UK Patent Application «.GB ,2 373418 .. A

(43) Date of A Publication 18.09.2002

(21) Application No 0106477.3 (51) INTCL?

HO4L 29/06 , GO6F 1/00
(22) Date of Filing 16.03.2001
(52) UK CL (Edition T)

_ H4P PPEB
(71) Applicant(s) U1S 82124
Kieinwort Benson Limited
{Incorporated in the United Kingdom) (56) Documents Cited
PO Box 560, 20 Fenchurch Street, LONDON, GB 2340702 A GB 2337908 A
EC3P 3DB, United Kingdom GB 2337671 A GB 2323757 A
GB 2316841 A
{72) Inventor(s)
John King Frederick Tait (58) Field of Search
UK CL (Edition S) H4P PDCSA PPEB
{(74) Agent and/or Address for Service INT CL7 GO6F , HO4L
QED I.P. Services Limited Online: EPODOC JAPIO WPI

Dawley Road, HAYES, Middlesex, UB3 1HH,
United Kingdom

(54) Abstract Title

Method and system to provide and manage secure access to internal computer systems from an external

client

(57) Amethod of providing and managing secure access to computer systems or resources from an external
client, comprises the steps of: a) receiving a message from the client at an authorisation module, b) requesting
credentials from the client, c) sending the message and credentials to a session management module, d)
checking the credentials of the client, and, if valid, issuing a ticket to the client, the ticket being valid for a
plurality of trusted computer systems, e) receiving a further message together with said ticket from the client
at the authorisation module, f) checking the validity of the ticket via the session management module, and a)
passing the message and ticket to an impersonator module which provides secure communication between
the client and the desired destination computer system or resource, the impersonator module also providing
usage information to the session management module.

A method of send non-HTTP compatible data through a network firewall is also disclosed. A method of
accessing a network by tunnelling through a firewall is also disclosed which includes running an appletin a
window of a web browser.

! | SecuriD
: B3 ((Accounting 6 YAuthentication
* e

pages | 36 .

! | , e N

Validate request

Regues!
D=

P N
B 7 0 A Fig.2.
R Profile nClive
9 v 12 Ciient Firawall Firawall

22 5% 32682 l
g 9 3% Legacy
ng% ‘%."%;% Socks protocols Puzm?ts Tunnelling 5 Target
o8 AR sarvar Legcy ™ | appiication
TR $ g‘%‘%%’ Secure tunne! module sarver
Q[8 ‘{9) !
>l \ 15 |

Thent ‘ X

l

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

V 8lvELEC 9D

02 uoneunsaq

sebed [euod

SIaAI9S qom

|
_
_

S _“ 1B
|
|
_

uoneunsag
, 6
N
os]] \ &,
/ Q 8 o < // “ _/QM\
%5 D g [0MOS oI5 N O
2 %22 | 1os einpow B2 \ oy o T
< < /..M S lajsew 1)1 Q® m/ SIS pasny N
3 S % g.m\{..w e 3 \ 0} diH
..\0\ c\® n..wo\ @ “.m _ N\ .I_IIY
[} n.._% _ \ _
7] \ _
_

a|npow
9[ljoid

yine wouy

asuodsey

¥Q ~
/VQO@\ - i _ |
D\

_ sabed
j _ uobo| [enod

_

|

s|npow
Jenies g0yl T\uoneousyINY) g
gnoss

a|npow
Bupunoooy

2/4

SEVVEETS
uoneoldde
1ebie |

Gl

\
— NN

a|npowl

sio50i01d h_m>_wmw ~ Jouun) 81noas ﬁ —
» Aoebo Buijouun Biomlau
1 aleAud/onqng
llemali4 llemauli

v_‘/

1usliD
Axoid syo0s
Buijjeuun |
$100030.id 4
Aoeban

L

S300S

wco_umo__aam
Jusi|o

3/4

Fig.3.

~ Socks server

i 01

Socks proxy

t

layer

SSL Encryption

' i

100

Client browser

Session ticket
<« Management

—~103

HTTP Connect ~104

102

Communications protocol layer

Fig.4.

