(19) 国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 114249887 B (45) 授权公告日 2022. 11. 29

(21)申请号 202011015841.1

(22)申请日 2020.09.24

(65) 同一申请的已公布的文献号 申请公布号 CN 114249887 A

(43) 申请公布日 2022.03.29

(73) 专利权人 中国科学院大连化学物理研究所 地址 116023 辽宁省大连市沙河口区中山 路457-41号

(72) 发明人 周光远 王红华 赵继永 王志鹏

(74) 专利代理机构 沈阳科苑专利商标代理有限 公司 21002

专利代理师 马驰

(51) Int.CI.

CO8G 65/40 (2006.01)

COSG 75/23 (2006.01)

COBJ 9/12 (2006.01)

COSL 71/10 (2006.01)

CO8L 81/06 (2006.01)

(56) 对比文件

CN 101357985 A,2009.02.04

CN 102408558 A, 2012.04.11

US 6743889 B1,2004.06.01

US 2005208416 A1,2005.09.22

CN 107474242 A, 2017.12.15

CN 107474242 A, 2017.12.15

审查员 甘丽

权利要求书6页 说明书14页 附图2页

(54) 发明名称

一种支化聚合物及其制备和泡沫材料

(57) 摘要

本发明提供一种支化聚合物及其制备方法,解决现有支化聚芳醚酮(砜)制备过程中交联的问题,实现支化聚芳醚酮(砜)高支化度与高分子量的统一。聚合物的结构式如式(I)或式(II)所示。本发明还提供以该聚合物为基体树脂制备得到的泡沫材料,发泡方式为超临界二氧化碳发泡。

1.一种支化聚合物,结构式如式(I)或式(II)所示中的一种或二种:

$$-Ph- \bigcirc X - \bigcirc + (Ar- \bigcirc X - \bigcirc + Ar- \bigcirc$$

(II)

其中,X选自下列结构A或B中的一种或二种:

Ph选自下列结构1-7中的一种或二种以上:

其中,y是聚合度,为整数,10<y<50;

Ar选自下列结构 α - γ 中的一种或二种以上:

Ar'选自下列结构a-g中的一种或二种以上,当Ar'为a-e时,聚合物的结构式对应式(I)所示,当Ar'为f-g时,聚合物结构式对应式(II)所示:

式(I)中m,n,p为聚合度,均为整数,10 < (m+p) < 100,5 < m < 60,5 ,<math>10 < n < 100;

式(II)中m',n',p',q'为聚合度,均为整数,10 < (m'+p'+q') < 100,5 < m' < 60,5 < p' < 60,5 < q' < 60,10 < n' < 100。

2.一种权利要求1所述的聚合物的制备方法,其特征在于:首先将双酚单体、4,4-二卤二苯酮和/或4,4-二卤二苯砜单体、多元酚单体、溶剂、催化剂、带水剂依次加入反应容器,反应温度130℃-180℃,在氮气保护的情况下,回流带水1-3h,然后排出带水剂及产生的水,并升温至180℃-230℃反应2-5h,生成卤原子封端的支化聚合物,降温到130℃-160℃,加入AB单体和带水剂,回流1-3h,除去带水剂及产生的水,再升温至180℃-230℃反应1-4h,结束反应,加N,N-二甲基乙酰胺DMAc稀释,最后在乙醇-水的混合溶液中沉淀,粉碎,并用去离子水煮沸煮洗5-6次,每次时间40min-90min,干燥得到目标支化聚合物粉末;双酚单体选自下列结构α-γ中的一种或二种以上:

$$\alpha$$
 β γ

所述的4,4-二卤二苯酮为4,4-二氟二苯酮或4,4-二氯二苯酮中的一种或二种;

所述的4,4-二卤二苯砜为4,4-二氟二苯砜或4,4-二氯二苯砜中的一种或二种;

双酚与4,4-二卤二苯酮和/或4,4-二卤二苯砜的物质的量比例为70:100-99:100:

多元酚与双酚的物质的量比例为1:100-20:100;

溶剂为环丁砜TMS、二甲基亚砜DMSO、N-甲基吡咯烷酮NMP中的一种或二种以上,溶剂质量为聚合物理论质量产量的2-8倍;

带水剂为甲苯、二甲苯中的一种或二种,带水剂的质量为溶剂质量的5%-70%;

催化剂为碳酸钾、碳酸钠、碳酸钙中的一种或两种以上组合,催化剂的物质的量为4,4-二卤二苯酮和/或4,4-二卤二苯砜的1.15-1.5倍;

DMAc的质量为聚合物理论质量产量的0.5-8倍;

乙醇和水混合物中乙醇和水的体积比为90:10-40:60;

