or More Devices That Are Physically Proximate To The
User Device 902

Determine, Based On One Or More Devices That Are Physically
Proximate To The User Device, A First Geolocation Of The User
Device 904

Determine, Based On Data Communications Involving The User
Device, A Second Geolocation Of The User Device 906

Determine Whether The First Geolocation Of The User Device And
The Second Geolocation Of The User Device Are Sufficiently |—
Proximate To Each Other 908

Yes 1002

!

Set The Location Of The User Device To A Location That Includes
At Least One Of The First Geolocation Or The Second Geolocation | NO
1006 1004

Initiate A Location Conflict Resolution Workflow 1008 .

Fig. 10

WO 2023/034419 PCT/US2022/042213
49/54

Identify One Or More Devices That Are Physically Proximate To The User Device
902

Detect, Using A Wireless Communications Interface In The User Device, The
Presence Of The One Or More Devices 1102

A 4

Determine, Based On One Or More Devices That Are Physically Proximate To The
User Device, A First Geolocation Of The User Device 904

Query A Local Location Cache With An Identifier Of A Device That Is
Physical Proximate To The User Device 1104

A 4

Determine, Based On Data Communications Involving The User Device, A Second
Geolocation Of The User Device 906

A 4

Determine Whether The First Geolocation Of The User Device And The Second
Geolocation Of The User Device Are Sufficiently Proximate To Each Other 908

A 4

Detect A Change To At Least One Of The First Geolocation And The Second
Geolocation 1106

Fig. 11

WO 2023/034419 PCT/US2022/042213
50/54

Generate, Using Information Describing Activity Associated With A
User Device, A Trained Model For Detecting Normal Activity For
The User Device 1202

Gather Information Describing Current Activity Associated With The
User Device 1204

Determine, By Using The Information Describing Current Activity
Associated With The User Device As Input To The Trained Model,
Whether The User Device Has Deviated From Normal Activity 1206

Fig. 12

WO 2023/034419 PCT/US2022/042213
51/54

Generate, Using Information Describing Activity Associated With A
User Device, A Trained Model For Detecting Normal Activity For
The User Device 1202

(Generate The Trained Model Using Information Describing\
Physical Locations At Which The User Device Was Utilized

\ 1302 J

[Generate The Trained Model Using Information Describing\
Usage Of One Or More Applications Accessed By The
Device 1304

J

-

Generate The Trained Model Using Information Describing
Times At Which Activity Previously Occurred 1306

J

Gather Information Describing Current Activity Associated With The
User Device 1204

4 N\

Gather Information Describing A Physical Location At Which The
User Device Is Currently Being Used 1308

- J
4 N

Gather Information Describing Usage Of Applications
Accessed By The Device 1310

Gather Information Describing Times At Which Current
Activity Occurred On The Device 1312

Determine, By Using The Information Describing Current Activity
Associated With The User Device As Input To The Trained Model,
Whether The User Device Has Deviated From Normal Activity 1206

Fig. 13

WO 2023/034419 PCT/US2022/042213
52/54

Generate, Using Information Describing Activity Associated With A
User Device, A Trained Model For Detecting Normal Activity For
The User Device 1202

Periodically Retraining The Trained Model 1402

Gather Information Describing Current Activity Associated With The
User Device 1204

Determine, By Using The Information Describing Current Activity
Associated With The User Device As Input To The Trained Model,
Whether The User Device Has Deviated From Normal Activity 1206

Initiate A Remediation
Generate An Alert 1404 Workflow 1404

Fig. 14

PCT/US2022/042213

WO 2023/034419

L

53/54

V)

vCG1 SHOMBN umouun

¢St

3

Z¢GT UOjew.Io| sjeald

¢Sl SNSUSU| Ypimpueq

VS D4
“ ¥0ST 2051
v ‘00sIouel{ UeS gy Jasn

W

uoneoiddy
Buibessapy
016} 901
90S1
uoneoyddy LaYIN 8o1A8(Jasn
195Mm0Ig g9
\ /4
./

8151 Auanonpoid

91G1 EIp3y [elo0S

vl6l
aseqele(sefes [eualy|

804Gl
uoneolddy
safes [eusay|

[
O
L)
~

PCT/US2022/042213

WO 2023/034419

54/54

gg| ‘b4

2161
74} uoieolddy
YIOMJAN UMOUNUN Buibessa|y

:

7413

uonew.ou| @
a)enld
(5]
02T aNsSusy| uopeoyddy
ypImpueg / 19SMO1g oM

9051
L QYN 31A8Q 133N

v0St
YO ‘0osiouel{ ueg

81GT Auanonpoid

1G1 EIPSA [B190S

8061
¥IST uoneolddy
aseqele(soles [eulaju| SO[ES [EUlB|

A

051
o8V 193N

O
(o)
Lo
~—

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2022/042213

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F21/55 H04L9/40

ADD.

