059742 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

1 August 2002 (01.08.2002)

A 0 0 00O

(10) International Publication Number

WO 02/059742 Al

(51) International Patent Classification’: GOG6F 9/00

(21) International Application Number: PCT/US01/49285

(22) International Filing Date:

18 December 2001 (18.12.2001)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/257,456 21 December 2000 (21.12.2000) US
09/872,081 1 June 2001 (01.06.2001) US
09/872,329 1 June 2001 (01.06.2001) US
09/872,332 1 June 2001 (01.06.2001) US
09/872,372 1 June 2001 (01.06.2001) US
09/872,376 1 June 2001 (01.06.2001) US
09/872,539 1 June 2001 (01.06.2001) US
09/873,018 1 June 2001 (01.06.2001) US
09/873,019 1 June 2001 (01.06.2001) US

(71) Applicant: REBA TECHNOLOGIES, INC. [US/US];
508 Newhall Cove, Austin, TY 78746 (US).

(72)

(74)

(81

(to))

Inventor: BERG, Mitchell, T.; 435 10th Avenue, Kirk-
land, WA 98033 (US).

Agents: DAVIS, Michael, A. Jr. et al.; Haynes & Boone,
LLP, Suite 1600, 600 Congress Avenue, Austin TX 78701-
3236 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: SERVER FARM INFORMATION PROCESSING SYSTEM AND METHOD OF OPERATION

Internet Connection

Ciient Request to Server 2:

Router A

123.123.123.3

\

] ;1P 123.123.123.1

Intelligent

1

P 222.222.222.1

iz iad

. 1.‘:;&;*}{—'?"-}44:&7)“'1- :

SERVER FARM

o

Server 2: IP 123.123.123,

Intelligent
NIC

1P 2222222223 |

(57) Abstract: Through a first network (Internet Connection), a first computing device (Router A) receives an information packet
~~ (Client Request to Server 1) originating from a client. In response to the information packet, the first computing device identifies a
computing device that stores a data structure of a connection with the client (Server 2:IP 123.123.123.3). If the identified computing
device is the first computing device, the first computing device performs an operation in response to the information packet. If
the identified computing device is a second computing device, the first computing device outputs the information packet through
a second network to the second computing device, such that the output information packet bypasses the first network. The second
computing device performs the operation in response to the information packet.

w0 02/059742 A1 IO R0 00O

Published:
— with international search report

before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 02/059742 PCT/US01/49285

SERVER FARM INFORMATION PROCESSING SYSTEM
AND METHOD OF OPERATION

Background

This description relates in general to information processing systems, and in particular to a
server farm information processing system and method of operation.

A software application can be deployed through a global computer network, such as an
Internet Protocol (“IP”) global computer network (e.g. the Internet or an intranet). Such
applications include TP socket-based software applications (e.g. web site application or Internet
gaming site application). For deploying an application through a global computer network, a client
computer system (“client”) communicates with at least one server computer system (“server)
through the global computer network.

Accordingly, the server stores and executes the deployed application, which is used by the
client through the global computer network. In such a manner, one or more applications can be
deployed by the server through the global computer network. If the application (or group of
applications) is large, or is used by a large number of clients, then a group of servers (“server
farm”) stores and executes the application.

A conventional server farm is coupled through a flow switch to the global computer network
(and, accordingly, to clients that are coupled to the global computer network). Through the flow
switch, a client and the server farm communicate packets of information (“information packets™) to
one another. As a conduit between clients and the server farm, the flow switch has various
shortcomings which reduce the overall performance and efficiency of deploying software
applications with the server farm through the global computer network.

Accordingly, a need has arisen for a server farm information processing system and method
of operation, in which overall performance and efficiency are enhanced of deploying software

applications with a server farm through a global computer network.

Summary

According to a first embodiment, through a first network, a first computing device receives
an information packet originating from a client. In response to the information packet, the first
computing device identifies a computing device that stbres a data structure of a connection with the
client. If the identified computing device is the first computing device, the first computing device
performs an operation in response to the information packet. If the identified computing device is a
second computing device, the first computing device outputs the information packet through a

second network to the second computing device, such that the output information packet bypasses

10

15

20

25

30

WO 02/059742 PCT/US01/49285

the first network. The second computing device performs the operation in response to the
information packet.

According to a second embodiment, through a first local area network, a first computing
device receives an information packet from a global computer network. Through a second local
area network, in response to at least the information packet and a state of at least one of the first
computing device and a second computing device, the first computing device selectively outputs the
information packet to the second computing device, such that the output information packet
bypasses the first local area network.

According to a third embodiment, a first computing device receives an initialization packet
originating from a client. In response to at least the initialization packet, the first computing device
outputs a response packet to the client. Also, the first device receives a request packet originating
from the client. In response to at least the request packet and a state of at least one of the first
computing device and a second computing device, the first computing device outputs the request
packet to the second computing device for performing an operation in response to the request
packet.

According to a fourth embodiment, a first computing device receives a first information
packet originating from a client. In response to the first information packet, the first computing
device identifies a computing device that stores a data structure of a connection with the client. If
the identified computing device is the first computing device, the first computing device performs
an operation of an application in response to the first information packet. If the identified
computing device is a second computing device, the first computing device outputs a second
information packet to the second computing device. The second computing device performs the
operation in response to the second information packet. The second information packet includes a
reference to the data structure. The reference is included within a single header of the second
information packet.

According to a fifth embodiment, a first computing device selectively initiates execution of
a software application by one of: (a) the first computing device if a state of at least one of the first
computing device and a second computing device is a first state; and (b) the second computing
device if the state is a second state. The software application is associable with one or more
software objects.

According to a sixth embodiment, a first computing device executes a software application
that is associated with at least one software object. In response to a request for initiating execution
of the software object, the first computing device selectively initiates execution of the software

object by one of: (a) the first computing device if a state of at least one of the first computing

10

15

20

25

30

WO 02/059742 PCT/US01/49285

device and a second computing device is a first state; and (b) the second computing device if the
state is a second state. The first computing device performs such operation independent of the
software application. |

According to a seventh embodiment, a first computing device receives a first information
packet from a second computing device. The second computing device receives the first
information packet from a global computer network through a first router device. The first
computing device outputs a second information packet to the global compufer network through a
second router device, such that the second information packet bypasses the first router device.

According to an eighth embodiment, a computing device receives an initialization packet
originating from a client. In response to at least the initialization packet, the computing device
establishes a data structure of a connection with the client, irrespective of whether an application of
the computing device is associated with the data structure of the connection.

According to a ninth embodiment, a computing device receives a request packet originating
from a client. In response to at least the request packet, the computing device associates an
application of the computing device with a data structure of a connection with the client.

According to a tenth embodiment, a first computing device associates an application of the
first computing device with a data structure of a connection with a client. Subsequently, the first
computing device disassociates the application of the first computing device from the data structure
of the connection. After such disassociation, the first computing device outputs the data structure of
the connection to a second computing device for associating an application of the second computing
device with the data structure of the connection. A

According to an eleventh embodiment, a first computing device receives an initialization
packet and a request packet originating from a client. In response to at least the initialization
packet, the first computing device establishes a data structure of a connection with the client. In
response to at least the request packet and a state of at least one of the first computing device and a
second computing device, the first computing device selectively performs one of the following: (a)
associating the data structure of the connection with an application of the first computing device;
and (b) outputting the data structure of the connection and the request packet to the second
computing device for associating an application of the second computing device with the data
structure of the connection.

According to a twelfth embodiment, a first computing device receives a request packet
originating from a client. In response to at least the request packet and a state of at least one of the
first computing device and a second‘computing device, the first computing device selects a

computing device for maintaining a session with the client. If the selected computing device is the

10

15

20

25

30

WO 02/059742 PCT/US01/49285

first computing device, the first computing device outputs a response packet to the client for
identifying the first computing device as maintaining the session with the client. If the selected
computing device is a second computing device, the first computing device outputs a response
packet to the client for identifying the second computing device as maintaining the session with the
client.

According to a thirteenth embodiment, a first computing device receives a request packet
originating from a client. The request packet includes an identifier. In response to the request
packet, the first computing device identifies a computing device that is associated with the
identifier. If the identified computing device is the first computing device, the first computing
device performs an operation of an application in response to the request packet. If the identified
computing device is a second computing device, the first computing device outputs the request
packet to the second computing device for performing the operation in response to the request
packet.

According to a fourteenth embodiment, a first computing device receives first information
that has been formed according to application software instructions. Independent of the application
software instructions, the first computing device forms second information for causing a second
computing device to perform an operation. In response to receiving the first information, the first
computing device executes protocol stack instructions to form a packet including at least the first
and second information. The first computing device outputs the packet to the second computing
device.

A principal advantage of these embodiments is that various shortcomings of previous
techniques are overcome. For example, a principal advantage of these embodiments is that overall
performance and efficiency are enhanced of deploying software applications with a server farm

through a global computer network.

Brief Description of the Drawing

FIGURE 1a is a block diagram of a conventional system for processing information with
client and server computer systems that communicate with one another through an Internet Protocol
(“IP”) global computer network.

FIGURE 1b is a block diagram of a conventional system for processing information with a
server farm and a client computer system that communicate with one another through a global
computer network with IP socket-based applications.

FIGURE 2a is a block diagram of a system for processing information with a server farm,

according to a first illustrative embodiment.

10

15

20

25

30

WO 02/059742 PCT/US01/49285

FIGURE 2b is a block diagram of a system for processing information with a server farm,
according to a second illustrative embodiment.

FIGURE 2c is a block diagram of a system for processing information with a server farm,
according to a third illustrative embodiment.

FIGURE 2d is a block diagram of a system for processing information with a server farm,
according to a fourth illustrative embodiment.

FIGURE 3 is a block diagram of an intelligent network interface controller (“iNIC”)
circuitry and main board circuitry of a server of a server farm, according to the illustrative
embodiments.

FIGURE 4a is a block diagram of a system for processing information with a server farm,
according to an illustrative embodiment in which a first server forwards packets for processing by a
second server.

FIGURE 4b is a block diagram of the system of FIGURE 4a, according to an illustrative
embodiment in which the second server processes packets without forwarding to the first server.

FIGURE 5ais a block diagram of the iNIC and main board circuitry of FIGURE 3,
according to an illustrative embodiment in which the iNIC processes information received and
output through a Port A.

FIGURE 5b is a block diagram of the iNIC and main board circuitry of FIGURE 3,

according to an illustrative embodiment in which the iNIC processes information received through a

Port B.

FIGURE 5c is a block diagram of the iNIC and main board circuitry of FIGURE 3,
according to an illustrative embodiment in which the iNIC processes information received and
output through a Synch Port.

FIGURE 6 is a conceptual illustration of information stored in a memory of the
representative iNIC of FIGURE 3.

FIGURE 7 is a block diagram of a system for processing information with a server farm,
according to an illustrative embodiment in which three servers perform load-balancing of client
requests.

FIGURE 8 is a data flow diagram of process threads executed by the representative iNIC of
FIGURE 3.

FIGURE 9a s a flowchart of a balance thread of FIGURE 8.

FIGURE 9b is a flowchart of a forward thread of FIGURE 8.

FIGURE 9c is a flowchart of a synchronization thread of FIGURE 8.

10

15

20

25

30

WO 02/059742 PCT/US01/49285

FIGURE 10a is a sequence diagram of steps for establishing a local connection between a
client and a server, according to the illustrative embodiments.

FIGURE 10b is a sequence diagram of steps for establishing a forwarded connection
between a client and a server, according to the illustrative embodiments.

FIGURE 10c is a sequence diagram of steps for processing a forwarded connection with a
server, according to the illustrative embodiments.

FIGURE 11ais a conceptual illustration of a conventional Ethernet encapsulation header.

FIGURE 11b is a conceptual illustration of an ipOS encapsulation header, according to the
illustrative embodiments.

FIGURE 11c is a conceptual illustration of ipOS connection information for migration of a
UDP connection endpoint, according to the illustrative embodiments.

FIGURE 11d is a conceptual illustration of ipOS connection information for migration of a
TCP connection endpoint, according to the illustrative embodiments.

FIGURE 11e is a conceptual illustration of an ipOS TCP connection endpoint packet,
according to the illustrative embodiments.

FIGURE 11fis a conceptual illustration of an ipOS UDP connection endpoint packet,
according to the illustrative embodiments.

FIGURE 11g is a conceptual illustration of a packet having a TCP/IP payload, according to
the illustrative embodiments.

FIGURE 11h is a conceptual illustration of a packet having a UDP/IP payioad, according to
the illustrative embodiments.

FIGURE 11i is a conceptual illustration of a connection endpoint migration
acknowledgement packet, according to the illustrative embodiments.

FIGURE 12 is a conceptual illustration of tables stored by a server’s iNIC memory,
according to the illustrative embodiments.

FIGURE 13 is a block diagram of the iNIC and main board circuitry of FIGURE 3,
according to the illustrative embodiments in which a socket application is related to a socket and its
associated connection endpoint.

FIGURE 14 is a block diagram of servers within a server farm, according to an illustrative
embodiment in which the servers establish sockets and associated connection endpoints for a local
connection and a forwarded connection.

FIGURE 15 is a block diagram of a server farm including a deployment workstation for
deploying application processes and associated software component objects to servers within the

server farm, according to the illustrative embodiments.

10

15

20

25

30

WO 02/059742 PCT/US01/49285

FIGURE 16 is a block diagram of servers within a server farm, according to an illustrative
embodiment in which a first server selectively spawns an application process that is stored by a
second server.

FIGURE 17 is a block diagram of servers within a server farm, according to an illustrative

embodiment in which a first server selectively spawns an object that is stored by a second server.

Detailed Description

FIGURE 1ais a block diagram of a conventional system for processing information with a
client computer system (“client”) and server computer system (“server”) that communicate (e.g.
receive and output information) with one another through an Internet Protocol (“IP”) global
computer network (e.g. the Internet or an intranet). For clarity, FIGURE 1a shows only a single
client and a single server, although multiple clients and multiple servers are connected to the IP
network. In FIGURE 1a, the client is a representative one of the multiple clients, and the server is a
representative one of the multiple servers.

| Conventionally, clients and servers communicate with one another through the IP network
according to either the Transmission Control Protocol (“TCP”) or User Datagram Protocol
(“UDP”). In FIGURE la, a server makes its socket application (or “socket-based application™)
available through the IP network and waits for a client to establish a connection with the server
through a specified IP address and TCP port (e.g. through a listening socket). For example, a server
executing a World Wide Web application has a listening socket associated with an assigned 32-bit
IP address on the standard TCP port 80 for a World Wide Web server application.

After apcepting a connection from a requesting client, the server creates (or “establishes” or
“forms™) a client specific socket. The socket (created by the server) represents the server’s
connection for the sending (and receiving) information to (and from) the specific client.
Conventionally, in response to creation of a socket, the server (with its operating system (“OS”)
kernel) allocates (or “establishes” or “forms™) a data structure (of the connection with the client) to
store client-to-server protocol specific connection information. This data structure is referred to as
a socket connection endpoint (or “connection endpoint™).

Information within the connection endpoint varies according to the type of connection
established (e.g. TCP or UDP). For UDP and TCP types of connections, the connection endpoint
information includes the client’s and server’s respective 32-bit IP addresses, the client application’s
and server application’s respective 16-bit TCP connection ports, a pointer reference to a socket
structure, and IP options such as Time to Live (“TTL”) and Type of Service (“TOS”). Additionally,

for a TCP type of connection, the connection endpoint information includes a group of send and

10

15

20

25

30

WO 02/059742 PCT/US01/49285

receive sequence numbers (including start, current, and acknowledgement sequence numbers of the
server and client) and variables for timing individual sent packets. In various embodiments, the
connection endpéint information includes additional suitable information.

The client performs similar operations. With a socket layer (which manages sockets), the
client (with a client application) creates a connection endpoint of a specified type (e.g. UDP or
TCP) and attempts a connection to a server’s listening socket. For example, with a conventional
web browser (e.g. Netscape Navigator or Microsoft Internet Explorer), the client opens a TCP type
of connection endpoint and attempts connection through an IP network to a web server through the
web server’s advertised IP address on the standard web service TCP port 80. After establishing a
successful connection, the client and server are operable to send (and receive) information to (and
from) one another through the associated socket connection.

With read and write calls to the socket layer, the client and server are operable to send and
receive information at the application level. The client and server communicate with one another
through IP packets sent through the IP network. Accordingly, before sending information from an
application through the IP network (in response to a suitable connection endpoint), the computer
system (e.g. client or server) encapsulates such information according to the IP protocol. Also, in
response to receiving information from a network interface, the computer system (in response to a
suitable connection endpoint) directs such information to an associated application.

As shown in FIGURE 1a, the client and server have respective protocol stacks, which
process IP packets (sent and received) and manage connection endpoint information. With the
protocol stack, the computer system (a) adds transport specific information before sending
information to the network interface and (b) removes transport specific information before alerting
an application of the receipt of information from the network interface. Conventionally, the
protocol stack is part of the OS and executes in kernel mode.

The protocol stack includes a series of routines (e.g. software instructions) to process a
packet in accordance with one or more network protocols such as HTTP, Ethernet, IP, TCP or UDP.
In response to receiving a packet from the IP network, the network interface sends the packet
through its associated device driver to the protocol stack’s routines. For example, in response to
réceiving an IP packet, the computer system (with its protocol stack) verifies the IP packet
according to the packet’s checksum algorithm and then moves the packet up the protocol stack for
additional processing in accordance with a network protocol.

At each level of the protocol stack processing, the computer system reads, processes and
removes a header from the packet. At the end of protocol stack processing, the final result is

information that the computer system stores in a destination socket queue. In response to

10

15

20

25

30

35

WO 02/059742 PCT/US01/49285

information in the destination socket queue, the computer system (with its OS) initiates a software
interrupt to the destination application, alerting the destination application that such information has
been received.

For sending information through the network interface to the IP network, the computer
system (with the socket application) outputs such information (which has been formed according to
software instructions of the socket application) to the protocol stack along with a reference to a
suitable connection endpoint. Then, the computer system (with the connection endpoint) moves the
information down the I;rotocol stack for additional processing in accordance with a network
protocol. At various levels of the protocol stack processing, the computer system forms a packet by
supplementing the information with TCP or UDP header information, IP header information, link
layer header information (e.g. Ethernet), and calculation of packet checksums. After forming the
packet, the computer system outputs the packet to a device driver output queue of the network

interface.

Description of Conventional Flow Switch Architecture

FIGURE 1b is a block diagram of a conventional system for processing information with a
group of servers (“server farm”) and a client that communicate with one another through a global
computer network with IP socket-based applications. In this example, a server farm (including »
servers, where 7 is an integer number) stores the applications to be deployed. Server farms are
useful for deploying software applications (e.g. web site application or Internet gaming site
application) for use through a global computer network.

As shown in FIGURE 1b, each of the n servers is connected to a flow switch at egress ports
of the flow switch. At an ingress port of the flow switch, it is coupled through a router to the IP
network.

In the example of FIGURE 1D, a client connects to a server’s application by connecting to
the entire server farm through a single IP address. The IP address is associated with the ingress port
of the flow switch. Typically, the client obtains the IP address by sending a Uniform Resource
Locator (“URL”) to a Domain Name System (“DNS”). DNS is a set of special servers deployed on
the IP network, with responsibility for translating a URL into an associated IP address.
Alternatively, if a client has already received the IP address, the client is able to connect to the
server farm without relying on the DNS.

All communications between a server (of the server farm) and a client are directed through
the flow switch. The flow switch helps to balance client request loads on servers within the server

farm (“server farm load-balancing™) by selecting a server to handle a particular client’s connection.

9

10

15

20

25

30

35

WO 02/059742 PCT/US01/49285

Accordingly, the flow switch (a) maps packets from the flow switch’s ingress port to the selected
server through a suitable one of the flow switch’s egress ports, (b) maps packets from the selected
server to the particular client, and (c) performs various administrative operations. In processing a
packet that is communicated between a server and a client, the conventional flow switch performs a
range of operations, which may include network address translation (“NAT”), checksum

calculation, and TCP sequence number rewriting (“TCP splicing”).
Description of Improved Architecture

FIGURE 2a is a block diagram of a system for processing information with a server farm,
according to a first illustrative embodiment. As shown in FIGURE 2a, the server farm includes a
redirector device and » servers for deploying socket-based applications. In the example of FIGURE
2a, the hardware configurations of the redirector device and servers are substantially identical to
one another, so that at least one of the servers is configurable to perform the same types of
operations as the redirector device.

The redirector device and the servers are coupled to one another through a LAN A
hub/switch (e.g. conventional Layer 2/3 switch), a LAN B hub/switch, and a synchronization hub,
which are part of the server farm. As shown in FIGURE 2a, the LAN A hub/switch is coupled
through a router and a suitable WAN to an IP network service provider (“ISP”) for communication
with the TP network. In an alternative embodiment, LAN A hub/switch is directly connected to the
ISP, and other alternative embodiments are possible for connecting LAN A hub/switch to the IP
network. Accordingly, each of the n servers and the redirector device is coupled to the IP network
through the LAN A hub/switch and the router, vvithoﬁt interposing a flow switch between the router
and the servers (nor between the router and the redirector device). The router is coupled to the
LAN A hub/switch through a suitable LAN or WAN link.

Each of the n servers and the redirector device includes intelligent network interface
controller (“iNIC”) circuitry, as shown in FIGURE 2a. Within the server farm, each of the n
servers and the redirector device (with its respective iNIC) has a respective IP address that is
advertised to clients through the IP network. The redirector device and the servers communicate
with one another through the iNICs, in order to operate together in a cooperative manner as a
distributed system. A primary objective of such a cooperative distributed system is to achieve
server farm load-balancing (e.g. of handling client connections), efficiently communicating packets
from clients directly to socket applications, reducing packet manipulations, and increasing the
effective use of server farm resources (e.g. by the load-balancing of server application processes

and of associated software component objects).

10

10

15

20

25

30

WO 02/059742 PCT/US01/49285

Unlike the system of FIGURE 1b, in the system of FIGURE 2a, a client connects to a server
farm application by obtaining and connecting to a server’s IP address, instead of a flow switch’s IP
address. In the illustrative embodiments, the servers’ respective IP addresses are advertised to
clients in one of multiple possible ways. For example, according to a first technique, if ﬁultiple
servers deploy a single application under a single URL, the DNS advertises IP addresses of those
servers in a round-robin manner (e.g. one IP address at a time, alternating in a rotational manner).
For example, if two servers deploy a web site application under a single URL (e.g.

www.mysite.com), the DNS advertises the two servers’ respective IP addresses (in association with

the web site’s URL) in round-robin manner.

According to a second technique, if multiple servers deploy a single application under a
single URL, the DNS‘ advertises the redirector device’s IP address (in association with the web
site’s URL). In that manner, a client initially communicates with the redirector device. In response
to the redirector device receiving a connection request from a client, the redirector device selects a
server (in a round-robin manner among the servers that deploy the application) and outputs the
selected server’s IP address to the client.

