
(12) United States Patent
Ayers et al.

USOO6353924B1

(10) Patent No.: US 6,353,924 B1
(45) Date of Patent: Mar. 5, 2002

(54) METHOD FOR BACK TRACING PROGRAM
EXECUTION

(75) Inventors: Andrew E. Ayers, Amherst, NH (US);
Anant Agarwal, Weston; Richard
Schooler, Cambridge, both of MA (US)

(73) Assignee: Incert Software Corporation,
Cambridge, MA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/246,619
(22) Filed: Feb. 8, 1999
(51) Int. Cl." .. G06F 9/445
(52) U.S. Cl. ... 717/4
(58) Field of Search 717/4; 704/270;

714/744; 378/23

(56) References Cited

U.S. PATENT DOCUMENTS

3,940,619 A * 2/1976 Ellingson et al. 378/23
4,667,290 A 5/1987 Goss et al. 364/300

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

EP O 286 361 12/1988
EP O 372 835 A2 12/1988
WO WO 90/O1738 2/1990

OTHER PUBLICATIONS

“Instruction Trace Apparatus. Feb. 1978,” IBM Technical
Disclosure Bulletin, 20(9): 1-3 (Feb. 1, 1978).
Robert C. Bedichek, “Talisman: Fast and Accurate Multi
computer Simulation,” 1995, Laboratory for Computer Sci
ence, Massachusetts Institute of Technology.
Robert C. Bedichek, “Some Efficient Architecture Simula
tion Techniques,” Department of Computer Sciences, Uni
versity of Washington, Usenix Conference, Jan., 1990.

la 2, 6(1)
5- |r 4, 2

bc1, 20{O, II)

st 4, O6(5)
52- or 5, 2

bc. 8,90(O,3}

2,156 (9)
bor 14, 15 oi 4, 64(2)

bc 6, 34 (II)

F5, 8(2)
st 5,48(3)

53

55

Colin Hunter et al., “DOS at RISC.” Byte, Nov., 1989, pp.
361-368.

(List continued on next page.)

Primary Examiner Mark R. Powell
ASSistant Examiner Michael B. Holmes
(74) Attorney, Agent, or Firm-Hamilton, Brook, Smith &
Reynolds, P.C.

(57) ABSTRACT

A method of back-tracing execution of a computer program,
where the computer program comprises a plurality of
blocks, comprises instrumenting an original version of the
program by adding instrumentation code to Some or all of
the blocks to form an instrumented program. Instrumenta
tion can be added at the binary or Source level, or at link
time. The instrumentation code records execution Sequence
information upon execution of the corresponding instru
mented block to create a trace record of the executed
program. The execution Sequence information for each
block comprises a block identifier which identifies the
corresponding block. A detailed back-trace is generated,
after the program has executed, by replacing each recorded
block identifier with program counters associated with each
instruction in the corresponding block. The application may
comprise Several programs or Subprograms, in which case
Separate regions of memory can be maintained. Each region
is associated with a program or Subprogram or a set of
programs or Subprograms and Stores therein part of the trace
record corresponding to the associated Set of programs or
Subprograms. The trace records themselves may be of dif
ferent types. After execution, the trace record is presented to
a user, in the form of assembly code, or more preferably, in
the form of Source level code. In an alternative embodiment,
a Summary of the trace record recorded during execution of
an instrumented program is presented to a user. Various
types of traces can be produced, including a last instruction
trace and a first instruction trace.

73 Claims, 9 Drawing Sheets

Added instructions store blockdddress

Memory record stores block sequence

1 2 4 5
f 57

- Y

US 6,353,924 B1
Page 2

U.S. PATENT DOCUMENTS

4.951,195 A 8/1990 Fogg, Jr. et al. 364/200
5,146,586 A 9/1992 Nakano 395/575
5,241,678 A 8/1993 Futamura et al. 395/700
5,265,254 A 11/1993 Blasciak et al. 395/700
5,321,828 A 6/1994 Phillips 703/28
5,428,786. A 6/1995 Sites 395/700
5,488,714 A 1/1996 Skidmore 395/500
5,517,506 A * 5/1996 Underwood et al. 714/744
5,546,586 A 8/1996 Wetmore et al. 395/700
5,615,369 A 3/1997 Holler 395/709
5,634,086 A * 5/1997 Rtischev et al. 704/270
5,675,803 A 10/1997 Preisler et al. 395/704
5,701,487 A 12/1997 Arbouzov 717/4
5,732.273 A 3/1998 Srivastava et al. ... 395/704
5,732.275 A 3/1998 Kullick et al. 395/712
5,764,992 A 6/1998 Kullick et al. 395/712
5,790,858 A * 8/1998 Vogel 717/4
5,802,373 A 9/1998 Yates et al. 395/705
5,812,855 A 9/1998 Hiranandani et al. ... 395/709
5,870,607 A 2/1999 Netzer 717/4
5,966,541 A 10/1999 Agarwal 395/712
5,978,588 A 11/1999 Wallace 395/709
6,018,747 A 1/2000 Burns et al. 707/203

OTHER PUBLICATIONS

Anant Agarwal et al., “ATUM: A New Technique for Cap
turing Address Traces Using Microcode,” Proceedings of the
13th Annual Symposium on Computer Architecture, Jun.
1986.
Kazuhito, Patch System, Patent Abstract of Japan
(CD-ROM), Unexamined Applications, vol. 94, No. 11
(Nov. 8, 1994).