200 Server Authentication
N .~ and —~203
Sock authorisation
L ocks server
component '
le Accounting 203
i A and audit
Y
SSL
Encryption Host/server 204
layer communication
201~ i
Y v

Communications protocol layer

4/4

av uswsebeuew aoid

sdno.b
uojjeolddy
SIO9AIBS o
1Y >>%§
e XXXXX
o lasn
@
W
Q
>
(9}
Y,
S
&
av
Bunepdn Joj 108lq0

woo qy Jebeuew
a|ijoid dseun)

| sebueyo Aisnp

abueyo 1ebb11 |

LOE

00€

QY 1Unoo%e Jesn

SIBAIBS

VSI

y

weidi o]

alyoid [epod o) >

ajiy01d XLHLIO O >

asegeleq ddny

sdnoub c _mmw 0SS
uoneoddy & | Jesp 0gg
sdnoib sseooy 9 183

s)

19AIBS IBAIBS
XUHD g3m

SETVEELS
SETY

sdno.b
SS90y

i3]

19sn

Hem
@

)
)
2
®
5
o
3
S
VA
av bunepdn
104 jJ08lgo woo
Qy 1esn dseir)
ebueyo Aienp |
| eBueyo 1ebbL |

AU

‘GBI

10

20

30

- 2373418

A METHOD AND SYSTEM TO PROVIDE AND MANAGE SECURE ACCESS TO
INTERNAL COMPUTER SYSTEMS FROM AN EXTERNAL CLIENT

FIELD OF THE INVENTION -

The present invention relates to a method of providing and managing
secure access to internal computer systems or resources from an external client.

It also relates to a system for providing such access.

BACKGROUND ART

In recent years, computer networks have been developed for connecting
one computer to another or to allow computers to share peripherals. Messages
sent over such a network must use a common communications protocol. Such
networks can be essentially self-contained intranets, or extranets where the
communications channels used are not controlied by a given entity. The Internet
is an example of a world wide communications network linking computers and
networks to one another. From the perspective of a single organisation, the
Internet comprises networks that are extranets. An intranet on the other hand
comprises a communications network to which access is controlled or restricted.
An intranet operates over a physical network that is under the control of a given
entity.

Communications over the Internet presently employ the Transport Control
Protocol/Internet Protocol (TCP/IP), and data is sent in discrete packets having a
format define by this protocol. Other protocols, such as Hypertext Transmission
Protocol (HTTP) and File Transfer Protocol (FTP) are further refinements of the
TCP/IP protocol. Resources, such as for example servers, program codes, files
and web pages, are accessible via the Internet, and are given a universal
resource locator or URL, which defines the resource, its location, and the protocol
used to communicate with the resource.

An intranet can be connected to an extranet via a physical connection such
as a modem and telephone line. A gateway comprising hardware and/or software

is typically used to act as an entrance and exit to and from such an intranet. A

10

2
gateway can also perform conversions between incompatible networks and

formats.

Controlled or restricted access form an extranet to an intranet is desirable
for maintaining security and integrity of an organisations data. Firewalls and web
tunnels are two examples of methods of controlling access.

A firewall is hardware and/or software at the gateway which examines data
packets to determine whether the packet should be forwarded to/from the
intranet. The firewall identifies the destination or originating addresses to
determine whether to forward a given data packet. For example a firewall may be
configured to block data packets whose origin or destination is the Internet.

To allow a user to gain access to the Internet from an intranet protected by
such a firewall, a proxy server can be installed on the intranet which has access
both to the intranet and to the Internet. The server acts as a proxy to forward
requests on behalf of, for example, a user. A proxy server forwards a message
without modifying the content.

To allow access by an external source or client to an intranet, a reverse
proxy server may be used, as disclosed in WO 98/31124 or WO 99/66384. This is
a server which sits outside the intranet, and can communicate with a dedicated
server inside the firewall. Such reverse proxy servers usually incorporate URL re-
mapping so that the external client does not have access to the internal URL, as
disclosed for example in US 6,081,900.

One example of the web tunnel approach to intranet access from an
external source is disclosed in US 6,104,716.

Of course, access to an intranet will only be provided to external sources
or clients who are trusted/authorised. A known way to provide trusted third party
authentication for TCP/IP networks is the Kerberos protocol, described in Bruce
Schneier's “Applied Cryptography”, John Wiley and Sons, New York, Second
Edition (1996), pages 566 to 571, incorporated herein by reference.

