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SYSTEMS AND METHODS FOR EVALUATING EMBRYO VIABILITY USING
ARTIFICIAL INTELLIGENCE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application No. 63/256,332
filed October 15, 2021 and U.S. Provisional Patent Application No. 63/157,433 filed March 5,

2021, each of which is hereby incorporated in its entirety by this reference.
TECHNICAL FIELD
[0002] This invention relates generally to the field of evaluating embryo viability.
BACKGROUND

[0003] In vitro fertilization (IVF) is a widely known assisted reproductive technology. IVF
involves several complex steps such as ovarian stimulation, oocyte retrieval, oocyte fertilization,
embryo culture, embryo selection, and embryo transfer. Typically, embryos are cultured to the
blastocyst stage (e.g., the embryo transfer stage). That is, following the oocyte retrieval and
fertilization, embryos are cultured until there is a clear differentiation into the inner cell mass
and trophectoderm structures. Less competent embryos often arrest their development prior to
the blastocyst stage. Generally, a cohort of embryos may make it to the blastocyst stage.
Therefore, embryos that survive to the blastocyst stage need to be assessed before an embryo is
selected for transfer. Based on the assessment, a single embryo (or, in rare cases multiple

embryos) may be selected for transfer.

[0004] Accordingly, embryo selection is an important aspect of the IVF process. Traditionally,
embryo selection is performed by an embryologist manually inspecting and assessing embryos.
The embryologist may assign grades to embryos by inspecting embryos under a microscope. The
embryologist may assess features such as the degree of blastocyst expansion, the quality of the
inner cell mass, and the quality of the trophectoderm in order to grade embryos. However,
manually grading embryos can be a highly subjective process. Different embryologists may
grade an embryo differently based on their respective manual inspections. Studies have found
that manual inspection and grading may be often be an intuition driven approach. Therefore, the

grades may vary drastically depending on the embryologist inspecting the embryos.
1



WO 2022/187516 PCT/US2022/018743

[0005] More recently, non-manual techniques have been explored in order to make the process
of embryo selection more consistent. However, these existing techniques have failed to gain
widespread adoption. For example, time-lapse imaging that captures a sequence of images of an
embryo in a periodic manner has been extensively studied. However, time-lapse imaging
requires specialized microscopes that tend to be expensive. The high cost of installation has
inhibited clinics and laboratories from adopting the technology. Another technique that has been
researched recently is preimplantation genetic testing for aneuploidy (PGT-A). Existing PGT-A
tests are invasive tests. Concerns have been raised about embryo health following these tests.
Additionally, existing PGT-A tests merely identify euploid and aneuploid embryos. While it is
known that aneuploid embryos are unlikely to have a successful pregnancy outcome, it is not
necessary for all euploid embryos to lead to a successful pregnancy outcome. Thus, existing

PGT-A tests may still not entirely solve the problem of assessing embryo viability.

[0006] Therefore, there is an unmet need for new and improved methods to standardize the
grading of embryos and improve the accuracy of predicting the viability of embryos.
Furthermore, there is an unmet need for new and improved methods of evaluating embryo

viability that are cost-effective, easy to implement, and easy to adopt.
SUMMARY

[0007] Generally, in some variations, a computer-implemented method for predicting viability
of an embryo may include receiving a single image of an embryo and generating a viability
score for the embryo by classifying the single image via at least one convolutional neural
network, where the viability score represents predicted viability of the embryo. In some
variations, the single image that is classified via the at least one convolutional neural network is
not part of a time series of images. The viability score may, for example, represent predicted
likelihood of the embryo reaching clinical pregnancy (e.g., the likelihood of the embryo reaching
clinical pregnancy may be associated with an outcome of a fetal cardiac activity), likelihood of
the embryo reaching live birth, and/or the like. In some variations, the viability score may be at
least in part on data associated with a patient, such as age, body mass index, day of image
capture, and donor status. Once generated, the viability score may be stored in a database
associated with a patient (e.g., patient in which the embryo may be implanted), and/or

communicated to a patient, clinician, user of the image capturing device, etc.
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[0008] For example, in some variations, a computer-implemented method may include
receiving a single image over a real-time communication link with an image capturing device,
cropping the single image to a boundary of the embryo via a first convolutional neural network,
and generating a viability score for the embryo by classifying the single image via at least a
second convolutional neural network. In some variations, the single image that is classified is
not part of a time series of images. As described above, the viability score may, for example,
represent predicted likelihood of the embryo reaching clinical pregnancy (e.g., the likelihood of
the embryo reaching clinical pregnancy may be associated with an outcome of a fetal cardiac
activity). As another example, the viability score may represent likelihood of the embryo
reaching live birth. In some variations, the viability score may be at least in part on data
associated with a patient, such as age, body mass index, day of image capture, and donor status.
Once generated, the viability score may be stored in a database associated with a patient (e.g.,
patient in which the embryo may be implanted), and/or communicated to a patient, clinician,

user of the image capturing device, etc.

[0009] In some variations, the real-time communication link may be provided by an
application executed on a computing device communicably coupled to the image capturing
device. The application may cause a display on the computing device to display a capture button,
such that in response to a user selecting the capture button, the image capturing device captures

one or more single images of the embryo.

[0010] Furthermore, in some variations, the method may include performing one or more
quality control measures on the single image, such as determining whether the single image
depicts an embryo (e.g., via a third convolutional neural network), and/or determining the
probability that the embryo in the single image is a single blastocyst. Furthermore, in some
variations, the method may include generating the viability score for the embryo in response to
determining that the single image depicts an embryo. Additionally or alternatively, in some
variations the method may include providing an alert to a user of the image capturing device in

response to determining that the single image does not depict an embryo.

[0011] Additionally or alternatively, the method may further include predicting, via a fourth
convolutional neural network, whether the embryo is euploid or aneuploid. This predicting may,
in some variations, also depend at least in part on data associated with a subject (e.g., age, day of

biopsy, etc.). The method may include generating a ploidy outcome based on whether the
3
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embryo is euploid or aneuploid, and updating at least the fourth convolutional neural network

based at least in part on the ploidy outcome and the data.

[0012] The method may be used to predict viability of an embryo that has not been frozen,
and/or viability of an embryo that has been frozen and thawed. For example, in some variations
the embryo has been frozen and thawed, and the method may include receiving the single image
of the embryo post-thaw, and determining viability of the embryo post-thaw via the second
convolutional neural network. Determining viability of the embryo post-thaw may include
classifying the single image into either a first class indicating that the embryo has survived post-
thaw, or a second class indicating that the embryo has reduced viability (e.g., lower level of
viability, has not survived, etc.) post-thaw. In some variations, the method may be used to
predict viability of an embryo that is to undergo biopsy and/or freezing. For example, the
method may include receiving the single image of the of the embryo prior to biopsy and/or

freezing, and determining viability of the embryo prior to biopsy and/or freezing.

[0013] Additionally or alternatively, the method may include receiving a plurality of single
images where each single image depicts a respective embryo of a plurality of embryos,
generating a viability score for each embryo of the plurality of embryos bay classifying each
single image via at least one convolutional network, and ranking embryos based on the viability
scores for the plurality of embryos. Furthermore, in some variations, the method may include
displaying the plurality of single images on a display according to the ranking of the plurality of
embryos, and/or displaying the viability scores for the plurality of embryos.

[0014] In some variations, the single images that are classified via the at least one
convolutional neural network are not part of a time series of images. In some variations, some of
the plurality of images may originate from different image capturing devices (e.g., different

instances of image capturing devices and/or different types of image capturing devices).

[0015] As described above, the viability score may, for example, represent predicted
likelihood of the embryo reaching clinical pregnancy (e.g., the likelihood of the embryo reaching
clinical pregnancy may be associated with an outcome of a fetal cardiac activity). In some
variations, the viability score may be at least in part on data associated with a patient, such as
age, body mass index, day of image capture, and donor status. Once generated, the viability

score may be stored in a database associated with a patient (e.g., patient in which the embryo
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may be implanted), and/or communicated to a patient, clinician, user of the image capturing

device, etc.

[0016] Additionally or alternatively, the method may further include predicting, via a fourth
convolutional neural network, whether the embryo is euploid or aneuploid. This predicting may,
in some variations, also depend at least in part on data associated with a subject (e.g., age, day of
biopsy, etc.). The method may include generating a ploidy outcome based on whether the
embryo is euploid or aneuploid, and updating at least the fourth convolutional neural network

based at least in part on the ploidy outcome and the data.

[0017] As described above, the method may be used to predict viability of an embryo that has
not been frozen, and/or viability of an embryo that has been frozen and thawed. For example, in
some variations the embryo has been frozen and thawed, and the method may include receiving
the single image of the embryo post-thaw, and determining viability of the embryo post-thaw via
the second convolutional neural network. Determining viability of the embryo post-thaw may
include classifying the single image into either a first class indicating that the embryo has

survived post-thaw, or a second class indicating that the embryo has not survived post-thaw.

[0018] Generally, in some variations, the method may utilize at least one convolutional neural
network trained at least in part with specialized training data. For example, a method for
predicting viability of an embryo may include receiving a single image of the embryo captured
with an image capturing device, and generating a viability score for each embryo by classifying
each single image via at least one convolutional neural network, where the at least one
convolutional neural network may, for example, be configured to generate a viability score for
an embryo may be trained based on training data comprising a plurality of single images of
embryos captured with a plurality of image capturing devices. Additionally or alternatively, the
at least one convolutional neural network may be trained based at least in part by balancing a
prevalence of outcome associated with each respective image capturing device. For example, the
prevalence of outcome may include a corresponding bias representing a percentage of positive
pregnancy outcomes associated with each respective image capturing device). In some
variations, the single image that is classified is not part of a time series of images. As described
above, the viability score may, for example, represent predicted likelihood of the embryo
reaching clinical pregnancy (e.g., the likelihood of the embryo reaching clinical pregnancy may

be associated with an outcome of a fetal cardiac activity). In some variations, the viability score
5
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may be at least in part on data associated with a patient, such as age, body mass index, day of
image capture, and donor status. Once generated, the viability score may be stored in a database
associated with a patient (e.g., patient in which the embryo may be implanted), and/or

communicated to a patient, clinician, user of the image capturing device, etc.

[0019] As another example, in some variations, a method for predicting viability of an embryo
may include receiving a single image of the embryo, and generating a viability score for each
embryo by classifying each single image via at least one convolutional neural network, where
the at least one convolutional neural network may be trained based at least in part on training
data including a plurality of augmented images of a plurality of embryos. The augmented images
may, for example, include rotated, flipped, scaled, and/or varied (e.g., having changes in
contrast, brightness, saturation, etc.) images of the plurality of embryos. In some variations, the
single image that is classified is not part of a time series of images. As described above, the
viability score may, for example, represent predicted likelihood of the embryo reaching clinical
pregnancy (e.g., the likelihood of the embryo reaching clinical pregnancy may be associated
with an outcome of a fetal cardiac activity). In some variations, the viability score may be at
least in part on data associated with a patient, such as age, body mass index, day of image
capture, and donor status. Once generated, the viability score may be stored in a database
associated with a patient (e.g., patient in which the embryo may be implanted), and/or

communicated to a patient, clinician, user of the image capturing device, etc.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] FIG. 1 illustrates an exemplary variation of a system for evaluating embryo viability.

[0021] FIG. 2 is a flow diagram illustrating an exemplary variation of a method for evaluating

embryo viability using artificial intelligence.

[0022] FIGS. 3A — 3H illustrates exemplary variations of a graphical user interface (GUI) that
may be part of a plug and play software rendered on a display of a computing device to capture

images of embryos.

[0023] FIG. 4 is a flow diagram illustrating an exemplary variation of a method for evaluating

embryo viability using a series of convolutional neural networks.
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[0024] FIG. 5 is an exemplary variation of implementing a convolutional neural network on an

input image of an embryo for image cropping and image segmentation.

[0025] FIG. 6 is an exemplary variation of implementing a convolutional neural network for

performing quality control.

[0026] FIG. 7 illustrates an exemplary deployment of a convolutional neural network

performing quality control.

[0027] FIG. 8 is an exemplary variation of implementing a convolutional neural network for

image classification and score generation.

[0028] FIG. 9 illustrates an exemplary variation of a GUI that may be part of a plug and play
software rendered on a display of a computing device to display an overall viability score for an

embryo.

[0029] FIG. 10 illustrates an exemplary variation of a GUI that may be part of a plug and play
software rendered on a display of a computing device to display images of embryos in the order

in which they are ranked.

[0030] FIG. 11 illustrate examples of augmented images following the application of random

transformations to the images.

[0031] FIG. 12 illustrates an overview of characteristics within a training dataset including

images of over 2000 transferred embryos with pregnancy outcomes from seven different clinics.

[0032] FIG. 13 illustrates a receiver operating characteristic curve for fresh-embryo transfers

using the technology described herein compared to Gardner grading system.
[0033] FIG. 14 illustrates an exemplary variation of an image of an aneuploid embryo.

[0034] FIG. 15 illustrates an overview of characteristics within a training dataset including

images of over 2000 transferred embryos with ploidy status from seven different clinics.

[0035] FIG. 16 illustrate post-thaw viability assessment results from a single site.
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[0036] FIGS. 17A and 17B illustrate receiver operating characteristic (ROC) curve for
example embryo transfers using CNNs described herein compared to the manual Gardner

grading system.

