(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPOPCT

- (43) International Publication Date 26 May 2016 (26.05.2016)
- (51) International Patent Classification: G01N 33/569 (2006.01) C07K 14/00 (2006.01)
- (21) International Application Number: PCT/EP2015/077245
- (22) International Filing Date: 20 November 2015 (20.11.2015)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 14194265.6 21 November 2014 (21.11.2014) EP
- (71) Applicant: MERZ PHARMA GMBH & CO. KGAA [DE/DE]; Eckenheimer Landstraße 100, 60318 Frankfurt am Main (DE).
- (72) Inventor: EISELE, Karl-Heinz; Parlamentsplatz 2b, 60385 Frankfurt am Main (DE).
- (74) Agent: DICK, Alexander; HERZOG FIESSER & PART-NER PATENTANWÄLTE PARTG MBB, Dudenstraße 46, 68167 Mannheim (DE).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

C

3

(10) International Publication Number WO 2016/079310 A1

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: METHODS FOR THE DETERMINATION OF THE BIOLOGICAL ACTIVITIES OF NEUROTOXIN POLY-PEPTIDES

(57) Abstract: The present invention pertains to a method for determining the biological activity of a neurotoxin, the method com prising the steps of: (a) expressing a fusion protein comprising (i) an anchor protein, (ii) a reporter protein and (iii) a neurotoxin cleavage site intervening the anchor protein and the reporter protein, in neurotoxin-sensitive cells; (b) incubating the neurotoxin-sensitive cells of (a) with a neurotoxin and cultivating the cells under conditions which allow the neurotoxin to exert its biological activity; (c) permeabilizing the neurotoxin-sensitive cells of (b) under conditions which allow the release of the reporter protein but not the release of the anchor protein from the permeabilized neurotoxin-sensitive cells; and (d) quantifying the activity of the reporter protein released from the cells, thereby determining the biological activity of the neurotoxin. In addition, the invention relates to a fusion protein comprising (i) an anchor protein, (ii) a reporter protein, and (iii) a neurotoxin cleavage site intervening the anchor protein and the reporter protein, for determining the biological activity of a neurotoxin, in neurotoxin-sensitive cells. Further encompassed by the present invention is a kit comprising the fusion protein of the invention. Finally, the invention pertains to the use of a fusion protein of the invention for determining the biological activity of a neurotoxin, in neurotoxin-sensitive cells.

Methods for the Determination of the Biological Activities of Neurotoxin Polypeptides

5

10

15

20

[0001] The present invention pertains to a method for determining the biological activity of a neurotoxin, the method comprising the steps of: (a) expressing a fusion protein comprising (i) an anchor protein, (ii) a reporter protein and (iii) a neurotoxin cleavage site intervening the anchor protein and the reporter protein, in neurotoxin-sensitive cells; (b) incubating the neurotoxin-sensitive cells of (a) with a neurotoxin and cultivating the cells under conditions which allow the neurotoxin to exert its biological activity; (c) permeabilizing the neurotoxin-sensitive cells of (b) under conditions which allow the release of the reporter protein but not the release of the anchor protein from the permeabilized neurotoxin-sensitive cells; and (d) quantifying the activity of the reporter protein released from the cells, thereby determining the biological activity of the neurotoxin. In addition, the invention relates to a fusion protein comprising (i) an anchor protein, (ii) a reporter protein, and (iii) a neurotoxin cleavage site intervening the anchor protein and the reporter protein, for determining the biological activity of a neurotoxin, in neurotoxin-sensitive cells. Further encompassed by the present invention is a kit comprising the fusion protein of the invention. Finally, the invention pertains to the use of a fusion protein of the invention for determining the biological activity of a neurotoxin, in neurotoxin-sensitive cells.

[0002] Clostridium botulinum and Clostridium tetani produce highly potent neurotoxins,
i.e. botulinum toxins (BoNTs) and tetanus toxin (TeNT), respectively. These Clostridial neurotoxins (CNTs) specifically bind to neuronal cells and disrupt neurotransmitter release. Each toxin is synthesized as an inactive unprocessed, approximately 150 kDa single-chain protein. The posttranslational processing involves formation of disulfide bridges, and limited proteolysis (nicking) by the bacterial protease(s). Active neurotoxin consists of two chains, an N-terminal light chain of approx. 50 kDa and a heavy chain of approx. 100 kDa linked by a disulfide bond. CNTs structurally and functionally consist of three domains, i.e. the catalytic light chain, the heavy chain encompassing the translocation domain (N-terminal half) and the receptor binding domain (C-terminal half); see, e.g., Krieglstein 1990, Eur. J. Biochem. 188, 39; Krieglstein 1991, Eur. J. Biochem. 202, 41;

35 Krieglstein 1994, J. Protein Chem. 13, 49. The Botulinum neurotoxins are synthesized as

5

10

PCT/EP2015/077245

molecular complexes comprising the 150 kDa neurotoxin protein and associated non-toxic proteins. The complex sizes differ based on the Clostridial strain and the distinct neurotoxin serotypes ranging from 300 kDa, over 500 kDa, and 900 kDa. The non-toxic proteins in these complexes stabilize the neurotoxin and protect it against degradation; see Silberstein 2004, Pain Practice 4, S19 – S26.

[0003] Clostridium botulinum secretes seven antigenically distinct serotypes designated A to G of the botulinum neurotoxin (BoNT). All serotypes together with the related tetanus neurotoxin (TeNT) secreted by Clostridium tetani, are Zn²⁺-endoproteases that block synaptic exocytosis by cleaving SNARE proteins; see Couesnon, 2006, Microbiology, 152, 759. CNTs cause the flaccid muscular paralysis seen in botulism and tetanus; see Fischer 2007, PNAS 104, 10447.

[0004] Despite its toxic effects, botulinum toxin complex has been used as a therapeutic agent in a large number of diseases. Botulinum toxin serotype A was approved for human use in the United States in 1989 for the treatment of strabism, blepharospasm, and other disorders. It is commercially available as Botulinum toxin A (BoNT/A) protein preparation, for example, under the trade name BOTOX (Allergan, Inc.) or under the trade name DYSPORT/RELOXIN (Ipsen, Ltd). An improved, complex-free Botulinum toxin A preparation is commercially available under the trade name XEOMIN (Merz Pharmaceuticals, GmbH). For therapeutic applications, the preparation is injected directly into the muscle to be treated. At physiclegrical pH, the toxin is released from the pretein

into the muscle to be treated. At physiological pH, the toxin is released from the protein complex and the desired pharmacological effect takes place. The effect of Botulinum toxin is only temporary, which is the reason why repeated administration of Botulinum toxin may be required to maintain a therapeutic affect.

[0005] The Clostridial neurotoxins weaken voluntary muscle strength and are effective therapy for strabism, focal dystonia, including cervical dystonia, and benign essential blepharospasm. They have been further shown to relief hemifacial spasm, and focal spasticity, and moreover, to be effective in a wide range of other indications, such as gastrointestinal disorders, hyperhidrosis, and cosmetic wrinkle correction; see Jost 2007, Drugs 67, 669.

35

[0006] During the manufacturing process of Clostridial neurotoxins, the qualitative and quantitative determination of said neurotoxins as well as the quality control of the biologically active neurotoxin polypeptides is of particular importance. In addition, governmental agencies accept only simple, reliable, and validated Botulinum toxin activity assays. At present the mouse LD_{50} bioassay, a lethality test, remains the "gold standard"

10

20

used by pharmaceutical manufacturers to analyze the potency of their preparations; see Arnon et al. (2001), JAMA 285, 1059-1070. However, in recent years, considerable effort has been undertaken to seek for alternative approaches to alleviate the need for animal testing and all the disadvantages, costs and ethical concerns associated with animal-based assays. In addition, the regulatory agencies are engaging pharmaceutical companies to apply the three "Rs" principle to the potency testing of Botulinum neurotoxins: "Reduce, Refine, Replace"; see Straughan, Altern. Lab. Anim. (2006), 34, 305-313. As a consequence, cell-based test systems have been developed in order to provide reasonable alternatives to methods using live animals. Yet, only three cellular test systems are available for the determination of neurotoxin polypeptides. These cell-based test systems include the use of primary neurons isolated from rodent embryos which are differentiated *in vitro* (Pellett et al. (2011), Biochem. Biophys. Res. Commun. 404, 388-392), neuronal differentiated induced pluripotent stem cells (Whitemarsh et al. (2012), Toxicol. Sci. 126,

426-35), and a subclone of the SiMa cell line (WO 2010/105234 A1).

[0007] However, the isolation of primary neurons requires the killing of animals and is laborious and time consuming. Furthermore, test systems using different primary neurons show large variances. Similarly, the generation of neuronal differentiated induced pluripotent stem cells is difficult and time consuming. In addition, storage of such cells is very problematic. Assays using tumor cell lines are frequently not sensitive enough to BoNTs. Moreover, complex differentiation protocols are required for said tumor cell lines which result in large variances and/or high failure rates of assays using said cell lines.

25 [0008] In light of the above, further test systems for the determination of neurotoxin polypeptide activity acceptable to governmental agencies are highly desirable. In addition, alternatives to animal-based test systems are needed.

[0009] Thus, the technical problem underlying the present invention may be seen as the
provision of means and methods complying with the aforementioned needs. The technical
problem is solved by the embodiments characterized in the claims and herein below.

[0010] The present invention relates, in a first aspect, to a method for determining the biological activity of a neurotoxin, the method comprising the steps of:

35

(a) expressing a fusion protein comprising (i) an anchor protein, (ii) a reporter protein and (iii) a neurotoxin cleavage site intervening the anchor protein and the reporter protein, in neurotoxin-sensitive cells;

- (b) incubating the neurotoxin-sensitive cells of (a) with a neurotoxin and cultivating the neurotoxin-sensitive cells under conditions which allow the neurotoxin to exert its biological activity;
- (c) permeabilizing the neurotoxin-sensitive cells of (b) under conditions which allow the release of the reporter protein but not the release of the anchor protein from the permeabilized neurotoxin-sensitive cells; and
- (d) quantifying the activity of the reporter protein released from the permeabilized neurotoxin-sensitive cells of (c), thereby determining the biological activity of the neurotoxin.
- 10

[0011] In cell-based test systems for determining the biological activity of neurotoxin polypeptides described in the art, cells are differentiated into neuronal cells in order to obtain a sufficient sensitivity for the neurotoxin polypeptide. Subsequently, these cells are incubated with the neurotoxin polypeptide. Thereafter, the amount of cleaved neurotoxin substrate is determined, normally by using specific antibodies. For an accurate determination of the biological activity of a neurotoxin polypeptide, three neurotoxin substrate-specific antibodies of high quality are required from three different host species. This includes a capture antibody in order to separate the substrate of the neurotoxin polypeptide, such as the BoNT/A substrate SNAP-25, from the other cellular proteins. The capture antibody is frequently directed against an N-terminal region of the neurotoxin

substrate, e.g., the N-terminal region of SNAP-25. Further, a neo-epitope specific antibody is necessary for the detection of the neurotoxin-cleaved substrate, for example, the BoNT/A-cleaved SNAP-25. An additional detection antibody is required which is generally directed against the C-terminal region of the neurotoxin substrate, for instance,
the C-terminal region of SNAP-25, in order to determine the total amount of neurotoxin substrate, or the amount of non-cleaved neurotoxin substrate, to allow for a standardization.

[0012] The method for determining the biological activity of a neurotoxin polypeptide of the present invention is based on a neurotoxin-sensitive cell genetically modified to express a novel fusion protein of the invention. The neurotoxin-sensitive cells can be cells from or derived from tumor cell lines, primary cells, stem cells, induced pluripotent stem cells or other cells defined elsewhere herein. "Derived from" means that the neurotoxinsensitive cells stem from the indicated cells including, e.g., clones or subclones thereof.

35 Such clones or subclones can be non-modified or genetically modified, in comparison to the parental cells. In certain aspects, the neurotoxin-sensitive cells are able to differentiate into neuronal cells. In these cases, the neurotoxin-sensitive cells are differentiated in a culture medium under conditions and for a time period which allows for the differentiation

10

of the neurotoxin-sensitive cells into neuronal differentiated cells. The fusion protein of the present invention comprises an anchor protein, a neurotoxin polypeptide cleavage site and a reporter protein as defined more specifically elsewhere herein. For example, the fusion protein encompasses a transmembrane protein or membrane-associated protein as an anchor protein, a reporter protein and a neurotoxin cleavage site. The cleavage site for the neurotoxin polypeptide is positioned between the anchor protein and the reporter protein. In a first step of the method of the invention, a polynucleotide sequence encoding the mentioned fusion protein is introduced into neurotoxin-sensitive cells which are then cultivated under conditions which allow for the expression of the (biologically active) fusion protein of the invention is induced by inducible expression systems known in the art, e.g., a tetracycline-inducible expression system (Zhou, X., Vink, M., Klave, B., Berkhout, B. & Das, A. T. (2006) Optimization of the Tet-On system for regulated gene

- expression through viral evolution. Gene Ther. 13(19): 1382–1390), mifepristoneinducible expression system (Wang, Y., B.W. O'Malley, J., Tsai, S. Y., and O'Malley, B. W. (1994). A Regulatory System for Use in Gene Transfer. Proc. Natl. Acad. Sci. USA 91, 8180-8184), ecdysone-inducible expression system (No D, Yao TP, Evans RM. Ecdysoneinducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A. 1996 Apr 16; 93(8): 3346-51; Meyer-Ficca ML, Meyer RG, Kaiser H, Brack AR,
- 20 Kandolf R, Küpper JH. Comparative analysis of inducible expression systems in transient transfection studies. Anal Biochem. 2004 Nov 1; 334(1): 9-19) or the like which are commercially available (Clontech; Life Technologies; Agilent). Subsequently, the neurotoxin-sensitive cells are incubated with a neurotoxin polypeptide cultivated for a time period (such as about 24 to 72 hours) and under conditions which allow the neurotoxin to
- 25 exert its biological activity. Upon cleavage by the proteolytic activity of the neurotoxin polypeptide at the neurotoxin polypeptide cleavage site of the fusion protein, the reporter protein is released into the cell. The intoxication step can optionally be followed by a wash step. The neurotoxin-sensitive cells are thereafter permeabilized, for instance, by a hemolysin, for a time period and under conditions which allow the release of the reporter
- 30 protein but not the release of the anchor protein from the permeabilized neurotoxinsensitive cells. Subsequently, the supernatant comprising the reporter protein is recovered and, where appropriate, further processed, e.g., filtrated or centrifuged, before the activity of the reporter protein is determined. By quantifying the activity of the reporter protein released from the cells, the biological activity of the neurotoxin polypeptide can be determined.

[0013] The methods of testing the biological activity of neurotoxin polypeptides of the present invention showed improved sensitivity, in comparison to methods known in the art. In addition, the methods of the invention showed higher precision and robustness, due to

5

the simple handling. These technical and qualitative benefits of the methods of the invention are demonstrated in the following Example.

[0014] Clostridial neurotoxins are characterized in that they specifically inhibit the secretion of neurotransmitters from pre-synaptic nerve endings. The selectivity for peripheral neurons is mediated by the recognition of two different receptors, SV2 and GT1b. The physiological effect of the neurotoxins is based on the cleavage of a protein of the so-called SNARE complex subsequent to the binding of the receptor and the translocation of the neurotoxin's light chain. The determination of the biological activity of

- 10 BoNTs is an important aspect in the characterization of said neurotoxin proteins and is required, inter alia, by regulatory authorities for the clearance of BoNT-containing products. A reliable test for the measurement of the biological activity of BoNTs is, therefore, basis for research, development and marketing of products containing BoNTs. Furthermore, cell-based test systems shall replace the thus far predominant animal tests, for
- 15 ethical reasons. For establishing such cell-based test systems, a sufficient high sensitivity of neuronal cells or cell lines towards Botulinum neurotoxins is essential. However, in order to obtain such high sensitivity, laborious differentiation methods of neuronal cell lines are required so far. As a result, only a few cell-based test systems are available yet, as indicated above. To determine the biological activity of Botulinum toxins in
- 20 pharmaceutical products, the neuronal cells or cell lines shall have the following properties: First, the cells shall be of human, neuronal origin in order to resemble the target as close as possible, i.e. the human patient. Second, the cell system shall be robust towards excipients in the final product and, preferably, also towards impurities in intermediate stages of the production process (process controls). Third, the cell-based test system shall
- exhibit a dynamic measuring range which allows for the accurate determination of the biological activity of BoNTs in a vial (for example, 50U, 100U or 200U BoNT/A). Considering technical factors such as the solubility of excipients, volumes of cell culture media etc., a BoNT concentration of less than 1 pM has to be determined accurately. According to the inventors' best knowledge, only three cell-based test systems are available so far which show sufficiently high sensitivity to BoNTs. These include primary
- available so fai which show sufficiently high sensitivity to Bolvis. These include prinary neurons of embryos from rodents, neuronal differentiated induced pluripotent stem cells and a subclone of the SiMa cell line, as already mentioned elsewhere herein. However, said cells or cell lines have been reported to exhibit a sufficiently high sensitivity, only after complex and laborious differentiation protocols, which are frequently associated with
- 35 large variances. In contrast, the present invention provides for a simple, reliable and robust cell-based test system for the measurement of the biological activity of Botulinum neurotoxins (BoNT) which fulfills the abovementioned requirements and which has been

further improved with respect to sensitivity, in comparison to the cellular test systems described in the art.