As the network bandwidth of the IP network, local area networks (“LANs”), wide area
networks (“WANSs”), and IP network connections through ISPs increases at rate faster than the
increase in computing capabilities of servers, the resulting disparity in performance effectively
shifts the performance bottleneck from (a) the capacity of a network to carry information to (b) the
capacity of server farms to process client application requests (e.g. IP packets). Accordingly,
individual servers in the server farm experience a vast increase in the rate of packets received and
sent. Under such conditions, with the network interface and protocol stack, each server’s
performance becomes increasingly tied to the processing of such packets.

Conventionally, as discussed hereinabove in connection with FIGURE 1a, the protocol stack
is part of the OS, and OS overhead is increased in response to processing of more packets, so that
fewer CPU cycles remain available for user-level applications. In that situation, individual server
efficiency is decreased in response to increases in CPU contention, bus traffic contention, and
memory traffic. By comparison, in the illustrative embodiments, the protocol stack is part of the
iNIC instead of the OS, so the server farm operates more efficiently in processing client application
requests.

As shown in FIGURE 2a and FIGURE 3, each iNIC has a first port (“Port A”) connected to
LAN A (through LAN A hub/switch) for receiving (and sénding) IP packets to (and from) clients
through the IP network. Also, each iNIC has a second port (“Port B”) connected to LAN B
(through LAN B hub/switch) for receiving (and sending) IP packets to (and from) other iNICs in

11

10

15

20

25

30

WO 02/059742 PCT/US01/49285

the server farm. Moreover, each iNIC has a third port (“Synch Port”) connected to a
synchronization hub (which operates as a local area network) for receiving (and sending) state
information (e.g. number of TCP connections) to (and from) other iNICs in the server farm.

The architecture of FIGURE 2a provides for scalability of bandwidth connections to the
server farm. The scalability is achievable in various ways, as discussed for example in connection
with FIGURES 2b, 2¢ and 2d. For example, in an alternative embodiment, each iNIC has a fourth
port (“Port C”) for receiving (and sending) IP packets to (and from) clients through the IP network.

FIGURE 2b is a block diagram of a system for processing information with a server farm,
according to a second illustrative embodiment. FIGURE 2b shows a situation where server farm
bandwidth is increased by adding routers and LAN hub/switches. Similar to the system of FIGURE
2a, in the system of FIGURE 2b, each router is coupled through a suitable WAN link to an ISP for
communication with the IP network, and each router is coupled to a respective LAN hub/switch
through a suitable LAN or WAN link.

Accordingly, in FIGURE 2b, router A is coupled to LAN A hub)switch, and router B is
coupled to LAN B hub/switch. LAN A hub/switch is coupled to two servers (server 1 and server 2)
in the server farm, and LAN B hub/switch is coupled to three servers (Server 3, Server 4 and Server
5) in the server farm. Similar to the system of FIGURE 2a, in the system of FIGURE 2b, all servers
in the server farm are coupled to one another through a LAN C hub/switch and a synchronization
hub, which are part of the server farm.

FIGURE 2b shows scalability of the hardware architecture of the illustrative embodiments
according to received network traffic (e.g. adding bandwidth with additional routers and LAN
hub/switches to accommodate increases in IP packets received from clients through the IP
network). Although FIGURE 2b shows a situation where two routers are coupled through suitable
WANS to one or more ISPs for communication with the IP network, additional routers and LAN
hub/switches can be added to the system of FIGURE 2b in a similar manner. Also, the system of
FIGURE 2b is expandable with additional servers in a variety of ways, such as by adding a server
(in parallel with existing servers) to an existing LAN hub/switch (e.g. to LAN A hub/switch or
LAN B hub/switch) or by adding a server to an additional LAN hub/switch (which is coupled to an
additional router through a suitable LAN or WAN). Such additional servers would likewise be
coupled to the other servers th.rough LAN C hub/switch and the synchronization hub. In addition to
achieving scalability according to received network traffic, the system of FIGURE 2b likewise
achieves scalability to accommodate increases in IP packets (e.g. application response packets) sent

by servers to clients through the IP network.

12

10

15

20

25

30

WO 02/059742 PCT/US01/49285

FIGURE 2c is a block diagram of a system for processing information with a server farm,
according to a third illustrative embodiment. FIGURE 2c¢ shows a situation where additional
bandwidth is added for scalability of application response packets. In the system of FIGURE 2c,
router B receives packets from the IP network. These packets include requests from clients, such as
arequest for a large file according to HTTP protocol (HyperText Transport Protocol).

Router B forwards each received packet to a server (whose IP address is specified in the
packet) in the server farm through LAN A hub/switch. In the illustrative embodiment of FIGURE
2¢ (in which LAN A hub/switch is coupled through Router B to the global computer network),
LAN A hub/switch is a Layer 2 switch. By comparison, in an alternative embodiment (in which
LAN A hub/switch is coupled directly to the global computer network without an interposed router
device), LAN A hub/switch is a Layer 3 switch. In the example of FIGURE 2c, a server outputs
response packets to clients through a router other than router B, so that the output response packets
bypasses the network (e.g. LAN A in FIGURES 2a, 2c, 2d, 4a, 4b and 7) that is connected to Port
A. Accordingly, as shown in FIGURE 2c, server 1 outputs response packets to clients through
router A which is dedicated to server 1 for such purpose, and server 2 outputs response packets to
clients through router C which is dedicated to server 2 for such purpose.

Similar to router B, the additional router A and router C are coupled through a suitable
WAN link to an ISP for communication with the IP network. The ISP may be the same or different
for each of routers A, B and C. Router A is connected to a Port C (discussed further hereinbelow in
connection with FIGURE 3) of the iNIC of server 1. Likewise, router C is connected to a Port C of
the iNIC of server 2.

In a similar manner, the server farm is expandable with additional servers, routers and IP
network connections. In the illustrative embodiments, various combinations of scalability in
incoming and outgoing bandwidth are possible. The system of FIGURE 2c is particularly
advantageous in a situation where server 1 and server 2 output a relatively high volume of response
packets in response to a smaller volume of received packets.

FIGURE 2d is a block diagram of a system for processing information with a server farm,
according to a fourth illustrative embodiment. In the example of FIGURE 2d, two applications
(namely, “application 1” and “application 2”) are deployed by servers within the server farm. In
other respects, the system of FIGURE 2d is similar to the system of FIGURE 2a. Accordingly, the
distributed architecture (of the illustrative embodiments) provides for deployment of multiple
applications with a single IP network connection.

As shown in FIGURE 24, servers 1 and 2 are grouped (“application 1 group™) to deploy
application 1, and servers 3, 4 and 5 (“application 2 group”) are grouped to deploy application 2.

13

10

15

20

25

30

35

WO 02/059742 PCT/US01/49285

For example, the server farm of FIGURE 2d is configurable to host two web sites (e.g.

www.firstsite.com and www.secondsite.com) with a single IP network connection. Client requests

to a first URL (e.g. www.firstsite.com) are processed by application 1 group, and client requests to

a second URL (e.g. www.secondsite.com) are processed by application 2 group.

For each web site, IP addresses are advertised by either the DNS round-robin approach or
the redirector device round-robin approach, as discussed hereinabove in connection with FIGURE
2a. For example, IP addresses of servers 1 and 2 are associated with the first URL

(www.firstsite.com), and such IP addresses can be advertised in round-robin manner. Similarly, TP

addresses of servers 3, 4 and 5 are associated with the second URL (www.secondsite.com), and

such IP addresses can be advertised in round-robin manner.

Under the DNS round-robin approach: (a) for application 1 group in association with the
first URL, the DNS advertises IP addresses of servers 1 and 2 in a round-robin manner; and (b) for
application 2 group in association with the second URL, the DNS advertises IP addresses of servers
3, 4 and 5 in a round-robin manner.

Under a first version of the redirector device round-robin approach: (a) for application 1
group in association with the first URL, the DNS advertises a first redirector device’s IP address;
and (b) for application 2 group in association with the second URL, the DNS advertises a second
redirector device’s IP address. In that manner, a client initially communicates with the first
redirector device (for application 1 group in association with the first URL) or the second redirector
device (for application 2 group in association with the second URL). In an alternative embodiment,
a single redirector device operates in association with both the first and second URLs for
application 1 group and application 2 group, respectively.

In response to the first redirector device receiving a connection request from a client, the
first redirector device selects a server (in a round-robin manner among servers 1 and 2) and outputs
the selected server’s IP address to the client (e.g. via HTTP redirect command). Likewise, in
response to the second redirector device receiving a connection request from a client, the second
redirector device selects a server (in a round-robin manner among servers 3, 4 and 5) and outputs

the selected server’s IP address to the client.

Description of Intelligent Network Interface Controller (“iNIC”)

FIGURE 3 is a block diagram of intelligent network interface controller (“iNIC™) circuitry
and conventional main board circuitry of a server of a server farm, according to the illustrative
embodiments. FIGURE 3 shows example components of the iNIC. For clarity, various

interconnections between such components are discussed hereinbelow in connection with

14

10

15

20

25

30

WO 02/059742 PCT/US01/49285

FIGURES 5a-c, 8 and 13-17, rather than FIGURE 3. The iNIC of FIGURE 3 is a representative
one of the iNICs of the systems of FIGURES 2a-d, 4a-b, 7 and 13-17.

As shown in FIGURE 3, each iNIC includes at least one network processor. The network
processor includes programmable hardware and firmware for performing various operations,
including packet classification, table lookups, packet manipulation, and packet routing. For
example, the network processor includes a packet classification engine and a general-purpose
processor core, as discussed hereinbelow in connection with FIGURES 5a-c and FIGURE 8.

In the illustrative embodiments, the classification engine is an application specific integrated
circuit (“ASIC”) or a set of integrated programmable multi-threaded microengines. The
classification engine is programmable and examines the headers and contents of packets at rates
approaching wire speed. Other embodiments of the classification engine are possible.

The network processor classifies and manipulates packets that are examined by the
classification engine. The classification engine executes a set of instructions that are collectively
referred to as the “rules code.” In the network processor, the processor core performs various
management tasks. The processor core executes a set of instructions that is referred to as the
“action code.”

The classification engine examines packet information (e.g. header information), verifies
checksums, and matches IP fields to records of previously stored tables of information. Various
tables of the illustrative embodiments are shown in FIGURE 12, which is discussed further
hereinbelow. For example, the classification engine is operable to classify a packet according to
whether the packet is a TCP/IP packet, and according to whether the packet’s source IP address and
source TCP port match an existing record in a table (e.g. with table keys being source IP address
and source TCP port).

In response to such a match, the network processor is operable to perform an action on the
packet (e.g. send the packet to the protocol stack) in response to software instructions stored in the
iNIC’s memory (e.g. SRAM/SDRAM). In the illustrative embodiments, the network processor is a
commercially available processor, such as Intel’s IXP1200 processor (available from

www.intel.com) or Motorola’s C-5 Digital Communications processor (available from

www.motorola.com).

In the illustrative embodiments, the IP operations system (“ipOS”) refers to methods,
circuitry, and system architecture of the iNIC for classifying, manipulating and performing actions
in response to packets. Accordingly, the ipOS includes the instructions executable by the network
processor, the forwarding processor, and the protocol stack processor of FIGURE 3. For example,

the ipOS includes various instructions for performing operations of the iNIC within the server farm,

15

10

15

20

25

30

35

WO 02/059742 PCT/US01/49285

such as client request load-balancing, packet routing, maintenance of connection endpoints,
communications to and from particular applications, and control of application processes (and
associated software component objects) deployed on the server farm.

The iNIC stores various tables of information in support of ipOS decisions about packets
and control of server farm resources. As shown in FIGURE 3, the tables include various
information, such as state information, routing information, process information, and protocol stack
information. Such tables are shown in FIGURE 12, which is discussed further hereinbelow. |

The protocol stack includes a series of routines for processing packets. Conventionally, the
protocol stack has been part of the OS and has executed in kernel mode. By comparison, in the
illustrative embodiments, the iNIC’s protocol stack processor executes instructions to perform the
protocol stack operations. Accordingly, such operations are offloaded from the OS.

Also, the iNIC includes circuitry for processing of forwarded packets, which are sent from
one server’s iNIC to another server’s iNIC for processing. The forwarding processor operates to
route forwarded packets at rates approaching wire speed. Possible embodiments of the forwarding
processor include a field programmable gate array (“FPGA”™) or an ASIC.

FIGURE 3 shows an example iNIC configuration that includes three IP packet ports
(designated as Port A, Port B, and Port C) and a single synchronization port (designated as Synch
Port). Each IP packet port is configurable to be full duplex and to accommodate a variety of port
protocols (e.g. Ethernet, ATM and FDDI). The synchronization port is configurable in the same
manner as an IP packet port or, in an alternative embodiment, is specially configured. The
configuration of the synchronization port is selected according to a particular application deployed
on the server farm. With suitable circuitry, extremely fast synchronization is achievable for a
particular application.

Also, the iNIC includes a memory for storing various data structures to represent the
connection endpoints for client-server socket-based application connections. Moreover, the iNIC
includes Direct Memory Access (“DMA”) circuitry for sending information (a) from the iNIC
directly to the main board circuitry’s memory and (b) from the main board circuitry’s memory to
the iNIC’s memory. In an alternative embodiment, the iNIC includes additional circuitry and

firmware (for clarity, not shown in FIGURE 3) for performing specified encryption operations.

Description of Client Request Load-Balancing

The iNIC performs server farm load-balancing of socket application client requests. Round-
robin approaches to advertise IP addresses (e.g. DNS round-robin approach or redirector device

round-robin approach) have limited ability to effectively load-balance. For example, in selecting a

16

10

15

20

25

30

WO 02/059742 PCT/US01/49285

server to process a client request, round-robin approaches substantially fail to account for the client
request’s specific details such as session management. Accordingly, in the illustrative
embodiments, after a connection is established between the selected server and a client, the selected
server is operable to selectively forward packets (received from a client) for processing by another
server (within the server farm).

FIGURE 4a is a block diagram of a system for processing information with a server farm,
according to an illustrative embodiment in which server 1’s iNIC forwards (or “outputs™) packets
for processing by server 2’s iNIC (and, in some instances, by server 2’s application layer),
according to ipOS logic of server 1’s iNIC. For clarity, the processing of response packets by
server 2’s application layer is not shown in FIGURE 4a. In forwarding packets, server 1’s iNIC
operates substantially independently of server 1°s application layer. Server 2’s iNIC is substantially
identical to server 1’s iNIC, so the operation of server 1 is likewise representative of the operation
of server 2.

In the example of FIGURE 4a, arrows show the directions in which packets are
communicated between router A, server 1 and server 2. For example, a client sends (or “outputs™) a
request to server 1 at IP 123.123.123.1. Router A receives the client request and outputs it to LAN
A hub/switch for receipt by server 1.

Server 1°s iNIC (in response to instructions of its ipOS) determines whether to forward
packets associated with the client connection from server 1°s iNIC to server 2°s iNIC. If so, in
response to receiving such a packet from the client, server 1°s iNIC (in response to instructions of
its ipOS) encapsulates the packet with additional information (as discussed hereinbelow) and
forwards it to a physical port (IP 222.222.222.3) on server 2’s iNIC. In response to receiving the
encapsulated packet from server 1°s iNIC, server 2’s iNIC (in response to instructions of its ipOS)
unpacks and processes the encapsulated packet. |

Accordingly, in such a situation, server 2’s iNIC (in response to instructions of its ipOS):

(a) in response to such information received from server 1’s iNIC, establishes a connection endpoint
in the memory of server 2’s iNIC for the particular client-server socket-based application
connection; (b) if appropriate for the packet, processes and sends information from the packet to
server 2’°s application layer; and (c) if appropriate for the packet, processes and sends response
packets to the client through the IP network in response to information from server 2’s application
layer. The protocol stack processor of server 2°s iNIC (in response to instructions of its ipOS) adds
suitable header information to the response packet and sends it to the client through the IP network-

connected port (IP 123.123.123.3) of server 2°s iNIC. Although the response packet is sent to the

17

10

15

20

25

30

WO 02/059742 PCT/US01/49285

client from server 2, the response packet appears (from the client’s perspective) to be sent from
server 1.

FIGURE 4b is a block diagram of the system of FIGURE 4a, according to an illustrative
embodiment in which server 2 processes packets without forwarding to server 1. Server 1 is
substantially identical to server 2, so the operation of server 2 is likewise representative of the
operation of server 1. In the example of FIGURE 4b, arrows show the directions in which packets
are communicated between router A and server 2. For example, a client sends a request to server 2
at IP 123.123.123.3. Router A receives the client request and outputs it to LAN A hub/switch for
receipt by server 2.

Server 2’s iNIC determines (in response to instructions of its ipOS) whether to forward
packets associated with the client request to server 2. If not, in response to receiving such a packet
from the client, server 2’s iNIC (in response to instructions of its ipOS) keeps the packet and
processes it.

Accordingly, in such a situation, server 2’s iNIC (in response to instructions of its ipOS):
(a) establishes a connection endpoint in the memory of server 2’s iNIC for the particular client-
server socket-based application connection (b) if appropriate for the packet, processes and sends
information from the packet to server 2’s application layer; and (c) if appropriate for the packet,
processes and sends response packets to the client through the IP network in response to
information from server 2’s application layer. The protocol stack processor of server 2’s iNIC (in
response to instructions of its ipOS) adds suitable header information to the response packet and
sends it to the client through the IP network-connected port (IP 123.123.123.3) of server 2’°s iNIC.

The response packet appears (from the client’s perspective) to be sent from server 2.
Description of iNIC Packet Flow

FIGURE 5a is a block diagram of the iNIC and main board circuitry of FIGURE 3,
according to an illustrative embodiment in which the iNIC processes information received and sent
through a Port A. FIGURE 5a shows pathways by which various packets (received from clients
through Port A) are communicated through the iNIC. For clarity, in the example of FIGURE 5a,
the INIC has two IP packet ports (Port A and Port B) and a single synchronization port (Synch
Port).

At Port A, the iNIC receives a packet and classifies it with the network processor
classification engine. The classification engine executes the rules code to determine whether a

match exists for the packet. If the packet is not destined for the server, fails checksum verification,

18

10

15

20

25

30

WO 02/059742 PCT/US01/49285

or fails to match other criteria, then the classification engine drops (or “discards”) the packet. If the
packet is not dropped, the classification engine sends the classified packet, along with possible table
lookup results, to either (a) the processor core for execution of ipOS action code, (b) the forwarding
processor for processing, or (c) the protocol stack processor for processing.

In the illustrative embodiments, the classification engine is operable to perform the packet
classification by reviewing one or more tables in response to a packet’s information. For example,
in response to the rules code, the classification engine determines whether a match exists between
(g) the packet’s source IP and source TCP port and (b) an existing table of source IP addresses and
source TCP ports (e.g. to determine whether the packet should be forwarded to another server).

If the classification engine sends a classified packet to the processor core, then the processor
core receives the packet and processes it according to the ipOS action code. In response to the
action code, the processor core determines whether to () drop the packet, (b) send the packet to the
protocol stack processor, or (c) process the packet and send it to the forwarding processor. If the
processor core drops the packet, the processor core erases the packet’s information from the iNIC’s
memory.

If the processor core sends the packet to the protocol stack processor, it does so during the
connection setup process which is discussed further hereinbelow. In such a situation, the packet
either: (a) is part of the connection setup process (e.g. SYN packet); or (b) is a request packet (e.g.
during the socket to connection endpoint setup process) that is being processed locally without
forwarding to another server.)

If the processor core sends the packet to the forwarding processor, the packet either (a) is
part of a new connection (e.g. including a connection endpoint) that is being migrated to another
server’s iNIC, or (b) is part of an existing connection that has already been migrated to another
server’s iINIC. In sending the packet to the forwarding processor, the processor core also sends
information to the forwarding processor for encapsulation of the packet, thereby enabling the
forwarding processor to encapsulate the packet before forwarding the packet to another server. If a
connection is migrated from a first server to a second server, the client request packet (see
FIGURES 10a-c) and all subsequent packets of the migrated connection bypass the first server’s
protocol stack and, instead, are processed by the second server’s protocol stack. The forwarding
processor is operable to receive packets from either the classification engine or processor core (in
response to the processor core’s action code). If the forwarding processor receives a packet from
the classification engine, the forwarding processor forwards the packet to another iNIC through Port
B at rates approaching wire speed. Before forwarding the packet, the forwarding processor

encapsulates it with header information.

19

10

15

20

25

30

WO 02/059742 PCT/US01/49285

The protocol stack processor is operable to receive packets from either the processor core or
the classification engine. If the protocol stack processor receives a packet from the processor core
(in response to the processor core’s action code), the packet is part of the connection setup process
(e.g. during delayed connection endpoint to application socket binding). In the connection setup
process for a packet received at Port A, the first packet received by the protocol stack processor
from the processor core is the SYN packet (the SYN packet initiates creation of a connection
endpoint). In association with such connection, the next packet received by the protocol stack
processor from the processor core indicates a decision to process the connection locally without
forwarding to another server.

If the protocol stack processor receives a packet from the classification engine, the packet
either: (a) is part of the connection setup process (e.g. SYN packet); or (b) is a packet associated
with an already established connection that is being processed locally without forwarding to another
server. In FIGURE 5a, if a packet has moved down the protocol stack for destination to a client, the
protocol stack processor sends the packet to the client through Port A (which is coupled to the IP
network). If a packet has moved up the protocol stack for destination to the main board circuitry’s
memory, the protocol stack processor sends information from the packet to the DMA circuitry.

Also, in FIGURE 5a, the DMA circuitry (a) sends information from the iNIC directly to the
main board circuitry’s memory and (b) receives information from the main board circuitry’s
memory to the iNIC’s memory. Accordingly, through the DMA circuitry and main board
circuitry’s memory, the protocol stack processor outputs information (from a packet) and a
connection endpoint reference to an application that is associated with the connection endpoint.
Likewise, through the main board circuitry’s memory and the DMA circuitry, the protocol stack
processor receives information from an application that is associated with a connection endpoint
and, in response thereto, the protocol stack processor assembles a packet for destination to a client.

FIGURE 5b is a block diagram of the iNIC and main board circuitry of FIGURE 3,
according to an illustrative embodiment in which the iNIC processes information received through a
Port B. FIGURE 5b shows pathways by which various packets (received from other server iNICs
within the server farm through Port B) are communicated through the iNIC. Such packets from
other server iNICs are received as encapsulated packets at Port B and are classified by the
classification engine, which executes the rules code to determine whether a match exists for the
packet.

If the classification engine does not drop the packet, the packet is classified and either (a) is
part of a new connection (e.g. including a connection endpoint) that is being migrated to the

server’s iNIC, or (b) is part of an existing connection that has already been migrated to the server’s

20

10

15

20

25

30

WO 02/059742 PCT/US01/49285

iNIC, or (¢) is a verification that a connection was successfully migrated to another server’s iNIC.
If the packet is not dropped, the classification engine sends the classified packet to either (a) the
processor core fpr execution of ipOS action code or (b) the protocol stack processor for processing.