A Kerberos service, sitting on a network, acts as a trusted arbitrator,
allowing a user to access different machines on the network. Kerberos shares a
different secret key (such as an encrypted password) with each user, and
knowledge of that secret key is proof of identity. In use, a client requests a ticket

for a particular server from Kerberos. The ticket is sent to the client encrypted

10

20

N
6]

30

3
using the client’s secret key. The client then presents this ticket to the server

along with an authenticator. If the client's credentials are valid, the server lets the
client have access to the service requested. A client requires a separate,
dedicated ticket for each service.

A disadvantage of the known methods of providing and managing secure
access to a computer system or resource from an external client, is that in order
to access different intranets (through, for example, different firewalls) one must
gain authentication from each intranet separately. This is wasteful of processing
power, and makes access management and central billing for services difficult.
The present invention provides a global solution enabling access to two or more
intranets seamlessly to the user, whilst simplifying access management and

billing.

SUMMARY OF THE INVENTION

According to a first aspect of the invention there is provided a method as
specified in claims 1 — 3,

According to a second aspect of the invention there is provided computer
apparatus as specified in claims 4 - 7,

According to a third aspect of the invention there is provided a method as
specified in claims 8,

According to a further aspect of the invention there is provided a method

as specified in claim 9.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by way of example
only, with reference to the accompanying schematic drawings, in which:-

Figure 1 shows a computer system according to the invention,

Figure 2 shows a tunnelling module according to the invention,

Figure 3 shows a part of the tunnelling module of Figure 2

Figure 4 shows a further part of the tunnelling module of Figure 2, and

Figure 5 shows a user management module according to the invention.

(O3]

10

NI
at

30

4
DETAILED DESCRIPTION OF THE INVENTION

An overall view of the system is shown in Figure 1. All requests made to
the system, for example by browsing by a client (1), will first be intercepted by a
web filter called the authorisation check module (2). A web filter is a generic term
used to describe a process that has the ability to filter and process incoming
HTTP requests. The authorisation check module has the ability to intercept all
HTTP incoming requests and perform a series of functions before either allowing
the request to proceed or returning the request back to the user. As this the first
request that has been made by the client, the client will not be presented a ticket
or session |D at this stage. Instead, the client will be redirected to a set of portal
logon pages, on a logon web server.

These portal logon pages contain the initial pages which prompt the user
for the authentication method required to logon to the portal. For example, this
may be a page that prompts the user to select either user ID and password, a
secure 1D token, or an X 509 certificate, and then prompts a user for that
information. Once the user has supplied these credentials, the authorisation
check module passes them internally to a main session management module (4).

The authorisation check module passes the credentials across to the
session management module, with the request for validation. One of the key
objectives for the authorisation check module is that it will not let requests pass
into the internal network (5) unless they have been validated. This zone is
referred to as the authorisation zone, and is separated from the sessions
manager module by a firewall (10). The session management module is not
directly responsible for validating the credentials, and thus passes them to an
authentication module (6). This authentication module has a number of hooks into
the system that it will support credentials for. In the present case this will be a
hook into an accessible RSA SecurlD ACE server (3), and a hook into the Active
Directory (or any LDAPv3 store) (12) to obtain the public key of certificates.

The results of the authentication are passed back to the session
management module. Providing that the credentials supplied were valid, the
session management module creates a new session for this user/client and
passes the session details to the profile management module (7). If validation

fails, the request is returned to the logon web server as rejected.

10

30

5
The role of the profile management module is to ensure that a valid user

profile exists for the client who is trying to logon. Communication with the profile
management module also confirms a unique system ID for the user.

The results from the profile management module are passed back to the
session management module. Providing a valid system user exists (i.e. the client
has a valid user profile and is known to the system), the session management
module passes the session details down to the Ticket Master module (8). This
module stores the session in one of the available SQL repositories (9) (selection
is based on a hash value of the session details to insure scalability), signs the
session with a private key, and passes this information back to the session
management module as a token, ticket or cookie containing the signed session
details, which is returned to the authorisation check module, which returns the
ticket or cookie to the client browser, and sends an HTTP 302 redirect in order to

direct the user to the portal logon pages.