[0037] FIG. 18A illustrates example embryo images that are top-ranked by the technology

described herein.

[0038] FIG. 18B illustrates example embryo images that are lowest-ranked by the technology

described herein.

[0039] FIG. 19A illustrates integrated gradients and occlusion sensitivity for example embryo

images that were scored high by the technology described herein.

[0040] FIG. 19B illustrates integrated gradients and occlusion sensitivity for example embryo

images that were scored low by the technology described herein.

[0041] FIG. 20 illustrates that the scores assigned by the technology described herein based on

example embryo images relate to the observed pregnancy rate.

[0042] FIGS. 21A-21D illustrate example images and data from a controlled experiment to
depict the biases introduced by unique optical signature of images from two different image

capturing devices of two different clinics.

[0043] FIG. 22 illustrates a table that illustrates exemplary balancing training data based on

prevalence of outcome for different clinics.

[0044] FIGS. 23A and 23B illustrate data from a controlled experiment to depict the biases

introduced by the presence of micropipettes in an image.
DETAILED DESCRIPTION

[0045] Non-limiting examples of various aspects and variations of the invention are described

herein and illustrated in the accompanying drawings.

[0046] In vitro fertilization (IVF) is a complex reproductive assisted technology that involves
fertilization of the eggs outside the body in a laboratory setting. The fertilized embryos are
cultured in a laboratory dish (e.g., Petri dish) and are transferred to the uterus post-fertilization.

8
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Typically, embryos start showing a clear differentiation between the inner cell mass that forms
the fetus and the trophectoderm structures that forms the placenta nearly five to six days after
fertilization. This stage is referred to as the blastocyst stage. Around the blastocyst stage, the
embryo outgrows the Zona Pellucida membrane surrounding the embryo in preparation for
“hatching.” An embryo must reach the blastocyst stage and hatch before it can implant in the
lining of the uterus. Therefore, extending embryo culture until an embryo reaches blastocyst
stage gives embryologists longer to observe and assess the viability of the embryo. Furthermore,
less competent embryos arrest their development prior to the blastocyst stage. Accordingly,
embryos that typically progress to the blastocyst stage are a select cohort of embryos that have a

greater potential to form a pregnancy.

[0047] Embryos that reach the blastocyst stage are evaluated before they are transferred in
order to prioritize which embryo is to be transferred first. Traditionally, embryos are manually
graded by embryologists using the Gardner or Society for Assisted Reproductive Technology
(SART) grading systems. These systems require an embryologist to manually inspect an embryo
under the microscope and assess three components of its morphology: the degree of blastocyst
expansion, the quality of the inner cell mass, and the quality of the trophectoderm. Grades are
assigned to each component in order to generate a final alphanumeric grade. However, manual
grading can be complex, and it may be difficult to assign absolute grades. For instance, numeric
grade may be assigned in ascending order to: very early blastocyst (having 50-75 cells),
expanded blastocyst (having 100-125 cells), hatching blastocyst, and hatched blastocyst, each of
which represent the degree of the blastocyst expansion. For example, a grade “4” may represent
an expanded blastocyst while a grade “5” may represent a hatching blastocyst, and a grade “6”

may represent a hatched blastocyst.

[0048] However, the quality of the inner cell mass and the quality of the trophectoderm at
each of these stages may complicate the scoring system. For example, alphabetical grades may
be assigned to represent both the quality of inner cell mass and the quality of trophectoderm. So,
a grade “AA” may represent good quality inner cell mass and good quality trophectoderm.
However, a grade “AB” may represent good quality inner cell mass and lower quality
trophectoderm. Accordingly, a grade “4AA” may represent an expanded blastocyst with good
quality inner cell mass and good quality trophectoderm. That said, it may be possible that an

expanded blastocyst has top-quality inner cell mass and trophectoderm. Similarly, it may be

9
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possible that a hatching blastocyst (e.g., blastocyst in the process of hatching from the Zona
Pellucida) has a slightly lower quality trophectoderm than the expanded blastocyst. In such
situations, it is difficult to determine, for example, whether a 4AA embryo (representing an
expanded blastocyst with top-quality inner cell mass and trophectoderm) should be considered
less viable than a SAB embryo (representing a hatching blastocyst with slightly lower quality
trophectoderm). Therefore, embryologists make such decisions using intuition. It may be
possible that different embryologists select different embryos, thereby making it challenging to

standardize the selection process.

[0049] Throughout the years, there have been a few technologies that have been introduced
with the goal of improving embryo selection. One of those technologies is time-lapse imaging.
Using time-lapse imaging, a microscope may capture a sequence of images of an embryo in a
periodic manner. More specifically, a sequence of microscopic images of an embryo may be
captured at regular intervals (e.g., 5-20 minute intervals). The idea is to observe cellular
dynamics and the behavior of cells by analyzing the periodic sequence of images captured over
time. For example, measurements of events such as cell division timing, multinucleation, and
reverse cleavage may be taken by observing the periodic sequence of embryo images. These
measurements may be used to select an embryo for transfer. Although this provides for a
somewhat more standardized approach for embryo selection process in comparison to manual
grading, time-lapse imaging requires specialized time-lapse imaging systems that tend to be
expensive. Not all existing microscopes can accommodate time-lapse imaging. Accordingly,
time-lapse imaging technology may be hardware-driven. That is, without specialized
instrumentation this technology is difficult to implement. Additionally, time-lapse imaging may
require the embryos to be cultured in specialized petri dishes. Loading and unloading embryos
from such specialized petri dishes may take longer time, thereby increasing the risk of damaging
the embryos. The high costs of such instrumentation and other required changes to already
existing workflow (e.g., using specialized petri dishes) in clinics and labs have made it

challenging for time-lapse imaging to gain widespread clinical adoption.

[0050] Another technology that has been introduced more recently with the goal of improving
embryo selection is preimplantation genetic testing for aneuploidy (PGT-A). PGT-A may
involve performing a biopsy of the trophectoderm, then sequencing the biopsy to determine if

the embryo has the correct number of chromosomes. Although this may eliminate aneuploid

10
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embryos (which lead to unsuccessful pregnancy outcomes) for transfer, it does not sufficiently
characterize viability of euploid embryos, as not all euploid embryos may lead to a successful
outcome (e.g., successful pregnancy). Studies have shown that within a cohort of euploid
embryos, those with higher quality morphology have a higher likelihood of a successful
outcome. Therefore, even with a PGT-A cycle, euploid embryos may need to be graded in order

to identify appropriate embryos for transfer.

[0051] In contrast to existing technologies, the technology described herein provides a data-
driven standardized approach of evaluating embryos that is easy to adopt and cost-effective. For
example, the technology described herein may be hardware agnostic. A plug and play software
that may be compatible with all imaging devices, microscopes, microscopic imaging devices,
and/or the like (collectively referred to herein as “image capturing device”) may enable the
image capturing device to capture images of the embryos in real-time. Accordingly, the
technology may be adopted by any clinic or lab with already existing hardware (e.g.,

microscopes) without any additional hardware installation and/or cost burden.

[0052] The technology described herein may implement deep learning to score embryos
according to their likelihood of reaching clinical pregnancy. For example, the technology may
implement a series of one or more convolutional neural networks to analyze and classify an
image of an embryo. The series of convolutional neural networks may also improve the accuracy
of scoring an embryo. In some variations, a first convolutional neural network may be trained for
segmenting and cropping the embryo in the image. A second convolutional neural network may
be trained to perform quality control. A third convolutional neural network may be trained to
perform image classification and scoring. As discussed above, the technology described herein
may be hardware agnostic. Therefore, the convolutional neural networks described herein may
be trained to accommodate any type of image capturing device and fit into the existing

workflows of all clinics and labs while improving the accuracy of evaluating embryo viability.

[0053] In some variations, to enable the technology described herein to be compatible with a
wide range of image capturing devices, the convolutional neural networks may be trained with
images from different image capturing devices (e.g., different microscopes). Images from
different image capturing devices may have different optics and different resolution. Because of
this, when convolutional neural networks are trained with images that have different optics and

different resolution, it may be possible that a bias is introduced for images from a specific image
11
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capturing device in comparison to some other image capturing device. To overcome this, the
technology described herein augments the training data, as further described herein. For
example, the training data may include images that may be randomly flipped, rotated, scaled
and/or varied (e.g., changing brightness, contrast, and/or saturation) in order to accommodate for

different optics and different resolutions.

[0054] As another example, to accommodate for even minor differences in image capturing
devices (e.g., minor differences in microscopes) used across different clinics, the convolutional
neural networks may be trained by balancing a prevalence of outcome for each clinic and/or
image capturing device. For example, if the training data from Clinic A has 60% positive
pregnancy outcomes, while the training data for the remaining clinics each have only 40%
positive pregnancy outcomes, it may be likely that the convolutional neural network may learn
to apply a positive bias (e.g., higher scores) for all images from Clinic A. This in turn may lead
to suboptimal analysis of embryos on a per-site basis. Therefore, the technology described herein
may re-sample the training data so that every clinic and/or every image capturing device has the
same ratio of positive-to-negative images so as to balance the prevalence of outcome for each

clinic and/or every image capturing device.

[0055] The technology described herein may identify and mitigate other biases in a similar
manner (e.g., by balancing a prevalence of outcome). For instance, some captured images of an
embryo may include an image of a micropipette (e.g., embryo holding micropipette) holding the
embryo. The presence of micropipettes in images that may be used as training data may
introduce a bias. For example, if the training data includes images with micropipettes and
images without micropipettes, it may be likely that the convolutional neural network may learn
to apply either a positive bias (e.g., higher scores) or negative bias (e.g., lower scores) for all
images with micropipettes. The convolutional neural network may for example, focus almost
exclusively on the micropipette in the images rather than the embryo to classify and score the
image. This in turn may lead to suboptimal analysis of embryos that may be held by
micropipettes during imaging. The technology described herein may re-sample the training data
so that images with micropipettes may have the same ratio of positive-to-negative (i.e., ratio of
positive pregnancy training images to negative pregnancy training images) images so as to
balance the prevalence of outcome. In a similar manner, biases introduced based on the stage of

the blastocyst (e.g., early blastocyst, expanding blastocyst, hatching blastocyst, hatched

12
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blastocyst, etc.) in the images may also be identified and mitigated by balancing a prevalence of

outcome.

[0056] Optionally, to further improve the accuracy of prediction, the technology described
herein may include patient data such as age, body mass index, donor status, and/or the like. For
example, the age of patient may significantly impact the outcome of transfer despite the viability
of the embryo. Therefore, incorporating patient data improves the accuracy of evaluating
embryo viability. Additionally or alternatively, the technology described herein may include
results from genetic test results such as prenatal genetic testing, parental genetic testing, etc., to

further improve accuracy of prediction.

[0057] Furthermore, the technology described herein may analyze, classify, and score a single
image of the embryo. This is a significant difference from existing time-lapse imaging
technologies that analyze a time-series of embryo images collectively in order to score the
embryo. In contrast to analysis of time-series images, even if multiple images (e.g., not
necessarily in time-series) of the embryo are captured (such as at different focal planes and/or
rotations), the technology described herein analyzes each image individually in order to produce
an overall score for the embryo. For example, each individual image may be classified and
scored. An average of the score across all the images may be the final score of the embryo
representing the viability of the embryo. Alternatively, each individual image may be classified
and scored. A median and/or a mode of the score across all the images may be the final score of
the embryo representing the viability of the embryo. This may improve the accuracy of assigning
a score to an embryo. For example, even if one image of the embryo is not captured well (e.g.,
due to selection of focal plane by the embryologist, variations in lighting, etc.), the overall score
assigned to the embryo may not be significantly impacted since every image may be classified

and scored individually.

[0058] Additionally, the plug and play software may enable each of the individual images to
be analyzed in real-time. For example, the plug and play software may enable an embryologist to
capture images of multiple embryos in real-time. These images may be analyzed and scored in
real-time. The plug and play software may then display the overall viability score of the embryo
in real-time. In some variations, the images may also be ranked based on the overall viability
score of the embryo in that image in real-time. The plug and play software may then display the

images in the order in which they are ranked. This is in contrast to existing technologies that do
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not display images of embryos in the order in which they are ranked. Accordingly, the most
viable embryo may be displayed first, making it faster to spot and select the most viable embryo

for transfer.

[0059] In addition to the above, the present technology may perform aneuploidy prediction.
Additionally and/or alternatively, the present technology may provide assessments of embryos
that have been frozen and thawed in order to determine if an embryo has survived the freeze-

thaw process.
System Overview

[0060] FIG. 1 illustrates an overview of an exemplary variation of a system 100 for evaluating
embryo viability. The system 100 may be adopted by any clinic and/or lab 102 (referred to as
“clinic” herein) with existing hardware such as an image capturing device 104. The image
capturing device 104 may capture one or more images of embryos. An application 106 executed
on a computing device in the clinic 102 may provide a real-time communication link between
the image capturing device 104 and a controller 108. The controller 108 may use artificial
intelligence to analyze the images of embryos in order to evaluate embryo viability. In some
variations, the controller 108 may optionally incorporate data 110 to improve the accuracy of the
evaluation. The controller 108 may score embryos in each individual image. The controller 108
may evaluate the viability of an embryo based on the score assigned to the embryo in each
image. The overall viability score of the embryo may be used to rank images of the embryo. The
overall viability score and the order in which the images are ranked may be transmitted to a
patient application 112, clinician application 114, and a data portal 116. Each of the patient
application 112, clinician application 114, and the data portal 116 may display images in the

order in which they are ranked.