[0015] The term "polypeptide" or "protein" as used herein encompasses isolated or purified polypeptides being essentially free of other host cell polypeptides. The mentioned term includes a fusion protein. Fusion proteins or chimeric proteins (literally, made of parts from different sources) are proteins created through the joining of two or more genes that

- originally coded for separate proteins. Translation of this fusion gene results in a single protein with functional properties derived from each of the original proteins. Recombinant fusion proteins are created artificially by recombinant DNA technology known in the art;
- 10 see, e.g., Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, third edition, 2001. Chimeric proteins or chimera usually designate hybrid proteins made of polypeptides having different functions or physico-chemical patterns. Moreover, the term "fusion protein" includes, in an aspect, chemically modified fusion proteins. Such modifications may be artificial modifications such as mutations, e.g., point
- 15 mutations, substitutions, deletions, insertions and the like, or naturally occurring modifications such as post-translational modifications, e.g., glycosylation, phosphorylation, palmitoylation, myristoylation and the like. The fusion protein shall have the biological properties referred to herein. More specifically, the term "fusion protein" or "fusion polypeptide" as used herein, comprises an anchor protein, a reporter protein and a
- 20 neurotoxin cleavage site. The "anchor protein" as used herein is a polypeptide which is stably attached to or integrated into the plasma membrane and in contact with the cytosol of the neurotoxin-sensitive cell. Accordingly, the anchor protein can be a (trans)membrane or integral membrane protein or a membrane-associated protein. The anchor protein of the fusion protein is located in (for a (trans)membrane or integral membrane protein) or at (in
- case of a membrane-associated protein) the plasma membrane, both in the un-cleaved and neurotoxin-cleaved status. It is immediately evident to those skilled in the art that proteins which are temporarily attached to or only partially associated with the plasma membrane are not suitable as anchor protein. The plasma membrane includes the cell membrane and vesicle membrane. The transmembrane protein is, for example, a choline transporter
- (NP_068587), histamine H1 receptor (H1-receptor, NP_001091683), or any other G protein-coupled receptor (GPCR; e.g. AAI28124, NP_000675, P08172) or SV2 (NP_055664). The membrane-associated protein can be, e.g., SNAP-25 (P60880), MARCKS Protein (NP_002347), or C2 domain containing proteins (e.g. NP_002728; NP_002730) Encompassed are also fragments of such anchor proteins having the mentioned biological properties. The "neurotoxin cleavage site" as used herein is a BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/D, BoNT/E, BoNT/F, BoNT/G or TeNT
 - cleavage site, preferably a BoNT/A, BoNT/C1 or BoNT/E cleavage site. Neurotoxin cleavage sites are recognized and cleaved by neurotoxin polypeptides. The corresponding

10

15

sequences of neurotoxin cleavage sites are known in the art and described, for example, in Binz et al. (2010), Toxins, 2(4), pp. 665-682, WO 2010/124998 or WO 2010/105234 A1, the disclosure content of which is incorporated herewith by reference. The neurotoxin cleavage site is positioned between the anchor protein and the reporter protein and accessible to the neurotoxin polypeptide from the cytosol of the neurotoxin-sensitive cell. Upon cleavage by the proteolytic activity of the neurotoxin polypeptide at the neurotoxin polypeptide cleavage site of the fusion protein, the reporter protein is released into the cytosol of the neurotoxin-sensitive cell, whereas the anchor protein remains in or at the plasma membrane. The "reporter protein" or "detection protein" (both terms are interchangeable) as used herein is a detectable marker, for instance, an enzyme like luciferase, alkaline phosphatase, beta-galactosidase, or horseradish peroxidase. Alternatively, the reporter protein can be a fluorescent protein, for example, GFP, BFP, YFP, RFP or the like. The reporter protein of the fusion protein is localized at the plasma membrane in the non-cleaved status and released into the cytosol upon cleavage by the neurotoxin polypeptide. Encompassed are also fragments of such reporter proteins having the mentioned biological properties. The arrangement of the fusion protein can be anchor protein-neurotoxin cleavage site-reporter protein or reporter protein-neurotoxin cleavage site-anchor protein. The fusion protein can further comprise one or more linker regions,

- such as poly-Glycine linkers or the like. The linker can be used, e.g., to link the anchor protein and the neurotoxin cleavage site, or the neurotoxin cleavage site and the reporter protein, in the fusion protein. It is also envisaged that two or more linkers are used in the fusion protein, e.g., one linker between the anchor protein and the neurotoxin cleavage site and a further linker between the neurotoxin cleavage site and the reporter protein. The linker can be the same or be different. Encompassed is also a linker between the anchor
- 25 protein and the reporter protein that can comprise one or more (e.g. two, three or even more) neurotoxin cleavage site(s). The term "linker" or "linker region" as used herein denotes a polylinker which is a short segment of amino acid sequence. Suitable linker sequences encoded by a corresponding DNA sequence are described, for example, in Schiavo G, Matteoli M, Montecucco C: Neurotoxins affecting neuroexocytosis. Physiol.
- 30 Rev. 2000, 80: 717-66. Besides the basic role in linking the functional proteins together (as in flexible or rigid linkers), linkers may offer many other advantages for the production of fusion proteins, such as improving biological activity, increasing expression yield, and achieving desirable pharmacokinetic profiles; see, e.g., Chen et al., Adv. Drug Deliv. Rev. 2013, 65(10), pp.1357-69. In addition, the fusion protein can encompass suitable tags, e.g.,
- 35 FLAG-tags, Myc-tags, His-tags, HA-tags or GST-tags which allow, e.g., for efficient isolation and/or purification of the tagged fusion protein or constituents thereof such as the reporter protein. The tag(s) can be attached to the fusion protein via a linker, if appropriate. It is also envisaged by the scope of the invention that the fusion protein comprises a

PCT/EP2015/077245

standardization or normalization factor. The standardization or normalization factor can also be attached to the fusion protein via a linker, if appropriate. For example, GFP is used as a standardization factor or normalization factor, in the choline transporter-GFP-SNAP-25-luciferase fusion protein of the invention. The introduction of such a further component

- 5 for the normalization or correction of each measurement or measured value can be used for reduction of the statistical variance of individual measurements. In the course of assays, different expression rates, cell numbers, material losses or the like will occur randomly or systematically, so that the measured values are subject to a statistical error. By introduction of a correction factor, the individual measurements can be compared with each other more
- 10 easily. For example, if during cultivation of cells different expression rates occur, or if there are different losses of cell material during wash steps, this will be predictable by the measurement of the correction factor. The fusion protein, in an aspect, can be manufactured by chemical synthesis or recombinant molecular biology techniques well known for the skilled artisan; see, e.g., Sambrook, Molecular Cloning: A Laboratory
- Manual, Cold Spring Harbor Laboratory, third edition, 2001. In an aspect, such a method of manufacturing the fusion protein comprises (a) culturing the host cell described elsewhere herein in more detail and (b) obtaining from the said host cell the fusion protein. In an aspect of this method, the fusion protein can be obtained by conventional purification techniques, e.g., from a host cell lysate including affinity chromatography, ion exchange
 chromatography, size exclusion chromatography and/or preparative gel electrophoresis.
- The term "polypeptide" or "protein" in another aspect includes polypeptide preparations comprising the fusion protein and other proteins in addition.
- [0016] The term "neurotoxin-sensitive cell" as used herein means a cell which is
 susceptible to a neurotoxin polypeptide exhibiting the biological properties characteristic for a neurotoxin polypeptide, namely, (a) receptor binding, (b) internalization, (c) translocation across the endosomal membrane into the cytosol, and/or (d) endoproteolytic cleavage of proteins involved in synaptic vesicle membrane fusion, mentioned elsewhere herein. Accordingly, a "neurotoxin-sensitive cell" as referred to herein is susceptible to
 neurotoxin intoxication. A cell susceptible to neurotoxin polypeptide as defined herein. By definition, a "cell susceptible to neurotoxin intoxication" must express, or be engineered to express, at least one neurotoxin receptor and at least one neurotoxin-sensitive cell"
- as used herein comprises a cell or a cell line, for example, an isolated, primary cell or a cell line thereof or a cell of an established cell line or an established cell line, such as a neuroblastoma cell or neuroblastoma cell line as defined herein. The neurotoxin-sensitive cells as denoted herein include cells, e.g., tumor cells which are able to differentiate into

neuronal cells, under appropriate cell culture conditions. Such cells encompass, for instance, cells from tumor cell lines, e.g., Neuro-2a cells, PC12 cells, NG108-15 cells, P19 cells, SiMa cells or SH-SY5Y cells, primary cells, stem cells, induced pluripotent stem cells, cells derived therefrom or other cells defined elsewhere herein and used in the following examples. The term "susceptible to neurotoxin intoxication" as denoted herein 5 means a cell that can undergo the overall cellular mechanisms whereby a neurotoxin polypeptide (e.g., BoNT/A) cleaves a neurotoxin substrate (e.g., the BoNT/A substrate SNAP-25) and encompasses the binding of the neurotoxin to its corresponding receptor (e.g., binding of BoNT/A to BoNT/A receptor), the internalization of the neurotoxin/receptor complex, the translocation of the neurotoxin light chain from an 10 intracellular vesicle into the cytoplasm, and/or the proteolytic cleavage of the neurotoxin substrate, preferably all of the mentioned mechanisms. As appreciated by those skilled in the art, the neurotoxin-sensitive cell is preferably able to first uptake a neurotoxin and then undergoes the overall cellular mechanisms listed above. A neurotoxin-sensitive cell as used herein can uptake, e.g., about 100 nanomolar (nM), about 10 nM, about 1 nM, about 500 15 picomolar (pM), about 400 pM, about 300 pM, about 200 pM, about 100 pM, about 90 pM, about 80 pM, about 70 pM, about 60 pM, about 50 pM, about 40 pM, about 30 pM, about 20 pM, about 10 pM, about 9 pM, about 8 pM, about 7 pM, about 6 pM,

20 0.1 pM of neurotoxin polypeptide or even less than one of the indicated values. EC50 values above 100 pM have been reported in the literature. Preferably, the "neurotoxin-sensitive cell" as used herein is susceptible to neurotoxin intoxication by, e.g., about 1 nM or less, 500 pM or less, about 400 pM or less, about 300 pM or less, about 200 pM or less, about 100 pM or less, about 90 pM or less, about 80 pM or less, about 70 pM or less, about

about 5 pM, about 4 pM, about 3 pM, about 2 pM, about 1 pM, about 0.5 pM, or about

- 60 pM or less, about 50 pM or less, about 40 pM or less, about 30 pM or less, about 20 pM or less, about 10 pM or less, about 9 pM or less, about 8 pM or less, about 7 pM or less, about 6 pM or less, about 5 pM or less, about 4 pM or less, about 3 pM or less, about 2 pM or less, about 1 pM or less, about 0.9 pM or less, about 0.8 pM or less, about 0.7 pM or less, about 0.6 pM or less, about 0.5 pM or less, about 0.4 pM or less, about 0.3 pM or less,
- 30 about 0.2 pM or less, or even about 0.1 pM or less. Assays for determining the biological activity of a neurotoxin polypeptide are well known in the art and also described elsewhere herein (see, e.g., Pellett et al., Withemarsh et al. Toxicological Sciences 126(2), 426-435 (2012), WO 2010/105234 A1)
- 35 [0017] As known in the art, the "half maximal effective concentration (EC50)" refers to the concentration of a drug, antibody or toxicant which induces a response halfway between the baseline and maximum after some specified exposure time. It is commonly used as a measure of drug's potency. The EC50 of a graded dose response curve therefore

PCT/EP2015/077245

represents the concentration of a compound where 50% of its maximal effect is observed. The EC50 of a quantal dose response curve represents the concentration of a compound where 50% of the population exhibits a response, after a specific exposure duration.

- 5 [0018] Methods for the identification and/or isolation of cells or cell lines susceptible to neurotoxin intoxication and/or having neurotoxin uptake capacity, i.e. neurotoxin-sensitive cells as defined herein, are known in the art; see, e.g. US 2012/0122128 A1. The biological activity of the neurotoxin polypeptides, in an aspect, results from all of the aforementioned biological properties. Cell-based systems for determining the biological activity of
- 10 neurotoxins known in the art have been indicated elsewhere herein. *In vivo* assays for assessing the biological activity of neurotoxins include, for example, the already mentioned mouse LD_{50} assay and the *ex vivo* mouse hemidiaphragm assay as described by Pearce et al. and Dressier et al.; see Pearce 1994, Toxicol. Appl. Pharmacol. 128: 69-77 and Dressier 2005, Mov. Disord. 20:1617-1619. As known to those skilled in the art, the
- 15 biological activity of neurotoxins is commonly expressed in Mouse Units (MU). One MU is the amount of neurotoxic component, which kills 50% of a specified mouse population after intraperitoneal injection, i.e. the mouse i.p. LD 50.The method of the invention provides for a simple, reliable, and robust cell-based test system with increased sensitivity to neurotoxin polypeptides, in comparison to the cellular test systems described in the art
- 20 which require complex differentiation protocols. Accordingly, the method of the invention provides for an improved alternative to the cellular test systems of the art for determining the biological activity of neurotoxins. Further, the method of the invention can be used as an alternative to animal-based assays.
- [0019] The terms "differentiation", "differentiating" or "differentiated" as used herein denote the process by which an unspecialized or a relatively less specialized cell becomes relatively more specialized. In the context of cell ontogeny, the adjective "differentiated" is a relative term. Hence, a "differentiated cell" is a cell that has progressed further down a certain developmental pathway than the cell it is being compared with. A differentiated cell may, for example, be a terminally differentiated cell, i.e., a fully specialized cell that takes
- up specialized functions in various tissues and organs of an organism, and which may but need not be post-mitotic. In another example, a differentiated cell may also be a progenitor cell within a differentiation lineage, which can further proliferate and/or differentiate. Similarly, a cell is "relatively more specialized" if it has progressed further down a certain
- 35 developmental pathway than the cell it is being compared with, wherein the latter is therefore considered "unspecialized" or "relatively less specialized". A relatively more specialized cell may differ from the unspecialized or relatively less specialized cell in one or more demonstrable phenotypic characteristics, such as, for example, the presence,

10

25

absence or level of expression of particular cellular components or products, e.g., RNA, proteins, specific cellular markers or other substances, activity of certain biochemical pathways, morphological appearance, proliferation capacity and/or kinetics, differentiation potential and/or response to differentiation signals, etc., wherein such characteristics signify the progression of the relatively more specialized cell further along the said developmental pathway.

[0020] The term "neuronal differentiated cell" as used herein means a cell which has reached the final neuronal differentiation status. For example, the murine embryonic carcinoma P19 cells differentiate first to neuro-progenitor cells before they further differentiate to neurons. The neuro-differentiation process can be followed, e.g., phenotypically (by phase-contrast microscopy) and/or by the expression of neuronal differentiation markers; see, e.g., Babuska et al. (2010), Prague Medical Report 111, 289-299 or Migliore and Shepherd, Nature Reviews Neuroscience 6, 810-818 (2005). Assays

which can be used for the determination of the expression of said neuronal differentiation markers include, for example, PCR, RT-PCR, Northern blot, Western blot or Dot blot, immunoprecipitation analysis, enzyme-linked immunosorbent analysis (ELISA) or FACS analysis which are known in the art; see, e.g., Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, third edition, 2001. Assays for testing the further
 characteristics of neuronal differentiated cells are also known in the art.

[0021] The term "tumor cells which are able to differentiate into neuronal cells" as used herein means, for example, neuroblastoma cells, embryonic carcinoma cells, teratocarcinoma cells, neural hybrid cells (e.g. neuron x glioblastoma cells), or fibroblastoma cells. Examples of such tumor cells which are able to differentiate into neuronal cells include mouse and human tumor cells, i.e. P19 (murine embryonic carcinoma) cells, SiMa (human neuroblastoma) cells or SH-SY5Y (human neuroblastoma).

