
INI
US 20200192756A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0192756 A1

Davis et al . (43) Pub . Date : Jun . 18 , 2020

(54) DIE - LEVEL MONITORING IN A STORAGE
CLUSTER

(71) Applicant : Pure Storage , Inc. , Mountain View , CA
(US)

G06F 11/07 (2006.01)
GIIC 29/52 (2006.01)
GIIC 16/34 (2006.01)
G06F 16/182 (2006.01)

(52) U.S. CI .
CPC GO6F 11/1068 (2013.01) ; GIIC 29/44

(2013.01) ; G06F 11/076 (2013.01) ; GIIC
2029/0411 (2013.01) ; GIIC 29/52 (2013.01) ;

GIIC 16/349 (2013.01) ; G06F 16/182
(2019.01) ; GO6F 11/1048 (2013.01)

(72) Inventors : John D. Davis , San Francisco , CA
(US) ; John Hayes , Mountain View , CA
(US) ; Hari Kannan , Sunnyvale , CA
(US) ; Nenad Miladinovic , Campbell ,
CA (US) ; Zhangxi Tan , Mountain
View , CA (US) (57) ABSTRACT

(21) Appl . No .: 16 / 800,669
(22) Filed : Feb. 25 , 2020

Related U.S. Application Data
(60) Continuation of application No. 15 / 882,886 , filed on

Jan. 29 , 2018 , now Pat . No. 10,579,474 , which is a
division of application No. 14 / 712,756 , filed on May
14 , 2015 , now Pat . No. 9,880,899 , which is a contin
uation of application No. 14 / 454,522 , filed on Aug. 7 ,
2014 , now Pat . No. 9,082,512 .

In some embodiments , a method for die - level monitoring is
provided . The method includes distributing user data
throughout a plurality of storage nodes through erasure
coding , wherein the plurality of storage nodes are housed
within a chassis that couples the storage nodes . Each of the
storage nodes has a non - volatile solid - state storage with
non - volatile memory and the user data is accessible via the
erasure coding from a remainder of the storage nodes in
event of two of the storage nodes being unreachable . The
method includes producing diagnostic information that diag
noses the non - volatile memory on a basis of per package , per
die , per plane , per block , or per page , the producing per
formed by each of the plurality of storage nodes . The method
includes writing the diagnostic information to a memory in
the storage cluster .

Publication Classification

(51) Int . Cl .
G06F 11/10
GIIC 29/44

(2006.01)
(2006.01)

160 Storage Node

138

154
-158

146) MEM

Switch
Fabric

156 Non - volatile
Solid state CPU

148 Storage

Fans

152
144 -148 150 150/150/150/150

150 150 150
142

Storage Node

160

Patent Application Publication

138

154

158

146

MEM

Switch Fabric

156

Non - volatile Solid state

CPU

148

Jun . 18 , 2020 Sheet 1 of 8

Storage

Fans

152

144

148

150

150/150/150/150 150 150 150

142 FIG . 1

US 2020/0192756 A1

102

Patent Application Publication

110

Enterprise Computing System
112

Networking Controller

114

Storage Controller

Processing Controller
104

108

106

Networking Resources

Processing Resources

Storage Resources
126

140

116

120

Hard Drives

Processors

Routers

128

118

122

Jun . 18 , 2020 Sheet 2 of 8

RAM

Switches

Flash Storage

130

132

Flash

Flash
Controller Memory

124

Servers

FIG . 2

US 2020/0192756 A1

Patent Application Publication

Storage Node

Storage Node

Storage Node

152

152

152

?

?

152

152

152

-152

?

Jun . 18 , 2020 Sheet 3 of 8

150

Mixed 4 , 8 , 32 TB

150

32TB

8TB

150
FIG . 3

US 2020/0192756 A1

Patent Application Publication

Storage Nodes

Storage Nodes

Storage Nodes Compute Only

152

152

152

150

150

160

168

Authority A1 A2 A3

150 External Port
170

A1 '
A2 ' A5 A3 ' A6

Comms . Interconnect Power Distribution

174

Jun . 18 , 2020 Sheet 4 of 8

176

178

172

External Port 138 FIG.4

External Power

US 2020/0192756 A1

Patent Application Publication Jun . 18 , 2020 Sheet 5 of 8 US 2020/0192756 A1

150
152 Storage Node

CPU

156 152 152 152

NIC
202

*
an

Non - Volatile Solid
State Memory

204 152

206
Flash

152

Non - Volatile Solid State Memory
208

216

PLD
2102

1/0
212

Controller
214

DMA
220

Flash 1/0

222
Flash

Energy
Reserve

218
224 16KB Page 222 206

Register 222
226

FIG . 5

Patent Application Publication Jun . 18 , 2020 Sheet 6 of 8 US 2020/0192756 A1

156)

CPU

2125 I C 216 212
Controller

608)
Error Correction

DRAM

602 1 1 c 206
Flash Memory -602

+602 222 9 Die
Flash

Package
222 602

Die -602

602

Die 222

Plane Plane
Block Pages

224

604 606 604

FIG . 6

Patent Application Publication Jun . 18 , 2020 Sheet 7 of 8 US 2020/0192756 A1 9

702
Distribute user data throughout

storage nodes with erasure coding
704
Read user data , with error correction
706

Track bit errors , error correction
708

Forward error information from
non - volatile solid - state storages

to storage nodes
7107
Generate diagnostic information at

various levels
712
Characterize flash memory over time

714
Send diagnostic information via network

7167 Flash
block has high level of wear

No
?

