
USOO863981 3B2

(12) United States Patent (10) Patent No.: US 8,639,813 B2
Suganthi et al. (45) Date of Patent: Jan. 28, 2014

(54) SYSTEMS AND METHODS FOR GSLB BASED FOREIGN PATENT DOCUMENTS
ON SSL VPN USERS

WO WO-2004/105355 12, 2004

(75) Inventors: Josephine Suganthi, Sunnyvale, CA WO WO-2008/112698 A2 9, 2008
(US); Murali Raja, Santa Clara, CA OTHER PUBLICATIONS
(US); Sandeep Kamath, Santa Clara, European Communication on 09759858.5 dated Jul. 4, 2011.
CA (US) International Preliminary Report on Patentability on PCT/US2009/

O O 065726 dated Jun. 9, 2011.
(73) Assignee: Citrix Systems, Inc., Fort Lauderdale, International Search Report on PCT/US2009/065726 dated Dec. 2,

FL (US) 2010.
Written Opinion on PCT/US2009/065726 dated Dec. 2, 2010.

(*) Notice: Subject to any disclaimer, the term of this European Examination Report on 09759858.5 dated Jun. 25, 2012.
patent is extended or adjusted under 35
U.S.C. 154(b) by 998 days. * cited by examiner

(21) Appl. No.: 12/323,153 Primary Examiner — Yasin Barqadle
(74) Attorney, Agent, or Firm — Foley & Lardner LLP

(22) Filed: Nov. 25, 2008
(57) ABSTRACT

(65) Prior Publication Data The present invention provides a system and a method for
US 2010/O131960 A1 May 27, 2010 global server load balancing of a plurality of sites based on a

number of Secure Socket Layer Virtual Private Network (SSL
(51) Int. Cl. VPN) users. The SSL VPN users may access servers at each

G06F 5/73 (2006.01) of the plurality of sites. A global server load balancing virtual
(52) U.S. Cl. server (GSLB) may receive a request to access a server. The

USPC ... 709/226; 709/225 GSLB virtual server may load balance a plurality of sites
(58) Field of Classification Search wherein each of the plurality of sites may further comprising

USPC .. 709/223 245 a loadbalancing Virtual serverload balancing users accessing
See application file for complete search history. the server accessing servers via an SSL VPN session. GSLB

may receive from a first load balancing virtual server at a first
(56) References Cited site, a first number of current SSL VPN users accessing serv

ers from the first site via SSL VPN sessions. The GSLB may
U.S. PATENT DOCUMENTS also receive from a second load balancing virtual server at a

second site, a second number of current SSL VPN users of the
200 36. R ck $28. SAG st al. 709,227 users accessing servers from the second site via SSL VPN
2007/0214267 A1* 9/2007 Ogura et al. ... 709,226 sessions. GSLB may determine to forward the request to one
2008, 0046995 A1* 2, 2008 Satterlee et al. . T26, 15 of the first load balancing virtual server of the first site or the
2008.004978.6 A1 2/2008 Ram et al. 370/468 second load balancing virtual server of the second site by load
2008/0225710 A1* 9/2008 Raja et al. ... 370.230.1 balancing SSL VPN users across the plurality of sites based

ck

3988. A. ck 23. t al . 373, on the first number of current SSL VPN users and the second

2010/0095.018 A1* 4/2010 Khemani et al. 709/232 number of current SSL VPN users.
2010/012 1943 A1* 5, 2010 Hoover et al. ... 709,219
2010/025 1008 A1* 9, 2010 Swildens 714.f4 19 Claims, 16 Drawing Sheets

Appllance

client 102 Serwar OS

US 8,639,813 B2 Sheet 2 of 16 Jan. 28, 2014 U.S. Patent

US 8,639,813 B2 Sheet 3 of 16 Jan. 28, 2014 U.S. Patent

CIZO!, Quello eZ0), quello

US 8,639,813 B2 Sheet 4 of 16 Jan. 28, 2014 U.S. Patent

o

EE-EE 00Z

US 8,639,813 B2 Sheet 6 of 16 Jan. 28, 2014 U.S. Patent

US 8,639,813 B2 Sheet 8 of 16 Jan. 28, 2014 U.S. Patent

BOZZ ?O?AuÐS

06Z NAH ddwf 982 SNC]

?

US 8,639,813 B2 Sheet 9 of 16 Jan. 28, 2014 U.S. Patent

* * * * * * * * * * *

YYYYYY

US 8,639,813 B2 Sheet 11 of 16 Jan. 28, 2014 U.S. Patent

087 d??S GLf7 d??S G97 d??S

097

US 8,639,813 B2 Sheet 12 of 16 Jan. 28, 2014 U.S. Patent

FI FT?7G ?EWN
H = E

?7G CHEW

H = H 00Z

US 8,639,813 B2 Sheet 13 of 16 Jan. 28, 2014 U.S. Patent

HE) = H H = H HE) = H H = H

UG/Z N J?AJÐSA ETSS)

US 8,639,813 B2 Sheet 14 of 16 Jan. 28, 2014 U.S. Patent

09G d??S G/G d??S 0,1g da?S 09G da?S ggg da?S

099

US 8,639,813 B2 Sheet 16 of 16 Jan. 28, 2014 U.S. Patent

GZ9 d??S OZ9 d??S G09 d??S

009

US 8,639,813 B2
1.

SYSTEMS AND METHODS FOR GSLB. BASED
ON SSL VPN USERS

FIELD OF THE INVENTION

The present application generally relates to data commu
nication networks. In particular, the present invention relates
to systems and methods for load balancing network traffic
across a plurality of sites based on SSL VPN users accessing
the sites.

BACKGROUND OF THE INVENTION

A corporate or enterprise may deploy various services
across a network to serve users from many areas. A user may
use a client machine to request to access a service, such as a
web server, provided by the enterprise. The enterprise in order
to improve the access to this service may deploy multiple
servers at various geographical locations in order to expedite
the access and meet the demandofusers. Similarly, the enter
prise may provide a plurality of server farms positioned at a
variety of sites and including any number of servers capable
of processing the client's request. The enterprise may use a
load balancer to manage network traffic across these servers,
minimizing the network congestion and improving the Ser
Vice provided. Similarly, the enterprise may also use a global
server load balancer (GSLB) to manage access to each of the
load balancers at different sites and further help in evenly
balancing the network traffic across the enterprise servers.
Any number of users may access the enterprise using dif

ferent types of connections. Some users may establish con
nections with servers via a Secure Socket Layer Virtual Pri
vate Network (SSL VPN). Other users may establish
connections with servers using connection methods other
than SSL VPN. Different types of connections may use dif
ferent resources of the enterprise. For example, SSL VPN
connections may use different resources of the enterprise than
other types of connections.

BRIEF SUMMARY OF THE INVENTION

The present invention provides improvements to loadbal
ancing by providing a load balancing solution that utilizes
information identifying the number of users using SSL VPN
sessions. As SSL VPN users and SSL VPN sessions may use
different resources than other types of connections and users,
the solution described herein provides load balancing based
on a number of SSL VPN users accessing resources. A des
tination for an incoming request is determined based on SSL
VPN user metrics obtained by the GSLB. In this manner the
GSLB can load balance network traffic of the SSL VPN users
across a plurality of sites.

In one aspect, the present invention relates to a method for
global server load balancing of a plurality of sites based on a
number of Secure Socket Layer Virtual Private Network (SSL
VPN) users. The SSL VPN users may access servers at each
of the plurality of sites. A global server load balancing virtual
server (GSLB) may receive a request to access a server. The
GSLB virtual server may load balance a plurality of sites
wherein each of the plurality of sites may further comprising
a load balancing virtual server load balancing users accessing
the server accessing servers via an SSL VPN session. GSLB
may receive from a first load balancing virtual server at a first
site, a first number of current SSL VPN users accessing serv
ers from the first site via SSL VPN sessions. The GSLB may
also receive from a second load balancing virtual server at a
second site, a second number of current SSL VPN users of the

10

15

25

30

35

40

45

50

55

60

65

2
users accessing servers from the second site via SSL VPN
sessions. The GSLB virtual server may determine to forward
the request to one of the first load balancing virtual server of
the first site or the second load balancing virtual server of the
second site by load balancing SSL VPN users across the
plurality of sites based on the first number of current SSL
VPN users and the second number of current SSL VPN users.

In some embodiments, the GSLB virtual server of a first
appliance receives the request to access the server via a SSL
VPN session. In other embodiments, the first load balancing
virtual server of a second appliance determines the first num
ber of current SSL VPN users accessing servers via the sec
ond appliance. In yet other embodiments, the second load
balancing virtual server of a third appliance determines the
second number of current SSL VPN users access servers via
the third appliance. In some embodiments, the GSLB virtual
server requests a number of SSL VPN users from the first load
balancing virtual server viaan SNMP (Simple Network Man
agement Protocol) request. The number of SSL VPN users
may be identified via an object identifier. The first load bal
ancing virtual server may update a value of an object identi
fied by the object identifier. In some embodiments, GSLB
virtual server receives the first number of current SSL VPN
users from the first load balancing virtual server of a second
appliance via a metric exchange protocol communicated
between the first appliance and the second appliance. In fur
ther embodiments, GSLB virtual servers requests a number of
SSL VPN users from the second load balancing virtual server
via an SNMP (Simple Network Management Protocol)
request. The number of SSL VPN users may be identified via
an object identifier. The second load balancing virtual server
may update a value of an object identified by the object
identifier. The first virtual load balancer of the first appliance
may determine the first number of SSL VPN users from all
users accessing the first site via the first appliance. The second
virtual load balancer of a second appliance may determine the
first number of SSL VPN users from all users accessing the
second site via the second appliance. In some embodiments,
the GSLB determines a threshold of a maximum number of
SSL VPN users for the first site has been reached and respon
sive to the determination, forwards the request to the second
site. In other embodiments, the GSLB virtual server deter
mines that a threshold of a maximum number of SSL VPN
users for the second site has been reached and responsive to
the determination, forwards the request to the first site.

In some embodiments, the GSLB virtual server determines
to forward the request to one of the first load balancing virtual
server of the first site or the second load balancing virtual
server of the second site by load balancing SSL VPN users
across the plurality of sites in combination with any of the
following load balancing methods: least connection, least
response time, least bandwidth, least packets and round trip
time.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other objects, aspects, features, and
advantages of the invention will become more apparent and
better understood by referring to the following description
taken in conjunction with the accompanying drawings, in
which:

FIG. 1A is a block diagram of an embodiment of a network
environment for a client to access a server via an appliance;

FIG. 1B is a block diagram of an embodiment of an envi
ronment for delivering a computing environment from a
server to a client via an appliance;

US 8,639,813 B2
3

FIG. 1C is a block diagram of an embodiment of an envi
ronment for delivering a computing environment from a
server to a client via a network;

FIG. 1D is a block diagram of another embodiment of an
environment for delivering a computing environment from a
server to a client via a network.

FIGS. 1E and 1F are block diagrams of embodiments of a
computing device;

FIG. 2A is a block diagram of an embodiment of an appli
ance for processing communications between a client and a
server;

FIG. 2B is a block diagram of another embodiment of an
appliance for optimizing, accelerating, load-balancing and
routing communications between a client and a server,

FIG. 3 is a block diagram of an embodiment of a client for
communicating with a server via the appliance;

FIG. 4A is a block diagram of an embodiment of an appli
ance for collecting metrics via a network management proto
col and for determining a load of services based on user
selected metrics;

FIG. 4B is a flow diagram of an embodiment of steps of a
method for performing load balancing based on user selected
metrics in view of FIG. 4B;

FIG. 5A is a block diagram of an embodiment of a network
environment for performing global server load balancing
among heterogeneous devices;

FIG. 5B is a block diagram of an embodiment of an appli
ance performing serverload balancing among heterogeneous
devices;
FIG.5C is a flow diagram of an embodiment of steps of a

method for Global Server Load Balancing among heteroge
neous devices:

FIG. 6A is a block diagram of an embodiment of a system
for load balancing of user requests using SSL VPN user
information; and

FIG. 6B is a flow diagram of an embodiment of steps of a
method for global server load balancing of a plurality of sites
based on a number of SSL VPN users accessing servers at
each of the plurality sites.
The features and advantages of the present invention will

become more apparent from the detailed description set forth
below when taken in conjunction with the drawings, in which
like reference characters identify corresponding elements
throughout. In the drawings, like reference numbers gener
ally indicate identical, functionally similar, and/or structur
ally similar elements.

DETAILED DESCRIPTION OF THE INVENTION

For purposes of reading the description of the various
embodiments of the present invention below, the following
descriptions of the sections of the specification and their
respective contents may be helpful:

Section A describes a network environment and computing
environment useful for practicing an embodiment of the
present invention;

Section B describes embodiments of a system and appli
ance architecture for accelerating delivery of a comput
ing environment to a remote user;

Section C describes embodiments of a client agent for
accelerating communications between a client and a
server;

Section D describes embodiments of systems and methods
for load balancing based on metrics selected by a user
from appliance determined metrics and/or metrics col
lected from a device via a Simple Network Management
Protocol; and

5

10

15

25

30

35

40

45

50

55

60

65

4
Section E describes embodiments of systems and methods

for global server load balancing among heterogeneous
devices.

Section F describes global server load balancing based on
SSL VPN user information.

A. Network and Computing Environment
Prior to discussing the specifics of embodiments of the

systems and methods of an appliance and/or client, it may be
helpful to discuss the network and computing environments
in which such embodiments may be deployed. Referring now
to FIG. 1A, an embodiment of a network environment is
depicted. In brief overview, the network environment com
prises one or more clients 102a-102n (also generally referred
to as local machine(s) 102, or client(s) 102) in communica
tion with one or more servers 106a-106n (also generally
referred to as server(s) 106, or remote machine(s) 106) via
one or more networks 104, 104 (generally referred to as
network 104). In some embodiments, a client 102 communi
cates with a server 106 via an appliance 200.

Although FIG. 1A shows a network 104 and a network 104
between the clients 102 and the servers 106, the clients 102
and the servers 106 may be on the same network 104. The
networks 104 and 104' can be the same type of network or
different types of networks. The network 104 and/or the net
work 104" can be a local-area network (LAN), such as a
company Intranet, a metropolitan area network (MAN), or a
wide area network (WAN), such as the Internet or the World
WideWeb. In one embodiment, network 104" may be a private
network and network 104 may be a public network. In some
embodiments, network 104 may be a private network and
network 104 a public network. In another embodiment, net
works 104 and 104" may both be private networks. In some
embodiments, clients 102 may be located at a branch office of
a corporate enterprise communicating via a WAN connection
over the network 104 to the servers 106 located at a corporate
data center.
The network 104 and/or 104" be any type and/or form of

network and may include any of the following: a point to point
network, a broadcast network, a wide area network, a local
area network, a telecommunications network, a data commu
nication network, a computer network, an ATM (Asynchro
nous Transfer Mode) network, a SONET (Synchronous Opti
cal Network) network, a SDH (Synchronous Digital
Hierarchy) network, a wireless network and a wireline net
work. In some embodiments, the network 104 may comprise
a wireless link, such as an infrared channel or satellite band.
The topology of the network 104 and/or 104" may be a bus,
star, or ring network topology. The network 104 and/or 104
and network topology may be of any such network or network
topology as known to those ordinarily skilled in the art
capable of Supporting the operations described herein.
As shown in FIG.1A, the appliance 200, which also may be

referred to as an interface unit 200 or gateway 200, is shown
between the networks 104 and 104". In some embodiments,
the appliance 200 may be located on network 104. For
example, a branch office of a corporate enterprise may deploy
an appliance 200 at the branch office. In other embodiments,
the appliance 200 may be located on network 104". For
example, an appliance 200 may be located at a corporate data
center. In yet another embodiment, a plurality of appliances
200 may be deployed on network 104. In some embodiments,
a plurality of appliances 200 may be deployed on network
104". In one embodiment, a first appliance 200 communicates
with a second appliance 200'. In other embodiments, the
appliance 200 could be a part of any client 102 or server 106
on the same or different network 104,104" as the client 102.

US 8,639,813 B2
5

One or more appliances 200 may be located at any point in the
network or network communications path between a client
102 and a server 106.

In Some embodiments, the appliance 200 comprises any of
the network devices manufactured by Citrix Systems, Inc. of
Ft. Lauderdale Fla., referred to as Citrix NetScaler devices. In
other embodiments, the appliance 200 includes any of the
product embodiments referred to as WebAccelerator and
Big IP manufactured by F5Networks, Inc. of Seattle, Wash. In
another embodiment, the appliance 205 includes any of the
DX acceleration device platforms and/or the SSL VPN series
of devices, such as SA 700, SA 2000, SA 4000, and SA 6000
devices manufactured by Juniper Networks, Inc. of Sunny
vale, Calif. In yet another embodiment, the appliance 200
includes any application acceleration and/or security related
appliances and/or Software manufactured by Cisco Systems,
Inc. of San Jose, Calif., such as the Cisco ACE Application
Control Engine Module service software and network mod
ules, and Cisco AVS Series Application Velocity System.

In one embodiment, the system may include multiple, logi
cally-grouped servers 106. In these embodiments, the logical
group of servers may be referred to as a server farm 38. In
some of these embodiments, the serves 106 may be geo
graphically dispersed. In some cases, a farm 38 may be
administered as a single entity. In other embodiments, the
server farm 38 comprises a plurality of server farms 38. In one
embodiment, the server farm executes one or more applica
tions on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heterogeneous.
One or more of the servers 106 can operate according to one
type of operating system platform (e.g., WINDOWS NT,
manufactured by Microsoft Corp. of Redmond, Wash.), while
one or more of the other servers 106 can operate on according
to another type of operating system platform (e.g., Unix or
Linux). The servers 106 of each farm 38 do not need to be
physically proximate to another server 106 in the same farm
38. Thus, the group of servers 106 logically grouped as a farm
38 may be interconnected using a wide-area network (WAN)
connection or medium-area network (MAN) connection. For
example, a farm 38 may include servers 106 physically
located in different continents or different regions of a conti
nent, country, state, city, campus, or room. Data transmission
speeds between servers 106 in the farm 38 can be increased if
the servers 106 are connected using a local-area network
(LAN) connection or some form of direct connection.

Servers 106 may be referred to as a file server, application
server, web server, proxy server, or gateway server. In some
embodiments, a server 106 may have the capacity to function
as either an application server or as a master application
server. In one embodiment, a server 106 may include an
Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client 102
has the capacity to function as both a client node seeking
access to applications on a server and as an application server
providing access to hosted applications for other clients
102a-102n.

In some embodiments, a client 102 communicates with a
server 106. In one embodiment, the client 102 communicates
directly with one of the servers 106 in a farm 38. In another
embodiment, the client 102 executes a program neighbor
hood application to communicate with a server 106 in a farm
38. In still another embodiment, the server 106 provides the
functionality of a master node. In some embodiments, the
client 102 communicates with the server 106 in the farm 38
through a network 104. Over the network 104, the client 102
can, for example, request execution of various applications
hosted by the servers 106a-106n in the farm 38 and receive

5

10

15

25

30

35

40

45

50

55

60

65

6
output of the results of the application execution for display.
In some embodiments, only the master node provides the
functionality required to identify and provide address infor
mation associated with a server 106" hosting a requested
application.

In one embodiment, the server 106 provides functionality
of a web server. In another embodiment, the server 106a
receives requests from the client 102, forwards the requests to
a second server 106b and responds to the request by the client
102 with a response to the request from the server 106b. In
still another embodiment, the server 106 acquires an enu
meration of applications available to the client 102 and
address information associated with a server 106 hosting an
application identified by the enumeration of applications. In
yet another embodiment, the server 106 presents the response
to the request to the client 102 using a web interface. In one
embodiment, the client 102 communicates directly with the
server 106 to access the identified application. In another
embodiment, the client 102 receives application output data,
Such as display data, generated by an execution of the iden
tified application on the server 106.

Referring now to FIG. 1B, an embodiment of a network
environment deploying multiple appliances 200 is depicted.
A first appliance 200 may be deployed on a first network 104
and a second appliance 200' on a second network 104". For
example a corporate enterprise may deploy a first appliance
200 at a branch office and a second appliance 200' at a data
center. In another embodiment, the first appliance 200 and
second appliance 200' are deployed on the same network 104
or network 104. For example, a first appliance 200 may be
deployed for a first server farm 38, and a second appliance
200 may be deployed for a second server farm 38. In another
example, a first appliance 200 may be deployed at a first
branch office while the second appliance 200' is deployed at a
second branch office. In some embodiments, the first appli
ance 200 and second appliance 200' work in cooperation or in
conjunction with each other to accelerate network traffic or
the delivery of application and data between a client and a
SeVer

Referring now to FIG. 1C, another embodiment of a net
work environment deploying the appliance 200 with one or
more other types of appliances, such as between one or more
WAN optimization appliance 205, 205" is depicted. For
example a first WAN optimization appliance 205 is shown
between networks 104 and 104" and s second WAN optimi
zation appliance 205 may be deployed between the appliance
200 and one or more servers 106. By way of example, a
corporate enterprise may deploy a first WAN optimization
appliance 205 at a branch office and a second WAN optimi
Zation appliance 205" at a data center. In some embodiments,
the appliance 205 may be located on network 104". In other
embodiments, the appliance 205" may be located on network
104. In some embodiments, the appliance 205 may be located
on network 104" or network 104". In one embodiment, the
appliance 205 and 205" are on the same network. In another
embodiment, the appliance 205 and 205" are on different
networks. In another example, a first WAN optimization
appliance 205 may be deployed for a first server farm 38 and
a second WAN optimization appliance 205" for a second
server farm 38'

In one embodiment, the appliance 205 is a device for accel
erating, optimizing or otherwise improving the performance,
operation, or quality of service of any type and form of
network traffic, such as traffic to and/or from a WAN connec
tion. In some embodiments, the appliance 205 is a perfor
mance enhancing proxy. In other embodiments, the appliance
205 is any type and form of WAN optimization or acceleration

US 8,639,813 B2
7

device, sometimes also referred to as a WAN optimization
controller. In one embodiment, the appliance 205 is any of the
product embodiments referred to as WANScaler manufac
tured by Citrix Systems, Inc. of Ft. Lauderdale, Fla. In other
embodiments, the appliance 205 includes any of the product
embodiments referred to as BIG-IP link controller and WAN
Jet manufactured by F5 Networks, Inc. of Seattle, Wash. In
another embodiment, the appliance 205 includes any of the
WX and WXCWAN acceleration device platforms manufac
tured by Juniper Networks, Inc. of Sunnyvale, Calif. In some
embodiments, the appliance 205 includes any of the steelhead
line of WAN optimization appliances manufactured by River
bed Technology of San Francisco, Calif. In other embodi
ments, the appliance 205 includes any of the WAN related
devices manufactured by Expand Networks Inc. of Roseland,
N.J. In one embodiment, the appliance 205 includes any of
the WAN related appliances manufactured by Packeteer Inc.
of Cupertino, Calif., such as the PacketShaper, iShared, and
Skyx product embodiments provided by Packeteer. In yet
another embodiment, the appliance 205 includes any WAN
related appliances and/or software manufactured by Cisco
Systems, Inc. of San Jose, Calif., such as the Cisco Wide Area
Network Application Services software and network mod
ules, and Wide Area Network engine appliances.

In one embodiment, the appliance 205 provides application
and data acceleration services for branch-office or remote
offices. In one embodiment, the appliance 205 includes opti
mization of Wide Area File Services (WAFS). In another
embodiment, the appliance 205 accelerates the delivery of
files, such as via the Common Internet File System (CIFS)
protocol. In other embodiments, the appliance 205 provides
caching in memory and/or storage to accelerate delivery of
applications and data. In one embodiment, the appliance 205
provides compression of network traffic at any level of the
network Stack or at any protocol or network layer. In another
embodiment, the appliance 205 provides transport layer pro
tocol optimizations, flow control, performance enhancements
or modifications and/or management to accelerate delivery of
applications and data over a WAN connection. For example,
in one embodiment, the appliance 205 provides Transport
Control Protocol (TCP) optimizations. In other embodi
ments, the appliance 205 provides optimizations, flow con
trol, performance enhancements or modifications and/or
management for any session or application layer protocol.