Once the client is logged on to the system as a user, ensuring that the user
is valid for the entirety of the session involves a similar process. When the user
sends a further request to the system, it is again intercepted by the authorisation
check module (2). This time however, the authorisation check module detects that
a cookie or ticket is being presented as part of the request. In order to validate the
session details, the authorisation check module has to pass the request across to
the session management module (4). The session management module again
acts as an arbitrator with this request, and forwards the session details to the
Ticket Master module (8). The Ticket Master module performs two checks: one to
ensure the contents of the session details are valid; a second to check whether
an existing session exists based on these details. The results of these two checks
are returned to the session management module, which passes this information
back to the authorisation check module. Providing the session is valid the request

is allowed to continue.

The ticket includes two pieces of time information — a refresh time and an
expiry time. The refresh time is to allow the architecture the ability to refresh the
ticket on a periodic basis without forcing the user to log on again. This helps

protect against replay attacks. The ticket master module comprises two

10

25

30

6
components — an array of ticket master machines and a number of shared

storage areas to store all the tickets. This arrangement is beneficial because the
subsystem can be load balanced — i.e. the ticket storage and retrieval process

does not have to be performed by the same ticket master machine each time.

The inbound request next gets forwarded to the impersonate module (11).
This module is responsible for checking the validity of the session ID and
impersonating the incoming user. In order to do this, the impersonate module
passes the session details and the URL of the resource that the user is trying to
access to the session management module. The system makes two
authentication checks. The authorisation check module first validates the session,
before allowing the request to be proxied. The impersonate module re-checks the

session details before processing the request.

This re-check is necessary as it confirms that the session is valid. Although
there is a level of trust for the session management module, it is insecure to trust
the components within the authorisation system. If processes were hijacked within
the authorisation system it would not be acceptable for any false requests to be
treated as trusted, hence a second validity check is made. Once the validity of the
session has been confirmed, the session management module performs an
indexed search in the profile management module, which includes an Active
Directory 12 (or LDAPv3 store) against the URL that the user is trying to access.

Once this has been found, the following items are extracted:-

a. Has the validated user been granted access to the specified URL

resource?

b. If so, what username and password should be used to log her onto this

resource?

Provided the answer to the first question is yes, the username and password are
extracted from the Active Directory (using a Microsoft component called SPRITE)

and passed to the session management module.

The session management module then creates a Base 64 encoded header

based on the user credentials, and returns these to the impersonate module,

10

20

N
O]

7
which writes the HTTP authorisation header with these details before the request

is forwarded to the destination host or resource.

The impersonate module 11 can work alongside a URL remapping module

16 as a web filter.

In general, the destination host or resource (20) will be behind a dedicated
firewall. Once the user is logged onto the system they have the option of creating
a tunnel connection through the firewall. The tunnelling module (14, 15) will now

be described in more detail.

Known tunnelling techniques can be employed. However, an improved
tunnelling module has been developed for the present invention. This is shown
schematically in Figure 2, and uses three pieces of standards based technology,

namely:
1. Client browser downloadable software objects,
2. SOCKS tunnelling protocols, and

3. The link between the tunnelling client and the tunnelling server can optionally

be secured using the encryption protocol SSL (for example, version 3).

The client side component (14) has been developed as a downloadable
software object that can be stored on a WEB server and downloaded on-demand
to the client systems browser. The client component runs as a multitasking

browser object either in the foreground or background of a browser window.

The SOCKS protocol is a robust and mature protocol which is supported by
a number of applications and systems throughout the industry. Normaily
implemented as a means of a traversing firewall systems from within a corporate
network to access resources out in the Extranet, this protocol is used within the
present system to effect communication at the client side with SOCKS enabled
applications, and as a communication protocol across the link between the

tunnelling clients and the tunnelling server.

10

15

20

N
at

30

8
The SSL protocol is a robust and mature protocol which is supported by a

number of products that implement secure communications across public and
private networks. Specifically, the protocol is supported across most of today's
standard proxy products that are used to grant internal users access {0 the
Internet. Because traffic running across an SSL link is encrypted, there is limited
scope for content checking by the proxy servers. We can therefore utilise SSL to
set up none non-HTTP sessions through HTTP proxy servers and across the
Internet. In other words, it is possible to fool the SOCKS compliant components
into thinking that input legacy data (which is not compatible with HTTP) is an
encrypted SSL datastream, and therefore transferable using the SOCKS/SSL

protocols.