[0022] The term "neuroblastoma" as used herein means a cancer that develops from nerve cells found in several areas of the body. Neuroblastoma most commonly arises in and around the adrenal glands, which have similar origins to nerve cells and sit atop the kidneys. However, neuroblastoma can also develop in other areas of the abdomen and in the chest, neck and pelvis, where groups of nerve cells exist. The term "neuroblastoma cell" as used herein comprises one or more neuroblastoma cells which are neurotoxin35 sensitive and capable of differentiating to neuronal cells. The neuroblastoma cell can be a primary neuroblastoma cell or a primary neuroblastoma cell line. Encompassed by said term are also established neuroblastoma cells or cell lines. The neuroblastoma cell can be a mammalian neuroblastoma cell, for example, a rodent neuroblastoma cell such as a rat or

mouse neuroblastoma cell, but also a monkey neuroblastoma cell, such as a rhesus, macaque, or cynomolgus neuroblastoma cell or a primate neuroblastoma cell such as a chimpanzee neuroblastoma cell or, preferably, a human neuroblastoma cell. Examples of established neuroblastoma cell lines encompass, e.g., Neuro-2a (mouse neuroblastoma),

- 5 Kelly (human neuroblastoma), SH-SY5Y (human neuroblastoma) or SiMa (human neuroblastoma). Human neuroblastoma cells are preferably used in the methods of the invention in order to generate neurotoxin-sensitive, neuronal differentiated cells. More preferably, the neuroblastoma cell as defined herein is a SiMa cell or SiMa cell line. This is because SiMa cells are easy to transfer, in a BoNT-sensitive form. In addition, they have
- 10 high sensitivity to BoNT. Moreover, the differentiation protocol for SiMa cells is simple and rather short, in comparison to other neuroblastoma cells or cell lines. The SiMa cells as used in the method of the invention can be parental SiMa cells or (sub)clones derived therefrom.
- 15 [0023] The term "contacting" as used in accordance with the method of the invention refers to bringing the aforementioned neurotoxin-sensitive cells and the neurotoxin in physical proximity as to allow physical and/or chemical and/or biological interaction. The neurotoxin polypeptide can be a native, recombinant, isolated, modified, essentially purified or purified neurotoxin polypeptide or variant thereof. Alternatively, the neurotoxin
- 20 can be comprised by a sample, preferably a biological sample such as a cell, cell lysate, blood, plasma, serum or lymph fluid. Suitable conditions which allow for specific interaction are well known to the skilled worker. Said conditions will depend on the cells and neurotoxins to be applied in the methods of the present invention, and can be adapted by the skilled artisan without further ado. Moreover, a time being sufficient to allow
- 25 interaction can also be determined by the skilled worker by routine experimentation. For example, a specific amount of an isolated or recombinant neurotoxin polypeptide or a variant thereof as defined herein or a sample comprising a neurotoxin polypeptide can be added to the neurotoxin-sensitive cells. Thereafter, the cells are incubated with the neurotoxin polypeptide for at least 24 h, preferably 48 h, more preferably for 72 h under
- 30 conditions which allow for the neurotoxin polypeptide to exert its biological activity. "Conditions which allow for the neurotoxin polypeptide to exert its biological activity" as used herein are known in the art.

[0024] The term "neurotoxin", "neurotoxin polypeptide" or "neurotoxin protein" as used
in the present invention refers to the seven distinct serotypes of Botulinum neurotoxins, i.e.
BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/E, BoNT/F, BoNT/G, and to Tetanus
Neurotoxin (TeNT), and variants thereof as defined herein. The corresponding nucleic acid and amino acid sequences are known in the art; see, e.g., Uniprot or TREMBL sequence

database or WO 2010/124998, the disclosure content of which is incorporated herewith by reference. Preferably, BoNT/A, BoNT/C1 or BoNT/E is used in the methods of the invention. The corresponding receptors and substrates for said neurotoxins are well described in the art. The neurotoxin polypeptide can be a naturally occurring neurotoxin or a non-naturally occurring neurotoxin. A naturally occurring neurotoxin polypeptide is

- 5 a non-naturally occurring neurotoxin. A naturally occurring neurotoxin polypeptide is produced by a naturally occurring process, including, for example, isoforms produced from a post-translational modification, an alternatively-spliced transcript or a spontaneous mutation and subtypes. For instance, BoNT/A subtypes are BoNT/A1 subtype, BoNT/A2 subtype, BoNT/A3 subtype, BoNT/A4 subtype or BoNT/A5 subtype. A naturally
- 10 occurring neurotoxin polypeptide includes the above-referenced sequences in which 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100 or more amino acid residues are added, substituted or deleted. Commercially available pharmaceutical compositions which comprise a naturally-occurring BoNT/A have already been mentioned in the introductory part. A nonnaturally occurring neurotoxin polypeptide means any neurotoxin polypeptide whose
- 15 structure was modified with the aid of human manipulation, including, for example, a neurotoxin polypeptide with an altered amino acid sequence produced by genetic engineering using random mutagenesis or rational design and a neurotoxin polypeptide generated by chemical synthesis. Such non-naturally occurring neurotoxin polypeptides have been described in the art.

20

25

[0025] In another aspect of the invention, the neurotoxin polypeptide has an amino acid sequence being at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or at least 99% identical to the amino acid sequence of BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/E, BoNT/F, BoNT/G, or Tetanus neurotoxin, as defined herein. Envisaged are also the polynucleotides encoding the neurotoxin polypeptide, wherein the polynucleotides have a sequence being at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 50%, at least 60%, at least 70%, at least 99% identical to the polynucleotide sequence of BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/E, BoNT/F,

- 30 BoNT/G, or Tetanus neurotoxin, as defined herein. Identical as used in the present invention refers to sequence identity of polynucleotide or amino acid sequences wherein the sequences are aligned so that the highest order match is obtained. This can be achieved by using published techniques or methods codified in computer programs such as, for example, BLASTP, BLASTN, FASTA, Altschul 1990, J. Mol. Biol. 215, 403. The percent
- 35 identity values are, in one aspect, calculated over the entire amino acid sequence. A series of programs based on a variety of algorithms is available to the skilled worker for comparing different sequences. In this context, the algorithms of Needleman and Wunsch or Smith and Waterman give particularly reliable results. To carry out the sequence

alignments, the program PileUp (1987, J. Mol. Evolution 25, 351; Higgins 1989 CABIOS 5, 151) or the programs Gap and BestFit (Needleman and Wunsch 1970, J Mol Biol 48; 443; Smith and Waterman 1981, Adv. Appl. Math. 2, 482), which are part of the GCG software packet (Genetics Computer Group 1991, 575 Science Drive, Madison, Wisconsin,

- 5 USA 53711), are to be used. The sequence identity values recited above in percent (%) are to be determined, in one aspect of the invention, using the program GAP over the entire sequence region with the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 and Average Mismatch: 0.000, which, unless otherwise specified, shall always be used as standard settings for sequence alignments. It will be understood that the
- 10 aforementioned variants shall, in an aspect of the invention, retain, at least one of the biological properties of neurotoxins and, in an aspect, all of the biological properties of a neurotoxin polypeptide recited herein. In a further aspect, the variants can be neurotoxins having improved or altered biological properties, e.g., they may recognize and cleave cleavage sites in the substrate which are improved for enzyme recognition and/or cleavage or may be improved for receptor binding or any other property specified above.

[0026] The neurotoxins referred to herein, in principle, comprise an N-terminal light chain and a C-terminal heavy chain. The neurotoxins are produced as single chain precursor molecules, referred to as "unprocessed neurotoxin polypeptides". As a result of the subsequent processing, "processed neurotoxin polypeptide" is obtained. The said processed neurotoxin polypeptide exhibits the biological properties characteristic for a neurotoxin, namely, (a) receptor binding, (b) internalization, (c) translocation across the endosomal membrane into the cytosol, and/or (d) endoproteolytic cleavage of proteins involved in synaptic vesicle membrane fusion. Therefore, the processed neurotoxin polypeptide is referred to as biologically active or mature neurotoxin polypeptide. The biological activity of the neurotoxin polypeptides, in an aspect, results from all of the aforementioned biological properties, as set forth elsewhere herein.

- [0027] The term "permeabilization" as used herein means the process of making a plasma
 or cell membrane of a neurotoxin-sensitive cell permeable. One method of cell permeabilization involves the permeabilization of plasma or cell membranes of neurotoxin-sensitive cells by incubation with a hemolysin, for example, streptolysin O (Barry, E. et al., Biotechniques, 15, 1016 (1993); Graves, J.D. et al., Biochem. J., 265, 407-413 (1990); Sekiya K, Satoh R, Danbara H, Futaesaku Y. A ring-shaped structure with acrown formed by streptolysin O on the erythrocyte membrane. J Bacteriol. 1993 Sept.; 175(18): 5953-61), perfringolysin O (Prepore to pore transition of a cholesterol-dependent cytolysin visualized
 - by electron microscopy. Dang, T.X., Hotze, E.M., Rouiller, I., Tweten, R.K., Wilson-Kubalek, E.M. J. Struct. Biol. (2005)), pneumolysin (Tilley SJ, Orlova EV, Gilbert RJ,

PCT/EP2015/077245

Andrew PW, Saibil HR (April 2005). "Structural basis of pore formation by the bacterial toxin pneumolysin". Cell 121 (2): 247–56), listeriolysin O (Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev.

- 5 2001 July; 14(3): 584-640), a bacterial hemolysin or a pore forming toxin from snakes or spiders. Many hemolysins are pore-forming toxins, i.e. they are able to produce pores on the cytoplasmic membrane of cells, thereby permeabilizing the cells. Methods and protocols of permeabilizing cells using hemolysins are known in the art and described, e.g., in the above-indicated publications. The neurotoxin-sensitive cells are permeabilized under
- 10 conditions which allow the release of the reporter protein but not the release of the anchor protein from the permeabilized cells. As appreciated by those skilled in the art, the plasma or cell membrane remains intact, by using permeabilization by a hemolysin. Membraneassociated proteins or membrane proteins remain in place, and only soluble proteins can pass the cell membrane and can leave the interior of the cell. The non-cleaved fusion
- 15 protein is associated with the cell membrane and remains there, after permeabilization. From the cleaved fusion protein, the part containing the measurable signal, i.e. the reporter protein, can leave the interior of the cell and is thereby physically separated from the cell.

[0028] The term "amount" as used herein encompasses the absolute amount of, e.g., a
reporter protein or a neurotoxin polypeptide, the relative amount or the concentration of the said protein or polypeptide as well as any value or parameter which correlates thereto or can be derived there from.

[0029] The term "determining the amount" of, e.g., a reporter protein or neurotoxin polypeptide relates to measuring the absolute amount, relative amount or concentration of, e.g., the reporter protein or neurotoxin polypeptide, in a quantitative or semi-quantitative manner. Suitable measures for detection are well known to those skilled in the art. It will be understood that the determination of the amount of reporter protein or neurotoxin polypeptide, in an aspect, also requires calibration of the method by applying standard solutions with predefined amounts of reporter protein or neurotoxin polypeptide. It is well known to those skilled in the art how to carry out such a calibration; see also the following Example.

[0030] The "reporter protein" or "detection protein" (both terms are interchangeable) as referred to herein is in one aspect an enzyme such as luciferase, alkaline phosphatase, betagalactosidase, and horseradish peroxidase. For example, luciferases belong into a class of enzymes capable of catalyzing a light-emitting reaction. Luciferases occur naturally as firefly or bacterial luciferases. The structure of luciferases and their subunits as well as

10

nucleic acid sequences encoding them are well known in the art and described, e.g., in Chon 1985, J. Biol. Chem. 260(10): 6139-46 and Johnston 1986, J. Biol. Chem. 261(11): 4805-11. Luciferase activity can be determined by measuring the enzymatic conversion of a luciferase substrate. The latter one can be measured by detecting the intensity of the light emitted during the conversion reaction. Suitable systems and kits for measuring the light emission that occurs during the conversion reaction catalyzed by luciferases are well known in the art and commercially available (providers are, e.g., Takara Clontech, Thermo Scientific, and Promega; see also publications by, e.g., Gailey, P. C., Miller, E. J. & Griffin, G. D. (1997) Low-cost system for real-time monitoring of luciferase gene expression. BioTechniques 22: 528–534; Gould, S. J. & Subramani, S. (1988) Firefly luciferase as a tool in molecular and cell biology. Analyt. Biochem. 175:5–13 Fulton, R. & Van Ness, B. (1993) Luminescent reporter gene assays for luciferase and betagalactosidase using a liquid scintillation counter. BioTechniques 14:762-763; Lemasters, J. J. & Hackenbrock, C. R. (1977) Kinetics of product inhibition during firefly luciferase

- 15 luminescence. Biochemistry 16(3): 445–447; Nguyen, V. T., Morange, M. & Bensaude, O. (1988) Firefly luciferase luminescence assays using scintillation counters for quantitation in transfected mammalian cells. Analyt. Biochem. 171: 404–408; Seliger, H. H. & McElroy, W. D. (1960) Spectral emission and quantum yield of firefly bioluminescence. Arch. Biochem. Biophys. 88:136–141; Vieites, J. M., Navarro-García, F., Pérez-Diaz, R.,
- Pla, J. & Nombela, C. (1994) Expression and in vivo determination of firefly luciferase as gene reporter in Saccharomyces cerevisiae. Yeast 10:1321–1327). The luminescence mediated by the luciferase in a redox reaction is equivalent to the amount of neurotoxin polypeptide in the sample. Thus, by quantifying the activity of the luciferase released from the cells, the biological activity of the neurotoxin can be determined. A standard curve with
- 25 known neurotoxin polypeptide concentrations can be used as a reference in parallel. As a further reference, a protein measurement can be carried out in order to match the signal by luciferase to the cell number in the sample which may vary from case to case. This method is routine in the art and can be carried out in parallel to the activity assays of the invention described above. Another suitable enzyme which can be used as reporter protein is beta-
- 30 galactosidase. Assays using this enzyme are also commercially available and described in the art (Thermo Scientifc, Life Technologies, Promega; Nielsen, D. A., Chou, J., MacKrell, A. J., Casadaban, M. J. and Steiner, D. F. (1983) Proc Natl Acad Sci U S A 80(17): 5198-202). Alternatively, a fluorescent protein such as GFP, YFP, BFP or RFP can be utilized as reporter protein. Assays using said reporter proteins are known in the art. The term
- ³⁵ "quantifying the activity of the reporter protein" as used herein means measuring the reporter protein activity of the cleaved fusion protein of the invention remaining in the soluble supernatant after permeabilization of the neurotoxin-sensitive cells or the residual reporter protein activity of the non-cleaved fusion protein of the invention remaining in or

at the neurotoxin-sensitive cells or the total reporter protein activity of the fusion protein of the invention. For the determination of the total activity of the reporter protein, the activity of the reporter protein in the permeabilized cells can be determined, or the activity of the total remaining reporter protein after removal of the supernatant can be measured. Alternatively, a standardization or normalization factor, such as GFP in the fusion protein choline transporter-GFP-SNAP-25-luciferase of the invention, can be measured representing the total initial amount of the fusion protein of the invention. By quantifying the activity of the reporter protein released from the cells, the biological activity of the neurotoxin polypeptide can be determined.

10

5

[0031] The term "determining the biological activity of a neurotoxin polypeptide" as used herein means measuring the biological activity of a neurotoxin protein, namely, (a) receptor binding, (b) internalization, (c) translocation across the endosomal membrane into the cytosol, and/or (d) endoproteolytic cleavage of proteins involved in synaptic vesicle membrane fusion. More specifically, the overall cellular mechanisms whereby a

- 15 membrane fusion. More specifically, the overall cellular mechanisms whereby a neurotoxin (e.g., BoNT/A) cleaves a neurotoxin substrate (e.g., SNAP-25) encompasses the binding of the neurotoxin to its corresponding receptor (e.g., binding of BoNT/A to BoNT/A receptor), the internalization of the neurotoxin/receptor complex, the translocation of the neurotoxin light chain from an intracellular vesicle into the cytoplasm
- and the proteolytic cleavage of the neurotoxin substrate. *In vitro* and *in vivo* assays for determining the biological activity of a neurotoxin polypeptide are well known in the art and have been mentioned elsewhere herein (see, e.g., Pellett et al., Withemarsh et al Toxicol. Sciences 126(2), 426-435 (2012), WO 2010/105234 A1).
- 25 [0032] As used herein, the singular forms "a", "an" and "the" include both singular and plural reference unless the context clearly dictates otherwise. By way of example, "a cell" refers to one or more than one cell.
- [0033] As used herein, the term "about" when qualifying a value of a stated item, number,
 percentage, or term refers to a range of plus or minus 10 percent, 9 percent, 8 percent, 7 percent, 6 percent, 5 percent, 4 percent, 3 percent, 2 percent or 1 percent of the value of the stated item, number, percentage, or term. Preferred is a range of plus or minus 10 percent.
- [0034] The term "essentially purified" as used herein means that a neurotoxin polypeptide
 is essentially free of other host cell polypeptides, i.e. it may contain impurities of 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% or 1% host cell polypeptide.