AB单体是指一端是酚羟基,另一端是卤苯的单体,选自下述结构1-7中的一种或二种以上;

$$F = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 5 & 6 \\ 1 & 5 & 6 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \\ 2 & 1 & 3 & 3 \\ 3 & 1 & 1 & 1 & 2 \\ 4 & 1 & 1 & 1 & 2 & 3 \\ 4 & 1 & 1 & 1 & 1 & 2 \\ 5 & 1 & 1 & 1 & 1 & 2 \\ 6 & 1 & 1 & 1 & 1 & 2 \\ 7 & 1 & 1 & 1 & 1 & 2 \\ 7 & 1 & 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2$$

AB单体与多元酚单体的摩尔比为20:1-100:1;

多元酚单体是三元酚、四元酚、五元酚、六元酚中的一种或二种以上。

3.根据权利要求2所述的聚合物的制备方法,其特征在于:

所述溶剂质量为聚合物理论质量产量的3-5倍;

带水剂的质量为溶剂质量的10%-30%; DMAc的质量为聚合物理论质量产量的0.5-2倍; 所述多元酚单体选自以下结构a-g中的一种或二种以上:

- 4.一种具有权利要求1所述的式(I)或式(II)结构中一种或二种以上的聚合物的泡沫材料。
- 5.根据权利要求4所述的泡沫材料,所述的泡沫材料的形态包括泡沫板材、泡沫珠粒或 泡沫片材。
 - 6.根据权利要求5所述的泡沫材料,其制备方法如下:

泡沫板材的制备方法:将粉末状聚合物在热压机上模压成板材,模压温度300℃-380℃,压力5MPa-10MPa,模压时间30min-60min,所得板材厚度大于0.5-10 mm,然后将得到的板材置于高压釜中,密封釜体,通入二氧化碳,保持压力5-20MPa,温度200℃-350℃,1-5h后,通过泄压阀将釜内压力快速降至常压,打开釜体取出样品冷却至室温,即得到目标泡沫板材:

泡沫珠粒的制备方法:将粉末状聚合物通过单螺杆挤出机加工成尺寸均匀的粒料,直径0.5-3mm,然后将得到的粒料置于高压釜中,密封釜体,通入二氧化碳,在机械搅拌条件下,保持压力5-20MPa,温度200℃-300℃,0.5-2h后,通过泄压阀将釜内压力快速降至常压,泡沫珠粒即从泄压口喷出,冷却并收集,得到目标泡沫珠粒;

泡沫片材的制备方法:将粉末状聚合物在热压机上模压成片材,模压温度300℃-380℃,压力5MPa-10MPa,模压时间30min-60min,片材厚度0.1-0.5mm,然后将得到的片材置于高压釜中,密封釜体,通入二氧化碳,保持压力5-20MPa,温度35℃-80℃,1-5h后通过泄压阀将釜内压力快速降至常压,取出聚合物片材并快速放入高温油浴或温度为150℃-250℃

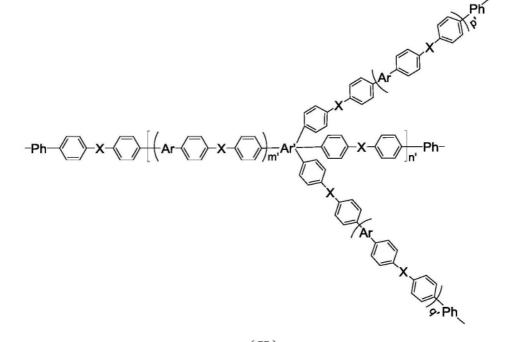
环境中发泡,10-120s后取出冷却即得到目标泡沫片材。

一种支化聚合物及其制备和泡沫材料

技术领域

[0001] 本发明属于高分子合成与加工领域,具体涉及一种支化聚合物、制备方法及其泡沫材料。

背景技术


[0002] 航空航天、轨道交通、国防装备等领域出于减重的需求,需要用到大量聚合物泡沫,由于这些领域的特殊性,对聚合物泡沫的要求很高,如耐高温、阻燃、高机械强度等,因此开发高性能泡沫材料成为重要的研究方向。聚芳醚酮(砜)泡沫是一类热塑性的高性能泡沫材料,具有耐辐射,耐化学腐蚀,耐热等级高,阻燃性好的特点,在高端装备的减重、保温等方面具有广阔的应用前景。聚芳醚酮(砜)的发泡方式采用超临界二氧化碳发泡工艺,高发泡倍率的聚芳醚酮(砜)泡沫的制备一直是一个难题:结晶型聚芳醚酮发泡窗口窄,产品重复率低,对设备精度要求高,工业化生产难度大。专利(CN201710793564.9)通过多官能团单体共聚的方式合成了一种长支链结构的聚芳醚酮(砜),制备了高倍率的聚芳醚酮(砜)泡沫材料,解决了发泡窗口宽的问题,使高倍率聚芳醚酮(砜)泡沫的工业化生产成为可能。但是由于多官能团单体的引入使聚合过程容易产生交联,交联会对聚合物的后处理与加工造成困难,必须通过降低反应程度来避免交联的发生,但这样又会使聚合物的分子量与力学性能降低,从而影响聚合物泡沫的使用性能。