International Business Machines Corporation, Generic
Methodology for Code Patching in Binary File, 802-803
(Jun., 1998).
Ammons, G., and Larus, J., “Improving Data-flow Analysis
with Path Profiles,” ACM Sigplan Notices, US, Association
for Computing Machinery, 33(5):72–84 (1998).
Colin Hunter, et al., “DOS at RISC.” Byte, Nov. 1989, pp.
361-368.
Ferrante, J., et al., The Program Dependence Graph and Its
Use in Optimization, pp. 320-349.
Johnson, R., et al., “Dependence-Based Program Analysis’,
pp. 78–89.
Aho, Alfred V., Compilers, Principles, Techniques, and
Tools, pp. 513-580.
Ball, T. and Larus, J.R., “Optimally Profiling and Tracing
Programs, Technical Report #1031, Rev. 1, Computer Sci
ences Department, University of Wisconsin-Madison,
Sep., 1991.
Feldman, S. I. and Brown, C. B. “IGOR: a system for
program debugging via reversible execution,” Proceedings
of the ACM Sigplan and Sigops Workshop on Parallel and
Distributed Debugging, pp. 112-123 (1988).
Larus, J. R. “Abstract Execution: A Technique for Efficiently
Tracing Programs,” from Software Practice cc Experience,
GB (Chichester, John Wiley & Sons LTD.) pp. 1241–1258
(Dec. 1990).
“Productivity Tool for Online Tracing of an Assembly
Listing Using a Per Trace File.” IBM Technical Disclosure
Bulletin, (Nov. 1, 1987).
* cited by examiner

US 6,353,924 B1 Sheet 1 of 9 Mar. 5, 2002 U.S. Patent

G9 22

22

22

/

Mar. 5, 2002 U.S. Patent

GG 29

29

U.S. Patent Mar. 5, 2002 Sheet 3 of 9 US 6,353,924 B1

3Old Original Compiler Compile Listing

32
Binary

3O3 instrument
Binary

Instrumented
Binary

305
2 Execute Execute

3O6/

2

2 Event
Trigger

Sequence
Record 37
%

2

2

Trace
Record

3O9

39

os
FG. 4

Program
Results

%

2 2

Z

O

O-os
//

U.S. Patent Mar. 5, 2002 Sheet 4 of 9 US 6,353,924 B1

2O- Original Instrument
Source Source

Instrumented 2
Source 22

2

2 2

Instrumented
Binary 2 223

2O5 z

2O6 Results

2

Sequence
Record

%
mi. P

2
Trace
Record

2O9 Olios
29 4Z to

i O5

F.G. 5

U.S. Patent Mar. 5, 2002 Sheet S of 9 US 6,353,924 B1

CN
O u)

on y
o

O N

to to

5
CD

S 3 -
l?)

US 6,353,924 B1 Sheet 6 of 9 Mar. 5, 2002 U.S. Patent

U.S. Patent Mar. 5, 2002 Sheet 7 of 9 US 6,353,924 B1

4OA

AGYTCOR 75 write print-record from i-f-header-line-2.
AGYTCOR 1534 perform 24O-compute-summary.
AGYTCOR 536 close print-file.
AGYTCOR 917 perform I2OO-print-i-f-data.
AGYTCOR 98 display ' '
AGYTCOR 92 stop run.

4O3 4O5 4O7

FIG. 8

4O2

AGYTCOR 75 write print-record from i-f-header-line-2.
AGYTCOR 534 perform 24O-compute-summary.
AGYTCOR 536 close print-file.
AGYTCOR 97 perform I2OO-print-i-f-data.

4OIA

AGYTCOR 98 display ' '.
AGYTCOR 92 stop run.

CASHBAL perform...
CASHBAL 2 print ...

4OB CASHBAL 9 Odd...

FIG. 9

U.S. Patent Mar. 5, 2002 Sheet 8 of 9 US 6,353,924 B1

BLOCK EXECUTED:

5 5 A

Block: 55 54.525 53
Time-stamp: | 8 || 7 || 6 || 5 || 3

FG, OB

73

BLOCK EXECUTED:
5 5

5 5 B

75 75A 75B 75C 75D 75E 75F 75G 75H

552.535554.
FIG. OC

77

US 6,353,924 B1 Sheet 9 of 9

| | | | | |

Mar. 5, 2002

|

| || || || |z| ||
99

U.S. Patent

GG

US 6,353,924 B1
1

METHOD FOR BACK TRACING PROGRAM
EXECUTION

BACKGROUND OF THE INVENTION

Computers are known to terminate abnormally, or crash,
during program execution for many reasons, including
accessing invalid memory locations, going into an infinite
loop, running out of memory, accessing an invalid device,
and So on. Although modern Software engineering method
ologies attempt to minimize the possibility of crashes, they
have not been able to eliminate them.

When a computer runs an important aspect of a business,
it is critical that the System be able to recover from a crash
as quickly as possible, and that the cause of the crash be
identified and fixed to prevent further crash occurrences, and
even more importantly, to prevent the problem that caused
the crash from causing other damage Such as data corrup
tion.

The first Step in fixing the problem that causes a crash is
to first find the problem. Finding the problem when com
puter crashes in production is particularly difficult because
of the lack of information provided by the computer on the
events leading to the crash. In modern mainframe computer
environments, for example, tools exist that provide infor
mation about (1) the last instruction which executed when
the computer crashed, and (2) data Stored in registers and
memory at the instant the crash occurred. Some of these
tools also provide limited information on the Sequence of
Subprogram calls that eventually led to the crash.

Systems such as Abend-Aid(tm) from Compuware Corp.
provide only the last instruction before a crash. Abend-Aid
also provides information on the state of the system when it
crashed. The State includes the final values of registers and
memory locations.
Where multiple programs run on a computer System and

call each other, Some crash-analysis Systems also provide
information on the call Sequence. In other words, the user
can obtain the Sequence of inter-program calls preceding the
crash.

Several packages have existed for nearly two decades that
provide address traces of programs. For example, Henry,
“Tracer-Address and Instruction Tracing for the VAX
Architecture, ' Unpublished Memo, University of
California, Berkeley, November, 1984, or Agarwal, Sites,
and Horowitz, “ATUM: A New Technique for Capturing
Address Traces. Using Microcode,” In Proceedings of the
13th Annual Symposium on Computer Architecture, Pages
119-127, June 1986, or Ball and Larus, “Optimally Profiling
and Tracing Programs, TR #1031, September 1991, Com
puter Sciences Department, University of Wisconsin
Madison. These address tracing packages focus on creating
address traces of complete program runs or of Sampled
intervals of program runs.

These tracing packages are not concerned with computer
crashes to trigger a backtrace Sequence. Since their major
focus is to collect complete address traces, these techniques
are not concerned with the amount of Storage Space required
to Store the trace information, for example, in memory or on
disk, or in being active in production execution of applica
tion programs. Tracing packages also do not provide an
integrated mechanism to correlate and display traced
addresses with Source-level Statements to facilitate debug
ging of computer crashes.