In another embodiment, the appliance 205 encoded any
type and form of data or information into custom or standard
TCP and/or IP header fields or option fields of network packet
to announce presence, functionality or capability to another
appliance 205'. In another embodiment, an appliance 205
may communicate with another appliance 205 using data
encoded in both TCP and/or IP header fields or options. For
example, the appliance may use TCP option(s) or IP header
fields or options to communicate one or more parameters to
be used by the appliances 205, 205" in performing function
ality, Such as WAN acceleration, or for working in conjunc
tion with each other.

In some embodiments, the appliance 200 preserves any of
the information encoded in TCP and/or IP header and/or
option fields communicated between appliances 205 and
205'. For example, the appliance 200 may terminate a trans
port layer connection traversing the appliance 200. Such as a
transport layer connection from between a client and a server
traversing appliances 205 and 205'. In one embodiment, the
appliance 200 identifies and preserves any encoded informa
tion in a transport layer packet transmitted by a first appliance
205 via a first transport layer connection and communicates a

10

15

25

30

35

40

45

50

55

60

65

8
transport layer packet with the encoded information to a
second appliance 205 via a second transport layer connec
tion.

Referring now to FIG. 1D, a network environment for
delivering and/or operating a computing environment on a
client 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a
computing environment or an application and/or data file to
one or more clients 102. In brief overview, a client 10 is in
communication with a server 106 via network 104, 104' and
appliance 200. For example, the client 102 may reside in a
remote office of a company, e.g., a branch office, and the
server 106 may reside at a corporate data center. The client
102 comprises a client agent 120, and a computing environ
ment 15. The computing environment 15 may execute or
operate an application that accesses, processes or uses a data
file. The computing environment 15, application and/or data
file may be delivered via the appliance 200 and/or the server
106.

In some embodiments, the appliance 200 accelerates deliv
ery of a computing environment 15, or any portion thereof, to
a client 102. In one embodiment, the appliance 200 acceler
ates the delivery of the computing environment 15 by the
application delivery system 190. For example, the embodi
ments described herein may be used to accelerate delivery of
a streaming application and data file processable by the appli
cation from a central corporate data center to a remote user
location, such as a branch office of the company. In another
embodiment, the appliance 200 accelerates transport layer
traffic between a client 102 and a server 106. The appliance
200 may provide acceleration techniques for accelerating any
transport layer payload from a server 106 to a client 102, such
as: 1) transport layer connection pooling, 2) transport layer
connection multiplexing, 3) transport control protocol buff
ering, 4) compression and 5) caching. In some embodiments,
the appliance 200 provides load balancing of servers 106 in
responding to requests from clients 102. In other embodi
ments, the appliance 200 acts as a proxy or access server to
provide access to the one or more servers 106. In another
embodiment, the appliance 200 provides a secure virtual pri
vate network connection from a first network 104 of the client
102 to the second network 104" of the server 106, such as an
SSL VPN connection. It yet other embodiments, the appli
ance 200 provides application firewall security, control and
management of the connection and communications between
a client 102 and a server 106.

In some embodiments, the application delivery manage
ment system 190 provides application delivery techniques to
deliver a computing environment to a desktop of a user,
remote or otherwise, based on a plurality of execution meth
ods and based on any authentication and authorization poli
cies applied via a policy engine 195. With these techniques, a
remote user may obtain a computing environment and access
to server stored applications and data files from any network
connected device 100. In one embodiment, the application
delivery system 190 may reside or execute on a server 106. In
another embodiment, the application delivery system 190
may reside or execute on a plurality of servers 106a-106 n. In
some embodiments, the application delivery system 190 may
execute in a server farm 38. In one embodiment, the server
106 executing the application delivery system 190 may also
store or provide the application and data file. In another
embodiment, a first set of one or more servers 106 may
execute the application delivery system 190, and a different
server 106n may store or provide the application and data file.
In some embodiments, each of the application delivery sys
tem 190, the application, and data file may reside or belocated

US 8,639,813 B2

on different servers. In yet another embodiment, any portion
of the application delivery system 190 may reside, execute or
be stored on or distributed to the appliance 200, or a plurality
of appliances.
The client 102 may include a computing environment 15 5

for executing an application that uses or processes a data file.
The client 102 via networks 104, 104' and appliance 200 may
requestan application and data file from the server 106. In one
embodiment, the appliance 200 may forward a request from
the client 102 to the server 106. For example, the client 102
may not have the application and data file stored or accessible
locally. In response to the request, the application delivery
system 190 and/or server 106 may deliver the application and
data file to the client 102. For example, in one embodiment,
the server 106 may transmit the application as an application
stream to operate in computing environment 15 on client 102.

In some embodiments, the application delivery system 190
comprises any portion of the Citrix Access SuiteTM by Citrix
Systems, Inc., such as the MetaFrame or Citrix Presentation 20
ServerTM and/or any of the Microsoft(R) Windows Terminal
Services manufactured by the Microsoft Corporation. In one
embodiment, the application delivery system 190 may deliver
one or more applications to clients 102 or users via a remote
display protocol or otherwise via remote-based or server- 25
based computing. In another embodiment, the application
delivery system 190 may deliver one or more applications to
clients or users via steaming of the application.

In one embodiment, the application delivery system 190
includes apolicy engine 195 for controlling and managing the 30
access to, selection of application execution methods and the
delivery of applications. In some embodiments, the policy
engine 195 determines the one or more applications a user or
client 102 may access. In another embodiment, the policy
engine 195 determines how the application should be deliv- 35
ered to the user or client 102, e.g., the method of execution. In
some embodiments, the application delivery system 190 pro
vides a plurality of delivery techniques from which to select a
method of application execution, such as a server-based com
puting, streaming or delivering the application locally to the 40
client 120 for local execution.

In one embodiment, a client 102 requests execution of an
application program and the application delivery system 190
comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106 45
receives credentials from the client 102. In another embodi
ment, the server 106 receives a request for an enumeration of
available applications from the client 102. In one embodi
ment, in response to the request or receipt of credentials, the
application delivery system 190 enumerates a plurality of 50
application programs available to the client 102. The appli
cation delivery system 190 receives a request to execute an
enumerated application. The application delivery system 190
selects one of a predetermined number of methods for execut
ing the enumerated application, for example, responsive to a 55
policy of a policy engine. The application delivery system
190 may select a method of execution of the application
enabling the client 102 to receive application-output data
generated by execution of the application program on a server
106. The application delivery system 190 may select a 60
method of execution of the application enabling the local
machine 10 to execute the application program locally after
retrieving a plurality of application files comprising the appli
cation. In yet another embodiment, the application delivery
system 190 may select a method of execution of the applica- 65
tion to stream the application via the network 104 to the client
102.

10

15

10
A client 102 may execute, operate or otherwise provide an

application, which can be any type and/or form of software,
program, or executable instructions such as any type and/or
form of web browser, web-based client, client-server appli
cation, a thin-client computing client, an ActiveX control, or
a Java applet, or any other type and/or form of executable
instructions capable of executing on client 102. In some
embodiments, the application may be a server-based or a
remote-based application executed on behalf of the client 102
on a server 106. In one embodiments the server 106 may
display output to the client 102 using any thin-client or
remote-display protocol. Such as the Independent Computing
Architecture (ICA) protocol manufactured by Citrix Sys
tems, Inc. of Ft. Lauderdale, Fla. or the Remote Desktop
Protocol (RDP) manufactured by the Microsoft Corporation
of Redmond, Wash. The application can use any type of
protocol and it can be, for example, an HTTP client, an FTP
client, an Oscar client, or a Telnet client. In other embodi
ments, the application comprises any type of software related
to VoIP communications, such as a soft IP telephone. In
further embodiments, the application comprises any applica
tion related to real-time data communications, such as appli
cations for streaming video and/or audio.

In some embodiments, the server 106 or a server farm 38
may be running one or more applications, such as an appli
cation providing a thin-client computing or remote display
presentation application. In one embodiment, the server 106
or server farm 38 executes as an application, any portion of
the Citrix Access SuiteTM by Citrix Systems, Inc., such as the
MetaFrame or Citrix Presentation Server'TM, and/or any of the
Microsoft(R) Windows Terminal Services manufactured by
the Microsoft Corporation. In one embodiment, the applica
tion is an ICA client, developed by Citrix Systems, Inc. of
Fort Lauderdale, Fla. In other embodiments, the application
includes a Remote Desktop (RDP) client, developed by
Microsoft Corporation of Redmond, Wash. Also, the server
106 may run an application, which for example, may be an
application server providing email services such as Microsoft
Exchange manufactured by the Microsoft Corporation of
Redmond, Wash., a web or Internet server, or a desktop shar
ing server, or a collaboration server. In some embodiments,
any of the applications may comprise any type of hosted
service or products, such as GoToMeetingTM provided by
Citrix Online Division, Inc. of Santa Barbara, Calif.,
WebExTM provided by WebEx, Inc. of Santa Clara, Calif., or
Microsoft Office Live Meeting provided by Microsoft Cor
poration of Redmond, Wash.

Still referring to FIG. 1D, an embodiment of the network
environment may include a monitoring server 106A. The
monitoring server 106A may include any type and form per
formance monitoring service 198. The performance monitor
ing service 198 may include monitoring, measurement and/or
management software and/or hardware, including data col
lection, aggregation, analysis, management and reporting. In
one embodiment, the performance monitoring service 198
includes one or more monitoring agents 197. The monitoring
agent 197 includes any software, hardware or combination
thereof for performing monitoring, measurement and data
collection activities on a device, such as a client 102, server
106 or an appliance 200, 205. In some embodiments, the
monitoring agent 197 includes any type and form of Script,
Such as Visual Basic script, or JavaScript. In one embodiment,
the monitoring agent 197 executes transparently to any appli
cation and/or user of the device. In some embodiments, the
monitoring agent 197 is installed and operated unobtrusively
to the application or client. In yet another embodiment, the

US 8,639,813 B2
11

monitoring agent 197 is installed and operated without any
instrumentation for the application or device.

In Some embodiments, the monitoring agent 197 monitors,
measures and collects data on a predetermined frequency. In
other embodiments, the monitoring agent 197 monitors, mea
Sures and collects databased upon detection of any type and
form of event. For example, the monitoring agent 197 may
collect data upon detection of a request for a web page or
receipt of an HTTP response. In another example, the moni
toring agent 197 may collect data upon detection of any user
input events, such as a mouse click. The monitoring agent 197
may report or provide any monitored, measured or collected
data to the monitoring service 198. In one embodiment, the
monitoring agent 197 transmits information to the monitoring
service 198 according to a schedule or a predetermined fre
quency. In another embodiment, the monitoring agent 197
transmits information to the monitoring service 198 upon
detection of an event.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of any network resource or network infrastruc
ture element, such as a client, server, server farm, appliance
200, appliance 205, or network connection. In one embodi
ment, the monitoring service 198 and/or monitoring agent
197 performs monitoring and performance measurement of
any transport layer connection, such as a TCP or UDP con
nection. In another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures network
latency. In yet one embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures band
width utilization.

In other embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures end-user
response times. In some embodiments, the monitoring Ser
Vice 198 performs monitoring and performance measurement
of an application. In another embodiment, the monitoring
service 198 and/or monitoring agent 197 performs monitor
ing and performance measurement of any session or connec
tion to the application. In one embodiment, the monitoring
service 198 and/or monitoring agent 197 monitors and mea
sures performance of a browser. In another embodiment, the
monitoring service 198 and/or monitoring agent 197 moni
tors and measures performance of HTTP based transactions.
In some embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
a Voice over IP (VoIP) application or session. In other
embodiments, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a remote
display protocol application, such as an ICA client or RDP
client. In yet another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures perfor
mance of any type and form of streaming media. In still a
further embodiment, the monitoring service 198 and/or moni
toring agent 197 monitors and measures performance of a
hosted application or a Software-As-A-Service (SaaS) deliv
ery model.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of one or more transactions, requests or
responses related to application. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 moni
tors and measures any portion of an application layer stack,
such as any .NET or J2EE calls. In one embodiment, the
monitoring service 198 and/or monitoring agent 197 moni
tors and measures database or SQL transactions. In yet
another embodiment, the monitoring service 198 and/or

5

10

15

25

30

35

40

45

50

55

60

65

12
monitoring agent 197 monitors and measures any method,
function or application programming interface (API) call.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of a delivery of application and/or data from a
server to a client via one or more appliances, such as appli
ance 200 and/or appliance 205. In some embodiments, the
monitoring service 198 and/or monitoring agent 197 moni
tors and measures performance of delivery of a virtualized
application. In other embodiments, the monitoring service
198 and/or monitoring agent 197 monitors and measures
performance of delivery of a streaming application. In
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
delivery of a desktop application to a client and/or the execu
tion of the desktop application on the client. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a client/
server application.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 is designed and constructed to provide
application performance management for the application
delivery system 190. For example, the monitoring service 198
and/or monitoring agent 197 may monitor, measure and man
age the performance of the delivery of applications via the
Citrix Presentation Server. In this example, the monitoring
service 198 and/or monitoring agent 197 monitors individual
ICA sessions. The monitoring service 198 and/or monitoring
agent 197 may measure the total and per session system
resource usage, as well as application and networking perfor
mance. The monitoring service 198 and/or monitoring agent
197 may identify the active servers for a given user and/or
user session. In some embodiments, the monitoring service
198 and/or monitoring agent 197 monitors back-end connec
tions between the application delivery system 190 and an
application and/or database server. The monitoring service
198 and/or monitoring agent 197 may measure network
latency, delay and Volume per user-session or ICA session.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 measures and monitors memory usage
for the application delivery system 190, such as total memory
usage, per user session and/or per process. In other embodi
ments, the monitoring service 198 and/or monitoring agent
197 measures and monitors CPU usage the application deliv
ery system 190, such as total CPU usage, per user session
and/or per process. In another embodiments, the monitoring
service 198 and/or monitoring agent 197 measures and moni
tors the time required to log-in to an application, a server, or
the application delivery system, such as Citrix Presentation
Server. In one embodiment, the monitoring service 198 and/
or monitoring agent 197 measures and monitors the duration
a user is logged into an application, a server, or the application
delivery system 190. In some embodiments, the monitoring
service 198 and/or monitoring agent 197 measures and moni
tors active and inactive session counts for an application,
server or application delivery system session. In yet another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors user session latency.

In yet further embodiments, the monitoring service 198
and/or monitoring agent 197 measures and monitors mea
Sures and monitors any type and form of server metrics. In one
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to system
memory, CPU usage, and disk storage. In another embodi
ment, the monitoring service 198 and/or monitoring agent
197 measures and monitors metrics related to page faults,
Such as page faults per second. In other embodiments, the

US 8,639,813 B2
13

monitoring service 198 and/or monitoring agent 197 mea
Sures and monitors round-trip time metrics. In yet another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to applica
tion crashes, errors and/or hangs.

In some embodiments, the monitoring service 198 and
monitoring agent 198 includes any of the product embodi
ments referred to as EdgeSight manufactured by Citrix Sys
tems, Inc. of Ft. Lauderdale, Fla. In another embodiment, the
performance monitoring service 198 and/or monitoring agent
198 includes any portion of the product embodiments
referred to as the TrueView product suite manufactured by the
Symphoniq Corporation of Palo Alto, Calif.

In one embodiment, the performance monitoring service
198 and/or monitoring agent 198 includes any portion of the
product embodiments referred to as the TeaLeaf CX product
suite manufactured by the TeaLeaf Technology Inc. of San
Francisco, Calif. In other embodiments, the performance
monitoring service 198 and/or monitoring agent 198 includes
any portion of the business service management products,
such as the BMC Performance Manager and Patrol products,
manufactured by BMC Software, Inc. of Houston, Tex.
The client 102, server 106, and appliance 200 may be

deployed as and/or executed on any type and form of com
puting device. Such as a computer, network device or appli
ance capable of communicating on any type and form of
network and performing the operations described herein.
FIGS. 1E and 1F depict block diagrams of a computing device
100 useful for practicing an embodiment of the client 102.
server 106 or appliance 200. As shown in FIGS. 1E and 1F,
each computing device 100 includes a central processing unit
101, and a main memory unit 122. As shown in FIG. 1E, a
computing device 100 may include a visual display device
124, a keyboard 126 and/or a pointing device 127, such as a
mouse. Each computing device 100 may also include addi
tional optional elements, such as one or more input/output
devices 130a-130b (generally referred to using reference
numeral 130), and a cache memory 140 in communication
with the central processing unit 101.

The central processing unit 101 is any logic circuitry that
responds to and processes instructions fetched from the main
memory unit 122. In many embodiments, the central process
ing unit is provided by a microprocessor unit, such as: those
manufactured by Intel Corporation of Mountain View, Calif.;
those manufactured by Motorola Corporation of Schaum
burg, Ill., those manufactured by Transmeta Corporation of
Santa Clara, Calif.; the RS/6000 processor, those manufac
tured by International Business Machines of White Plains,
N.Y.; or those manufactured by Advanced Micro Devices of
Sunnyvale, Calif. The computing device 100 may be based on
any of these processors, or any other processor capable of
operating as described herein.
Main memory unit 122 may be one or more memory chips

capable of storing data and allowing any storage location to
be directly accessed by the microprocessor 101, such as Static
random access memory (SRAM), Burst SRAM or Synch
Burst SRAM (BSRAM), Dynamic random access memory
(DRAM), Fast Page Mode DRAM (FPMDRAM), Enhanced
DRAM (EDRAM), Extended Data Output RAM (EDO
RAM), Extended Data Output DRAM (EDO DRAM), Burst
Extended Data Output DRAM (BEDO DRAM), Enhanced
DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC
SRAM, PC 100 SDRAM, Double Data Rate SDRAM (DDR
SDRAM), Enhanced SDRAM (ESDRAM), SyncLink
DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or
Ferroelectric RAM (FRAM). The main memory 122 may be
based on any of the above described memory chips, or any

5

10

15

25

30

35

40

45

50

55

60

65

14
other available memory chips capable of operating as
described herein. In the embodiment shown in FIG. 1E, the
processor 101 communicates with main memory 122 via a
system bus 150 (described in more detail below). FIG. 1E
depicts an embodiment of a computing device 100 in which
the processor communicates directly with main memory 122
via a memory port 103. For example, in FIG. 1F the main
memory 122 may be DRDRAM.
FIG.1F depicts an embodiment in which the main proces

sor 101 communicates directly with cache memory 140 via a
secondary bus, sometimes referred to as a backside bus. In
other embodiments, the main processor 101 communicates
with cache memory 140 using the system bus 150. Cache
memory 140 typically has a faster response time than main
memory 122 and is typically provided by SRAM, BSRAM, or
EDRAM. In the embodiment shown in FIG.1E, the processor
101 communicates with various J/O devices 130 via a local
system bus 150. Various busses may be used to connect the
central processing unit 101 to any of the I/O devices 130,
including a VESA VL bus, an ISA bus, an EISA bus, a
MicroChannel Architecture (MCA) bus, a PCI bus, a PCI-X
bus, a PCI-Express bus, or a NuBus. For embodiments in
which the I/O device is a video display 124, the processor 101
may use an Advanced Graphics Port (AGP) to communicate
with the display 124. FIG. 1F depicts an embodiment of a
computer 100 in which the main processor 101 communi
cates directly with I/O device 130 via HyperTransport, Rapid
I/O, or InfiniBand. FIG. 1F also depicts an embodiment in
which local busses and direct communication are mixed: the
processor 101 communicates with I/O device 130 using a
local interconnect bus while communicating with I/O device
130 directly.
The computing device 100 may support any suitable instal

lation device 116, such as a floppy disk drive for receiving
floppy disks such as 3.5-inch, 5.25-inch disks or ZIP disks, a
CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape
drives of various formats, USB device, hard-drive or any
other device Suitable for installing software and programs
Such as any client agent 120, or portion thereof. The comput
ing device 100 may further comprise a storage device 128,
Such as one or more hard disk drives or redundant arrays of
independent disks, for storing an operating system and other
related Software, and for storing application software pro
grams such as any program related to the client agent 120.
Optionally, any of the installation devices 116 could also be
used as the storage device 128. Additionally, the operating
system and the software can be run from a bootable medium,
for example, a bootable CD, such as KNOPPIXR, a bootable
CD for GNU/Linux that is available as a GNU/Linux distri
bution from knoppix.net.

Furthermore, the computing device 100 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through a
variety of connections including, but not limited to, standard
telephone lines, LAN or WAN links (e.g., 802.11, T1, T3, 56
kb, X.25), broadband connections (e.g. ISDN. Frame Relay,
ATM), wireless connections, or some combination of any or
all of the above. The network interface 118 may comprise a
built-in network adapter, network interface card, PCMCIA
network card, card bus network adapter, wireless network
adapter, USB network adapter, modem or any other device
suitable for interfacing the computing device 100 to any type
of network capable of communication and performing the
operations described herein.
A wide variety of I/O devices 130a-130n may be present in

the computing device 100. Input devices include keyboards,
mice, trackpads, trackballs, microphones, and drawing tab

US 8,639,813 B2
15

lets. Output devices include video displays, speakers, inkjet
printers, laser printers, and dye-sublimation printers. The I/O
devices 130 may be controlled by an I/O controller 123 as
shown in FIG. 1E. The I/O controller may control one or more
I/O devices such as a keyboard 126 and a pointing device 127,
e.g., a mouse or optical pen. Furthermore, an I/O device may
also provide storage 128 and/or an installation medium 116
for the computing device 100. In still other embodiments, the
computing device 100 may provide USB connections to
receive handheld USB storage devices such as the USB Flash
Drive line of devices manufactured by Twintech Industry, Inc.
of Los Alamitos, Calif.

In some embodiments, the computing device 100 may
comprise or be connected to multiple display devices 124a
124m, which each may be of the same or different type and/or
form. As such, any of the I/O devices 130a-130n and/or the
I/O controller 123 may comprise any type and/or form of
suitable hardware, software, or combination of hardware and
Software to support, enable or provide for the connection and
use of multiple display devices 124a-124n by the computing
device 100. For example, the computing device 100 may
include any type and/or form of video adapter, video card,
driver, and/or library to interface, communicate, connect or
otherwise use the display devices 124a-124n. In one embodi
ment, a video adapter may comprise multiple connectors to
interface to multiple display devices 124a-124n. In other
embodiments, the computing device 100 may include mul
tiple video adapters, with each video adapterconnected to one
or more of the display devices 124a-124n. In some embodi
ments, any portion of the operating system of the computing
device 100 may be configured for using multiple displays
124a-124n. In other embodiments, one or more of the display
devices 124a-124n may be provided by one or more other
computing devices, such as computing devices 100a and
100b connected to the computing device 100, for example,
via a network. These embodiments may include any type of
Software designed and constructed to use another computers
display device as a second display device 124.a for the com
puting device 100. One ordinarily skilled in the art will rec
ognize and appreciate the various ways and embodiments that
a computing device 100 may be configured to have multiple
display devices 124a-124n.