[0061] As discussed above, any clinic 102 may adopt the system 100 into their existing
workflows. Clinic 102 may be, for example, any lab, fertility center, or clinic providing IVF
treatments. Clinic 102 may include the infrastructure to culture embryos. For instance, clinic 102
may include crucial equipment needed for assisted reproductive technologies such as incubators,
micromanipulator systems, medical refrigerator, freezing machines, petri dishes, test-tubes, four-
well culture dishes, pipettes, embryo transfer catheters, needles, etc. Additionally, clinic 102

may provide a stable, non-toxic, pathogen free environment for culturing embryos.
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[0062] An existing image capturing device 104 in the clinic 102 may capture one or more
images of embryos. The image capturing device 104 may have any suitable optics and any
suitable resolution. The image capturing device 104 may be a microscope, a microscopic
imaging device, or any other suitable imaging device capable of capturing images of embryos.
For instance, the image capturing device 104 may be any suitable microscope such as a
brightfield microscope, a darkfield microscope, an inverted microscope, a phase-contrast
microscope, a fluorescence microscope, a confocal microscope, an electron microscope, etc.
Additionally or alternatively, the image capturing device 104 may be any suitable device
operably coupled to a microscope camera capable of capturing digital images of embryos. For
example, the image capturing device 104 may include a microscope camera that is operably
coupled to handheld devices (e.g., computer tablet, smartphone, etc.), laptops, desktop
computers, etc. In yet another alternative variation, the image capturing device 104 may be any
suitable computing device (e.g., computer tablet, smartphone, laptop, and/or the like) running a

microscope application capable of capturing images of embryos.

[0063] An application software 106 (referred to herein as “application”) executed on a
computing device in the clinic 102 may enable the image capturing device 104 to capture one or
more images of embryos. Some non-limiting examples of the computing device include
computers (e.g., desktops, personal computers, laptops etc.), tablets and e-readers (e.g., Apple
iPad®, Samsung Galaxy® Tab, Microsoft Surface®, Amazon Kindle®, etc.), mobile devices
and smart phones (e.g., Apple iPhone®, Samsung Galaxy®, Google Pixel®, etc.), etc.

[0064] In some variations, the application 106 (e.g., web apps, desktop apps, mobile apps,
etc.) may be pre-installed on the computing device. Alternatively, the application 106 may be
rendered on the computing device in any suitable way. For example, in some variations, the
application 106 (e.g., web apps, desktop apps, mobile apps, etc.) may be downloaded on the
computing device from a digital distribution platform such as app store or application store (e.g.,
Chrome® web store, Apple® web store, etc.). Additionally or alternatively, the computing
device may render a web browser (e.g., Google®, Mozilla®, Safari®, Internet Explorer®, etc.)
on the computing device. The web browser may include browser extensions, browser plug-ins,
etc. that may render the application 106 on the computing device. In yet another alternative
variation, the browser extensions, browser plug-ins, etc. may include installation instructions to

install the application 106 on the computing device.
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[0065] The application 106 may be a plug and play software that may be compatible with any
type of computing device. Additionally, the application 106 may be compatible with any type of
image capturing device 104. In some variations, the application 106 may include a live viewer
software that may display images of the embryos as seen through the image capturing device
104. For example, traditionally, an image capturing device 104 such as a microscope has been
used to view embryos. However, with the live viewer software (included in the application 106),
the computing device may display images (e.g., two-dimensional images) of embryos as seen
through the image capturing device 104. A user (e.g., embryologist) may view images of
embryos on a display of the computing device executing the application 106. The application
106 may enable the user to select an image that the user would like to capture. The application
106 may transmit instructions to the image capturing device 104 to capture the selected image.
In some variations, the application 106 may perform a quality check before transmitting
instructions to the image capturing device 104 to capture a selected image. For instance, the
application 106 may analyze the selected image to determine whether the properties (e.g.,
resolution, brightness, etc.) of the selected image would enable further analysis. In response to
meeting the quality check, the application 106 may transmit instructions to the image capturing
device 104 to capture the selected image. Alternatively, the application 106 may first transmit
instructions to the image capturing device 104 to capture the selected image. Once the selected
image is captured, the application 106 may analyze the captured image to determine whether the

properties (e.g., resolution, brightness, etc.) of the captured image would enable further analysis.

[0066] In order to enable a user to select one or more images for capture, the application 106
may render a widget (e.g., a capture button) when the application 106 is executed on the
computing device. The widget may be designed so that a user may interact with the widget. The
widget may be pressed or clicked (e.g., via a touchscreen or a controller such as a mouse). When
a user wants to select an image for capture, the user may press or click on the widget. In
response to the pressing or clicking, the image capturing device 104 may capture that specific
image of the embryo. The user may choose to capture multiple images by pressing or clicking
the widget repeatedly. In some variations, the widget (e.g., capture button) may be a standalone
button in any suitable shape (e.g., in the form of a circle, elliptical, rectangle, etc.). In some
variations, an object-oriented programming language such as C++ may be used to design and

execute the application 106.
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[0067] As discussed above, the application 106 may provide a real-time communication link
between the image capturing device 104 and a controller 108. Accordingly, captured images of
embryos may be transmitted in real-time to the controller 108 via the application 106. In some
variations, the controller 108 may include one or more servers and/or one or more processors
running on a cloud platform (e.g., Microsoft Azure®, Amazon® web services, IBM® cloud
computing, etc.). The server(s) and/or processor(s) may be any suitable processing device
configured to run and/or execute a set of instructions or code, and may include one or more data
processors, image processors, graphics processing units, digital signal processors, and/or central
processing units. The server(s) and/or processor(s) may be, for example, a general purpose
processor, a Field Programmable Gate Array (FPGA), an Application Specific Integrated Circuit
(ASIC), and/or the like.

[0068] In some variations, the controller 108 may be included in the computing device on
which the application 106 may be executed (e.g., to locally perform one or more processes
described herein). Alternatively, the controller 108 may be separate and operably coupled to the
computing device on which the application 106 may be executed, either locally (e.g., controller
108 disposed in the clinic 102) or remotely (e.g., as part of a cloud-based platform). In some
variations, controllers 108 may include a processor (e.g., CPU). The processor may be any
suitable processing device configured to run and/or execute a set of instructions or code, and
may include one or more data processors, image processors, graphics processing units, physics
processing units, digital signal processors, and/or central processing units. The processor may
be, for example, a general purpose processor, a Field Programmable Gate Array (FPGA), an
Application Specific Integrated Circuit (ASIC), and/or the like. The processor may be
configured to run and/or execute application processes and/or other modules, processes and/or
functions associated with the system and/or a network associated therewith. The underlying
device technologies may be provided in a variety of component types (e.g., MOSFET
technologies like complementary metal-oxide semiconductor (CMOS), bipolar technologies like
emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-

conjugated polymer-metal structures), mixed analog and digital, and/or the like.

[0069] The controller 108 may use artificial intelligence to evaluate viability of embryos. For

example, controller 108 may implement one or more convolutional neural networks to analyze
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and classify captured images. More specifically, the convolutional neural network(s) may

analyze and classify each captured image in order to evaluate embryo viability.

[0070] It should be readily apparent that, although the user may choose to capture multiple
images of a specific embryo, these images may not necessarily be time-lapse images (e.g., in
time-series). For example, in time-lapse imaging, two or more images of an embryo are captured
in a series at periodic or intermittent time intervals (e.g., time intervals of 5-20 minutes). To
capture time-lapse images, a time-lapse microscope may be required. In contrast, as discussed
above, the system 100 is compatible with any type of image capturing device 104. Accordingly,
the system 100 may not necessarily capture images in a series at periodic time-intervals.
Although, this may be one possible variation of the system 100, the system 100 described herein
may capture multiple images in any suitable manner (owing to its compatibility with various
types of image capturing devices). For example, a second image of an embryo may be captured
3 seconds after a first image of the embryo is captured. However, the third image of the embryo
may be captured 5 seconds after the second image and a fourth image of the embryo may be
captured 2 seconds after the third image. Accordingly, even if multiple images of an embryo
may be captured and analyzed, these images may not be time-lapse images. In an exemplary
variation, multiple images (e.g., at least two successive images) of an embryo may be captured
within a time interval of about 60 seconds or less. For instance, two or more successive images
of embryo may be captured within a time interval that ranges between about 1 second and 60
seconds, between about 5 seconds and 60 seconds, between about 10 seconds and about 60
seconds, between about 20 seconds and about 60 seconds, between about 30 seconds and about
60 seconds, between about 1 second and 30 seconds, between about 1 second and about 20
seconds, between about 1 second and about 10 seconds, or between about 1 second and about 5
seconds. Additionally, unlike time-lapse images that capture a set number of images in series at
periodic time intervals for every embryo, system 100 may capture different number of images
for every embryo. For instance, time-lapse images may capture three images in series at period
intervals for each embryo in order to determine the viability of the embryo. In contrast, system
100 may capture three images of a first embryo and two images of a second embryo. The system
100 may determine the viability of the first embryo from the three images and the viability of the
second embryo from the two images. Accordingly, the number of images captured for the

embryos may be different for different embryos.
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[0071] The convolutional neural network(s) may analyze and classify each captured image
individually in order to generate an overall viability score of the embryo. For example, if the
application 106 captures three images of an embryo on day 5 using the image capturing device
104, each of the three images may be evaluated individually and separately by the convolutional

neural network(s). For the purposes of discussion herein, unless explicitly suggested otherwise

2% 29 CC 2% 2%

the terms “an image,” “each image,” “the image,” “a captured image,” “each captured image,”

29 CC

“the captured image,” “a separate image,” and “an individual image” may be considered as a
single individual image. Evaluation of each image may generate a respective score for the
embryo that may be associated with a respective image of the three images. The overall score of
the embryo may be a function of each individual score associated with each individual image.
For instance, the overall score of the embryo may be an average of the three individual scores
associated with the three individual images. Alternatively, in another example, the overall score
of the embryo may be a median of the three individual scores associated with the three
individual images. In some variations, the overall viability score of the embryo generated by the

convolutional neural network(s) may indicate a likelihood of the embryo resulting in clinical

pregnancy if transferred (e.g., a likelihood of successful outcome).

[0072] The convolutional neural network(s) may include a series of convolutional neural
networks to perform one or more of the following: (1) image segmentation and image cropping;
(2) quality control; (3) image classification; and (4) optionally to incorporate data 110 to
generate an accurate overall embryo viability score. The series of convolutional neural networks
may be implemented by the server(s) and/or processor(s). For instance, the server(s) and/or
processor(s) may include software code to implement each of the convolutional neural network.
More specifically, each convolutional neural network may be included in the software code as a
separate module. When the server(s) and/or processor(s) execute the software code, the
individual modules may generate instructions to perform (1) image segmentation and image
cropping; (2) quality control; (3) image classification; or (4) incorporate data 110. Additionally
or alternatively, the software code may include calls to separate modules implementing a
respective convolutional neural network. A call to a specific module may redirect the processing
performed by server(s) and/or processor(s) to implement the specific convolutional neural
network included within that module. In some variations, two or more convolutional neural
networks may be implemented simultaneously by the server(s) and/or processor(s).

Alternatively, the convolutional neural networks may be implemented in series one after
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another. In some variations, the convolutional neural networks may be implemented and/or

trained using PyTorch or Tensorflow.

[0073] As discussed above, in order to refine the overall viability score assigned to embryos,
in some variations, the system 100 may incorporate data 110 (e.g., patient data and/or embryo
data). Data 110 may include, for example, patient data associated with one or more patients such
as patient’s age, patient’s body mass index, and/or the like, and/or embryo data. For example,
patient data may include the age of a patient undergoing IVF treatment. This may have an
impact on the pregnancy outcome. It may be possible that two similarly scored embryos may
lead to different pregnancy outcomes depending on the age of the patient. Additionally or
alternatively, patient data may include data relating to one or more donors associated with the
patient, such as donor’s age, donor’s status, donor’s body mass index, and/or the like. For
example, patient data may include body mass index of a patient. This may play a factor
contributing to health of the embryo. As another example, patient data may include an indication
of whether a patient is a first-time patient. If not, patient data may additionally include whether
embryos associated with the patient have had a previous successful outcome. In this manner,
patient data may enable reproductive endocrinologists, embryologists, and/or clinicians to
personalize IVF treatments. In some variations, the patient data may include data relating to one
or more genetic testing results such as prenatal genetic testing result, embryo level genetic
testing result, parental genetic testing result, etc. Additionally or alternatively, in some
variations, data 110 may include embryo data, such as, for example, genetic testing results
regarding aneuploidy, disposition to disease, potential future traits, sex, etc. Furthermore, in
some variations, other embryo-specific data, such as the day the image of the embryo was
captured, the day the embryo is transferred, and/or the like may be used to further improve the

accuracy of the prediction.

[0074] For the purposes of discussion herein, data 110 may, for example, refer to: (1) data
associated with one or more patients and/or one or more donors that may include the description,
content, values of records, a combination thereof, and/or the like; and/or (2) metadata providing
context for the said data. For example, data 110 may include one or both the data and metadata
associated with patient records and/or donor records. Data 110 may be extracted from reliable
electronic medical records. For instance, the system 100 may access one or more third party

databases that may include electronic medical records, such as elVF™ patient portal, Artisan™
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fertility portal, Babysentry™ management system, EPIC™ patient portal, IDEAS™ from

Mellowood Medical, etc., or any suitable electronic medical record management software.