[0035] The terms "comprising", "comprises" and "comprised of" as used herein are synonyms with "including", "includes", "encompassing", "encompasses" or "containing", "contains", and are inclusive or open-ended and do not exclude additional, non-recited members, elements or method steps. Evidently, the term "comprising" encompasses the

- 5 term "consisting of". More specifically, the term "comprise" as used herein means that the claim encompasses all the listed elements or method steps, but may also include additional, unnamed elements or method steps. For example, a method comprising steps a), b) and c) encompasses, in its narrowest sense, a method which consists of steps a), b) and c). The phrase "consisting of" means that the composition (or device, or method) has the recited
- 10 elements (or steps) and no more. In contrast, the term "comprises" can encompass also a method including further steps, e.g., steps d) and e), in addition to steps a), b) and c).

[0036] In case numerical ranges are used herein such as "compound X in a concentration between 0.1 and 0.5 micromolar", the range includes not only 0.1 and 0.5 micromolar, but also any numerical value in between 0.1 and 0.5 micromolar, for example, 0.2, 0.3 and 0.4

micromolar.

15

20

[0037] The term "*in vitro*" as used herein denotes outside, or external to, the animal or human body. The term "*in vitro*" as used herein should be understood to include "*ex vivo*". The term "*ex vivo*" typically refers to tissues or cells removed from an animal or human body and maintained or propagated outside the body, e.g., in a culture vessel. The term "*in*

vivo" as used herein denotes inside, or internal to, the animal or human body.

[0038] In a specific aspect, the method of the invention comprises the steps of:

25

- (a) expressing a fusion protein comprising (i) an anchor protein, (ii) a reporter protein and (iii) a neurotoxin cleavage site intervening the anchor protein and the reporter protein, in neurotoxin-sensitive cells which are able to differentiate into neuronal cells;
- 30 (b) differentiating the neurotoxin-sensitive cells of step (a) in a culture medium under conditions and for a time which differentiate said neurotoxin-sensitive cells into neuronal differentiated cells;
 - (c) incubating the neuronal differentiated cells of step (b) with a neurotoxin and cultivating the cells under conditions which allow the neurotoxin to exert its biological activity;
 - (d) permeabilizing the neuronal differentiated cells of step (c) under conditions which allow the release of the reporter protein but not the release of the anchor protein from the permeabilized neuronal differentiated cells; and

35

(e) quantifying the activity of the reporter protein released from the cells of step(d), thereby determining the biological activity of the neurotoxin.

[0039] In this specific aspect, the neurotoxin-sensitive cells are able to differentiate into
neuronal cells. Preferably, said neurotoxin-sensitive cells that are able to differentiate into
neuronal cells are tumor cells. In some aspects of the method of the invention, said tumor
cells which are able to differentiate into neuronal cells are SiMa cells available, e.g., from
DSMZ (German collection of Microorganisms and Cell cultures) under the ACC deposit
number: 164. The SiMa cell line DSMZ ACC 164 is also known as parental SiMa cell line.

- SiMa cells as used in the methods of the invention can be parental SiMa cells or (sub)clones thereof. Such subclones are also known in the art; see, e.g., WO 2010/105234, US 8,476,068 B2 or Ester Fernández-Salas, Joanne Wang, Yanira Molina, Jeremy B. Nelson, Birgitte P. S. Jacky, K. Roger Aoki – PloSOne; 2012 7(11) e49516. In other aspects, the tumor cells which are able to differentiate into neuronal cells are P19 cells
- 15 (Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol. 1982 Aug; 94(2): 253-62; Staines WA, Craig J, Reuhl K, McBurney MW. Retinoic acid treated P19 embryonal carcinoma cells differentiate into oligodendrocytes capable of myelination. Neuroscience. 1996 Apr; 71(3): 845-53) or SH-SY5Y cells (Encinas, Mario, et al.
- 20 "Sequential Treatment of SH-SY5Y Cells with Retinoic Acid and Brain-Derived Neurotrophic Factor Gives Rise to Fully Differentiated, Neurotrophic Factor-Dependent, Human Neuron-Like Cells." Journal of neurochemistry 75.3 (2000): 991-1003). Further neurotoxin-sensitive cells are mentioned elsewhere herein. Said cells can be cultivated according to the protocol of the DMSZ. In other specific aspects of this method, the neurotoxin-sensitive cells able to differentiate into neuronal cells are or are derived from primary cells, stem cells or induced pluripotent stem cells. Protocols for differentiating said cells into neuronal cells are described in the art; see, e.g., the cited publications.

[0040] In a specific aspect of the method of the invention, the anchor protein is a
 transmembrane protein. Preferably, the transmembrane protein is selected from the group consisting of a choline transporter, H1-receptor (histamine H1 receptor), G protein-coupled receptor (GPCR) and SV2.

35

[0041] In a specific aspect of the method of the invention, the neurotoxin cleavage site is selected from the group consisting of a BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/D, BoNT/E, BoNT/F, BoNT/G and TeNT cleavage site. It will be understood that the neurotoxin cleavage site comprised in the fusion protein of the invention shall be made available by the fusion protein to a neurotoxin polypeptide such that the neurotoxin

protease can recognize, bind to and cleave the fusion protein of the invention in the neurotoxin-sensitive cells under suitable conditions. The skilled artisan is well aware of how a suitable arrangement within the fusion protein can be designed. Moreover, the fusion protein can be tested for cleavage by proteolytically active neurotoxin polypeptide in neurotoxin-sensitive cells as described in the accompanying example.

[0042] In another specific aspect of the method of the invention, the reporter protein is an enzyme selected from the group consisting of luciferase, alkaline phosphatase, beta-galactosidase, and horseradish peroxidase or a fluorescent protein selected from the group consisting of GFP, YFP, BFP and RFP.

10

15

20

5

[0043] In a further specific aspect of the method of the invention, a hemolysin is used for the permeabilization of the cells. The neurotoxin-sensitive cells are permeabilized under conditions which allow the release of the reporter protein but not the release of the anchor protein from the permeabilized neurotoxin-sensitive cells.

[0044] The hemolysin is preferably selected from the group consisting of streptolysin O, perfringolysin O, pneumolysin, a bacterial hemolysin and a pore forming toxin from snakes or spiders. The use of hemolysins in permeabilizing cells and protocols in this regard are well described in the art.

[0045] In a particular aspect of the method of the invention, the fusion protein comprises or consists of a fusion protein selected from the group consisting of choline transporter-GFP-SNAP-25-luciferase, H1-receptor-SNAP-25-HRP and H1-receptor-SNAP-25luciferase. Moreover, encompassed is in an aspect a fusion protein comprising an amino 25 acid sequence as shown in SEQ ID NO: 2 or 4, or an amino acid sequence having at least 60 %, 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 96 %, 97 %, 98 % or 99 % sequence identity to SEQ ID NO: 2 or SEQ ID NO: 4. Means and methods for the determination of sequence identity between two sequences are mentioned elsewhere herein. The percent identity values are, in one aspect, calculated over the entire amino acid sequence of the reference 30 sequence, i.e. SEQ ID NO: 2 or 4. The amino acid sequence shown in SEQ ID NO: 2 (choline transporter-GFP-SNAP-25-luciferase; CHT-GFP-SNAP-LUC) is encoded by the nucleic acid sequences depicted in SEQ ID NO: 1 and 5, the amino acid sequence shown in SEQ ID NO: 4 (H1-receptor-SNAP-25-luciferase; H1R-SNAP-LUC) is encoded by the

35 nucleic acid sequence depicted in SEQ ID NO: 3. The corresponding sequences are shown in the sequence listing.

21

[0046] In a further aspect of the method of the invention, the quantification of the activity of the reporter protein comprises the standardization of the activity of the reporter protein.

[0047] In a specific aspect of the method of the invention, the standardization of the activity of the reporter protein is carried out by determining the residual reporter protein activity of the non-cleaved fusion protein remaining in or at the neurotoxin-sensitive cells or the total reporter protein activity of the fusion protein.

[0048] In addition, the invention pertains to a fusion protein comprising (i) an anchor
 protein, (ii) a reporter protein, and (iii) a neurotoxin cleavage site intervening the anchor
 protein and the reporter protein, for determining the biological activity of a neurotoxin, in
 neurotoxin-sensitive cells. Preferably, the neurotoxin-sensitive cells are able to
 differentiate to neuronal cells.

- 15 [0049] The definitions and embodiments with respect to the method of the invention apply *mutatis mutandis* to the fusion protein, polynucleotide, vector, host cell and kit of the invention.
- [0050] In a specific aspect of the fusion protein of the invention, the anchor protein is selected from the group consisting of choline transporter (CHT), H1-receptor, GPCR and 20 SV2; the reporter protein is an enzyme selected from the group consisting of luciferase, alkaline phosphatase, beta-galactosidase, and horseradish peroxidase (HRP) or a fluorescent protein selected from the group consisting of GFP, YFP, BFP and RFP; and the neurotoxin cleavage site is selected from the group consisting of a BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/E, BoNT/F, BoNT/G and TeNT cleavage site. Further 25 encompassed is any combination of the mentioned anchor protein, reporter protein and neurotoxin cleavage site, in the fusion protein of the invention. Preferably, the arrangement of the fusion protein of the invention is, from the N-terminus to the C-terminus, anchor protein-neurotoxin cleavage site-reporter protein. If a standardization factor is used, the arrangement of the fusion protein of the invention is preferably anchor protein-30 standardization factor-neurotoxin cleavage site-reporter protein, from the N-terminus to the C-terminus.

[0051] In a still further specific aspect of the fusion protein of the invention, the fusion
 protein comprises or consists of a fusion protein selected from the group consisting of
 choline transporter-GFP-SNAP-25-luciferase (with GFP as a standardization or
 normalization factor), H1-receptor-SNAP-25-luciferase and H1-receptor-SNAP-25-HRP.
 Moreover, encompassed is in an aspect a fusion protein comprising an amino acid

sequence as shown in SEQ ID NO: 2 or 4, or an amino acid sequence having at least 60 %, 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 96 %, 97 %, 98 % or 99 % sequence identity to SEQ ID NO: 2 or SEQ ID NO: 4. Means and methods for the determination of sequence identity between two sequences are indicated elsewhere herein. The percent identity values are, in

- 5 one aspect, calculated over the entire amino acid sequence of the reference sequence, i.e. SEQ ID NO: 2 or 4. The amino acid sequence shown in SEQ ID NO: 2 (choline transporter-GFP-SNAP-25-luciferase; CHT-GFP-SNAP-LUC) is encoded by the nucleic acid sequences depicted in SEQ ID NO: 1 and 5, the amino acid sequence shown in SEQ ID NO: 4 (H1-receptor-SNAP-25-luciferase; H1R-SNAP-LUC) is encoded by the nucleic
- 10 acid sequence depicted in SEQ ID NO: 3. The corresponding sequences are shown in the sequence listing.

[0052] The invention also pertains to a polynucleotide encoding the fusion protein of the invention.

15

35

[0053] The term "polynucleotide" or "nucleic acid (molecule)" as used herein refers to single- or double-stranded DNA molecules as well as to RNA molecules. Encompassed by the said term is genomic DNA, cDNA, hnRNA, mRNA as well as all naturally occurring or artificially modified derivatives of such molecular species. The polynucleotide may be,
in an aspect, a linear or circular molecule. The polynucleotide sequence codes for the fusion protein of the invention. Moreover, in addition to the nucleic acid sequences encoding the fusion protein of the invention, a polynucleotide as used herein may comprise additional sequences. The nucleic acid sequences encoding the fusion protein of the amino acid sequences by a skilled artisan without further ado. In light of the degeneracy of the genetic code, optimized codons may be used in the nucleic acid sequences encoding the fusion. Thereby,

30 [0054] The invention also pertains to a vector comprising the polynucleotide of the invention. In an aspect, said vector is an expression vector.

optimal expression in, e.g., a neurotoxin-sensitive cell can be achieved.

[0055] The term "vector", preferably, encompasses phage, plasmid, viral or retroviral vectors as well as artificial chromosomes, such as bacterial or yeast artificial chromosomes. Moreover, the term also relates to targeting constructs which allow for random or site-directed integration of the targeting construct into genomic DNA. Such target constructs, preferably, comprise DNA of sufficient length for either homologous or heterologous recombination. The vector encompassing the polynucleotides of the present

invention, in an aspect, further comprises selectable markers for propagation and/or selection in a host or host cell. The vector may be incorporated into a host cell by various techniques well known in the art. For example, a plasmid vector can be introduced in a precipitate such as a calcium phosphate precipitate or rubidium chloride precipitate, or in a

- 5 complex with a charged lipid or in carbon-based clusters, such as fullerens. Alternatively, a plasmid vector may be introduced by heat shock or electroporation techniques. Should the vector be a virus, it may be packaged in vitro using an appropriate packaging cell line prior to application to host cells. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing
- 10 host/cells. Moreover, in an aspect of the invention, the polynucleotide is operatively linked to expression control sequences allowing expression in prokaryotic or eukaryotic host cells or isolated fractions thereof in the said vector. Expression of the polynucleotide comprises transcription of the polynucleotide into a translatable mRNA. Regulatory elements ensuring expression in host cells are well known in the art. In an aspect, they comprise
- 15 regulatory sequences ensuring initiation of transcription and/or poly-A signals ensuring termination of transcription and stabilization of the transcript. Additional regulatory elements may include transcriptional as well as translational enhancers. Possible regulatory elements permitting expression in prokaryotic host cells comprise, e.g., the lac-, trp- or tac-promoter in E. coli, and examples for regulatory elements permitting expression in a stabilization of the transcription and stabilization of the transcriptional enhancers. Possible regulatory elements permitting expression in prokaryotic host cells comprise, e.g., the lac-, trp- or tac-promoter in E. coli, and examples for regulatory elements permitting expression in protect on the CALL promoter in E. COLV.
- 20 eukaryotic host cells are the AOX1- or the GAL1- promoter in yeast or the CMV-, SV40-, RSV-promoter (Rous sarcoma virus), CMV-enhancer, SV40-enhancer or a globin intron in mammalian and other animal cells. Other expression systems envisaged by the invention shall permit expression in insect cells, such as polyhedrin promoter based systems.
- [0056] Moreover, inducible expression control sequences may be used in an expression vector encompassed by the present invention. Inducible expression systems and suitable expression control sequences are well known in the art. For example, the tetracycline-responsive regulatory system for transcriptional transactivation is described in Zhu Z, Zheng T, Lee CG, Homer RJ, Elias JA: Tetracycline-controlled transcriptional regulation
 systems: advances and application in transgenic animal modeling. Semin. Cell Dev. Biol. 2002, 13:121-8; or Shockett P, Schatz D: Inducible gene expression using an autoregulatory, tetracycline-controlled system. Curr. Protoc. Mol. Biol. 2002, Chapter 16: Unit 16.14. Such inducible vectors may comprise tet or lac operator sequences or sequences inducible by heat shock or other environmental factors are described in the art.
- For example, two commonly used inducible expression systems are Tet-Off and Tet-On; see Bujard and Gossen, Proc. Natl. Acad. Sci. U.S.A. 89 (12): 5547–51. They consist of a fusion of the Tet repressor and a VP16 activation domain to create a transcriptional activator protein (transactivator) rather than a repressor. Gene expression is activated as a

10

result of binding of the Tet-Off or Tet-On protein to tetracycline response elements (TREs) located within an inducible promoter. The difference relates to their respective response to doxycycline (Dox), a more stable tetracycline analogue: Tet-Off activates expression in the absence of Dox, whereas Tet-On activates in the presence of Dox. Suitable vectors are commercially available. For example, the Tet-On 3G vector set by Clontech can be used to create tightly regulated and highly responsive tetracycline (Tet)-inducible mammalian expression systems that are turned on by the addition of doxycycline to the culture medium. The pCMV-Tet3G vector expresses Tet-On 3G, a tetracycline-controlled transactivator that exhibits high activity in the presence of the inducer doxycycline, and exceptionally low activity in its absence. Tet-On 3G results from the fusion of amino acids 1-207 of a mutant Tet repressor (TetR) to 39 amino acids that form three minimal "F"-type

transcriptional activation domains from the herpes simplex virus VP16 protein. Constitutive expression of Tet-On 3G is driven by the human cytomegalovirus immediate early promoter ($P_{CMV IE}$). Further, an EF1alpha version is available for cell lines in which

- 15 the CMV promoter is silenced. For further detailed information see Clontech catalogue number 631163 and references cited therein. Beside elements which are responsible for the initiation of transcription such regulatory elements may also comprise transcription termination signals, such as the SV40-poly-A site or the tk-poly-A site, downstream of the polynucleotide. In this context, suitable expression vectors are known in the art such as
- 20 Okayama-Berg cDNA expression vector pcDV1 (Pharmacia), pBluescript (Stratagene), pCDM8, pRc/CMV, pcDNA1, pcDNA3, pcDNA3.1 (Invitrogen) or pSPORT1 (Invitrogen) or baculovirus-derived vectors. Preferably, said vector is an expression vector and a gene transfer or targeting vector. Expression vectors derived from viruses such as retroviruses, vaccinia virus, adeno-associated virus, herpes viruses, or bovine papilloma
- virus, may be used for delivery of the polynucleotides or vector of the invention into targeted cell population. Methods which are well known to those skilled in the art can be used to construct recombinant viral vectors; see, for example, the techniques described in Sambrook, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory (1989), (2001) N.Y. and Ausubel, Current Protocols in Molecular Biology, Green Dalitation and Market and Market
- 30 Publishing Associates and Wiley Interscience, N.Y. (1994).