In further embodiments, an I/O device 130 may be a bridge
170 between the system bus 150 and an external communi
cation bus, such as a USB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, a FireWire bus, a
FireWire 800 bus, an Ethernet bus, an AppleTalkbus, a Giga
bit Ethernet bus, an Asynchronous Transfer Mode bus, a
HIPPIbus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP
bus, a FibreChannel bus, or a Serial Attached small computer
system interface bus.
A computing device 100 of the sort depicted in FIGS. 1E

and 1F typically operate under the control of operating sys
tems, which control scheduling of tasks and access to system
resources. The computing device 100 can be running any
operating system Such as any of the versions of the
Microsoft(R) Windows operating systems, the different
releases of the Unix and Linux operating systems, any version
of the Mac OSR) for Macintosh computers, any embedded
operating system, any real-time operating system, any open
Source operating system, any proprietary operating system,
any operating systems for mobile computing devices, or any
other operating system capable of running on the computing
device and performing the operations described herein. Typi
cal operating systems include: WINDOWS 3.x, WINDOWS
95, WINDOWS 98, WINDOWS 2000, WINDOWS NT 3.51,
WINDOWS NT 4.0, WINDOWS CE, and WINDOWS XP,

10

15

25

30

35

40

45

50

55

60

65

16
all of which are manufactured by Microsoft Corporation of
Redmond, Wash.; MacOS, manufactured by Apple Computer
of Cupertino, Calif.; OS/2, manufactured by International
Business Machines of Armonk, N.Y.; and Linux, a freely
available operating system distributed by Caldera Corp. of
Salt Lake City, Utah, or any type and/or form of a Unix
operating System, among others.

In other embodiments, the computing device 100 may have
different processors, operating systems, and input devices
consistent with the device. For example, in one embodiment
the computer 100 is a Treo 180,270, 1060, 600 or 650 smart
phone manufactured by Palm, Inc. In this embodiment, the
Treo Smartphone is operated under the control of the PalmOS
operating system and includes a stylus input device as well as
a five-way navigator device. Moreover, the computing device
100 can be any workstation, desktop computer, laptop or
notebook computer, server, handheld computer, mobile tele
phone, any other computer, or other form of computing or
telecommunications device that is capable of communication
and that has sufficient processor power and memory capacity
to perform the operations described herein.
B. Appliance Architecture

FIG. 2A illustrates an example embodiment of the appli
ance 200. The architecture of the appliance 200 in FIG. 2A is
provided by way of illustration only and is not intended to be
limiting. As shown in FIG. 2, appliance 200 comprises a
hardware layer 206 and a software layer divided into a user
space 202 and a kernel space 204.

Hardware layer 206 provides the hardware elements upon
which programs and services within kernel space 204 and
user space 202 are executed. Hardware layer 206 also pro
vides the structures and elements which allow programs and
services within kernel space 204 and user space 202 to com
municate data both internally and externally with respect to
appliance 200. As shown in FIG. 2, the hardware layer 206
includes a processing unit 262 for executing software pro
grams and services, a memory 264 for storing software and
data, network ports 266 for transmitting and receiving data
over a network, and an encryption processor 260 for perform
ing functions related to Secure Sockets Layer processing of
data transmitted and received over the network. In some
embodiments, the central processing unit 262 may perform
the functions of the encryption processor 260 in a single
processor. Additionally, the hardware layer 206 may com
prise multiple processors for each of the processing unit 262
and the encryption processor 260. The processor 262 may
include any of the processors 101 described above in connec
tion with FIGS. 1E and 1F. In some embodiments, the central
processing unit 262 may perform the functions of the encryp
tion processor 260 in a single processor. Additionally, the
hardware layer 206 may comprise multiple processors for
each of the processing unit 262 and the encryption processor
260. For example, in one embodiment, the appliance 200
comprises a first processor 262 and a second processor 262".
In other embodiments, the processor 262 or 262 comprises a
multi-core processor.

Although the hardware layer 206 of appliance 200 is gen
erally illustrated with an encryption processor 260, processor
260 may be a processor for performing functions related to
any encryption protocol. Such as the Secure Socket Layer
(SSL) or Transport Layer Security (TLS) protocol. In some
embodiments, the processor 260 may be a general purpose
processor (GPP), and in further embodiments, may be have
executable instructions for performing processing of any
security related protocol.

Although the hardware layer 206 of appliance 200 is illus
trated with certain elements in FIG. 2, the hardware portions

US 8,639,813 B2
17

or components of appliance 200 may comprise any type and
form of elements, hardware or Software, of a computing
device, such as the computing device 100 illustrated and
discussed herein in conjunction with FIGS. 1E and 1F. In
Some embodiments, the appliance 200 may comprise a server,
gateway, router, Switch, bridge or other type of computing or
network device, and have any hardware and/or software ele
ments associated therewith.
The operating system of appliance 200 allocates, manages,

or otherwise segregates the available system memory into
kernel space 204 and user space 204. In example software
architecture 200, the operating system may be any type and/or
form of UNIX operating system although the invention is not
so limited. As such, the appliance 200 can be running any
operating system Such as any of the versions of the
Microsoft(R) Windows operating systems, the different
releases of the Unix and Linux operating systems, any version
of the Mac OSR) for Macintosh computers, any embedded
operating system, any network operating system, any real
time operating system, any open Source operating system, any
proprietary operating system, any operating systems for
mobile computing devices or network devices, or any other
operating system capable of running on the appliance 200 and
performing the operations described herein.
The kernel space 204 is reserved for running the kernel

230, including any device drivers, kernel extensions or other
kernel related software. As known to those skilled in the art,
the kernel 230 is the core of the operating system, and pro
vides access, control, and management of resources and hard
ware-related elements of the application 104. In accordance
with an embodiment of the appliance 200, the kernel space
204 also includes a number of network services or processes
working in conjunction with a cache manager 232, sometimes
also referred to as the integrated cache, the benefits of which
are described in detail further herein. Additionally, the
embodiment of the kernel 230 will depend on the embodi
ment of the operating system installed, configured, or other
wise used by the device 200.

In one embodiment, the device 200 comprises one network
stack 267, such as a TCP/IP based stack, for communicating
with the client 102 and/or the server 106. In one embodiment,
the network stack 267 is used to communicate with a first
network, such as network 108, and a second network 110. In
some embodiments, the device 200 terminates a first transport
layer connection, such as a TCP connection of a client 102,
and establishes a second transport layer connection to a server
106 for use by the client 102, e.g., the second transport layer
connection is terminated at the appliance 200 and the server
106. The first and second transport layer connections may be
established via a single network stack 267. In other embodi
ments, the device 200 may comprise multiple network stacks,
for example 267 and 267, and the first transport layer con
nection may be established or terminated at one network Stack
267, and the second transport layer connection on the second
network stack 267". For example, one network stack may be
for receiving and transmitting network packet on a first net
work, and another network Stack for receiving and transmit
ting network packets on a second network. In one embodi
ment, the network stack 267 comprises a buffer 243 for
queuing one or more network packets for transmission by the
appliance 200.
As shown in FIG. 2, the kernel space 204 includes the cache

manager 232, a high-speed layer 2-7 integrated packet engine
240, an encryption engine 234, a policy engine 236 and multi
protocol compression logic 238. Running these components
or processes 232, 240, 234, 236 and 238 in kernel space 204
or kernel mode instead of the user space 202 improves the

10

15

25

30

35

40

45

50

55

60

65

18
performance of each of these components, alone and in com
bination. Kernel operation means that these components or
processes 232,240, 234, 236 and 238 run in the core address
space of the operating system of the device 200. For example,
running the encryption engine 234 in kernel mode improves
encryption performance by moving encryption and decryp
tion operations to the kernel, thereby reducing the number of
transitions between the memory space or a kernel thread in
kernel mode and the memory space or a thread in user mode.
For example, data obtained in kernel mode may not need to be
passed or copied to a process or thread running in user mode,
such as from a kernel level data structure to a user level data
structure. In another aspect, the number of context Switches
between kernel mode and user mode are also reduced. Addi
tionally, synchronization of and communications between
any of the components or processes 232, 240, 235, 236 and
238 can be performed more efficiently in the kernel space
204.

In some embodiments, any portion of the components 232,
240,234, 236 and 238 may run or operate in the kernel space
204, while other portions of these components 232, 240,234,
236 and 238 may run or operate in user space 202. In one
embodiment, the appliance 200 uses a kernel-level data struc
ture providing access to any portion of one or more network
packets, for example, a network packet comprising a request
from a client 102 or a response from a server 106. In some
embodiments, the kernel-level data structure may be obtained
by the packet engine 240 via a transport layer driver interface
or filter to the network stack 267. The kernel-level data struc
ture may comprise any interface and/or data accessible via the
kernel space 204 related to the network stack 267, network
traffic or packets received or transmitted by the network stack
267. In other embodiments, the kernel-level data structure
may be used by any of the components or processes 232,240,
234, 236 and 238 to perform the desired operation of the
component or process. In one embodiment, a component 232,
240, 234, 236 and 238 is running in kernel mode 204 when
using the kernel-level data structure, while in another
embodiment, the component 232, 240, 234, 236 and 238 is
running in user mode when using the kernel-level data struc
ture. In some embodiments, the kernel-level data structure
may be copied or passed to a second kernel-level data struc
ture, or any desired user-level data structure.
The cache manager 232 may comprise Software, hardware

or any combination of software and hardware to provide
cache access, control and management of any type and form
of content. Such as objects or dynamically generated objects
served by the originating servers 106. The data, objects or
content processed and stored by the cache manager 232 may
comprise data in any format, such as a markup language, or
communicated via any protocol. In some embodiments, the
cache manager 232 duplicates original data stored elsewhere
or data previously computed, generated or transmitted, in
which the original data may require longer access time to
fetch, compute or otherwise obtain relative to reading a cache
memory element. Once the data is stored in the cache memory
element, future use can be made by accessing the cached copy
rather than refetching or recomputing the original data,
thereby reducing the access time. In some embodiments, the
cache memory element may comprise a data object in
memory 264 of device 200. In other embodiments, the cache
memory element may comprise memory having a faster
access time than memory 264. In another embodiment, the
cache memory element may comprise any type and form of
storage element of the device 200, such as a portion of a hard
disk. In some embodiments, the processing unit 262 may
provide cache memory for use by the cache manager 232. In

US 8,639,813 B2
19

yet further embodiments, the cache manager 232 may use any
portion and combination of memory, storage, or the process
ing unit for caching data, objects, and other content.

Furthermore, the cache manager 232 includes any logic,
functions, rules, or operations to perform any embodiments
of the techniques of the appliance 200 described herein. For
example, the cache manager 232 includes logic or function
ality to invalidate objects based on the expiration of an invali
dation time period or upon receipt of an invalidation com
mand from a client 102 or server 106. In some embodiments,
the cache manager 232 may operate as a program, service,
process or task executing in the kernel space 204, and in other
embodiments, in the user space 202. In one embodiment, a
first portion of the cache manager 232 executes in the user
space 202 while a second portion executes in the kernel space
204. In some embodiments, the cache manager 232 can com
prise any type of general purpose processor (GPP), or any
other type of integrated circuit, such as a Field Programmable
Gate Array (FPGA), Programmable Logic Device (PLD), or
Application Specific Integrated Circuit (ASIC).
The policy engine 236 may include, for example, an intel

ligent statistical engine or other programmable
application(s). In one embodiment, the policy engine 236
provides a configuration mechanism to allow a user to iden
tify, specify, define or configure a caching policy. Policy
engine 236, in Some embodiments, also has access to memory
to support data structures such as lookup tables or hash tables
to enable user-selected caching policy decisions. In other
embodiments, the policy engine 236 may comprise any logic,
rules, functions or operations to determine and provide
access, control and management of objects, data or content
being cached by the appliance 200 in addition to access,
control and management of security, network traffic, network
access, compression or any other function or operation per
formed by the appliance 200. Further examples of specific
caching policies are further described herein.

In some embodiments, the policy engine 236 may provide
a configuration mechanism to allow a user to identify, specify,
define or configure policies directing behavior of any other
components or functionality of an appliance, including with
out limitation the components described in FIG. 2B such as
vServers 275, VPN functions 280, Intranet IP functions 282,
switching functions 284, DNS functions 286, acceleration
functions 288, application firewall functions 290, and moni
toring agents 197. In other embodiments, the policy engine
236 may check, evaluate, implement, or otherwise act in
response to any configured policies, and may also direct the
operation of one or more appliance functions in response to a
policy.
The encryption engine 234 comprises any logic, business

rules, functions or operations for handling the processing of
any security related protocol, such as SSL or TLS, or any
function related thereto. For example, the encryption engine
234 encrypts and decrypts network packets, or any portion
thereof, communicated via the appliance 200. The encryption
engine 234 may also setup or establish SSL or TLS connec
tions on behalf of the client 102a-102n, server 106a-106n, or
appliance 200. As such, the encryption engine 234 provides
offloading and acceleration of SSL processing. In one
embodiment, the encryption engine 234 uses a tunneling
protocol to provide a virtual private network between a client
102a-102n and a server 106a-106 n. In some embodiments,
the encryption engine 234 is in communication with the
Encryption processor 260. In other embodiments, the encryp
tion engine 234 comprises executable instructions running on
the Encryption processor 260.

10

15

25

30

35

40

45

50

55

60

65

20
The multi-protocol compression engine 238 comprises any

logic, business rules, function or operations for compressing
one or more protocols of a network packet, such as any of the
protocols used by the network stack 267 of the device 200. In
one embodiment, multi-protocol compression engine 238
compresses bi-directionally between clients 102a-102n and
servers 106a-106.n any TCP/IP based protocol, including
Messaging Application Programming Interface (MAPI)
(email), File Transfer Protocol (FTP), HyperText Transfer
Protocol (HTTP), Common Internet File System (CIFS) pro
tocol (file transfer), Independent Computing Architecture
(ICA) protocol, Remote Desktop Protocol (RDP), Wireless
Application Protocol (WAP), Mobile IP protocol, and Voice
Over IP (VoIP) protocol. In other embodiments, multi-proto
col compression engine 238 provides compression of Hyper
text Markup Language (HTML) based protocols and in some
embodiments, provides compression of any markup lan
guages, such as the Extensible Markup Language (XML). In
one embodiment, the multi-protocol compression engine 238
provides compression of any high-performance protocol,
Such as any protocol designed for appliance 200 to appliance
200 communications. In another embodiment, the multi-pro
tocol compression engine 238 compresses any payload of or
any communication using a modified transport control pro
tocol, such as Transaction TCP (T/TCP), TCP with selection
acknowledgements (TCP-SACK), TCP with large windows
(TCP-LW), a congestion prediction protocol such as the TCP
Vegas protocol, and a TCP spoofing protocol.
As such, the multi-protocol compression engine 238 accel

erates performance for users accessing applications via desk
top clients, e.g., Microsoft Outlook and non-Web thin clients,
such as any client launched by popular enterprise applications
like Oracle, SAP and Siebel, and even mobile clients, such as
the Pocket PC. In some embodiments, the multi-protocol
compression engine 238 by executing in the kernel mode 204
and integrating with packet processing engine 240 accessing
the network stack 267 is able to compress any of the protocols
carried by the TCP/IP protocol, such as any application layer
protocol.

High speed layer 2-7 integrated packet engine 240, also
generally referred to as a packet processing engine or packet
engine, is responsible for managing the kernel-level process
ing of packets received and transmitted by appliance 200 via
network ports 266. The high speed layer 2-7 integrated packet
engine 240 may comprise a buffer for queuing one or more
network packets during processing, such as for receipt of a
network packet or transmission of a network packer. Addi
tionally, the high speed layer 2-7 integrated packet engine 240
is in communication with one or more network stacks 267 to
send and receive network packets via network ports 266. The
high speed layer 2-7 integrated packet engine 240 works in
conjunction with encryption engine 234, cache manager 232,
policy engine 236 and multi-protocol compression logic 238.
In particular, encryption engine 234 is configured to perform
SSL processing of packets, policy engine 236 is configured to
perform functions related to traffic management such as
request-level content Switching and request-level cache redi
rection, and multi-protocol compression logic 238 is config
ured to perform functions related to compression and decom
pression of data.
The high speed layer 2-7 integrated packet engine 240

includes a packet processing timer 242. In one embodiment,
the packet processing timer 242 provides one or more time
intervals to trigger the processing of incoming, i.e., received,
or outgoing, i.e., transmitted, network packets. In some
embodiments, the high speed layer 2-7 integrated packet
engine 240 processes network packets responsive to the timer

US 8,639,813 B2
21

242. The packet processing timer 242 provides any type and
form of signal to the packet engine 240 to notify, trigger, or
communicate a time related event, interval or occurrence. In
many embodiments, the packet processing timer 242 operates
in the order of milliseconds, such as for example 100 ms, 50
ms or 25 ms. For example, in some embodiments, the packet
processing timer 242 provides time intervals or otherwise
causes a network packet to be processed by the high speed
layer 2-7 integrated packet engine 240 at a 10 ms time inter
val, while in other embodiments, at a 5 ms time interval, and
still yet in further embodiments, as short as a 3, 2, or 1 ms time
interval. The high speed layer 2-7 integrated packet engine
240 may be interfaced, integrated or in communication with
the encryption engine 234, cache manager 232, policy engine
236 and multi-protocol compression engine 238 during
operation. As such, any of the logic, functions, or operations
of the encryption engine 234, cache manager 232, policy
engine 236 and multi-protocol compression logic 238 may be
performed responsive to the packet processing timer 242
and/or the packet engine 240. Therefore, any of the logic,
functions, or operations of the encryption engine 234, cache
manager 232, policy engine 236 and multi-protocol compres
sion logic 238 may be performed at the granularity of time
intervals provided via the packet processing timer 242, for
example, at a time interval of less than or equal to 10 ms. For
example, in one embodiment, the cache manager 232 may
perform invalidation of any cached objects responsive to the
high speed layer 2-7 integrated packet engine 240 and/or the
packet processing timer 242. In another embodiment, the
expiry or invalidation time of a cached object can be set to the
same order of granularity as the time interval of the packet
processing timer 242, such as at every 10 ms.

In contrast to kernel space 204, user space 202 is the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space
204 directly and uses service calls in order to access kernel
services. As shown in FIG.2, user space 202 of appliance 200
includes a graphical user interface (GUI) 210, a command
line interface (CLI) 212, shell services 214, health monitoring
program 216, and daemon services 218. GUI 210 and CLI
212 provide a means by which a system administrator or other
user can interact with and control the operation of appliance
200, such as via the operating system of the appliance 200 and
either is user space 202 or kernel space 204. The GUI 210 may
be any type and form of graphical user interface and may be
presented via text, graphical or otherwise, by any type of
program or application, Such as a browser. The CLI 212 may
be any type and form of commandline or text-based interface,
Such as a command line provided by the operating system. For
example, the CLI 212 may comprise a shell, which is a tool to
enable users to interact with the operating system. In some
embodiments, the CLI 212 may be provided via a bash, csh,
tcsh, or ksh type shell. The shell services 214 comprises the
programs, services, tasks, processes or executable instruc
tions to support interaction with the appliance 200 or operat
ing system by a user via the GUI 210 and/or CLI 212.

Health monitoring program 216 is used to monitor, check,
report and ensure that network systems are functioning prop
erly and that users are receiving requested content over a
network. Health monitoring program 216 comprises one or
more programs, services, tasks, processes or executable
instructions to provide logic, rules, functions or operations
for monitoring any activity of the appliance 200. In some
embodiments, the health monitoring program 216 intercepts
and inspects any network traffic passed via the appliance 200.
In other embodiments, the health monitoring program 216

10

15

25

30

35

40

45

50

55

60

65

22
interfaces by any suitable means and/or mechanisms with one
or more of the following: the encryption engine 234, cache
manager 232, policy engine 236, multi-protocol compression
logic 238, packet engine 240, daemon services 218, and shell
services 214. As such, the health monitoring program 216
may call any application programming interface (API) to
determine a state, status, or health of any portion of the
appliance 200. For example, the health monitoring program
216 may ping or send a status inquiry on a periodic basis to
check if a program, process, service or task is active and
currently running. In another example, the health monitoring
program 216 may check any status, error or history logs
provided by any program, process, service or task to deter
mine any condition, status or error with any portion of the
appliance 200.
Daemon services 218 are programs that run continuously

or in the background and handle periodic service requests
received by appliance 200. In some embodiments, a daemon
service may forward the requests to other programs or pro
cesses, such as another daemon service 218 as appropriate. As
known to those skilled in the art, a daemon service 218 may
run unattended to perform continuous or periodic system
wide functions, such as network control, or to perform any
desired task. In some embodiments, one or more daemon
services 218 run in the user space 202, while in other embodi
ments, one or more daemon services 218 run in the kernel
Space.

Referring now to FIG. 2B, another embodiment of the
appliance 200 is depicted. In brief overview, the appliance
200 provides one or more of the following services, function
ality or operations: SSL VPN connectivity 280, switching?
load balancing 284, Domain Name Service resolution 286,
acceleration 288 and an application firewall 290 for commu
nications between one or more clients 102 and one or more
servers 106. Each of the servers 106 may provide one or more
network related services 270a-270n (referred to as services
270). For example, a server 106 may provide an http service
270. The appliance 200 comprises one or more virtual servers
or virtual internet protocol servers, referred to as a vServer,
VIP server, or just VIP 275a-275n (also referred herein as
vServer 275). The vServer 275 receives, intercepts or other
wise processes communications between a client 102 and a
server 106 in accordance with the configuration and opera
tions of the appliance 200.
The VServer 275 may comprise software, hardware or any

combination of software and hardware. The VServer 275 may
comprise any type and form of program, service, task, process
or executable instructions operating in user mode 202, kernel
mode 204 or any combination thereof in the appliance 200.
The VServer 275 includes any logic, functions, rules, or
operations to perform any embodiments of the techniques
described herein, such as SSL VPN 280, switching/load bal
ancing 284, Domain Name Service resolution 286, accelera
tion 288 and an application firewall 290. In some embodi
ments, the VServer 275 establishes a connection to a service
270 of a server 106. The service 275 may comprise any
program, application, process, task or set of executable
instructions capable of connecting to and communicating to
the appliance 200, client 102 or vServer 275. For example, the
service 275 may comprise a web server, http server, ftp, email
or database server. In some embodiments, the service 270 is a
daemon process or network driver for listening, receiving
and/or sending communications for an application, such as
email, database or an enterprise application. In some embodi
ments, the service 270 may communicate on a specific IP
address, or IP address and port.

US 8,639,813 B2
23

In some embodiments, the VServer 275 applies one or more
policies of the policy engine 236 to network communications
between the client 102 and server 106. In one embodiment,
the policies are associated with a VServer 275. In another
embodiment, the policies are based on a user, or a group of
users. In yet another embodiment, a policy is global and
applies to one or more VServers 275a-275n, and any user or
group of users communicating via the appliance 200. In some
embodiments, the policies of the policy engine have condi
tions upon which the policy is applied based on any content of
the communication, Such as internet protocol address, port,
protocol type, header or fields in a packet, or the context of the
communication, such as user, group of the user, VServer 275,
transport layer connection, and/or identification or attributes
of the client 102 or server 106.

In other embodiments, the appliance 200 communicates or
interfaces with the policy engine 236 to determine authenti
cation and/or authorization of a remote user or a remote client
102 to access the computing environment 15, application,
and/or data file from a server 106. In another embodiment, the
appliance 200 communicates or interfaces with the policy
engine 236 to determine authentication and/or authorization
of a remote user or a remote client 102 to have the application
delivery system 190 deliver one or more of the computing
environment 15, application, and/or data file. In yet another
embodiment, the appliance 200 establishes a VPN or SSL
VPN connection based on the policy engine's 236 authenti
cation and/or authorization of a remote user or a remote client
103 In one embodiment, the appliance 102 controls the flow
of network traffic and communication sessions based on poli
cies of the policy engine 236. For example, the appliance 200
may control the access to a computing environment 15, appli
cation or data file based on the policy engine 236.

In some embodiments, the VServer 275 establishes a trans
port layer connection, such as a TCP or UDP connection with
a client 102 via the client agent 120. In one embodiment, the
vServer 275 listens for and receives communications from the
client 102. In other embodiments, the vServer 275 establishes
a transport layer connection, such as a TCP or UDP connec
tion with a client server 106. In one embodiment, the VServer
275 establishes the transport layer connection to an internet
protocoladdress and port of a server 270 running on the server
106. In another embodiment, the VServer 275 associates a first
transport layer connection to a client 102 with a second trans
port layer connection to the server 106. In some embodi
ments, a VServer 275 establishes a pool of transport layer
connections to a server 106 and multiplexes client requests
via the pooled transport layer connections.