Security and authentication within the tunnelling environment is managed by
session tickets generated from user credentials and the server system validating
each connection request against an internal profile database, as described

earlier.

The client side component (14) is implemented as a software object that is
downloaded to the client's browser and executes either in the foreground or in the
background within a browser window to emulate a local SOCKS V4 or V5 server
that SOCKS — enabled applications running on the client system can interface
with. The client side component acts like a proxy, forwarding the SOCKS requests
and traffic across a secure link to the server-side component that is actually
processing the requests. The client side component can manage a number of
concurrent SOCKS tunnelling sessions with the server component.

Communication between the client-side component (14) and the server-
side component (15) are secured using the standard encryption protocol SSL v3.
The client side component implements the client side of this protocol. The client
component supports communication over the Internet via corporate proxy servers
using the HTTP PROXY CONNECT command.

The client side component of the tunnelling module shown in Figure 3
comprises block 100 which denotes a client side SOCKS server component which
is responsible for initialising the communication systems required to allow SOCKS

enabled clients to connect to the client side SOCKS proxy component, denoted

10

30

9
by block 101, described below. Component 100 connects to the underlying

communications stack and opens a listening port that SOCKS enabled
applications can then connect to. Component 100 is responsible for managing
the connection requests from the SOCKS enabled clients. It will start up a new
sub-task for each new connection. Control is then passed to the client side
SOCKS proxy component (101) to manage the connection with the server side

component.

Component 101 starts up the GUI interface that allows the user to monitor
the SOCKS sessions when the component is running in the foreground. Once the
communications channel has been set up it will forward connection initialisation
requests and connect/bind requests to the server side component and will forward
responses back to the client. This module proxies traffic between the client and
the server via the SOCKS channel. It is also responsible for starting up the sub-
task that will manage the session tokens that are used for session authentication
— it passes the authentication token to the server with each request for
authorisation checking. When the SOCKS enabled client closes the SOCKS
session, component 101 will take down the connections with the server side

component, first terminating the SSL session if one was set up.

Block 102 denotes the SSL encryption layer component, which is
responsible for managing initialisation, termination and encryption/decryption for
the secure communications channels between block 101 and the server side

component.

Block 103 denotes the session ticket management module. It is
responsible for keeping the token fresh. It processes the tokens when the proxy

client is downloaded and initialised.

Block 104 denotes the HTTP connect module, which is called when
component 101 has to connect via a HTTP proxy. It opens up a communications
channel with the HTTP proxy and requests a connection to the server side

component using the HTTP CONNECT command.

10

10
The server side component (15) of the tunnelling module is a multitasking

software object that is installed on a server within a secure area of an internal
network. This component implements a subset of the SOCKS V4 or V5 protocol,
and the server side of the SSL v3 protocol. It runs as a SOCKS V4/V5 server and
can be configured to accept connections from normal SOCKS clients or the
secure proxy clients described earlier. The server side component terminates the
SOCKS and SSL sessions and manages communications with the target host
and server systems. It can manage a number of concurrent SOCKS tunnelling
sessions with clients, and maintains audit and accounting logs of requests being
processed. It also manages authentication and authorisation for the connection
requests being presented by the SOCKS clients. The server side component
does not implement the standard authentication methods for SOCKS V4/V5 but
uses a system of authentication tokens passed to it via the SOCKS proxy clients
to authenticate users and authorise access to internal system and server

resources.

The server side component (15) of the tunnelling module shown in Figure
4. It comprises the SOCKS server component 200, an SSL encryption/decryption
module 201, a session ticket management component 203, and a host/server
communications module 204 which sets up links with the target hosts/servers and

processes traffic.

A diagram showing an overview of the function of each component when

setting up and executing a tunnelling session is shown in Figure 5.

To ensure that the tunnel application is only valid whilst a user is logged in
and to ensure that user credentials can be extracted to provide single sign on
capabilities to tunnelled applications, the Tunnelling Server (15) communicates
with the Session Management Module (4). As the Tunnel Client 14 is running
within the context of a browser window, the Session Management Module has
access to the cookie, ticket or token held by the client. The Tunnel Client passes
this information to the Tunnel! Server at frequent intervals during the lifetime of the
tunnel. The Tunnel Client makes periodic calls against the Session Management
Module to ensure that the cookie is still valid. If a value is returned indicating that

the session is no longer valid (for example the user has signed off in another

10

30

11
window or the session has expired), the Tunnel Client has the ability to take down

the connection.