[0075] As discussed above, the convolutional neural network(s) implemented on the controller
108 may score embryos (e.g., generate an overall viability score) according to their likelihood of
reaching clinical pregnancy, and in some variations, may also rank images (e.g., rank each image
based on overall viability score of embryo in that image). The respective overall viability scores
and order in which the images are ranked may be transmitted to patient application 112, clinician
application 114, and data portal 116. In some variations, the patient application 112 may be
executed on a computing device (e.g., computers, tablets, e-readers, smartphones, mobile
devices, and/or the like) associated with a patient. The patient may access the patient application
112 on the computing device in order to view the overall viability scores for embryos and ranks
of images. The patient application 112 may display the images of the embryos in the order of
their ranks. Therefore, a most viable embryo may appear first on the display. This makes it easy
for the patient to identify the most viable embryo and make crucial decisions related to the IVF

treatment.

[0076] In a similar manner, the clinician application 114 may be executed on a computing
device (e.g., computers, tablets, e-readers, smartphones, mobile devices, and/or the like)
associated with a clinician (e.g., embryologist, reproductive endocrinologist, etc.). The clinician
may access the clinician application 112 on the computing device in order to view the overall
viability scores of embryos and ranks of images. The clinician application 112 may display the
embryos in the order of their ranks. In some variations, the clinician application 114 may be
same as application 106 described above. For instance, the application 106 that enables the
image capturing device 104 to capture images of embryos may also display overall viability
embryo scores and order in which the images are ranked after the embryos are evaluated by the
controller 108. Equivalently, in addition to displaying the overall viability scores and the order
in which images are ranked, the clinician application 114 may enable the image capturing device
104 to capture images of embryos. Alternatively, the clinician application 114 may be different
from the application 106 described above. For instance, the clinician application 114 may be
executed on a computing device that may be different from the computing device that executes

application 106.
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[0077] The data portal 116 may be a data collection software that may store the scores (e.g.,
score associated with each individual image and the overall viability score for an embryo) and/or
ranks that were generated by the controller 108. The collected data may be analyzed at the data
portal 116 for further improving the accuracy of the system 100. For example, the collected data
may be processed and provided as additional training data to the convolutional neural network(s)
implemented by the controller 108. Accordingly, the convolutional neural network(s) may
become more intelligent further enhancing the accuracy of predicting embryo viability. In some
variations, the data portal 116 may be connected to one or more databases. The database(s) may
store the scores (e.g., score associated with each individual image and the overall viability score
for an embryo), rank, patient data, and/or other related data related to the embryo. In some
variations, the data portal 116 may be connected to a memory that stores these database(s).
Alternatively, the data portal 116 may be connected to a remote server that may store these
database(s). In some variations, results from the controller 108 may be transmitted to one or
more third party databases that may include electronic medical records, such as e[VF™ patient
portal, Artisan™ fertility portal, Babysentry™ management system, EPIC™ patient portal,
IDEAS™ from Mellowood Medical, etc. These results may include overall viability score of

embryos, rank, etc.
Exemplary Method for Evaluating Embryo Viability

[0078] FIG. 2 is a flow diagram illustrating an exemplary variation of a high-level overview of
a method 200 for evaluating embryo viability using artificial intelligence. In some variations, the
method 200 may be implemented using a system such as system 100 described in FIG. 1. At
202, the method 200 may include capturing one or more images of an embryo. In particular, the
images of the embryo may be images captured once the embryo reaches a blastocyst stage (e.g.,
day 5, day6, and/or day 7 post- fertilization). That is, the captured images may be microscopy
images of a blastocyst. In some variations, the embryo may be evaluated at any of different
stages of a freeze-thaw process, such prior to freezing, or after freezing and thawing.
Additionally or alternatively, the embryo may be evaluated prior to biopsy. In other variations,

the embryo is not intended to undergo biopsy or freezing.

[0079] At 204, each image may be individually analyzed and classified by at least one deep
convolutional neural network (D-CNN) in real-time. The D-CNN may be implemented on a

controller such as controller 108 in FIG. 1. For example, the D-CNN may evaluate a single
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image in real-time. If multiple images of an embryo (e.g., multiple images of a blastocyst) are
captured, each image may be analyzed and classified individually to generate an overall viability
score for the embryo. The D-CNN may also rank the images based on the overall viability score
of the embryo in the images. In some variations, the D-CNN may incorporate patient data 206
(e.g., patient-specific metadata) such as age, body mass index, donor status, etc., to improve the

accuracy of the overall score assigned to the embryo.

[0080] At 208, the method 200 may predict the likelihood of an embryo reaching clinical
pregnancy based on the overall viability score of the embryo generated by the D-CNN. In some
variations, the overall viability score indicating the likelihood of clinical pregnancy (e.g.,
successful outcome) may be displayed on one or more displays. In some variations, the rank of
the images (e.g., rank of the image determined by the D-CNN) may also be displayed. For
example, images of embryos may be displayed in the order of their ranks. In this manner, a
clinician (e.g., embryologist, reproductive endocrinologists, clinician, etc.) may select an embryo
for transfer in real-time in consultation with a patient based on the overall viability score of the

embryos and the ranks of the images generated by the D-CNN.

Capturing an image of an embryo

[0081] As discussed above, the technology disclosed herein may be adopted by any clinic
(e.g., clinic 102 in FIG. 1) with already existing hardware. The technology disclosed herein may
be compatible with any type of image capturing device (e.g., image capturing device 104 in FIG.
1) and may be adopted by a clinic without having to make changes to their existing workflow.
Accordingly, a plug and play software such as application 106 in FIG. 1 may enable a clinician
to capture one or more images of an embryo using an existing image capturing device. FIGS.
3A-3H illustrate exemplary variations of a graphical user interface (GUI) that may be a part of
the plug and play software rendered on a display of a computing device to capture images of
embryos. In some variations, the computing device may be pre-installed with the application.
Alternatively, the application may be downloaded on the computing device from a web store. In
yet another alternative variation, rendering a web browser with specific browser extensions may

render the application on the computing device.

[0082] The application may cause the computing device to display various functionalities. For

example, the application may cause computing device to manage image capture and other
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actions associated with patients. As an illustrative example, as shown in FIG.3A, the application
may render display 350 that may include a dashboard 351. The dashboard 351 may represent an
initial step in a workflow towards determining embryo viability. In some variations, the
dashboard 352 may include some information of various patients (e.g., “Ashley Smith” 353a,
“Jane Doe” 353b etc.). For example, the dashboard 351 may include patient ID (e.g., represented
as “Patient ID” in FIG. 3A) of a patient, number of transfer cycles associated with a patient (e.g.,
represented as “Cycle” in FIG. 3A), the status of embryo transfer associated with a patient (e.g.,

represented as “Status” in FIG. 3A), etc.

[0083] In some variations, the display 350 may include a widget designed for user interaction
such as widget “New patient” 352. For instance, by clicking and/or pressing on the “New
patient” 352, a user may add a patient not already listed on the dashboard 351 including
information (e.g., patient ID, number of cycles, status, etc.) associated with the patient. In some
variations, the information may be inputted manually by a user interacting with the display 350.
Alternatively, the information may be extracted from a database (e.g., a third-party electronic
medical record database). For instance, the application may interact with an electronic medical
record database to access and extract information related to the patient. Although, the widget
“New patient” 352 in FIG. 3A may be illustrated as a button that is elliptical in shape, it should
be readily apparent that any suitable widget may be provided. For example, the “New patient”

may be a circular shaped widget, a triangular shaped widget, etc.

[0084] In order to access a specific patient’s information, the user may press and/or click on
the row containing information of the patient. For instance, by pressing and/or clicking on the
row containing information related to “Ashley Smith” 353a, the application may transition from
display 350 in FIG. 3A to another display (e.g., display 360 in FIG. 3B) that may include further

specific information associated with “Ashley Smith” 353a.

[0085] Display 360 in FIG. 3B may include additional information associated with the
patient’s (e.g., “Ashley Smith” 353a) cycle (e.g., represented as “Cycle information” 363). This
information may include patient ID, age, body mass index, whether the eggs belong to a donor,
etc. Display 360 may further include past data and/or history associated with the current cycle
and/or previous cycle (e.g., represented as “Cycle History” 364). For instance, this may include
embryo scores associated with a past cycle and the corresponding outcome of the cycles. If

embryo images relating to the current cycle does not exist (e.g., application does not have any
24



WO 2022/187516 PCT/US2022/018743

embryo images for “Ashley Smith” 353a in the currently cycle), display 360 may include an
option to capture new images or upload new images (e.g., from a pre-existing database). For
example, display 360 may include one or more widgets designed for user interaction such as
widgets “Capture new images” 361, “Upload new images” 362, etc. By clicking and/or pressing
on the “Capture new images” 361, a user may use the application to instruct an image capturing
device to capture images of an embryo. More particularly, the application may transition from
display 360 in FIG. 3B to display 370 in FIG. 3C. By clicking and/or pressing on the “Upload
new images” 362, the user may upload already captured images of an embryo to the application.
Although the widget “Capture new images” 361 and the widget “Upload new images” 362 in
FIG. 3B may be illustrated as a button that is elliptical in shape, it should be readily apparent
that any suitable widget may be provided.

[0086] The application may cause the computing device to display one or more user interface
elements for facilitating capture of embryo images. For example, the application may include a
live viewer software to display images of embryos as seen through an image capturing device
(e.g., microscope). As an illustrative example, as shown in FIG. 3C, image 302 is the image of
an embryo as seen through a microscope. A widget designed for user interaction such as a
capture button 313 may enable a user to capture the image 302 via the image capturing device.
For example, in FIG. 3C, the widget may be a capture button 313 including the text “Capture.”
For instance, by clicking and/or pressing on the capture button 313, an image such as image 302
may be captured. In this manner, one or more images of embryos may be captured in real-time
using a plug and play software. Display 370 may also include previously captured images and
their respective scores. For example, as seen in FIG. 3C, image 302 may be the fourth image to
be captured for a specific patient (e.g., “Ashley Smith” 353a). The other three images may be
displayed under images captured 315. Some of these three images may be images of the same
embryo while other images under image captures 315 may be images of different embryos.
Additionally or alternatively, some of the three images may be captured on a same day while
some other images of the three images may be captured on a different day. In FIG. 3C, the three
images are images of different embryos. The viability score for each of the embryos is
represented next to the respective images. The images 315 may include information regarding
the embryo ID and the respective viability score associated with the image. Additionally, a user

may enter notes relating to the images via the display 370.
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[0087] FIG. 3D illustrates another variation of a display 375 with one or more user interface
elements for facilitating capture of embryo images. As discussed above, the application may
include a live viewer software to display images of embryos as seen through an image capturing
device (e.g., microscope). In FIG. 3D, image 302a is a first image of an embryo as seen through

a microscope.

[0088] Unlike FIG. 3C, the widget designed for user interaction such as a capture button 313
in FIG. 3D may include an icon (e.g., camera icon) instead of the text “Capture.” By clicking
and/or pressing on the capture button 313, a first image such as image 302a may be captured.
Alternatively, a user may click and/or press the widget 314 to upload images of embryos that

were previously captured.

[0089] In order to capture multiple images of the same embryo, a user may click and/or press
the capture button 313 multiple times. Additionally or alternatively, in response to a user
clicking, pressing, and/or holding the capture button 313 for at least a predetermined duration of
time, the application may capture multiple images of the embryo in succession (e.g., burst
mode). Additionally or alternatively, the capture button 313 may be associated with a timer such
that in response to a user clicking, pressing, and/or holding the capture button, the application
may capture multiple images within an allocated or predetermined period of time set by the

timer.

[0090] As discussed above, the application can capture multiple images of the same embryo.
Each image may be scored individually. In some variations, one or more outlier images may be
flagged, rejected and/or eliminated. For example, an image of an embryo with a viability score
drastically different (e.g., differing at least by a predetermined threshold from the viability score
associated with every other image of the same embryo, an average viability score of other
images of the same embryo, etc.) may be automatically flagged for review (e.g., by the user),
automatically rejected and excluded from characterization of the embryo but still present for
viewing, and/or automatically discarded or deleted entirely. The overall viability score of the
embryo may be a mathematical function of each of the individual scores (e.g., average, median,
mode, etc.). As a user captures an image of the embryo, the application scores the image in real-
time. In some variations, these captured images and/or scores may be displayed in real-time to
the user. For example, the first image 302a captured in FIG. 3D may be displayed as an already

captured image 315a in FIG. 3E. The score of the first image 302a captured in FIG. 3D may be
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displayed next to image 315a (e.g., same as image 302a) in FIG. 3E. In FIG. 3E, the score of the
image 315a1s 0.52. A second image 302b of the embryo may be viewed through the live viewer
software. The second image 302b may be captured by clicking and/or pressing on the capture
button 313 or by clicking and/or pressing widget 314 to upload images of the embryo that was

previously captured.