In some embodiments, the appliance 200 provides a SSL
VPN connection 280 between a client 102 and a server 106.
For example, a client 102 on a first network 102 requests to
establish a connection to a server 106 on a second network
104. In some embodiments, the second network 104' is not
routable from the first network 104. In other embodiments,
the client 102 is on a public network 104 and the server 106 is
on a private network 104". Such as a corporate network. In one
embodiment, the client agent 120 intercepts communications
of the client 102 on the first network 104, encrypts the com
munications, and transmits the communications via a first
transport layer connection to the appliance 200. The appli
ance 200 associates the first transport layer connection on the
first network 104 to a second transport layer connection to the
server 106 on the second network 104. The appliance 200
receives the intercepted communication from the clientagent
102, decrypts the communications, and transmits the commu
nication to the server 106 on the second network 104 via the
second transport layer connection. The second transport layer

5

10

15

25

30

35

40

45

50

55

60

65

24
connection may be a pooled transport layer connection. As
Such, the appliance 200 provides an end-to-end secure trans
port layer connection for the client 102 between the two
networks 104, 104".

In one embodiment, the appliance 200 hosts an intranet
internet protocol or intranetIP282 address of the client 102 on
the virtual private network 104. The client 102 has a local
network identifier, such as an internet protocol (IP) address
and/or host name on the first network 104. When connected to
the second network 104 via the appliance 200, the appliance
200 establishes, assigns or otherwise provides an IntranetIP,
which is network identifier, such as IP address and/or host
name, for the client 102 on the second network 104'. The
appliance 200 listens for and receives on the second or private
network 104 for any communications directed towards the
client 102 using the client’s established IntranetIP282. In one
embodiment, the appliance 200 acts as or on behalf of the
client 102 on the second private network 104. For example, in
another embodiment, a VServer 275 listens for and responds
to communications to the IntranetIP282 of the client 102. In
some embodiments, if a computing device 100 on the second
network 104" transmits a request, the appliance 200 processes
the request as if it were the client 102. For example, the
appliance 200 may respond to a ping to the client’s IntranetIP
282. In another example, the appliance may establish a con
nection, such as a TCP or UDP connection, with computing
device 100 on the second network 104 requesting a connec
tion with the client’s IntranetIP 282.

In some embodiments, the appliance 200 provides one or
more of the following acceleration techniques 288 to com
munications between the client 102 and server 106: 1) com
pression; 2) decompression; 3) Transmission Control Proto
colpooling; 4) Transmission Control Protocol multiplexing;
5) Transmission Control Protocol buffering; and 6) caching.
In one embodiment, the appliance 200 relieves servers 106 of
much of the processing load caused by repeatedly opening
and closing transport layers connections to clients 102 by
opening one or more transport layer connections with each
server 106 and maintaining these connections to allow
repeated data accesses by clients via the Internet. This tech
nique is referred to herein as “connection pooling.

In some embodiments, in order to seamlessly splice com
munications from a client 102 to a server 106 via a pooled
transport layer connection, the appliance 200 translates or
multiplexes communications by modifying sequence number
and acknowledgment numbers at the transport layer protocol
level. This is referred to as “connection multiplexing. In
Some embodiments, no application layer protocol interaction
is required. For example, in the case of an in-bound packet
(that is, a packet received from a client 102), the source
network address of the packet is changed to that of an output
port of appliance 200, and the destination network address is
changed to that of the intended server. In the case of an
outbound packet (that is, one received from a server 106), the
source network address is changed from that of the server 106
to that of an output port of appliance 200 and the destination
address is changed from that of appliance 200 to that of the
requesting client 102. The sequence numbers and acknowl
edgment numbers of the packet are also translated to
sequence numbers and acknowledgement expected by the
client 102 on the appliance's 200 transport layer connection
to the client 102. In some embodiments, the packet checksum
of the transport layer protocol is recalculated to account for
these translations.

In another embodiment, the appliance 200 provides
Switching or load-balancing functionality 284 for communi
cations between the client 102 and server 106. In some

US 8,639,813 B2
25

embodiments, the appliance 200 distributes traffic and directs
client requests to a server 106 based on layer 4 or application
layer request data. In one embodiment, although the network
layer or layer 2 of the network packet identifies a destination
server 106, the appliance 200 determines the server 106 to
distribute the network packet by application information and
data carried as payload of the transport layer packet. In one
embodiment, the health monitoring programs 216 of the
appliance 200 monitor the health of servers to determine the
server 106 for which to distribute a client’s request. In some
embodiments, if the appliance 200 detects a server 106 is not
available or has a load over a predetermined threshold, the
appliance 200 can direct or distribute client requests to
another server 106.

In some embodiments, the appliance 200 acts as a Domain
Name Service (DNS) resolver or otherwise provides resolu
tion of a DNS request from clients 102. In some embodi
ments, the appliance intercepts a DNS request transmitted by
the client 102. In one embodiment, the appliance 200
responds to a client’s DNS request with an IP address of or
hosted by the appliance 200. In this embodiment, the client
102 transmits network communication for the domain name
to the appliance 200. In another embodiment, the appliance
200 responds to a client’s DNS request with an IP address of
or hosted by a second appliance 200'. In some embodiments,
the appliance 200 responds to a client’s DNS request with an
IP address of a server 106 determined by the appliance 200.

In yet another embodiment, the appliance 200 provides
application firewall functionality 290 for communications
between the client 102 and server 106. In one embodiment,
the policy engine 236 provides rules for detecting and block
ing illegitimate requests. In some embodiments, the applica
tion firewall 290 protects against denial of service (DoS)
attacks. In other embodiments, the appliance inspects the
content of intercepted requests to identify and block applica
tion-based attacks. In some embodiments, the rules/policy
engine 236 comprises one or more application firewall or
security control policies for providing protections against
various classes and types of web or Internet based vulnerabili
ties, such as one or more of the following: 1) buffer overflow,
2) CGI-BIN parameter manipulation, 3) form/hidden field
manipulation, 4) forceful browsing, 5) cookie or session poi
soning, 6) broken access control list (ACLS) or weak pass
words, 7) cross-site Scripting (XSS), 8) command injection,
9) SQL injection, 10) error triggering sensitive information
leak, 11) insecure use of cryptography, 12) server miscon
figuration, 13) back doors and debug options, 14) website
defacement, 15) platform or operating systems Vulnerabili
ties, and 16) Zero-day exploits. In an embodiment, the appli
cation firewall 290 provides HTML form field protection in
the form of inspecting or analyzing the network communica
tion for one or more of the following: 1) required fields are
returned, 2) no added field allowed, 3) read-only and hidden
field enforcement, 4) drop-down list and radio button field
conformance, and 5) form-field max-length enforcement. In
some embodiments, the application firewall 290 ensures
cookies are not modified. In other embodiments, the applica
tion firewall 290 protects against forceful browsing by
enforcing legal URLs.

In still yet other embodiments, the application firewall 290
protects any confidential information contained in the net
work communication. The application firewall 290 may
inspector analyze any network communication in accordance
with the rules or polices of the engine 236 to identify any
confidential information in any field of the network packet. In
some embodiments, the application firewall 290 identifies in
the network communication one or more occurrences of a

10

15

25

30

35

40

45

50

55

60

65

26
credit card number, password, social security number, name,
patient code, contact information, and age. The encoded por
tion of the network communication may comprise these
occurrences or the confidential information. Based on these
occurrences, in one embodiment, the application firewall 290
may take a policy action on the network communication, Such
as prevent transmission of the network communication. In
another embodiment, the application firewall 290 may
rewrite, remove or otherwise mask such identified occurrence
or confidential information.

Still referring to FIG. 2B, the appliance 200 may include a
performance monitoring agent 197 as discussed above in
conjunction with FIG. 1D. In one embodiment, the appliance
200 receives the monitoring agent 197 from the monitoring
service 1908 or monitoring server 106 as depicted in FIG.1D.
In some embodiments, the appliance 200 stores the monitor
ing agent 197 in storage. Such as disk, for delivery to any
client or server in communication with the appliance 200. For
example, in one embodiment, the appliance 200 transmits the
monitoring agent 197 to a client upon receiving a request to
establish a transport layer connection. In other embodiments,
the appliance 200 transmits the monitoring agent 197 upon
establishing the transport layer connection with the client
102. In another embodiment, the appliance 200 transmits the
monitoring agent 197 to the client upon intercepting or
detecting a request for a web page. In yet another embodi
ment, the appliance 200 transmits the monitoring agent 197 to
a client or a server in response to a request from the monitor
ing server 198. In one embodiment, the appliance 200 trans
mits the monitoring agent 197 to a second appliance 200' or
appliance 205.

In other embodiments, the appliance 200 executes the
monitoring agent 197. In one embodiment, the monitoring
agent 197 measures and monitors the performance of any
application, program, process, service, task or thread execut
ing on the appliance 200. For example, the monitoring agent
197 may monitor and measure performance and operation of
vServers 275A-275N. In another embodiment, the monitor
ing agent 197 measures and monitors the performance of any
transport layer connections of the appliance 200. In some
embodiments, the monitoring agent 197 measures and moni
tors the performance of any user sessions traversing the appli
ance 200. In one embodiment, the monitoring agent 197
measures and monitors the performance of any virtual private
network connections and/or sessions traversing the appliance
200, such an SSL VPN session. In still further embodiments,
the monitoring agent 197 measures and monitors the memory,
CPU and disk usage and performance of the appliance 200. In
yet another embodiment, the monitoring agent 197 measures
and monitors the performance of any acceleration technique
288 performed by the appliance 200, such as SSL offloading,
connection pooling and multiplexing, caching, and compres
Sion. In some embodiments, the monitoring agent 197 mea
Sures and monitors the performance of any load balancing
and/or content switching 284 performed by the appliance
200. In other embodiments, the monitoring agent 197 mea
Sures and monitors the performance of application firewall
290 protection and processing performed by the appliance
2OO.
C. Client Agent

Referring now to FIG.3, an embodiment of the client agent
120 is depicted. The client 102 includes a client agent 120 for
establishing and exchanging communications with the appli
ance 200 and/or server 106 via a network 104. In brief over
view, the client 102 operates on computing device 100 having
an operating system with a kernel mode 302 and a user mode
303, and a network stack 310 with one or more layers 310a

US 8,639,813 B2
27

310b. The client 102 may have installed and/or execute one or
more applications. In some embodiments, one or more appli
cations may communicate via the network Stack 310 to a
network 104. One of the applications, such as a web browser,
may also include a first program 322. For example, the first
program 322 may be used in some embodiments to install
and/or execute the client agent 120, or any portion thereof.
The client agent 120 includes an interception mechanism, or
interceptor 350, for intercepting network communications
from the network stack 310 from the one or more applica
tions.

The network stack 310 of the client 102 may comprise any
type and form of software, or hardware, or any combinations
thereof, for providing connectivity to and communications
with a network. In one embodiment, the network stack 310
comprises a software implementation for a network protocol
suite. The network stack 310 may comprise one or more
network layers, such as any networks layers of the Open
Systems Interconnection (OSI) communications model as
those skilled in the art recognize and appreciate. As such, the
network stack 310 may comprise any type and form of pro
tocols for any of the following layers of the OSI model: 1)
physical link layer, 2) data link layer, 3) network layer, 4)
transport layer, 5) session layer, 6) presentation layer, and 7)
application layer. In one embodiment, the network stack 310
may comprise a transport control protocol (TCP) over the
network layer protocol of the internet protocol (IP), generally
referred to as TCP/IP. In some embodiments, the TCP/IP
protocol may be carried over the Ethernet protocol, which
may comprise any of the family of IEEE wide-area-network
(WAN) or local-area-network (LAN) protocols, such as those
protocols covered by the IEEE 802.3. In some embodiments,
the network stack 310 comprises any type and form of a
wireless protocol, such as IEEE 802.11 and/or mobile inter
net protocol.

In view of a TCP/IP based network, any TCP/IP based
protocol may be used, including Messaging Application Pro
gramming Interface (MAPI) (email), File Transfer Protocol
(FTP), HyperText Transfer Protocol (HTTP), Common Inter
net File System (CIFS) protocol (file transfer), Independent
Computing Architecture (ICA) protocol, Remote Desktop
Protocol (RDP), Wireless Application Protocol (WAP),
Mobile IP protocol, and Voice Over IP (VoIP) protocol. In
another embodiment, the network stack 310 comprises any
type and form of transport control protocol. Such as a modi
fied transport control protocol, for example a Transaction
TCP (T/TCP), TCP with selection acknowledgements (TCP
SACK), TCP with large windows (TCP-LW), a congestion
prediction protocol such as the TCP-Vegas protocol, and a
TCP spoofing protocol. In other embodiments, any type and
form of user datagram protocol (UDP), such as UDP over IP.
may be used by the network stack 310, such as for voice
communications or real-time data communications.

Furthermore, the network stack 310 may include one or
more network drivers Supporting the one or more layers. Such
as a TCP driver or a network layer driver. The network drivers
may be included as part of the operating system of the com
puting device 100 or as part of any network interface cards or
other network access components of the computing device
100. In some embodiments, any of the network drivers of the
network stack 310 may be customized, modified or adapted to
provide a custom or modified portion of the network stack
310 in support of any of the techniques described herein. In
other embodiments, the acceleration program 120 is designed
and constructed to operate with or work in conjunction with
the network stack 310 installed or otherwise provided by the
operating system of the client 102.

10

15

25

30

35

40

45

50

55

60

65

28
The network stack 310 comprises any type and form of

interfaces for receiving, obtaining, providing or otherwise
accessing any information and data related to network com
munications of the client 102. In one embodiment, an inter
face to the network Stack 310 comprises an application pro
gramming interface (API). The interface may also comprise
any function call, hooking or filtering mechanism, event or
call back mechanism, or any type of interfacing technique.
The network stack 310 via the interface may receive or pro
vide any type and form of data structure. Such as an object,
related to functionality or operation of the network stack 310.
For example, the data structure may comprise information
and data related to a network packet or one or more network
packets. In some embodiments, the data structure comprises
a portion of the network packet processed at a protocol layer
of the network stack 310, such as a network packet of the
transport layer. In some embodiments, the data structure 325
comprises a kernel-level data structure, while in other
embodiments, the data structure 325 comprises a user-mode
data structure. A kernel-level data structure may comprise a
data structure obtained or related to a portion of the network
stack 310 operating in kernel-mode 302, or a network driver
or other software running in kernel-mode 302, or any data
structure obtained or received by a service, process, task,
thread or other executable instructions running or operating in
kernel-mode of the operating system.

Additionally, some portions of the network stack 310 may
execute or operate in kernel-mode 302, for example, the data
link or network layer, while other portions execute or operate
in user-mode 303, such as an application layer of the network
stack 310. For example, a first portion 310a of the network
stack may provide user-mode access to the network stack 310
to an application while a second portion 310a of the network
stack 310 provides access to a network. In some embodi
ments, a first portion 310a of the network stack may comprise
one or more upper layers of the network stack 310, such as
any of layers 5-7. In other embodiments, a second portion
310b of the network stack 310 comprises one or more lower
layers, such as any of layers 1-4. Each of the first portion 310a
and second portion 310b of the network stack 310 may com
prise any portion of the network stack 310, at any one or more
network layers, in user-mode 203, kernel-mode, 202, or com
binations thereof, or at any portion of a network layer or
interface point to a network layer or any portion oforinterface
point to the user-mode 203 and kernel-mode 203.
The interceptor 350 may comprise software, hardware, or

any combination of Software and hardware. In one embodi
ment, the interceptor 350 intercept a network communication
at any point in the network stack 310, and redirects or trans
mits the network communication to a destination desired,
managed or controlled by the interceptor 350 or client agent
120. For example, the interceptor 350 may intercept a net
work communication of a network stack 310 of a first network
and transmit the network communication to the appliance 200
for transmission on a second network 104. In some embodi
ments, the interceptor 350 comprises any type interceptor 350
comprises a driver. Such as a network driver constructed and
designed to interface and work with the network stack 310. In
Some embodiments, the client agent 120 and/or interceptor
350 operates at one or more layers of the network stack 310,
Such as at the transport layer. In one embodiment, the inter
ceptor 350 comprises a filter driver, hooking mechanism, or
any form and type of suitable network driver interface that
interfaces to the transport layer of the network Stack, Such as
via the transport driver interface (TDI). In some embodi
ments, the interceptor 350 interfaces to a first protocol layer,
Such as the transport layer and another protocol layer, Such as

US 8,639,813 B2
29

any layer above the transport protocol layer, for example, an
application protocol layer. In one embodiment, the intercep
tor 350 may comprise a driver complying with the Network
Driver Interface Specification (NDIS), or a NDIS driver. In
another embodiment, the interceptor 350 may comprise a
min-filter or a mini-port driver. In one embodiment, the inter
ceptor 350, or portion thereof, operates in kernel-mode 202.
In another embodiment, the interceptor 350, or portion
thereof, operates in user-mode 203. In some embodiments, a
portion of the interceptor 350 operates in kernel-mode 202
while another portion of the interceptor 350 operates in user
mode 203. In other embodiments, the client agent 120 oper
ates in user-mode 203 but interfaces via the interceptor 350 to
a kernel-mode driver, process, service, task or portion of the
operating system, Such as to obtain a kernel-level data struc
ture 225. In further embodiments, the interceptor 350 is a
user-mode application or program, Such as application.

In one embodiment, the interceptor 350 intercepts any
transport layer connection requests. In these embodiments,
the interceptor 350 execute transport layer application pro
gramming interface (API) calls to set the destination infor
mation, such as destination IP address and/or port to a desired
location for the location. In this manner, the interceptor 350
intercepts and redirects the transport layer connection to a IP
address and port controlled or managed by the interceptor 350
or client agent 120. In one embodiment, the interceptor 350
sets the destination information for the connection to a local
IP address and port of the client 102 on which the client agent
120 is listening. For example, the client agent 120 may com
prise a proxy service listening on a local IP address and port
for redirected transport layer communications. In some
embodiments, the client agent 120 then communicates the
redirected transport layer communication to the appliance
2OO.

In some embodiments, the interceptor 350 intercepts a
Domain Name Service (DNS) request. In one embodiment,
the client agent 120 and/or interceptor 350 resolves the DNS
request. In another embodiment, the interceptor transmits the
intercepted DNS request to the appliance 200 for DNS reso
lution. In one embodiment, the appliance 200 resolves the
DNS request and communicates the DNS response to the
client agent 120. In some embodiments, the appliance 200
resolves the DNS request via another appliance 200' or a DNS
Server 106.

In yet another embodiment, the client agent 120 may com
prise two agents 120 and 120". In one embodiment, a first
agent 120 may comprise an interceptor 350 operating at the
network layer of the network stack 310. In some embodi
ments, the first agent 120 intercepts network layer requests
such as Internet Control Message Protocol (ICMP) requests
(e.g., ping and traceroute). In other embodiments, the second
agent 120' may operate at the transport layer and intercept
transport layer communications. In some embodiments, the
first agent 120 intercepts communications at one layer of the
network stack 210 and interfaces with or communicates the
intercepted communication to the second agent 120".
The client agent 120 and/or interceptor 350 may operate at

or interface with a protocol layer in a manner transparent to
any other protocol layer of the network stack 310. For
example, in one embodiment, the interceptor 350 operates or
interfaces with the transport layer of the network stack 310
transparently to any protocol layer below the transport layer,
Such as the network layer, and any protocol layer above the
transport layer, such as the session, presentation or applica
tion layer protocols. This allows the other protocol layers of
the network stack 310 to operate as desired and without
modification for using the interceptor 350. As such, the client

5

10

15

25

30

35

40

45

50

55

60

65

30
agent 120 and/or interceptor 350 can interface with the trans
port layer to secure, optimize, accelerate, route or load-bal
ance any communications provided via any protocol carried
by the transport layer, such as any application layer protocol
Over TCP/IP.

Furthermore, the client agent 120 and/or interceptor may
operate at or interface with the network stack 310 in a manner
transparent to any application, a user of the client 102, and any
other computing device. Such as a server, in communications
with the client 102. The client agent 120 and/or interceptor
350 may be installed and/or executed on the client 102 in a
manner without modification of an application. In some
embodiments, the user of the client 102 or a computing device
in communications with the client 102 are not aware of the
existence, execution or operation of the client agent 120 and/
or interceptor 350. As such, in some embodiments, the client
agent 120 and/or interceptor 350 is installed, executed, and/or
operated transparently to an application, user of the client
102, another computing device, such as a server, or any of the
protocol layers above and/or below the protocol layer inter
faced to by the interceptor 350.
The client agent 120 includes an acceleration program 302,

a streaming client 306, a collection agent 304, and/or moni
toring agent 197. In one embodiment, the client agent 120
comprises an Independent Computing Architecture (ICA)
client, or any portion thereof, developed by Citrix Systems,
Inc. of Fort Lauderdale, Fla., and is also referred to as an ICA
client. In some embodiments, the client 120 comprises an
application streaming client 306 for streaming an application
from a server 106 to a client 102. In some embodiments, the
client agent 120 comprises an acceleration program 302 for
accelerating communications between client 102 and server
106. In another embodiment, the client agent 120 includes a
collection agent 304 for performing end-point detection/
scanning and collecting end-point information for the appli
ance 200 and/or server 106.

In some embodiments, the acceleration program 302 com
prises a client-side acceleration program for performing one
or more acceleration techniques to accelerate, enhance or
otherwise improve a client’s communications with and/or
access to a server 106. Such as accessing an application pro
vided by a server 106. The logic, functions, and/or operations
of the executable instructions of the acceleration program 302
may perform one or more of the following acceleration tech
niques: 1) multi-protocol compression, 2) transport control
protocol pooling, 3) transport control protocol multiplexing,
4) transport control protocol buffering, and 5) caching via a
cache manager. Additionally, the acceleration program 302
may perform encryption and/or decryption of any communi
cations received and/or transmitted by the client 102. In some
embodiments, the acceleration program 302 performs one or
more of the acceleration techniques in an integrated manner
or fashion. Additionally, the acceleration program 302 can
perform compression on any of the protocols, or multiple
protocols, carried as a payload of a network packet of the
transport layer protocol. The streaming client 306 comprises
an application, program, process, service, task or executable
instructions for receiving and executing a streamed applica
tion from a server 106. A server 106 may stream one or more
application data files to the streaming client 306 for playing,
executing or otherwise causing to be executed the application
on the client 102. In some embodiments, the server 106 trans
mits a set of compressed or packaged application data files to
the streaming client 306. In some embodiments, the plurality
of application files are compressed and stored on a file server
within an archive file such as a CAB, ZIP SIT, TAR, JAR or
other archive. In one embodiment, the server 106 decom

US 8,639,813 B2
31

presses, unpackages or unarchives the application files and
transmits the files to the client 102. In another embodiment,
the client 102 decompresses, unpackages or unarchives the
application files. The streaming client 306 dynamically
installs the application, or portion thereof, and executes the
application. In one embodiment, the streaming client 306
may be an executable program. In some embodiments, the
streaming client 306 may be able to launch another execut
able program.
The collection agent 304 comprises an application, pro

gram, process, service, task or executable instructions for
identifying, obtaining and/or collecting information about the
client 102. In some embodiments, the appliance 200 transmits
the collection agent 304 to the client 102 or client agent 120.
The collection agent 304 may be configured according to one
or more policies of the policy engine 236 of the appliance. In
other embodiments, the collection agent 304 transmits col
lected information on the client 102 to the appliance 200. In
one embodiment, the policy engine 236 of the appliance 200
uses the collected information to determine and provide
access, authentication and authorization control of the cli
ent's connection to a network 104.