If the encapsulated packet (received at Port B) is part of a new connection that is being
migrated to the server’s iNIC (“receiving server’s iNIC”), the classification engine verifies the
packet according to the packet’s checksum algorithm. If the packet is verified, the classification
engine sends information (e.g. the payload) of the packet to the processor core for establishing a
connection endpoint that is associated with the new connection. After the processor core
establishes the connection endpoint, (a) the processor core sends information to the protocol stack
processor for binding (or “associating”) the connection endpoint to an appropriate socket and its
associated socket application, and (b) the processor core forms an encapsulated acknowledgement
packet and sends it to the forwarding processor, Which outputs such packet to another server’s iNIC
(“forwarding server’s iNIC”) through Port B as a verification that the connection endpoint was
successfully migrated to the receiving server’s iNIC.

If the encapsulated packet (received at Port B) is a verification that a connection endpoint
was successfully migrated to the iNIC of another server (“receiving server”), the classification
engine sends information of the packet (along with a reference to the connection endpoint) to the
processor core. In response to such information and reference, the processor core (in response to
instructions of its ipOS) erases the connection endpoint from the iNIC’s memory and drops the
packet. After such verification of the connection endpoint migration, the iNIC (in response to
instructions of its.ipOS) sends (through the forwarding processor) all packets associated with the
connection to the receiving server.

The protocol stack processor is operable to receive packets from either the classification
engine or the processor core. If the encapsulated packet (received at Port B) is part of an existing
connection that has already been migrated to the server’s iNIC, the protocol stack processor
receives the packet from the classification engine. In response thereto, the protocol stack processor
(a) verifies and removes the packet’s header and (b) processes information (e.g. the IP packet
payload) of the packet associated with an already established connection endpoint.

If the protocol stack processor receives a packet from the processor core, the packet is part
of the connection setup process. In response to such a packet from the processor core, the protocol
stack processor binds (or “associates”) the packet’s associated connection endpoint to an
appropriate socket and its associated socket application. The socket application is executed by the

main board circuitry.

21

10

15

20

25

30

WO 02/059742 PCT/US01/49285

Accordingly, in such a situation, through the DMA circuitry and main board circuitry’s
memory, the iNIC’s protocol stack processor sends a request (along with a reference to the
connection endpoint) to the main board circuitry. In response to such request, the main board
circuitry stores the reference (“connection endpoint reference”) within a socket. The socket is
related to a suitable associated socket application for servicing the connection. In that manner, the
socket application is related to (and associated with) the connection endpoint, as discussed further
hereinbelow in connection with FIGURE 13..

In FIGURE 5b, if a packet has moved down the protocol stack for destination to a client, the
protocol stack processor outputs the packet to the client through Port A (which is coupled to the IP
network). If a packet has moved up the protocol stack for destination to the main board circuitry’s
memory, the protocol stack processor outputs information from the packet to the DMA circuitry.

Also, in FIGURE 5b, the DMA circuitry sends information (a) from the iNIC directly to the
main board circuitry’s memory and (b) from the main board circuitry’s memory to the iNIC’s
memory. Accordingly, through the DMA circuitry and main board circuitry’s memory, the protocol
stack processor outputs information (from a packet) and a connection endpoint reference to an
application that is associated with the connection endpoint. Likewise, through the main board
circuitry’s memory and the DMA circuitry, the protocol stack processor receives information from
an application that is associated with a connection endpoint and, in response thereto, the protocol
stack processor assembles a packet for destination to a client.

FIGURE 5c is a block diagram of the iNIC and main board circuitry of FIGURE 3,
according to an illustrative embodiment in which the iNIC processes information received and sent
through a Synch Port. FIGURE 5c shows pathways by which various packets (received from other
servers within the server farm through the Synch Port) are communicated through the iNIC. At the
Synch Port, the iNIC receives the packet and classifies it with the classification engine.

If the classification engine determines that the packet is a synchronization packet, the
classification engine sends the packet to the processor core for processing according to the ipOS
action code. In response thereto, the processor core reads synchronization information from the
synchronization packet and writes such information into a suitable state table of the iNIC memory.
After suitably processing the synchronization packet, the processor core drops it.

Also, through the Synch Port, the processor core is responsible for sending the server’s state
to others servers in the server farm. Accordingly, at specified synchronization intervals, the
processor core assembles specified synchronization information into a packet. Then, the processor
core outputs the assembled packet through the Synch Port for distribution to other servers in the

server farm.

22

10

15

20

25

30

WO 02/059742 PCT/US01/49285

Description of Server Farm State Synchronization

FIGURE 6 is a conceptual illustration of information stored in a memory of the
representative iNIC of FIGURE 3. In the illustrative embodiments, the servers in the server farm
endeavor to synchronize state information with one another by sending and receiVing the state
information through the server farm’s synchronization hub. FIGURE 6 illustrates the types of
information stored by the iNIC in the synchronization process.

Through the synchronization port of a server’s iNIC, the server sends information to the
other servers in the server farm. In the memory of the server’s iNIC, the server stores information
that represents the state of other servers in the server farm. Such information is accessible to the
server’s ipOS.

On a high priority basis (e.g. high frequency), the iNIC receives information that represents
the state of other servers in the server farm. In an illustrative embodiment, such information
(“server farm state information”) includes the other servers’ respective number of then-currently
established TCP connections, CPU utilization, available main board circuitry memory, available
server bandwidfh, and/or other suitable information for high priority synchronization of the server
farm’s servers.

On a medium priority basis (e.g. medium frequency), the iNIC receives information about
local and foreign object instances being executed by servers in the server farm (“object instances™).
In an illustrative embodiment, for object instances, such information includes an object
identification tag (along with its IP address) and a shadow object identification tag (if any, along
with its IP address), and/or other suitable information for medium priority synchronization of the
server farm’s servers.

Also, on a medium priority basis, the iNIC receives information about local and foreign
application processes being executed by servers in the server farm. In an illustrative embodiment,
for application processes, such information includes an application process identification tag (along
with its IP address), TCP port (e.g. listening socket connection information), and/or other suitable
information for medium priority synchronization of the server farm’s servers.

On a much lower priority basis (e.g. lower frequency), the iNIC receives application process
(and component object) performance information. In an illustrative embodiment, such information
includes an application process (or object) identification tag, application process (or object)
memory size, average CPU utilization, information on application processes (and component

objects) that are stored by particular servers for execution, and/or other suitable information for low

23

10

15

20

25

30

WO 02/059742 PCT/US01/49285

priority synchronization of the server farm’s servers. Referring also to FIGURES 3 and 12, the
iNIC’s application information table (included within the process information in iNIC memory)
stores information for mapping a specified application process (or object) identification tag to the
application process’s (or object’s) memory requirements and CPU utilization.

- Within the server farm, on a periodic basis, each server advertises its state by outputting a
UDP message through the synchronjzatioh port of the server’s iNIC. Other' servers (in the server
farm) receive the message and store information from the message into their respective iNIC
memories. Accordingly, in that manner within the server farm, such information is accessible to
any server’s ipOS, and the server farm’s servers perform load-balancing and resource management

operations in response to such information.
Description of Dynamic Load Balancing

In the illustrative embodiments, the iNIC (in response to instructions of its ipOS) executes a
process for dynamic load-balancing of client requests across servers within the server farm. The
load-balancing technique includes a process to select a suitable server for processing a client
request. For efficiency, the technique favors selection of the server that initially receives the client
request. With a set of » available servers that synéhronize their state tables (e.g. by storing identical
server farm state information), the server (which initially receives the client request) executes tﬁe
load-balancing process to select a server (from among the » available servers in the server farm) for
processing the client request.

For additional efficiency in the illustrative embodiments, in response to instructions of its
ipOS, the iNIC of a server (which initially receives the client request) executes the load-balancing
process only when the server reaches a predetermined threshold of activity. In the illustrative
embodiments, the server calculates whether such threshold has been reached, in response to some or
all of the state table information. Example thresholds are (a) a maximum number of TCP
connections then-currently established by the server or (b) a maximum CPU utilization within the
server.

A potential shortcoming of load-balancing techniques is that multiple simultaneous client
requests may result in one particular server processing many (or all) of the simultaneous client
requests, without forwarding a suitable number of the simultaneous client requests to another server
in the server farm (e.g. the load-balancing process may select the same server for processing all of

the simultaneous client requests). Such a result leads to a process called thrashing. In the

24

10

15

20

25

30

WO 02/059742 PCT/US01/49285

illustrative embodiments, the load-balancing technique substantially avoids thrashing by selecting a
server to process a request in response to a probability distribution.

According to such a probabilistic technique, the iNIC (in response to instructions of its
ipOS) executes a process for dynamic load-balancing in response to a number of TCP connections
then-currently established by each server. The probability of a server being selected is inversely
proportional to the number of TCP connections then-currently established by the server. In the
illustrative embodiments, this probability is calculated in accordance with Equations (1) and (2)

below.

k .
p; = CNi fori=1,2,3,...n €))
_ 1
T 1 (2)
71 CN;

In Equation (1), (a) p; is the probability that the load-balancing technique will result in the
client request being serviced by the i™ server (among 7 servers in the server farm), (b) CN; is the
number of TCP connections then-currently established by server i, and (c) k is a constant that is
calculated in accordance with Equation (2). In Equation (2), (a) CN; is the number of TCP
connections then-currently established by server j and (b) » is the number of servers in the server
farm.

FIGURE 7 is a block diagram of a system for processing information with a server farm,
according to an illustrative embodiment in which servers 1, 2 and 3 perform load-balancing of
client requests. In the example of FIGURE 7, servers 1, 2 and 3 have synchronized (e.g. servers 1,
2 and 3 have identical state tables in their respective iNIC memories). Moreover, in the example of
FIGURE 7, each of servers 1, 2 and 3 has exceeded a predefined threshold of activity (e.g. number
of TCP connections greater than a threshold).

Accordingly, in the illustrative embodiments, received client requests are load-balanced
within the server farm. In the example of FIGURE 7, server 1 receives a client request, and the
iNIC of server 1 (in response to instructions of its ipOS) executes the load-balancing process. The
iNIC of server 1 (in response to instructions of its ipOS) calculates a probability that any one of
servers 1, 2 or 3 will be selected to process the client request.

In response to the example state information of FIGURE 7, the iNIC of server 1 (in response
to instructions of its ipOS) calculates the following probabilities for servers 1, 2 or 3, respectively:

p1=0.37, p2=0.33, and p3 = 0.30. To determine which of servers 1, 2 or 3 will actually be selected

25

10

15

20

25

30

WO 02/059742 PCT/US01/49285

to process the client request, the iNIC of server 1, in response to instructions of its ipOS, (a)
executes a pseudo random number generator for identifying a random number between 0 and 1 and
(b) compares the random number to the calculated probabilities, in order to select one of servers 1,
2 or 3. For example, if the random number is less than 0.37, the iNIC of server 1 (in response to
instructions of its ipOS) selects server 1. By comparison, if the random number is greater than 0.37
yet less than 0.7 (0.37+0.33), the iNIC of server 1 (in response to instructions of its ipOS) selects
server 2. Otherwise, if the random number is greater than 0.7, the iNIC of server 1 (in response to

instructions of its ipOS) selects server 3.
Description of ipOS Threads

FIGURE 8 is a data flow diagram of process threads executed by the representative iNIC of
FIGURE 3. FIGURE 8 shows ipOS components, which include one or more threads of execution.
In the example of FIGURE 8, the ipOS components include four threads of execution. For clarity,
FIGURE 8 does not illustrate the packet processing performed by the forwarding processor (e.g. the
splicing of an ipOS encapsulation header to a packet) for the creation and sending of encapsulated
packets through Port B.

Each thread of execution includes a packet classification component and an action code
component. For example, if applicable to a particular thread, the thread processes a packet by
classifying the packet according to a set of classification rules. After classifying the packet, the
thread processes the packet by performing operations associated with the classification.

As shown in FIGURE 8, the ipOS components include a balance thread, a forward thread,
and a synchronization thread. Each of those threads includes program code that is executable by the
network processor for performing operations associated with the particular thread. Also, the ipOS
components include a protocol stack thread. The protocol stack thread includes program code that
is executable by the protocol stack processor for performing operations associated with the protocol
stack thread.

Referring also to FIGURE 3, the iNIC’s memory stores routing information, which includes
tables that are searchable in response to a thread’s packet classification component or action code
component. In response to a search key, the iNIC (in response to instructions of its ipOS) searches
a table to locate a record of information associated with the search key. The iNIC (in response to
instructions of its ipOS) is programmed to match the search key with specific fields of a packet.

As shown in FIGURE 8, at Port A, the iNIC (a) receives a packet from a client through the
IP network and (b) sends the packet to the balance thread. The balance thread processes the packet

26

10

15

20

25

30

WO 02/059742 PCT/US01/49285

by classifying the packet according to a set of classification rules. In communicating the packet
through the balance thread, the balance thread reads local, temporary, forward, and listening socket
tables.

FIGURE 12 is a conceptual illustration of tables stored by a server’s iNIC memory,
according to the illustrative embodiments. In particular, FIGURE 12 shows the types of fields (and
descriptions thereof) in each table. Also, FIGURE 12 shows whether a particular field is used as a
key for locating records in the table. Accordingly, for example, the local, forward-connect, and
temporary tables have the same types of fields and keys.

The local, forward-connect, and temporary tables store information representative of
connection endpoints in various states. Because these tables store information representative of
connection endpoints, a packet’s source IP address, source TCP port, destination IP address, and
destination TCP port are used as keys for locating records in the tables. Each record is capable of
storing additional information beyond the fields shown in FIGURE 12, and the server’s iNIC is
capable of storing additional tables beyond the tables shown in FIGURE 12.

The local table stores information representative of connection endpoints that are attached to
a socket associated with a local application (i.e. an application executed by the server that stores the
table). The forward-connect table stores information representative of connection endpoints that
have been migrated to the server. The temporary table stores information representative of
connection endpoints that are not yet attached to a socket associated with an application (e.g. the
server is assessing the client request). Accordingly, in the temporary table, such connection
endpoints have a state associated with a delayed connection endpoint to application socket bind (as
discussed further hereinbelow).

The forward table stores information representative of connection endpoints that have been
migrated to a different server. Accordingly, such connection endpoints are attached to a socket that
is associated with a non-local application (i.e. an application executed by the different server). The
listening sockets table stores information representative of an IP address and TCP port of a listening
socket associated with an application.

FIGURE 9a is a flowchart of the balance thread of FIGURE 8 for TCP/IP based
applications. FIGURE 9a shows a detailed communication of a packet through the balance thread,
in which the packet is processed in a sequence of steps until the packet is either dropped or output
from the balance thread. If the packet satisfies a particular rule, the iNIC (in response to
instructions of its ipOS) performs a suitable operation in response to the packet.

As shown in FIGURE 9a, an IP packet enters the balance thread from Port A. The iNIC (in

response to instructions of its balance thread) verifies the packet according to its checksum

27

10

15

20

25

30

WO 02/059742 PCT/US01/49285

algorithm (16-bit one’s compliment sum). If the packet is corrupt (as evidenced by a failure to
verify according to its checksum algorithm), then the packet is dropped.

After verifying the packet according to its checksum algorithm, the iNIC (in response to
instructions of its balance thread) reads the packet’s destination IP address to verify that the packet
is addressed to the iNIC’s server. If the packet is not addressed to the iNIC’s server, then the packet
is dropped.

After verifying that the packet’s destination IP address matches the server’s IP address, the
iNIC (in response to instructions of its balance thread) determines whether the packet’s source IP
address and source TCP port match a record in the temporary table. If so, a client has initiated a
connection, but the connection endpoint has not yet attached to a socket associated with an
application. In such a situation, the iNIC (in response to instructions of its balance thread) reads the
packet to determine whether it represents a client request (e.g. the first packet in which the TCP flag
is set to PUSH).

If the packet is not a client request (e.g. TCP Flag set to ACK), the iNIC (in response to
instructions of its balance thread) sends the packet and a reference to the connection endpoint
(stored in the temporary table’s matching record) to the protocol stack thread (which is executed by
the iNIC’s protocol stack processor). By comparison, if the packet is a client request (i.e. PUSH),
the iNIC (in response to instructions of its balance thread) reviews the request and selects a server
to process the request (e.g. according to the load-balancing technique). If the selected server is a
different server (i.e. not the iNIC’s server), the iNIC (in response to instructions of its balance
thread) migrates the connection endpoint to the selected server.

If the packet’s source IP address and source TCP port do not match a record in the
temporary table, the iNIC (in response to instructions of its balance thread) determines whether the
packet is part of an already established connection to a different server. Accordingly, the iNIC (in
response to instructions of its balance thread) determines whether the packet’s source IP address
and source TCP port match a record in the forward table. If so, the iNIC (in response to instructions
of its balance thread) (a) identifies the different server’s iNIC as storing the connection endpoint,
(b) encapsulates the packet with an ipOS encapsulation header (FIGURE 11a), and (c) with the
iNIC’s forwarding processor, outputs the encapsulated packet through Port B to the different
server’s iNIC, so that the output encapsulated packet bypasses the network (e.g. LAN A in
FIGURES 2a, 2c, 2d, 4a, 4b and 7) that is connected to Port A. In order to form the ipOS
encapsulation header, the forward table stores the following information in association with the
matching record: (a) the IP address of the different server’s iNIC and (b) the TCP port of the server

application which is executed by the different server.

28

10

15

20

25

30

WO 02/059742 PCT/US01/49285

By encapsulating the packet with an encapsulation header, the iNIC (in response to
instructions of its balance thread) addresses the packet to the previously selected server and
migrated connection endpoint. Advantageously, in the illustrative embodiments, the IP packet is
not rewritten. Such encapsulation is discussed further hereinbelow in connection with FIGURES
11a-i.

If the packet’s source IP address and source TCP port do not match a record in the forward
table, the iNIC (in response to instructions of its balance thread) determines whether the packet’s
source IP address and source TCP port match a record in the local table. If so, the iNIC (in
response to instructions of its balance thread) identifies the packet as having a connection endpoint
that is attached to a socket associated with a local application. Accordingly, in such a situation, the
iNIC identifies itself as storing the connection endpoint. In such a situation, the iNIC (in response
to instructions of its balance thread) sends the packet and a reference to the connection endpoint
(stored in the local table’s matching record) to the protocol stack thread.

If the packet’s source IP address and source TCP port do not match a record in the local
table, the iNIC (in response to instructions of its balance thread) determines whether the IP packet’s
TCP SYN flag is set (e.g. determines whether a client is initiating a new connection) and whether
the packet specifies an IP address and TCP port that match a record in the listening sockets table. If
so, the iNIC sends the packet to the protocol stack processor for establishing a temporary
connection. The protocol stack processor responds to the client with a SYN-ACK response packet
as part of the TCP/IP initiation of a connection. Also, the iNIC creates a connection endpoint that
has yet to be attached to a socket associated with an application. In the temporary table, the iNIC
stores a record which includes a reference to such connection endpoint.

As shown in FIGURE 9a, if the IP packet’s TCP SYN flag is not set, or if the packet
specifies an IP address and TCP port that do not match a record in the listening sockets table, then
the packet is dropped.

FIGURE 9b is a flowchart of the forward thread of FIGURE 8 for TCP/IP based
applications. FIGURE 9b shows a detailed communication of a packet through the forward thread.
The packet enters the forward thread from Port B. Packets from Port B are encapsulated packets
and are sent to the forward thread. |

Accordingly, if the forward thread receives a packet from Port B, the packet either (a) is part
of a new connection that is being migrated to the server’s iNIC, or (b) is part of an existing
connection that has already been migrated to the server’s iNIC, or (c) is a verification that a
connection was successfully migrated to another server’s iNIC. In FIGURE 12, the forward-

connect table stores information representative of connection endpoints that have been migrated to

29

10

15

20

25

30

WO 02/059742 PCT/US01/49285

the server. In response to such information, the forward thread determines a suitable operation to
perform on the packet, using an IP address and TCP port as keys to locate records in the forward-
connect table.

As shown in FIGURE 9b, after receiving a packet from Port B, the iNIC (in response to
instructions of its forward thread) verifies the packet’s encapsulation header according to its
checksum algorithm (16-bit one’s compliment sum of the header). If the encapsulation header is
corrupt (as evidenced by a failure to verify according to its checksum algorithm), then the packet is
dropped.

After verifying the encapsulation header according to its checksum algorithm, the iNIC (in
response to instructions of its forward thread) reads the encapsulation header’s destination IP
address to verify that the encapsulated packet is addressed to the iNIC’s Port B. If the encapsulated
packet is not addressed to the iNIC’s Port B, then the packet is dropped.

After verifying that the encapsulated header’s destination IP address matches the iNIC’s
Port B IP address, the iNIC (in response to instructions of its forward thread) determines whether
the encapsulation header’s type field is set to 0x01. If so, the packet is part of a new connection
that is being migrated to the server’s iNIC. In such a situation, the iNIC removes the encapsulation
header and performs a one-time connection endpoint setup. As verification that the connection was
successfully migrated, the iNIC (in response to instructions of its forward thread) sends a packet
(with type field set to 0x03) through Port B to the originating iNIC (i.e. to the iNIC that requested
the migration).

By comparison, if the encapsulation header’s type field is set to 0x02, the packet (e.g.
PUSH, ACK or FIN types of packets) is part of an existing connection that has already been
migrated to the server’s iNIC. In such a situation, the iNIC (in response to instructions of its
forward thread) reads the client source IP address and source TCP port from the encapsulation
header and, in response thereto, locates a matching connection endpoint record in the forward-
connect table. Also, the iNIC (in response to instructior;s of its forward thread) removes the
encapsulation header and sends the unencapsulated packet (which is an IP packet) and a reference
to the connection endpoint (stored in the forward-connect table’s matching record) to the protocol
stack thread.

If the encapsulation header’s type field is set to 0x03, then the packet is a verification that a
connection was successfully migrated to another server’s iNIC. In such a situation, the iNIC (in
response to instructions of its forward thread) reads information from the encapsulation header and,
in response thereto, locates a matching connection endpoint record in the temporary table. Then,

the iNIC (in response to instructions of its forward thread): (a) moves such record from the

30

10

15

20

25

30

WO 02/059742 PCT/US01/49285

temporary table to the forward table, (b) deletes such record in the temporary table, and (c) drops
the packet.

If the encapsulation header’s type field is set to neither 0x01, 0x02 nor 0x03, then the packet
is dropped.

FIGURE 9c is a flowchart of the synchronization thread of FIGURE 8. FIGURE 9c shows
a detailed communication of a packet through the synchronization thread. The packet enters the
synchronization thread from the Synch Port. Packets from the Synch Port are sent to the
synchronization thread.