发明内容

[0003] 本发明首先提供一种新型支化聚芳醚酮(砜),结构式如式(I)或式(II)所示中的一种或二种:

$$-Ph - \bigcirc X - \bigcirc + (Ar - \bigcirc X - \bigcirc)_m Ar - \bigcirc X - \bigcirc Ar - \bigcirc X - \bigcirc Ph - \bigcirc Ph - \bigcirc X - \bigcirc Ph - \bigcirc X - \bigcirc Ph - \bigcirc Ph - \bigcirc X - \bigcirc Ph - \bigcirc Ph - \bigcirc X - \bigcirc Ph - \bigcirc X - \bigcirc Ph - \bigcirc Ph - \bigcirc X - \bigcirc Ph - \bigcirc Ph - \bigcirc X - \bigcirc Ph - \bigcirc Ph - \bigcirc X - \bigcirc Ph - \bigcirc Ph - \bigcirc X - \bigcirc Ph - \bigcirc Ph - \bigcirc X - \bigcirc Ph - \bigcirc P$$

[0004]

(II)

[0005] 其中,X选自下列结构A或B中的一种或二种:

[0006]

0, 0 _S_

(A)

(B);

[0007] Ph选自下列结构1-7种的一种或二种以上:

[0009] 其中,y是聚合度,为整数,10<y<50;

[0010] Ar选自下列结构α-γ中的一种或二种以上:

[0012] Ar'选自下列结构a-g中的一种或二种以上, 当Ar'为a-e时,聚合物的结构式对应式(I)所示,当Ar'为f-g时,聚合物结构式对应式(II)所示:

[0014] 式(I)中m,n,p为聚合度,均为整数,10 < (m+p) < 100,5 < m < 60,5 < p < 60,10 < n < 100:

[0015] 式(II)中m',n',p',q'为聚合度,均为整数,10 < (m'+p'+q') < 100,5 < m' < 60,5 < p' < 60,5 < q' < 60,10 < n' < 100;

[0016] 2.本发明还提供上述聚合物的制备方法,具体步骤如下:首先将双酚单体、4,4-二 卤二苯酮和/或4,4-二卤二苯砜单体、多元酚单体、溶剂、催化剂、带水剂依次加入反应容器,反应温度130 \mathbb{C} -180 \mathbb{C} ,在氮气保护的情况下,回流带水1-3h,然后排出带水剂及产生的水,并升温至180 \mathbb{C} -230 \mathbb{C} 反应2-5h,生成卤原子封端的支化聚合物,降温到130 \mathbb{C} -160 \mathbb{C} ,加入AB单体和带水剂,回流1-3h,除去带水剂,再升温至180 \mathbb{C} -230 \mathbb{C} 反应1-4h,结束反应,加N,N-二甲基乙酰胺 (DMAc) 稀释,最后在乙醇-水的混合溶液中沉淀,粉碎,并用去离子水煮沸煮洗5-6次,每次40min-90min,干燥得到目标支化聚合物粉末。

[0017] 双酚单体优选的是下列结构 α - γ 中的一种或二种以上:

[0018]
$$\alpha$$
 β γ

[0019] 所述的4,4-二卤二苯酮为4,4-二氟二苯酮或4,4-二氯二苯酮中的一种或二种;

[0020] 所述的4,4-二卤二苯砜为4,4-二氟二苯砜或4,4-二氯二苯砜中的一种或二种。

[0021] 双酚与4,4-二卤二苯酮或4,4-二卤二苯砜的物质的量比例为70:100-99:100:

[0022] 多元酚与双酚的物质的量比例为1:100-20:100;

[0023] 溶剂为环丁砜 (TMS)、二甲基亚砜 (DMSO)、N-甲基吡咯烷酮 (NMP) 中的一种或二种以上,溶剂质量为聚合物理论质量产量的2-8倍;

[0024] 带水剂为甲苯、二甲苯中的一种或二种,带水剂的质量为溶剂质量的5%-70%;

[0025] 催化剂为碳酸钾、碳酸钠、碳酸钙中的一种或两种以上组合,催化剂的物质的量为4,4-二卤二苯酮(砜)的1.15-1.5倍;

[0026] DMAc的质量为聚合物理论质量产量的0.5-8倍:

[0027] 乙醇-水混合物中乙醇和水的体积比为90:10-40:60;

[0028] AB单体是指一端是酚羟基,另一端是卤苯的单体,优选的是下述结构1-7中的一种或二种以上,但不局限于结构1-7:

[0030] AB单体与多元酚单体的摩尔比为20:1-100:1;

[0031] 多元酚单体可以是三元酚、四元酚、五元酚、六元酚中的一种或二种以上,优选的是结构a-g中的一种或二种以上,但不限于结构a-g:

[0033] 3. 具有式(I)或式(II)结构的聚合物的泡沫材料,所述的泡沫材料的形态包括泡沫板材、泡沫珠粒以及泡沫片材,其制备方法如下:

[0034] 泡沫板材的制备方法:将粉末状聚合物在热压机上模压成板材,模压温度300℃-380℃,压力5MPa-10MPa,模压时间30min-60min,所得板材厚度0.5-10mm,然后将得到的板材置于高压釜中,密封釜体,通入二氧化碳,保持压力5-20MPa,温度200℃-350℃,1-5h后,通过泄压阀将釜内压力快速降至常压,打开釜体取出样品冷却至室温,即得到目标泡沫板材。泡沫珠粒的制备方法:将粉末状聚合物通过单螺杆挤出机加工成尺寸均匀的粒料,直径0.5-3mm,然后将得到的粒料置于高压釜中,密封釜体,通入二氧化碳,在机械搅拌条件下,保持压力5-20MPa,温度200℃-300℃,0.5-2h后,通过泄压阀将釜内压力快速降至常压,泡沫珠粒即从泄压口喷出,收集并冷却,得到目标泡沫珠粒。

[0035] 泡沫片材的制备方法:将粉末状聚合物在热压机上模压成片材,模压温度300°C-380°C,压力5MPa-10MPa,模压时间30min-60min,片材厚度0.1-0.5mm,然后将得到的片材置于高压釜中,密封釜体,通入二氧化碳,保持压力5-20MPa,温度35°C-80°C,1-5h后通过泄压

阀将釜内压力快速降至常压,取出聚合物片材并快速放入高温油浴或其它高温环境(150 \mathbb{C} -250 \mathbb{C}) 中发泡,10-120s后取出冷却即得到目标泡沫片材。

[0036] 本申请能产生的有益效果包括:本发明对长支链聚芳醚酮(砜)的分子结构与合成工艺进行了改进,首先合成卤苯封端的支化聚合物,然后用AB单体进行扩链,提高分子量,解决了现有技术在合成长支链聚芳醚酮(砜)中交联的问题,对于制备兼具加工性能和机械性能的长支链聚芳醚酮(砜)具有实际意义,进一步,用此聚合物来制备的泡沫材料,在相同密度条件下具有更好的力学强度。

附图说明

[0037] 图1为本发明实施例1制备得到的聚合物的核磁谱图

[0038] 图2为本发明实施例1制备得到的泡沫板材及其SEM照片

[0039] 图3为本发明实施例1制备得到的泡沫珠粒

[0040] 图4本发明实施例1制备得到的泡沫片材的SEM照片

具体实施方式

[0041] 实施例1

[0042] 向三口烧瓶中加入酚酞 (100mmo1)、4,4-二氟二苯酮 (127mmo1)、1,1,1-三(4-羟基苯基) 乙烷 (8mmo1)、 K_2 CO₃ (125mmo1)、TMS (130m1)、甲苯 (50m1),氮气保护条件下,将上述混合物加热到150℃共沸除水,恒温2h,除去甲苯及产生的水,继续加热到220℃反应2h,降温到150℃,加入 (4-氟苯)-(4-羟基-3苯基苯) 甲酮 (150mmo1) 和甲苯 (50m1) 反应2h,除去甲苯,再升温到220℃反应2h,结束反应,加入250m1 DMAc稀释,在乙醇-水 (50:50) 混合溶液中沉淀,沉淀物经过滤、粉碎,并用去离子水反复煮沸煮洗5次,每次60min,除去无机盐和残留溶剂,烘干,即得到具有式 (III) 结构的含长支链结构聚芳醚酮。(10<m+p<15,5<m<10,5<p<10,20<n<30,10<y<20)

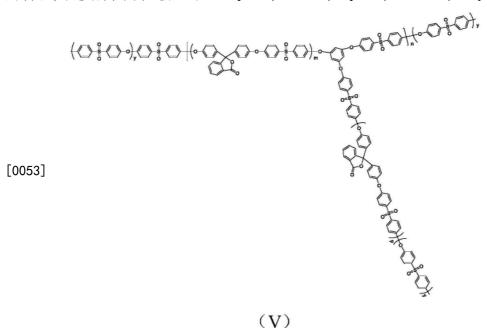
[0044] 将粉碎干燥好的上述粉末状样品在热压机中进行模压,温度350℃,压力5MPa, 30min后停止加热,待温度降至50℃以下后,泄压并取出样品,得到厚度4mm的板材;