In one embodiment, the collection agent 304 comprises an
end-point detection and Scanning mechanism, which identi
fies and determines one or more attributes or characteristics of
the client. For example, the collection agent 304 may identify
and determine any one or more of the following client-side
attributes: 1) the operating system an/or a version of an oper
ating system, 2) a service pack of the operating system, 3) a
running service, 4) a running process, and 5) a file. The
collection agent 304 may also identify and determine the
presence or versions of any one or more of the following on
the client: 1) antivirus software, 2) personal firewall software,
3) anti-spam Software, and 4) internet security Software. The
policy engine 236 may have one or more policies based on
any one or more of the attributes or characteristics of the client
or client-side attributes.

In some embodiments, the client agent 120 includes a
monitoring agent 197 as discussed in conjunction with FIGS.
1D and 2B. The monitoring agent 197 may be any type and
form of Script, Such as Visual Basic or Java Script. In one
embodiment, the monitoring agent 129 monitors and mea
sures performance of any portion of the client agent 120. For
example, in Some embodiments, the monitoring agent 129
monitors and measures performance of the acceleration pro
gram 302. In another embodiment, the monitoring agent 129
monitors and measures performance of the streaming client
306. In other embodiments, the monitoring agent 129 moni
tors and measures performance of the collection agent 304. In
still another embodiment, the monitoring agent 129 monitors
and measures performance of the interceptor 350. In some
embodiments, the monitoring agent 129 monitors and mea
sures any resource of the client 102, such as memory, CPU
and disk.
The monitoring agent 197 may monitor and measure per

formance of any application of the client. In one embodiment,
the monitoring agent 129 monitors and measures perfor
mance of a browser on the client 102. In some embodiments,
the monitoring agent 197 monitors and measures perfor
mance of any application delivered via the clientagent 120. In
other embodiments, the monitoring agent 197 measures and
monitors end user response times for an application, such as
web-based or HTTP response times. The monitoring agent
197 may monitor and measure performance of an ICA or RDP
client. In another embodiment, the monitoring agent 197
measures and monitors metrics for a user session or applica
tion session. In some embodiments, monitoring agent 197

10

15

25

30

35

40

45

50

55

60

65

32
measures and monitors an ICA or RDP session. In one
embodiment, the monitoring agent 197 measures and moni
tors the performance of the appliance 200 in accelerating
delivery of an application and/or data to the client 102.

In some embodiments and still referring to FIG. 3, a first
program 322 may be used to install and/or execute the client
agent 120, or portion thereof, such as the interceptor 350,
automatically, silently, transparently, or otherwise. In one
embodiment, the first program 322 comprises a plugin com
ponent, such an ActiveX control or Java control or Script that
is loaded into and executed by an application. For example,
the first program comprises an ActiveX control loaded and
run by a web browser application, Such as in the memory
space or context of the application. In another embodiment,
the first program 322 comprises a set of executable instruc
tions loaded into and run by the application, such as a
browser. In one embodiment, the first program 322 comprises
a designed and constructed program to install the client agent
120. In some embodiments, the first program 322 obtains,
downloads, or receives the client agent 120 via the network
from another computing device. In another embodiment, the
first program 322 is an installer program or a plug and play
manager for installing programs, such as network drivers, on
the operating system of the client 102.
D. Load Balancing with Metrics Selected by a User from
Appliance Determined Metrics and/or Metrics Collected
from a Device Via a Network Management Protocol

Referring now to FIGS. 4A and 4B, systems and methods
are depicted for load balancing based on metrics determined
by the appliance 200 and/or metrics collected by the appli
ance from a device or service via a network management
protocol, such as a Simple Network Management Protocol
(SNMP). The appliance provides a load monitor to monitor
the load of one or more services 270a-270n. In one embodi
ment, a user may configure one or more load monitors based
on metrics selected from a custom metric table which
includes metrics or objects obtains via a network manage
ment protocol query. In another embodiment, a user may
configure one or more load monitors based on metrics or
parameters collected by the appliance. In some embodiments,
the user configures one or more load monitors based on met
rics selected from the custom metric table and the appliance
collected metrics. In response to the user's selection, the
appliance determines the load of the one or more services and
load balances client requests to the services using any type of
load balancing technique.

Referring now to FIG. 4A, an embodiment of an appliance
for load balancing one or more services is depicted. In brief
overview, an appliance 200 has one or more virtual servers, or
vServers 275A-275N configured to provide load balancing
284 to one or more services 270a-270n deployed on or pro
vided by one or more servers 106a-106b. A vServer 275A is
associated with, configured to or bound to a service 270A or
a group of services 270A-270N. The appliance 200 has one or
more load monitors 405A-405N to monitor a status, opera
tion, and/or performance of the services 270A-270N. A load
monitoris associated with, configured to or bound to a service
270A or a group of services 270A-270N. The load monitors
405A-405B provide information to the vServers 275A-275N
to determine which of the Services 270A-270N should receive
a request received by a vServer 275. A load monitor 405
and/or VServer 275 may use appliance collected metrics 410
and/or device provided metrics 420 to determine a load across
a plurality of services 270A-270N and to load balancing
incoming client requests. The appliance 200 also includes a
configuration interface 435 to receive information identifying
user selected or user defined metrics 430 to be used by the

US 8,639,813 B2
33

load monitors 405 and/or vServers 275 for load balancing the
plurality of services 270A-270N.

The appliance 200 may include any type and form of load
monitor 405A-405N, also referred to as monitoring agent, for
monitoring any operational or performance characteristic or
metric of a service 270, server 106 or device 100. A load
monitor 405 may include software, hardware, or any combi
nation of software and hardware. The load monitor 405 may
include any application, program, Script, service, daemon,
process, task, thread or set of executable instructions. In one
embodiment, the load monitor 405 operates or executes in
kernel space of the appliance 200. In another embodiment, the
load monitor 405 operates or executes in user or application
space of the appliance 200. In some embodiments, a first
portion of the load monitor 405 operates in kernel space while
a second portion of the load monitor 405 operates in applica
tion layer or space of the appliance 200.

In one embodiment, the load monitor 405 communicates
with a service 270 once. In some embodiments, the load
monitor 405 monitors or communicates with a service 270 on
a predetermined frequency, such as every 1 mSec or 1 sec. A
user may configure or specify the predetermined frequency
via the configuration interface 425. In other cases, another
appliance or system may configure or specify the predeter
mined frequency via the configuration interface 425. In yet
another embodiment, the load monitor 405 monitors or com
municates with a service 270 responsive to one or more
events, such as receipt of a request, response or a network
packet. In one embodiment, a load monitor 405 monitors or
communicates with a service 270 responsive to one or more
policies of a policy engine.

In some embodiments, a load monitor 405 may use a
request/reply messaging mechanism or protocol with the Ser
vice 270 or server 106. In other embodiments, a load monitor
405 may have a custom or proprietary exchange protocol for
communicating with a service, server or device. In one
embodiment, a load monitor 405 may use the protocol of the
service 270 to monitor or communicate with the service 270.
As such, in some embodiments, the load monitor 405 uses the
HTTP protocol to monitor or communicate with a web ser
vice 270A oran FTP protocol for an FTP server 270B. In yet
other embodiments, the load monitor 405 uses a TCP or
ICMP protocol for monitoring a service 270. In some
embodiments, the load monitor 405 uses a network manage
ment protocol to monitor or query a status or metric of a
service, server or device. In one embodiment, the load moni
tor 405 uses a Simple Network Management Protocol
(SNMP). In another embodiment, the load monitor 405 uses
a common management information protocol (CIMP).

In some embodiments, a single load monitor 405 monitors
a plurality of services 270A-270N, or servers 106A-106B. In
other embodiments, a plurality of load monitors 405A-405N
monitor a single service 270A or server 106A. In still other
embodiments, multiple load monitors 405 may each monitor
a plurality of services 270A-270N, or servers 106A-106.N. In
one embodiment, multiple load monitors 405 may each moni
tor a service 270. In yet another embodiment, a load monitor
405A may monitor one or more other load monitors 405B
4OSN.

In some embodiments, the one or more load monitors 405
are associated with one or more services 270. In one embodi
ment, a userspecifies or configures a load monitor 405 for one
or more service 270 via the configuration interface 425. For
example, a user via the configuration interface 435 may issue
a command to bind the monitor 405 to a service 275. In other
embodiments, the load monitor 405 is associated with a
vServer 275. In one embodiment, a user specifies or config

5

10

15

25

30

35

40

45

50

55

60

65

34
ures via the configuration interface 425 a load monitor 405 for
a vServer 275. In yet another embodiment, a use specifies or
configures via the configuration interface 425 a vServer 275
for one or more services 270A-270N. For example, a user
may bind a vServer 275 to a service 270.

In some embodiments, the one or more load monitors 405
may monitor an appliance 200, VServer 275, network service
270, client 102, server 106, device 100 or any other network
resource. In one embodiment, a user specifies a type of net
work service to associate with the one or more monitoring
agents 405. In another embodiment, a user customizes a
monitoring agent. For example, a user may implement or
otherwise provide a script for monitoring a service. In still
another embodiment, a generic monitoring agent 405 is used.
In some embodiments, a monitor agent 405 is configurable to
use a predetermined monitor, Script or status message based
on a type of protocol or type of service

In yet another embodiment, the one or more monitoring
agents 405 determine the response time of the one or more
network services 270 for responding to a request of one of the
following types: ping, transport control protocol (tcp), tcp
extended content verification, hypertext transfer protocol
(http), http extended content verification, hypertext transfer
protocol secure (https), https extended content verification,
user datagram protocol, domain name service, and file trans
fer protocol. In some embodiment, a monitoring agent 405
checks for predetermined status codes in responses from the
service 270. In other embodiments, the monitoring agent 405
checks for predetermined string patters in response from the
Service 270.

In some embodiments, the one or more load monitors or
monitoring agents 405 are protocol-specific agents. For
example, an agent 405 may determine availability for a net
work service of a particular protocol-type. In some embodi
ments, a monitoring agent 405 determines a response time of
a server 106 or network service 270 to a TCP request. In one
of these embodiments, the agent uses a “TCP/ICMP echo
request command to send a datagram to the network service
270, receive a datagram from the network service 270 in
response, and determine a response time based on the
roundtrip time of the datagram. In another of these embodi
ments, the monitoring agent 405 verifies that the response
from the network service 270 included expected content. In
one embodiment, the monitoring agent 405 verifies that the
response did not include an error.

In other embodiments, a monitoring agent 405 determines
availability of a network service 270 to a UDP request. In one
of these embodiments, the agent uses a “UDP echo com
mand to send a datagram to the network service 270, receive
a datagram from the network service 270 in response, and
determine a response time based on the roundtrip time of the
datagram. In another of these embodiments, the monitoring
agent 405 verifies that the response from the network service
270 included expected content and did not contain errors.

In still other embodiments, the monitoring agent 405 deter
mines availability of a network service 270 to an FTP request.
In one of these embodiments, the monitoring agent 405 sends
an FTP command, such as a “get command or a “put com
mand, to the network service 270 and determines a time
needed by the network service 270 to respond to the com
mand. In another of these embodiments, the monitoring agent
405 verifies that the response from the network service 270
included expected content, Such as contents of a file requested
by a 'get command, and did not contain errors.

In yet other embodiments, the monitoring agent 405 deter
mines availability of a network service 270 to an HTTP
request. In one of these embodiments, the monitoring agent

US 8,639,813 B2
35

405 sends an HTTP command, such as a “get request for a
uniform resource locator (URL) or a file, to the network
service 270 and determines a time needed by the network
service 270 to respond to the request. In another of these
embodiments, the monitoring agent 405 verifies that the
response from the network service 270 included expected
content, such as the content of a web page identified by a
URL. In some embodiment, the monitor agent 405 checks for
a predetermined status code. In other embodiments, the moni
toring agent 405 checks for a predetermine String pattern in an
HTTP response.

In further embodiments, the monitoring agent 405 deter
mines availability of a network service 270 to a DNS request.
In one of these embodiments, the monitoring agent 405 sends
a DNS request, Such as a dinsquery or nslookup for a known
network address, to the server 106 or network service 270 and
determines a time needed by the server 106 or network ser
vice 270 to respond to the request. In another of these embodi
ments, the monitoring agent 405 verifies that the response
from the network service 270 included expected content, such
as the domain name of a computing device 100 associated
with the known network address. In one embodiment, moni
toring agent 405 verifies the response did not have an error.

In some embodiments, the appliance 200 via a monitoring
agent 405 identifies and collects metrics 410 based on net
work traffic and information traversing the appliance, or oth
erwise referred to as appliance collected parameters or met
rics. The appliance 200 or agent 405 may store the appliance
collected metrics 410 in any type and form of data storage
mechanism in memory and/or disk storage. In one embodi
ment, the appliance stores the metrics 410 in a table. In
another embodiment, the appliance stores the metrics 410 in
a database. In yet another embodiment, the appliance stores
the metrics 410 in an object or data structure. In still other
embodiments, the appliance 200 stores appliance collected
metrics 410 in multiple tables and/or data storage mecha
nisms. In one embodiments, the appliance collected metrics
410 may be arranged or organized in any manner in the
multiple tables.

In some embodiments, the monitoring agent 405 deter
mines one or more metrics 410 from network packets
received and transmitted by the appliance. In one embodi
ment, the monitoring agent 405 determines a number and/or
type of connections to one or more services 270 or server 106.
In another embodiment, the monitoring agent 405 determines
a number of packets transmitted to a service 270 or server
106. In other embodiments, the monitoring agents 405 deter
mines a number of packets received from or transmitted by a
service 270 or server 106. In some embodiments, the moni
toring agent 405 determines a response time from a service
270 or service. In one embodiments, the monitoring agent
405 determines an average response time. In another embodi
ment, the monitoring agent 405 determines a number or per
centage of loss packets. In other embodiments, the monitor
ing agent 405 determines a number of errors received from a
service or server.

In some embodiments, the monitoring agent 405 deter
mines abandwidth of a connection to a service 270 or a server
106. In one embodiment, the monitoring agent 405 deter
mines the bandwidth of a connection based on a response time
and/or packet loss. In another embodiment, the monitoring
agent 405 determines the bandwidth of a connection based on
a number of bytes transferred or communicated to and/or
form a service 270 or server 106. In one embodiment, the
monitoring agent 405 determines the bandwidth based on a
number of bytes received from a service or server over a
predetermined time period. Such as per second. In another

10

15

25

30

35

40

45

50

55

60

65

36
embodiment, the monitoring agent 405 determines the band
width based on a number of bytes transmitted to a service or
server over a predetermined time period. In some embodi
ments, the monitoring agent 405 determines the bandwidth
based on a number of bytes transmitted to and received from
a service or server over a predetermined time period.

In some embodiments, the appliance 200 via a monitoring
agent 405 identifies and collects metrics 430 provided by a
service, server or device. These metrics 430 may also be
referred to as custom metrics or a custom metric table. The
appliance 200 or agent 405 may store the service or device
collected metrics 430 in any type and form of data storage
mechanism in memory and/or disk storage. In one embodi
ment, the appliance stores the metrics 430 in a table. In
another embodiment, the appliance stores the metrics 430 in
a database. In yet another embodiment, the appliance stores
the metrics 430 in an object or data structure. In some embodi
ments, the appliance stores the metrics 430 in the same data
storage mechanism as the appliance collected metrics 410. In
other embodiments, the appliance stores the metrics 430 in a
different storage mechanism as the appliance collected met
rics 410. In still other embodiments, the appliance 200 stores
device provided metrics 420 in multiple tables and/or data
storage mechanisms. In one embodiments, the device pro
vided metrics 420 may be arranged or organized in any man
ner in the multiple tables. For example, the appliance 200 may
maintain a metrics table 420 for each service, device or appli
cation.

In one embodiment, the load monitor 405 uses a network
management protocol. Such as SNMP, to query a server or
device for one or more objects identifiers and data for the
objects of the object identifiers. By way of example only and
not in any way limiting, the load monitor 405 uses an SNMP
architecture to provide management information bases
(MIBs) 417, which specify management data of a device or
device Subsystem, such as a service 270, using a hierarchical
namespace containing object identifiers 422A-422N forman
aged objects. In some embodiments, a MIB 417 is a collection
of information that is organized hierarchically. MIBs 417
may be accessed using a network-management protocol Such
as SNMP. An MIB 417 includes managed objects identified
by object identifiers 422A-422N. In one embodiment, a man
aged object (sometimes called a MIB object, an object, or a
MIB) is one of any number of characteristics or metrics of a
managed device, appliance or system. In some embodiments,
a managed objects includes one or more object instances,
which correspond to or referred to as variables.

In one embodiment, the MIB 417 hierarchy may be
depicted as a tree with a nameless root, the levels of which are
assigned by different organizations. In some embodiments,
the top-level MIB object IDs may belong to different stan
dards organizations, while lower-level object IDs are allo
cated by associated organizations. The MIB 417 and/or
objects 422A-422N may be arranged, constructed or orga
nized for management across any of layers of the OSI refer
ence model. In some embodiments, the MIB 417 and/or
objects 422A-422N provide managed data and information
on applications such as databases, email, and web services.
Furthermore, the MIB 417 and/or objects 422A-422N may
define for any area-specific or appliance specification infor
mation and operations, such as for any type of service 270,
server 106 or device 100 load balanced or managed by the
appliance 200.

In the example embodiment of SNMP, the SNMP commu
nication model is based on a manager 415 and an agent 416
with a data of management information 417 and management
objects 422A-422N. In one embodiment, the manager 415

US 8,639,813 B2
37

provides an interface between appliance and the managed
system. The agent 416 provides the interface between the
manager 415 and the device, system, application, component,
element or resource being managed. As illustrated in FIG. 4A,
the appliance 200 may include a manager 415 which requests
and obtains object identifiers and values from an agent 416,
such as the agent 416 on a server 106. In the example of
SNMP, a manager 415 communicates a GET or GET-NEXT
message to request information for a specific object. The
agent 416, in response to the manger's request, issues a GET
RESPONSE message to the manager 415 with the informa
tion requested or an error message. The manager 415 may
transmit a SET message to request a change to a value of a
specific variable or object 422. The agent 416 may issue a
TRAP message to inform the manager 415 of an event, such
as an alarm or error on a service 270.

Although generally described in an embodiment of an
SNMP network management protocol, the appliance 200
and/or load monitor 405 may use any type and form of net
work management protocol and communication model to
obtain identifiers and values of information, such as objects or
variables, from another device for a managed system, Sub
system or service 270. For example, the appliance 200 may
use any of the following protocols and/or communication
models: Remote monitoring (RMON), AgentX, Simple Gate
way Monitoring Protocol (SGMP). Common management
information protocol (CMIP). Common management infor
mation service (CMIS) or CMIP over TCP/IP (CMOT).

Furthermore, although a MIB 417 is generally described in
reference to a manager/agent communication model for an
example network management protocol such as SNMP, the
MIB 417 may include any type and form of data storage of
object identifiers, variables, parameters or other identifiers of
metrics. The MIB 417 may be either protocol dependent or
protocol independent. For example, the MIB 417 may com
prise a table of metrics for a device or service that can be
queried via any type and form of API.
The managed objects or variables provided via the network

management protocol may provide any type and form of
metrics or operational characteristics of the service, server or
device to be used by the appliance for load balancing, or any
other function of the appliance 200. In one embodiment, the
device provided metrics 420 may include any of the metrics
410 collected by the appliance as described above. In another
embodiment, the device provided metrics 420 may include
any type and form of information on any resource usage of the
managed device, service or system. In one embodiment, the
metrics 410 include CPU, memory and/or disk usage of the
device and/or service 270. In other embodiments, the metrics
420 may include information on a number of connections,
sessions or clients of the service 270. In some embodiments,
the metrics 420 include any information on any thresholds of
the service 270 or server 106, such as a threshold identifying
a maximum number of Sessions or clients. In yet another
embodiment, the metrics 420 include any information on a
type of protocol of the service 270. In other embodiments, the
metrics 420 include any information on any alarms or errors
of the Service 270.

In some embodiments, each load monitor 405 includes the
appliance collected metrics 410. For example, the metric
table 410 may be implicitly bound to each monitor 405 by
default. In other embodiments, a user associates or binds a
custom metric table 420 to a monitor 405. In yet another
embodiment, a user associates orbinds a custom metric table
420 and appliance collected table 410 to a monitor 405. In yet
other embodiments, a user may associate or bind any combi

10

15

25

30

35

40

45

50

55

60

65

38
nation of one or more appliance collected metric tables 410
and custom metric tables 420 to one or more load monitors
405.

In some embodiments, a user via the configuration inter
face 425 may configure or specify for a load monitor 405 one
or more object identifiers 422A-422N to obtain values for and
store in the metrics 420. For example, the user may specify a
user-defined metric 430. In other embodiments, the appliance
200 or load monitor 405 obtains a list of one or more object
identifiers 422A-4222N from a device 100, such as server 106
or service 270. In yet another embodiment, the appliance 200
includes one or more metric tables 420 with predetermined
OIDS 422A-422N for a known device. For example, the
appliance 200 may include a metric table 420 for any one or
more of the following appliances or devices: 1) any version of
the NetScaler device manufactured by Citrix Systems, Inc. of
Ft. Lauderdale, Fla.; 2) any of the appliances, such as BIGIP
or Web Accelerator, manufactured by F5 Networks, Inc. of
Seattle, Wash.; 3) any of the AppDirector or AppXcel devices
manufactured by Radware Ltd of Mahwah, N.J.; 4) any appli
cation acceleration and/or security related appliances and/or
software manufactured by Cisco Systems, Inc. of San Jose,
Calif.
The appliance 200, vServer 275 and/or load monitor 405

computes, calculates or otherwise determines a load 440 for
each service 270 based on any of the metrics from the appli
ance collected metrics 410 and/or device provided metrics
420. The appliance 200 may use a weight 435A-435N and a
threshold 437A-437N for each of the metrics used in the
determination of the load 440. In one embodiment, the appli
ance 200 establishes a weight 435 and/or a threshold 437. In
other embodiments, a user establishes a weight 435 and/or a
threshold 437. For example, in some cases, if a user does not
specify a weight for a plurality of metrics, the appliance
equally weights each metric. In one example embodiment,
the appliance 200 determines the load 440 for each service as
follows:

Sum (weight of metricfestablished ceiling value of
metric)*(obtained value of metricfestablished
ceiling value of metric)). Sum(weights))

In some embodiments, a metric value may be based on a range
of 0-100, or absolute range. In other embodiments, a metric
value may not be based on a range of 0-100 or is otherwise
relative to the type of metric and possible range of values. For
example, a metric identifying a number of connections may
have a ceiling or predetermined maximum value of 10,000. In
one of these embodiments, the appliance establishes a ceiling
value or predetermined upper limit for the metric value. In
another of these embodiments, a user via the configuration
interface 425 establishes a ceiling value or predetermined
upper limit for the metric value. In further embodiments, the
established ceiling value may comprise a value less than the
actual maximum value for the metric or upper limit of the
range value. For example, a user may specify or configure a
relative range value based on a desired operational or perfor
mance range of a metric.

In some embodiments, if a metric of a service exceeds a
user or appliance provided threshold, the service may be
excluded from the load determination or otherwise from a
load balancing decision. In other embodiments, if all the
metrics of a service exceeds their corresponding thresholds,
the service may be excluded from the load determination or
otherwise from a load balancing decisions. In yet another
embodiment, even if a service exceeds the threshold(s) for
one or more of the metrics, the service may be considered in
the load determination or otherwise for load selection. In

US 8,639,813 B2
39

Some cases, a client session may be identified as persistent or
sticky to a vServer 275 or service 270. In these cases, if a
request for the client’s sessions is received by the appliance,
the appliance may provide the request to a vServer 275 or
service 270 although a metric for the VServer or service has
been exceeded.