After receiving a packet from the Synch Port, the iNIC (in response to instructions of its
synchronization thread) classifies the packet according to the synchronization thread’s classification
rules. Numerous embodiments of the synchronization thread and Synch Port are possible. As
shown in FIGURE 12, the iNIC includes a server state table for storing information representative
of the current states of all servers in the server farm.

As shown in FIGURE 9c, after receiving a packet from the Synch Port, the iNIC (in
response to instructions of its synchronization thread) determines whether the packet is a UDP
packet. If not, then the packet is dropped.

After determining that the packet is a UDP packet, the iNIC (in response to instructions of
its synchronization thread) determines whether the packet’s source IP address matches a record in
the server state table. If so, the packet indicates either an update to a server’s state information or a
removal of a server from the server state table (e.g. a removal of the server from the server farm due
to maintenance). If the packet indicates an update to a server’s state information, the iNIC (in
response to instructions of its synchronization thread) updates the matching record in the server
state table and drops the packet. By comparison, if the packet indicates a remqval of a server from
the server state table, the iNIC (in response to instructions of its synchronization thread) removes
the matching record and drops the packet.

If the iNIC (in response to instructions of its synchronization thread) determines that the
packet’s source IP address does not match a record in the server state table, the iNIC (in response to
instructions of its synchronization thread): (a) adds a new record in the server state table in
association with the packet’s source IP address, (b) updates the new fecord in response to other
information from the packet, and (c) drops the packet.

Also, with the synchronization thread, the iNIC assembles state information of the iNIC’s
server into a packet for broadcast to other servers within the server farm. In the illustrative
embodiments, the iNIC (in response to instructions of its synchronization thread) assembles such

information into a UDP packet and outputs the UDP packet through the Synch Port.

31

10

15

20

25

30

WO 02/059742 PCT/US01/49285

Referring to FIGURE 8, the protocol stack thread implements the IP, UDP and TCP
protocols, including operations that are commonly referred to as the Network and Transport Layers.
Some conventional techniques would perform the protocol stack operations in the OS of the
server’s main board circuitry. Accordingly, such conventional techniques would perform (a)
network address translations in IP packets that are communicated between clients and specified
servers in the server farm and (b) TCP splicing (e.g. rewriting of sequence numbers).

By comparison, in the illustrative embbdiments, the protocol stack operations are performed
advantageously by the protocol stack processor (in response to protocol stack instructions) of the
server’s iNIC. For example, in the illustrative embodiments, the protocol stack thread avoids the
need to perform network address translations (“NATSs”) in IP packets that are communicated
between clients and specified servers in the server farm. Moreover, in the illustrative embodiments,
the protocol stack thread avoids the need to perform TCP splicing (e.g. rewriting of sequence
numbers).

FIGURE 13 is a block diagram of the iNIC and main board circuitry of FIGURE 3,
according to the illustrative embodiments in which a socket application is related to a socket and its
associated connection endpoint. In FIGURE 13, a socket application includes instructions for
initiating the formation of a socket by calling a system function (or by calling an application
program interface (“API”)) to form a socket of a specific type (e.g. UDP or TCP) within a socket
layer. In response to instructions of the OS kernel, the main board circuitry manages the socket
layer. Inresponse to such a call, the OS kernel includes instructions for forming the socket and
returning a file descriptor (which references the socket) to the application.

Although FIGURE 13 shows a single socket, a socket application can be related to
numerous sockets at any particular time. The socket layer includes instructions for sending one or
more requests to the iNIC,'in order to initiate the iNIC’s formation of a new connection endpoint
(of a specified type), and in order to initiate the iNIC’s formation of a socket reference. Such
request is associated with a socket, and the socket reference is a reference to that socket.

In response to such a request, the iNIC (a) forms the new connection endpoint, irrespective
of whether a socket application is associated with the new connection endpoint, and (b) returns a
reference (which references the connection endpoint) to the socket layer. As shown in FIGURE 13,
the socket includes a reference (“connection endpoint reference™) for associating the socket with the
connection endpoint. Likewise, the connection endpoint includes a reference (“socket reference”)
for associating the connection endpoint with the socket. The protocol stack thread (executed by the
protocol stack processor) has access to the iNIC’s memory, where connection endpoints are stored

in various tables (as discussed further herein in connection with FIGURE 12).

32

10

15

20

25

30

WO 02/059742 PCT/US01/49285

Also, the iNIC (in response to instructions of its protocol stack thread) is operable to
associate an existing connection endpoint and a socket with one another. For such association,
through the DMA circuitry and main board circuitry’s memory, the iNIC’s protocol stack processor
sends a request (along with a reference to the connection endpoint) to the main board circuitry. In
response to such request, the main board circuitry (a) forms a client specific socket (if a listening
socket exists for the IP address and TCP Port), (b) stores the connection endpoint reference within
the socket, and (c) returns a reference (which references the socket) to the iNIC. The iNIC
completes the association by storing the socket reference within the connection endpoint.

The protocol stack thread of the illustrative embodiments is similar to a conventional
standard protocol stack (e.g. BSD protocol stack), but the protocol stack thread of the illustrative
embodiments is modified from the conventional standard protocol stack in various ways. Such
modifications include (a) the addition of several fields to the connection endpoint data structure, (b)
the revision of protocol stack code to use the modified connection endpoint, and (c) the revision of
protocol stack code to selectively add special information within an IP packet’s data portion (e.g.
session management). Moreover, the protocol stack thread of the illustrative embodiments is
modified to advantageously avoid several conventional protocol stack operations, including
checksum calculations and connection endpoint searches, because such operations are performed by
the classification engine (e.g. a packet sent to the protocol stack thread is accompanied by a
reference to the packet’s associated connection endpoint).

‘ Referring again to FIGURE 8, packets are sent to the protocol stack thread from the balance
threéd and the forward thread (en route to a server application). Such packets are moving up the
protocol stack during a receive operation. After the protocol stack thread processes the packet, the
protocol stack processor outputs the payload information (destined for the application) to the main
board circuitry’s memory through DMA circuitry (as discussed further hereinabove in connection
with FIGURE 3).

As discussed herein in connection with FIGURE 13, the connection endpoint includes a
socket reference. In response to receiving payload information from the pfotocol stack processor,
the main board circuitry appends the payload information to a socket queue for the referenced
socket. Also, the main board circuitry alerts the application about such appending.

Similarly, packets are sent to the protocol stack thread from an application (en route to Port
A). Such packets are moving down the protocol stack during a send operation. As discussed herein
in connection with FIGURE 13, the socket includes a connection endpoint reference, so a packet
sent to the protocol stack thread is accompanied by a reference to the packet’s associated

connection endpoint, and the protocol stack thread does not perform connection endpoint searching.

33

10

15

20

25

30

WO 02/059742 PCT/US01/49285

Moreover, in processing such a packet, the protocol stack processor outputs the packet to a client
through Port A without TCP splicing or packet rewriting.

In an illustrative embodiment, for any server application that services a client request, a
server’s protocol stack processor (in response to instructions of its protocol stack thread) is operable
to selectively form and add special information (for causing the client to perform an operation)
within an IP packet before sending it to the client through Port A. In response to the special
information, the client (in response to instructions of its application) is operable to: (a) maintain a
session, as discussed further hereinbelow, (b) selectively update state information (stored by the
client) in a manner specified by the special information (e.g. for state maintenance, such as
modifying state information); and/or (c) selectively perform another application specific operation
in a manner specified by the special information. _

For example, the server’s protocol stack processor is operable to add the special information
in response to the synchronized state information (which is discussed further hereinabove such as in
connection with FIGURE 6) of servers in the server farm. The protocol stack processor adds the
special information within the IP packet’s data portion (e.g. TCP payload), so that the special
information is not contained in the IP packet’s headers (e.g. IP, TCP or UDP header).

Advantageously, unlike at least one conventional technique, the protocol stack processor (of
such an illustrative embodiment) adds the special information (e.g. session maintenance
information, state maintenance information) in a manner that is independent of the main board
circuitry, and independent of whether the server application includes any instructions for such
purpose. By comparison, in at least one conventional technique, the protocol stack instructions
affect the IP packet’s headers (not the IP packet’s data portion), so that session maintenance
information (in the IP packet’s data portion) is added by the main board circuitry in response to
instructions of a server application (rather than in response to protocol stack instructions).

A session (e.g. HTTP session) includes multiple connections. For example, in such an
illustrative embodiment, after establishing a first connection of a session with a client (which
executes an application, such as a web browser), the first server receives a request packet from the
client. In response to the request packet, the first server’s iNIC is operable to (a) select a server for
maintaining the session with the client and (b) notify the client of the selection by outputting special
information (e.g. HTTP session identifier, such as a cookie) in a response packet to the client. The
special information is added to the response packet by the protocol stack processor of the first
server’s iNIC.

Accordingly, in response to the request packet from the client, the first server’s iNIC is

operable to either: (a) in response to the synchronized state information (which identifies servers in

34

10

15

20

25

30

WO 02/059742 PCT/US01/49285

the server farm that have access to suitable resources for servicing the client request), select one of
the identified servers for maintaining the session with the client; or (b) select the first server for
maintaining the session with the client, irrespective of the synchronized state information.

In a first illustrative embodiment according to the HTTP protocol, the special information is
an HTTP session identifier (which specifies a server for maintaining the session with the client). In
the first illustrative embodiment, the client: (a) during the first connection, receives the response
packet (which includes the HTTP session identifier) from the first server; (b) establishes a second
connection of the session with the server farm; and (c) after establishing the second connection,
adds the HTTP session identifier within a request packet (of the second connection) before sending
it to the server farm. In response to the request packet (which includes the HTTP session
identifier), the server farm is responsible for sending the request packet to the specified server.

For example, in the first illustrative embodiment, the client establishes the second
connection of the session with a server (“connecting server”) of the server farm, as discussed
further hereinabove in connection with FIGURE 2a. In response to the second connection’s request
packet, the connecting server either: (a) keeps the request packet and processes it, if the request
packet’s HTTP session identifier specifies the connecting server; or (b) forwards the request packet
to a different server (within the server farm) for processing, if the request packet’s HTTP session
identifier specifies the different server (as discussed further hereinbelow in connection with
FIGURE 10a and the cookie map table of FIGURE 12). Accordingly, in the first illus‘;rative
embodiment, the servers in the server farm endeavor to synchronize state information with one
another by sending and receiving the state information (including information for the cookie map
table) through the server farm’s synchronization hub, as discussed further hereinabove in
connection with FIGURES 5c and 6. By comparison, in a conventional technique, the client would
establish the second connection of the session with a flow switch, which in turn would send the
second connection’s request packet to a server as specified by the request packet’s HI'TP session
identifier.

In a second illustrative embodiment, the client (in response to instructions of its
application): (a) during the first connection, receives the response packet (which includes the
special information) from the first server; (b) if the special information specifies the first server,
establishes the second connection of the session directly with the first server; and (c) if the special
information specifies a second server (i.e. different than the first server), establishes the second
connection of the session directly with the second server (instead of the first server). Also, in the
second illustrative embodiment, the client (in response to instructions of its application) is operable

to: (a) selectively update state information (stored by the client) in a manner specified by the

35

10

15

20

25

30

WO 02/059742 PCT/US01/49285

special information (e.g. for state maintenance); and (b) selectively perform another application
specific operation in a manner specified by the special information.

Accordingly, in the first and second illustrative embodiments, the first server’s iNIC is
operable to selectively migrate the session to a second server in response to the synchronized state
information. Likewise, after such migration, the second server’s iNIC is operable to either: (a) in
response to the synchronized state information, select a suitable server for maintaining the session
with the client; or (b) select the second server for maintaining the session with the client,
irrespective of the synchronized state information. In that manner, a server’s iNIC is operable to
selectively migrate a session by outputting special information in a response packet to the client
during any connection of the session, not merely during the first connection.

FIGURE 10a is a sequence diagram of steps for establishing a local TCP/IP connection
between a client and a server, accdrding to the illustrative embodiments. Referring also to FIGURE
9a, a client initiates a new connection to a server by sending an IP SYN packet to Port A of the
server’s iNIC. Accordingly, the IP SYN packet is an initialization packet originating from the
client. The packet is addressed to a particular destination IP address and destination TCP port (e.g.
a specific listening socket for an application). The iNIC classifies and processes the packet
according to the balance thread’s classification rules and action code.

If an application is listening for such a connection, the iNIC (in response to instructions of
its balance thread) creates a connection endpoint and stores a record (in the temporary table of
FIGURE 12) which includes a reference to such connection endpoint. Also, the iNIC (in response
to instructions of its balance thread) sends the SYN packet and a reference to the connection
endpoint (stored in the temporary table’s record) to the protocol stack thread. In response to the
SYN packet, the protocol stack processor outputs a SYN-ACK response packet (as part of the
standard TCP/IP socket connection setup process) to the client through Port A without
modification. In response to the SYN-ACK response packet, the client sends an ACK packet to the
server, thereby acknowledging receipt of the SYN-ACK response packet. Accordingly, the ACK
packet originates from the client.

The ACK packet (and subsequent packets from the client) has a source IP address and
source TCP port that match the record in the temporary table. Accordingly, the iNIC (in response
to instructions of its balance thread) sends the ACK packet and a reference to the connection
endpoint (stored in the temporary table’s matching record) to the protocol stack thread. In response
to such packet and reference, the protocol stack processor updates the connection endpoint in the

iNIC’s memory and drops the packet.

36

10

15

20

25

30

WO 02/059742 PCT/US01/49285

In an illustrative embodiment, the next packet sent from the client is a client request packet
(e.g. the first packet in which the TCP flag is set to PUSH). Accordingly, the client request packet
originates from the client. In an alternative embodiment, the client request packet is sent by the
client at a later time. In this example, the client request packet includes the client request for
resource (e.g. GET request using the HTTP protocol). In response to such client request for
resource, the iNIC (in response to instructions of its balance thread) selects a server to process the
request.

For example, in selecting a server to process the request, the iNIC examines the client
request packet to determine whether the packet includes special information in the form of a cookie.
With a cookie, the client is able to request connection to a specified server in the server farm. Ina
first illustrative embodiment according to the HTTP protocol, the client is able to insert a cookie in
the packet for maintaining an HTTP session (e.g. a series of connections) between the client and the
specified server. In a second illustrative embodiment according to a different protocol, the client is
able to pass special information (within a packet to a server) according to the different protocol
without a cookie.

Accordingly, if the packet includes a cookie (as represented by an identifier in the packet),
the iNIC selects the cookie’s specified server to service the request (including performing a suitable
operation). In such a situation, if the cookie’s specified server is the iNIC’s server (i.e. the balance
thread’s server), the iNIC performs the suitable operation in response to the packet. By
comparison, if the cookie’s specified server is a different server (i.e. not the balance thread’s
server), the iNIC migrates the packet’s associated connection endpoint to the cookie’s specified
server for performing the suitable operation in response to the packet. Referring also to FIGURES
3 and 12, the iNIC’s cookie map table (included within the process information in iNIC memory)
stores information for mapping a specified cookie identification tag to an associated server.

Similarly, in selecting a server to process the request, tﬁe iNIC examines the client request .
packet to determine whether information in the packet has been mapped (e.g. by an administrator of
the server farm) to one or more associated servers in the server farm. For example, the iNIC
examines the client request (e.g. HTTP request) to determine whether a specific URL has been
mapped to one or more associated servers in the server farm (e.g. see discussion hereinabove in
connection with FIGURE 2d). Referring also to FIGURES 3 and 12, the iNIC’s URL map table
(included within the process information in iNIC memory) stores information for mapping a
specified URL address of a server application to one or more associated servers within the server
farm. Accordingly, if the URL map table indicates that the specified URL (as represented by an

identifier in a request packet) is associated with a single server within the server farm, the iNIC

37

10

15

20

25

30

WO 02/059742 PCT/US01/49285

selects the associated server to service the connection (including performing a suitable operation).
If the associated server is the iNIC’s server, the iNIC performs the suitable operation in response to
the request packet. If the associated server is different than the iNIC’s server, the iNIC outputs the
request packet to the associated server’s iNIC for performing the suitable operation in response to
the request packet. If the URL map table indicates that the specified URL is associated with
multiple servers within the server farm, the iNIC selects one of the multiple servers to service the
connection (including performing the suitable operation), according to the load-balancing technique
in response to the synchronized state information.

Similarly, the iNIC memory’s process information includes an SSL (secure socket layer)
map table for mapping a specified SSL connection (port 443) to one or more associated servers
within the server farm. Accordingly, if the SSL map table indicates that the specified SSL
connection (as represented by an identifier in a request packet) is associated with a single server
within the server farm, the iNIC selects the associated server to service the SSL connection

(including performing a suitable operation). If the associated server is the iNIC’s server, the iNIC

* performs the suitable operation in response to the request packet. If the associated server is

different than the iNIC’s server, the iNIC outputs the request packet to the associated server’s iNIC

for performing the suitable operation in response to the request packet. If the SSL map table

indicates that the specified SSL connection is associated with multiple servers within the server

farm, the iNIC selects one of the multiple servers to service the SSL connection (including
performing the suitable operation), according to the load-balancing technique in response to the
synchronized state information.

If the client request packet does not contain special information for connection to a specified
server (e.g. does not include a cookie) and does not specify information (e.g. a URL or SSL) that is
mapped to one or more associated servers, then the iNIC selects a server (to process the request)
according to the load-balancing technique in response to the synchronized state information.

In selecting a server to process the request, the connection is reclassified from being a
temporary connection to being either a local connection or a forwarded connection. The connection
is reclassified to being a local connection if the client request packet is processed by the server
(“first server”) without forwarding to a second server. By comparison, the connection is
reclassified to being a forwarded connection if the client request packet is forwarded to a second
server for processing (e.g. if the first server is too busy, or if the client request is part of a session
maintained by the second server).

In the example of FIGURE 10a, the connection is reclassified to being a local connection.

In such a situation, the iNIC (in response to instructions of its balance thread) moves the associated

38

10

15

20

25

30

WO 02/059742 PCT/US01/49285

connection endpoint record from the temporary table to the local table. Also, in such a situation,
the protocol stack processor establishes the actual connection to the application through the socket
layer by forming the socket reference in the connection endpoint and forming the connection
endpoint reference in the socket.

FIGURE 14 is a block diagram of servers within a server farm, according to an illustrative
embodiment in which the servers establish sockets and associated connection endpoints for a local
connection and a forwarded (or “migrated”) connection. FIGURE 14 shows servers 1 and 2 in the
server farm. Server 1 includes main board circuitry 1 and iNIC 1. Server 2 includes main board
circuitry 2 and iNIC 2.

In the example of FIGURE 14, an application of server 1 has established a connection to a
client through socket 1 and connection endpoint 1 to a client. Likewise, an application of server 2 '
has established a connection to a client through socket A and connection endpoint A. For clarity,
FIGURE 14 does not show (a) the complete association between a specific application and a
specific socket(s) through a socket layer, which is discussed elsewhere herein in connection with
the protocol stack thread, (b) other connections that have already been established, or (c) the
association between connection endpoints (e.g. in a doubly linked list) within an iNIC memory.

In one example, a connection with a client is represented by connection endpoint 2 (which
includes information for the connection) formed as part of the SYN, SYN-ACK, and ACK packet
processing of FIGURE 10a. For the connection, before iNIC 1 receives the client request packet
from the client, connection endpoint 2 is not yet associated with a socket in the socket layer of main
board circuitry 1, so an application has not yet been assigned to process the connection. As
discussed hereinabove in connection with FIGURE 10a, the connection is reclassified to being a
local connection if the client request packet is processed by a first server (e.g. server 1 in FIGURE
14) without forwarding to a second server (e.g. server 2 in FIGURE 14). If the connection is
reclassified to being a local connection, iNIC 1 sends a request to main board circuitry 1. In
response to such request, main board circuitry 1 initiates the formation of socket 2 within the socket
layer of main board circuitry 1. Socket 2 is associated with the application, connection endpoint 2,
and the client.

Referring also to FIGURE 10a, the protocol stack thread receives information from the
application (along with a reference to its associated connection endpoint). In response to such
information, the iNIC (in response to instructions of its protocol stack thread) forms a packet by
adding suitable header information (including checksum calculations) and sends the packet to the

client through Port A. Advantageously, the packet sent by the iNIC is received by the client

39

10

15

20

25

30

WO 02/059742 PCT/US01/49285

without intervening network address translation (“NAT”) or TCP splicing (e.g. without rewriting of
sequence numbers), in contrast to the conventional flow switch architecture of FIGURE 1b.

If the iNIC (in response to instructions of its balance thread) determines that a source IP
address and source TCP port of a packet (originating from the client and received at Port A) match
arecord in the local table, the iNIC sends the packet and a reference to the connection endpoint
(stored in the local table’s matching record) to the protocol stack thread. After the protocol stack
thread processes the packet, the protocol stack processor sends the payload information (destined
for the connection endpoint’s associated socket application) to the main board circuitry’s memory
through DMA circuitry (as discussed further hereinabove in connection with FIGURE 3). The main
board circuitry adds the payload information to a socket queue associated with the socket
application. Advantageously, the protocol stack thread processes the packet without performing
NAT or TCP splicing.

FIGURE 10b is a sequence diagram of steps for establishing a forwarded connection
between a client and a server, according to the illustrative embodiments. FIGURE 10c is a
sequence diagram of steps for processing a forwarded connection with a server, according to the
illustrative embodiments. In FIGURE 10b (as in FIGURE 10a), a client initiates a new connection
to a server by sending an IP SYN packet to Port A of the server’s iNIC.

If an application is listening for such a connection attempt, the iNIC (in response to
instructions of its balance thread) creates a connection endpoint and stores a record (in the
temporary table of FIGURE 12) which includes a reference to such connection endpoint. Also, the
iNIC (in response to instructions of its balance thread) sends the SYN packet and a reference to the
connection endpoint (stored in the temporary table’s record) to the protocol stack thread. In
response to the SYN packet, the protocol stack processor sends a SYN-ACK response packet (as
part of the standard TCP/IP socket connection setup process) to the client through Port A without
modification.

In response to the SYN-ACK response packet, the client sends an ACK packet to the server,
thereby acknowledging receipt of the SYN-ACK response packet. The ACK packet (and
subsequent packets from the client) has a source IP address and source TCP port that match the
record in the temporary table. Accordingly, the iNIC (in response to instructions of its balance
thread) sends the ACK packet and a reference to the connection endpoint (stored in the temporary
table’s matching record) to the protocol stack thread. In response to such packet and reference, the
protocol stack processor updates the connection endpoint in the iNIC’s memory and drops the

packet.

40

10

15

20

25

30

WO 02/059742 PCT/US01/49285

In this example, the next packet sent from the client is a client request packet. In response
to the client request packet, the iNIC (in response to instructions of its balance thread) selects a
server to process the request, in the same manner as discussed further hereinabove in connection
with FIGURE 10a. If the iNIC selects a different server (i.e. not the balance thread’s server), the
iNIC migrates the packet’s associated connection endpoint to the different server, and the
connection is reclassified to being a forwarded connection.