Isolating the reason for a crash is Somewhat easier when
the crash happens during program development because the

15

25

35

40

45

50

55

60

65

2
program can be compiled in debug mode and executed
within a debugger. Within a debugger, the program is run
Slowly and more information is collected than during a
normal production run, So that when the program crashes the
user has more information with which to diagnose the
problem.

Unfortunately, it is often difficult to reproduce a crash in
debug mode, because of the difficulty of faithfully repro
ducing within a debug environment the Set of events that led
to a production run crash.

Within a debugger Such as "gdb,” a user can Stop the
program at any point during its execution. Debuggers pro
vide information on System State, Such as program variable
values at the halt point. By asking for a Stack dump, the user
can also obtain the sequence of function calls (if any) that
led to the Specific function within which the program is
halted.

SUMMARY OF THE INVENTION

Unfortunately, existing technologies do not provide infor
mation on the Specific Sequence of instructions that were
executed prior to the instruction that crashed or faulted.
Discovering the exact Sequence of instructions that executed
prior to a crash is a difficult problem, made even harder
when a program crashes in a production environment,
because execution Speed cannot be reduced significantly.

The present invention is a method for producing Such a
Sequence of instructions, or a crash instruction trace. A crash
instruction trace includes the instruction that crashed and
Some or all of instructions that preceded it. If the crash
instruction trace contains all of the instructions executed
from the start of the program to the crash point, then this
Sequence of instructions is called the complete crash instruc
tion trace.
The crash instruction trace can also contain information

on the Specific times at which each instruction was last
executed, in which case the trace is called a time-Stamped
crash instruction trace. The availability of a crash instruction
trace can facilitate isolating the problem that caused a crash,
thereby speeding up the process of crash recovery or System
Stabilization.

A complete crash instruction trace can become very large.
For example, a computer running 100 million instructions
per Second will produce a 100 million instructions per
Second that must be recorded in a complete trace. Therefore,
it is Sometimes preferable to Store a last instruction trace.
A last instruction trace is a Sequence of instructions Sorted

by the last time at which an instruction was executed. A last
instruction trace contains each instruction at most once.
Accordingly, the maximum size of the last instruction trace
is bounded by the Size of the program itself.
AS an example, Suppose a program contains the following

eight instructions, each represented as a letter: A,B,C,D,E,
F,G,H. Further Suppose that during a Successful execution of
the program the execution Sequence is A, B, C, F, G, F, G,
F, G, F, G, B, C, F, G, F, G, F, G, F, G, H. For the purpose
of the example, assume that the program Starts at precisely
1 AM and that each instruction executes in 1 microSecond
(uSec).
Now, Suppose the program crashes at the last execution of

the statement G. Then, the trace A, B, C, F, G, F, G, F, G, F,
G, B, C, F, G, F, G, F, G, F, G is the complete crash
instruction trace. B, C, F, G, F, G, F, G, F, G is a partial crash
instruction trace. The corresponding last crash instruction
trace is A, B, C, F, G.

US 6,353,924 B1
3

The time-Stamped crash instruction trace is:

Timestamp:

AM
AM + 1 usec
AM + 2 usecs
AM + 3 usecs
AM + 4 usecs
AM + 5 usecs
AM + 6 usecs
AM + 7 usecs
AM + 8 usecs
AM + 9 usecs
AM + 10 usecs
AM + 11 usecs
AM + 12 usecs
AM + 13 usecs
AM + 14 usecs
AM + 15 usecs
AM + 16 usecs
AM + 17 usecs
AM + 18 usecs
AM + 19 usecs
AM + 2.0 usecs

Inst

The last time-Stamped crash instruction trace is:

Inst.: Timestamp:

A. 1AM
B 1AM + 11 usecs
C 1AM + 12 usecs
F 1AM + 19 usecs
G 1AM + 2.0 usecs

Other types of traces, Such as a first instruction trace, can
also be Stored. Like the last instruction trace, the first
instruction trace contains only one reference to each instruc
tion. However, unlike the last instruction trace, it stores the
Sequence of instructions in the order in which they were first
referenced.

Instruction traces can be important for purposes other than
crash recovery, Such as performance tuning and debugging,
in which case Some System event or program event or
termination condition can trigger the writing out of an
instruction trace. The present invention applies to all of these
event types. In this more general case, the instruction trace
preceding the trace triggering event is called the pre-trigger
instruction trace. If the trigger is a crash then the pre-trigger
instruction trace is simply the crash instruction trace.

In accordance with the present invention, a method of
back-tracing execution of a computer program, where the
computer program comprises a plurality of blocks, com
prises identifying the blocks of the computer program, and
instrumenting an original version of the program by adding
instrumentation code to Some or all of the blocks to form an
instrumented program. The instrumentation code records
execution Sequence information upon execution of the cor
responding instrumented block to create a trace record of the
executed program. The Sequence information can be
recorded, for example, in memory, or to a disk file.

Preferably, the execution Sequence information for each
block comprises a block identifier which identifies the
corresponding block. The identifier may be, for example, a
Starting or ending program counter of the corresponding
block, or Some other assigned identifier, possibly using
Huffman coding to allocate the block identifiers.

15

25

35

40

45

50

55

60

65

4
In a preferred embodiment, a detailed back-trace is

generated, after the program has executed, by replacing each
recorded block identifier with program counters associated
with each instruction in the corresponding block.

In an optimized embodiment using path encoding, a block
identifier is recorded in a condensed representation.
Alternatively, a few bits can be used to encode the direction
taken by the program at each branch, e.g., one bit for each
two-way branch. The condensed representation can hold a
plurality of block identifiers. The condensed representation
can be Stored, for example, in a register which reduces the
number of instructions added for each block. The register
value is Stored into memory when no more values can be
written to it. The condensed representation is then expanded
by a post-processing Step by Storing the individual block
identifiers contained therein into the trace record.

Preferably, the trace record is stored in a circular buffer,
in a region of memory Separate from where the program is
Stored, and the buffer size is dynamically Set.