In still other embodiments, if a threshold of a metric of a
service or virtual server has been exceeded, the appliance
may, in response to the threshold being exceeded, redirect the
client making the request to another resource. In one embodi
ment, the appliance may transmit a URL to the client com
prising the address of a server 106 or service 270 such that the
client may bypass the appliance 200 and access the server 106
or service 270 directly. In one embodiment, the appliance
may transmit a URL to the client comprising the address of a
second appliance 200 or another device. In still another
embodiment, the appliance 200 may redirect the client
request to a second appliance, device, service or server on
behalf of the client.

In some embodiments, if a threshold of a metric of a service
or virtual server has been exceeded, the appliance may, in
response to the threshold being exceeded direct a client
request to a second virtual server or service. In one embodi
ment, a second virtual server may be a backup to a primary
virtual server. Upon detection of the threshold being
exceeded, the appliance may spillover requests and connec
tions to a second virtual server.

Although the load 440 is generally discussed in view of the
above equation, the appliance may use any type and form of
load calculation, weighted or not weighted. In some embodi
ments, the appliance 200 determines the load using an aver
age of metric values. In other embodiments, the appliance 200
determines the load 440 using any derivative value of a met
ric. In another embodiment, the appliance 200 determines the
load 440 using any statistical measure of a metric. In still
another embodiment, the appliance 200 determines the load
440 using any function or computation of a metric. In yet
other embodiments, the appliance 200 may determine a load
440 for each metric. In these embodiments, the appliance 200
may aggregate, compare or otherwise compute an load 440
based on any type and form of aggregation of a metric's
contribution to a load of a service.

In some embodiments, a user configures multiple monitors
405 for a service 270. In these embodiments, the load 440 on
the service 270 is a sum of the load of all the monitors. In one
embodiment, the sum of the load from multiple monitors 440
is weighted. The appliance may assign a monitoring 405 a
weight. A weight may comprise an integer, decimal, or any
other numeric indicator. In some embodiments, a user may
configure via the configuration interface 425 the weight cor
responding to a monitor 405. In some embodiments, all moni
tors 405 may be assigned equal weight. In other embodi
ments, a plurality of monitors 405 may each be assigned
different weights. The weights may be assigned to the moni
tors based on any criteria indicating relative importance,
including without limitation the appliance or user determina
tion of the relative importance or value of the monitor in view
of the service, reliability of the monitoring mechanism, and
the frequency of monitoring.

In one embodiment, a monitoring agent 405 may be
assigned a weight based on the relative importance of the
service monitored by the appliance. For example, if most user
requests in an environment are HTTP requests, a monitoring
agent monitoring HTTP availability of a server 106 might be
assigned a weight of 10, while a monitoring agent monitoring
FTP availability of a server 106 might be assigned a weight of
3. Or, for example, if an administrator placed a high priority

10

15

25

30

35

40

45

50

55

60

65

40
on UDP applications, a monitoring agent monitoring UDP
availability of a server may be assigned a weight of 20, while
a DNS monitoring agent may be assigned a weight of 5.

In some embodiments, an appliance 200 may compute a
Sum of the weights of the monitoring agents currently report
ing a network service 270 as operational. For example, if five
monitoring agents, each assigned a weight of 30, are moni
toring a network service 270, and three of the five monitoring
agents report the network service 270 as available, the appli
ance may determine the Sum of the monitoring agents cur
rently reporting the network service 270 as operational to be
90. Or for example, if only two monitoring agents, one with a
weight of 20 and the other with a weight of 40, are reporting
a server 106 as available, the appliance may compute the Sum
of the monitoring agents currently reporting a server 106 as
operational to be 60.
The appliance 200 also includes a configuration interface

425 providing any type and form of interface mechanism for
a user, application or system to communicate with the appli
ance 200. In one embodiment, the configuration interface 425
includes a command line interface 425B. In another embodi
ment, the configuration interface 425 includes a graphical
user interface 425A. In some embodiments, the configuration
interface 425 includes an application programming interface
(API) or development toolkit for an application, program or
script to communicate with the appliance 200.

In some embodiments, the appliance 200 displays the con
figuration interface 425 via a display of the appliance. In other
embodiments, a configuration terminal or device 100 con
nects to or communicates with the appliance 200 and displays
the configuration interface 425. For example, the configura
tion device 100 or terminal may connect to the appliance 200
via a port and IP address of the appliance 200. The appliance
200 may provide a web service listening on the port and IP
address to serve a page to the user. The served page may
provide a user interface for configuring the appliance 200. In
other embodiments, the configuration terminal 100 may con
nect and communicate with the appliance 200 via any type
and form of connection, including a monitor port, serial port
or USB connection.

Via the configuration interface 425, the appliance 200 may
receive information identifying user selected metrics 430 to
use in determining the load 440 for one or more services. In
one embodiment, the user identifies or selects a metric from a
plurality of appliance collected metrics 410. In another
embodiment, the user identifies or selects a metric from a
plurality of device provided metrics 420. In some embodi
ments, the user selects one or more metrics from the appliance
collected metrics 510 and one or more metrics from the
device provided metrics 410. The appliance 200 may also
receive via the configuration interface 425 information iden
tifying a user's selection or designation of a weight 435 for a
metric. For example, a user may provide a value of a weight
435 for a metric. In some embodiments, the appliance 200
receives information identifying a user provided value for a
threshold 437.

In operation, the appliance 200 may use user selected met
rics 430 and userprovided weights 435 and thresholds 437 for
determining the load 440. In another embodiment, the appli
ance may use any appliance established metrics from the
appliance collected metrics 410 for determining the load. In
one embodiment, a user establishes a weight and/or a thresh
old for an appliance provided metric. So although the metric
may not be user selected in some embodiments, the user may
control or configure the weights 435 and/or thresholds 437 for
the metrics 410. In other embodiments, the appliance may use
any combination of user selected metrics 430 and appliance

US 8,639,813 B2
41

established metrics 410 for determining the load. In another
embodiment, the appliance 200 may use any combination of
user provided weights 435 and/or thresholds 437 and appli
ance provided weights 435 and/or thresholds 437 for any
metric used for determining the load 440.

Referring now to FIG. 4B, an embodiment of steps of a
method for load balancing one or more services is depicted. In
Some embodiments, the appliance 200 may load balance one
or more services using appliance collected metrics 410 and
device provided metrics 420. In other embodiments, the
appliance 200 load balances one or more services based on
user selected metrics, weights and/or thresholds. In brief
overview, at step 455 of method 450, multiple metrics are
identified for load balancing a plurality of services 270A
270N by the appliance 200. At step 457, in some embodiment,
the appliance 200 receives user defined metrics to collect or
monitor for a service 270. At step 460, the appliance receives
user selected metrics from the set of identified metrics. The
user may also identify weights and/or thresholds for the met
ric. At step 465, the appliance determines a load for each of
the services based on the user selected metric information. At
step 470, the appliance receives a client request to access a
service. At step 475, based on the load determination, the
appliance determines a service from the plurality of services
to transmit or forward the client request. At step 480, the
appliance transmits the client's request to the appliance
selected service.

In further details, at step 455, the appliance 200 identifies
metrics to collect and monitor for load balancing one or more
services 270A-270N. In one embodiment, the appliance 200
provides or identifies one or more appliance collected metrics
410. For example, a table 410 may identify metrics collected
by the appliance 200. In another embodiment, the appliance
200 provides one or more predetermined tables of device
provided metrics 420, such as for an appliance of Citrix, F5.
Cisco, or Radware. In other embodiments, the appliances 200
identifies one or more metrics to collect via a network man
agement protocol in an object or variable database, Such as an
MIB 417 for SNMP. In one embodiment, the appliance pro
vides a preconfigured or preinstalled MIB 417 for a predeter
mined device or service 270. Such as an application.

In some embodiments, the appliance 200 queries a device
or service 270 to determine available metrics to collect and/or
monitor. For example, in one embodiment, the appliance 200
queries a device or service for available object identifiers
422A-422N. In another embodiment, the appliance 200 uses
a network management protocol, such as SNMP, to query for
the identification of objects in a MIB 417. In yet another
embodiment, a user via the configuration interface 425 iden
tifies one or more object identifiers 422A-422N to collect
and/or monitor from a device or service 270, such as an
application.

In some embodiments, at step 457, a user specifies or
defines a metric for the appliance to collect and/or monitor for
a service 270. For example, the user may specify via the
configuration interface 425 an object identifier in a MIB 417.
In other embodiments, a user may configure or implement a
load monitor 405 to collect and/or monitor a user-defined or
specified metric. In yet another embodiment, a user, Such as a
network administrator, may configure, specify or implement
one or more object identifiers 422 in a MIB 417 deployed on
a server 106. In some embodiments, the user may implement
an application, program, Script, service or other set of execut
able instructions to collect metrics on the server 106 and store
values for the metrics in the MIB 417 on the server 106. For
example, the user may execute a program or script to monitor
metrics of a service 270 on the server 106 and update the MIB

10

15

25

30

35

40

45

50

55

60

65

42
417 with the collected values. The manager 415 on the appli
ance 200 may query the agent 416 on the server for informa
tion and/or values of the metrics stored in the server's MIB
417 for the service 270.
At step 460, the appliance 200 receives information iden

tifying a selection by a user of one or more metrics identified
via the appliance. In some embodiments, a user via the con
figuration interface 425 selects one or more metrics provided
via the appliance 200 to use for load balancing a server 270.
In one embodiment, the appliance 200 provides for selection
by the user via the configuration interface 425 any one or
more of the appliance collected metrics 410 or device pro
vided metrics 420. A user may configure the appliance 200
via a command line interface 425B or graphical user interface
425A to use one or more user selected metrics 430 for deter
mining a load 440 or otherwise for load balancing services
270A-270N by the appliance 200.

In one embodiment, the appliance 200 receives informa
tion identifying that the user selected one or more appliance
collected metrics 410. In another embodiment, the appliance
200 receives information identifying that the user selected
one or more device provided metrics 420. In yet another
embodiment, the appliance 200 receives information identi
fying that the user selected one or more appliance collected
metrics 410 and one or more device provided metrics 420.

Furthermore, via the configuration interface 425, the appli
ance 200 may receive information identifying a user's desig
nation or establishment of a weight 435 for a metric. In one
embodiment, the appliance 200 receives a user's identifica
tion of a weight 435 for a user selected metric 430. In another
embodiment, the appliance 200 receives a user's identifica
tion of a weight 435 for an appliance established metric 410.
In other embodiments, the appliance 200 may receive infor
mation identifying a user's designation or establishment of a
threshold 437 for a metric. In one embodiment, the appliance
200 receives a user's identification of a threshold 437 for a
user selected metric 430. In another embodiment, the appli
ance 200 receives a user's identification of a threshold 437 for
an appliance established metric 410.
At step 465, the appliance determines a load for each of the

one or more services. In one embodiment, a load monitor 405
collects and/or monitors one or more of the user selected
metrics 430 for a service. In another embodiment, the load
monitor 405 collects and/or monitors appliance collected
metrics 410. In some embodiments, a load monitor 405 col
lects metrics via a network management protocol. Such as
SNMP. In yet another embodiment, multiple load monitors
405A-405N collect and/or monitor metrics for a service 270.
In one embodiment, although a user selected one or more
metrics 430 for collecting and/or monitoring a service 270,
the appliance 200 collects and monitors any one or more
appliance established metrics 410. Such as number of connec
tions, response time, bandwidth, and number of packets, for
the Service 270.

In some embodiments, a VServer 275 determines the load
440 for each service 270 via metric information collected and
monitored by a load monitor 405. In another embodiment, the
load monitor 405 determines the load 440 for the Service 270
being monitored. The appliance 200 and/or load monitor 405
may determine the load 440 using a user selected metric 430
weighted by a user designated weight 435. In some embodi
ments, the appliance 200 and/or load monitor 405 determines
the load 440 using a plurality of user selected metrics 430
weighted by user designated weights 435. In yet another
embodiment, the appliance 200 and/or load monitor 405
determines the load using a user selected metric 430 and user
identified weight 435 and an appliance established metric 410

US 8,639,813 B2
43

and an appliance established weight 435. In further embodi
ments, the appliance 200 determines the load 440 by sum
ming a weighted load for each metric (user and/or appliance)
used for the Service 270.
For the embodiment of multiple monitors 405A-405N per
service 270, the appliance 200 may determine the load for the
service by assigning a weight to each monitor and computing
weighted load across all the monitors 405. In other embodi
ments, the appliance 200 and/or load monitor 405 determines
a load for a service 270 at a predetermined frequency, such as
every 1 mSec. or every 1 sec.

In some embodiments, a load monitor 405 determines that
a metric for a service 270 has reached or exceed a threshold
437. In other embodiments, a load monitor 405 determines
that a metric for a service 270 is withina threshold 437. In one
embodiment, the load monitor 405 uses an appliance estab
lished or provided threshold for a metric. In another embodi
ment, the load monitor 405 user a user specified or configured
threshold 437.

At step 470, the appliance 200 receives a request from a
client to access a service. In one embodiment, a virtual server
or VServer 275 intercepts or otherwise receives a request from
the client. In some embodiments, the virtual server 275 trans
parently intercepts the client's request to a service 270 or
server 106. In other embodiments, a client 102 transmits the
request to the VServer 275. In another embodiment, the
vServer 275 determines from the request that the request is for
one or more services under management by the appliance
200. In one embodiment, the vServer 275 intercepts or
receives the request via a SSL VPN connection between the
client and the appliance 200.

At step 475, the appliance 200 determines which of the
services to direct the client request based on determination of
the load 440 for each service 270. In one embodiment, the
vServer 275 directs the request responsive to one or more load
monitors 405. In some embodiments, a VServer 275 directs,
forwards or otherwise transmits the request to a service 270
with the least or smallest load. In one embodiment, the
vServer 275 directs, forwards or otherwise transmits the
request to a service with one of the lower determined loads. In
some embodiments, the VServer 275 directs, forwards or
otherwise transmits the request to the service previously han
dling requests from the client 102. In one embodiment, the
vServer 275 transmits the request to the previously used ser
vice if the load of the service is within a predetermined
threshold. In some embodiments, the VServer 275 transmits
the request to the first available service in a list with a deter
mined load within a predetermined threshold.

In another embodiment, a vServer 275 directs, forwards or
otherwise transmits the request to a service 270 using around
robin technique, or weighted round robin. In yet another
embodiment, the VServer 275 directs the request to a service
based on one or more metrics, such as appliance collected
metrics 410 or device provided metrics 420. For example, in
some embodiments, the VServer 275 directs the request to a
service based on one or more of the following: least response
or round trip time, least number of connections, least number
of packets, and least bandwidth. In yet other embodiments,
the VServer 275 directs the request to a service based on one
or more device provided metrics 430, such as CPU, memory
and disk resource usage. In another example, the VServer 275
directs the request to a service based on service resource
usage on the server, such as System resource usage by an
application or session of the application.

In some embodiments, a VServer 275 may not direct a
request to a service 270 in which a metric for the service 270
has exceeded a threshold 437, such as a user configured

10

15

25

30

35

40

45

50

55

60

65

44
threshold 437. In other embodiments, a VServer 275 may not
direct to a request to a service 270 if more than one threshold
437 of the metrics for the service has been exceeded. In yet
another embodiment, a vServer 275 may direct a request to a
service 270 if a metric threshold 437 has been reached or
exceeded. For example, if one metric threshold 437 of a
plurality of thresholds 437 has been exceeded, then the
vServer 275 may still direct the request to the service if the
other metric thresholds have not been reached.

In still other embodiments, the appliance 200 may deter
mine from load monitoring that a metric of a first vServer
275A has reached a threshold 437. In response to the deter
mination, the appliance 200 may spillover management of the
services 270A-270N to a second virtual server, or vServer
275B. In one embodiment, the second virtual server 275B
may be a backup server. In some embodiments, the second
virtual server 275B is established in response to detecting the
first virtual server 275A has reached one or more thresholds.
In another embodiment, the second virtual server 275B may
be established and running on the appliance 200.
At step 480, the appliance transmits the client request to the

service determined by the appliance at 475. In one embodi
ment, the appliance 200 transmits the client request in a
manner transparent to the service 270 such that the request
appears to have been sent from the client instead of the appli
ance 200. For example, the appliance 200 may act as a trans
parent or intercepting proxy for the client 102. In other
embodiments, the appliance 200 acts as a non-transparent
proxy and transmits the request to the service on the clients
behalf. In some embodiment, the VServer 275 transmits the
request to a service 270. In other embodiments, a backup
vServer 275 transmits the request to the service. In yet other
embodiments, a second vServer 275 transmits the request to
the service.
E. Global Server Load Balancing Among Heterogeneous
Device

Referring now to FIGS. 5A-5C, systems and methods for
load balancing a plurality of heterogeneous devices are
depicted. The appliance 200 described herein may be
deployed to load balance a plurality of services and load
balancing devices. A first appliance 200 may communicate
with a second appliance 200A of the same type via a prede
termined metric exchange protocol (MEP). The first appli
ance 200 obtains via the MEP protocol metrics to use for
determining a load for the second appliance 200A. Other
devices of a different type than the first appliance may be
deployed in the network to perform local load balancing. Such
as for a server farm. These devices may not communicate via
the MEP protocol of the first appliance 200. Instead, these
other device may provide metrics via a network management
protocol, such as a Simple Network Management Protocol
(SNMP). Using the techniques described in conjunction with
FIGS. 4A and 4B, the first appliance 200 obtains metrics from
these heterogeneous devices via the network management
protocol. With metrics obtains via the MEP protocol from
devices of the same type and metrics obtained via a network
management protocol from device of a different type, the
appliance 200 may uses these combined metrics to determine
a load across these heterogeneous devices and to direct
request to one of the devices based on the load.

Referring now to FIG. 5A, an example embodiment of a
network environment for load balancing heterogeneous
devices, including servers and local or other load balancing
devices, is depicted. In brief overview, a network environ
ment includes a plurality of different types of load balancing
devices and servers. The appliance 200 is configured as a
global load balancing device to load balance the plurality of

US 8,639,813 B2
45

load balancing devices and servers. Each of the load balanc
ing devices may perform local load balancing to one or more
services 270A-270N. For example, a first set of load balanc
ing appliances 200A-200N of the same type may perform
local load balancing of services or servers on a first network
104. These appliances 200A-200B may be of the same type of
the global load balancing appliance 200. Or in some cases,
local load balancing appliance 200A-200N are designed and
constructed to communicate metrics and other information
via a metric exchange protocol 540. A second type of load
balancing appliances 500A-500N may perform local load
balancing for one or more services 270A-270N on a second
network 104". These load balancing appliances 500A-500N
may be of a different type than the first type of appliance
200A-200N and/or the global load balancing appliance 200.
The appliance 500A-500N may operate or execute one or
more virtual servers or vServers 275A-275.N. Appliance
500A-500N may not be designed to communicate via the
MEP protocol 540 of appliances 200-200N. Instead these
appliances 500A-500N may provide metrics via a network
management protocol, such as SNMP. The global load bal
ancing appliance 200 may also perform load balancing for
one or more services or servers, such as a server farm 38. Each
of the servers or services may be of a different type, such as an
HTTP Service and an FTP service.

In view of FIG.5A, the plurality of appliances, servers, and
services may be deployed in a hierarchical fashion. The first
appliance 200 may be the global load balancing appliance at
the top of the hierarchy to manage a plurality of other appli
ances 200A-200N, 500A-500N and servers. In one case, the
appliance 200 manages one or more servers 106 or service
270A-270N directly. In another case, the appliance 200 man
ages one or more appliances 200A-200N,500A-500N, which
in turn manages one or more servers 106 or services 270A
270N. An appliance managed by the first appliance 200 may
manage a second appliance, which in turns manages one or
more services or servers.
By way of example in view of various load balancing

products, the global load balancing appliance 200 may be any
of the product embodiments referred to as NetScaler manu
factured by Citrix Systems, Inc. The appliances 200A-200N
may also be a NetScaler device configured to perform local
load balancing of one or more services 270A-270N. As the
appliances 200A-200N are of the same type as the global load
balancing appliance 200, these appliances are designed and
constructed to communicate via a predetermine protocol or
and/or communication model referred to as metric exchange
protocol. The appliance 200A-200N may be configured to
provide metric information at a predetermined frequency to
appliance 200. One or more of the appliances 500A-500N
may comprise another type of load balancing device, such as
a Big IP load balancing device manufactured by F5 Networks,
Inc. Another one or more of the appliances 500A-500N may
comprise a different type of load balancing device, such as the
AppDirector appliance manufactured by Radware, LTD. In
some cases, one or more of the appliances 500A-500N may
comprise a Cisco load balancing device. In other cases, one or
more of the appliances 500A-500N may comprise a Nortel
load balancing device. Any one or more of these appliances
500A-500N may not be designed or constructed to commu
nicate with appliance 200 via the MEP protocol 540.
Although the example is generally described above as Citrix
NetScaler appliance 200 providing global load balancing
device, any other type of load balancing device may be used.

Instead of using MEP 540, each of these different appli
ances 500A-500N may provide metric information via a net
work management protocol, such as SNMP. As illustrated in

5

10

15

25

30

35

40

45

50

55

60

65

46
FIG. 5A, these appliances 500 may include an agent 416 for
providing object identifiers 422A-422N via an MIB 417.
Further to this example embodiment and as discussed in
conjunction with FIGS. 4A and 4B, the appliance 200 using a
manager/agent communication model may query any of these
appliances 500A-500N via a network management protocol
to identify, collect and monitor objects identified via the MIB
417. In some cases, the appliance 200 may use SNMP to
communicate with one or more appliance 500A-500N. In
other cases, the appliance 200 may use another type of net
work management protocol to communication another one or
more of the appliances 500A-500N. In still another case, the
appliance 200 may use a third type of network manager
protocol to communicate with a further set of one or more
appliances 500A-500N.

Appliances 200A-200N may be considered homogenous
or the same type of appliance or device as appliance 200. In
one embodiment, the appliances 200A-200N is the same
product family of the appliance 200. In another embodiment,
the appliance 200A-200N is a version of the same device of
the appliance 200. In one case, the appliances 200 and 200A
220N are manufactured by the same company. In some
embodiments, the appliances 200A-200N and appliance 200
are configured, designed and constructed to communicating
using a predetermined protocol and/or communication
model. In one embodiment, the appliances 200A-200N and
appliance 200 are configured, designed and constructed to use
a proprietary or custom protocol and/or communication
model.

Appliances 500A-500N may be considered heterogeneous
or a different type of appliance or device as appliance 200. In
one embodiment, the appliances 500A-500N are manufac
tured by a different company than appliance 200. In some
embodiments, the appliances 500A-500N and appliance 500
are not specifically designed to communicate using a prede
termined protocol and/or communication model. In one
embodiment, the appliances 500A-500N and appliance 200
are not configured, designed and constructed to use a propri
etary or custom protocol and/or communication model. In
some cases, appliances 500A-500N use a network manage
ment protocol instead of using a proprietary protocol for
providing metrics to other devices, applications or services.

Referring now to FIG. 5B, an embodiment of the appliance
200 for identifying, collecting and monitoring metrics
obtained from heterogeneous network devices and servers
with a plurality of protocols is depicted. The appliance 200
may have one or more virtual servers 275A-275N configured,
constructed or designed to provide load balancing of the
plurality of devices over one or more networks 104, 104".
104". The appliance 200 may use one or more load monitors
405A-405N to monitor the load of each of the heterogeneous
devices. In one embodiment, the appliance 200 monitors the
load of appliances 200A-200N. The appliance 200 and/or
load monitor 405 uses the MEP protocol 540 to obtain metrics
from one or more of the appliances 200A-200N. In another
embodiment, the appliance 200 monitors the load of appli
ance 500A-500N. In other embodiments, the appliance 200
monitors the load of one or more serves 106. In still another
embodiment, the appliance 200 monitors the load among
servers in a server farm 38. The appliance 200 may use one or
more network management protocols to obtain metrics from
server 106, server farm 38, and appliances 500A-500N.
The appliance 200 collects metrics via the MEP protocol

540 and network management protocols from a wide variety
of heterogeneous devices, such as appliances 500A-500N and
servers 106, and homogenous devices 200A-220N. The
appliance 200 stores the metrics in a GSLB (Global Server

US 8,639,813 B2
47

Load Balancing) or global metrics table 530 comprising any
type and form of data storage element, such as a file, database,
object or data structure in memory and/or on disk. The vServ
ers 275 and/or load monitors 405 use one or more of the
metrics from the GSLB metrics 530 to provide global load
balancing of servers, server farms, virtual servers, and load
balancing devices.