[0057] The invention further pertains to a host cell comprising the polynucleotide, the vector or the fusion protein of the invention.

35 [0058] The term "host cell" as used herein encompasses prokaryotic and eukaryotic host cells, preferably isolated prokaryotic and eukaryotic host cells. Preferably, the host cell is a eukaryotic host cell. A eukaryotic host cell as used herein is a cell of an animal, preferably mammalian or human cell line suitable for production of the fusion protein of the

5

10

invention. The polynucleotide or vector of the invention can be stably integrated into the genome of the host cell or transiently expressed by the host cell. A host cell as referred to herein, thus, encompasses in an aspect, yeast cells, mammalian cells, including human cells, plant cells or insect cells, either as primary cells or as cell lines. For example, the neurotoxin-sensitive cells referred to herein can be used as host cells.

[0059] The fusion protein of the invention can be manufactured by chemical synthesis or recombinant molecular biology techniques well known for the skilled artisan; see, e.g., Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, third edition, 2001. In an aspect, such a method of manufacturing the fusion protein of the

- invention comprises (a) culturing the host cell described elsewhere herein and (b) obtaining from the said host cell the fusion protein. In an aspect of this method, the fusion protein of the invention can be obtained by conventional purification techniques from a host cell lysate including affinity chromatography, ion exchange chromatography, size exclusion
 chromatography and/or preparative gel electrophoresis. It is envisaged by the scope of the
- invention that the fusion protein includes polypeptide preparations comprising the fusion protein of the invention and other proteins in addition.
- [0060] Further, the invention pertains to a kit comprising the fusion protein, polynucleotide encoding the fusion protein, vector and/or host cell of the invention. The term "kit" as used herein refers to a collection of means comprising the mentioned components of the present invention which is provided in separate or common vials in a ready to use manner for carrying out the method of the present invention. In an aspect, the kit comprises additional means for carrying out the method of the present invention, in an
- aspect, calibration standard solutions comprising neurotoxin polypeptide and/or means for measuring the reporter protein activity (e.g. luciferase activity) such as detection agents for the reporter protein or substrates converted by said reporter protein. Furthermore, the kit comprises instructions for carrying out the method of the present invention. These instructions can be provided as a manual or can be in the form of an computerimplementable algorithm on a data storage medium which upon implementation is capable of governing one or more store of the method of the invention. In an aspect, the kit is to be
- of governing one or more steps of the method of the invention. In an aspect, the kit is to be used for carrying out the method of the invention specified above.

35

[0061] Finally, the invention relates to the use of a fusion protein, polynucleotide encoding the fusion protein, vector and/or host cell of the invention, for determining the biological activity of a neurotoxin, in neurotoxin-sensitive cells.

[0062] The invention will now be illustrated by the following example which shall, however, not be construed as limiting the scope of the present invention.

[0063] Example

5

The DNA molecule with the sequence shown in SEQ ID NO: 5 encoding the amino acid sequence shown in SEQ ID NO: 2 (choline transporter-GFP-SNAP-25-luciferase; CHT-GFP-SNAP-LUC) is synthesized de novo, then cloned into pcDNA 3.1 vector (Life Technologies). Further the plasmid (DNA vector with inserted construct) is amplified, extracted and purified. DNA synthesis, cloning, amplification and isolation are performed by GeneArt, Life technologies.

10

15

The plasmid is transfected into SH-SY5Y cells (ATCC CRL-2266) using Lipofectamine 2000 (Life Technologies). Cell culture and transfection are performed according to the provider's instructions.

After transfection of the plasmid, the cells are cultivated in the presence of Gentamicine in order to selectively grow plasmid containing cells. As soon as the culture reaches approx. 5 million cells, a single cell cloning is performed using the method of limited dilution. By
this, approx. 400 clones are created and tested for adhesion quality, growth rates, plasmid expression rate and sensitivity for BoNT/A. The expression rate is determined by measuring the GFP fluorescence while the BoNT/A sensitivity is tested by the western blot SNAP-25 cleavage assay, according to Pellett S, Tepp WH, Clancy CM, Borodic GE, Johnson EA. FEBS Lett. 2007 Oct 16; 581(25): 4803-8. From the clones showing good adhesion and growth rates and BoNT/A sensitivities comparable or better than SH-SY5Y parental cells, those with the highest GFP expression rates are selected and stored in cell banks.

For the BoNT/A reporter assay, the cells are seeded on 96-well plates followed by
differentiation according to Rasetti-Escargueil et al. (Enhanced sensitivity to Botulinum type A neurotoxin of human neuroblastoma SH-SY5Y cells after differentiation into mature neuronal cells by C. Rasetti-Escargueil, C.B. Machado, R. Preneta-Blanc, R.A. Fleck, D. Sesardic The Botulinum J. (TBJ), Vol. 2, No. 1, 2011). The differentiated cells are incubated for 72 h with BoNT/A diluted in culture medium to final concentrations
between 0.01 and 10 pM in logarithmic steps. After incubation, the cells are washed once with PBS (10mM Sodium Phosphate, 0.9% NaCl, pH 7.4) and permeabilized with 50µl Streptolysin O solution (10mM Sodium Phosphate, 0.9% NaCl, 10mM Dithiothreitol, 50U/mL Streptolysin O, pH 7.4). After 15 min incubation at 37°C, the supernatant of each

PCT/EP2015/077245

well is transferred into a white 96-well plate and the luciferase activity is determined, according to the provider's instructions (Sigma Aldrich LUC1-1KT). The cells remaining on the culture plates are washed once with PBS and the GFP fluorescence is measured in a plate reader. For each single well the Luc/GFP ratio is calculated by dividing the measured

5

signal values. The BoNT/A biological activity is calculated by comparing the doseresponse-curve of the unknown sample with the respective curve of a reference standard e.g. by parallel line assay.

Claims

- 1. A method for determining the biological activity of a neurotoxin, the method comprising the steps of:
- 5
- (a) expressing a fusion protein comprising (i) an anchor protein, (ii) a reporter protein and (iii) a neurotoxin cleavage site intervening the anchor protein and the reporter protein, in neurotoxin-sensitive cells;
- (b) incubating the neurotoxin-sensitive cells of (a) with a neurotoxin and cultivating the neurotoxin-sensitive cells under conditions which allow the neurotoxin to exert its biological activity;
- (c) permeabilizing the neurotoxin-sensitive cells of (b) under conditions which allow the release of the reporter protein but not the release of the anchor protein from the permeabilized neurotoxin-sensitive cells; and
- (d) quantifying the activity of the reporter protein released from the permeabilized neurotoxin-sensitive cells of (c),

thereby determining the biological activity of the neurotoxin.

- 2. The method of claim 1, wherein the neurotoxin-sensitive cells are derived from tumor cell lines, primary cells, stem cells or induced pluripotent stem cells.
 - 3. The method of claim 1 or 2, wherein the anchor protein is a membrane protein selected from the group consisting of a choline transporter, H1-receptor, G protein-coupled receptor (GPCR) and SV2.
- 25
- 4. The method of any of claims 1 to 3, wherein the neurotoxin cleavage site is selected from the group consisting of a BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/E, BoNT/F, BoNT/G and TeNT cleavage site.
- 5. The method of any of claims 1 to 4, wherein the reporter protein is an enzyme selected from the group consisting of luciferase, alkaline phosphatase, beta-galactosidase, and horseradish peroxidase (HRP) or a fluorescent protein selected from the group consisting of GFP, YFP, BFP and RFP.
- 35 6. The method of any of claims 1 to 5, wherein a hemolysin is used for the permeabilization of the neurotoxin-sensitive cells.

10

15

20

- 7. The method of claim 6, wherein the hemolysin is selected from the group consisting of streptolysin O, perfringolysin O, pneumolysin, a bacterial hemolysin and a pore-forming toxin from snakes or spiders.
- 5 8. The method of any of claims 1 to 7, wherein the fusion protein comprises a fusion protein selected from choline transporter-GFP-SNAP-25-luciferase, H1-receptor-SNAP-25-luciferase and H1-receptor-SNAP-25-HRP.
 - 9. The method of any of claims 1 to 8, wherein the quantification of the activity of the reporter protein comprises the standardization of the activity of the reporter protein.
 - 10. The method of claim 9, wherein the standardization of the activity of the reporter protein is carried out by determining the residual reporter protein activity of the non-cleaved fusion protein remaining in or at the neurotoxin-sensitive cells or the total reporter protein activity of the fusion protein.
 - 11. A fusion protein consisting of (i) an anchor protein, (ii) a reporter protein, and (iii) a neurotoxin cleavage site intervening the anchor protein and the reporter protein, for determining the biological activity of a neurotoxin, in neurotoxin-sensitive cells.
- 20

25

10

15

- 12. The fusion protein of claim 11, wherein the anchor protein is selected from the group consisting of choline transporter, H1-receptor, G protein-coupled receptor (GPCR) and SV2; the reporter protein is an enzyme selected from the group consisting of luciferase, alkaline phosphatase, beta-galactosidase and horseradish peroxidase or a fluorescent protein selected from the group consisting of GFP, YFP, BFP and RFP; and the neurotoxin cleavage site is selected from the group consisting of a BoNT/A, BoNT/B, BoNT/C1, BoNT/D, BoNT/E, BoNT/F, BoNT/G and TeNT cleavage site.
- 13. The fusion protein of claim 11 or 12, wherein the fusion protein comprises a fusion
 protein selected from choline transporter-GFP-SNAP-25-luciferase, H1-receptor SNAP-25-luciferase and H1-receptor-SNAP-25-HRP.
 - 14. A kit comprising the fusion protein of any of claims 11 to 13.
- 35 15. Use of a fusion protein of any of claims 11 to 13 for determining the biological activity of a neurotoxin, in neurotoxin-sensitive cells.

eolf-seql.txt SEQUENCE LISTING

<110> Merz Pharma GmbH & Co. KGaA

<120> Methods for the Determination of the Biological Activities of Neurotoxin Polypeptides

<130> MP12470PC

<160> 5

<170> Patentln version 3.3

- <210> 1
- <211> 4722 <212> DNA
- <213> Artificial
- <220>

<223> CHT-GFP-SNAP-LUC

<400> 1

60 atggctttcc atgtggaagg actgatagct atcatcgtgt tctaccttct aattttgctg 120 gttggaatat gggctgcctg gagaaccaaa aacagtggca gcgcagaaga gcgcagcgaa gccatcatag ttggtggccg agatattggt ttattggttg gtggatttac catgacagct 180 acctgggtcg gaggaggta tatcaatggc acagctgaag cagtttatgt accaggttat 240 ggcctagctt gggctcaggc accaattgga tattctctta gtctgatttt aggtggcctg 300 ttctttgcaa aacctatgcg ttcaaagggg tatgtgacca tgttagaccc gtttcagcaa 360 atctatggaa aacqcatggg cggactcctg tttattcctg cactgatggg agaaatgttc 420 tgggctgcag caattttctc tgctttggga gccaccatca gcgtgatcat cgatgtggat 480 atgcacattt ctgtcatcat ctctgcactc attgccactc tgtacacact ggtgggaggg 540 ctctattctg tggcctacac tgatgtcgtt cagctctttt gcatttttgt agggctgtgg 600 atcagcgtcc cctttgcatt gtcacatcct gcagtcgcag acatcgggtt cactgctgtg 660 catgccaaat accaaaagcc gtggctggga actgttgact catctgaagt ctactcttgg 720 cttgatagtt ttctgttgtt gatgctgggt ggaatcccat ggcaagcata ctttcagagg 780 gttctctctt cttcctcagc cacctatgct caagtgctgt ccttcctggc agctttcggg 840 900 tgcctggtga tggccatccc agccatactc attggggcca ttggagcatc aacagactgg aaccagactg catatgggct tccagatccc aagactacag aagaggcaga catgatttta 960 ccaattgttc tgcagtatct ctgccctgtg tatatttctt tctttggtct tggtgcagtt 1020 tctgctgctg ttatgtcatc agcagattct tccatcttgt cagcaagttc catgtttgca 1080 cggaacatct accagctttc cttcagacaa aatgcttcgg acaaagaaat cgtttgggtt 1140 atgcgaatca cagtgtttgt gtttggagca tctgcaacag ccatggcctt gctgacgaaa 1200 actgtgtatg ggctctggta cctcagttct gaccttgttt acatcgttat cttcccccag 1260 Page 1

eolf-seql.txt

ctgctttgtg	tactctttgt	taagggaacc	aacacctatg	gggccgtggc	aggttatgtt	1320
			gagccatatc			1380
ttctaccctg	gctattaccc	tgatgataat	ggtatatata	atcagaaatt	tccatttaaa	1440
acacttgcca	tggttacatc	attcttaacc	aacatttgca	tctcctatct	agccaagtat	1500
ctatttgaaa	gtggaacctt	gccacctaaa	ttagatgtat	ttgatgctgt	tgttgcaaga	1560
cacagtgaag	aaaacatgga	taagacaatt	cttgtcaaaa	atgaaaatat	taaattagat	1620
gaacttgcac	ttgtgaagcc	acgacagagc	atgaccctca	gctcaacttt	caccaataaa	1680
gaggccttcc	ttgatgttga	ttccagtcca	gaagggtctg	ggactgaaga	taatttacag	1740
atgagtaaag	gagaagaact	tttcactgga	gttgtcccaa	ttcttgttga	attagatggt	1800
gatgttaatg	ggcacaaatt	ttctgtcagt	ggagagggtg	aaggtgatgc	aacatacgga	1860
aaacttaccc	ttaaatttat	ttgcactact	ggaaaactac	ctgttccatg	gccaacactt	1920
gtcactactt	tctcttatgg	tgttcaatgc	ttttcaagat	acccagatca	tatgaaacag	1980
catgactttt	tcaagagtgc	catgcccgaa	ggttatgtac	aggaaagaac	tatattttc	2040
aaagatgacg	ggaactacaa	gacacgtgct	gaagtcaagt	ttgaaggtga	tacccttgtt	2100
aatagaatcg	agttaaaagg	tattgatttt	aaagaagatg	gaaacattct	tggacacaaa	2160
ttggaataca	actataactc	acacaatgta	tacatcatgg	cagacaaaca	aaagaatgga	2220
atcaaagtta	acttcaaaat	tagacacaac	attgaagatg	gaagcgttca	actagcagac	2280
cattatcaac	aaaatactcc	aattggcgat	ggccctgtcc	ttttaccaga	caaccattac	2340
ctgtccacac	aatctgccct	ttcgaaagat	cccaacgaaa	agagagacca	catggtcctt	2400
cttgagtttg	taacagctgc	tgggattaca	catggcatgg	atgaactata	caaaatggcc	2460
gaagacgcag	acatgcgcaa	tgagctggag	gagatgcagc	gaagggctga	ccagttggct	2520
gatgagtcgc	tggaaagcac	ccgtcgtatg	ctgcaactgg	ttgaagagag	taaagatgct	2580
ggtatcagga	ctttggttat	gttggatgaa	caaggagaac	aactggaacg	cattgaggaa	2640
gggatggacc	aaatcaataa	ggacatgaaa	gaagcagaaa	agaatttgac	ggacctagga	2700
aaattctgcg	ggctttgtgt	gtgtccctgt	aacaagctta	aatcaagtga	tgcttacaaa	2760
aaagcctggg	gcaataatca	ggacggagtg	gtggccagcc	agcctgctcg	tgtagtggac	2820
gaacgggagc	agatggccat	cagtggcggc	ttcatccgca	gggtaacaaa	tgatgcccga	2880
gaaaatgaaa	tggatgaaaa	cctagagcag	gtgagcggca	tcatcgggaa	cctccgtcac	2940
atggccctgg	atatgggcaa	tgagatcgat	acacagaatc	gccagatcga	caggatcatg	3000
gagaaggctg	attccaacaa	aaccagaatt	gatgaggcca	accaacgtgc	aacaaagatg	3060
ctgggaagtg	gtatggaaga	cgccaaaaac	ataaagaaag	gcccggcgcc	attctatcct	3120