[0091] The first image 302a captured in FIG. 3D and the second image 302b captured in FIG.
3E may be displayed as image 315a and image 315b in FIG. 3F respectively. The score of the
first image 302a captured in FIG. 3D may be displayed next to image 315a (e.g., same as image
302a) in FIG. 3F. As seen in FIG. 3E, the score of the image 315a is 0.52. Similarly, the score of
the second image 302b captured in FIG. 3E may be displayed next to image 315b (e.g., same as
image 302b) in FIG. 3F. In FIG. 3F, the score of the second image 315b is 0.62. The overall
viability score of the embryo may be displayed below image 315a and image 315b. For example,
in FIG. 3F, the overall viability score (e.g., 0.57) is the average of the score of the image 315a
(e.g., 0.51) and score of the image 315b (e.g., 0.62). In other words, a running average viability
score for an embryo may be calculated in real-time based on multiple captured images of the
embryo as the images are captured, and may be updated as images are captured and/or deleted.
A third image 302¢ of the embryo may be viewed through the live viewer software. The third
image 302c may be captured by clicking and/or pressing on the capture button 313 or by
clicking and/or pressing widget 314 to upload images of the embryo that was previously

captured.

[0092] The first image 302a captured in FIG. 3D, the second image 302b captured in FIG. 3E,
and the third image 302¢ captured in FIG. 3F, may be displayed as image 315a, image 315b, and
image 315c in FIG. 3G respectively. The score of the first image 302a captured in FIG. 3D may
be displayed next to image 315a (e.g., same as image 302a) in FIG. 3G. As seen previously, the
score of the image 315ais 0.52. Similarly, the score of the second image 302b captured in FIG.
3E may be displayed next to image 315b (e.g., same as image 302b) in FIG. 3F. As seen
previously, the score of the image 315b is 0.62. Similarly, the score of the third image 302¢
captured in FIG. 3F may be displayed next to image 315c¢ (e.g., same as image 302¢) in FIG. 3G.
The score of the image 315¢ is 0.63. The updated overall viability score of the embryo may be
displayed below image 315a, image 315b, and image 315c¢. For example, in FIG. 3G, the overall
viability score (e.g., 0.59) is the average of the score of the image 315a (e.g., 0.51), score of the

27



WO 2022/187516 PCT/US2022/018743

image 315b (e.g., 0.62), and score of image 315¢c (e.g., 0.63). A fourth image 302d of the
embryo may be viewed through the live viewer software. The fourth image 302d may be
captured by clicking and/or pressing on the capture button 313 or by clicking and/or pressing
widget 314 to upload images of the embryo that was previously captured. Although FIG. 3G
illustrates a fourth image 302d that may be captured, it should be understood that any suitable
number of images (e.g., 1, 2, 3, 4, 5, or more) may be captured for the embryo, displayed, and/or

provide a basis for overall viability score of the embryo.

[0093] If the user chooses to capture an image of a different embryo, the user may press and/or
click on the new embryo widget 316. The application may transition from display 380 in FIG.
3G to display 381 in FIG. 3H. The live viewer software may display images of another embryo
(e.g., image 302¢) as seen through an image capturing device (e.g., microscope). The overall
viability score of the already scored embryo (e.g., embryo in FIGS. 3D-3F), may be displayed
next to image 382a. For instance, image 382a may be one of the first image 302a of the
previously scored embryo captured in FIG. 3D, the second image 302b of the previously scored
embryo captured in FIG. 3E, or the third image 302¢ of the previously scored embryo captured
in FIG. 3F. The overall viability score (e.g., 0.59 as seen in FIG. 3G) may be displayed next to
the image 382a. A user can repeat the process as outlined in FIGS. 3D-3G in order to determine

the overall viability score of the embryo seen in FIG. 3G.

Evaluating Embryo Viability

[0094] Once an image is captured, the image may be sent in real-time to a controller (e.g.,
controller 108 in FIG. 1) for evaluation. The controller may implement one or more
convolutional neural networks (CNNs) to assess and classify the image in real-time. In some
variations, the CNNs may be a series of CNNs. FIG. 4 is a flow diagram illustrating an

exemplary variation of a method 400 for evaluating embryo viability using a series of CNNs.

[0095] At 402, the controller may receive an input image such as image 302 in FIG. 3
captured by a plug and play software. The input image may be analyzed by a series of CNNs
each implemented to perform: (1) image segmentation and image cropping at 404; (2) optionally
quality control at 406; (3) image classification at 408; and (4) optionally incorporate patient data
at 410. At 412, the method 400 may predict the viability of the embryo based on the output from

image classification (e.g., at 408) and optionally based on the output from incorporating patient
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data (e.g., at 410). In some variations, the viability of the embryo represents the likelihood (e.g.,
a value between 0 and 1) of the embryo reaching clinical pregnancy. In some variations, positive
fetal cardiac activity or negative fetal cardiac activity may be considered as an indicator of

clinical pregnancy.

[0096] CNNs typically comprise of one or more convolutional layers to extract features from
an image. The convolutional layers may include filters (e.g., weight vectors) to detect specific
features. The filters may be shifted stepwise across the height and the width dimensions of the
input image to extract the features. The shifting of the filters (i.e., the application of filters at
different spatial locations) provide translation invariance. For example, if features representing a
boundary of an embryo appears at a first spatial location in one image and the same features
appear at a second different spatial location in another image, then owing to the translation
invariance of the CNNs, these features can be extracted from both the first spatial location and
the second spatial location. Accordingly, translation invariance provides a feature space in which
the encoding of the input image may have enhanced stability to visual variations. That s, even if
the embryo slightly translates and/or rotates from one image to another image, the output values

do not vary much.

[0097] As discussed above, a series of CNNs may be implemented to extract features and/or

classify the input image. These CNNss and their architectures are further described below.
Image Cropping

[0098] The CNN implementing image segmentation and image cropping (e.g., at 404 in FIG.
4) may take an input image of an embryo to generate an output image cropped to a boundary of
the embryo. FIG. 5 is an exemplary variation of implementing a CNN on an input image of an
embryo for image cropping and image segmentation. In an exemplary variation, a U-Net 501
architecture may be used for image segmentation and image cropping. U-Net 501 architecture
may provide for precise and fast segmentation of embryos. The left part of the U-Net 501
architecture may include a contracting path that may produce a low-dimensional representation
of the input image and a right part of the U-Net 501 architecture may include an expansive path

that may up-sample the low dimensional representation to produce a segmentation map.
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[0099] The trained U-Net 501 architecture may generate a U-Net mask 504 for segmentation
of embryos. The U-Net mask 504 may be a ground truth binary segmentation mask. The U-Net
501 may compare an input image 502 to the U-Net mask 504 to create a square crop around the
embryo in the input image. The U-Net 501 may then generate an output image 506 cropped to
the boundary of the embryo. In an exemplary variation, the hyperparameters for the U-Net 501
architecture may include 40 Epochs; Ir = .0005, and batch = 32.

[0100] In alternative variations, the architecture of the CNN for image cropping and image
segmentation may include any suitable CNN such as Mask R-CNN, fully convolutional network

(FCN), etc.
Quality Control

[0101] The output image (e.g., output image 506 in FIG. 5) generated by the CNN
implementing image cropping and image segmentation may act as an input to the CNN
performing quality control. Quality control of an image may include verifying whether an image
includes an embryo and/or determining a probability that the embryo is a blastocyst. As a first
step to performing such verification, since the images have already been cropped and segmented
to a boundary of the embryo (e.g., using the U-Net 501 in FIG. 5), the CNN performing
cropping may eliminate images that do not have a foreground result (e.g., depict no embryo).
Alternatively, the CNN performing cropping may transmit an alert such as a warning message
and/or a warning signal to a user (e.g., via the application 106 executing on the computing
device) to eliminate images that do not have a foreground result (e.g., depict no embryo). In yet
another alternative variation, the CNN performing cropping may transmit a modification (e.g.,
via the application 106 executing on the computing device) to change the image so as to include
the embryo in the image and improve the quality of the image. This may act as a first filter. The
rest of the images (i.e., the image that were not eliminated) may be verified by implementing the

quality control CNN shown in FIG. 6.

[0102] FIG. 6 is an exemplary variation of implementing a CNN for performing quality
control. In an exemplary variation, an autoencoder may be used for performing quality control.
The architecture may include 5 layers of two-dimensional convolutions including convolutional
layers, pooling layers, input layer, and output layer. For example, the 5 layers of two-

dimensional convolutions may include strides, batch normalization, and ReLU activation. Layers
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601a may represent the encoder, 601b may represent the latent space, and layers 601c may
represent the decoder of the autoencoder. As seen in FIG. 6, the dimensionality of an image may
be first reduced (e.g., encoder layers 601a). From this reduced encoding, the CNN may
reconstruct the image (e.g., using decoder layers 601c). The latent space 601b may represent the
compressed state of the data. The autoencoder may identify outliers in the latent space 601b.
Due to the compression and the subsequent reconstruction, the model may be rid of any
extraneous noise, thereby focusing on the important features. FIG. 6 shows example inputs 602
and the corresponding reconstructed outputs 606 generated by implementing the autoencoder

shown in FIG. 6.

[0103] In an exemplary variation, the hyperparameters for the autoencoder may include

200 Epochs;lr = .003,and batch = 32. The learned latent space may be N = 4096.

[0104] FIG. 7 illustrates an exemplary deployment of a convolutional neural network (e.g.,
autoencoder in FIG. 6) performing quality control. The autoencoder may extract the learned
latent space for 100 random training images. The autoencoder may then take an average of the
latent space. For instance, in the example provided in FIG. 7, the average produces N = 2000. A
latent space clustering method may be used to identify outliers. For example, a distance (e.g.,
cosine similarity) between a sample point in the latent space and a reference point may be
computed. It may be observed that similar data points cluster together. For instance, points with
cosine distances nearly equal to 1 may be similar data points that cluster together (e.g., as cluster
702a) in graph 702. The points with cosine distances lower than a threshold value (e.g., lower
than 0.87 in FIG. 7) may be outliers (e.g., outliers 702b). The images of the embryos with high
similarity that cluster together (e.g., corresponding to points 702a) is shown in 704a. The images
of embryos that may be outliers (e.g., corresponding to points 702b) is shown in 704b. Any
suitable CNN that may perform quality control as described above may be used (e.g., a regular

CNN classifier).
Image Classification

[0105] After cropping and segmenting an input image, and optionally performing quality
control in some variations, the image may be classified using another CNN. FIG. 8 is an
exemplary variation of implementing a CNN for image classification and score generation. The

CNN may be trained to classify the image to generate an image score 801d (e.g., viability score).
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The image score 801d may indicate a probability that the embryo in the image will reach clinical
pregnancy based on the evaluation of that image, probability that the embryo in the image will

reach live birth, and/or the like.

[0106] In an exemplary variation, a resnet-18 model 801a architecture may be used with
transfer learning for image classification. The resnet-18 model 801a may be a residual network
that is 18 layers deep. The resnet-18 model 801a may include one or more residual blocks.
Identity mappings created by residual blocks may allow the residual blocks to skip connections
without affecting the residual network’s performance. Transfer learning may allow the resnet-18
model 801a to transfer knowledge learned by performing similar tasks for a different dataset.
That is, a resnet-18 model 801a may be a pre-trained model pre-trained on a different dataset
(e.g., ImageNet). Transfer learning may be performed to fine tune the resnet-18 model 801a for
some or all layers and to repurpose the resnet-18 model 801a to classify images of embryos. In
some variations, a shallow architecture of resnet-18 model 801a as shown in FIG. 8 may be
implemented. This may minimize the risk of overfitting and may reduce computational
requirements. In alternative variations, modified versions of DenseNet, Inception, Alexnet

and/or Googl.eNet may be used for image classification instead of resnet models.

[0107] In some variations, as an optional step, patient data may be incorporated in order to
improve the accuracy of predicting embryo viability. In some variations, variables such as
patient age, body mass index, and/or donor status may be obtained from electronic medical
records. Patient data may be incorporated by concatenating each image score 801d (e.g.,
viability score generated for an embryo in a specific image) with the corresponding patient data
and/or patient metadata. A small feedforward neural network or logistic regression model 801c
may incorporate these concatenated image scores and patient data. For instance, the feedforward
neural network 801c may be trained on concatenated values of image scores and patient data
(further details on training the CNNs below). The feedforward neural network 801¢ may include
layers with batch normalization, ReLLU, and dropout. The feedforward neural network 801¢c may
then generate a final score representing a likelihood of successful pregnancy for an embryo in
the specific image that was cropped and classified. In other implementations, the patient data can
be concatenated with the final feature vector layer in the image classification model 801a, for

concurrent training on images and patient data.
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[0108] If more than one image of an embryo is captured, the overall viability of the embryo
may be a function of individual viability scores that may be generated for individual images. For
example, the overall viability score may be a mean and/or a median of individual viability scores
generated for individual images. In this manner, a series of CNNs may be used to evaluate

embryo viability.

Displaying Output

[0109] As discussed above, a plug and play software such as application 106 in FIG. 1 may
capture the images of embryos in real-time. Each image may be evaluated by one or more
convolutional neural networks (CNNs) in real-time. Accordingly, the CNNs may generate a
score for each image in real-time. This score that is generated in real-time for a captured image
may be transmitted to the application 106 so as to display the score to a clinician (e.g.,
embryologist, reproductive endocrinologist, etc.). In some variations, multiple images of an
embryo may be captured within a span of a couple of seconds. In such variations, the CNNs may
generate an individual score for each captured image in real-time. However, the overall viability
score for the embryo may be a function of each individual score. For such variations, the overall
viability score may be transmitted to the application 106 in real-time so as to display the overall

viability score to a clinician.