The appliance 200 may collect and monitor metrics
obtained via a MEP protocol 540 from one or more appliance
200A-200N and Store them in a MEP based metrics table
510A-510N. In one embodiment, the appliance 200 uses a
first type or first version of a MEP protocol 540 to obtain
metrics from a first appliance 200A and stores the metrics in
a first table 510A. In another embodiment, the appliance 200
uses a second type or second version of a MEP protocol 540'
to obtain metrics from a second appliance 200N and stores the
metrics in a second table 510N.
The appliance 200 may collect and monitor metrics from

appliances 500A-500N using any type and form of network
management protocol (NMP) and store the metrics in a NMP
based metrics table 520A-520N. In one embodiment, the
appliance 200 uses a SNMP protocol and communication
model to obtains metrics from a second type of appliance
500A and Stores the metrics in a NMP based metric table
520A. In some embodiments, the appliances 200 uses a sec
ond type of network management protocol. Such as CIMP to
obtain from a second or third type of appliance 500N and
stores the metrics in a NMP based metric table 520N. In some
embodiments, appliance 500A is a different type of appliance
than appliance 500N but both appliances support the same
network management protocol for providing metrics.
The appliance 200 may also collect and monitor metrics

from a server 106 and/or server arm 38 using any type and
form of network management protocol (NMP) and store the
metrics in a NMP based metrics table 520A'-520N. In one
embodiment, the appliance 200 uses the same network man
agement protocol, such as SNMP for obtaining metrics from
a server 106 as used for obtaining metrics from one of the
appliances 500A-500N. In another embodiments, the appli
ance 200 uses a different type of network management pro
tocol for obtaining metrics from the server than is used by the
appliance 200 for obtaining metrics from an appliance 500.
The appliance 200 may store metrics for the GSLB metrics

520 in a separate table for each device. For example, the
appliance 200 may store metrics for a first appliance 200A in
a first metrics table 510A, and metrics from a second appli
ance 520A in a second metrics table 520A. The appliance 200
may store metrics from a server 106 in a server metrics tables
520A". In another embodiment, the appliance 200 stores met
rics from a server farm 38 to a metrics table 52ON' for the
server farm.
The appliance 200 may store metrics for the GSLB metrics

520 in a separate table for each type of protocol. For example,
the appliance 200 may store all MEP based metrics from a
plurality of appliances 200A-200N in a first metrics table. In
some embodiments, the appliance 200 stores a first type or
version of MEP protocol based metrics in a first table 510A
and a second type or version of an MEP protocol in a second
table 510N. The appliance 200 may store all SNMP based
metrics from one or more appliances 500A-500N in a second
metrics table. In another example, the appliance may store
metrics from a second type of network management protocol
from one or more appliances 500A-500N to a third metrics
table.

The GSLB metrics 530 may comprise any type and form of
data, statistics, status or information related to or associated
with the operational and/or performance characteristics of the

5

10

15

25

30

35

40

45

50

55

60

65

48
appliance 200,500, a server 106 or server farm38. The global
metrics 530 may comprise any type and form of data, statis
tics, status or information related to the network of the appli
ance 200,500, and/or server 106 or server farm 38. The global
metrics 530 may comprise any type and form of data, statis
tics, status or information related to the services 270A-270N
load balanced by the appliance 200A-200N, 500A-500N. In
some embodiments, the global metrics 530 comprises opera
tional and/or performance data on any client 102 and/or
server 106 connected to the appliance 200A-200N, 500A
500N. In one embodiment, the appliance 200A-200N,500A
500N determines operational and/or performance informa
tion about any client 102 or server 106 it is connected to or
servicing, and creates metrics on these clients 102 and/or
server 106. In this embodiment, the appliance 200A-200N,
500A-500N may provide these metrics to the global load
balancing appliance 200.

In some embodiments, the operational and/or performance
characteristic provides a metrics includes information on any
of the following for an appliance or server 1) load; 2) numbers
and types of connections, 3) resource usage, 4) resource avail
ability, 5) number of requests outstanding, 6) number of
requests transmitted, 7) number of clients servicing, 8)
response time information, including average and historical
response times, 9) errors, status, performance or bandwidth of
a connection, and 10) number of sessions, and States or status
thereof. In another embodiment, the metrics 530 includes
information on any IP or network layer information of the
appliance 200A-200N,500A-500N, or the connections of the
appliance 200A-200N, 500A-500N, or of the clients and/or
servers serviced by the appliance 200A-200N, 500A-500N.
For example, the information provided via metrics 530 may
include a routing table of the appliance 200A-200N, 500A
500N for performing network address translation, such as for
an SSL VPN connection.

Via the configuration interface 425, a user may select one
or more metrics 430 from the global metrics 530 to use for
load monitoring and determining the load 440. The appliance
200 may receive information identifying a user selection of
one or more metrics from the global metrics 530. The appli
ance may receive a user selection of one or more MEP based
metrics 510 of a first type of appliance. The appliance may
receive a user selection of one or more NMP based metrics
520 of a second type of appliance. The appliance may also
receive a user selection of one or more NMP based metrics
520' for any server or server farm. The user may select any
combination of metrics 430 from the global metrics 530 to
configure the appliance 200 to perform load balancing of
heterogeneous devices according to the user selected metrics.

In one embodiment, the appliance 200 uses appliance
established metrics in combination with any one or more of
the user selected metrics 430 for load balancing. For example,
the appliance 200 may collect and monitor the number of
connections, response time, bandwidth and numbers of pack
ets for any appliance 200, 500 or server 106 and use these
metrics with any user selected metrics for load balancing. Via
the configuration interface 425 and as also discussed in con
junction with FIGS. 4A and 4B, the appliance 200 may
receive information from the user identifying, designating or
establishing weights 435 and/or thresholds 437 for any appli
ance established metrics and/or user selected metrics.

Referring now to FIG. 5C, an embodiment of steps of a
method 550 for performing global load balancing among
heterogeneous devices is depicted. In brief overview, at step
555, the appliance 200 identifies a plurality of metrics from
heterogenous devices to use for load balancing by the appli
ance. At step 560, the appliance 200 obtains metrics from one

US 8,639,813 B2
49

or more homogenous appliances 200A-200N or appliances of
the same type as the first load balancing appliance 200. At
step 565, the appliance 200 obtains metrics from heterog
enous devices, such as appliances 500A-500N and/or servers
106, via a network management protocol, such as SNMP. At
step 570, the appliance determines a load of one or more of the
plurality of appliances, servers, and/or service managed by
the appliance 200 based on the metrics collects at step 560 and
step 565. At step 575, the appliance receives a client request
to access a service. At step 580, the appliance determines
based on the load one of the appliances 200A-200N, 500A
500N or one of the servers to which to direct the client
request. At step 580, the appliance 200 transmits the request
to the device, appliance or service selected in accordance with
the determined load.

In further details, at step 555, the appliance 200 identifies
metrics to collect and monitor for load balancing one or more
appliances 200A-200N, 500A-500N, servers 106 or services
270A-270N. In one embodiment, the appliance 200 provides
or identifies one or more appliance collected metrics 410 as
described in conjunction with FIGS. 4A and 4B. For example,
a table 410 may identify metrics collected by the appliance
200. In another embodiment, the appliance 200 provides one
or more predetermined tables of appliance provided metrics
510 or 520, such as for an appliance of Citrix, F5, Cisco, or
Radware. In other embodiments, the appliances 200 identifies
one or more metrics to collect via a network management
protocol in an object or variable database, such as an MIB 417
for SNMP. In one embodiment, the appliance provides a
preconfigured or preinstalled MIB 417 for a predetermined
appliance 200A-200N, 500A-500N, server 106 or service
270.

In some embodiments, the appliance 200 queries an appli
ance 200A-200N, 500A-500N, server 106 or service 270 to
determine available metrics to collect and/or monitor. For
example, in one embodiment, the appliance 200 queries an
appliance, server or service for available object identifiers
422A-422N. In another embodiment, the appliance 200 uses
a network management protocol, such as SNMP, to query for
the identification of objects in a MIB 417. In yet another
embodiment, a user via the configuration interface 425 iden
tifies one or more object identifiers 422A-422N to collect
and/or monitor from a appliance 200A-200N, 500A-500N,
server 106 or service 270. In some embodiments, the user via
the configuration interface 425 identifies one or more of the
global metric 530 to collect and/or monitor from any one of
the heterogenous device under management.

At step 560, the appliance 200 collects and/or monitors
metrics 510A-510N from one or more appliances 200A
200N via a MEP protocol 540. In some embodiments, the
appliances 200A-200N are of the same type or homogenous
with the appliance 200. In one embodiment, the appliance
200 collects and/or monitors metrics 510 established, deter
mined or otherwise selected by the appliance. In another
embodiment, the appliance 200 collects and/or monitors met
rics 510 established, determined or otherwise selected by a
user. In some embodiments, the appliance 200 uses a first type
or version of the MEP protocol 540 to collect metrics from a
first appliance 200A and a second type or version of the MEP
protocol 540' to collect metrics from a second appliance
2OON.
One or more load monitors or monitoring agents 405A

405N of the appliance 200 may be configured, constructed or
implemented to identify, collect and/or monitor metrics via
MEP protocol 540 from one or more appliances 200A-200N.
A first load monitor 405A may collect and monitor metric
values from a first appliance 200A. A second load monitor

10

15

25

30

35

40

45

50

55

60

65

50
405N may collect and monitor metric values from a second
appliance 200N. A third load monitor 405 may collect and
monitor metric values from the first and second appliances
200A-200N. A load monitor 405A-405N may collect and/or
monitor metrics on any type of Schedule or predetermined
frequency. In some embodiments, the load monitor 405 col
lects metrics responsive to the detection of an event.
At step 565, the appliance 200 collects and/or monitors

metrics 520A-520N' from one or more appliances 500A
500N, servers or a server farm any type and form of network
management protocol. In some embodiments, the appliances
500A-500N are a different type or heterogeneous with the
appliance 200. In other embodiments, one or more of the
appliances 500A-500N are of a different type or heterogenous
with one or more of the other appliances 500A-500N. In one
embodiment, the appliance 200 collects and/or monitors met
rics 520 established, determined or otherwise selected by the
appliance. In another embodiment, the appliance 200 collects
and/or monitors metrics 520 established, determined or oth
erwise selected by a user. In some embodiments, the appli
ance 200 uses a first type or version of a network management
protocol, such as SNMP to collect metrics from a first appli
ance 500A and a second type or version of a network man
agement protocol, SNMP or CIMS, to collect metrics from a
second appliance 500N.
One or more load monitors or monitoring agents 405A

405N of the appliance 200 may be configured, constructed or
implemented to identify, collect and/or monitor metrics via a
network management protocol from one or more appliances
500A-500N. A first loadmonitor 405A may collect and moni
tor metric values from a first appliance 500A. A second load
monitor 405N may collect and monitor metric values from a
second appliance 500N. A third load monitor 405 may collect
and monitor metric values from a server 106 or server farm
38. In other embodiments, multiple monitors 405A-405N
may collect and/or monitor metrics from a plurality of appli
ances 500A-500N and/or servers 106. A load monitor 405A
405N may collect and/or monitor any of the metrics 520A
520N on any type of schedule or predetermined frequency. In
some embodiments, the load monitor 405 collects metrics
520A-520N' responsive to the detection of an event.
At step 570, the appliance determines a load for each of the

one or more appliances 200A-200N, 500A-500N, servers,
server farm or services. In some embodiments, a VServer 275
determines the load 440 for each service 270 via metric infor
mation collected and monitored by a load monitor 405. In
another embodiment, the load monitor 405 determines the
load 440 for appliance, server or service being monitored.
The appliance 200, vServer 275 and/or load monitor 405

may determine the load 440 using a user selected metric 430
weighted by a user designated weight 435. In some embodi
ments, the appliance 200 and/or load monitor 405 determines
the load 440 using a plurality of user selected metrics 430
weighted by user designated weights 435. In yet another
embodiment, the appliance 200 and/or load monitor 405
determines the load using a user selected metric 430 and user
identified weight 435 and an appliance established metric 410
and an appliance established weight 435. In further embodi
ments, the appliance 200 determines the load 440 by sum
ming a weighted load for each metric. For the embodiment of
multiple monitors 405A-405N per service 270, the appliance
200 may determine the load for an appliance, server or service
by assigning a weight to each monitor and computing
weighted load across all the monitors 405. In yet another
embodiment, the appliance may determine the load for an
appliance, server or service by assigning a weight to each of
the appliance, service or service.

US 8,639,813 B2
51

In some embodiments, a load monitor 405 determines that
a metric 530 for an appliance, server or service has reached or
exceeded a threshold 437. In other embodiments, a load
monitor 405 determines that a metric 530 for an appliance,
server or service is within a threshold 437. In one embodi
ment, the load monitor 405 uses an appliance established or
provided threshold for a metric 530. In another embodiment,
the load monitor 405 uses a user specified or configured
threshold 437.

At step 575, the appliance 200 receives a request from a
client to access a service. In one embodiment, a virtual server
or vServer 275 of the appliance 200 intercepts or otherwise
receives a request from the client. In some embodiments, the
virtual server 275 transparently intercepts the client's request
to a service 270 or server 106. In other embodiments, a client
102 transmits the request to the VServer 275. In another
embodiment, the vServer 275 determines from the request
that the request is for one or more services under management
by the appliance 200. In one embodiment, the VServer 275
intercepts or receives the request via a SSL VPN connection
between the client and the appliance 200.

At step 580, the appliance 200 determines which of the
appliances 200A-200N, servers 106 or services 270A-270N
to direct the client request based on determination of the load
440 for each of the appliances 200A-200N, servers 106 or
services 270A-270N. In one embodiment, the vServer 275
directs the request responsive to one or more load monitors
405. In some embodiments, a VServer 275 directs, forwards
or otherwise transmits the request to an appliance 200A
200N,500A-500N, server or service with the least or smallest
load. In one embodiment, the VServer 275 directs, forwards or
otherwise transmits the request to an appliance 200A-200N,
500A-500N, server or service with one of the lower deter
mined loads. In some embodiments, the VServer 275 directs,
forwards or otherwise transmits the request to the San appli
ance 200A-200N, 500A-500N, server or service previously
handling requests from the client 102. In one embodiment,
the vServer 275 transmits the request to the previously used
an appliance 200A-200N,500A-500N, server or service if the
load for the appliance 200A-200N, 500A-500N, server or
service is within a predetermined threshold. In some embodi
ments, the VServer 275 transmits the request to the first avail
able an appliance 200A-200N,500A-500N, server or service
in a list with a determined load within a predetermined thresh
old.

In another embodiment, a vServer 275 directs, forwards or
otherwise transmits the request to an appliance 200A-200N,
500A-500N, server or service using a round robin technique,
or weighted round robin. In yet another embodiment, the
vServer 275 directs the request to an appliance 200A-200N,
500A-500N, server or service based on one or more metrics,
such as appliance collected metrics 410 or device provided
metrics 420. For example, in some embodiments, the vServer
275 directs the request to an appliance 200A-200N, 500A
500N, server or service based on one or more of the follow
ing: least response or round trip time, least number of con
nections, least number of packets, and least used bandwidth.
In yet other embodiments, the VServer 275 directs the request
to an appliance 200A-200N, 500A-500N, server or service
based on one or more device provided metrics 530, such as
CPU, memory and disk resource usage. In another example,
the VServer 275 directs the request to an appliance 200A
200N,500A-500N, server or service based on resource usage
on or of an appliance 200A-200N, 500A-500N, server or
service.

In some embodiments, a VServer 275 may not direct a
request to an appliance 200A-200N, 500A-500N, server or

10

15

25

30

35

40

45

50

55

60

65

52
service in which a metric for the service 270 has exceeded a
threshold 437, such as a user configured threshold 437. In
other embodiments, a vServer 275 may not direct to a request
to an appliance 200A-200N, 500A-500N, server or service if
more than one threshold 437 of the metrics 530 for the appli
ance 200A-200N, 500A-500N, server or service has been
exceeded. In yet another embodiment, a VServer 275 may
direct a request to an appliance 200A-200N, 500A-500N,
server or service even if a metric threshold 437 has been
reached or exceeded. For example, if one metric threshold
437 of a plurality of thresholds 437 has been exceeded, then
the vServer 275 may still direct the request to the appliance
200A-200N,500A-500N, server or service if the other metric
thresholds have not been reached.

In still other embodiments, the appliance 200 may deter
mine from load monitoring that a metric of a first GSLB
vServer 275A has reached a threshold 437. In response to the
determination, the appliance 200 may spillover management
of the appliances 200A-200N, 500A-500N, servers or ser
vices to a second GSLB virtual server, or vServer 275B. In
one embodiment, the second virtual server 275B may be a
backup GSLB server. In some embodiments, the second
GSLB virtual server 275B is established in response to detect
ing the first GSLB virtual server 275A has reached one or
more thresholds. In another embodiment, the second GSLB
virtual server 275B may be established and running on the
appliance 200.
At step 580, the appliance 200 transmits the client request

to the appliance 200A-200N, 500A-500N, server or service
identified by the appliance at 585. In one embodiment, the
appliance 200 transmits the client request in a manner trans
parent to the appliance 200A-200N, 500A-500N, server or
service Such that the request appears to have been sent from
the client instead of the appliance 200. For example, the
appliance 200 may act as a transparent or intercepting proxy
for the client 102. In other embodiments, the appliance 200
acts as a non-transparent proxy and transmits the request to
the appliance 200A-200N, 500A-500N, server or service on
the client’s behalf. In some embodiment, the vServer 275
transmits the request to the appliance 200A-200N, 500A
500N, server or service. In other embodiments, a backup
vServer 275 transmits the request to the appliance 200A
200N, 500A-500N, server or service. In yet other embodi
ments, a second VServer 275 transmits the request to the
appliance 200A-200N, 500A-500N, server or service

Although the systems and methods of FIGS. 5A-5C are
generally discussed in the context of global server load bal
ancing, these systems and methods may be used for local load
balancing. The appliance 200 may use metrics obtained from
heterogeneous devices, servers, or services using a plurality
of protocols to load balance one or more services or servers.
Using the techniques described herein, the appliance 200 is
configurable and flexible to obtain metrics from any network
resource—system, Sub-system, application, service, device,
etc.—using either a metric exchange protocol Supported by
the appliance and/or a more general network management
protocol supported by the network resource. Additionally, the
appliance 200 is configurable to allow users to select any
combination of available metrics from these heterogenous
network resources to perform load monitoring and load bal
ancing of one or more services.
F. Global Server Load Balancing Based on SSL VPN Users

Referring now to FIG. 6A, a block diagram of an embodi
ment of a system for global server load balancing across a
plurality of sites based on a number of Secure Socket Layer
Virtual Private Network (SSL VPN) users is illustrated. In
brief overview, a Global Server Load Balancing virtual server

US 8,639,813 B2
53

(GSLB) of appliance 200/500 balances network traffic across
multiple appliances 200/500. Appliance 200/500A is located
at site A and balances the network traffic received from the
GSLB appliance 200/500 across a group of servers 106
deployed at site A. Similarly, appliance 200/500B is located at
site B and balances the network traffic received from the
GSLB appliance 200/500 across a group of servers stationed
at site B. Site A servers, servers 106A-B, receive the network
traffic balanced by appliance 200/500A. Site B servers, serv
ers 106C-D, receive the network traffic balanced by appliance
2OOFSOOB.
Any of the servers at any of the sites may service any users,

including SSL VPN users. By way of example, servers
106A-D provide service to SSL VPN users 650A-Nandusers
660A-N, wherein N can be any number. GSLB appliance
200/500 includes a GSLB vServer 275 comprising a SSL
VPN Load Balancer or load balancing scheme 605 which
load balances requests based on SSL VPN metrics or statis
tics. Appliances 200/500 include LB vServers 275 and SSL
VPN Managers 620.

Each of the appliances at the site may have an SSL VPN
Manager 620 which identifies and/or monitors a number of
users accessing services at the site, including a number of
SSL VPN users. SSL VPN Manager 620A of appliance 200/
500A may identify users 660 and SSL VPN users 650 from
the site A. Similarly, SSL VPN Manager 620B of the appli
ance 200/500B identifies users 660 and SSL VPN users 650
from the site B. GSLB appliance 200/500 may communicate
with appliances 200/500 via a number of protocols, such as
MEP540 or SNMP protocols. GSLB 200/500 appliance may
receive from appliances 200/500 information identifying the
number of SSL VPN users 650 at each of the sites A and B.
GSLB appliance 200/500 may determine via SSL VPN load
balancing 605 which appliance 200/500 to receive an incom
ing request based on the number of SSL VPN users 650 at
each of the sites A and B.

In further overview, FIG. 6A depicts a GSLB appliance
200/500 load balancing incoming network traffic across
appliances 200/500 that are positioned at a plurality of sites.
GSLB appliance 200/500 may be any type and form of inter
mediary that balances network traffic across any number of
devices on the network, Such as appliances 200, appliances
500, servers 106 or clients 102. GSLB appliance 200/500 may
be any appliance 200 or appliance 500 load balancing net
work traffic across a plurality of other appliances 200 or
appliances 500. In some embodiments, GSLB appliance 200/
500 is an intermediary forwarding communication between
any number of clients 102 and any number of appliances 200
or appliances 500. In some embodiments, GSLB appliance
200/500 is an appliance 200. In other embodiments, GSLB
appliance 200/500 is an appliance 500. In yet further embodi
ments, GSLB appliance 200/500 is an appliance that includes
any functionality of any appliance 200 and appliance 500
described in conjunction with previous figures. In addition to
the aforementioned LB vServer 275, GSLB appliance 200/
500 may further comprise SSL VPN load balancing 605. In
some embodiments, GSLB appliance 200/500 comprises any
components or any functionality of any embodiments of
appliance 200, appliance 500, client 102 or server 106. The
GSLB appliance 200/500 may further comprise functionality
to communicate with any appliance 200 or any appliance 500
via any type of protocol, such as MEP protocol or SNMP
protocol.
GSLB vServer 275 may be any embodiment of vServer

275 described herein. The GSLB vServer 275 may further
comprise any functionality to balance network traffic across a
plurality of appliances 200/500. GSLB vServer 275 may per

10

15

25

30

35

40

45

50

55

60

65

54
form global server load balancing by load balancing a plural
ity of appliances 200, appliances 500 or appliances 200/500.
GSLB VServer 275 may also utilize any one or more of a
plurality of schemes for load balancing of the devices, such as
least connection, round trip times, round robin, least response
time, least bandwidth, least network packets and proximity.
In some embodiments, GSLB VServer 275 may comprise a
SSL VPN load balancing scheme 605 for load balancing
requests and devices based on SSL VPN user metrics. In some
embodiments, the GSLB appliance may use the SSL VPN
user metric or scheme 605 in combination any one or more
other load balancing algorithms, such as least connection,
round trip times, round robin, least response time, least band
width, least network packets and proximity.
SSL VPN load balancer or load balancing scheme 605 may

comprises any function, operations, logic or rule for load
balancing based on any type and form of statistics or metrics
about SSL VPN users, such as current number of SSL VPN
users. The metrics or statistics may include information or
data on a number of SSL VPN session, a number of SSL VPN
connections and/or a number of SSL VPN users. The SSL
VPN load balancer 605 may be any unit, device, function,
software, algorithm or a component of a GSLB vServer 275
that provides functionality to determine to which devices to
forward a request based on SSL VPN users. SSL VPN load
balancing scheme 605 may utilize information identifying
SSL VPN users on any number of sites, such as sites A and B,
to determine which device to forward a request received by
the GSLB appliance 200/500. SSL VPN Scheme 605 may
receive from the appliances 200/500 information relating the
number of SSL VPN users on all the servers 106 load bal
anced by the appliances 200/500, and in response to the
information received determine which of the appliances 200/
500 will receive the incoming request. The SSL VPN load
balancing scheme 605 may determine which appliance 200/
500 to forward a request received by the GSLB appliance
200/500 based on the type of connection the client 102 is
requesting or is currently connected with, such as SSL VPN
connection. For example, GSLB appliance 200/500 may
receive a request from a client 102 which may already be
using an SSL VPN session.
A site, such as sites A or B, may be any location(s) or

deployment comprising one or more appliances 200/500 and
one or more servers 106 being load balanced by the one or
more appliances 200/500. For example, a site may be a data
center. In another example, a site may be an office, such as a
branch office. A site may be a geographical location in which
a group of servers 106 and appliances 200/500 are located. A
site may be a plurality of geographical locations over which a
group of servers 106 and appliances 200/500 are spread out.
In some embodiments, a site is a room housing a group of
servers and an appliance 200/500. In other embodiments, a
site is a group of servers 106 located over a number of areas
being load balanced by an appliance 200/500. In some
embodiments, a site is any group of servers 106 being load
balanced by one or more appliances 200/500. A site may be
one or more servers 106.