If the program comprises Several programs or
Subprograms, Separate regions of memory can be main
tained. Each region is associated with a program or Subpro
gram or a set of programs or Subprograms and Stores therein
part of the trace record corresponding to the associated Set
of programs or Subprograms, and the trace records them
selves may be of different types.

Instrumentation preferably occurs at the binary level, but
alternatively takes place at, for example, the Source code
level or at link time.
The trace record recorded is preferably presented to a

user. This can be in the form of assembly code, or more
preferably, is in the form of Source level code. In a preferred
embodiment, this is accomplished by maintaining, for each
binary-level instruction, a pointer to a line of Source code
from which the binary-level instruction was generated. The
pointer is preferably determined from a compiler listing file.
In a preferred embodiment, repeat Source level instructions,
due for example to one line of Source code leading to Several
lines of binary-level instructions, are filtered out. Where an
application comprises many programs, the program name
corresponding to an instruction trace entry is preferably
displayed.

In an alternative embodiment, a Summary of the trace
record recorded during execution of an instrumented pro
gram is presented to a user. This can include the basic block
lines identified in the trace record, as well as procedure calls
identified in the trace record. The Summary can also include,
for example, inter-module or inter-program calls identified
in the trace record.

In another preferred embodiment, a table is maintained.
Each entry in the table corresponds to a program block, and
is preferably addressed by a hash of its corresponding
block's program counter. This table can be used to produce
a last instruction trace by recording a Sequence indicator
when recording the block identifier, or a first instruction
trace by recording a Sequence indicator for a corresponding
block only the first time the block is executed.

The Sequence indicator can be a time-Stamp, and can be
recorded, for example, upon either entry or exit into the
corresponding block. Alternatively, the Sequence indicator
can be a counter value, which, for example, increments its
value after its value is recorded. In a further embodiment,
when the counter value reaches a preset limit, a time-Stamp
is recorded in place of the counter value. A Separate counter
can optionally be maintained for each module, Subprogram
or procedure.

US 6,353,924 B1
S

In another embodiment, Sequence indicators are Store
only when a specified event, which is preferably Selected by
a user, is detected by the instrumentation code.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular description of preferred embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the different views. The drawings are not nec
essarily to Scale, emphasis instead being placed upon illus
trating the principles of the invention.

FIG. 1 is a block diagram providing an example a
Sequence of program basic blockS.

FIG. 2 is a control flow diagram corresponding to the
example of FIG. 1.

FIG.3 is a Schematic drawing showing how, in the present
invention, instrumented code writes to a Sequence record.

FIG. 4 is a flowchart of an embodiment of the present
invention in which binary code is instrumented.

FIG. 5 is a flowchart of an embodiment of the present
invention in which Source code is instrumented.

FIGS. 6A and 6B are block diagrams providing an
example using of an optimization of the present invention
used to eliminate instrumentation in many blockS.

FIG. 7 is a Schematic drawing showing an optimized
embodiment of the present invention in which identifiers are
temporarily Stored, in a condensed format, in a register or
memory location.

FIG. 8 is a Sample trace listing presenting Source code.
FIG. 9 is a Sample trace listing presenting Source code

from multiple Sub-programs.
FIGS. 10A-10C are schematic diagrams illustrating

embodiments of the present invention create a last instruc
tion trace (FIG. 10B) and a first instruction trace (FIG. 10C)
for the control flow shown in FIG. 10A.

FIG. 11 is a Schematic drawing showing how a preferred
embodiment of the present invention operates with multiple
programs, each having its own buffer.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 shows an example instruction Sequence as the
instructions reside in memory. The instructions are grouped
into identified blocks 31-35, where a block is a sequence of
consecutive program instructions in which flow of control
enters only at the beginning and leaves only at the end
without halt or possibility of branching except at the end.
(Aho, Sethi, and Ullman, “Compilers, Principals, Tech
niques and Tools,” p. 528).

FIG. 2 shows a control flow graph representation of the
instruction Sequence of FIG. 1. For example, during
execution, block 32 can be followed either by block 33 or by
block 34. Thus, the static locations of blocks within the
stored program as shown if FIG. 1, often do not reflect the
Sequence in which the blocks are executed. The goal of
traceback is to provide the exact Sequence in which the
blocks were actually executed during an execution of the
program.

FIG. 3 demonstrates a simple embodiment of the present
invention, which inserts instrumentation code, shown as
thick lines, e.g., reference 50, into each block. The instru
mentation code comprises one or more instructions into each

15

25

35

40

45

50

55

60

65

6
block. BlockS51-55 are the instrumented versions of blocks
31-35, respectively, of FIG. 2.

If the actual execution sequence of blocks is 51, 52, 54,
55, then as each block executes, the instrumentation code 50
in each executing block writes out an identifier of the
corresponding block into a memory region explicitly created
by this or other instrumentation code. The identifier may, for
example, be the address of the first instruction of its block,
or it may comprise Some other form of identification. For
example, Huffman coding may be used to allocate compact
identifiers for each block with a program or within a
Subprogram.

In the current example, the identifiers are 1, 2, 4 and 5,
corresponding to blocks 51, 52, 54 and 55 respectively. This
Sequence of block identifiers comprises the Sequence record
57.

In a preferred embodiment, the memory region is orga
nized as a circular buffer, which is visible to the entire
program. Upon entering a basic block, the basic block's
instrumentation code obtains the address of the first instruc
tion of the basic block. Alternatively, a unique identifier may
be assigned to each block via a table or Some other means,
and the instrumentation code obtains the identifier. The
address or identifier is then written into the circular buffer.

The buffer size limits the amount of traceback history that
the program can achieve. Preferably, this limit can be Set
dynamically by the user.

FIG. 4 illustrates a preferred embodiment of the present
invention. Generally, if original source code 301 is available,
it is compiled at Step 311. The compiler typically provides an
executable binary or object program 303, and a compiler
listing 321, which provides a map from Source code lines to
the binary code. Obviously, if the Source program is not
available, Step 311 is skipped and no compiler listing 321 is
available.