ctagaggatg gaaccgctgg	agagcaactg	eol f-seql cataaggcta		cgccctggtt	3180
cctggaacaa ttgcttttac	agatgcacat	atcgaggtga	acatcacgta	cgcggaatac	3240
ttcgaaatgt ccgttcggtt	ggcagaagct	atgaaacgat	atgggctgaa	tacaaatcac	3300
agaatcgtcg tatgcagtga	aaactctctt	caattcttta	tgccggtgtt	gggcgcgtta	3360
tttatcggag ttgcagttgc	gcccgcgaac	gacatttata	atgaacgtga	attgctcaac	3420
agtatgaaca tttcgcagcc	taccgtagtg	tttgtttcca	aaaaggggtt	gcaaaaaatt	3480
ttgaacgtgc aaaaaaaatt	accaataatc	cagaaaatta	ttatcatgga	ttctaaaacg	3540
gattaccagg gatttcagtc	gatgtacacg	ttcgtcacat	ctcatctacc	tcccggtttt	3600
aatgaatacg attttgtacc	agagtccttt	gatcgtgaca	aaacaattgc	actgataatg	3660
aattcctctg gatctactgg	gttacctaag	ggtgtggccc	ttccgcatag	aactgcctgc	3720
gtcagattct cgcatgccag	agatcctatt	tttggcaatc	aaatcattcc	ggatactgcg	3780
attttaagtg ttgttccatt	ccatcacggt	tttggaatgt	ttactacact	cggatatttg	3840
atatgtggat ttcgagtcgt	cttaatgtat	agatttgaag	aagagctgtt	tttacgatcc	3900
cttcaggatt acaaaattca	aagtgcgttg	ctagtaccaa	ccctattttc	attcttcgcc	3960
aaaagcactc tgattgacaa	atacgattta	tctaatttac	acgaaattgc	ttctgggggc	4020
gcacctcttt cgaaagaagt	cggggaagcg	gttgcaaaac	gcttccatct	tccagggata	4080
cgacaaggat atgggctcac	tgagactaca	tcagctattc	tgattacacc	cgagggggat	4140
gataaaccgg gcgcggtcgg	taaagttgtt	ccattttttg	aagcgaaggt	tgtggatctg	4200
gataccggga aaacgctggg	cgttaatcag	agaggcgaat	tatgtgtcag	aggacctatg	4260
attatgtccg gttatgtaaa	caatccggaa	gcgaccaacg	ccttgattga	caaggatgga	4320
tggctacatt ctggagacat	agcttactgg	gacgaagacg	aacacttctt	catagttgac	4380
cgcttgaagt ctttaattaa	atacaaagga	tatcaggtgg	cccccgctga	attggaatcg	4440
atattgttac aacaccccaa	catcttcgac	gcgggcgtgg	caggtcttcc	cgacgatgac	4500
gccggtgaac ttcccgccgc	cgttgttgtt	ttggagcacg	gaaagacgat	gacggaaaaa	4560
gagatcgtgg attacgtcgc	cagtcaagta	acaaccgcga	aaaagttgcg	cggaggagtt	4620
gtgtttgtgg acgaagtacc	gaaaggtctt	accggaaaac	tcgacgcaag	aaaaatcaga	4680
gagatcctca taaaggccaa	gaagggcgga	aagtccaaat	tg		4722

<210> 2 <211> 1574 <212> PRT <213> Artificial <220> <223> fusion protein

Page 3

<400> 2		eolf-seql.	txt
Met Ala Phe His	Val Glu Gly I	Leu IIe Ala IIe I	le Val Phe Tyr Leu
1	5	10	15
Leu IIe Leu Leu	Val Gly Ile T	Trp Ala Ala Trp A	arg Thr Lys Asn Ser
20		25	30
Gly Ser Ala Glu		Glu Ala Ile Ile V	/al Gly Gly Arg Asp
35		40	45
lle Gly Leu Leu	Val Gly Gly F		Na Thr Trp Val Gly
50	55		0
Gly Gly Tyr lle	Asn Gly Thr A	Ala Glu Ala Val T	yr Val Pro Gly Tyr
65	70	75	80
Gly Leu Ala Trp	Ala GIn Ala F	Pro IIe Gly Tyr S	Ger Leu Ser Leu IIe
	85	90	95
Leu Gly Gly Leu	Phe Phe Ala I	Lys Pro Met Arg S	Ger Lys Gly Tyr Val
100		105	110
Thr Met Leu Asp		Gln lle Tyr Gly L	ys Arg Met Gly Gly.
115		120	125
Leu Leu Phe IIe	Pro Ala Leu M		Phe Trp Ala Ala Ala
130	135		40
lle Phe Ser Ala	Leu Gly Ala	Thr IIe Ser Val I	le IIe Asp Val Asp
145	150	155	160
Met His Ile Ser	Val IIe IIe S	Ser Ala Leu Ile A	Na Thr Leu Tyr Thr
	165	170	175
Leu Val Gly Gly	Leu Tyr Ser N	Val Ala Tyr Thr A	sp Val Val Gln Leu
180		185	190
Phe Cys IIe Phe		Trp IIe Ser Val F	Pro Phe Ala Leu Ser
195		200	205
His Pro Ala Val	Ala Asp Ile (Gly Phe Thr Ala V	Val His Ala Lys Tyr
210	215	2	220
GIn Lys Pro Trp	Leu Gly Thr V	Val Asp Ser Ser G	Glu Val Tyr Ser Trp
225	230	235	240
Leu Asp Ser Phe	Leu Leu Leu M	Met Leu Gly Gly I Page 4	le Pro Trp Gln Ala

	245	eol f-seql . txt 250	255
Tyr Phe GIn Arg	Val Leu Ser Sei	r Ser Ser Ala Thr Tyr	Ala Gln Val
260		265	270
Leu Ser Phe Leu	Ala Ala Phe Gly	y Cys Leu Val Met Ala	lle Pro Ala
275	280	D 285	
lle Leu lle Gly	Ala Ile Gly Ala	a Ser Thr Asp Trp Asn	GIn Thr Ala
290	295	300	
Tyr Gly Leu Pro	Asp Pro Lys Thi	r Thr Glu Glu Ala Asp	Met IIe Leu
305	310	315	320
Pro IIe Val Leu	GIn Tyr Leu Cys	s Pro Val Tyr Ile Ser	Phe Phe GIy
	325	330	335
Leu Gly Ala Val	Ser Ala Ala Val	Met Ser Ser Ala Asp	Ser Ser Ile
340		345	350
Leu Ser Ala Ser	Ser Met Phe Ala	a Arg Asn Ile Tyr GIn	Leu Ser Phe
355	360	365	
Arg GIn Asn Ala	Ser Asp Lys Glu	ulle Val Trp Val Met	Arg lle Thr
370	375	380	
Val Phe Val Phe	Gly Ala Ser Ala	a Thr Ala Met Ala Leu	Leu Thr Lys
385	390	395	400
Thr Val Tyr Gly	Leu Trp Tyr Leu	u Ser Ser Asp Leu Val	Tyr lle Val
	405	410	415
lle Phe Pro Gln	Leu Leu Cys Val	Leu Phe Val Lys Gly	Thr Asn Thr
420		425	430
Tyr Gly Ala Val	Ala Gly Tyr Val	I Ser GIy Leu Phe Leu	Arg lle Thr
435	440	O 445	
Gly Gly Glu Pro	Tyr Leu Tyr Leu	u GIn Pro Leu IIe Phe	Tyr Pro Gly
450	455	460	
Tyr Tyr Pro Asp	Asp Asn Gly II	e Tyr Asn GIn Lys Phe	Pro Phe Lys
465	470	475	480
Thr Leu Ala Met	Val Thr Ser Phe	e Leu Thr Asn Ile Cys	lle Ser Tyr
	485	490	495

Leu Ala Lys Tyr 500			f-seql.txt r Leu Pro Pro	Lys Leu Asp 510
Val Phe Asp Ala 515	i Val Val Ala	a Arg His Se 520	r Glu Glu Asn 525	
Thr IIe Leu Val 530	Lys Asn Gl 53		s Leu Asp Glu 540	Leu Ala Leu
Val Lys Pro Arc 545	gln Ser Me 550	t Thr Leu Se	r Ser Thr Phe 555	Thr Asn Lys 560
Glu Ala Phe Leu	i Asp Val As 565	p Ser Ser Pro 57		Gly Thr Glu 575
Asp Asn Leu GIr 580		s Gly Glu Gl 585	u Leu Phe Thr	GLy Val Val 590
Pro IIe Leu Val 595	Glu Leu As	p GLy Asp Va 600	I Asn Gly His 605	Lys Phe Ser
Val Ser Gly Glu 610	ı Gly Glu Gl 61		r Tyr Gly Lys 620	Leu Thr Leu
Lys Phe IIe Cys 625	Thr Thr Gl 630	y Lys Leu Pr	o Val Pro Trp 635	Pro Thr Leu 640
Val Thr Thr Phe	e Ser Tyr Gl 645	y Val Gin Cy 65		Tyr Pro Asp 655
His Met Lys Glr 660		e Phe Lys Se 665	r Ala Met Pro	Glu Gly Tyr 670
Val Gin Giu Arç 675	Thr Ile Ph	e Phe Lys As 680	p Asp GI y Asn 685	Tyr Lys Thr
Arg Ala Glu Val 690	Lys Phe Gl 69		r Leu Val Asn 700	Arg lle Glu
Leu Lys Gly IIe 705	e Asp Phe Ly: 710	s Glu Asp Gl	y Asn IIe Leu 715	Gly His Lys 720
Leu Glu Tyr Asr	n Tyr Asn Se 725	r His Asn Va 73		Ala Asp Lys 735
GIn Lys Asn Gly 740		I Asn Phe Ly 745	s lle Arg His	Asn lle Glu 750

Asp GLy Ser Va 755	I GIn Leu	Ala Asp 760	His Tyr	GIn GIn	Asn Thr 765	Pro Ile
Gly Asp Gly Pr 770	o Val Leu	Leu Pro 775	Asp Asn	His Tyr 780		Thr GIn
Ser Ala Leu Se 785	r Lys Asp 790	Pro Asn	Glu Lys	Arg Asp 795	His Met	Val Leu 800
Leu GLu Phe Va	I Thr Ala 805	Ala Gly	lle Thr 810	His Gly	Met Asp	GLu Leu 815
Tyr Lys Met Al 82		Ala Asp	Met Arg 825	Asn Glu	Leu Glu 830	Glu Met
GIn Arg Arg AI 835	a Asp GIn	Leu Ala 840	Asp Glu	Ser Leu	Glu Ser 845	Thr Arg
Arg Met Leu GI 850		Glu Glu 855	Ser Lys	Asp Al a 860	Gly lle	Arg Thr
Leu Val Met Le 865	u Asp Glu 870	Gln Gly	Glu Gln	Leu Glu 875	Arg lle	Glu Glu 880
Gly Met Asp Gl	n IIe Asn 885	Lys Asp	Met Lys 890	Glu Ala	Glu Lys	Asn Leu 895
Thr Asp Leu GI 90		Cys Gly	Leu Cys 905	Val Cys	Pro Cys 910	Asn Lys
Leu Lys Ser Se 915	r Asp Ala	Tyr Lys 920	Lys Ala	Trp Gly	Asn Asn 925	GIn Asp
GLy Val Val Al 930	a Ser Gln	Pro Ala 935	Arg Val	Val Asp 940	Glu Arg	Glu Gln
Met Ala IIe Se 945	r Gly Gly 950	Phe IIe	Arg Arg	Val Thr 955	Asn Asp	Ala Arg 960
Glu Asn Glu Me	t Asp Glu 965	Asn Leu	GluGln 970	Val Ser	Gly lle	lle Gly 975
Asn Leu Arg Hi 98		Leu Asp	Met Gly 985	Asn Glu	lle Asp 990	Thr GIn
Asn Arg GIn II 995	e Asp Arg	lle Met 1000)	s Ala As Page 7	p Ser As 1005	sn Lys Thr

Arg Ile Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser 1010 1015 1020	-
Gly Met Glu Asp Ala Lys Asn Ile Lys Lys Gly Pro Ala Pro Phe 1025 1030 1035	Э
Tyr Pro Leu Glu Asp Gly Thr Ala Gly Glu Gln Leu His Lys Ala 1040 1045 1050	3
Met Lys Arg Tyr Ala Leu Val Pro Gly Thr Ile Ala Phe Thr Asp 1055 1060 1065	С
Ala His Ile Glu Val Asn Ile Thr Tyr Ala Glu Tyr Phe Glu Met 1070 1075 1080	t
Ser Val Arg Leu Ala Glu Ala Met Lys Arg Tyr Gly Leu Asn Thr 1085 1090 1095	-
Asn His Arg IIe Val Val Cys Ser Glu Asn Ser Leu Gln Phe Phe 1100 1105 1110	5
Met Pro Val Leu Gly Ala Leu Phe Ile Gly Val Ala Val Ala Pro 1115 1120 1125	С
Ala Asn Asp Ile Tyr Asn Glu Arg Glu Leu Leu Asn Ser Met Asr 1130 1135 1140	ו
lle Ser Gln Pro Thr Val Val Phe Val Ser Lys Lys Gly Leu Glr 1145 1150 1155	ו
Lys IIe Leu Asn Val GIn Lys Lys Leu Pro IIe IIe GIn Lys IIe 1160 1165 1170	Э
lle lle Met Asp Ser Lys Thr Asp Tyr Gln Gly Phe Gln Ser Met 1175 1180 1185	t
Tyr Thr Phe Val Thr Ser His Leu Pro Pro Gly Phe Asn Glu Tyr 1190 1195 1200	~
Asp Phe Val Pro Glu Ser Phe Asp Arg Asp Lys Thr Ile Ala Leu 1205 1210 1215	r
lle Met Asn Ser Ser Gly Ser Thr Gly Leu Pro Lys Gly Val Ala 1220 1225 1230	a
Leu Pro His Arg Thr Ala Cys Val Arg Phe Ser His Ala Arg Asg Page 8	С