III

[0045] 采用上述相同的模压工艺,通过控制加料量可得到0.3mm厚的片材。

[0046] 将制备的板材放置于高压釜中,密封釜体,用高压CO₂吹洗釜腔2-3次,目的是排除腔内的空气,然后通过增压系统向高压釜内注入CO₂气体,控制恒定压力为10MPa,升高釜温到280℃,保温保压2.5h,然后通过减压阀将压力迅速降至常压,降压速率>10MPa,并打开釜体取出样品冷却至室温,从而得到泡沫板材,泡沫密度为0.081g/cm³,压缩强度为1.07MPa。将得到的片材置于高压釜中,密封釜体,通入二氧化碳,保持压力8MPa,温度50℃,3h后通过泄压阀将釜内压力快速降至常压,取出聚合物片材并快速放入高温油浴(180℃)中发泡,60s后取出冷却即得到目标泡沫片材。将粉碎好的上述样品通过单螺杆挤出机加工成尺寸均匀的粒料,直径0.7mm,然后将得到的粒料置于高压釜中,密封釜体,通入二氧化碳,在机械搅拌条件下,保持压力10MPa,温度230℃,1h后,通过泄压阀将釜内压力快速降至常压,泡沫珠粒即从泄压口喷出,冷却并收集,得到目标泡沫珠粒。

[0047] 对比例1


[0048] 向三口烧瓶中加入酚酞 (100mmo1)、4,4-二氟二苯酮 (117mmo1)、1,1,1-三(4-羟基苯基) 乙烷 (8mmo1)、 K_2 CO $_3$ (115mmo1)、TMS (130m1)、甲苯 (50m1),氮气保护条件下,将上述混合物加热到150℃共沸除水,恒温2h,除去甲苯及产生的水,继续加热到220℃反应4h,降温,加入250m1 DMAc稀释,在乙醇/水中沉淀,沉淀物经过滤、粉碎,并用去离子水反复煮沸煮洗5次,每次60min,除去无机盐和残留溶剂,烘干,即得到具有式 (IV) 结构的含长支链结构聚芳醚酮。

[0049] 与实施例1的不同之处在于没有加入4-氟-4'-羟基二苯甲酮进行扩链,导致分子

量偏低,采用相同的发泡工艺得到密度为0.080g/cm3的泡沫,压缩强度只有0.080MPa。

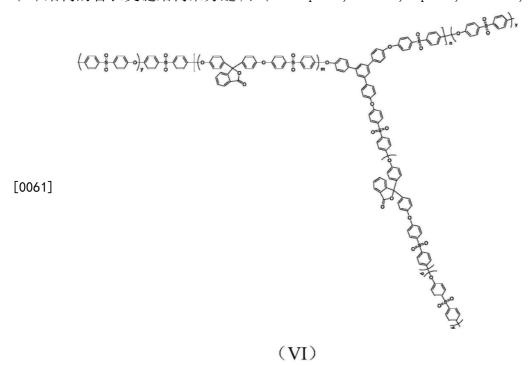
[0051] 实施例2

[0052] 向三口烧瓶中加入酚酞 (100mmo1)、4,4-二氟二苯砜 (125mmo1)、间苯三酚 (8mmo1)、 K_2CO_3 (125mmo1)、TMS (130ml)、甲苯 (50ml),氮气保护条件下,将上述混合物加热到 150℃共沸除水,恒温2h,除去甲苯,继续加热到220℃反应2h,降温到150℃,加入4-氟-4′-羟基二苯砜 (150mmo1) 和甲苯 (50ml) 反应2h,除去甲苯及产生的水,再升温到220℃反应2h,结束反应,加入250ml DMAc稀释后,在乙醇/水 (50:50) 中沉淀,沉淀物经过滤、粉碎,并用去离子水反复煮沸煮洗5次,每次60min,除去无机盐和残留溶剂,烘干,即得到具有式 (V) 结构的含长支链结构聚芳醚砜。 (10<m+p<15,5<m<10,5<p<10,20<n<30,10<y<20)

[0054] 将粉碎干燥好的上述粉末状样品在热压机中进行模压,温度360℃,压力5MPa,

30min后停止加热,待温度降至50℃以下后,泄压并取出样板,厚度3.5mm。

[0055] 采用上述相同的模压工艺,通过控制加料量可得到0.3mm厚的片材。


[0056] 将制备的板材放置于高压釜中,密封釜体,用高压CO₂吹洗釜腔2-3次,目的是排除腔内的空气,然后通过增压系统向高压釜内注入CO2气体,控制恒定压力为15MPa,升高釜温到270℃,保温保压2.5h,然后通过减压阀将压力迅速降至常压,降压速率>10MPa,并打开釜体取出样品冷却至室温,从而得到泡沫样品,泡沫密度为0.093g/cm³,压缩强度为1.23MPa。