[0110] The score of an embryo may be displayed in any suitable manner. For instance, the
score may be displayed as a percentage indicating a likelihood of successful clinical pregnancy
(e.g., 90% indicating that the embryo has a 90% chance of successful clinical pregnancy).
Alternatively, the score may be displayed as a number from a numerical scale (e.g., number
between 0-10 with O representing a least viable embryo and 10 representing a most viable
embryo, number between 0-100 with O representing a least viable embryo and 100 representing a
most viable embryo, etc.). In yet another alternative variation, the score may bucket the embryo
into a letter scale (e.g., “A,” “B,” “C,” “D,” etc., with “A” representing a least viable embryo). In
yet another alternative variation, the score may bucket the embryo into categories (e.g., “good,”
“bad,” etc.). In yet another alternative variation, at least a portion of an image of the embryo that
may be displayed may be color coded with the color representing viability of the embryo. For
example, a frame or border of an image of the embryo may be color coded such that the colors

may be mapped onto a numerical score. In some examples, an embryo may be bucketed into a
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letter scale, categories, colors, and/or the like at least in part by comparing a numerical viability

score to one or more predetermined thresholds.

[0111] FIG. 9 illustrates an exemplary variation of a plug and play software rendered on a
display 900 of a computing device to display an overall viability score for an embryo. The
display 900 may include capture 903, review 905, and export 907. A user may interact with a
specific option so as to cause the application to display widgets and information associated with
that option. In FIG. 9, clicking on the review 905 option may cause the application to display

widgets and information associated with the review 905 functionality.

[0112] FIG. 9 illustrates an instance of review 905 for the patient “Jane Doe.” In FIG. 9,
image 10 may be captured in real-time and sent to a controller for analysis. The controller may
classify the image and generate an overall viability score of 90% for the embryo shown in image
10 (e.g., estimated 90% likelihood of resulting in successful clinical pregnancy, if transferred to
a patient). The application may cause the display 900 to display image (e.g., image 902) and the
overall viability score for the embryo in the image 902. The display 900 may also include
analysis 909 related to the embryo. For instance, the analysis 909 may include information such
as embryo ID, number of days post-fertilization, date the image was taken, and an embryo grade

(e.g., overall viability score for the embryo), etc.

[0113] Additionally, a user (e.g., embryologist) may choose what to do with each embryo
(e.g., denote embryo status for transfer, freeze, discard, etc.) based on the overall viability score
of each embryo, and the embryo status may be indicated in any suitable manner (e.g., icons, text,
color-coding, etc.). For example, in FIG. 9, the user may choose to discard embryos of image 1,
image 6, and image 8 (indicated with an “X” on the image). The user may choose to freeze
embryos of image 2, image 3, image 4, image 5, image 7, and image 9 (indicated with a
snowflake icon). The user may choose to transfer embryo of image 10 (indicated with a “T”). In
this manner, the user may be presented with options to decide what to do with each image, and
indicate desired action for each embryo. Other variations of a user interface for facilitating these

actions are described further below with respect to FIG. 10.

[0114] In addition to displaying the overall viability score (e.g., an indication of a likelihood
of clinical pregnancy) for embryos in real-time, the application may also display the images in

the order in which they are ranked (e.g., images with embryos having the highest likelihood of
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clinical pregnancy to images with embryos having the lowest likelihood of clinical pregnancy).
FIG. 10 illustrates an exemplary variation of a plug and play software rendered on a display
1000 of a computing device to display images of embryos in the order in which they are ranked.
In FIG. 10, the images displayed on display 1000 are images of different embryos (e.g., image
with embryo ID 31HG201-3-3, image with embryo ID 31HG201-3-2, and image with
31HG201-3-1). All the three images in FIG. 10 are captured on the same day (e.g., day 5).
However, the images may be captures on any suitable day (e.g., day 3, day, 4, day 6, day 7, etc.).

[0115] When the images of each embryo are sent to a controller implementing CNNs for
analysis, the controller may generate an overall viability score of each embryo. For instance, the
controller may individually analyze and individually score each image captured for the embryo
with embryo ID 31HG201-3-3. The overall viability score of the embryo with embryo ID
31HG201-3-3 may be a function of the score of each captured image. In FIG. 10, the overall
viability score of the embryo with embryo ID 31HG201-3-3 was determined to be 0.8. In a
similar manner, the controller may individually analyze and individually score each image
captured for the embryo with embryo ID 31HG201-3-2. The overall viability score of the
embryo with embryo ID 31HG201-3-2 may be a function of the score of each captured image. In
FIG. 10, the overall viability score of the embryo with embryo ID 31HG201-3-2 was determined
to be 0.62. Similarly, the overall viability score of the embryo with embryo ID 31HG201-3-1

was determined to be 0.12.

[0116] The controller may then rank the embryos based on the overall viability score of the
embryos in the images. For instance, in the example in FIG. 10, the controller may rank embryo
with embryo ID 31HG201-3-3 and overall viability score of 0.8 as first, embryo with embryo ID
31HG201-3-2 and overall viability score of 0.62 as second, and embryo with embryo ID
31HG201-3-1and overall viability score of 0.12 as third. In this manner, at least one image of

each embryo may be displayed in the order in which they are ranked.

[0117] In some variations, the overall viability score of the embryo may be displayed
proximate to each image of the embryo. For example, in FIG. 10, the overall viability score of
0.8 is displayed proximate to image 1. Additionally, the display 1000 may include a drop-down
menu (e.g., drop-down menu 1002a for image 1, 1002b for image 2, and 1002¢ for image 3)
below each image of the embryo with an option to select an embryo status. The user may choose

to a status via the drop-down menu 1002a (e.g., “Fresh Transfer,” “Freeze,” “Freeze & Biopsy,”
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“Discard” etc.). The status may be indicated with text, symbols or other icons, color-coding,
and/or in any suitable manner. The display 1000 may also include notes below each image
displaying notes by a clinician about the embryo. The display 1000 may also indicate an embryo
ID indicating the embryo that is being viewed on the display 1000.

Training Convolutional Neural Network(s)

[0118] In order to perform a true data-driven approach to embryo assessment, the CNNs
described herein may be trained on large amounts of data. The data may be collected from varied
sources including a consortium of clinical partners, databases comprising microscopy images of
embryos, electronic medical records, and/or the like. The collected data may include microscopy
images of embryo along with electronic medical record data that may contain pregnancy
outcomes for transferred embryos, Gardner grades, preimplantation genetic testing for
aneuploidy (PGT-A) results for embryos that may have been biopsied and tests, and patient data.
After collecting the data, the microscopy images in the collected data may be split into two
groups based on their pregnancy outcome. For example, the microscopy images in the collected
data may be split into positive fetal cardiac activity (FCA) representing a positive pregnancy

outcome and negative fetal cardiac activity (FCA) representing a negative pregnancy outcome.

[0119] After splitting the collected microscopy images into positive FCA and negative FCA,
the images in these individual groups may further be divided in any suitable ratio to form
training data and testing data, such as 70% training data and 30% testing data. For example, the
microscopy images with positive FCA may be split into 70% training and 30% testing.
Similarly, the microscopy images with negative FCA may be split into 70% training and 30%
testing. In a similar manner, in order to incorporate patient data, the embryo score for each
image may be concatenated with patient data. The concatenated data may be split into 70%

training data and 30% testing data.

[0120] Since the present technology is designed to be compatible with any image capturing
device, the training data to train the CNNs may have to include a combination of images from
different image capturing devices. Since different image capturing devices may have different

optics and different resolutions, the training data may have to account for such differences.
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Augmenting Training Data

[0121] One method to account for differences in optics and resolution may be to augment the
training data. Each image in the training data may be augmented on the fly. For example, one or
more transformations may be applied to each image. Some non-limiting examples of random
transformations include randomly flipping an image up or down, randomly flipping an image
left or right, randomly scaling an image (e.g., scaling the image by ~5% of the original image
size), randomly rotating the image between -90 degrees and 90 degrees, randomly varying the
contrast, brightness, and/or saturation of the image, a combination thereof, and/or the like. FIG.
11 illustrate an exemplary variation of examples of augmented images following the application
of random transformations to one or more images of embryos. In this manner, by augmenting the
training data, the CNNs may be able to account for at least some changes to optics and

resolution while analyzing the images.
Balancing Prevalence of Outcome

[0122] Despite augmenting the training data, it may be possible that the CNNs may still
introduce a bias when scoring an image based on a prevalence of outcome for each clinic. For
example, if the training data from one clinic has a considerably higher percentage of positive
outcomes in comparison to every other clinic, the CNNs may learn to apply a positive bias for
all images from that clinic. This may lead to suboptimal analysis of embryos since the embryos
from the clinic with the higher positive outcome in training data may generate false positives.
Similarly, if the training data has images that include micropipettes to hold embryos, the CNNs

may learn to apply a positive or negative bias for all images with micropipettes.

[0123] Accordingly, to solve this problem, the training data may be re-sampled so that every
clinic and/or site may have the same ratio of positive-to-negative images in each epoch of
training. Similarly, the training data may be re-sampled so that images with micropipettes have
the same ratio of positive-to-negative images as images without micropipettes in each epoch of
training. The CNNs trained in this manner may be able to balance the prevalence of outcome and

may be able to score the images with better accuracy (e.g., without introducing bias).
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[0124] In this manner, by implementing a combination of augmenting the training data and
balancing a prevalence of outcome, the present technology may accommodate any type of image

capturing device and may fit into any existing workflow for any clinic and/or site.
Exemplary Training Examples

[0125] In some variations, the training dataset may include images of transferred embryos
with pregnancy outcomes (e.g., images of over 1000, 2000, 3000, 4000, 5000, 10,000, or more
transferred embryos with pregnancy outcomes from seven different clinics). In some variations,
Python and open-source framework PyTorch may be used to train CNNs. In some variations,
training may be performed for 50 epochs, for example. A final model may be selected from the
epoch with the highest accuracy. In some variations, a series of models may be trained using
hyperparameter search to find the optimal values for parameters such as learning rate and batch
size. An ensemble of 2 or more models trained with varying data sampling, hyperparameters,
and/or architectures may be deployed to perform final prediction (e.g., evaluation of embryo

viability).

[0126] Training a U-Net for image cropping and image segmentation: In some variations, the

training data for the U-Net described above may include manual foreground labels for a few
hundred raw embryo images, augmented image training data with random flip and/or rotation to
create a few thousand images and masks, and images and masks square-padded and then resized,

such asto 112x112.

[0127] Training an Autoencoder for quality control: In some variations, the training data for

the autoencoder described above may include several thousand images from two clinics. This
data may include a combination of images of frozen embryos and images of fresh embryos. As
discussed above, the collected image data (e.g., collected data of images of frozen embryos and
images of fresh embryos) may be divided in any suitable ratio to form training data and test data,
such as 70% training data and 30% test data. In some variations, the training data may also
include embryo-cropped images (e.g., images cropped by the U-Net model), resized to a suitable

size such as 128x128.

[0128] Training a fully connected neural network to incorporate patient data: In some

variations, the training data for a fully connected neural network described above may include
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embryo score for each image concatenated with patient data. This data may be divided in any

suitable ratio to form training data and test data, such as 70% training and 30% testing.

[0129] In some variations, the training dataset may include images of transferred embryos (or
other suitable number) with pregnancy outcomes from seven different clinics. FIG. 12 illustrates
an overview of characteristics within this training dataset. For each image of an embryo with an
associated transfer outcome, information regarding patient age, day of transfer, donor status,
and/or the like may be collected. In some variations, key parameters that may introduce a
potential bias in the CNNs may be tracked. These parameters may include patient age, ethnicity,
the day of transfer (day 5, 6 or 7), donor vs. non-donor oocytes, fresh transfers vs. frozen
transfers, and Gardner grade. The plots in FIG. 12 show the distribution of the embryo dataset by

outcome.
Exemplary Performance Data

[0130] In order to evaluate a performance of the present technology (e.g., performance of the
CNNs), a primary performance metric may be area under the curve (AUC). The AUC may be
derived from receiver operating characteristic (ROC) curve. The AUC may be defined as a
model’s ability to rank instances in a binary classification problem. In this example, the AUC
may measure how accurately the CNNs described herein may score an embryo with positive

outcome (e.g., positive FCA) over an embryo with negative outcome (e.g., negative FCA).