According to International Patent Classification (IPC) or to both national ¢lassification and IPC

B. FIELDS SEARCHED

GO6F HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the inlernational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

BHARAT [US] ET AL)
22 December 2020 (2020-12-22)

column 3, line 62 - column 61, line 29

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X UsS 2017/063889 Al (MUDDU SUDHAKAR [US] ET 1-20

AL) 2 March 2017 (2017-03-02)

paragraph [0135] - paragraph [0739]
X US 10 873 592 B1 (SINGH HARISH KUMAR 1-20

I:‘ Further documents are listed in the continuation of Box C.

‘z‘ See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"0O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

1 December 2022

Date of mailing of the international search report

09/12/2022

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Pinto, Raul

Form PCTASA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2022/042213
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2017063889 Al 02-03-2017 us 9516053 Bl 06-12-2016
us 2017063886 Al 02-03-2017
uUs 2017063887 Al 02-03-2017
us 2017063888 Al 02-03-2017
Us 2017063889 Al 02-03-2017
uUs 2017063890 Al 02-03-2017
uUs 2017063891 Al 02-03-2017
uUs 2017063894 Al 02-03-2017
uUs 2017063896 Al 02-03-2017
uUs 2017063897 Al 02-03-2017
Us 2017063898 Al 02-03-2017
us 2017063899 Al 02-03-2017
Us 2017063900 Al 02-03-2017
uUs 2017063901 Al 02-03-2017
uUs 2017063902 Al 02-03-2017
uUs 2017063903 Al 02-03-2017
uUs 2017063904 Al 02-03-2017
uUs 2017063905 Al 02-03-2017
us 2017063906 Al 02-03-2017
uUs 2017063907 Al 02-03-2017
Us 2017063908 Al 02-03-2017
uUs 2017063909 Al 02-03-2017
Us 2017063910 Al 02-03-2017
us 2017063911 Al 02-03-2017
us 2017063912 Al 02-03-2017
uUs 2017134410 Al 11-05-2017
us 2017134415 Al 11-05-2017
Us 2017142140 Al 18-05-2017
us 2017223036 Al 03-08-2017
uUs 2017272458 Al 21-09-2017
uUs 2018054452 Al 22-02-2018
uUs 2018069888 Al 08-03-2018
uUs 2018146000 Al 24-05-2018
Us 2018219897 Al 02-08-2018
uUs 2018288079 Al 04-10-2018
Us 2018302423 Al 18-10-2018
uUs 2018351981 A1l 06-12-2018
uUs 2018367551 Al 20-12-2018
uUs 2019075126 Al 07-03-2019
uUs 20192109868 Al 11-04-2019
uUs 20192158517 Al 23-05-2019
uUs 2019173893 Al 06-06-2019
uUs 2019327251 Al 24-10-2019
Us 2019342311 Al 07-11-2019
uUs 2019364060 Al 28-11-2019
Us 2019387007 Al 19-12-2019
us 2020007561 Al 02-01-2020
us 2020021607 Al 16-01-2020

US 10873592 Bl 22-12-2020 us 10873592 Bl 22-12-2020
uUs 11483329 Bl 25-10-2022

Form PGTASA/210 (patent tamily annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - description
	Page 116 - description
	Page 117 - description
	Page 118 - description
	Page 119 - claims
	Page 120 - claims
	Page 121 - claims
	Page 122 - claims
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings
	Page 160 - drawings
	Page 161 - drawings
	Page 162 - drawings
	Page 163 - drawings
	Page 164 - drawings
	Page 165 - drawings
	Page 166 - drawings
	Page 167 - drawings
	Page 168 - drawings
	Page 169 - drawings
	Page 170 - drawings
	Page 171 - drawings
	Page 172 - drawings
	Page 173 - drawings
	Page 174 - drawings
	Page 175 - drawings
	Page 176 - drawings
	Page 177 - wo-search-report
	Page 178 - wo-search-report