[0057] 将得到的片材置于高压釜中,密封釜体,通入二氧化碳,保持压力10MPa,温度50 ℃,3h后通过泄压阀将釜内压力快速降至常压,取出聚合物片材并快速放入高温油浴(170 ℃)中发泡,60s后取出冷却即得到目标泡沫片材。

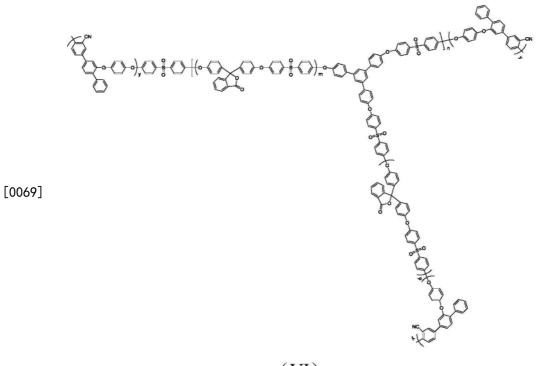
[0058] 将粉碎好的上述样品通过单螺杆挤出机加工成尺寸均匀的粒料,直径0.5mm,然后将得到的粒料置于高压釜中,密封釜体,通入二氧化碳,在机械搅拌条件下,保持压力10MPa,温度230℃,1h后,通过泄压阀将釜内压力快速降至常压,泡沫珠粒即从泄压口喷出,冷却并收集,得到目标泡沫珠粒。

[0059] 实施例3

[0060] 向三口烧瓶中加入酚酞 (100mmo1)、4,4-二氟二苯砜 (127mmo1)、1,3,5-三(4-羟苯基) 苯 (3mmo1)、 K_2CO_3 (125mmo1)、TMS (130m1)、甲苯 (50m1),氮气保护条件下,将上述混合物加热到150℃共沸除水,恒温2h,除去甲苯及产生的水,继续加热到220℃反应2h,降温到150℃,加入4-氟-4'-羟基二苯砜 (150mmo1)和甲苯 (50m1)反应2h,除去甲苯,再升温到220℃反应2h,结束反应,加入250m1 DMAc稀释后,在乙醇/水中 (50:50) 沉淀,沉淀物经过滤、粉碎,并用去离子水反复煮沸煮洗5次,每次60min,除去无机盐和残留溶剂,烘干,即得到具有式 (VI) 结构的含长支链结构聚芳醚砜。(15<m+p<20,5<m<10,5<p<10,20<n<30,10<y<20)

[0062] 将粉碎干燥好的上述粉末状样品在热压机中进行模压,温度360℃,压力5MPa,30min后停止加热,待温度降至50℃以下后,泄压并取出样板,厚度4mm。

[0063] 采用上述相同的模压工艺,通过控制加料量可得到0.3mm厚的片材。


[0064] 将制备的板材放置于高压釜中,密封釜体,用高压 CO_2 吹洗釜腔2-3次,目的是排除腔内的空气,然后通过增压系统向高压釜内注入CO2气体,控制恒定压力为15MPa,升高釜温到270°、保温保压2.5h,然后通过减压阀将压力迅速降至常压,降压速率>10MPa,并打开釜体取出样品冷却至室温,从而得到泡沫样品,泡沫密度为 $0.120g/cm^3$,压缩强度为1.9MPa。

[0065] 将得到的片材置于高压釜中,密封釜体,通入二氧化碳,保持压力8MPa,温度50℃,3h后通过泄压阀将釜内压力快速降至常压,取出聚合物片材并快速放入高温油浴(190℃)中发泡,60s后取出冷却即得到目标泡沫片材。

[0066] 将粉碎好的上述样品通过单螺杆挤出机加工成尺寸均匀的粒料,直径0.7mm,然后将得到的粒料置于高压釜中,密封釜体,通入二氧化碳,在机械搅拌条件下,保持压力10MPa,温度225℃,1h后,通过泄压阀将釜内压力快速降至常压,泡沫珠粒即从泄压口喷出,冷却并收集,得到目标泡沫珠粒。