In the example of FIGURE 10b, the connection is reclassified to being a forwarded
connection. Referring also to FIGURE 14, the connection is represented by connection endpoint 3
(which includes information for the connectfon) formed as part of the SYN, SYN-ACK, and ACK
packet processing of FIGURE 10b. For the connection, before iNIC 1 receives the client request
packet from the client, connection endpoint 3 is not yet associated with a socket in the socket layer
of main board circuitry 1, so an application has not yet been assigned to process the connection.

For example, if iNIC 1 selects server 2 to process the client request, iNIC 1 migrates
connection endpoint 3 to iNIC 2 in reclassifying the connection to being a forwarded connection.
For clarity, on iNIC 2, the migrated connection endpoint 3 is denoted as connection endpoint B in
FIGURE 14.

In migrating connection endpoint 3 from iNIC 1 to iNIC 2, iNIC 1 prepends connection
endpoint 3 with an ipOS encapsulation header to form an ipOS encapsulated packet, which iNIC 1
outputs through its Port B to iNIC 2, as discussed further hereinbelow in connection with FIGURES
11a-i. Accordingly, connection endpoint B includes a copy of information from connection
endpoint 3 and additional information such as server 1°s IP address and the destination TCP port of
the client request. Moreover, in such an ipOS encapsulated packet, the encapsulation header’s type
field is set to 0x01.

Referring to FIGURES 9b and 10c, in response to receiving such an ipOS encapsulated
packet at Port B of iNIC 2, iNIC 2 (in response to rules code of its forward thread) (a) determines
that such packet is a migration of a connection endpoint, (b) unpacks the packet, and (c) sends the
connection endpoint to the protocol stack thread. Also, in such a situation, iNIC 2 (a) establishes
connection endpoint B and (b) in response to instructions of its protocol stack thread, sends a
request to main board circuitry 2. In response to such request, main board circuitry 2 initiates the
formation of socket B within the socket layer of main board circuitry 2.

Socket B is associated with the application, connection endpoint B, and the client. In such a
situation, the protocol stack processor of iNIC 2 establishes the actual connection to the application
through the socket layer of main board circuitry 2 by storing the socket reference within connection

endpoint B and storing the connection endpoint reference within socket B. Moreover, in the

41

10

15

20

25

30

WO 02/059742 PCT/US01/49285

forward-connect table of iNIC 2, it stores a record which includes a reference to connection
endpoint B.

After storing such record in its forward-connect table, iNIC 2 (in response to instructions of
its forward thread) forms an encapsﬁlated acknowledgement packet and outputs such packet to iNIC
1 through Port B as a verification that the connection endpoint was successfully migrated to iNIC 2.
In such a packet, the encapsulation header’s type field is set to 0x03. The encapsulated
acknowledgement packet is received by iNIC 1 (at its Port B), which processes the packet as
discussed further hereinabove in connection with FIGURE 9b (including moving the associated
connection endpoint record from the temporary table of iNIC 1 to the forward table of iNIC 1).

The client is unaware of the connection endpoint migration from iNIC 1 to iNIC 2.
Accordingly, the client sends packets (of the connection) addressed to server 1 instead of server 2.
Examples of such packets (originating from the client) include TCP/IP packets with PUSH, ACK or
FIN flags set. Referring also to FIGURE 9a, (a) such a packet’s source IP address and source TCP
port match a record in the forward table of iNIC 1, (b) in response to such match, iNIC 1
encapsulates such packét with an encapsulation header (whose type field is set to 0x02), as
discussed further hereinbelow in connection with FIGURES 11a-i, and (c) the forwarding processor
of iINIC 1 sends (through Port B) the encapsulated packet to iNIC 2, which processes (e.g. performs
an operation in response to) such packet as discussed further hereinabove in connection with
FIGURE 9b. Advantageously, in the illustrative embodiments, the original IP packet is not
rewritten (e.g. without NAT or TCP splicing).

Likewise, the client receives packets (of the connection) which appear to be sent from server
1 instead of server 2 (even though such packets bypass server 1 and, instead, are sent from server
2). Server 2 achieves such a result by specifying (in such packets) a source IP address of server 1
instead of server 2, plus the sequence numbers associated with the connection. By reading the
associated connection endpoint (which includes the addresses of server 1 and the client, plus the
sequence numbers associated with the connection), server 2°s iNIC avoids NATs and TCP splicing,
because server 2°s iNIC forms a response packet according to the addresses of server 1 and the
client and sequence numbers associated with the connection between the client and server 2.

For example, referring to FIGURE 10c, in server 2, packets are sent to the protocol stack
thread from an application (en route to Port A of iNIC 2). As discussed herein in connection with
FIGURE 13, the socket includes a connection endpoint reference, so a packet sent to the protocol
stack thread is accompanied by a reference to the packet’s associated connection endpoint, and the
protocol stack thread does not perform connection endpoint searching. Moreover, in processing

such a packet, the protocol stack processor sends the packet to a client through Port A without TCP

42

10

15

20

25

30

WO 02/059742 PCT/US01/49285

splicing or packet rewriting. Advantageously, the packet is received by the client without
intervening TCP splicing or NAT, in contrast to the conventional flow switch architecture of
FIGURE 1b.

For establishing a connection between a client and a server’s socket application, the
illustrative embodiments achieve various advantages over conventional techniques. According to
one conventional technique, a content aware flow switch performs a “connection spoof” in which a
connection is established between the client and the flow switch. Such a connection (between the
client and the flow switch) is conventionally referred to as a delayed bind and operates to delay
selection of a server in the server farm until the client request packet is received by the flow switch.

After the flow switch receives the client request packet, the flow switch selects a server to
process the client request. After selecting a server, the flow switch establishes another connection
between the flow switch and the selected server. Accordingly, for processing the client request, the
flow switch maintains two connections, namely (2) a first connection between the client and the
flow switch and (b) a second connection between the flow switch and the selected Server.

With such a conventional technique, packets between the client and the selected server are
passed through the flow switch. The client does not establish a direct connection with the selected
server. In such a situation, the flow switch manipulates (e.g. rewrites) the packets in the course of
performing “translation” operations such as TCP splicing, NATs, and checksum calculations.

By comparison, the illustrative embodiments do not perform such a “connection spoof.”
Instead, the illustrative embodiments perform a delayed connection endpoint to application socket
bind. Advantageously, after performing such bind (or “association”) between the connection
endpoint and application socket, the illustrative embodiments send packets between the client and
the selected server without TCP splicing or NATs.

Even after performing a connection endpoint to application socket bind in response to a first
request packet (as discussed further hereinabove in connection with FIGURES 10a-c), a server’s
iNIC (in response to instructions of its ipOS) remains operable to selectively migrate the connection
endpoint during the same connection (e.g. before closing the TCP or UDP connection). For
example, even after performing a connection endpoint to application socket bind, a first server’s
iINIC (in response to instructions of its ipOS) remains operable to selectively migrate the connection
endpoint to a second server’s iNIC in response to (a) the request packet(s) received from the client,
(b) the synchronized state information (which is discussed further hereinabove such as in
connection with FIGURE 6) of servers in the server farm, and/or (c) a command received at Port B
of the first server’s iNIC from a system administrator (e.g. in the course of performing server

maintenance).

43

10

15

20

25

30

WO 02/059742 PCT/US01/49285

In a first example, during a connection, if a client (in response to instructions of its
application, such as an Internet gaming application) sends first and second request packets to a first
server, (a) in response to the first request packet, the first server’s iNIC (in response to instructions
of its ipOS) is operable to selectively classify the connection as a local connection and process it
accordingly, as discussed further hereinabove in connection with FIGURES 10a and 14, and (b) in
response to the second request packet, the first server’s iNIC (in response to instructions of its
ipOS) remains operable to selectively migrate the connection endpoint to a second server’s iNIC.

After performing a connection endpoint to application socket bind, in migrating the
connection endpoint from the first server’s iNIC to the second server’s iNIC, the first server’s iNIC:
(a) removes the association between (or “disassociates”) the connection endpoint and the first
server’s application socket; and (b) through Port B, migrates the connection endpoint to the second
server’s iNIC, as discussed further herein in connection with FIGURES 10b-c, 13 and 14.

In a second example, during a connection, in response to a request packet of the connection,
a first server’s iNIC (in response to instructions of its ipOS) is operable to selectively migrate the
connection endpoint to a second server’s iNIC. In such a situation, the second server’s iNIC
performs a connection endpoint to application socket bind at the second server. Subsequently,
during the connection, the second server’s iNIC is operable to selectively: (a) maintain the
connection endpoint to application socket bind at the second server; or (b) in response to a request
from the first server’s iNIC (via its Port B) to the second server’s iNIC (via its Port B), or vice
versa, migrate the connection endpoint back to the first server’s iNIC; or (c) in response to a request
from the first server’s iNIC (via its Port B) to the second server’s iNIC (via its Port B), or vice
versa, migrate the connection endpoint to a third server’s iNIC.

In migrating the connection endpoint from the second server’s iNIC back to the first server’s
iNIC, the second server’s INIC: (a) removes the association between the connection endpoint and
the second server’s application socket; (b) removes the matching connection endpoint record in the
forward-connect table of the second server’s iNIC; and (c) through Port B, migrates the connection
endpoint to the first server’s iNIC, similar to the manner discussed further herein in connection with
FIGURES 10b-c, 13 and 14. However, in such migration, the first server’s iNIC stores the
matching connection endpoint record in its local table instead of its forward-connect table.
Moreover, the first server’s iNIC removes the matching record in the forward table of the first
server’s iNIC.

In migrating the connection endpoint from the second server’s iNIC to a third server’s iNIC,
the second server’s INIC: (a) removes the association between the connection endpoint and the

second server’s application socket; (b) removes the matching connection endpoint record in the

44

10

15

20

25

30

WO 02/059742 PCT/US01/49285

forward-connect table of the second server’s iNIC; (c) modifies the connection endpoint to specify
the IP address and TCP port of the third server’s iNIC instead of the second server’s iNIC and (d)
through Port B, migrates the connection endpoint to the third server’s iNIC, similar to the manner
discussed further herein in connection with FIGURES 10b-c, 13 and 14. Moreover, the first
server’s iNIC (a) modifies the matching record in the forward table of the first server’s iNIC to
specify the IP address and TCP port of the third server’s iNIC instead of the second serv;er’s iNIC
and (b) modifies the connection endpoint to specify the IP address and TCP port of the third

server’s iNIC instead of the second server’s iNIC.
Description of ipOS Encapsulation Protocol

FIGURE 11ais a conceptual illustration of a conventional Ethernet encapsulation header.
As shown in FIGURE 11a, the header includes 14 bytes of information. The first field (6 bytes)
specifies a 48-bit destination address, the second field (6 bytes) specifies a 48-bit source address,
and the last field (2 bytes) specifies a type of information within the packet (i.e. the packet to which
the header is appended). Although the header of FIGURE 11a is conventional, it has an
unconventional aspect in which a type of 0x007 indicates that the packet includes ipOS
encapsulation information.

In the illustrative embodiments, the ipOS encapsulation protocol is advantageous for
sending packets through Port B from a first server in the server farm to a second server in the server
farm. The first server (with its iNIC’s forwarding processor) splices encapsulation headers to
packets that are sent through its iNIC’s Port B to the second server’s iNIC. For example, as
discussed further hereinabove in connection with FIGURES 10b and 14, in migrating a connection
endpoint from a first iNIC (of a first server) to a second iNIC (of a second server), the first iNIC
(with its forwarding processor) prepends the connection endpoint with an ipOS encapsulation
header to form an ipOS encapsulated packet, which the first iNIC sends through its Port B to the
second iNIC.

In the illustrative embodiments, iNICs communicate packets to one another through Port B
according to the Ethernet protocol. Accordingly, a packet encapsulated according to the ipOS
encapsulation protocol (“ipOS encapsulated packet”) is further encapsulated by an Ethernet
encapsulation header that specifies a type of 0x007. Additional elements of the ipOS encapsulation
protocol are discussed hereinbelow in connection with FIGURES 11b-i.

FIGURE 11b is a conceptual illustration of an ipOS encapsulation header, according to the
illustrative embodiments. As shown in FIGURE 11b, the header includes 16 bytes of information.

45

10

15

20

25

30

WO 02/059742 PCT/US01/49285

Such a header is useful for migrating a connection endpoint from a first iNIC (of a first server) to a
second iNIC (of a second server).

In the header of FIGURE 11b, the first field (4 bytes) specifies a source IP address of a
client, and the second field (2 bytes) specifies a source port (which is a TCP or UDP port) of the
client application which is executed by the client. The third field (4 bytes) specifies a destination IP
address of the second server, and the fourth field (2 bytes) specifies a destination port (which is a
TCP or UDP port) of the server application which is executed by the second server. The fifth field
(1 byte) specifies a type of information within the packet (i.e. the packet to which the header is
appended).

For example, a type of 0x01 indicates that the packet includes connection endpoint
information (e.g. see FIGURES 11c, 11d, 11e and 11f) that is being migrated to the second server.
By comparison, a type of 0x02 indicates that the packet includes an IP packet (e.g. see FIGURES
11g and 11h). A type of 0x03 indicates that the packet includes a verification that a connection
endpoint was successfully migrated to the first server’s iNIC (e.g. see FIGURE 11i).

Also, in the header of FIGURE 11b, the sixth field (1 byte) specifies a type of protocol for
communicating information between a client and a server. For example, a protocol of 0x01
indicates that the IP packet includes a TCP payload. By comparison, a protocol of 0x02 indicates
that the TP packet includes a UDP payload.

Finally, in the header of FIGURE 11b, the last field (2 bytes) specifies a checksum for
verifying the packet header.

If a connection endpoint is migrated from a first iNIC (of a first server) to a second iNIC (of
a second server), the connection endpoint specifies the (a) IP address of the client, (b) port (which is
a TCP or UDP port) of the client application which is executed by the client, (c) IP address of the
first server, (d) port (which is a TCP or UDP port) of the associated server application (“first server
application”) that is executed by the first server (“first server application’s port”), (¢) IP address of
the second server, and (f) port (which is a TCP or UDP port) of the associated server application
(“secohd server application”) that is executed by the second server (“second server application’s
port”). The first server application is not necessarily identical to the second server application, and
the first server application’s port is not necessarily identical to the second server application’s port.
The connection endpoint is identifiable in responsé to the (a) IP address of the client, (b) port
(which is a TCP or UDP port) of the client application which is executed by the client, (c) IP
address of the second server, and (d) port (which is a TCP or UDP port) of the server application

which is executed by the second server.

46

10

15

20

25

30

WO 02/059742 PCT/US01/49285

Accordingly, the forward table (FIGURE 12) includes sufficient information for identifying
the connection endpoint associated with the packet. In that manner, such information operates as a
reference to the connection endpoint. Likewise, sufficient information (for operating as a reference
to the connection endpoint associated with the packet) is included within the single ipOS
encépsulation header of FIGURE 11b, so that the second iNIC identifies the connection endpoint in
response to the single ipOS encapsulation header. In that manner, the second iNIC (with its
protocol stack processor in response to instructions of its protocol stack thread) processes the packet
more efficiently in accordance with the packet’s associated connection endpoint. Moreover, by
sending packets from the first iNIC’s Port B to the second iNIC’s Port B, the second iNIC more
readily and efficiently distinguishes between packets that are received from the first iNIC (through
Port B) versus packets that are received from a client (through Port A).

The ipOS encapsulation header of FIGURE 11b is superior to IP-IP encapsulation. For
example, with IP-IP encapsulation, the second iNIC would execute additional protocol stack
instructions to identify the connection endpoint. By cofnpa.rison, with the ipOS encapsulation
header of FIGURE 11b, the network processor (discussed further hereinabove, such as in
connection with FIGURES 5a-c, 8 and 9a-c) identifies the connection endpoint associated with the
packet. Accordingly, the network processor sends the packet and a reference to the connection
endpoint to the protocol stack processor (which executes the protocol stack thread), as discussed
further hereinabove. In that manner, the protocol stack processor’s efficiency is enhanced.

FIGURE 11c is a conceptual illustration of ipOS connection information for migration of a
UDP connection endpoint, according to the illustrative embodiments. As shown in FIGURE 1l1c,
the information includes 6 bytes. The first field (4 bytes) specifies a source IP address of a first
server, and the second field (2 bytes) specifies a source UDP port of the first server, which received
the SYN packet from the client. The ipOS encapsulation header, together with the UDP ipOS
connection information of FIGURE 11c, is sufficient information for a second server (receiving
such information) to establish a UDP connection endpoint.

FIGURE 11d is a conceptual illustration of ipOS connection information for migration of a
TCP connection endpoint, according to the illustrative embodiments. As shown in FIGURE 11d,
the information includes 146 bytes. The first field (4 bytes) specifies a source IP address of a first
server, and the second field (2 bytes) specifies a source TCP port of the first server, which received
the SYN packet from the client. The last field (140 bytes) specifies additional information for the
TCP connection endpoint, such as information for output sequence variables, receive sequence
variables, transmit timing variables, out-of-bound variables, and other suitable information. The

ipOS encapsulation header, together with the TCP ipOS connection inférmation of FIGURE 114, is

47

10

15

20

25

30

WO 02/059742 PCT/US01/49285

sufficient information for a second server (receiving such information) to establish a TCP
connection endpoint.

FIGURE 11e is a conceptual illustration of an ipOS TCP connection endpoint packet,
according to the illustrative embodiments. As shown in FIGURE 11e, the packet includes 176
bytes. The first field (14 bytes) specifies an Ethernet encapsulation header (that specifies a type of
0x007) according to FIGURE 11a, and the second field (16 bytes) specifies an ipOS encapsulation
header according to FIGURE 11b. The last field (146 bytes) specifies TCP ipOS connection
information according to FIGURE 11d. In the packet of FIGURE 11e, the ipOS encapsulation
header specifies a type of 0x01 and a protocol of 0x01.

FIGURE 11fis a conceptual illustration of an ipOS UDP connection endpoint packet,
according to the illustrative embodiments. As shown in FIGURE 11f, the packet includes 36 bytes.
The first field (14 bytes) specifies an Ethernet encapsulation header (that specifies a type of 0x007)
according to FIGURE 11a, and the second field (16 bytes) speciﬁeé an ipOS encapsulation header
according to FIGURE 11b. The last field (6 bytes) specifies UDP ipOS connection information
according to FIGURE 11c. In the packet of FIGURE 11f, the ipOS encapsulation header specifies a
type of 0x01 and a protocol of 0x02.

FIGURE 11g is a conceptual illustration of a packet having an IP/TCP payload, according to
the illustrative embodiments. As shown in FIGURE 11g, the packet includes 70 bytes, plus the
number of bytes of information in the TCP payload. The number of bytes of information in the
TCP payload varies according to the type and protocol that are specified by the ipOS encapsulation
header. In the packet of FIGURE 11g, the first field (14 bytes) specifies an Ethemet encapsulation
header (that specifies a type of 0x007) according to FIGURE 11a, and the second field (16 bytes)
specifies an ipOS encapsulation header according to FIGURE 11b. Also, in the packet of FIGURE
11g, the ipOS encapsulation header specifies a type of 0x02 and a protocol of 0x01.

FIGURE 11h is a conceptual illustration of a packet having an IP/UDP payload, according
to the illustrative embodiments. As shown in FIGURE 11h, the packet includes 58 bytes, plus the
number of bytes of information in the UDP payload. The number of bytes of information in the
UDP payload varies according to the type and protocol that are specified by the ipOS encapsulation
header. In the packet of FIGURE 11h, the first field (14 bytes) specifies an Ethernet encapsulation
header (that specifies a type of 0x007) according to FIGURE 11a, and the second field (16 bytes)
specifies an ipOS encabsulation header according to FIGURE 11b. Also, in the packet of FIGURE
11h, the ipOS encapsulation header specifies a type of 0x02 and a protocol of 0x02.

FIGURE 11i is a conceptual illustration of a connection endpoint migration

acknowledgement packet, which is a verification that a connection endpoint was successfully

48

10

15

20

25

30

WO 02/059742 PCT/US01/49285

migrated to the iNIC of the server which sent the connection endpoint migration acknowledgement
packet, according to the illustrative embodiments. As shown in FIGURE 11i, the packet includes
30 bytes. In the packet of FIGURE 11i, the first field (14 bytes) specifies an Ethernet encapsulation
header (that specifies a type of 0x007) according to FIGURE 11a, and the second field (16 bytes)
specifies an ipOS encapsulation header according to FIGURE 11b. Also, in the packet of FIGURE
111, the ipOS encapsulation header specifies a type of 0x03.

Description of Server Farm Resource Usage Enhancements

FIGURE 15 is a block diagram of a server farm including a deployment workstation for
deploying application processes and associated software component objects to servers within the
server farm, according to the illustrative embodiments. The illustrative embodiments achieve an
improved overall use of the server farm’s resources for applications. Advantageously, such an
improved overall use of the server farm’s resources is optional for other portions of the illustrative
embodiments (e.g. client request load-balancing).

The server farm architecture of the illustrative embodiments (e.g. FIGURE 2a) enables an
application-aware server farm. Such an application-aware server farm includes a distributed system
of iNICs (executing the ipOS) that are aware of the state of applications executing on servers within
the server farm, as discussed further hereinabove in connection with the Synch Port. The iNICs
execute the ipOS as a distributed system (“ipOS distributed operations system”) in coordination
with one another to improve overall use of the server farm’s resources.

In the illustrative embodiments, the ipOS distributed operations system achieves two
primary objectives in deploying and executing applications within the server farm. First, the ipOS
distributed operations system achieves an improved dynamic deployment of socket application
processes on the server farm. Accordingly, the ipOS distributed operations system selects a server
for executing a particular application process, along with the timing of such execution.

Second, with the ipOS distributed operations system, application developers have a platform
to deploy and execute software component objects in support of socket applications. With the ipOS
distributed operations system, the processor of an individual server’s main board circuitry and
associated resources operate efficiently in relation to the entire server farm. Accordingly, the ipOS
distributed operations system architecture achieves load-balancing of application process resources
(and their associated software component objects) within the server farm.

Advantageously, the illustrative embodiments are compatible with conventional techniques

in development of applications (and associated software component objects) deployed within a

49

10

15

20

25

30

WO 02/059742 PCT/US01/49285

server farm for IP networks. A conventional development cycle involves the development of an
application with reusable software objects (or component objects) that are deployed in a
middleware component model, such as the development of an application process that calls service
objects deployed in a middleware component model. Commercially available embodiments of
middleware component models include Microsoft’s Transaction Server (available from

www.microsoft.com) and BEA’s WebLogic Server (available from www.BEA.com).

As shown in FIGURE 15 for an illustrative embodiment, the server farm includes an
additional workstation, denoted as a deployment workstation. Nevertheless, the addition of the
deployment workstation is optional in a situation where a server in the server farm performs the
same or similar operation of the deployment workstation. The deployment workstation operates as
a central location (or repository) for deploying application processes and associated software
component objects within the server farm.