The Tunnel Server uses the ticket information and the connection request
information provided by the Tunnel Client to validate that the user is authorized to
be connected to the requested resource by passing the ticket and the request
information to the session management module, which then validates the access
reugest against the user profile information, and returns a success or failure

indicator.

Of course, access to an internal resource or host will only be provided to
external sources or clients who are trusted/authorised. A known way to provide
trusted third party authentication for TCP/IP networks is the Kerberos protocol,
described earlier. As an alternative, each site can have a list of other sites it trusts

(such a trust can be set up using any methodology).

Such prior art trust schemes could be used for the present system.
However the present embodiment provides an improved authentication trusts
methodology in which the trustworthiness of an external computer system or
resource is established using a cryptographic system in which the public key
characteristic of the trusted internal computer system and the public key of the
external destination computer system or resource are exchanged over a non-
secure connection such as an extranet. This methodology enables trusts to be

created between sites.

This is performed by the exchange of credentials between the Ticket
Master modules of different sites. Once the credential exchange has been
performed, the Ticket Master module from one site is able to validate session
details (through the contents of the ticket, token or cookie) generated by another
trusted site. Thus such a methodology enables the generation and use of multi-

user tokens, tickets or cookies.

The issued cookie is then presented when the user visits a URL which is
hosted from the trusted site. A trust module (that links with the Authorisation
Check module) provides a secure way of one site communicating with a trusted

site in order to update the tickets or cookies for a trusted user.

10

20

25

30

12
Known prior art authentication systems such as Kerberos all verify the

tickettoken back to the central site, and then they hold information on that
ticket/token in their systems that allows them to verify subsequent access
requests using that ticket/token. The present invention uses the public key from
the trusted site to verify the ticket. It is only necessary to go back to the central
site when we get a trusted ticket/token that has to be refreshed. This improves
scalability, because the present invention is not reliant on central ticket verification

for all trusted sites.

In the absence of central site verification, some form of secure digital
signature is required as in the present invention to discourage attack through

impersonation.

The trust relationship between sites is set up through an exchangé of root
CA certificates and ticket master certificates that hold the ticket master public key
chain. The ticket master modules in the trusted environments are then able to
validate tickets from the trusted site in the same way that they validate their own

tickets by checking the signature on the ticket.

Each ticket issued must be refreshed on a regular basis. This refresh must
be done by the issuing session management system to ensure that the users
session state is maintained. There are situations where the user may log on to the
issuing site and not return there to get their ticket refreshed. To ensure that a
correct session state is maintained, the trusted site must monitor the rotation
period on the user's ticket and communicate back to the issuing site, without
client intervention, to refresh the users ticket. This is the function of the trust

module.

When the session management module of a trusted site recognises that a
ticket is due to be refreshed it will instruct one of the authentication zone servers
to communicate via the trust module with the ticket-issuing site, who will then
issue a refreshed session ticket cookie. The trust module will issue an HTTP
request to the issuing session management module, and the system will
regenerate the session cookie and return it in an HTTP response. The trust
module will return the refreshed cookie back to the session management module

via the authentication zone servers.

10

15

20

25

13

The user manager module can be implemented as a separate stand alone
working unit for other applications and application service providers (ASPs), or it
can be integrated into a single system with the modules already described.
Organizations seeking to centrally manage application distribution for many
thousands or tens of thousands of users must undertake a large number of

management tasks, including:-
user creation
application package creation
application upgrades and testing
application assignment to users
user permissioning
billing
application presentation
security

single sign on

A large corporation can expect to manage over 10,000 users with a
portfolio of 400 or more applications, most of which will have 6 monthly update
cycles. An average of 20 applications per user would create over 200,000 user
assigned applications, each of which would need to be amended at least one or

twice a year.