[0067] 实施例4

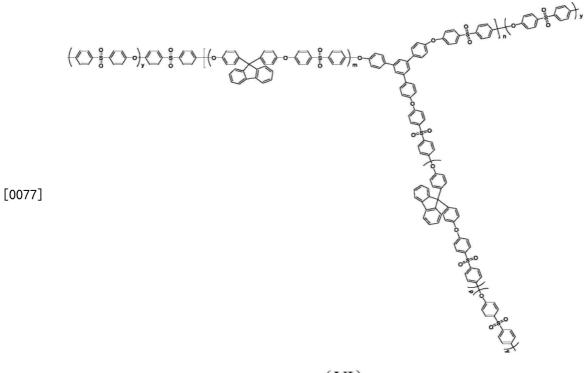
[0068] 向三口烧瓶中加入酚酞 (100mmo1)、4,4-二氟二苯砜 (117mmo1)、1,3,5-三 (4-羟苯基) 苯 (3mmo1)、 K_2CO_3 (125mmo1)、TMS (130m1)、甲苯 (50m1),氮气保护条件下,将上述混合物加热到150℃共沸除水,恒温2h,除去甲苯,继续加热到220℃反应2h,降温到150℃,加入AB单体3 (150mmo1)和甲苯 (50m1)反应2h,除去甲苯及产生的水,再升温到220℃反应2h,结束反应,加入250m1 DMAc稀释后,在乙醇/水 (50:50)中沉淀,沉淀物经过滤、粉碎,并用去离子水反复煮沸煮洗5次,每次60min,除去无机盐和残留溶剂,烘干,即得到具有式 (VI)结构的含长支链结构聚芳醚砜。 (15<m+p<20,5<m<10,5<p<10,20<n<30,10<y<20)

(VI)

[0070] 将粉碎干燥好的上述粉末状样品在硫压机中进行模压,温度360℃,压力5MPa,30min后停止加热,待温度降至50℃以下后,泄压并取出样板,厚度4mm。

[0071] 采用上述相同的模压工艺,通过控制加料量可得到0.3mm厚的片材。

[0072] 将制备的板材放置于高压釜中,密封釜体,用高压 $\mathrm{CO_2}$ 吹洗釜腔2-3次,目的是排除


腔内的空气,然后通过增压系统向高压釜内注入CO2气体,控制恒定压力为15MPa,升高釜温到290℃,保温保压2.5h,然后通过减压阀将压力迅速降至常压,降压速率>10MPa,并打开釜体取出样品冷却至室温,从而得到泡沫样品,泡沫密度为0.072g/cm³,压缩强度为1.1MPa。

[0073] 将得到的片材置于高压釜中,密封釜体,通入二氧化碳,保持压力8MPa,温度50℃,3h后通过泄压阀将釜内压力快速降至常压,取出聚合物片材并快速放入高温油浴(180℃)中发泡,60s后取出冷却即得到目标泡沫片材。

[0074] 将粉碎好的上述样品通过单螺杆挤出机加工成尺寸均匀的粒料,直径0.7mm,然后将得到的粒料置于高压釜中,密封釜体,通入二氧化碳,在机械搅拌条件下,保持压力10MPa,温度230℃,1h后,通过泄压阀将釜内压力快速降至常压,泡沫珠粒即从泄压口喷出,冷却并收集,得到目标泡沫珠粒。

[0075] 实施例5

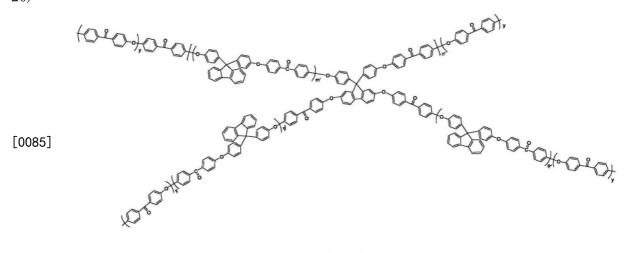
[0076] 向三口烧瓶中加入双酚芴 (100mmo1)、4,4-二氟二苯砜 (125mmo1)、1,3,5-三(4-羟苯基)苯 (2mmo1)、 K_2 CO $_3$ (125mmo1)、TMS (130m1)、甲苯(50m1),氮气保护条件下,将上述混合物加热到150℃共沸除水,恒温2h,除去甲苯,继续加热到230℃反应2h,降温到150℃,加入4-氟-4'-羟基二苯砜 (300mmo1)和甲苯(50m1)反应2h,除去甲苯及产生的水,再升温到220℃反应2h,结束反应,加入250m1 DMAc稀释后,在乙醇/水(50:50)中沉淀,沉淀物经过滤、粉碎,并用去离子水反复煮沸煮洗5次,每次60min,除去无机盐和残留溶剂,烘干,即得到具有式(VI)结构的含长支链结构聚芳醚砜。(25<m+p<40,10<m<20,10<p<20,20<n<30,30<y<40)

(VI)

[0078] 将粉碎干燥好的上述粉末状样品在热压机中进行模压,温度370℃,压力5MPa, 30min后停止加热,待温度降至50℃以下后,泄压并取出样板,厚度4mm。

[0079] 采用上述相同的模压工艺,通过控制加料量可得到0.3mm厚的片材。

[0080] 将制备的板材放置于高压釜中,密封釜体,用高压CO,吹洗釜腔2-3次,目的是排除


腔内的空气,然后通过增压系统向高压釜内注入CO2气体,控制恒定压力为15MPa,升高釜温到270℃,保温保压2.5h,然后通过减压阀将压力迅速降至常压,降压速率>10MPa,并打开釜体取出样品冷却至室温,从而得到泡沫样品,泡沫密度为0.220g/cm³,压缩强度为3.7MPa。