Whether the source program is available or not, the binary
image 303 is instrumented at step 313, which produces an
instrumented binary 305. The instrumented binary 305
includes the added instrumentation code in each block, two
of which 304 are shown. Adding instrumentation to an
original program at the binary level, is described in U.S.
application Ser. No. 08/985.052, “Test, Protection, and
Repair Through Binary-Code Augmentation,” filed Dec. 4,
1997, which is incorporated by reference herein.
When the instrumented binary program 305 is executed at

step 315, the same results 323 are produced as would be with
an uninstrumented program. In addition, as the program
executes, the instrumentation code 304 records, or writes
out, into a separate region of memory a Sequence record 307
comprising Sequence information, e.g., corresponding block
identifiers, as indicated by arrows 3.06.

In a preferred embodiment, the sequence record 307 is
post-processed at Step 317 Such that each entry representing
a basic block is replaced with the Set of program counters
(PCs) in the block, thereby producing the desired trace
record 309.

A presenter 319 then presents the trace record 309 to a
user, for example, by presentation on a monitor 103, or
sending the record to a printer 101 or to a disk file 105 for
later analysis. If the compiler listing 321 is available, Source
code corresponding to the PCS can be displayed.
AS FIG. 5 shows, if source code 201 is available, then

alternatively, the instrumentation can be made at the Source
level, at Step 211. In this case, Source level recording
Statements are added to the program, for example, in C or

US 6,353,924 B1
7

Cobol. The resulting instrumented source program 203 is
then compiled at Step 213, producing both a compiler listing
221 and an instrumented binary 205. As in FIG. 4, the
instrumented binary 205 is executed 215, producing both
normal program results 223 and a Sequence record 207
written, as indicated by arrows 206, by the instrumentation
code 205. The post process step 217, trace record 209,
presenter 219, monitor 103, printer 101 and disk storage 105
correspond to the same features of FIG. 4.
The post processor 217 (FIG. 5), 317 (FIG. 4) is prefer

ably triggered by Some event Such as a crash, or Some other
user-defined event. Alternatively, instrumentation inserted
into the program detects Some designated condition defining
an event, e.g., a negative value in a register when a positive
value is expected.

Other instrumentation methods Such as link-time instru
mentation may alternatively be used.

Binary code instrumentation can be viewed as an enabler
of crash instruction trace technology because it adds little
overhead to the code and does not require the availability of
the program Sources. Not Surprisingly, it is the preferred
method for the current invention, because the low overhead
enables trace instrumentation to be introduced in a produc
tion environment.

Therefore, in the following discussion of the traceback
technology, binary code instrumentation is the assumed
means of inserting the recording instructions. However, it is
understood that Source-level instrumentation or link-level
instrumentation can be used to achieve the same goal if
desired.

In a preferred embodiment, the instrumentation code
creates or allocates a memory region in which to Store the
trace or Sequence information. Where an application com
prises more than one program or Subprogram, the instru
mentation preferably creates a memory region for each
program or Subprogram in which each program or Subpro
gram respectively Stores its corresponding trace information.
In this manner, the traces of each program or Subprogram
remain untangled.

In optimizations of the present invention, it is not neces
Sary to insert instrumentation into each block. Optimization
methods followed by post processing can be used to elimi
nate instrumentation in many blockS.

FIGS. 6A and 6B provide such an example using blocks
52-55. Here, execution of a block 52 may be followed by
execution of either block 53 or block 54. Both blocks 53 and
54 are always followed by block 55. Only one of blocks 53
or 54 need be instrumented. Here, for example, blocks 52, 53
and 55 are instrumented, while block 54 is not instrumented.
If, in FIG. 6A, block 53 executes as indicated by the heavy
lines, the sequence record 57 written by the instrumented
blocks will contain the identifiers 2, 3, 5 corresponding to
blocks 52, 53 and 55.
On the other hand, if block 54 executes as in FIG. 6B,

because block 54 is not instrumented, the Sequence record
57 will contain only the identifiers 2, 3. Because block 53 is
not seen to follow block 52 in the sequence record 57, block
54 must have eXecuted, implying a Sequence record as
shown at 57A which includes the identifier 4 corresponding
to block 54, although the sequence 57A is never actually
Stored. If the instrumentation program knows that the
sequence 52, 54, 55 is more common, then it will choose to
instrument block 53 and not 54.

FIG. 7 demonstrates another optimization, which uses
path encoding, in which a condensed representation of a
Sub-Sequence is maintained in a register or memory location
413.

15

25

35

40

45

50

55

60

65

8
The program control flow graph is first split up into a

preferably minimal Set of unique Single-entry multiple-exit
DAGS (directed acyclic graphs), using standard techniques,
for example, by using depth first Search and marking to
identify backedges, and then using each backedge in addi
tion to the graph entry points as DAG headers. Each DAG
is assigned a unique code word or identifier.
The instrumented code of each block within a DAG can

perform a quick operation on a register or memory location
Such as appending or adding its identifier. If a register is
used, then after Several Such operations, the accumulated
encoding can be written out to the trace record in memory.

For example, assume that the Sequence record during
Some execution is currently as shown at 411A. Suppose also
that register 413, which in this example comprises four
bytes, is clear. Referring to the control flow diagram of FIG.
3, assume the sequence of executed blocks is: 51, 52, 53, 55.
AS each block is executed, the instrumentation code shifts or
ORs the corresponding identifier into the register 413,
resulting in the Sequential configurations, or path codes,
shown at 413A-413D for blocks 51, 52, 53 and 55 respec
tively. When the instrumentation code sees that the register
413 is full, it stores all the contents of the register 413, i.e.,
the four identifiers, into the Sequence record, So that the
Sequence record is as shown at 411B.
An alternate encoding Scheme assigns an integer weight

to each block or control-flow edge between blocks, So that
each possible path within the DAG produces a unique Sum,
as described by Ball and Larus, in “Efficient Path Profiling.”
Proceedings of Micro-29, 1996. The instrumentation for
each block or edge adds in its weight. A preferred imple
mentation of this Scheme chooses power-of-two weights, So
that adding in a weight is accomplished by Setting a single
bit, for example with a single logical-OR instruction.