	1235					eol f-seql . 1 1240			txt 1245					
Pro	IIe 1250	Phe	GI y	Asn	GI n	IIe 1255	lle	Pro	Asp	Thr	AI a 1260	lle	Leu	Ser
Val	Val 1265	Pro	Phe	Hi s	Hi s	GI y 1270	Phe	GI y	Met	Phe	Thr 1275	Thr	Leu	GI y
Tyr	Leu 1280	lle	Cys	GI y	Phe	Arg 1285	Val	Val	Leu	Met	Tyr 1290	Arg	Phe	GI u
GI u	GI u 1295	Leu	Phe	Leu	Arg	Ser 1300	Leu	GI n	Asp	Tyr	Lys 1305	lle	GI n	Ser
Al a	Leu 1310	Leu	Val	Pro	Thr	Leu 1315	Phe	Ser	Phe	Phe	AI a 1320	Lys	Ser	Thr
Leu	IIe 1325	Asp	Lys	Tyr	Asp	Leu 1330	Ser	Asn	Leu	Hi s	GI u 1335	lle	Al a	Ser
GI y	GI y 1340	Al a	Pro	Leu	Ser	Lys 1345	GI u	Val	GI y	GI u	AI a 1350	Val	Al a	Lys
Arg	Phe 1355	Hi s	Leu	Pro	GI y	IIe 1360	Arg	GI n	GI y	Tyr	GI y 1365	Leu	Thr	GI u
Thr	Thr 1370	Ser	Al a	lle	Leu	IIe 1375	Thr	Pro	GI u	GI y	Asp 1380	Asp	Lys	Pro
GI y	AI a 1385	Val	GI y	Lys	Val	Val 1390	Pro	Phe	Phe	GI u	AI a 1395	Lys	Val	Val
Asp	Leu 1400	Asp	Thr	GI y	Lys	Thr 1405	Leu	GI y	Val	Asn	GI n 1410	Arg	GI y	GI u
Leu	Cys 1415	Val	Arg	GI y	Pro	Met 1420	lle	Met	Ser	GI y	Tyr 1425	Val	Asn	Asn
Pro	GI u 1430	AI a	Thr	Asn	AI a	Leu 1435	lle	Asp	Lys	Asp	GI y 1440	Trp	Leu	Hi s
Ser	GI y 1445	Asp	lle	AI a	Tyr	Trp 1450	Asp	GI u	Asp	GI u	Hi s 1455	Phe	Phe	lle
Val	Asp 1460	Arg	Leu	Lys	Ser	Leu 1465	lle	Lys	Tyr	Lys	GI y 1470	Tyr	GI n	Val

eolf-seql.txt Ala Pro Ala Glu Leu Glu Ser Ile Leu Leu Gln His Pro Asn Ile 1475 1480 1485	
Phe Asp Ala Gly Val Ala Gly Leu Pro Asp Asp Ala Gly Glu 1490 1495 1500	
Leu Pro Ala Ala Val Val Leu Glu His Gly Lys Thr Met Thr 1505 1510 1515	
Glu Lys Glu IIe Val Asp Tyr Val Ala Ser Gln Val Thr Thr Ala 1520 1525 1530	
Lys Lys Leu Arg Gly Gly Val Val Phe Val Asp Glu Val Pro Lys 1535 1540 1545	
Gly Leu Thr Gly Lys Leu Asp Ala Arg Lys Ile Arg Glu Ile Leu 1550 1555 1560	
lle Lys Ala Lys Lys Gly Gly Lys Ser Lys Leu 1565 1570	
<210> 3 <211> 3729 <212> DNA <213> Artificial	
<220> <223> H1R-SNAP-Luc	
	60
<223> H1R-SNAP-Luc <400> 3	60 120
<223> H1R-SNAP-Luc <400> 3 atgagcetee ccaatteete etgeetetta gaagacaaga tgtgtgaggg caacaagaee	
<223> H1R-SNAP-Luc <400> 3 atgagcetee ceaatteete etgeetetta gaagacaaga tgtgtgaggg caacaagaee actatggeea geeeceaget gatgeeeetg gtggtggtee tgageaetat etgettggte	120
<223> H1R-SNAP-Luc <400> 3 atgagcetee ccaatteete etgeetetta gaagacaaga tgtgtgaggg caacaagaee actatggeea geeeecaget gatgeeeetg gtggtggtee tgageaetat etgettggte acagtaggge teaacetget ggtgetgtat geegtaegga gtgageggaa geteeaeet	120 180
<223> H1R-SNAP-Luc <400> 3 atgagcetee ceaatteete etgeetetta gaagacaaga tgtgtgaggg eaacaagaee actatggeea geeeeeaget gatgeeeetg gtggtggtee tgageaetat etgettggte acagtaggge teaacetget ggtgetgtat geegtaegga gtgageggaa geteeaeet gtggggaaee tgtaeategt eageeteteg gtggeggaet tgategtggg tgeegtegte	120 180 240
<223> H1R-SNAP-Luc <400> 3 atgagcetee ceaatteete etgeetetta gaagacaaga tgtgtgaggg eaacaagaee actatggeea geeeeeaget gatgeeeetg gtggtggtee tgageaetat etgettggte acagtaggge teaacetget ggtgetgtat geegtaegga gtgageggaa geteeaeet gtggggaaee tgtaeategt eageeteteg gtggeggaet tgategtggg tgeegtegte atgeetatga acateeteta eetgeteatg teeaagtggt eaetgggeeg teetetege	120 180 240 300
<223> H1R-SNAP-Luc <400> 3 atgagcetee ccaatteete etgeetetta gaagacaaga tgtgtgaggg caacaagaee actatggeea geeeeeaget gatgeeett gtggtggtee tgageaett etgeettggte acagtaggge teaacetget ggtgetgtat geegtaegga gtgageggaa geteeaeet gtggggaaee tgtacategt eageeteteg gtggeggaet tgategtggg tgeegtegte atgeetatga acateeteta eetgeteatg teeaagtggt eaetgggeeg teetetege etetttgge ttteeatgga etatgtggee ageaeagegt eettteag tgtetteate	120 180 240 300 360
<223> H1R-SNAP-Luc <400> 3 atgagcetee ccaatteete etgeetetta gaagacaaga tgtgtgaggg caacaagaee actatggeea geeeeeaget gatgeeetg gtggtggtee tgageaetat etgettggte acagtaggge teaacetget ggtgetgtat geegtaegga gtgageggaa geteeaeet gtggggaaee tgtacategt eageeteteg gtggeggaet tgategtggg tgeegtegte atgeetatga acateeteta eetgeteatg teeaagtggt eaetgggeeg teetetege etetttgge ttteeatgga etatgtggee ageaeagegt eeattteeg tgteeteate etgtgeattg ategetaeeg etetgteeag eageeetea ggtaeettaa gtategtaee	120 180 240 300 360 420
<223> H1R-SNAP-Luc <400> 3 atgagcetee ceaatteete etgeetetta gaagacaaga tgtgtgaggg caacaagaee actatggeea geeeeeaget gatgeeetg gtggtggtee tgageaetat etgettggte acagtaggge teaacetget ggtgetgtat geegtaegga gtgageggaa geteeaeet gtggggaaee tgtacategt eageeteteg gtggeggaet tgategtggg tgeegtegte atgeetatga acateeteta eetgeteatg teeaagtggt eaetgggeeg teeteetge etettttgge ttteeatgga etatgtggee ageaeagegt eeattteeg tgteetea etgtgeattg ategetaeeg etetgteeag eageeetea ggtaeettaa gtategtaee aagaeeegag eeteggeeae eattetgggg geetggttte tetetttet gtgggttatt	120 180 240 300 360 420 480
<pre><223> H1R-SNAP-Luc <400> 3 atgagcctcc ccaattcctc ctgcctctta gaagacaaga tgtgtgaggg caacaagacc actatggcca gccccagct gatgccctg gtggtggtc tgagcactat ctgcttggtc acagtagggc tcaacctgct ggtgctgtat gccgtacgga gtgagcggaa gctccacact gtggggaacc tgtacatcgt cagcctctcg gtggcggact tgatcgtggg tgccgtcgtc atgcctatga acatcctcta cctgctcatg tccaagtggt cactgggccg tcctctctgc ctcttttggc tttccatgga ctatgtggcc agcacagcgt ccattttcag tgtcttcatc ctgtgcattg atcgctaccg ctctgtccag cagccctca ggtacctta gtatcgtacc aagacccgag cctcggccac cattctgggg gcctggtttc tctctttct gtgggttatt cccattctag gctggaatca cttcatgcag cagacctcgg tgcgccgag ggacaagtgt</pre>	120 180 240 300 360 420 480 540
<pre><223> H1R-SNAP-Luc <400> 3 atgagcctcc ccaattcctc ctgcctctta gaagacaaga tgtgtgaggg caacaagacc actatggcca gccccagct gatgccctg gtggtggtcc tgagcactat ctgcttggtc acagtagggc tcaacctgct ggtgctgtat gccgtacgga gtgagcggaa gctccacact gtggggaacc tgtacatcgt cagcctctg gtggcggact tgatcgtggg tgccgtcgtc atgcctatga acatcctcta cctgctcatg tccaagtggt cactgggccg tcctctcgc ctcttttggc tttccatgga ctatgtggcc agcacagcgt ccatttcag tgtcttcatc ctgtgcattg atcgctaccg ctctgtccag cagcccctca ggtacctta gtatcgtacc aagaacccgag cctcggccac cattctgggg gcctggtttc tctcttttct gtgggttatt cccattctag gctggaatca cttcatgcag cagacctcgg tgcgccgaga ggacaagtgt gagacagact tctatgatgt cacctggttc aaggtcatga ctgccatcat caacttctac</pre>	120 180 240 300 360 420 480 540 600

aaaaqqaaqc	caaaagatgc	taataataaa	eol f-seql	.txt	ccaaaccccc	840
	aatccccagt					900
						960
	cacttgatat					
	tcaaccggag					1020
	gcgagatatc					1080
	ataccaccac					1140
	tggattacat					1200
	ggttgcacat					1260
atggcagcct	tcatcctctg	ctggatccct	tatttcatct	tcttcatggt	cattgccttc	1320
tgcaagaact	gttgcaatga	acatttgcac	atgttcacca	tctggctggg	ctacatcaac	1380
tccacactga	acccctcat	ctaccccttg	tgcaatgaga	acttcaagaa	gacattcaag	1440
agaattctgc	atattcgctc	catggccgaa	gacgcagaca	tgcgcaatga	gctggaggag	1500
atgcagcgaa	gggctgacca	gttggctgat	gagtcgctgg	aaagcacccg	tcgtatgctg	1560
caactggttg	aagagagtaa	agatgctggt	atcaggactt	tggttatgtt	ggatgaacaa	1620
ggagaacaac	tggaacgcat	tgaggaaggg	atggaccaaa	tcaataagga	catgaaagaa	1680
gcagaaaaga	atttgacgga	cctaggaaaa	ttctgcgggc	tttgtgtgtg	tccctgtaac	1740
aagcttaaat	caagtgatgc	ttacaaaaaa	gcctggggca	ataatcagga	cggagtggtg	1800
gccagccagc	ctgctcgtgt	agtggacgaa	cgggagcaga	tggccatcag	tggcggcttc	1860
atccgcaggg	taacaaatga	tgcccgagaa	aatgaaatgg	atgaaaacct	agagcaggtg	1920
agcggcatca	tcgggaacct	ccgtcacatg	gccctggata	tgggcaatga	gatcgataca	1980
cagaatcgcc	agatcgacag	gatcatggag	aaggctgatt	ссаасаааас	cagaattgat	2040
gaggccaacc	aacgtgcaac	aaagatgctg	ggaagtggta	tggaagacgc	caaaaacata	2100
aagaaaggcc	cggcgccatt	ctatcctcta	gaggatggaa	ccgctggaga	gcaactgcat	2160
aaggctatga	agagatacgc	cctggttcct	ggaacaattg	cttttacaga	tgcacatatc	2220
gaggtgaaca	tcacgtacgc	ggaatacttc	gaaatgtccg	ttcggttggc	agaagctatg	2280
aaacgatatg	ggctgaatac	aaatcacaga	atcgtcgtat	gcagtgaaaa	ctctcttcaa	2340
ttctttatgc	cggtgttggg	cgcgttattt	atcggagttg	cagttgcgcc	cgcgaacgac	2400
atttataatg	aacgtgaatt	gctcaacagt	atgaacattt	cgcagcctac	cgtagtgttt	2460
gtttccaaaa	aggggttgca	aaaaattttg	aacgtgcaaa	aaaaattacc	aataatccag	2520
	tcatggattc					2580
	atctacctcc					2640
	caattgcact			ctactgggtt		2700

2760 gtggcccttc cgcatagaac tgcctgcgtc agattctcgc atgccagaga tcctattttt 2820 2880 ggaatgttta ctacactcgg atatttgata tgtggatttc gagtcgtctt aatgtataga 2940 tttgaagaag agctgttttt acgatccctt caggattaca aaattcaaag tgcgttgcta gtaccaaccc tattttcatt cttcgccaaa agcactctga ttgacaaata cgatttatct 3000 3060 aatttacacg aaattgcttc tgggggcgca cctctttcga aagaagtcgg ggaagcggtt 3120 gcaaaacgct tccatcttcc agggatacga caaggatatg ggctcactga gactacatca gctattctga ttacacccga gggggatgat aaaccgggcg cggtcggtaa agttgttcca 3180 ttttttgaag cgaaggttgt ggatctggat accgggaaaa cgctgggcgt taatcagaga 3240 3300 ggcgaattat gtgtcagagg acctatgatt atgtccggtt atgtaaacaa tccggaagcg 3360 accaacgcct tgattgacaa ggatggatgg ctacattctg gagacatagc ttactgggac gaagacgaac acttcttcat agttgaccgc ttgaagtctt taattaaata caaaggatat 3420 caggtggccc ccgctgaatt ggaatcgata ttgttacaac accccaacat cttcgacgcg 3480 3540 ggcgtggcag gtcttcccga cgatgacgcc ggtgaacttc ccgccgccgt tgttgttttg gagcacggaa agacgatgac ggaaaaagag atcgtggatt acgtcgccag tcaagtaaca 3600 accgcgaaaa agttgcgcgg aggagttgtg tttgtggacg aagtaccgaa aggtcttacc 3660 3720 ggaaaactcg acgcaagaaa aatcagagag atcctcataa aggccaagaa gggcggaaag 3729 tccaaattg

<210> 4 1243 <211> <212> PRT <213> Arti fi ci al <220> <223> fusion protein <400> 4 Met Ser Leu Pro Asn Ser Ser Cys Leu Leu Glu Asp Lys Met Cys Glu 1 5 10 15 Gly Asn Lys Thr Thr Met Ala Ser Pro Gln Leu Met Pro Leu Val Val 20 25 30 Val Leu Ser Thr IIe Cys Leu Val Thr Val Gly Leu Asn Leu Leu Val 35 40 45 Leu Tyr Ala Val Arg Ser Glu Arg Lys Leu His Thr Val Gly Asn Leu 50 55 60

Tyr lle Val 65	Ser Leu	Ser V 70	Val	Al a	Asp	Leu	і 11е 75	Val	GI y	Al a	Val	Val 80
Met Pro Met	Asn IIe 85	Leu ⁻	Tyr	Leu	Leu	Met 90	Ser	Lys	Trp	Ser	Leu 95	GI y
Arg Pro Leu	Cys Leu 100	Phe -	Trp	Leu	Ser 105	Met	Asp	Tyr	Val	AI a 110	Ser	Thr
Ala Ser Ile 115	Phe Ser	Val I		IIe 120	Leu	Cys	lle	Asp	Arg 125	Tyr	Arg	Ser
Val Gln Gln 130	Pro Leu		Tyr 135	Leu	Lys	Tyr	Arg	Thr 140	Lys	Thr	Arg	Al a
Ser Ala Thr 145	lle Leu	GI y <i>1</i> 150	Ala	Trp	Phe	Leu	Ser 155	Phe	Leu	Trp	Val	IIe 160
Pro Ile Leu	GLy Trp 165		Hi s	Phe	Met	GI n 170	GI n	Thr	Ser	Val	Arg 175	Arg
Glu Asp Lys	Cys Glu 180	Thr /	Asp	Phe	Tyr 185	Asp	Val	Thr	Trp	Phe 190	Lys	Val
Met Thr Ala 195	lle lle	Asn I	Phe	Tyr 200	Leu	Pro	Thr	Leu	Leu 205	Met	Leu	Trp
Phe Tyr Ala 210	Lys IIe		Lys 215	Al a	Val	Arg	GI n	Hi s 220	Cys	GI n	Hi s	Arg
Glu Leu IIe 225	Asn Arg	Ser I 230	Leu	Pro	Ser	Phe	Ser 235	GI u	lle	Lys	Leu	Arg 240
Pro Glu Asn	Pro Lys 245	GIy	Asp	Al a	Lys	Lys 250	Pro	GI y	Lys	GI u	Ser 255	Pro
Trp Glu Val	Leu Lys 260	Arg l	Lys	Pro	Lys 265	Asp	Ala	GI y	GI y	GI y 270	Ser	Val
Leu Lys Ser 275	Pro Ser	GI n		Pro 280	Lys	GI u	Met	Lys	Ser 285	Pro	Val	Val
Phe Ser GIn 290	Glu Asp		Arg 295	GI u	Val	Asp	Lys	Leu 300	Tyr	Cys	Phe	Pro
Leu Asp IIe 305	Val His	Met (310	GI n	Al a	AI a		GI u 315 age 1	-	Ser	Ser	Arg	Asp 320