Appliances 200/500, such as appliances 200/500A or
appliance 200/500B may be any embodiment of appliance
200 or appliance 500 described herein. In some embodi
ments, an appliance 200/500 comprises an SSL VPN man
ager 620. The SSL VPN manager 620 may comprise any
function, operations or logic for monitoring, counting and/or
gathering information relating to SSL VPN connections, SSL
VPN sessions or SSL VPN users. The SSL VPN manager 620
comprises software, hardware or a combination of Software
and hardware. The SSL VPN manager may comprise an

US 8,639,813 B2
55

application, program, library, Script, task, process, service,
thread or any form and set of executable instructions.

The SSL VPN manager 620 may obtains, establish deter
mine or otherwise provides any type and form of metrics or
Statistics related to SSL VPN users and/or SSL VPN sessions.
In some embodiments, SSL VPN manager 620 determines a
count of a number of SSL VPN users accessing the site. In
some embodiments, SSL VPN manager 620 determines a
count of a number of SSL VPN users accessing servers via the
appliance. In some embodiments, SSL VPN manager 620
determines a count of a number of SSL VPN on each of the
servers managed by the appliance. In some embodiments,
SSL VPN manager 620 monitors and determines information
relating SSL VPN users, SSL VPN sessions or SSL VPN
connections only on the servers load balanced by the appli
ance 200/500. In yet further embodiments, SSL VPN man
ager 620 maintains statistics, metrics or count of any SSL
VPN sessions or any SSL VPN threads on any of the servers
106.

In some embodiments, SSL VPN manager 620 determines
load balancing across the plurality of servers 106 of the site in
response to any of the SSL VPN user and/or session metrics or
statistics. In these embodiments, the site appliance may per
form local site load balancing using the SSL VPN user met
rics. In other embodiments, SSL VPN manager 620 deter
mines load balancing across the plurality of servers 106 in
response to the information or metrics relating the number of
SSL VPN user 650 connections and user 660 connections on
any of the servers 106.
SSL VPN manager 620 may identify any users of the site,

appliance or any appliance, server or service of the site or
otherwise accessed via the appliance, such as SSL VPN users
650 and users 660. SSL VPN manager 620 may comprise
information relating to any SSL VPN user 650 gathered by
monitoring of the network traffic of the SSL VPN user 650
which traverses the appliance 200/500. The SSL VPN man
ager 620 may comprise any information of any user within the
site which appliance 200/500 services. The SSL VPN man
ager may distinguish and determine those users which are
SSL VPN users in comparison to users that are not accessing
services via SSL VPN. In some embodiments, the SSL VPN
users are a Subset of all users at the site. In some embodi
ments, a user may concurrently be both a SSL VPN user and
a non-SSL VPN user. In some of these embodiments, the SSL
VPN manager may count and consider the user as an SSL
VPN user. In other embodiments, the SSL VPN manager may
not count and consider the user as an SSL VPN user.

Still referring to FIG. 6A, the users and SSL VPN users of
the site are described. FIG. 6A illustrates servers 106 com
prising users 660 and SSL VPN users 650. Servers 106A-B
are servers at the site A, load balanced by appliance 200/500A
of the site A. Appliance 200/500A comprises SSL VPN man
ager 620A which may identify the users 660 and SSL VPN
users of the servers at site A. Appliance 200/500B comprises
SSL VPN manager 620B which may identify the users 660
and SSL VPN users of the servers at site B. In some embodi
ments, the appliance 200/500 has, establishes or otherwise
maintains a set of users and SSL VPN users of the appliance.
In some embodiments, the users and SSL VPN users of an
appliance are the same users and SSL VPN users of the
servers. In other embodiments, some of the users and/or SSL
VPN users of the appliance are different than some of the
users and/or SSL VPN users of the servers. In some embodi
ments, site A may have one or more users and/or one or more
SSL VPN users in common with users and/or SSL VPN users
at site B. The number of users 660 and/or SSL VPN users 650
may vary at each site.

10

15

25

30

35

40

45

50

55

60

65

56
SSL VPN user 650 may be any user accessing via an SSL

VPN connection or session a resource at a site, an appliance,
or any server of the site or otherwise managed by the appli
ance. In some embodiments, SSL VPN user 650 is a user on
a client 102 establishing an SSL session or communication
via anSSL session. In other embodiments, SSL VPN user 650
is a user establishing an SSL session on a server 106. In some
embodiments, SSL VPN user 650 is a user establishing an
SSL VPN session with the appliance 200/500 or otherwise
sending communications traversing the appliance via an SSL
VPN session. In some embodiments, SSL VPN user 650 is a
user from a device on a first network, Such as a public net
work, accessing a server 106 on a second network, Such as
private network utilizing SSL VPN. As described herein, the
appliance 200/500 established and manages access between
networks and locations. SSL VPN user 650 may be any user
using an SSL VPN session, SSL VPN connection or any
secure tunneling protocol.

User 660 may be any user accessing a resource at a site, an
appliance, or any server of the site or otherwise managed by
the appliance. A user may be an SSL VPN user. A user may a
user not using SSL VPN. A user may be a user with an SSL
VPN session and a non-SSL VPN session. In some embodi
ments, user 660 is a user on a client 102 connecting to the
server 106. In some embodiments, user 660 is a user of the
appliance 200/500. In some embodiments, user 660 is a user
opening a plurality of connections to the server 106. In other
embodiments, user 660 is a user on the server 106 that does
not utilize SSL VPN. In some embodiments, user 660 may
have any number of connections on the server 106. In other
embodiments, user 660 may have any number of user sessions
on the server 106. User 660 may be any user using any
computing device to communicate with the server 106.

Referring now to FIG. 6B, a flow diagram of embodiments
of a method for global server load balancing of a plurality of
sites based on a number of SSL VPN users accessing the
servers is illustrated. In brief overview of method 600, at step
605 a global server load balancing virtual server (GSLB) load
balances a plurality of sites and receives a request to access a
server. At step 610, a load balancing virtual server (LB
vServer) at each of the plurality of sites load balances users
accesses to servers. At step 615, a first LBVServer determines
a first number of current SSL VPN users accessing servers
from the first site via SSL VPN sessions and a second LB
VServer determines at a second site a second number of cur
rent SSL VPN users accessing servers from the second site via
SSL VPN sessions. At step 620, the GSLB receives from the
number of current SSL VPN users from the plurality of sites,
such as from the first LB VServer and the second LB VServer.
At step 625, the GSLB determines to forward the request to
one of the sites, such as the first LBVServer or the second LB
vServer based on the current number of SSL VPN users at
each site.

In further view, at step 605 a global server load balancing
virtual server (GSLB) load balances multiple sites receives a
request to access a server. GSLB. Such as a GSLB appliance
200/500, may receive a request to resolve a domain name. In
some embodiments, GSLB receives a request to establish a
SSL VPN session. GSLB, such as GSLB appliance 200/500
may receive a request from a client 102 to access a webpage
or a file on one of the servers 106. In some embodiments,
GSLB receives a request from a client 102, a server 106 or any
device on a network to access an application provided by a
server 106. In some embodiments, GSLB receives a request
from a plurality of clients 102 to access a streaming file. Such
as an audio or a video file stored on a server 106. In some
embodiments, GSLB receives a request from a user on a client

US 8,639,813 B2
57

102 to log in to an email service provided by the server 106.
The request received by the GSLB may be any request to
access a resource or a service at any server 106. Based on the
request, the GSLB load balances requests across sites using
any load balancing scheme or algorithm, including but not
limited to one or more of the following: least response or
round trip time, least number of connections, least number of
packets, and least bandwidth. In some embodiments, the
GSLB load balances in accordance with SSL VPN loading
balancing scheme 605 described herein. In one embodiment,
the GSLB load balances across sites based on a number of
SSL VPN users at each site.
At step 610, one or more load balancing virtual servers (LB

VServers) at each of the sites load balances any user accesses
accessing servers 106. In some embodiments, a load balanc
ing virtual server of a particular site, such as a LB vServer
275A of appliance 200/500A, load balances traffic from users
requesting access to servers 106 of the particular site, such as
site A. In some embodiments, a plurality of load balancing
virtual servers balance the network traffic across a plurality of
groups of servers 106, each of the groups corresponding to a
site load balanced by one of the load balancing virtual servers.
In other embodiments, each of load balancing virtual servers
corresponding to each of the sites balances network traffic
across any number of servers 106 within each of the particular
sites load balanced by the load balancing virtual servers. In
some embodiments, a first LB vServer at a first site load
balances network traffic across a first group of servers 106 at
a first site. A second LB vServer at a second site may load
balance network traffic across a second group of servers 106
at a second site. Similarly, a third LB VServer at a third site
may load balance a network traffic across a third group of
servers 106 at a third site. In some embodiments, any of the
LB vServers are performing local site load balancing while
the GSLB is load balancing requests across sites.

At step 615, any LB VServer of the first site determines a
first number of current SSL VPN users accessing servers from
the first site and any LB VServer of the second site determines
a second number of current SSL VPN users accessing servers
from the second site. In some embodiments, a first LB
vServer determines a first number of current SSL VPN users
accessing servers from the first site via one or more SSL VPN
sessions. Similarly, a second LB VServer may determine a
second number of current SSL VPN users accessing servers
from the second site via one or more SSL VPN sessions. In
other embodiments, any LB VServer of the plurality of LB
vServers at the first site determines a first number of current
SSL VPN users accessing servers from the first site via SSL
VPN sessions. Likewise, any LB vServer of the plurality of
LB vServers at the second site may determine a first number
of current SSL VPN users accessing servers from the second
site via SSL VPN Sessions.

In yet further embodiments, one or more LBVServers at the
first site determine a first number of current SSL VPN con
nections connected to the servers at the first site. One or more
LB vServers at the second site may determine a first number
of current SSL VPN connections connected to the servers at
the second site. In still further embodiments, one or more LB
vServers at the first site determine a first number of current
SSL VPN users having sessions at servers 106. Similarly, one
or more LB VServers at the second site may determine a
second number of current SSL VPN users having sessions at
servers 106. In some embodiments, the first number is the
number of current SSL VPN sessions accessing the servers at
the first site. The second number may be the number of
current SSL VPN sessions accessing the servers at the second
site. In other embodiments, the first number is the number of

10

15

25

30

35

40

45

50

55

60

65

58
users currently connected to the servers using SSL VPN con
nections at the first site. The second number may be the
number ofusers currently connected to the servers using SSL
VPN connections at the second site
Any of the LB vServers or appliances may report the num

ber of SSL VPN users based on any type and form of statistics
on the SSL VPN users. In some embodiments, the number of
SSL VPN users is provided as an average over any time
periods. In some embodiments, the number of SSL VPN users
is provides as peak number of SSL VPN users. In other
embodiments, the number of SSL VPN users is provides as a
range. In another embodiments, the number of SSL VPN
users is provides as well as the number of SSL VPN sessions.
For example, a single SSL VPN user may have multiple SSL
VPN sessions. In still further embodiments, the first number
is any number of users using SSL VPN to connect to one or
more servers at the first site within a past predetermined time
period. In some embodiments, the second number is any
number of users using SSL VPN to connect to one or more
servers at the second site within a past predetermined time
period. The past predetermined time period may be any time
period such as the prior minute, the prior hour, the prior day,
the prior month or the prior year from the moment of deter
mination of the first number.
At step 620, the GSLB receives from any of the appliances

at each of the multiple sites information on the number of SSL
VPN users, and/or any metrics or statistics thereof. In some
embodiment, the GSLB receives from any of the LBVServers
at the first site a first number of current SSL VPN users and
from any of the LB VServers from the second site a second
number of current SSL VPN users. GSLB, such as the GSLB
appliance 200/500, may receive the first number or the second
number via MEP540 protocol. In some embodiments, GSLB
receives the first number or the second number via SNMP
protocol. GSLB may receive the first number or the second
number via any communication means and via any commu
nication Scheme or communication protocol. The GSLB may
receive the SSL VPN user information on a predetermined
frequency. The GSLB may request the SSL VPN user infor
mation on a predetermined frequency. The GSLB may
receive the SSL VPN user information upon changes to the
information. The GSLB appliance may receive the informa
tion from an appliance of a first site at a different time or
frequency than an appliance of second site. The GSLB appli
ance may receive the information from an appliance of a first
site at a same or concurrent time or frequency as an appliance
of second site. The GSLB appliance may receive the infor
mation from an appliance of a second site Subsequent to an
appliance of the first site.
At step 625, GSLB performs load balancing of client

access across the sites based on the received SSL VPN user
information using the SSL VPN load balancing scheme 605
alone or in combination with any load balancing algorithm of
the appliance. The GSLB determines to forward the request to
any one the LBVServers at the first site or any one of the LB
vServers at the second site based on the number of SSL VPN
users at each site. GSLB may determine to forward the
request to one of the first LB vServer or the second LB
vServer based on the first number of current SSL VPN users
and the second number of current SSL VPN users. In some
embodiments, GSLB determines to forward the request
received by the GSLB to the first LB vServer of the first site
upon determining that the number of the SSL VPN users
currently connected to the servers of the first site is smaller
than the number of the SSL VPN users currently connected to
the servers of the second site. In other embodiments, GSLB
determines to forward the request to the first LB vServer of

US 8,639,813 B2
59

the first site upon determining that the number of the SSL
VPN users currently connected to the servers of the first site
is greater than the number of the SSL VPN users currently
connected to the servers of the second site. In further embodi
ments, GSLB determines to forward the request to the second
LB VServer of the second site upon determining that the
number of the SSL VPN user sessions currently active on the
servers of the first site is Smaller than the number of SSL VPN
user sessions currently active on the servers of the second site.
In some embodiments, GSLB determines to forward the
request to the second LB VServer upon determining that the
number of the SSL VPN connections currently connected to
the servers of the first site is smaller than the number of the
SSL VPN connections currently connected to the servers of
the second site. GSLB may determine to forward the request
to either the first LB VServer of the first site or the second LB
vServer of the second site In some embodiments, the GSLB
appliance determines one or more thresholds of the number of
SSL VPN users allowed or desired for a site has been reached
and excluding the site from load balancing until the site no
longer exceeds the threshold. In some embodiments, even
though a threshold has been reached at a site, the GSLB
forwards a request to the site for client, user or site persis
tence.

What is claimed is:
1. A method for global server load balancing a plurality of

sites based on a number of Secure Socket Layer Virtual Pri
vate Network (SSL VPN) users accessing servers at each of
the plurality of sites, the method comprising:

a) receiving, by a global server load balancing (GSLB)
virtual server of a first appliance, a request to access a
server, the GSLB virtual server load balancing a plural
ity of sites, each of the plurality of sites comprising a
loadbalancing virtual server load balancing users access
to servers, a plurality of the users accessing servers via
an SSL VPN session, one or more of the plurality of the
users having a plurality of Sessions with one or more
Servers;

b) receiving, by the GSLB virtual server from a first load
balancing virtual server of a second appliance at a first
site, a first number of current SSL VPN users of a first
plurality of SSL VPN and non-SSL VPN users of the
second appliance, the first number of current SSL VPN
users identified and maintained by the second appliance
and accessing servers from the first site via SSL VPN
sessions, a first load balancing virtual server of the sec
ond appliance determining a first count of the first num
ber of current SSL VPN users distinguished from those
users of the second appliance that are not accessing
servers via SSL VPN:

c) receiving, by the GSLB virtual server from a second load
balancing virtual server of a third appliance at a second
site, a second number of current SSL VPN users of a
second plurality of SSL VPN and non-SSL VPN users of
the third appliance, the second number of current SSL
VPN users identified and maintained by the third appli
ance and accessing servers from the second site via SSL
VPN sessions, a second load balancing virtual server of
the third appliance determining a second count of the
second number of current SSL VPN users distinguished
from those users of the third appliance that are not
accessing servers via SSL VPN; and

d) determining, by the GSLB virtual server, to forward the
request to one of the first load balancing virtual server of
the first site or the second load balancing virtual server of
the second site by load balancing a number of SSL VPN

5

10

15

25

30

35

40

45

50

55

60

65

60
users across the plurality of sites based on the first num
ber of current SSL VPN users and the second number of
current SSL VPN users.

2. The method of claim 1, wherein one of the first number
of current SSL VPN users or the second number of current
SSL VPN users comprises an average number of users over a
predetermined time period.

3. The method of claim 1, wherein step (b) further com
prises requesting, by the GSLB virtual server, the first number
of SSL VPN users from the first load balancing virtual server
via an SNMP (Simple Network Management Protocol)
request, the first number of SSL VPN users identified via an
object identifier, the first load balancing virtual server updat
ing a value of an object identified by the object identifier.

4. The method of claim 1, wherein step (b) further com
prises receiving, by the GSLB virtual server of a first appli
ance, the first number of current SSL VPN users from the first
load balancing virtual server of the second appliance via a
metric exchange protocol communicated between the first
appliance and the second appliance.

5. The method of claim 1, wherein step (c) further com
prises requesting, by the GSLB virtual server, the second
number of SSL VPN users from the second load balancing
virtual server via an SNMP (Simple Network Management
Protocol) request, the second number of SSL VPN users
identified via an object identifier, the second load balancing
virtual server updating a value of an object identified by the
object identifier.

6. The method of claim 1, further comprising determining
by the first virtual load balancer of the second appliance a first
count of a first set of the first number of SSL VPN users from
all users accessing the first site via the second appliance and
determining by the second virtual load balancer of the third
appliance a second count of a second set of the second number
of SSL VPN users from all users accessing the second site via
the third appliance.

7. The method of claim 1, wherein step (d) further com
prises determining, by the GSLB virtual server, a threshold of
a maximum number of SSL VPN users for the first site has
been reached and responsive to the determination, forwarding
the request to the second site.

8. The method of claim 1, wherein step (d) further com
prises determining, by the GSLB virtual server, a threshold of
a maximum number of SSL VPN users for the second as been
reached and responsive to the determination, forwarding the
request to the first.

9. The method of claim 1, wherein step (d) further com
prises determining, by the GSLB virtual server, to forward the
request to one of the first load balancing virtual server of the
first site or the second load balancing virtual server of the
second site by load balancing the number of SSL VPN users
across the plurality of sites in combination with any of the
following load balancing methods: least connection, least
response time, least bandwidth, least packets and round trip
time.

10. A system for global server load balancing a plurality of
sites based on a number of Secure Socket Layer Virtual Pri
vate Network (SSL VPN) users accessing servers at each of
the plurality of sites, the system comprising:

a global server load balancing (GSLB) virtual server
executing on a first appliance receiving a request to
access a server, the GSLB virtual server load balancing
a plurality of sites, each of the plurality of sites compris
ing a load balancing virtual server load balancing users
access to servers, a plurality of the users accessing serv

US 8,639,813 B2
61

ers viaan SSL VPN session, one or more of the plurality
of the users having a plurality of sessions with one or
more servers;

a first load balancing virtual server executing on a second
appliance at a first site providing to the GSLB virtual
server a first number of current SSL VPN users of a first
plurality of SSL VPN and non-SSL VPN users of the
second appliance, the first number of current SSL VPN
users identified and maintained by the second appliance
and accessing servers from the first site via SSL VPN
sessions, the first load balancing virtual server determin
ing a first count of the first number of current SSL VPN
users distinguished from those users of the first appli
ance that are not accessing servers via SSL VPN:

a second load balancing virtual server at a second site
executing on a third appliance providing to the GSLB
virtual server a second number of current SSL VPN
users of a second plurality of SSL VPN and non-SSL
VPN users of the third appliance, the second number of
current SSL VPN users identified and maintained by the
third appliance and accessing servers from the second
site via SSL VPN sessions, the second load balancing
virtual server of the third appliance determining a sec
ond count of the second number of current SSL VPN
users distinguished from those users of the third appli
ance that are not accessing servers via SSL VPN; and

wherein the GSLB virtual server determines to forward the
request to one of the first load balancing virtual server of
the first site or the second load balancing virtual server of
the second site by load balancing a number of SSL VPN
users across the plurality of sites based on the first num
ber of current SSL VPN users and the second number of
current SSL VPN users.

11. The system of claim 10, wherein one of the first number
of current SSL VPN users or the second number of current
SSL VPN users comprises a peak number.

12. The system of claim 10, wherein the GSLB virtual
server of the first appliance requests the first number of SSL
VPN users from the first load balancing virtual server via an
SNMP (Simple Network Management Protocol) request, the
first number of SSL VPN users identified via an object iden
tifier, the first loadbalancing virtual server updating a value of
an object identified by the object identifier.

13. The system of claim 10, wherein the GSLB virtual
server of the first appliance requests the first number of SSL
VPN users from the first load balancing virtual server via an

5

10

15

25

30

35

40

45

62
SNMP (Simple Network Management Protocol) request, the
first number of SSL VPN users identified via an object iden
tifier, the first loadbalancing virtual server updating a value of
an object identified by the object identifier.

14. The system of claim 10, wherein the GSLB virtual
server of the first appliance receives the first number of cur
rent SSL VPN users from the first load balancing virtual
server of the second appliance via a metric exchange protocol
communicated between the first appliance and the second
appliance.

15. The system of claim 10, wherein the GSLB virtual
server of the first appliance receives the second number of
SSL VPN users from the second load balancing virtual server
of the third appliance via an SNMP (Simple Network Man
agement Protocol) request, the second number of SSL VPN
users identified via an object identifier, the second load bal
ancing virtual server updating a value of an object identified
by the object identifier.

16. The system of claim 10, wherein the first virtual load
balancer of the second appliance determines a first count of a
first set of the first number of SSL VPN users from all users
accessing the first site via the second appliance and the second
virtual load balancer of the third appliance determines a sec
ond count of a second set of the second number of SSL VPN
users from all users accessing the second site via the third
appliance.

17. The system of claim 10, wherein the GSLB virtual
server determines a threshold of a maximum number of SSL
VPN users for the first site has been reached and responsive to
the determination, forwards the request to the second site.

18. The system of claim 10, wherein the GSLB virtual
server determines a threshold of a maximum number of SSL
VPN users for the second site has been reached and respon
sive to the determination, forwards the request to the first site.

19. The system of claim 10, wherein the GSLB virtual
server determines to forward the request to one of the first
load balancing virtual server of the first site or the second load
balancing virtual server of the second site by load balancing
the number of SSL VPN users across the plurality of sites in
combination with any of the following load balancing meth
ods: least connection, least response time, least bandwidth,
least packets and round trip time.

k k k k k