Alternatively, a few bits can be used to encode the
direction taken by the program at each branch, for example,
one bit for a two-way branch, or two bits for a three- or
four-way branch
Of course, depending on the Size of the register or

memory location, the Size of the identifiers, and the method
used, e.g., Shifting, adding, etc., the number of identifiers
temporarily Stored in the register or memory may be differ
ent.

The register and the unique DAG code is Stored to
memory at each exit point of the DAG. Together, the DAG
code and the path code within the DAG uniquely identify the
dynamic program flow. If the path code word is maintained
in memory, an OR immediate instruction, if available, can be
used to maintain the path code directly in memory, thereby
avoiding having to Store the register in memory when the
DAG is exited.
AS discussed with reference to FIGS. 3 and 4, the trace

record can be presented to a user as a Sequence of binary
instructions or their assembly language representations, or
mnemonics. However, Since each Source program line of
code is converted by a compiler to one or more lines of
binary code, an instruction trace can also be presented to the
user in Source form to facilitate debugging by a user.

FIG. 8 shows a sample source code trace listing 401A,
comprising three columns. The first column 403 shows the
name of the program, Sub-program or Subroutine. The Sec
ond column 405 shows the line number of the corresponding
code, and the third column shows the actual Source code
from which the binary code was produced.

FIG. 9 illustrates a similar sample source code trace
listing 402, produced by a preferred embodiment which is

US 6,353,924 B1

useful when multiple programs are running, i.e. where an
application comprises Several programs. If buffers are allo
cated to each Subprogram and to each program, using either
time-Stamps or Sequence numbers or both, then the postpro
ceSSor displays a crash or event instruction trace which
includes three pieces of information per line of code: the
program name, the line number, and the Specific Source.

In the example of FIG. 9, the traces of two programs
(Subprograms), AGYTCOR and CASHBAL are shown. The
first part 401A, corresponds to the trace 401A of FIG. 8 and
corresponds to the program AGYTCOR. The second part
401B shows the trace for the program CASHBAL.

Presentation of Source code to the user is accomplished,
for example, by maintaining for each binary/assembly
instruction, a pointer to the Source line that produced the
instruction. There are many ways in which this information
can be obtained. Most commonly, compilers produce Such
information. Compiler listing files also commonly contain
the Source code lines and the corresponding binary code
lines. Prior to displaying the trace to a user, a post
processing Step can convert each line of binary code or
assembly code to the corresponding Source Statement.

Typically, multiple assembly instructions map to a single
Source Statement. Thus, the Source level trace may show the
Same Source instruction repeated. A further optimized
embodiment of the present invention therefore filters out
repeat Source level instructions, for example, by replacing
multiple identical Source lines in the trace display with a
Single line.

In addition to assembly or Source code line traces, a
preferred embodiment optionally presents Summary trace
information to the user. Such Summary information may
comprise, for example, basic block lines, procedure calls or
inter module/program calls.

With Small modifications, the present invention can pro
duce other types of traces, as now discussed.

FIGS. 10A-10C demonstrate how alternative embodi
ments of the present invention can create a variety of traces
Such as a “last instruction trace' and a “first instruction
trace.” The control flow graph of FIG. 10A corresponds to
that of FIG. 3. For the examples of FIG. 10B and 10C,
assume the control flow indicated by the heavy line 59.
Thus, the order of execution of the blocks is: 51, 52,53,55,
51, 52,54, 55.

FIG. 10B illustrates a preferred manner of creating a last
instruction trace. For example, a table 71 is maintained
wherein each entry 51A-55A is associated with a specific
corresponding block 51-55, respectively. When a block is
executed, a timestamp is recorded in the memory buffer at
the corresponding location.
At the Start of the program, each entry is marked with an

X to indicate the corresponding block has not yet executed.
After block 51 executes, the timestamp, here a 1, is Stored
into the corresponding location 51A, as indicated at 71A.
Similarly, after blocks 52 and 53 execute, timestamps indi
cating the respective times of execution, here 2 and 3, are
Stored in the corresponding locations 52A and 53A, as
indicated at 71B and 71C respectively.
71A-71H show the changes to the table 71 as each block

is executed. Note that, for example, at 71E, when block 51
executes a Second time, the new timestamp, here a 5,
overwrites the old timestamp.

After execution of the program, or upon Some triggering
event Such as a System crash, the post-processor writes out
the Sequence record 73. By ordering the timestamps in

15

25

35

40

45

50

55

60

65

10
reverse order, the blocks are ordered by last execution, and
only the last execution of each block is shown. Thus, this is
a last instruction trace. Of course, the blockS could also be
ordered from first to last, however this is still a last instruc
tion trace.

In an improved embodiment, hashing techniques can be
used in combination with the block addresses to identify
corresponding locations within the table.

There are many ways in which a time-Stamp can be
obtained, one being the use of a System call to retrieve the
value in the System clock. In a preferred embodiment, each
Writing of the time-Stamp writes over the previous value
Stored in the entry corresponding to the block, although in
other types of traces may not be desired.

FIG. 10C demonstrates an alternative embodiment which
produces a “first instruction trace,” in which the first execu
tion of a block is recorded. A buffer 75 is allocated, having
an entry 51B-55B corresponding to each block 51-55 in the
program. Each entry is initialized to Some known value Such
as -1. When a block is executed, a time-Stamp is recorded
only if the current value in the record is -1. Otherwise no
value is recorded.

As with FIG. 10B, 75A-75H depict the state of the table
75 as each block is executed. After the program runs, the
blocks are ordered into a sequence record 77 by time
Stamps. Because only first execution times are recorded, the
resulting trace is a first instruction trace.

In a preferred embodiment, any or all of a crash instruc
tion trace, a first instruction trace and a last instruction trace
can be Stored

The circular buffer approach can be combined with other
trace methods, Such as the first or last instruction trace. This
combination is valuable when, for example, the user wants
a very long instruction trace. A Small loop in one of the
program modules, Subprograms, or procedures can com
pletely fill up the buffer. Instead, it is preferable to store
Sequences related to each program module in a Separate
buffer Such that memory is allocated as and when each
module executed.