Simple ASP administration requires the creation and deletion of user
assigned applications, amending the user assigned application when the
application is updated, and then charging clients for the number of applications
being used on a periodic basis. This produces a large amount of work, especially
for an ASP with hundreds of thousands of users. Traditionally such systems have

required a large administration and support team, which needs to grow at the

10

20

14
same rate as the client base, hence negating a major benefit of the ASP model —

namely reduced administration costs.

The user manager module seeks to mitigate this complexity and deliver
cost savings. It offers client organizations the devolved ability to organize and
administer ASP users. User application pairs can be created by individual users
via a menu of available applications on their homepage. This information is stored
securely so that billing can begin immediately. Doubling the number of users

should not increase the number of ASP administrators.

The user management module is shown in Figure 5, and comprises a meta
directory in the form of a global user profile database (300) which controls a
plurality of LDAP compliant directories, such as for example Microsoft Active
Directories, Netscape directory services and NDS. Typically, one of these LDAP
compliant directories will already be present as part of the organizations existing
administration scheme. In the present embodiment, the two LDAP directories are
Microsoft Active Directory (AD) databases, namely the Profile Management AD
(301) which manages access profiles, and the User Account AD (302), which
manages resource access to, for example, Windows 2000 based services and
applications. Using such a structure, one can view and edit one entry in the meta
directory to manage or modify all of a given user’s details in the plurality of LDAP

compliant directories.

10

25

15

CLAIMS

A method of providing and managing secure access to computer resources

from an external source, the method including the steps of :-

a) receiving a message from said external source at an authorisation

check module,
b) requesting credentials from the external source,

c) sending the message and credentials to a session management

module,

d) checking the credentials of the external source, and, if valid, issuing a
ticket to the external source, the ticket being valid for a plurality of

trusted computer systems,

e) receiving a further message together with said ticket from said external

source at said authorisation check module,

f) checking the validity of the ticket via the session management module,

and

g) passing the message and ticket to an impersonator module which
provides secure communication between the external source and the
desired destination computer system or resource, the impersonator
module also providing usage information to the session management

module.

A method as claimed in claim 1 in which secure access is provided to a

plurality of trusted computer systems or resources.

A method as claimed in claim 2 in which the trustworthiness of each
destination computer system or resource is established using a
cryptographic methodology in which the public key characteristic of an
internal computer system and the public key of the external destination

computer system or resource are exchanged over a non-secure channel.

10

10.

16
Computer apparatus connected to a network adapted to perform a method

as claimed in claim 1.

Computer apparatus connected to a network adapted to perform a method

as claimed in claim 2.

Computer apparatus connected to a network adapted to perform a method

as claimed in claim 3.

Computer apparatus as claimed in claim 4, 5 or 6 including a user
management module comprising a meta directory in the form of a global
user profile database which controls a plurality of LDAP compliant

directories.

A method of sending non-HTTP compatible data through a network firewall
from an external client to an internal computer resource by tunnelling,
including encrypting the data and formatting it in a way that is compatible
with HTTP tunnelling protocols.

A method of connecting an external client to an internal computer resource
through a network firewall by tunnelling, in which the client side of the

tunnel comprises an applet running in a window of a web browser.

A method as claimed in claim 9 in which the applet runs in an active

browser window or as a background task of the browser.

/\\)\ ' ’I‘l) /(,;1/
N 1¢
¢ Oflice = i 8
/H/O, ' ‘&2\"@ INVESTOR IN PEOPLE
o TRT
Application No: GB 0106477.3 Examiner: Barnaby Wright
Claims searched: 1-7 Date of search: 29 November 2001

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK CI (Ed.S): H4P (PDCSA, PPEB)
Int C1 (Ed.7): GO6F; HO4L

Other: Online: EPODOC, JAPIO, WPI

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims

A | GB 2340702 A (SUN MICROSYSTEMS INC.)
See especially fig 1, and page 4, paragraph 1.

A | GB 2337908 A (NEC CORPORATION)
See especially fig 3.

A | GB 2337671 A (I.B.M. CORPORATION)
See especially figs 1-3, and page 4, In 37 to page 7,
In 10.

A | GB 2323757 A (I.LB.M. CORPORATION)
See especially fig 5.

A | GB2316841 A (KOKUSAI DENSHIN DENWA)
See especially page 7, In 27 to page 8, In 26.

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Documentpublished on or after the declared priority date but before the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