[0131] In order to create a reference standard, Gardner grades were collected from I'VF clinics.
The alphanumeric Gardner grades (e.g. 3AA or SAB) were mapped to a numeric score (1
through 43). The mapping was performed using an order technique that assumes that
1<2<4<5<6 for degree of blastocyst expansion and that C<B<A for both inner cell mass quality

and trophectoderm quality. Accordingly, the order of grading may be:

[1,2,., 42, 43]=
['2CC',2BC',2CB',2BB', 2BA, 2AB', 2AA,
'3CC!, '4CC', '5CC', '6CC),

'3CB', '4CB', '5CB', '6CB",
3BC, '4BC', 'SBC', '6BC,
'3CA', '4CA', '5CA", '6CA'’

2
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3AC!, '4AC!, 'SAC!, '6AC",
'3BB', 4BB', 'SBB', '6BB/,
3BA!, '4BA!, 'SBA', '6BA!,
3AB', '4AB', 'SAB!, '6AB/,
3AA'4AA 'SAA! '6AA]

[0132] FIG. 13 illustrates receiver operating characteristic curve for fresh-embryo transfers
using the technology described herein compared to Gardner grading system. The results on test
data with N = 334 show that the technology described herein scores embryos according to their
likelihood of reaching clinical pregnancy with an AUC of 0.702 using images only, and 0.734
using a combination of images and patient data. The AUC for the manual Gardner grading
system is 0.585. This represents a 15% absolute improvement using the technology described

herein compared to standard of care.
Non-Invasive Aneuploidy Prediction

[0133] In addition to scoring embryos and ranking the images based on the viability score of
the embryos, present technology may also perform non-invasive aneuploidy prediction and post-
thaw viability assessment. Preimplantation genetic testing for aneuploidy (PGT-A) may involve
performing a biopsy of the trophectoderm which is sequenced to determine if the embryo has the
correct number of chromosomes. Embryos with abnormal number of chromosomes are
aneuploidy embryos while embryos with normal number of chromosomes are euploid embryos.
Eliminating aneuploid embryos may eliminate embryos which may lead to unsuccessful
pregnancy outcomes. Put differently, by performing PGT-A, aneuploid embryos may be
eliminated from being transferred. However, existing methods of performing PGT-A prediction
are invasive. In fact, there are ongoing concerns about embryo safety. More recently, the PGT-A
field is starting to move towards non-invasive cell-free Deoxyribonucleic acid (DNA) testing.
However, cell-free DNA testing has not been widely adopted yet. Therefore, there is an unmet

need for predicting the ploidy status of an embryo non-invasively with higher accuracy.

[0134] Additionally, even if invasive PGT-A testing and/or cell-free DNA testing were to
become popular, it may still be possible that more than one euploid embryo is available for
transfer. Not all euploid embryos may lead to a successful outcome. Therefore, even with a

PGT-A cycle, euploid embryos may need to be graded in order to prioritize an order for transfer.
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Additionally, grading embryos (e.g., morphological grading) in PGT-A cycles may provide

adjunctive information regarding likelihood of aneuploidy and chances of leading to pregnancy.

[0135] Accordingly, the technology described herein may non-invasively predict the ploidy

status of an embryo.

Capturing an Image of an Embryo

[0136] The plug and play software described herein such as application 106 may be used to
capture one or more images of embryos. The application may send images to a controller such as
controller 108 in FIG. 1 in real-time. The method and/or system for capturing an image of an
embryo to predict the ploidy status may be the same as the method and/or system for capturing

an image of an embryo to generate a viability score (as described above).

Predicting Ploidy Status

[0137] The controller may implement one or more deep CNNs to predict ploidy status from an
image. In some variations, these CNNs may be different from the CNNs described above (i.e.,
CNN(s) to assess embryo viability). For example, these CNNs may be trained and modeled
specifically to predict ploidy status from images of embryos. That is, instead of building CNNs
to predict fetal heartbeat, the CNNs may be modeled to identify morphological features in the

images that may be associated with aneuploidy.

[0138] Alternatively, in addition to generating a score for an embryo, the CNNs described
above may be trained to predict the ploidy status of the embryo. For example, the images
captured via a plug and play software such as application 106 in FIG. 1 may be analyzed and
classified by the CNNs in real-time to generate a ploidy status of the embryo. FIG. 14 illustrates
an exemplary variation of an image of an aneuploid embryo. The CNNs may be trained to

identify morphological features in the images that may be associated with aneuploidy.

[0139] As described herein, a series of CNNs may be implemented to analyze and classify the
images. In one example, an input image may be cropped and segmented by a CNN such as a U-
Net model (such as U-Net 501 in FIG. 5). The U-Net model may be trained to segment and crop
the image of the embryos to a boundary of the embryo. A CNN for performing quality control

such as autoencoder in FIG. 6 may be trained to identify outliers using learned latent space
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clustering method. The autoencoder may verify whether or not an image contains an aneuploid
embryo and if it does whether the aneuploid embryo has been accurately labeled. A CNN for
image classification such as resnet-18 in FIG. 8 may be trained to classify the images to generate
a binary output representing ploidy status. For example, the resnet-18 may generate output “1”
indicating that a embryo is not an aneuploid embryo and may generate output “0” indicating that
an embryo isan aneuploid embryo. In some variations, CNNs trained for predicting ploidy status

may incorporate patient data to improve the accuracy of the prediction.

[0140] In some variations, CNNs trained to identify ploidy status may incorporate patient data
to improve the accuracy of the prediction. For instance, the age of a patient may be highly

correlated with the ploidy status of the embryo.

Displaying the Output

[0141] The output may be displayed in a manner similar to displaying outputs regarding
viability of embryo as described above. For example, a plug and play software described herein

such as application 106 may display the ploidy status for the embryo.

Training the CNNs

[0142] The data may be collected from varied sources including a consortium of clinical
partners, databases comprising microscopy images of embryos, electronic medical records,
and/or the like. The collected data may include microscopy images of embryo along with
electronic medical record data that may contain pregnancy outcomes for transferred embryos,
preimplantation genetic testing for aneuploidy (PGT-A) results for embryos that may have been
biopsied and tests, and patient data. After collecting the data, the microscopy images in the
collected data may be split into two groups based on their ploidy status. For example, the
microscopy images in the collected data may be split into euploid embryos and aneuploid

embryos.

[0143] In some variations, the training data may include a combination of pregnancy outcome
and ploidy status. For example, all euploid embryos with negative pregnancy outcome may be
placed into the negative outcome group. All aneuploid embryos may be placed into the negative
outcome group. All euploid embryos with positive pregnancy outcome may be placed into the
positive outcome group. In this manner, by combining the training data to indicate both the
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pregnancy outcome and the ploidy status, the technology described herein may seamlessly
integrate to accurately predict both the ploidy status of an embryo and the viability of the
embryo based on the ploidy status.

[0144] In some variations, the training dataset may include images of greater than 2000
transferred embryos with pregnancy outcomes from seven different clinics. FIG. 15 illustrates an
overview of characteristics within this training dataset. For each image of an embryo with an
associated ploidy status, information regarding patient age, day of transfer, and/or the like may
be collected. In some variations, key parameters that may introduce a potential bias in the CNNs
may be tracked. These parameters may include patient age, the day of transfer (day 5, 6 or 7).

The plots in FIG. 15 show the distribution of the embryo dataset by ploidy status.
Post-Thaw Viability Assessment

[0145] In some variations, the technology disclosed herein may additionally or alternatively be
used to perform post-thaw viability assessment. For example, as described above, the technology
disclosed herein may evaluate viability of embryos at the blastocyst stage. However, instead of
transferring embryos at the blastocyst stage, the embryos that were considered viable may be
subject to cryopreservation. Cryopreservation before transferring embryos may freeze-all cycles.
This in turn may minimize the risk of hyperstimulation and may allow hormone levels to reset
prior to embryo transfer. Embryos may be transferred after cryopreservation and thawing. A
post-thaw viability assessment may detect embryos that may have lost at least some of their
viability after freezing and thawing. That is, some embryos that may have been considered
viable at the blastocyst stage may have reduced viability (e.g., have a lower level of viability or
have not survived) following the process of freezing and thawing. A post-thaw viability

assessment may identify such embryos.

[0146] Accordingly, the technology described herein may preform post-thaw viability analysis
to identify embryos that do not survive the freeze-thaw process. However, it should be
understood that such post-thaw analysis may be performed in combination with an analysis prior
to freezing, or in a standalone manner. For example, in some variations, an embryo may be
imaged and scored and/or ranked at multiple points in time including prior to freezing (e.g., at
blastocyst stage) and after thawing. Alternatively, in some variations, an embryo may be imaged

and scored and/or ranked only after thawing.
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Capturing an Image of an Embryo Post-thaw

[0147] The plug and play software described herein such as application 106 may be used to
capture one or more images of embryos post-thaw. The application may send these images to a
controller such as controller 108 in FIG. 1 in real-time. The method and/or system for capturing
an image of an embryo to predict post-thaw viability may be the same as the method and/or
system for capturing an image of an embryo to generate a viability score (as described above) at

the blastocyst stage.

Predicting Post-Thaw Viability

[0148] The controller may implement one or more deep CNNs to predict post-thaw viability
from an image. In some variations, these CNNs may be different from the CNNs described
above (i.e., CNN(s) to assess embryo viability). For example, these CNNs may be trained and
modeled specifically to predict post-thaw viability from images. More specifically, various
architectures, hyperparameter optimization, and ensemble techniques may be implemented to
train and model CNNs that may predict post-thaw viability from images. The CNNs may be
trained to generate a probability score that may be indicative of whether the embryo has survived
the freeze-thaw process. If the probability score is less than a threshold value, the post-thaw

embryo may be deemed as not viable.

[0149] Alternatively, in addition to generating a score for an embryo, the CNNs described
above may be trained to predict post-thaw viability. As described herein, a series of CNNs may
be implemented to analyze and classify the images. In one example, an input image may be
cropped and segmented by a CNN such as a U-Net model (such as U-Net 501 in FIG. 5). The U-
Net model may be trained to segment and crop the image of the post-thaw embryo to a boundary
of the post-thaw embryo. A CNN for performing quality control such as autoencoder in FIG. 6
may be trained to identify outliers using learned latent space clustering method. The autoencoder
may verify whether or not an image contains a post-thaw embryo and if it does whether the post-
thaw embryo has been accurately labeled. A CNN for image classification such as resnet-18 in
FIG. 8 may be trained to classify the images to generate a binary output representing post-thaw
viability. For example, the resnet-18 may generate output “1” indicating that a post-thaw embryo
is viable and may generate output “0” indicating that a post-thaw embryo has reduced viability

(e.g., lower level of viability, has not survived, etc.) following the freeze-thaw process. In some
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variations, CNNs trained for post-thaw viability may incorporate patient data to improve the

accuracy of the prediction.

Displaying the Output

[0150] The output may be displayed as a binary “1” and “0” and/or a “Yes” and “No.” Put
differently, instead of displaying the probability and/or score of any embryo, a post-thaw
viability assessment may merely indicate whether an embryo has survived the freeze-thaw
process. This allows a clinician to decide whether to thaw another embryo or whether the

analyzed post-thaw embryo is to be transferred.

Training the CNNs

[0151] The data may be collected from varied sources including a consortium of clinical
partners, databases comprising microscopy images of embryos, electronic medical records,
and/or the like. The collected data may include microscopy images of post-thaw embryo along
with electronic medical record data that may contain pregnancy outcomes for transferred post-

thaw embryos, and patient data.

Exemplary Performance Data

[0152] FIG. 16 illustrate post-thaw viability assessment results from a single site. The lighter
colored points indicated under 1702a represent negative outcomes. The darker colored points
indicated under 1702b represent positive outcomes. Line 1704 represents a threshold value.
Embryos below line 1704 are embryos that do not survive the freeze-thaw process. As seen in
FIG. 16, there are no false negatives. Accordingly, the present technology can use post-thaw

images to identify embryos that have not survived the freeze-thaw process.
Additional Examples of Exemplary Performance Data

[0153] A retrospective study was conducted using data collected from 11 different IVF clinics
throughout the United States. Images of blastocyst stage embryos and associated metadata were
collected for IVF cycles started between 2015-2020. Each clinic captured a single image of an
embryo using existing hardware such as inverted microscope, stereo zoom microscope, time-
lapse incubation system, etc. Images of blastocyst stage embryos were captured on day 5, 6 or 7

prior to transfer, biopsy, or cryopreservation. Approximately 5,900 blastocysts from single-
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embryo fresh, frozen, and frozen-euploid transfers were matched to clinical pregnancy outcomes
as determined by fetal heartbeat (FHB) at 6-8 weeks. Embryos in frozen transfers were selected
for warming per the standard practice at each clinic. An additional 2,600 blastocysts were

matched to aneuploid (abnormal) PGT-A results.

[0154] Training data included microscopy images of embryos. Images were aggregated
together and then sorted into training, validation, and test datasets. Five clinical sites provided
between 600-2,000 images each with known fetal heartbeat outcomes. These images were
stratified by the clinic they were obtained from, cycle type (e.g., PGT or non-PGT cycle), and
outcomes. These images were also randomly split into groups for validation (e.g., 3-fold cross
validation). Another five clinics provided less than 250 images each with known fetal heartbeat
outcomes. All of these images were included in training. One clinic with 1000 images that were
captured by a time-lapse system was reserved as a test dataset. Embryos were sorted to the
positive class if they resulted in a positive fetal heartbeat, and to the negative class if they did
not. To reduce the potential bias of training on only transferred embryos, non-transferred

embryos that were diagnosed as aneuploid were added to the negative class.

[0155] As an example, the CNNs described herein were trained using the training data
described above. FIGS. 17A and 17B illustrate receiver operating characteristic (ROC) curve for
example embryo transfers using CNNs described herein compared to the manual Gardner
grading system. As described above, PGT-A may involve performing a biopsy to determine if
the embryo has the correct number of chromosomes (euploid embryos). A non-PGT cycle may
include embryo transfers without performing PGT-A. FIG. 17A illustrates ROC curves for
embryo transfers without performing PGT-A. As seen in FIG. 17A, the CNNs described herein
score embryos (non-PGT cycle embryos) according to their likelihood of reaching clinical
pregnancy with an AUC of 0.669 using images only (trace 1804 in FIG. 17A), and 0.675 using a
combination of images and patient data (trace 1806 in FIG. 17A). The AUC of the manual
Gardner grading system is 0.560 (trace 1802 in FIG. 17A). Accordingly, scoring the embryos
using the technology described herein shows a vast improvement in comparison to scoring the

embryos using manual Gardner grading system.