[0081] 将得到的片材置于高压釜中,密封釜体,通入二氧化碳,保持压力8MPa,温度60℃,3h后通过泄压阀将釜内压力快速降至常压,取出聚合物片材并快速放入高温油浴(180℃)中发泡,60s后取出冷却即得到目标泡沫片材。

[0082] 将粉碎好的上述样品通过单螺杆挤出机加工成尺寸均匀的粒料,直径0.5mm,然后将得到的粒料置于高压釜中,密封釜体,通入二氧化碳,在机械搅拌条件下,保持压力8MPa,温度220℃,1h后,通过泄压阀将釜内压力快速降至常压,泡沫珠粒即从泄压口喷出,冷却并收集,得到目标泡沫珠粒。

[0083] 实施例6

[0084] 向三口烧瓶中加入双酚芴 (100mmo1)、4,4-二氟二苯酮 (120mmo1)、四酚芴 (8mmo1)、 K_2CO_3 (125mmo1)、TMS (130m1)、甲苯 (50m1),氮气保护条件下,将上述混合物加热到 150℃共沸除水,恒温2h,除去甲苯,继续加热到220℃反应2h,降温到150℃,加入4-氟-4'-羟基二苯酮 (200mmo1) 和甲苯 (50m1) 反应2h,除去甲苯及产生的水,再升温到220℃反应2h,结束反应,加入250m1 DMAc稀释,在乙醇/水 (50:50) 中沉淀,沉淀物经过滤、粉碎,并用去离子水反复煮沸煮洗5次,每次60min,除去无机盐和残留溶剂,烘干,即得到具有式 (VII) 结构的含长支链结构聚芳醚酮。(10<m'+p'+q'<25,5<m'<10,5<p'<10,5<q'<10,20<n'<30,10<y<20)

(VII)

[0086] 将粉碎干燥好的上述粉末状样品在热压机中进行模压,温度360℃,压力5MPa, 30min后停止加热,待温度降至50℃以下后,泄压并取出样板,厚度4mm。

[0087] 采用上述相同的模压工艺,通过控制加料量可得到0.3mm厚的片材。

[0088] 将制备的板材放置于高压釜中,密封釜体,用高压 CO_2 吹洗釜腔2-3次,目的是排除腔内的空气,然后通过增压系统向高压釜内注入 CO_2 气体,控制恒定压力为15MPa,升高釜温到 290° C,保温保压2.5h,然后通过减压阀将压力迅速降至常压,降压速率>10MPa,并打开釜体取出样品冷却至室温,从而得到泡沫样品,泡沫密度为0.066g/cm³,压缩强度为0.97MPa。[0089] 将得到的片材置于高压釜中,密封釜体,通入二氧化碳,保持压力8MPa,温度 50° C,3h后通过泄压阀将釜内压力快速降至常压,取出聚合物片材并快速放入高温油浴(200° C)

中发泡,50s后取出冷却即得到目标泡沫片材。

[0090] 将粉碎好的上述样品通过单螺杆挤出机加工成尺寸均匀的粒料,直径0.4mm,然后将得到的粒料置于高压釜中,密封釜体,通入二氧化碳,在机械搅拌条件下,保持压力8MPa,温度210℃,1h后,通过泄压阀将釜内压力快速降至常压,泡沫珠粒即从泄压口喷出,冷却并收集,得到目标泡沫珠粒。

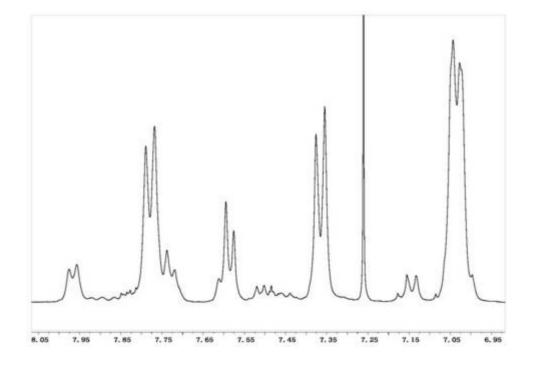


图1

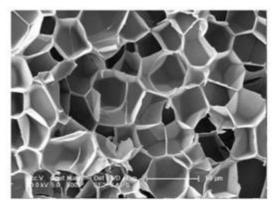


图2

图3

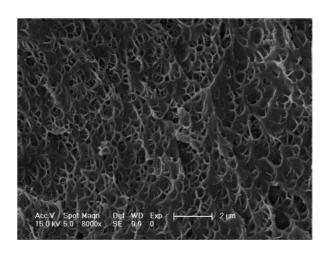


图4