In the deployment workstation, ipOS deployment software includes the repository of
application process executables (i.e. software instructions that are executable by a processor) and
associated software component object executables. In response to instructions of the ipOS
deployment software, the deployment workstation (a) selectively groups various application process
executables and associated component object executables with one another into application
packages and (b) makes the application packages available for deployment to servers in the server
farm. The deployment workstation deploys an executable to a server in response to a request from
either a user (e.g. network administrator), the server’s iNIC (in response to instructions of its ipOS),
or another server’s iNIC (in response to instructions of its ipOS). For example, the deployment
workstation deploys applications to servers within the server farm in accordance with FIGURE 2d
and its associated discussion.

In FIGURE 15, servers 1 through # in the server farm are configurable as shown in
FIGURES 2a-c, but actual connections are not shown in FIGURE 135 for clarity. In the example of
FIGURE 15, the deployment workstation is coupled to servers 1 through n through the deployment
workstation’s iNIC. Moreover, through servers 1 through n, the deployment workstation is
connected to an IP network.

The processor of the deployment workstation’s main board circuitry executes the ipOS
deployment software, which is written with conventional programming techniques. The ipOS
deployment software includes software for managing application process executables and
associated software component object executables (e.g. application packages) to improve overall

use of the server farm’s resources. For example, in response to instructions of the ipOS deployment

50

10

15

20

25

30

WO 02/059742 PCT/US01/49285

software, the deployment workstation deploys the application process executables and component
object executables (e.g. an application package) to servers in the server farm.

In performing its operations, the deployment workstation (in response to instructions of the
ipOS deployment software) communicates indirectly with an ipOS component object model which
is executed by the processor of a server’s main board circuitry. In response to instructions of either
(a) the ipOS deployment software or (b) the ipOS of a server’s iNIC, the server receives and stores
copies of application process executables and component object executables (e.g. application
packages) from the deployment workstation. FIGURE 15 shows two examples of an application
package being sent from the deployment workstation to an ipOS component object model.

As shown by solid arrows in FIGURE 15, in response to instructions of the ipOS
deployment software, the deployment workstation’s main board circuitry sends a first request (e.g.
for sending an application package) to the deployment workstation’s iNIC (e.g. triggered in
response to a request from a network administrator). In response to the first request, the
deployment workstation’s iNIC (in response to instructions of its ipOS) sends an associated second
request to server 1’s iNIC. In response to the second request, server 1’s iNIC (in response to
instructions of its ipOS) sends an associated third request to the ipOS component object model of
the main board circuitry of server 1.

After the third request is processed by the ipOS component object model of the main board
circuitry of server 1, the deployment workstation (in response to instructions of the ipOS
deployment software) sends the application package to the ipOS component object model of server
1 through the respective iNICs of the deployment workstation and server 1. The iNIC of server 1
stores a record of the availability of the executables (e.g. one or more application processes and/or
component objects). Similarly, the deployment workstation (in response to instructions of the ipOS
deployment software) sends process performance information to notify iNICs about application
processes and component objects that are stored by particular servers for execution.

The deployment workstation sends such process performance information to the iNICs of
servers within the server farm, in addition to the process instances that are output during
synchronization (which is discussed further hereinabove such as in connection with FIGURE 6).
For example, the process instances represent a current state of processes that are already being
executed by servers in the server farm. During synchronization, the process instances and process
performance information are advertised by iNICs (of servers in the server farm) to one another, as
discussed further hereinabove such as in connection with FIGURE 6.

As shown by dashed arrows in FIGURE 135, the iNIC of server » (in response to instructions
of its ipOS) sends a first request (e.g. for sending an application package) to the deployment

51

10

15

20

25

30

WO 02/059742 PCT/US01/49285

workstation’s iNIC (e.g. triggered in response to an application load-balancing process of the ipOS
of server n’s iNIC). In response to the first request, the deployment workstation’s iNIC (in
response to instructions of its ipOS) sends an associated second request to the deployment
workstation’s main board circuitry. In response to the second request and instructions of the ipOS
deployment software, the deployment workstation’s main board circuitry sends an associated third
request (e.g. for sending the application package) to the deployment workstation’s iNIC.

In response to the third request, the deployment workstation’s iNIC (in response to
instructions of its ipOS) sends an associated fourth request to server 2’s iNIC. In response to the
fourth request, server 2°s iNIC (in response to instructions of its ipOS) sends an associated fifth
request to the ipOS component object model of the main board circuitry of server 2.

After the fifth request is processed by the ipOS component object model of the main board
circuitry of server 2, the deployment workstation (in response to instructions of the ipOS
deployment software) sends the application package to the ipOS component object model of server
2 through the respective iNICs of the deployment workstation and server 2. The iNIC of server 2
stores a record of the availability of the executables (e.g. one or more application processes and/or
component objects). Similarly, the deployment workstation (in response to instructions of the ipOS
deployment software) sends process performance information to notify iNICs about application
processes and component objects that are stored by particular servers for execution.

FIGURE 16 is a block diagram of servers within a server farm, according to an illustrative
embodiment in which a server 1 selectively initiates execution of (or “spawns”) an application
process that is stored by a server 2. FIGURE 17 is a block diagram of servers within a server farm,

according to an illustrative embodiment in which a server 1 selectively spawns an object that is

" stored by a server 2. In such illustrative embodiments, the ipOS distributed operations system

performs operations for improving overall use of the server farm’s resources for application
processes and objects.

In FIGURE 16, server 1 executes m application processes (where m is an integer number).
The main board circuitry’s processor (in response to instructions of its OS) manages the state of
such application processes.

In the example of FIGURE 16, the iNIC of server 1 (in response to instructions of its ipOS)
determines whether to spawn an application process (e.g. process 1) on another server (e.g. server
2), as for example to support additional resources for process 1 executing on server 1. The iNIC of
server 1 (in response to instructions of its ipOS) makes such determination in response to

information stored within its server state table (see FIGURE 12). In response to such information,

52

10

15

20

25

30

WO 02/059742 PCT/US01/49285

the iNIC (in response to instructions of its ipOS) performs load-balancing of application processes
within the server farm in response to the synchronized state information.

As shown in FIGURE 16, in support of additional resources, the iNIC of server 1 sends a
request to the INIC of server 2 to spawn process 1 on server 2. In respohse to the request, the iNIC
of server 2 (in response to instructions of its ipOS) sends the request to the ipOS component object
model of server 2 to spawn process 1. Accordingly, the ipOS component object model sends the
request to the OS which is executing on the main board circuitry of server 2, and the OS spawns
process 1 (e.g. loads the executable of process 1 into the main board circuitry’s memory for
execution) 6n server 2 (which executes n application processes, where n is an integer number).

Conventional application processes are built upon service objects. In the example of
FIGURE 17, the ipOS component object model of server 1 stores information for execution of ¢
objects, where ¢ is an integer number. As shown in FIGURE 17, process 1 of server 1 sends a
request to the ipOS component object model of server 1 for execution of an object 1. For example,
object 1 may perform a database operation.

In the example of FIGURE 17, the ipOS component object model of server 1 determines
whether to spawn object 1 on server 1 or another server (e.g. server 2). For making such
determination, the iNIC (in response to instructions of its ipOS) sends information to the ipOS
component object model, such as (a) the state of other servers in the server farm and (b) whether
particular servers store particular objects. In response to such information, the ipOS component
object model performs load-balancing of objects within the server farm in response to the
synchronized state information.

If the ipOS component object model of server 1 determines to spawn object 1 on server 2, it
sends a request to the iNIC of server 1. Accordingly, the iNIC of server 1 (in response to
instructions of its ipOS) sends the request to the iNIC of server 2. In response to the request, the
iNIC of server 2 (in response to instructions of its ipOS) sends the request to the ipOS component
object model of server 2 (which stores information for execution of » objects, where r is an integer
number), and the ipOS component object model of server 2 spawns object 1 (e.g. loads the
executable of object 1 into the main board circuitry’s memory for execution) on server 2 (on behalf
of process 1 of server 1), independent of a type of application that is associated with the object.

The respective iNICs of server 1 and server 2 coordinate the communication of information
between process 1 of server 1 and object 1 executing on server 2. Accordingly, information from
process 1 to object 1 is sent from process 1 to object 1 through the iNIC of server 1 and the iNIC of

server 2, and vice versa.

53

10

15

20

25

30

WO 02/059742 PCT/US01/49285

With the architecture of the ipOS distributed operations system, redundant service objects
(e.g. shadow objects) are executable by one or more servers (within the server farm). A shadow
object is a duplicate of a primary service object that is spawned by an application process. During
execution, the shadow object maintains the same state as the primary service object.

With a shadow object, a server failure is more easily recoverable. For example, if execution
of a primary service object fails (e.g. due to a fault in the primary service object’s server), the
shadow object is available to replace the primary service object in continuing such execution. This
feature is especially advantageous for service objects that maintain state during an extended period
of time (e.g. multi-player game objects).

Referring to FIGURE 15, the deployment workstation (in response to instructions of the
ipOS deployment software) sends a request to a server for deploying a shadow object. In response
to such request, the server deploys the shadow object with the server’s ip(jS componenf object
model. For example, referring to FIGURE 17, even if the ipOS component object model of server 1
determines to spawn a primary service object 1 on server 1, the ipOS component object model of
server 1 is operable to spawn a shadow object 1 on server 2, thereby achieving a level of fault
tolerance.

During execution, an application process requesting a service object is unaware that a
shadow object has been spawned (and likewise is unaware of where the shadow object has been
spawned). On behalf of the application process, the ipOS component object model is responsible
for spawning and maintaining primary service objects and shadow objects. For the ipOS
component object model’s determination of when and where to spawn a shadow object, the iNIC
(in response to instructions of its ipOS) sends information to the ipOS component object model,
such as (a) the state of other servers in the server farm and (b) whether particular servers store

particular objects.
Description of Computer System

Each computer system of the illustrative embodiments includes (a) optionally, input devices
for receiving information from a human user, (b) optionally, a display device (e.g. a conventional
electronic cathode ray tube (“CRT”) device) for displaying information to the user, (¢) a computing
device (e.g. iNIC) for executing and otherwise processing instructions, (d) optionally, a nonvolatile
storage device (e.g. a hard disk drive or other computer-readable medium (or apparatus), as
discussed further hereinbelow) for storing information, and (e) various other electronic circuitry for

performing other operations of the computer system.

54

10

15

20

25

30

WO 02/059742 PCT/US01/49285

For example, the computing device includes a memory device (e.g. random access memory
(“RAM”) device and read only memory (“ROM?”) device) for storing information (e.g. instructions
executed by the computing device and data operated on by the computing device in response to
such instructions). Optionally, the computing device is connected to the input devices, the display
device, and the computer-readable medium. The illustrative embodiments are independent of
current computer architectures and methods of connecting devices (e.g. PCI bus). Moreover, the
illustrative embodiments are compatible with emerging techniques for connecting computing
devices (e.g. Infiniband).

If the computing device is connected to the display device, the display device displays visual
images in response to signals from the computing device, and the user views such visual images. If
the computing device is connected to the input devices, the user operates the input devices in order
to 6utput information to the computing device, and the computing device receives such information
from the input devices.

The input devices include, for example, a conventional electronic keyboard or keypad and a
pointing device such as a conventional electronic “mouse,” rollerball, or light pen. The user
operates the keyboard or keypad to output alphanumeric text information from the keyboard. If the
computing device is connected to the pointing device, the user operates the pointing device to
output cursor-control information to the computing device, and the computing device receives such
cursor-control information from the pointing device.

If the computing device is connected to (or includes) a computer-readable medium, the
computing device and computer-readable medium are structurally and functionally interrelated with
one another as discussed further hereinbelow. The computer-readable medium stores (or encodes,
or records, or embodies) functional descriptive material (e.g. including but not limited to software
(also referred to as computer programs or applications) and data structures). Such functional
descriptive material imparts functionality when encoded on the computer-readable medium. Also,
such functional descriptive material is structurally and functionally interrelated to the computer-
readable medium.

Within such functional descriptive material, data structures define structural and functional
interrelationships between such data structures and the computer-readable medium (and other
aspects of the computing device and the computer system). Such interrelationships permit the data
structures’ functionality to be realized. Also, within such functional descriptive material, computer
programs define structural and functional interrelationships between such computer programs and
the computer-readable medium (and other aspects of the computing device and the computer

system). Such interrelationships permit the computer programs’ functionality to be realized.

55

10

15

20

WO 02/059742 PCT/US01/49285

For example, the computing device reads (or accesses, or copies) such functional descriptive

- material from the computer-readable medium into the memory device of the computing device, and

the computing device performs its operations (as discussed elsewhere herein) in response to such
material which is stored in the memory device of the computing device. More particularly, the
computing device performs the operation of processing a computer application (that is stored,
encoded, recorded or embodied on a’computer-readable medium) for causing the computing device
to perform additional operations (as discussed elsewhere herein). Accordingly, such functional
descriptive material exhibits a functional interrelationship with the way in which the computing
device executes its processes and performs its operations.

Further, the computer-readable medium is an apparatus from which the computer
application is accessible by the computing device, and the computer application is processable by
the computing device for causing the computing device to perform such additional operations. In
addition to reading such functional descriptive material from the computer-readable medium, the
computing device is capable of reading such functional descriptive material from (or through) a
network which is also a computer-readable medium (or apparatus). Moreover, the memory device
of the computing device is itself a computer-readable medium (or apparatus).

Although illustrative embodiments have been shown and described, a wide range of
modification, change and substitution is contemplated in the foregoing disclosure and, in some
instances, some features of the embodiments may be employed without a corresponding use of

other features. Accordingly, it is appropriate that the appended claims be construed broadly and in

'a manner consistent with the scope of the embodiments disclosed herein.

56

10

15

20

25

30

WO 02/059742 PCT/US01/49285

Claims
What is claimed is:

1. An information processing system, comprising:
a first computing device for:

through a first network, receiving an information packet originating from a client;

in response to the information packet, identifying a computing device that stores a data
structure of a connection with the client;

if the identified computing device is the first computing device, performing an operation in
response to the information packet; and

if the identified computing device is a second computing device, outputting the information
packet through a second network to the second computing device for performing the operation in
response to the information packet, such that the output information packet bypasses the first

network.

2. The system of Claim 1 wherein the first computing device is a network interface
card.

3. The system of Claim 1 wherein the first network includes a local area network.

4, The system of Claim 3 wherein the local area network is coupled through a global

computer network to the client.

5. The system of Claim 1 wherein the second network includes a local area network.

6. - The system of Claim 1 wherein the first network includes a first local area network,

and wherein the second network includes a second local area network.

7. The system of Claim 1 wherein the operation is part of a software application.

8. The system of Claim 7 wherein the software application is a socket application.

57

10

15

20

25

30

WO 02/059742 PCT/US01/49285

9. The system of Claim 1 wherein the information packet is addressed by the client to
the first computing device, and wherein the first computing device is for receiving the information

packet through the first network in response to the addressing.

10. The system of Claim 1 wherein the operation includes outputting a response packet
to the client, and wherein the first computing device is for:

if the identified computing device is the second computing device, outputting the
information packet through the second network to the second computing device for outputting the
response packet to the client, such that the output response packet bypasses the first computing

device.

11. An information processing system, comprising:
a first computing device for:

through a first local area network, receiving an information packet from a global computer
network; and

through a second local area network, in response to at least the information packet and a
state of at least one of the first computing device and a second computing device, selectively
outputting the information packet to the second computing device, such that the output information

packet bypasses the first local area network.

12. The system of Claim 11 wherein the first computing device is a network interface

card.

13. The system of Claim 11 wherein the information packet originates from a client, and

wherein the first local area network is coupled through the global computer network to the client.

14. The system of Claim 11 wherein the information packet originates from a clieﬂt, and
wherein the first computing device is for: |

through the second local area network, in response to at least the information packet and the
state, selectively outputting the information packet to the second computing device by outputting an
encapsulated information packet to the second computing device, the encapsulated information
packet including the information packet and a reference to a data structure of a connection with the

client.

58

10

15

20

25

30

WO 02/059742 PCT/US01/49285

15. The system of Claim 14 wherein the reference is included within a single header of

the encapsulated information packet.

16. The system of Claim 11 wherein the first computing device is for:

through the second local area network, in response to at least the information packet and the
state, selectively outputting the information packet to the second computing device for performing
an operation in response to the information packet.

s

17. The system of Claim 16 wherein the information packet originates from a client,
wherein the first local area network is coupled through the global computer network to the client,
wherein the operation includes outputting a response packet to the client through the first local area
network and the global computer network, and wherein the first computing device is for:

through the second local area network, in response to at least the information packet and the
state, selectively outputting the information packet to the second computing device for outputting
the response packet to the client, such that the output response packet bypasses the first computing

device.
18. The system of Claim 16 wherein the operation is part of a software application.
19. The system of Claim 18 wherein the software application is a socket application.
20. The system of Claim 11 wherein the information packet isvaddressed by the client to
the first computing device, and wherein the first computing device is for receiving the information

packet through the first local area network in response to the addressing.

21. The system of Claim 11 wherein the first computing device is for receiving at least a

portion of the state from the second computing device through a third local area network.
22. The system of Claim 11 wherein the first local area network includes a hub.
23. The system of Claim 11 wherein the first local area network includes a Layer 2

switch, and wherein the Layer 2 switch is coupled through a router device to the global computer

network.

59

10

15

20

25

30

WO 02/059742 PCT/US01/49285

24, The system of Claim 11 wherein the first local area network includes a Layer 3

switch, and wherein the Layer 3 switch is coupled to the global computer network.

25. A method performed by a first computing device of an information processing
system, the method comprising:

through a first network, receiving an information packet originating from a client;

in response to the information packet, identifying a computing device that stores a data
structure of a connection with the client;

if the identified computing device is the first computing device, performing an operation in
response to the information packet; and

if the identified computing device is a second computing device, outputting the information
packet through a second network to the second computing device for performing the operation in
response to the information packet, such that the output information packet bypasses the first

network.

26. The method of Claim 25 wherein the first computing device is a network interface

card.
27. The method of Claim 25 wherein the first network includes a local area network.

28. The method of Claim 27 wherein the local area network is coupled through a global

computer network to the client.
29. The method of Clainﬁ 25 wherein the second network includes a local area network.

30. The method of Claim 25 wherein the first network includes a first local area

network, and wherein the second network includes a second local area network.
31. The method of Claim 25 wherein the operation is part of a software application.

32. The method of Claim 31 wherein the software application is a socket application.

60

10

15

20

25

30

WO 02/059742 PCT/US01/49285

33. The method of Claim 25 wherein the information packet is addressed by the client to
the first computing device, and wherein the method comprises:

receiving the information packet through the first network in response to the addressing.

34. The method of Claim 25 wherein the operation includes outputting a response packet
to the client, and wherein the method comprises:

if the identified computing device is the second computing device, outputting the
information packet through the second network to the second computing device for outputting the
response packet to the client, such that the output response packet bypasses the first computing

device.

35. A method performed by a first computing device of an information processing’
system, the method comprising:

through a first local area network, receiving an information packet from a global computer
network; and

through a second local area network, in response to at least the information packet and a
state of at least one of the first computing device and a second computing device, selectively
outputting the information packet to the second computing device, such that the output information

packet bypasses the first local area network.

36. The method of Claim 35 wherein the first computing device is a network interface

card.

37. The method of Claim 35 wherein the information packet originates from a client, and

wherein the first local area network is coupled through the global computer network to the client.

38. The method of Claim 35 wherein the information packet originates from a client, and
wherein the method comprises:

through the second local area network, in response to at least the information packet and the
state, selectively outputting the information packet to the second computing device by outputting an
encapsulated information packet to the second computing device, the encapsulated information
packet including the information packet and a reference to a data structure of a connection with the

client.

61

10

15

20

25

30

WO 02/059742 PCT/US01/49285

39. The method of Claim 38 wherein the reference is included within a single header of

the encapsulated information packet.

40. The method of Claim 35 wherein the method comprises:
through the second local area network, in response to at least the information packet and the
state, selectively outputting the information packet to the second computing device for performing

an operation in response to the information packet.

41. The method of Claim 40 wherein the information packet originates from a client,
wherein the first local area network is coupled through the global computer network to the client,
wherein the operation includes outputting a response packet to the client through the first local area
network and the global computer network, and wherein the method comprises:

through the second local area network, in response to at least the information packet and the
state, selectively outputting the information packet to the second computing device for outputting
the response packet to the client, such that the output response packet bypasses the first computing

device.

42. The method of Claim 40 wherein the operation is part of a software application.

43. The method of Claim 42 wherein the software application is a socket application.

44. The method of Claim 35 wherein the information packet is addressed by the client to
the first computing device, and wherein the method comprises:

receiving the information packet through the first local area network in response to the
addressing.

45. The method of Claim 35 wherein the method comprises:

receiving at least a portion of the state from the second computing device through a third

local area network.

46. The method of Claim 35 wherein the first local area network includes a hub.

62

10

15

20

25

30

WO 02/059742 PCT/US01/49285

47. The method of Claim 35 wherein the first local area network includes a Layer 2
switch, and wherein the Layer 2 switch is coupled through a router device to the global computer

network.

48. The method of Claim 35 wherein the first local area network includes a Layer 3

switch, and wherein the Layer 3 switch is coupled to the global computer network.

49. An information processing system, comprising:
a first computing device for:
receiving an initialization packet originating from a client;
in response to at least the initialization packet, outputting a response packet to the client;
receiving a request packet originating from the client; and
in response to at least the request packet and a state of at least one of the first computing
device and a second computing device, selectively outputting the request packet to the second

computing device for performing an operation in response to the request packet.

50. The system of Claim 49 wherein the first computing device is a network interface

card.
51. The system of Claim 49 wherein the operation is part of a software application.

52. The system of Claim 51 wherein the software application is a socket application.

53. The system of Claim 49 wherein the initialization packet is addressed by the client to

the first computing device, and wherein the first computing device is for receiving the initialization

packet in response to the addressing.

54. The system of Claim 49 wherein the operation includes outputting a response packet
to the client, and wherein the first computing device is for:

in response to at least the request packet and the state, selectively outputting the request
packet to the second computing device for outputting the response packet to the client, such that the

output response packet bypasses the first computing device.

63

10

15

20

25

WO 02/059742 PCT/US01/49285

55. The system of Claim 49 wherein the first computing device is for receiving the

initialization packet through a global computer network.

56. The system of Claim 55 wherein the first computing device is for selectively

outputting the request packet to the second computing device through a local area network.

57. The system of Claim 49 wherein the first computing device is for:

in response to at least the initialization packet, establishing a data structure of a connection
with the client; and

in response to at least the request packet and the state, selectively outputting the data
structure to the second computing device for associating an application of the second computing

device with the data structure of the connection.

58. The system of Claim 49 wherein the first computing device is for:
in response to at least the initialization packet, establishing a data structure of a connection with the

client, the data structure including a group of sequence numbers associated with the connection.