[0156] FIG. 17B illustrates ROC curves for example embryos transfers after performing PGT-
A. PGT-A may eliminate aneuploid embryos with abnormal number of chromosomes.

Aneuploid embryos may lead to unsuccessful pregnancy. As seen in the example of FIG. 17B,
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the CNNs described herein score embryos (euploid embryos) according to their likelihood of
reaching clinical pregnancy with an AUC of 0.608 using images only (trace 1804 in FIG. 17B),
and 0.634 using a combination of images and patient data (trace 1806 in FIG. 17B). The AUC of
the manual Gardner grading system is 0.496 (trace 1802 in FIG. 17B). Accordingly, similar to
FIG. 17A, FIG. 17B shows that scoring the embryos using the technology described herein
illustrates vast improvement in comparison to scoring the embryos using manual Gardner

grading system.

[0157] To further illustrate the performance of the technology described herein, embryos were
divided into three different subgroups. The three different subgroups were top-ranked embryos
with a score near 0.9, middle-ranked embryos with a score near 0.5, and lowest-ranked embryos
with a score near 0.1. The embryo images for each of these subgroups were visually inspected.
FIG. 18A illustrates embryo images that are top-ranked (e.g., high scores) by the technology
(e.g., CNNs) described herein. As seen in FIG. 18A, the top-ranked embryos depict that top-
ranked embryos are mostly fully expanded blastocysts with tightly packed and in-focus inner
cellular mass, which is correctly consistent with highly viable embryos. The trophectoderm are
also symmetric and in-focus with cobblestone or scalloped patterning. FIG. 18B illustrates
embryo images that are lowest-ranked by the technology (e.g., CNNs) described herein. The
technology described herein ranked these embryos as lowest-ranked embryos when the inner

cellular mass is not visible in the image, which is correctly consistent with less viable embryos.

[0158] In some variations, attribution algorithms including integrated gradients and occlusion
maps were used to determine whether the technology described herein was focusing on relevant
features. Integrated gradients were used to determine which pixels of the image were attributed
to the prediction of the technology described herein, while occlusion maps were used to show
that the technology described herein is sensitive to local structure (e.g., blastocyst structure).
FIG. 19A illustrates embryo images that were scored high by the technology described herein.
As seen in FIG. 19A, blastocyst structures that were fully expanded with tightly packed inner
cellular mass and symmetrical trophectoderm showed positive attribution and sensitivity (e.g.,
were classified as positive outcome images). FIG. 19B illustrates embryo images that were
scored low by the technology described herein. As seen in FIG. 19B, blastocyst structures that
were fragmented with cell clumping showed negative attribution and sensitivity (e.g., were

classified as negative outcome images).
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[0159] The scores assigned by the technology described herein were compared to pregnancy
rates (e.g., calibration curves). FIG. 20 illustrates that the scores assigned by the technology
described herein relate to the observed pregnancy rate. FIG. 20 depicts a monotonic increase in
pregnancy rates for all embryos (transfers and aneuploid), all transferred embryos, and non-PGT

transfers.
Bias removal

[0160] As discussed above, since images from different image capturing devices have
different optics and different resolution (e.g., unique optical signature), it may be possible that a
bias is introduced for images from a specific image capturing device in comparison to some
other image capturing device when CNNs are trained with images from different image
capturing devices. The difference in image capturing device between different clinics may lead
to a biased training dataset. For example, FIGS. 21A-21D illustrate a controlled experiment to
depict the biases introduced by unique optical signature of images from two different image
capturing devices of two different clinics. FIG. 21A illustrates an image of an embryo captured
by an image capturing device at site A (first clinic). FIG. 21B illustrates an image of an embryo
captured by a different image capturing device at site B (second clinic). FIG. 21C illustrates
biased dataset due to different optical signatures from site A and site B. As seen in FIG. 21C,
biased datasets may result in the CNNs described herein classifying embryos from site B with
lower scores as positive fetal heartbeat than embryos from site A that are classified as negative

fetal heartbeat. To combat this, the CNNs may be trained by balancing a prevalence of outcome.

[0161] FIG. 22 illustrates a table that illustrates balancing training data based on prevalence of
outcome for different clinics (e.g., site A, site B, site C, site D). The training data may be re-
sampled so that every clinic has the same ratio of positive-to-negative images so as to balance
the prevalence of outcome for each clinic. FIG. 21D illustrates unbiased dataset that has been
balanced based on the prevalence of outcome. As seen in FIG. 21D, unbiased datasets result in
the CNNs described herein classifying embryos from site B with higher scores as positive fetal
heartbeat and lower scores as negative fetal heartbeat similar to classification of embryos from

site A.

[0162] As discussed above, another source of bias may be the presence of embryo holding

micropipette in an image. FIGS. 23 A and 23B illustrate a controlled experiment to depict the
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biases introduced by the presence of micropipettes in an image. FIG. 23 A illustrates that CNNs
trained with a biased dataset may focus almost exclusively on the micropipette rather than the
embryo. To combat this, the training data was re-sampled so that images with micropipettes
have the same ratio of positive-to-negative images as images without micropipettes. FIG. 23B
illustrates that training data re-sampled to balance a prevalence of outcome resulted in CNNs
also focusing on the embryos in images with micropipettes. The foregoing description, for
purposes of explanation, used specific nomenclature to provide a thorough understanding of the
invention. However, it will be apparent to one skilled in the art that specific details are not
required in order to practice the invention. Thus, the foregoing descriptions of specific
embodiments of the invention are presented for purposes of illustration and description. They
are not intended to be exhaustive or to limit the invention to the precise forms disclosed;
obviously, many modifications and variations are possible in view of the above teachings. The
embodiments were chosen and described in order to explain the principles of the invention and
its practical applications, they thereby enable others skilled in the art to utilize the invention and
various embodiments with various modifications as are suited to the particular use contemplated.

It is intended that the following claims and their equivalents define the scope of the invention.
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CLAIMS

1. A computer-implemented method for predicting viability of an embryo, the method
comprising:

receiving a single image over a real-time communication link with an image capturing
device;

cropping the single image to a boundary of the embryo via a first convolutional neural
network;

generating a viability score for the embryo by classifying the cropped single image via at

least a second convolutional neural network.

2. The method of claim 1, wherein the single image is not part of a time series of images.

3. The method of claim 1, wherein generating the viability score for the embryo is performed in

response to determining that the single image depicts an embryo.

4. The method of claim 1, further comprising, in response to determining that the single image

does not depict an embryo, providing an alert to a user of the image capturing device.

5. The method of claim 1, further comprising determining a probability that the embryo is a
single blastocyst.

6. The method of claim 1, wherein the real-time communication link is provided by an
application executed on a computing device communicably coupled to the image capturing

device.

7. The method of claim 6, wherein the application causes a display on the computing device to

display a capture button.

8. The method of claim 7, wherein in response to a user selecting the capture button, the image

capturing device captures the first single image of the embryo.
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9. The method of claim 1, wherein the viability score represents a likelihood of the embryo

reaching clinical pregnancy.

10. The method of claim 1, wherein the viability score represents a likelihood of the embryo

reaching live birth.

11. The method of claim 1, wherein the likelihood of the embryo reaching clinical pregnancy is

associated with an outcome of a fetal cardiac activity.

12. The method of claim 1, wherein the viability score is based at least in part on data associated

with a patient.

13. The method of claim 12, wherein the data includes at least one of age, body mass index, day

of image capture, and donor status.

14. The method of claim 1, further comprising storing the viability score in a database.

15. The method of claim 1, further comprising communicating the viability score to at least one

of a patient and a clinician.

16. The method of claim 1, further comprising predicting, via a fourth convolutional neural

network, whether the embryo is euploid or aneuploid.

17. The method of claim 16, wherein predicting whether the embryo is euploid or aneuploid

depends at least in part on data associated with a subject.

18. The method of claim 17, wherein the data is at least one of age and day of biopsy.

19. The method of claim 17, further comprising:
generating a ploidy outcome based on whether the embryo is euploid or aneuploid; and
updating at least the fourth convolutional neural network based at least in part on the

ploidy outcome and the data.
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20. The method of claim 1, wherein the embryo is to undergo at least one of biopsy and freezing,
and wherein the method further comprises receiving the single image of the embryo prior to
biopsy or freezing, and determining viability of the embryo prior to at least one of biopsy and

freezing.

21. The method of claim 1, wherein the embryo has been frozen and thawed, and wherein the
method further comprises receiving the single image of the embryo post-thaw, and determining

viability of the embryo post-thaw via the second convolutional neural network.

22. The method of claim 21, wherein determining viability of the embryo post-thaw comprises
classifying the single image into either a first class indicating that the embryo has survived post-

thaw, or a second class indicating that the embryo has not survived post-thaw.

23. The method of claim 1, further comprising receiving a plurality of single images, each single
image depicting a respective embryo of a plurality of embryos, generating a viability score for
each embryo by classifying each single image via the second convolutional neural network, and

ranking the plurality of embryos based on the viability scores for the plurality of embryos.

24. A computer-implemented method for characterizing a plurality of embryos, the method
comprising;

receiving a plurality of single images, each single image depicting a different respective
embryo of a plurality of embryos;

generating a viability score for each embryo by classifying each single image via at least
one convolutional neural network; and

ranking the plurality of embryos based on the viability scores for the plurality of

embryos.

25. The method of claim 24, wherein the single images are not part of a time series of images.

26. The method of claim 24, further comprising displaying the plurality of single images on a
display according to the ranking of the plurality of embryos.
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27. The method of claim 26, further comprising displaying the viabxility scores for the plurality
of embryos.

28. The method of claim 24, wherein the at least one convolutional neural network includes a

plurality of convolutional neural networks.
29. The method of claim 28, wherein generating the viability score for each embryo comprises
cropping, via a first convolutional neural network of the plurality of convolutional neural

networks, at least one of the single images to a boundary of the embryo.

30. The method of claim 24, wherein the viability score represents a likelihood of the embryo

reaching clinical pregnancy.

31. The method of claim 30, wherein the likelihood of the embryo reaching clinical pregnancy is

associated with an outcome of a fetal cardiac activity.

32. The method of claim 24, wherein the first score is based at least in part on data associated

with a patient.

33. The method of claim 32, wherein the data includes at least one of age, body mass index, day

of image capture, and donor status.

34. The method of claim 24, further comprising predicting, via the at least one convolutional

neural network, whether the embryo is euploid or aneuploid.

35. The method of claim 34, wherein predicting whether the embryo is euploid or aneuploid

depends at least in part on data associated with a subject.

36. The method of claim 35, wherein the data is at least one of age and day of biopsy.

37. The method of claim 35, further comprising:

53



WO 2022/187516 PCT/US2022/018743

generating a ploidy outcome based on whether the embryo is euploid or aneuploid; and
updating the at least one convolutional neural network based at least in part on the ploidy

outcome and the data.

38. The method of claim 24, wherein the embryo has been frozen and thawed, and wherein the
method further comprises receiving the single image of the embryo post-thaw, and determining

viability of the embryo post-thaw via the at least one convolutional neural network.

39. The method of claim 38, wherein determining viability of the embryo post-thaw comprises
classifying, via the at least one convolution neural network, the single image into either a first
class indicating that the embryo has survived post-thaw, or a second class indicating that the

embryo has reduced viability post-thaw.

40. A computer-implemented method for predicting viability of an embryo, the method
comprising:

receiving a single image of the embryo captured with an image capturing device; and

generating a viability score for each embryo by classifying each single image via at least
one convolutional neural network,

wherein the at least one convolutional neural network is trained based on training data
comprising a plurality of single images of embryos captured with a plurality of image capturing

devices.

41. The method of claim 40, wherein the single image is not part of a time series of images.

42. The method of claim 40, wherein the viability score represents a probability of the embryo

reaching clinical pregnancy.

43. The method of claim 40, wherein the at least one convolutional neural network is trained
based at least in part by balancing a prevalence of outcome associated with each respective

image capturing device.
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44. The method of claim 43, wherein the prevalence of outcome includes a corresponding bias
representing a percentage of positive pregnancy outcomes associated with each respective image

capturing device.

45. A computer-implemented method for predicting viability of an embryo, the method
comprising:

receiving a single image of the embryo; and

generating a viability score for each embryo by classifying each single image via at least
one convolutional neural network,

wherein the at least one convolutional neural network is trained based at least in part on

training data comprising a plurality of augmented images of a plurality of embryos.

46. The method of claim 45, wherein the single image is not part of a time series of images.

47. The method of claim 45, wherein the viability score represents a probability of the embryo

reaching clinical pregnancy.
48. The method of claim 45, wherein the plurality of augmented images includes at least one of

rotated, flipped, scaled, and varied images of the plurality of embryos, wherein the varied

images include changes to one or more of contrast, brightness, and saturation.
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respective embryo of a plurality of embryos; ranking the plurality of embryos based on the viability scores for the plurality of embryos, not
required by any other group. ’
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As the common features were known in the art at the time of the invention, this cannot be considered a common technical feature that
would otherwise unify the groups. Therefore, Groups I-lIl lack unity under PCT Rule 13.

Form PCT/ISA/210 (extra sheet) (July 2019)



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - wo-search-report
	Page 89 - wo-search-report
	Page 90 - wo-search-report