Preferably, as FIG. 11 illustrates, a circular buffer 64, 66
is allocated to each module, ProgA and ProgB respectively.
Instrumentation at the beginning of a module creates the
module-Specific buffer. At the Start of the module execution,
the instrumentation code records the current time. For
example, the instrumentation code of block 51 records
time-stamp T1. Then, as before, the block instructions or
identifiers 1 and 2, corresponding to blocks 51 and 52, are
recorded.

Now blocks 61 and 62 from module ProgB are called and
executed before block 54. The instrumentation code from
block 61 writes a time-stamp T2 into ProgB's buffer 66, and
then blocks 61 and 62 write their identifiers 1 and 2 into the
buffer 66. After block 62, control returns to block 54 in
ProgA, which writes a new time-stamp T3 into ProgA's
buffer 64. Alternatively, time-Stamps can be stored upon
each exit, or on both entry and exit. Time-Stamps can also be
written by the runtime system.

Note that the sequence records 64, 66 need not be the
Same type. For example, record 64 may record every execu
tion of every block of ProgA, while record 66 may be a last
instruction trace.

In an another alternative embodiment, a circular buffer
represents only module entries and/or exits. Thus, when a
module is entered and/or exited, corresponding, for
example, to a call and/or return, the instrumentation writes

US 6,353,924 B1
11

the module identifier into this module-level circular buffer.
A record of the executed module Sequence is thus recorded.
The complete history is then obtained by combining the
module-level trace with the intra-module traces obtained
within the circular buffer.

Alternatively, rather than using clock functions which
may be expensive in terms of time or other resources, a
global Sequence number or counter is maintained in a
register or in memory. Each time the value of the counter is

1O written into the Sequence record, the counter is incremented.
Alternative embodiments can also have counterS allocated
for program modules, Subprograms, and procedures.

If Such a counter is incremented frequently, it may over
flow. Of course, overflows can be handled in many ways. A
preferred method is to resort to using a time-Stamp when a
counter reaches a preset high limit.

Preferably, a buffer is written out or displayed when the
instrumentation detects Some event. The event is chosen by
the user and Special instrumentation instructions are inserted
to check for the userspecified condition. When the condition
is met, the buffer is written out. Different events can be
assigned to trigger different buffers.
While this invention has been particularly shown and

described with references to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the Spirit and Scope of the invention as
defined by the appended claims.
What is claimed is:
1. A method of back-tracing execution of a computer

program, Said computer program comprising a plurality of
blocks, Said method comprising:

identifying the blocks of the computer program;
instrumenting an original version of the program by

adding instrumentation code to identified blocks to
form an instrumented program, the instrumentation
code recording execution Sequence information upon
execution of the corresponding instrumented block,
Such that cumulative Sequence information recorded
during execution of the program forms a Sequence
record;

recording a Sequence record of the program by executing
the instrumented program; and

upon occurrence of a triggering event, processing the
recorded Sequence record to form a trace record,
wherein Sequence information in the recorded Sequence
record is translated into at least one program counter
value of an instruction within an instrumented block
whose execution caused the Sequence information to be
recorded.

2. The method of claim 1 wherein the execution Sequence
information for each instrumented block comprises a block
identifier which identifies the corresponding block.

3. The method of claim 2 wherein a block identifier is a
Starting program counter of the corresponding block.

4. The method of claim 1 wherein every block is instru
mented.

5. The method of claim 2 wherein processing the
Sequence record comprises:

replacing each recorded block identifier with program
counters associated with each instruction in the corre
sponding block.

6. The method of claim 2 further comprising:
using Huffman coding to allocate block identifiers.

15

25

35

40

45

50

55

60

65

12
7. The method of claim 2, further comprising:
recording a block identifier in a condensed representation,

wherein the condensed representation holds a plurality
of block identifiers.

8. The method of claim 7, wherein the condensed repre
Sentation is Stored in a register.

9. The method of claim 7, wherein the condensed repre
Sentation is Stored in a memory location.

10. The method of claim 7, wherein the condensed
representation uses log2 bits to encode a path for each
n-way branch in the program.

11. The method of claim 7, wherein the size of the
condensed representation for any path makes use of an
expected frequency with which that path is taken.

12. The method of claim 7, wherein the condensed
representation uses path encoding.

13. The method of claim 7, further comprising:
expanding the condensed representation by Storing the

individual block identifiers contained therein into the
Sequence record.

14. The method of claim 1, wherein recording the
Sequence information into the Sequence record comprises
Storing the Sequence information in memory.

15. The method of claim 14, wherein the sequence record
is Stored in a region of memory Separate from where the
program is Stored.

16. The method of claim 14, wherein the sequence record
is stored in a circular buffer.

17. The method of claim 16, wherein the buffer size is
dynamically Set.

18. The method of claim 14, wherein the program com
prises plural programs/Subprograms, and wherein Separate
regions of memory are maintained, each region being asso
ciated with a program/Subprogram for Storing therein part of
the Sequence record corresponding to the associated
program/Subprogram.

19. The method of claim 1, wherein recording the
Sequence information into the Sequence record comprises
Storing the Sequence information to a file.

20. The method of claim 1 wherein the program's source
code is instrumented.

21. The method of claim 1 wherein instrumenting the
program occurs at a link level.

22. The method of claim 1 wherein the program's binary
code is instrumented.

23. The method of claim 1, further comprising:
presenting the trace record to a user.
24. The method of claim 23, wherein the trace record is

presented in the form of assembly code.
25. The method of claim 23, wherein the trace record is

presented in the form of Source level code.
26. The method of claim 25 further comprising:
maintaining, for each binary-level instruction, a pointer to

a line of source code from which the binary-level
instruction was generated.

27. The method of claim 26, wherein the pointer is
determined from a compiler listing file.

28. The method of claim 26, further comprising:
filtering out repeat Source level instructions.
29. The method of claim 1, further comprising:
presenting a Summary of the trace record to a user.
30. The method of claim 29, wherein presenting a sum

mary further comprises:
presenting basic block lines identified in the trace record.