59. The system of Claim 58 wherein the first computing device is for:
in response to at least the request packet and the state, selectively outputting the data structure to the
second computing device for performing the operation in response to the data structure, the
operation including outputting a response packet to the client according to the group of sequence

numbers, such that the output response packet bypasses the first computing device.
60. The system of Claim 58 wherein the group of sequence numbers includes at least

one start sequence number, at least one current sequence number, and at least one

acknowledgement sequence number.

64

10

15

20

25

30

WO 02/059742 PCT/US01/49285

61. The system of Claim 49 wherein the first computing device is for:

in response to at least the initialization packet, establishing a data structure of a connection
with the client, the data structure including an address of the first computing device; and

in response to at least the request packet and the state, selectively outputting the data
structure to the second computing device for performing the operation in response to the data
structure, the operation including outputting a response packet to the client with a source address
equal to the address of the first computing device, such that the output response packet bypasses the

first computing device.

62. The system of Claim 61 wherein the address includes an IP address.

63. The system of Claim 62 wherein the address includes a port.

64. The system of Claim 63 wherein the port is a TCP port.

65. The system of Claim 63 wherein the port is a UDP port.

66. A method performed by a first computing device of an information processing
system, the method comprising:

receiving an initialization packet originating from a client;

in response to at least the initialization packet, outputting a response packet to the client;

receiving a request packet originating from the client; and

in response to at least the request packet and a state of at least one of the first computing
device and a second computing device, selectively outputting the request packet to the second

computing device for performing an operation in response to the request packet.

67. The method of Claim 66 wherein the first computing device is a network interface

card.
68. The method of Claim 66 wherein the operation is part of a software application.

69. The method of Claim 68 wherein the software application is a socket application.

65

10

15

20

25

30

WO 02/059742 PCT/US01/49285

70. The method of Claim 66 wherein the initialization packet is addressed by the client
to the first computing device, and wherein the method comprises:

receiving the initialization packet in response to the addressing.

71. The method of Claim 66 wherein the operation includes outputting a response packet
to the client, and wherein the method comprises:

in response to at least the request packet and the state, selectively outputting the request
packet to the second computing device for outputting the response packet to the client, such that the

output response packet bypasses the first computing device.

72. The method of Claim 66 wherein the method comprises:

receiving the initialization packet through a global computer network.

73. The method of Claim 72 wherein the method comprises:
selectively outputting the request packet to the second computing device through a local

area network.

74. The method of Claim 66 wherein the method comprises:

in response to at least the initializa_tion packet, establishing a data structure of a connection
with the client; and

in response to at least the request packet and the state, selectively outputting the data
structure to the second computing device for associating an application of the second computing

device with the data structure of the connection.

75. The method of Claim 66 wherein the method comprises:
in response to at least the initialization packet, establishing a data structure of a connection
with the client, the data structure including a group of sequence numbers associated with the

connection.

76. The method of Claim 75 wherein the method comprises:

in response to at least the request packet and the state, selectively outputting the data
structure to the second computing device for performing the operation in response to the data
structure, the operation including outputting a response packet to the client according to the group

of sequence numbers, such that the output response packet bypasses the first computing device.

66

10

15

20

25

30

WO 02/059742 PCT/US01/49285

77.

The method of Claim 75 wherein the group of sequence numbers includes at least

one start sequence number, at least one curreit sequence number, and at least one

®
acknowledgement sequence number.

78.

The method of Claim 66 wherein the method comprises:

in response to at least the initialization packet, establishing a data structure of a connection

with the client, the data structure including an address of the first computing device; and

in response to at least the request packet and the state, selectively outputting the data

structure to the second computing device for performing the operation in response to the data

structure, the operation including outputting a response packet to the client with a source address

equal to the address of the first computing device, such that the output response packet bypasses the

first computing device.

79.

80.

81.

82.

83.

The method of Claim 78 wherein the address includes an IP address.

The method of Claim 79 wherein the address includes a port.

The method of Claim 80 wherein the port is a TCP port.

The method of Claim 80 wherein the port is a UDP port.

An information processing system, comprising:

a first computing device for:

receiving a first information packet originating from a client;

in response to the first information packet, identifying a computing device that stores a data

structure of a connection with the client;

if the identified computing device is the first computing device, performing an operation of

an application in response to the first information packet; and

if the identified computing device is a second computing device, outputting a second

information packet to the second computing device for performing the operation in response to the

second information packet, the second information packet including a reference to the data

structure, the reference being included within a single header of the second information packet.

67

10

15

20

25

WO 02/059742 PCT/US01/49285
84.. The system of Claim 83 wherein the second information packet includes the first

information packet.

85. The system of Claim 83 wherein the operation is a first operation, and wherein the
reference includes an IP address of the client, a port of a second application executed by the client,
an IP address of the second computing device, and a port of the first application executed by the

second computing device.
86. The system of Claim 85 wherein the port of the first application is a TCP port.
87. The system of Claim 85 wherein the port of the first application is a UDP port.

88. The system of Claim 83 wherein the first computing device is for receiving the first

information packet through a global computer network.

89. The system of Claim 88 wherein the first computing device is for:

if the identified computing device is a second computing device, outputting the second
information packet to the second computing device through a local area network.

90. The system of Claim 83 wherein the application is a socket application.

91. The system of Claim 83 wherein the first computing device is a network interface

card.
92. The system of Claim 83 wherein the first information packet is addressed by the

client to the first computing device, and wherein the first computing device is for receiving the first

information packet in response to the addressing.

68

10

15

20

25

30

WO 02/059742 PCT/US01/49285

93. A method performed by a first computing device of an information processing
system, the method comprising:

receiving a first information packet originating from a client;

in response to the first information packet, identifying a computing device that stores a data
structure of a connection with the client;

if the identified computing device is the first computing device, performing an operation of
an application in response to the first information packet; and

if the identified computing device is a second computing device, outputting a second
information packet to the second computing device for performing the operation in response to the
second information packet, the second information packet including a reference to the data

structure, the reference being included within a single header of the second information packet.

94. The method of Claim 93 wherein the second information packet includes the first

information packet.

95. The method of Claim 93 wherein the operation is a first operation, and wherein the
reference includes an IP address of the client, a port of a second application executed by the client,
an IP address of the second computing device, and a port of the first application executed by the
second computing device. '

96. The method of Claim 95 wherein the port of the first application is a TCP port.

97. The method of Claim 95 wherein the port of the first application is a UDP port.

98. The method of Claim 93 wherein the method comprises:

receiving the first information packet through a global computer network.
99. The method of Claim 98 wherein the method comprises:
if the identified computing device is a second computing device, outputting the second

information packet to the second computing device through a local area network.

100. The method of Claim 93 wherein the application is a socket application.

69

10

15

20

25

30

WO 02/059742 PCT/US01/49285

101. The method of Claim 93 wherein the first computing device is a network interface

card.

102. The method of Claim 93 wherein the first information packet is addressed by the
client to the first computing device, and wherein the method comprises:

receiving the first information packet in response to the addressing.

103. An information processing system, comprising:
a first computing device for:

selectively initiating execution of a software application by one of:

the first computing device if a state of at least one of the first computing device and a
second computing device is a first state; and

the second computing device if the state is a second state, the software application being

associable with one or more software objects.

104. The system of Claim 103 wherein the software application is a socket application.

105. The system of Claim 103 wherein the state is a synchronized state of at least the first

and second computing devices.

106. The system of Claim 103 wherein the state includes information for identifying a

group of software applications executed by the first and second computing devices.

107. The system of Claim 103 wherein the state indicates whether the software

application has an associated listening socket.

108. The system of Claim 103 wherein the software application is a first software
application, and wherein the first computing device is for:
in response to execution of the first software application and the state, selectively initiating

execution of a second software application by the second computing device.

70

10

15

20

25

30

WO 02/059742 PCT/US01/49285

109. An information processing system, comprising:
a first computing device for:

executing a software application that is associated with at least one software object; and

in response to a request for initiating execution of the software object, independent of the
software application, selectively initiating execution of the software object by one of:

the first computing device if a state of at least one of the first computing device and a
second computing device is a first state; and

the second computing device if the state is a second state.
110. The system of Claim 109 wherein the software application is a socket application.

111. The system of Claim 109 wherein the state is a synchronized state of at least the first

and second computing devices.

112. The system of Claim 109 wherein the first computing device is for coordinating a
communication of information between the software application and the software object, even if the

software object is executed by the second computing device.

113. A method performed by a first computing device of an information processing
system, the method comprising:

selectively initiating execution of a software application by one of:

the first computing device if a state of at least one of the first computing device and a
second computing device is a first state; and |

the second computing device if the state is a second state, the software application being

associable with one or more software objects.
114. The method of Claim 113 wherein the software application is a socket application.

115. The method of Claim 113 wherein the state is a synchronized state of at least the first

and second computing devices.

116. The method of Claim 113 wherein the state includes information for identifying a

group of software applications executed by the first and second computing devices.

71

10

15

20

25

30

WO 02/059742 PCT/US01/49285

117. The method of Claim 113 wherein the state indicates whether the software

application has an associated listening socket.

118. The method of Claim 113 wherein the software application is a first software
application, and wherein the method comprises:
n response to execution of the first software application and the state, selectively initiating

execution of a second software application by the second computing device.

119. A method performed by a first computing device of an information processing
system, the method comprising:

executing a software application that is associated with at least one software object; and

in response to a request for initiating execution of the software object, independent of the
software application, selectively initiating execution of the software object by one of:

the first computing device if a state of at least one of the first computing device and a
second computing device is a first state; and

the second computing device if the state is a second state.
120. The method of Claim 119 wherein the software application is a socket application.

121. The method of Claim 119 wherein the state is a synchronized state of at least the first

and second computing devices.

122. The method of Claim 119 wherein the method comprises: '
coordinating a communication of information between the software application and the

software object, even if the software object is executed by the second computing device.

123. Aninformation processing system, comprising:
a first computing device for:

from a second computing device, receiving a first information packet, the second comf)uting
device receiving the first information packet from a global computer network through a first router
device; |

outputting a second information packet to the global computer network through a second

router device, such that the second information packet bypasses the first router device.

72

10

15

20

25

30

WO 02/059742 PCT/US01/49285

124. The system of Claim 123 wherein the first computing device is for outputting the
second information packet to the global computer network through a local area network and the

second router device.

125. The system of Claim 124 wherein the local area network is a first local area network,
and wherein the second computing device receives the first information packet from the global

computer network through a second local area network and the first router.

126. The system of Claim 125 wherein the first computing device is for receiving the first

information packet from the second computing device through a third local area network.

127. The system of Claim 123 wherein the first computing device is for receiving a third

information packet from the global computer network through the first router device.

128. The system of Claim 127 wherein the first computing device is for coupling to the

second computing device through a local area network that is coupled to the first router device.

129. The system of Claim 128 wherein the local area network is a first local area network,
and wherein the first computing device is for receiving the first information packet from the second

computing device through a second local area network.

130. The system of Claim 123 wherein the first computing device is a network interface

card.
131. The system of Claim 123 wherein the first information packet originates from a
client, and wherein the second computing device is coupled through the first router device and the

global computer network to the client.

132. The system of Claim 131 wherein the second information packet includes the first

information packet and a reference to a data structure of a connection with the client.

73

10

15

20

25

30

WO 02/059742 PCT/US01/49285

133. A method performed by a first computing device of an information processing
system, the method comprising:

from a second computing device, receiving a first information packet, the second computing
device receiving the first information packet from a global computer network through a first router
device;

outputting a second information packet to the global computer network through a second

router device, such that the second information packet bypasses the first router device.

134, The method of Claim 133 wherein the method comprises:
outputting the second information packet to the global computer network through a local

area network and the second router device.

135. The method of Claim 134 wherein the local area network is a first local area
network, and wherein the second computing device receives the first information packet from the

global computer network through a second local area network and the first router.

136. The method of Claim 135 wherein the method comprises:
receiving the first information packet from the second computing device through a third

local area network.

137. The method of Claim 133 wherein the method comprises:
receiving a third information packet from the global computer network through the first

router device.

138. The method of Claim 137 wherein the method comprises:
coupling to the second computing device through a local area network that is coupled to the

first router device.

139. The method of Claim 138 wherein the local area network: is a first local area
network, and wherein the method comprises:
receiving the first information packet from the second computing device through a second

local area network.

74

10

15

20

25

30

WO 02/059742 PCT/US01/49285

140. The method of Claim 133 wherein the first computing device is a network interface

card.

141. The method of Claim 133 wherein the first information packet originates from a
client, and wherein the second computing device is coupled through the first router device and the

global computer network to the client.

142. The method of Claim 141 wherein the second information packet includes the first

information packet and a reference to a data structure of a connection with the client.

143. An information processing system, comprising:
a computing device for:
receiving an initialization packet originating from a client; and
in response to at least the initialization packet, establishing a data structure of a connection
with the client, irrespective of whether an application of the computing device is associated with the
data structure of the connection.
{
144. The system of Claim 143 wherein the data structure includes a group of sequence

numbers associated with the connection.

145. The system of Claim 143 wherein the application is a first application, and wherein
the data structure includes an IP address of the client, a port of a second application executed by the
client, an IP address of the computing device, and a port of the first application executed by the

computing device.

146. An information processing system, comprising:
a computing device for:
receiving a request packet originating from a client; and
in response to at least the request packet, associating an application of the computing device

with a data structure of a connection with the client.

147. The system of Claim 146 wherein the data structure includes a group of sequence

numbers associated with the connection.

75

10

15

20

25

30

WO 02/059742 PCT/US01/49285

148. The system of Claim 146 wherein the application is a first application, and wherein
the data structure includes an IP address of the client, a port of a second application executed by the
client, an IP address of the computing device, and a port of the first application executed by the

computing device.

149. An information processing system, comprising:
a computing device for:

receiving an initialization packet and a request packet originating from a client;

in response to at least the initialization packet, establishing a data structure of a connection
with the client; and

in response to at least the request packet, associating an application of the computing device

with the data structure of the connection.

150. The system of Claim 149 wherein the data structure includes a group of sequence

numbers associated with the connection.

151. The system of Claim 149 wherein the application is a first application, and wherein
the data structure includes an IP address of the client, a port of a second application executed by the
client, an IP address of the computing device, and a port of the first application executed by the

computing device.

152. An information processing system, comprising:
a first computing device for:

associating an application of the first computing device with a data structure of a connection
with a client;

disassociating the application of the first computing device from the data structure of the
connection; and

outputting the data structure of the connection to a second computing device for associating

an application of the second computing device with the data structure of the connection.

153. The system of Claim 152 wherein the data structure includes a group of sequence

numbers associated with the connection.

76

10

15

20

25

30

WO 02/059742 PCT/US01/49285

154. The system of Claim 152 wherein the application of the second computing device is
a first application, and wherein the data structure includes an IP address of the client, a port of a
second application executed by the client, an IP address of the second cdmputing device, and a port

of the first application executed by the second computing device.

155. An information processing system, comprising:
a first computing device for:

receiving an initialization packet and a request packet originating from a client;

in response to at least the initialization packet, establishing a data structure of a connection
with the client; and

in response to at least the request packet and a state of at least one of the first computing
device and a second computing device, selectively performing one of the following:

associating the data structure of the connection with an application of the first computing
device; and

outputting the data structure of the connection and the request packet to the second
computing device for associating an application of the second computing device with the data

structure of the connection.

156. The system of Claim 155 wherein the data structure includes a group of sequence

numbers associated with the connection.

157. The system of Claim 155 wherein the application of the second computing device is
a first application, and wherein the data structure includes an IP address of the client, a port of a
second application executed by the client, an IP address of the second computing device, and a port

of the first application executed by the second computing device.

158. A method performed by a computing device of an information processing system,
the method comprising:

receiving an initialization packet originating from a client; and

in response to at least the initialization packet, establishing a data structure of a connection
with the client, irrespective of whether an application of the computing device is associated with the

data structure of the connection.

77

10

15

20

25

30

WO 02/059742 PCT/US01/49285

159. The method of Claim 158 wherein the data structure includes a group of sequence

numbers associated with the connection.

160. The method of Claim 158 wherein the application is a first application, and wherein
the data structure includes an IP address of the client, a port of a second application executed by the
client, an IP address of the computing device, and a port of the first application executed by the

computing device.

161. A method performed by a computing device of an information processing system,
the method comprising:

receiving a request packet originating from a client; and

in response to at least the request packet, associating an application of the computing device

with a data structure of a connection with the client.

162. The method of Claim 161 wherein the data structure includes a group of sequence

numbers associated with the connection.

163. The method of Claim 161 wherein the application is a first application, and wherein
the data structure includes an IP address of the client, a port of a second application executed by the
client, an IP address of the computing device, and a port of the first application executed by the

computing device.

164. A method performed by a computing device of an information processing system,
the method comprising:

receiving an initialization packet and a request packet originating from a client;

in response to at least the initialization packet, establishing a data structure of a connection
with the client; and

in response to at least the request packet, associating an application of the computing device

with the data structure of the connection.

165. The method of Claim 164 wherein the data structure includes a group of sequence

numbers associated with the connection.

78

10

15

20

25

30

WO 02/059742 PCT/US01/49285

166. The method of Claim 164 wherein the application is a first application, and wherein
the data structure includes an IP address of the client, a port of a second application executed by the
client, an IP address of the computing device, and a port of the first application executed by the

computing device.

167. A method performed by a first computing device of an information processing
system, the method comprising:

associating an application of the first computing device with a data structure of a connection
with a client;

disassociating the application of the first computing device from the data structure of the

connection; and

outputting the data structure of the connection to a second computing device for associating

an application of the second computing device with the data structure of the connection.

168. The method of Claim 167 wherein the data structure includes a group of sequence

numbers associated with the connection.

169. The method of Claim 167 wherein the application of the second computing device is
a first application, and wherein the data structure includes an IP address of the client, a port of a
second application executed by the client, an IP address of the second computing device, and a port

of the first application executed by the second computing device.

170. A method performed by a first computing device of an information processing
system, the method comprising:

receiving an initialization packet and a request packet originating from a client;

in response to at least the initialization packet, establishing a data structure of a connection
with the client; and

in response to at least the request packet and a state of at least one of the first computing

_ device and a second computing device, selectively performing one of the following:

associating the data structure of the connection with an application of the first computing
device; and

outputting the data structure of the connection and the request packet to the second
computing device for associating an application of the second computing device with the data

structure of the connection.

79

10

15

20

25

30

WO 02/059742 PCT/US01/49285

171. The method of Claim 170 wherein the data structure includes a group of sequence

numbers associated with the connection.

172. The method of Claim 170 wherein the application of the second computing device is
a first application, and wherein the data structure includes an IP address of the client, a port of a
second application executed by the client, an TP address of the second computing device, and a port

of the first application executed by the second computing device.

173. An information processing system, comprising:
a first computing device for:

receiving a request packet originating from a client;

in response to at least the request packet and a state of at least one of the first computing
device and a second computing device, selecting a computing device for maintaining a session with
the client;

if the selected computing device is the first computing device, outputting a response packet
to the client for identifying the first computing device as maintaining the session with the client;
and

if the selected computing device is a second computing device, outputting a response packet

to the client for identifying the second computing device as maintaining the session with the client.

174. The system of Claim 173 wherein the state is a synchronized state of at least the first

and second computing devices.
175. The system of Claim 173 wherein the session is an HTTP session.

176. The system of Claim 173 wherein the first computing device is a network interface

card.

177. The system of Claim 173 wherein the first computing device is for receiving the

request packet through a global computer network.

80

10

15

20

25

30

WO 02/059742 PCT/US01/49285

178. An informaﬁon processing system, comprising:
a first computing device for:

receiving a request packet originating from a client, the request packet including an
identifier;

in response to the request packet, identifying a computing device that is associated with the
identifier;

if the identified computing device is the first computing device, performing an operation of
an application in response to the request packet; and

if the identified computing device is a second computing device, outputting the request
packet to the second computing device for performing the operation in response to the request

packet.
179. The system of Claim 178 wherein the ideﬁtiﬁer is a session identifier.

180. The system of Claim 179 wherein the session identifier is an HT'TP session

identifier.
181. The system of Claim 178 wherein the identifier is a URL identifier. -
182. The system of Claim 178 wherein the identifier is an SSL identifier.

183. A method performed by a first computing device of an information processing
system, the method comprising:

receiving a request packet originating from a client;

in response to at least the request packet and a state of at least one of the first comppting
device and a second computing device, selecting a computing device for maintaining a session with
the client;

if the selected computing device is the first computing device, outputting a response packet
to the client for identifying the first computing device as maintaining the session with the client;
and

if the selected computing device is a second computing device, outputting a response packet

to the client for identifying the second computing device as maintaining the session with the client.

81

10

15

20

25

30

WO 02/059742 PCT/US01/49285

184. The method of Claim 183 wherein the state is a synchronized state of at least the first

and second computing devices.

185. The method of Claim 183 wherein the session is an HTTP session.

186. The method of Claim 183 wherein the first computing device is a network interface

card.

187. The method of Claim 183 wherein the method comprises:

receiving the request packet through a global computer network.

188. A method performed by a first computing device of an information processing
system, the method comprising:

receiving a request packet originating from a client, the request packet including an
identifier;

in response to the request packet, identifying a computing device that is associated with the
identifier;

if the identified computing device is the first computing device, performing an operation of
an application in response to the request packet; and

if the identified computing device is a second computing device, outputting the request
packet to the second computing device for performing the operation in response to the request

packet.

189. The method of Claim 188 wherein the identifier is a session identifier.

190. The method of Claim 189 wherein the session identifier is an HTTP session

identifier.

191. The method of Claim 188 wherein the identifier is a URL identifier.

192. The method of Claim 188 wherein the identifier is an SSL identifier.

82

10

15

20

25

30

WO 02/059742 PCT/US01/49285

193. An information processing system, comprising:
a first computing device for:

receiving first information that has been formed according to application software
instructions;

independent of the application software instructions, forming second information for
causing a second computing device to perform an operation;

in response to receiving the first information, executing protocol stack instructions to form a
packet including at least the first and second information;

outputting the packet to the second computing device.

194. The system of Claim 193 wherein the first computing device is for:

in response to receiving the first information, executing the protocol stack instructions for
forming the packet in accordance with a network protocol.

195. The system of Claim 194 wherein the network protocol is TCP/IP.

196. The system of Claim 194 wherein the network protocol is UDP/IP.

197. The system of Claim 194 wherein the first computing device is for:

outputting the packet to the second computing device through a network in accordance with
the network protocol. '

198. The system of Claim 197 wherein the network is a global computer network.

199. The system of Claim 197 wherein the network is an IP network.

200. The system of Claim 193 wherein the first computing device is for:

in response to receiving the first information, executing the protocol stack instructions for
forming the packet including a header portion and a data portion, the header portion including at

least one header, and the data portion including at least the first and second information.

201. The system of Claim 193 wherein the second computing device is a client computing

device.