Tyr Va	al Ala	Val	Asn 325	Arg	Ser	Hi s	GI y	GI n 330	Leu	Lys	Thr	Asp	GI u 335	GI n
GIy Le	eu Asn	Thr 340	Hi s	GI y	Ala	Ser	GI u 345	lle	Ser	GI u	Asp	GI n 350	Met	Leu
GIY As	sp Ser 355	GI n	Ser	Phe	Ser	Arg 360	Thr	Asp	Ser	Asp	Thr 365	Thr	Thr	GI u
	a Pro 70	GI y	Lys	GI y	Lys 375	Leu	Arg	Ser	GI y	Ser 380	Asn	Thr	GI y	Leu
Asp Ty 385	yr lle	Lys	Phe	Thr 390	Trp	Lys	Arg	Leu	Arg 395	Ser	Hi s	Ser	Arg	GI n 400
Tyr Va	al Ser	GI y	Leu 405	Hi s	Met	Asn	Arg	GI u 410	Arg	Lys	Al a	Al a	Lys 415	GI n
Leu GI	y Phe	Пе 420	Met	Al a	Al a	Phe	IIе 425	Leu	Cys	Trp	lle	Pro 430	Tyr	Phe
lle Ph	ne Phe 435	Met	Val	lle	Al a	Phe 440	Cys	Lys	Asn	Cys	Cys 445	Asn	GI u	Hi s
	s Met 50	Phe	Thr	lle	Trp 455	Leu	GI y	Tyr	lle	Asn 460	Ser	Thr	Leu	Asn
Pro Le 465	eu lle	Tyr	Pro	Leu 470	Cys	Asn	GI u	Asn	Phe 475	Lys	Lys	Thr	Phe	Lys 480
Arg II	e Leu	Hi s	IIе 485	Arg	Ser	Met	Al a	GI u 490	Asp	Al a	Asp	Met	Arg 495	Asn
Glu Le	eu Glu	GI u 500	Met	GI n	Arg	Arg	AI a 505	Asp	Gl n	Leu	Al a	Asp 510	GI u	Ser
Leu GI	u Ser 515	Thr	Arg	Arg	Met	Leu 520	Gl n	Leu	Val	GI u	Gl u 525	Ser	Lys	Asp
Ala GI 53	y IIe 30	Arg	Thr	Leu	Val 535	Met	Leu	Asp	GI u	Gl n 540	GI y	GI u	Gl n	Leu
Glu Ar 545	rg lle	GI u	GI u	GI y 550	Met	Asp	GI n	lle	Asn 555	Lys	Asp	Met	Lys	GI u 560
Ala GI	u Lys	Asn	Leu	Thr	Asp	Leu	GI y	-	Phe age 1	-	GI y	Leu	Cys	Val

	565	eol f-seql . txt 570	575
Cys Pro Cys Asn 580	Lys Leu Lys	Ser Ser Asp Ala Tyr Lys Lys 585 590	Ala Trp
Gly Asn Asn Gln 595		Val Ala Ser Gln Pro Ala Arg 600 605	Val Val
Asp Glu Arg Glu	GIn Met Ala	lle Ser Gly Gly Phe lle Arg	Arg Val
610	615	620	
Thr Asn Asp Ala	Arg Glu Asn	Glu Met Asp Glu Asn Leu Glu	GIn Val
625	630	635	640
Ser Gly lle lle	GLy Asn Leu	Arg His Met Ala Leu Asp Met	GI y Asn
	645	650	655
Glu lle Asp Thr 660	GIn Asn Arg	GIn IIe Asp Arg IIe Met GIu 665 670	Lys Ala
Asp Ser Asn Lys 675		Asp Glu Ala Asn Gln Arg Ala 680 685	Thr Lys
Met Leu Gly Ser	Gly Met Glu	Asp Ala Lys Asn Ile Lys Lys	Gly Pro
690	695	700	
Ala Pro Phe Tyr	Pro Leu Glu	Asp Gly Thr Ala Gly Glu Gln	Leu His
705	710	715	720
Lys Ala Met Lys	Arg Tyr Ala	Leu Val Pro Gly Thr Ile Ala	Phe Thr
	725	730	735
Asp Ala His Ile 740	Glu Val Asn	lle Thr Tyr Ala Glu Tyr Phe 745 750	Glu Met
Ser Val Arg Leu 755		Met Lys Arg Tyr Gly Leu Asn 760	Thr Asn
His Arg IIe Val	Val Cys Ser	Glu Asn Ser Leu Gln Phe Phe	Met Pro
770	775	780	
Val Leu Gly Ala	Leu Phe IIe	Gly Val Ala Val Ala Pro Ala	Asn Asp
785	790	795	800
lle Tyr Asn Glu	Arg Glu Leu	Leu Asn Ser Met Asn IIe Ser	GIn Pro
	805	810	815

eolf-seql.txt Thr Val Val Phe Val Ser Lys Lys Gly Leu Gln Lys IIe Leu Asn Val 820 825 830
GIn Lys Lys Leu Pro IIe IIe GIn Lys IIe IIe IIe Met Asp Ser Lys 835 840 845
Thr Asp Tyr GIn GIy Phe GIn Ser Met Tyr Thr Phe Val Thr Ser His 850 855 860
Leu Pro Pro Gly Phe Asn Glu Tyr Asp Phe Val Pro Glu Ser Phe Asp 865 870 875 880
Arg Asp Lys Thr IIe Ala Leu IIe Met Asn Ser Ser Gly Ser Thr Gly 885 890 895
Leu Pro Lys Gly Val Ala Leu Pro His Arg Thr Ala Cys Val Arg Phe 900 905 910
Ser His Ala Arg Asp Pro Ile Phe Gly Asn Gln Ile Ile Pro Asp Thr 915 920 925
Ala IIe Leu Ser Val Val Pro Phe His His Gly Phe Gly Met Phe Thr 930 935 940
Thr Leu Gly Tyr Leu IIe Cys Gly Phe Arg Val Val Leu Met Tyr Arg 945 950 955 960
Phe Glu Glu Glu Leu Phe Leu Arg Ser Leu Gln Asp Tyr Lys IIe Gln 965 970 975
Ser Ala Leu Leu Val Pro Thr Leu Phe Ser Phe Phe Ala Lys Ser Thr 980 985 990
Leu II e Asp Lys Tyr Asp Leu Ser Asn Leu His Glu II e Ala Ser Gly 995 1000 1005
Gly Ala Pro Leu Ser Lys Glu Val Gly Glu Ala Val Ala Lys Arg 1010 1015 1020
Phe His Leu Pro Gly IIe Arg GIn Gly Tyr Gly Leu Thr Glu Thr 1025 1030 1035
Thr Ser Alalle Leulle Thr ProGluGlyAspAspLysProGly 1040 1045 1050
Ala Val Gly Lys Val Val Pro Phe Phe Glu Ala Lys Val Val Asp 1055 1060 1065

Leu Asp 1070	GI y	Lys	Leu 1075	Val	Asn	Gl n	Arg 1080	Glu	Leu

- Cys Val Arg Gly Pro Met IIe Met Ser Gly Tyr Val Asn Asn Pro 1085 1090 1095
- Glu Ala Thr Asn Ala Leu IIe Asp Lys Asp Gly Trp Leu His Ser 1100 1105 1110
- Gly Asp IIe Ala Tyr Trp Asp Glu Asp Glu His Phe Phe IIe Val 1115 1120 1125
- Asp Arg Leu Lys Ser Leu IIe Lys Tyr Lys Gly Tyr Gln Val Ala 1130 1135 1140
- Pro Ala Glu Leu Glu Ser IIe Leu Leu Gln His Pro Asn IIe Phe 1145 1150 1155
- Asp Ala Gly Val Ala Gly Leu Pro Asp Asp Asp Ala Gly Glu Leu 1160 1165 1170
- Pro Ala Ala Val Val Val Leu Glu His Gly Lys Thr Met Thr Glu 1175 1180 1185
- Lys Glu IIe Val Asp Tyr Val Ala Ser Gln Val Thr Thr Ala Lys 1190 1195 1200
- Lys Leu Arg Gly Gly Val Val Phe Val Asp Glu Val Pro Lys Gly 1205 1210 1215
- Leu Thr Gly Lys Leu Asp Ala Arg Lys Ile Arg Glu Ile Leu Ile 1220 1225 1230
- Lys Ala Lys Lys Gly Gly Lys Ser Lys Leu 1235 1240

<210> 5 <211> 4767 <212> DNA <213> Artificial <220>

<223> cloning construct

<400> 5
gcgtttaaac ttaagctatg gctttccatg tggaaggact gatagctatc atcgtgttct 60
accttctaat tttgctggtt ggaatatggg ctgcctggag aaccaaaaac agtggcagcg 120
cagaagagcg cagcgaagcc atcatagttg gtggccgaga tattggttta ttggttggtg 180
Page 17

gatttaccat gacag	gctacc tgggtcgga	g gagggtatat	caatggcaca	gctgaagcag	240
tttatgtacc aggti	tatggc ctagcttgg	g ctcaggcacc	aattggatat	tctcttagtc	300
tgattttagg tggco	ctgttc tttgcaaaa	c ctatgcgttc	aaaggggtat	gtgaccatgt	360
tagacccgtt tcage	caaatc tatggaaaa	c gcatgggcgg	actcctgttt	attcctgcac	420
tgatgggaga aatgi	ttctgg gctgcagca	a ttttctctgc	tttgggagcc	accatcagcg	480
tgatcatcga tgtgg	gatatg cacatttct	g tcatcatctc	tgcactcatt	gccactctgt	540
acacactggt gggag	gggctc tattctgtg	g cctacactga	tgtcgttcag	ctcttttgca	600
tttttgtagg gctgi	tggatc agcgtcccc	t ttgcattgtc	acatcctgca	gtcgcagaca	660
tcgggttcac tgctg	gtgcat gccaaatac	c aaaagccgtg	gctgggaact	gttgactcat	720
ctgaagtcta ctcti	tggctt gatagtttt	c tgttgttgat	gctgggtgga	atcccatggc	780
aagcatactt tcaga	agggtt ctctcttct	t cctcagccac	ctatgctcaa	gtgctgtcct	840
tcctggcagc tttcg	gggtgc ctggtgatg	g ccatcccagc	catactcatt	ggggccattg	900
gagcatcaac agact	tggaac cagactgca	t atgggcttcc	agatcccaag	actacagaag	960
aggcagacat gatti	ttacca attgttctg	c agtatctctg	ccctgtgtat	atttctttct	1020
ttggtcttgg tgcag	gtttct gctgctgtt	a tgtcatcagc	agattcttcc	atcttgtcag	1080
caagttccat gtttg	gcacgg aacatctac	c agctttcctt	cagacaaaat	gcttcggaca	1140
aagaaatcgt ttggg	gttatg cgaatcaca	g tgtttgtgtt	tggagcatct	gcaacagcca	1200
tggccttgct gacga	aaaact gtgtatggg	c tctggtacct	cagttctgac	cttgtttaca	1260
tcgttatctt cccco	cagctg ctttgtgta	c tctttgttaa	gggaaccaac	acctatgggg	1320
ccgtggcagg ttat	gtttct ggcctcttc	c tgagaataac	tggaggggag	ccatatctgt	1380
atcttcagcc cttga	atcttc taccctggc	t attaccctga	tgataatggt	atatataatc	1440
agaaatttcc attta	aaaaca cttgccatg	g ttacatcatt	cttaaccaac	atttgcatct	1500
cctatctagc caagt	tatcta tttgaaagt	g gaaccttgcc	acctaaatta	gatgtatttg	1560
atgctgttgt tgcaa	agacac agtgaagaa	a acatggataa	gacaattctt	gtcaaaaatg	1620
aaaatattaa attag	gatgaa cttgcactt	g tgaagccacg	acagagcatg	accctcagct	1680
caactttcac caata	aaagag gccttcctt	g atgttgattc	cagtccagaa	gggtctggga	1740
ctgaagataa tttac	cagatg agtaaagga	g aagaactttt	cactggagtt	gtcccaattc	1800
ttgttgaatt agatg	ggtgat gttaatggg	c acaaattttc	tgtcagtgga	gagggtgaag	1860
gtgatgcaac atac	ggaaaa cttaccctt	a aatttatttg	cactactgga	aaactacctg	1920
ttccatggcc aacad	cttgtc actactttc	t cttatggtgt	tcaatgcttt	tcaagatacc	1980
cagatcatat gaaad	cagcat gactttttc	a agagtgccat	gcccgaaggt	tatgtacagg	2040

Page 18

aaaaaatat	attttcaaa	astascaaas	eol f-seql		atoooattta	2100
			actacaagac			2100
			taaaaggtat			2160
acattcttgg	acacaaattg	gaatacaact	ataactcaca	caatgtatac	atcatggcag	2220
асааасаааа	gaatggaatc	aaagttaact	tcaaaattag	acacaacatt	gaagatggaa	2280
gcgttcaact	agcagaccat	tatcaacaaa	atactccaat	tggcgatggc	cctgtccttt	2340
taccagacaa	ccattacctg	tccacacaat	ctgccctttc	gaaagatccc	aacgaaaaga	2400
gagaccacat	ggtccttctt	gagtttgtaa	cagctgctgg	gattacacat	ggcatggatg	2460
aactatacaa	aatggccgaa	gacgcagaca	tgcgcaatga	gctggaggag	atgcagcgaa	2520
gggctgacca	gttggctgat	gagtcgctgg	aaagcacccg	tcgtatgctg	caactggttg	2580
aagagagtaa	agatgctggt	atcaggactt	tggttatgtt	ggatgaacaa	ggagaacaac	2640
tggaacgcat	tgaggaaggg	atggaccaaa	tcaataagga	catgaaagaa	gcagaaaaga	2700
atttgacgga	cctaggaaaa	ttctgcgggc	tttgtgtgtg	tccctgtaac	aagcttaaat	2760
caagtgatgc	ttacaaaaaa	gcctggggca	ataatcagga	cggagtggtg	gccagccagc	2820
ctgctcgtgt	agtggacgaa	cgggagcaga	tggccatcag	tggcggcttc	atccgcaggg	2880
taacaaatga	tgcccgagaa	aatgaaatgg	atgaaaacct	agagcaggtg	agcggcatca	2940
tcgggaacct	ccgtcacatg	gccctggata	tgggcaatga	gatcgataca	cagaatcgcc	3000
agatcgacag	gatcatggag	aaggctgatt	ссаасаааас	cagaattgat	gaggccaacc	3060
aacgtgcaac	aaagatgctg	ggaagtggta	tggaagacgc	caaaaacata	aagaaaggcc	3120
cggcgccatt	ctatcctcta	gaggatggaa	ccgctggaga	gcaactgcat	aaggctatga	3180
agagatacgc	cctggttcct	ggaacaattg	cttttacaga	tgcacatatc	gaggtgaaca	3240
tcacgtacgc	ggaatacttc	gaaatgtccg	ttcggttggc	agaagctatg	aaacgatatg	3300
ggctgaatac	aaatcacaga	atcgtcgtat	gcagtgaaaa	ctctcttcaa	ttctttatgc	3360
cggtgttggg	cgcgttattt	atcggagttg	cagttgcgcc	cgcgaacgac	atttataatg	3420
aacgtgaatt	gctcaacagt	atgaacattt	cgcagcctac	cgtagtgttt	gtttccaaaa	3480
aggggttgca	aaaaattttg	aacgtgcaaa	aaaaattacc	aataatccag	aaaattatta	3540
tcatggattc	taaaacggat	taccagggat	ttcagtcgat	gtacacgttc	gtcacatctc	3600
atctacctcc	cggttttaat	gaatacgatt	ttgtaccaga	gtcctttgat	cgtgacaaaa	3660
caattgcact	gataatgaat	tcctctggat	ctactgggtt	acctaagggt	gtggcccttc	3720
cgcatagaac	tgcctgcgtc	agattctcgc	atgccagaga	tcctattttt	ggcaatcaaa	3780
tcattccgga	tactgcgatt	ttaagtgttg	ttccattcca	tcacggtttt	ggaatgttta	3840
ctacactcgg	atatttgata	tgtggatttc	gagtcgtctt	aatgtataga	tttgaagaag	3900
agctgttttt	acgatccctt	caggattaca	aaattcaaag Page		gtaccaaccc	3960

tattttcatt cttcgccaaa	agcactctga	ttgacaaata	cgatttatct	aatttacacg	4020
aaattgcttc tggggggcgca	cctctttcga	aagaagtcgg	ggaagcggtt	gcaaaacgct	4080
tccatcttcc agggatacga	caaggatatg	ggctcactga	gactacatca	gctattctga	4140
ttacacccga gggggatgat	aaaccgggcg	cggtcggtaa	agttgttcca	tttttgaag	4200
cgaaggttgt ggatctggat	accgggaaaa	cgctgggcgt	taatcagaga	ggcgaattat	4260
gtgtcagagg acctatgatt	atgtccggtt	atgtaaacaa	tccggaagcg	accaacgcct	4320
tgattgacaa ggatggatgg	ctacattctg	gagacatagc	ttactgggac	gaagacgaac	4380
acttcttcat agttgaccgc	ttgaagtctt	taattaaata	caaaggatat	caggtggccc	4440
ccgctgaatt ggaatcgata	ttgttacaac	accccaacat	cttcgacgcg	ggcgtggcag	4500
gtcttcccga cgatgacgcc	ggtgaacttc	ccgccgccgt	tgttgttttg	gagcacggaa	4560
agacgatgac ggaaaaagag	atcgtggatt	acgtcgccag	tcaagtaaca	accgcgaaaa	4620
agttgcgcgg aggagttgtg	tttgtggacg	aagtaccgaa	aggtcttacc	ggaaaactcg	4680
acgcaagaaa aatcagagag	atcctcataa	aggccaagaa	gggcggaaag	tccaaattgt	4740
agctcgagtc tagagggccc	gtttaaa				4767