US 6,353,924 B1
13

31. The method of claim 29, wherein presenting a sum
mary further comprises:

presenting procedure calls identified in the trace record.
32. The method of claim 29, wherein presenting a sum

mary further comprises:
presenting inter-module or inter-program calls identified

in the trace record.
33. The method of claim 1, further comprising:
maintaining a table, the table comprising a plurality of

entries, each entry corresponding to a program block.
34. The method of claim 33, wherein each entry is

addressed by a hash of its corresponding block's program
COunter.

35. The method of claim 33, wherein the instrumentation
code produces a last instruction trace by recording a
Sequence indicator when recording the block identifier.

36. The method of claim 35, wherein the sequence indi
cator is a time-Stamp.

37. The method of claim 36, wherein the time-stamp is
recorded upon entry into the corresponding block.

38. The method of claim 36, wherein the time-stamp is
recorded upon exit from the corresponding block.

39. The method of claim 35, wherein the sequence indi
cator is a counter value, further comprising:

incrementing the counter value after recording its value.
40. The method of claim 39, further comprising:
maintaining a separate counter for each module, Subpro
gram or procedure.

41. The method of claim 39, wherein when the counter
value reaches a preset limit, a time-Stamp is recorded in
place of the counter value.

42. The method of claim 33, wherein the instrumentation
code produces a first instruction trace by recording a
Sequence indicator for a corresponding block only the first
time the block is executed.

43. The method of claim 1, wherein sequence information
is Stored only when a specified event is detected by the
instrumentation code.

44. The method of claim 43, wherein the specified event
is Selected by a user.

45. The method of claim 1, wherein an application com
prises multiple programs, wherein presenting the instruction
trace to a user further comprises:

displaying, in the trace record, a program name corre
sponding to an instruction trace entry.

46. The method of claim 1, further comprising:
Storing any or all of a crash instruction trace, a first

instruction trace, and a last instruction trace.
47. A computer memory configured for back-tracing

execution of a computer program, Said computer program
comprising a plurality of identified blocks, comprising:

a trace record instrumenter for instrumenting an original
version of the program by adding instrumentation code
to identified blockS to form an instrumented program,
the instrumentation code recording execution Sequence
information upon execution of the corresponding
instrumented block, Such that cumulative Sequence
information recorded during execution of the program
forms a Sequence record;

a post-processor for transforming, upon occurrence of a
triggering event, the Sequence record recorded during
an execution of the program into a trace record,
wherein Sequence information in the Sequence record is
transformed into at least one program counter value of
an instruction within an instrumented block whose
execution caused the Sequence information to be
recorded; and

15

25

35

40

45

50

55

60

65

14
a trace record presenter for presenting the trace record.
48. The computer memory of claim 47, wherein the

execution Sequence information for each block comprises a
block identifier which identifies the corresponding block.

49. The computer memory of claim 48, wherein a block
identifier is a starting program counter of the corresponding
block.

50. The computer memory of claim 48, wherein the
post-processor generates a detailed trace record by replacing
each recorded block identifier with program counters asso
ciated with each instruction in the corresponding block.

51. The computer memory of claim 48, further compris
ing:

recording a block identifier in a condensed representation,
wherein the condensed representation holds a plurality
of block identifiers.

52. The computer memory of claim 48, wherein the
program may comprise Several programs or Subprograms,
and wherein Separate regions of memory are maintained,
each region being associated with a program or Subprogram
for Storing therein Sequence information corresponding to
the associated program or Subprogram.

53. The computer memory of claim 48, wherein the trace
record instrumenter instruments the program's Source code.

54. The computer memory of claim 48, wherein the trace
record instrumenter instruments the program's binary code.

55. The computer memory of claim 47, wherein the trace
record presenter presents the trace record in the form of
assembly code.

56. The computer memory of claim 47, wherein the trace
record presenter presents the trace record in the form of
Source level code.

57. The computer memory of claim 56, further compris
ing:

for each binary-level instruction, a pointer to a line of
Source code from which the binary-level instruction
was generated.

58. The computer memory of claim 57, wherein each
pointer is determined from a compiler listing file.

59. The computer memory of claim 47, wherein the trace
record presenter presents a Summary of the Sequence infor
mation.

60. The computer memory of claim 59, wherein the
Summary comprises procedure calls identified in the
Sequence information.

61. The computer memory of claim 59, wherein the
Summary comprises inter-module or inter-program calls
identified in the Sequence information.

62. The computer memory of claim 47, further compris
ing:

a table comprising a plurality of entries, each entry
corresponding to a program block.

63. The computer memory of claim 62, wherein the
instrumented code produces a last instruction trace by
recording a Sequence indicator when recording the block
identifier.

64. The computer memory of claim 63, wherein the
Sequence indicator is a time-Stamp.

65. The computer memory of claim 64, wherein the
time-Stamp is recorded upon entry into the corresponding
block.

66. The computer memory of claim 63, further compris
ing:

a counter whose current value is taken as the Sequence
indicator, wherein the counter is incremented after its
value is recorded.

67. The computer memory of claim 66, further compris
Ing:

US 6,353,924 B1
15

a separate counter for each module, Subprogram or pro
cedure.

68. The computer memory of claim 66, wherein when the
counter value reaches a preset limit, a time-Stamp is
recorded in place of the counter's value.

69. The computer memory of claim 62, wherein the
instrumented code produces a first instruction trace by
recording a Sequence indicator for a corresponding block
only the first time the block is executed.

70. The computer memory of claim 47, wherein sequence
indicators are Stored only when a Specified event is detected
by the instrumented code.

16
71. The computer memory of claim 47, wherein an

application comprises multiple programs, Such that, for each
line displayed, the trace record presenter presents, in the
trace record, a program name corresponding to an instruc
tion trace entry.

72. The computer memory of claim 47, wherein the
post-processor is triggered by a Specified event.

73. The computer memory of claim 72, wherein the
Specified event occurs when the instrumented code detects a

10 designated condition.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,353,924 B1 Page 1 of 1
DATED : March 5, 2002
INVENTOR(S) : Andrew E. Ayers Anant Agarwal and Richard Schooler

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 14
Lines 22 and 24, delete "claim 48" and insert -- claim 47 --.

Signed and Sealed this

Fourteenth Day of May, 2002

JAMESE. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