83

10

15

20

25

30

WO 02/059742 PCT/US01/49285

202. The system of Claim 201 wherein the operation includes maintaining a session.

203. The system of Claim 202 wherein the operation includes maintaining a session by

addressing a subsequent packet to the first computing device.

204. The system of Claim 201 wherein the operation includes modifying state

information.

205. A method performed by a first computing device of an information processing
system, the method comprising:

receiving first information that has been formed according to application software
instructions;

independent of the application software instructions, forming second information for
causing a second computing device to perform an operation;

in response to receiving the first information, executing protocol stack instructions to form a
packet including at least the first and second information;

outputting the packet to the second computing device.

206. The method of Claim 205 wherein the method comprises:

in response to receiving the first information, executing the protocol stack instructions for
forming the packet in accordance with a network protocol.

207. The method of Claim 206 wherein the network protocol is TCP/IP.

208. The method of Claim 206 wherein the network protocol is UDP/IP.

209. The method of Claim 206 wherein the method comprises:

outputting the packet to the second computing device through a network in accordance with
the network protocol.

210. The method of Claim 209 wherein the network is a global computer network.

211. The method of Claim 209 wherein the network is an IP network.

84

10

15

WO 02/059742 PCT/US01/49285

212. The method of Claim 205 wherein the method comprises:
in response to receiving the first information, executing the protocol stack instructions for
forming the packet including a header portion and a data portion, the header portion including at

least one header, and the data portion including at least the first and second information.

213. The method of Claim 205 wherein the second computing device is a client

computing device.

214. The method of Claim 213 wherein the operation includes maintaining a session.

215. The method of Claim 214 wherein the operation includes maintaining a session by

addressing a subsequent packet to the first computing device.

216. The method of Claim 213 wherein the operation includes modifying state

information.

85

PCT/US01/49285

WO 02/059742

1/28

-~

aoelaU|
JjI0MISN
U
[one
3OB}g |000}01d o),
I
uoneo)ddy |oAeT]
195003 esn

FEYNETS

(W Joud)
Vi OIld

NW

20BLaU|
}omieN

U

MOE]S |000)01d

Il

uoijeolddy
193009

JualD

[oAeT
jpulad]

[oAeT
lasn

PCT/US01/49285

WO 02/059742

2/28

(Uy Joud)
dl 9Old

INHVH Jd3AH3S

F TINEYVNETS

N FEYNELS

I ._¢>._mw

£0t>>w MO|H

:

J21noy

PCT/US01/49285

WO 02/059742

3/28

WYV Jd3IAHTS

nH uoneziuoiyosuisg

. . . -
OIN mEERN OIN JIN OIN
ebi|je Jusbie| Jusbijjeju| Juabieiy
- - - T
VNEYVETS Z J19AI9S WELVETS 991ASQ
10)0011pay
~YOUMS/ANH ¥ NVT-
19)N0Y
qUr] NYM

dS| 01 uonosuuoy 1euIB|

PCT/US01/49285

WO 02/059742

4/28

d¢ ol

NN ERSENFELS e
(nH uonReziuoiysuig
0 | 0| | M0 A
OIN JIN DIN OIN DIN
jusbiey| Jusbifeyu] Jusbije| JusBijeu| Jusbijjeul
{1 R M i []
G 19AI9S Y I9AI9S € I9AISS Z 19AIRS L J9AISS

~YOHMS/INH Y zﬁ?...@

(zds| “69) uopdsUUO) US|

g Janoy

Il

V Joinoy

Il

(Lds| “B°9) uonosuuo) jauIsiu]

PCT/US01/49285

WO 02/059742

5/28

RN ERENY-ELR
OIN OIN
1 uabijjey) b [
—
[/ [}
Z JOAI9S W ETNELS » «
\
_
D Jenoy d J9IN0Y Y 19IN0Y

(¢ds]| ““6°®) uonosuuo) JBuUIBU|

(uelQ wold) b »

(zds| “6'9) uonosuuo) jpulsiu|

(qusijp 03) «@

(LdS| “"6'8) uonoauuo) ulsy|

PCT/US01/49285

WO 02/059742

6/28

dc 9l4d

INHV4 43AHES

-'--l lllllllll D b Gl @b G IR GER GER GEL GER GED GED GED GER 4NN 4ND| GER GED SED (GED GEDR D aED J -'l"lll-'..-"-r-"- llllll J
m] |
[[
0| | | o | o e
[[1
| IIN OIN DIN P IIN JIN !
“ Jusbisu| usbijjeiu] uabije1u| “ b INET[TE] usbljeu] "
" [
“ 1 [! “ "] =l "
LT J [| i (. 1
“ G I9AI9S y 19AI9S R EYVETS " " Z 19AI9S EENNELS “
[' [
".... |||||| dnoucg z uon o__o_a<“ m. Q:o._mv_‘:o_umo__o_%q“
N

———LyoNms/ANH v NVT1—

EV,

V Jainoy

!

UOOBUUOY) JouIaU|

PCT/US01/49285

WO 02/059742

7/28

SMMPON S9SS9001]
O/1
°
° eleq
®
5 WJSAS
[MPON
Sunerad(
O/1
AIOWIIAI
S[MPON
A10SSII0IJ
O/1 ureAl
pJIeog UIejAl

¢ Old

-

Hod
UOUAS

S|NPON
$S929Y
Aowap

LETITg

10SS920.d

NELATS
[020}0.d

uonew.ou|

3oels
|090101d

layng joyoed
uonlewIojU| $s9201d
uoneuwoju) Bupnoy
uonewloU| a)e)s

10Ss920i1d
Buipiemio]

ATOWIA]

O Hod
g Hod

DIN JUISI[2Iu]

10SS990.d
YIOM}ON

v Hod mm

PCT/US01/49285

WO 02/059742

8/28

NV JIALTS

*M.NNN.NNN.NNN dl

OIN
Juabifeyu]

S -~

€eTLETLECL dI T 19AIeS

(NH uoniezIuoIYdUAg

L'geeeeeeee di

N

DIN
IElf|]

L [}

> [uoums/anH v NvT—

L"€ZL'eZL ECL dl | 19AI9S

Leeireelect

Vv Jainoy

11 JoAI9g 0} }3sanbay jJualo

uolosuuo) Jaulaiu|

PCT/US01/49285

WO 02/059742

9/28

INMVH 43AH3S

g'eeceeeeee di

DIN
yushifjaqu]

=

_

(nH uoneziuoiysuAg

L'eeeteeeeed di

—M—{—

JIN
Juebijleu|

[
L

LezLezezl dl:

L
€€CLCCL’ETL dI -¢ I19AIeS

-

————YOUMS/ANH ¥ NY

WEYVETS

\J

gecleelrect

Vv Joinoy

:Z JoAI18g 0} }sanbay Jusl|o @

uonodauuo) jouiaiuf

PCT/US01/49285

WO 02/059742

10/28

J19he

VG Old

Amarnﬁﬁ,lrl/r
/_owwmoo._n_ NIomjaN

Jo)008

uonesijddy
}9)20S

walsAs
Bunesado

Koway

10SS920.1d Ulep\

pieog ulep

» VI

auibug

\ uonesyisse|d

e

/

B> aLE|

Y

10SS990.d d godi:ai09
joe)s J10SS9920.
d
Jooojo.dd

10ssa%0.d
—> Buipiemio

DIN YuasIfIu] w

g 1od H

E)BLE |
pIBAIO]

» dox(q

Hod
UoUAg

PCT/US01/49285

WO 02/059742

11/28

J9he

d¢g old

196 g pajemsdedury

doxq

}o)20S

uonesijddy
}9)208

walsAg
Bunelado

Kowsy

lossaoold ulepy

pleog uiepy

10SS9J0.1d
SR
aulbug
/| uoneoyisse|y \<D<§
sodi - nchn
910D 10SS920.d 110
. YouAs

y

> VINA
J10SS930.d
NETTSI -
|]oo0ojold
DIN JUISI[uf

lossaooud
Buipiemio

PCT/US01/49285

WO 02/059742

12/28

o¢ Ol

dox(
=
/
éoo._n_ 3}10M1aN
J9AeT
orons auibug
VINA uoneoljisse]|d -
uonesiddy
39008
wie)sAg
Buneiado
10SS320.1d d
?.OE@S_ yoels :al0 w%wmmm
|o203j0.1d 5109 >old
10Ss920.1d ule|p\
10SS9920.1d
Buipiemio
pleog uiep DIN yud3I{[PYu]
-

gyodH

Vv Hod

1¥dRd
YOuAg

PCT/US01/49285

WO 02/059742

13/28

9 Old

uoneziin NdO
sjuswalinbay Alowsy
di (308[q0 10) uoneolddy

SUOIIoBUUOY 18M008 Bulus)si
al uonesyddy

ssaippe d| % Al 1[0 mopeys
ssaIppy dI 399[90
ail elo

Klows s|gejieny
suonoBUU0D dJ 1 JequinN
uoneziin NdoO

e B et T ate ML

MOI|S

uoljeuwoju|
20ueuw.oliad
109[qO %3 uoneolddy

888890014 uoneolddy

sooue)su| 199lq0

9]1e)1S Wlie Jonies

9]e2g awll] UONEBZIUOIYIUAS 9)e}s

-

)sed

Alows\ JIN!

PCT/US01/49285

14/28

WO 02/059742

NYVd 43ANGTS
gnyH uonezjuoiysuAisg
o5y G€ZLETLETL oy SE€ZLETLET) [osy sezreziez
00s gegeleclect 00S g'ecleclect 005 R YARTANAL
00¥ L'eeleelect 00y L'geleelect 00V L'gelecheet
UD dO1# di uQ dO1# dl UQ do1# dl
ajqel 21e31s ¢ DIN! 9|qe] 9)e}s ¢ JIN! olqel 9je}s L DIN!
M
G'CZL'SZLSZL dI € 19AIDS €'¢TL'eTLECL dI T 19NISS ﬂ L"eCL’ezL’eCt dl -1 19AIBS
D/
Y
19]1N0Y
L'€CLeClL’eCl @

11 JoAI9g 0} 3sanbay Jual|D uolPauUU0) JoUIB)U|

PCT/US01/49285

WO 02/059742

15/28

8 Old

B —
uolosuuon
UOoIeZIUCIYIUAS

R
uoljoauuon
d NV

Hod
yoAus peay |
UOIJBZIUOIYOUAS
P
10SS9®30.1d
peaiy] NIOMION
g Hod ™ premio
T ——— peaiy | souejegq |«
Vv Hod
Y \ /

peaiy] doelg [0o0100d |

A

}oe}s [020301d

10ss920.d

sodi

DIN Juabijjayu]

P
uon2vUUoYH
1PUlI93U|

YV NV

Y

uonesijddy J1oA19g

pleog ulep

WO 02/059742 PCT/US01/49285

16/28

IP Packet
Arrives At
Balance
Thread

Is Packet checksum

—— Drop Packet verified?

Parse Request;
Choose Best Server;
Make server connection;
Remove Temporary Table
Entry
(see Figures 10a-c)

IP Address

No

Equal to advertised
IP of Server?

<@~ Drop Packet"

Yes Is Packet TCP Flag

PUSH?

Temporary Table
Match?

Encapsulate Pass pointer to connection
Forward Table Packet; Forward endpoint & packet to
Match? Packet via Forward Protocol Stack Thread
Port (see Figure 9b)
| -

Pass pointer to
connection
endpoint & packet [——————p»
to Protocol Stack
Thread

Local Table Match?

Add Entry to Temporary table;

Yes |Create connection endpoint; Pass

pointer to connection endpoint &

packet to Protocol Stack Thread ;
(see Figures 10a-c)

TCP SYN &
Listening_socket Table
Match?

Drop Packet

b

FIG. 9A

WO 02/059742

Drop Packet

-¢— Drop Packet

17/28

|IP Packet

Arrives At
Forward

Thread

No

Is Packet Encapsulated
Header Checksum valid?

No

Is Packet addressed to
Server?

Encapsulated
Type = 0x01

Encapsulated
Type = 0x02

Encapsulated
Type = 0x03

Drop Packet

PCT/US01/49285

Unpack and setup connection
endpoint; send verification packet, }—
drop packet

Search Forward-Connect Table

for connection endpoint; Unpack;

Pass pointer to connection —P

endpoint & packet to Protocol
Stack Thread

Search Temporary Table for
connection endpoint; Delete table >
entry; delete connection endpoint;

drop packet

WO 02/059742

IP Packet
Arrives At
Synchronization
Thread

Is Packet UDP?

Drop Packet

18/28

Is Source IP in
State Table?

Done

Add new State Table
entry;Update State
Table; drop packet

Does packet
signify removal
rom State Table?

Update State Table;
drop packet

PCT/US01/49285

Remove Server Row
from State Table; drop
packet

FIG. 9C

PCT/US01/49285

WO 02/059742

19/28

voneorjddy YOl 9Old

0], <«—— 1908 SS9001] =

NOY -——

UOIIRWIOJU| LSIU/NIA
/AOV/HSNd
uoneorddy
Wolf —— 1930 SS9001] é
uoryeuLIojuy
uoneorddy

0] -~ 19or{ $59001g

-
UOTJRULIOFU] LSANOTY TVNIOTIO
(/1 21031, 99S) UOIIOAUUO)) [BIOT BN
(x[B90]) JOAIOS 1S9 QUTULIIR(]

(‘T 10 913002) 1sonbay asied

19508 J SS9001]

(HSNd) 1SANOAA

Anoy

AOV

@

| AOV/NAS
urodpud 9J8dI1) NOY =
uoneoiddy pealy])oe}s pealy]
Jo400S JONIDS |[0D0}0id aouejeqg
:s0d! :s0dI

fe

NAS

o
g]

Tk

tichiie)

PCT/US01/49285

WO 02/059742

dol Ol

MOYY/

g Mod -

pajensdeouy
NIA/AOV/HSd
g Hod
LSHNOTY TVNIDIIO pare[nsdeouy
@MO—\NM_‘L ﬁvh\ﬁéom OP ﬁvﬂv< pealy] pilemio] wo.j
$00UQI9JA1 9[qe], Areroduo], 29 = < "

1rodpus UONOIUUOD SAOWSY (€0x0 od&1) oV

dnjog uonoouuo)
e ~ BJER(J UOIOdUUO)) pIje[nsdeduy

O
N
™~
S
3¢ (#1 2I31,] 99S) UOI}AUUO)) PILMIO BN =
|) LSANOTA
130ed SSA001J = anoy <« SOV
T JIOV/NAS
wrodpud 91831) ANOY
pealy])}oels peaiyl

|od0joid :s0d! soueleg :godi| @ =

el fe)

PCT/US01/49285

21/28

01 ©Old

WO 02/059742

uoryeol[ddy
wor] —» 1908 SS9001]
UOneWIOFUT
uonedrddy .
0] <«———13308{ SS3001d —= syoedu) - g uod
UONRULIOJU] NIA/MOV/HSNd e/ o
(€0%0 g ¥od
ad£ 1) jusmepomonoy dnieg
uonosuuo)) parensdeouy
jurodpus 9181)) <— yoedun - g uod
UOoIjewWIOFU] UOTETLIOJU]
UOTII3UUO0))
UOTIO3UUO0) paemsdeouy
uoneoijddy peaiy] yoe3s peaiyl

194208 J9AI9S jooolold :sOdi plemioq :godi

WO 02/059742

PCT/US01/49285

22/28
Ethernet Encapsulation Header
MAC Destination MAC Source Type
Address Address 0x007
6 6 2
ipOS Encapsulation Header
Source Dest.
Source IP Port Dest. IP Port Type | Protocol | Checksum
4 2 4 2 1 1 2
ipOS Connection Information (UDP)
Server
Server IP Port
4 2
ipOS Connection Information (TCP)
serverP | SV | TGP Control Block Information
4 2 140
ipOS TCP Connection Packet (Type=0x01; Protocol=0x01)
Ethernet Encap. ipOS Encap. . ; -
Type =0x007 Header TCP ipOS Connection Information
14 16 146

ipOS UDP Connection Packet (Type=0x01; Protocol=0x02)

Ethernet Encap. ipOS Encap. UDP ipOS Connection
Type =0x007 Header Information
14 16 6

ipOS TCP Packet (Type=0x02; Protocol=0x01)

Ethernet Encap. ipOS Encap.
Type =0x007_ Header IPITCP Packet
14 16 40 + Data
ipOS UDP Packet (Type=0x02; Protocol=0x02)
Ethernet Encap. ipOS Encap.
Type =0x007 Header IP/UDP Packet
14] 16 28 + Data
ipOS Endpoint Migration Acknowledgement Packet (Type=0x03)
Ethernet Encap. ipOS Encap.
Type =0x007 Header
14 16

FIG. 11A
(Prior Art)

FIG. 11B

FIG. 11C

FIG. 11D

FIG. 11E

FIG. 11F

FIG. 11G

FIG. 11H

FIG. 11l

WO 02/059742

PCT/US01/49285

23/28
Forward Table
Key Field Description
Yes | Source IP Address IP address of Client
Yes | Source TCP Port TCP Port of Client
No Destination IP Address IP Address to Forward
No Destination TCP Port TCP Port to Forward

Local/Forward-Connect/Temporary Table

KEY Field Description
Yes Source IP Address Client IP address
Yes Source Port Client TCP Port
Yes Destination IP Address Endpoint IP Address
Yes Destination Port Endpoint TCP Port
No Endpoint Reference Reference to Connection Endpoint
Server State Table

Key Field Description
Yes Server IP Address Server
No Number TCP Connections TCP Established Connections
No CPU utilization Main board CPU utilization
No Available memory Unused memory on Main Board
No Available Bandwidth Unused Bandwidth Capacity
Listening Sockets Table

Key Field Description
Yes Server IP Address Server
Yes TCP Port Advertised TCP Port
No Process Application process advertising IP/Port
Application Information Table

Key Field Description
Yes Process ID Application identification
No Process memory requirements | Memory required to run application
No Process CPU Utilization Measure of application CPU utilization
URL Map Table

Key Field Description
Yes URL Universal Resource Locator

{ Yes Server IP Address IP address of associated server

Cookie Map Table

Key Field Description
Yes Cookie ID Cookie Identification tag
No Server IP Address IP address of associated server

FIG. 12

PCT/US01/49285

WO 02/059742

24/28

¢l oOld

OIN juabijjajuj
10SS99014 }2e1g |020]04d = INVY JIN!
UN@LSl_I V_ON“_.w _OOO“_.OLQ 20UDIBIOY 19008
| NN
Juodpug uoPsUUO) 4////

AVUBIRIDY L1
juiodpug uojosuuc)

uoljeuwloju| mEmRRESR

151008 ¥

19Ae] 19)208

9

uoijeoljddy 13003
INVY pieog uley

PCT/US01/49285

WO 02/059742

25/28

vl Old

Z DIN juabijjau] L JIN uabija1u]
Aowaw DIN! Alowaw 9INI
g jutodpuzg ¢ jutodpuz
_|V UOI}O9UUOY) | -----mmmmmmmmmmmmamemmoolobo R uon2daUU0)
pajeabi MdN
_ Z juiodpug
V julodpug | Julodpuy
uopoeuUoy |+ m.V :o_wﬂwﬂcoo uogosuuoy ||
_
|
_
_
m
|
Ly g 19)9%08 Y 194008 AL —»> 21920S§ l 194008 |le—

~J9he 190089

;

(s)uoieol|ddy jex00g

Z pleog urepy

Z JOAI0S

19Ae 19)008

;

(s)uoneol|ddy 1934008

| pieog urepy

EEYNETS

PCT/US01/49285

WO 02/059742

26/28

Gl 9Old

DIN 1uebysy|

sodi

e

/ [9POIN 309(q0

pleog urepy

jsuodwon goOdi

DIN uabysy|
\\H\.\ sodi
Py \
\\\\ \\\\\“\ iﬂ
\\ \\.\ pleog uiepy
7 7 1 5
ro N alemyos
\ i T ¥ Juswikordeq sod o
;oo
’ 1
\ _—
uonelsHIoan Juswhojdeq
! AN
[] ~
[} N
1 II
H Sso
1 //ll
OIN Emm___myc_.“ RNy DIN Jusbijjsiu)
sod! T sodi
s\\\
'
% o owEE %
A
pieog uiepy “ pieog urepy
[opo 193[d0 & 1epon pola0
wisuodwon sodi jusuodwos sodi
Z 19AIBS

U J9AI9S

LY VTS

PCT/US01/49285

WO 02/059742

27/28

9l Old

Z 19AI19S | J19AI9S
Z DIN juabijdyu| L DIN 3uabijia3u]
sod! sod!
[SPOIN I[SPON arsseooid
109[g0 - ww”oea 108[q0 “
Jusuodwio) n Jusuodwon .
sodi n SOdi
H . 1'S58001d M3N] SS8001d
woalsAg \ wolsAs
@C_Hm._QQO $955990.d m_.__”_m.‘_mn_O $9SS99201d

INVY pieoqg Uleiy

INVY pleog uteiN

PCT/US01/49285

WO 02/059742

28/28

Ll Old

L JOAISS

Z J9AI0g

Z DIN abij=u)

L DIN juabijjauj

sOd i sod!
1108[q0 k 1 108l00 b 108lq0
4 Wsse901g
m /| usseooig u n
| ... | |
n { u n n
/ =
Z18lqo { - raptel=l(elg) 1 109[q0 9181
L 308090 . L 108100 } SS8001d
T sse00Ig
[opoN 30940 [opo 399[q0
jusuodwon sOdi sossas01d jusuodwog sod! $955990.d
INVY pieog urely INVY pieog ulepy

INTERNATIONAL SEARCH REPORT International application No.
PCT/US01/49285

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GO6F 9/00
US CL : 709/200, 105
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

usS. : 709/105, 223, 201, 202, 208, 219, 227; 712/27

Documentation searched other than minimum documentation to the extent that such documents are included in the fields
searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* [Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6,078,943 A (Yu) 20 June 2000. : 1-216

X US 6,092,178 A (JINDAL et al.) 18 July 2000. 1-216

X US 5,748,897 A (KATIYAR) 5 May 1998. 1-216

X US 5,774,660 A (BRENDEL et al.), 30 June 1998. 1-216

X US 6,006,259 A (ADELMAN et al.) 21 December 1999. 1-216

X US 5,920,705 A (LYON et al.), 6 July 1999. 1-216

I:l Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: R later document published after the international filing date or priority

date and not in conflict with the application but cited to understand

A" document defining the general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
i . : i) "X document of particular relevance; the claimed invention cannot be
g *
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
VLY document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other R . . .
special reason (as specified) "y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"o" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"p" document published prior to the international filing date but later ngu document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report

O 03 JUL 202

.)
Name and mailing address of the ISA/US Authorized officer p M
gomm(i;s['foner of %atents and Trademarks QW
ox P
Washington, D.C. 20281 GEORGE NEURAUTER

Facsimile No. (703) 305-3230 Telephone No. (703) 805=4565

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