Yes
718) Write

to differing flash block Yes
?

Nol
720

Bias write Yes
722

Determine and apply variable write
parameter ?

No
724

Yes
r 726

Determine and apply variable read
parameter Bias read

?
No

FIG . 7

Patent Application Publication Jun . 18 , 2020 Sheet 8 of 8 US 2020/0192756 A1

801 803

CPU Memory

809
805

BUS
Input / output
Device

807

Mass Storage

811)
Display

FIG . 8

US 2020/0192756 A1 Jun . 18 , 2020
1

DIE - LEVEL MONITORING IN A STORAGE
CLUSTER

BACKGROUND

[0001] Solid - state memory , such as flash , is currently in
use in solid - state drives (SSD) to augment or replace con
ventional hard disk drives (HDD) , writable CD (compact
disk) or writable DVD (digital versatile disk) drives , col
lectively known as spinning media , and tape drives , for
storage of large amounts of data . Flash and other solid - state
memories have operation and wear characteristics that differ
from spinning media . Yet , many solid - state drives are
designed to conform to hard disk drive standards for com
patibility reasons , which makes it difficult to provide
enhanced features or take advantage of unique aspects of
flash and other solid - state memory .
[0002] It is within this context that the embodiments arise .

capacities , suitable for use in the storage cluster of FIG . 1 in
accordance with some embodiments .
[0009] FIG . 4 is a block diagram showing an interconnect
switch coupling multiple storage nodes in accordance with
some embodiments .
[0010] FIG . 5 is a multiple level block diagram , showing
contents of a storage node and contents of one of the
non - volatile solid - state storage units in accordance with
some embodiments .
[0011] FIG . 6 is a multiple level block diagram , showing
a controller , flash dies , and interior details of flash dies in
accordance with some embodiments .
[0012] FIG . 7 is a flow diagram of a method for die - level
monitoring in a storage array , which can be practiced on or
by embodiments of the storage cluster , storage nodes and / or
non - volatile solid - state storages in accordance with some
embodiments .
[0013] FIG . 8 is an illustration showing an exemplary
computing device which may implement the embodiments
described herein . SUMMARY

DETAILED DESCRIPTION
[0003] In some embodiments , a method for die - level
monitoring in a storage cluster is provided . The method
includes distributing user data throughout a plurality of
storage nodes through erasure coding , wherein the plurality
of storage nodes are housed within a chassis that couples the
storage nodes as a storage cluster . Each of the plurality of
storage nodes has a non - volatile solid - state storage with
non - volatile memory and the user data is accessible via the
erasure coding from a remainder of the plurality of storage
nodes in event of two of the plurality of storage nodes being
unreachable . The method includes producing diagnostic
information that diagnoses the non - volatile memory of the
non - volatile solid - state storage of each of the plurality of
storage nodes , on a basis of per package , per die , per plane ,
per block , or per page , the producing performed by each of
the plurality of storage nodes . The method includes writing
the diagnostic information to a memory in the storage
cluster , wherein a processor performs at least one method
operation .
[0004] Other aspects and advantages of the embodiments
will become apparent from the following detailed descrip
tion taken in conjunction with the accompanying drawings
which illustrate , by way of example , the principles of the
described embodiments .

[0014] The embodiments below describe a storage cluster
that stores user data , such as user data originating from one
or more user or client systems or other sources external to
the storage cluster . The storage cluster distributes user data
across storage nodes housed within a chassis , using erasure
coding and redundant copies of metadata . Erasure coding
refers to a method of data protection or reconstruction in
which data is stored across a set of different locations , such
as disks , storage nodes or geographic locations . Flash
memory is one type of solid - state memory that may be
integrated with the embodiments , although the embodiments
may be extended to other types of solid - state memory or
other storage medium , including non - solid - state memory .
Control of storage locations and workloads are distributed
across the storage locations in a clustered peer - to - peer
system . Tasks such as mediating communications between
the various storage nodes , detecting when a storage node has
become unavailable , and balancing I / Os (inputs and outputs)
across the various storage nodes , are all handled on a
distributed basis . Data is laid out or distributed across
multiple storage nodes in data fragments or stripes that
support data recovery in some embodiments . Ownership of
data can be reassigned within a cluster , independent of input
and output patterns . This architecture described in more
detail below allows a storage node in the cluster to fail , with
the system remaining operational , since the data can be
reconstructed from other storage nodes and thus remain
available for input and output operations . In various embodi
ments , a storage node may be referred to as a cluster node ,
a blade , or a server .
[0015] The storage cluster is contained within a chassis ,
i.e. , an enclosure housing one or more storage nodes . A
mechanism to provide power to each storage node , such as
a power distribution bus , and a communication mechanism ,
such as a communication bus that enables communication
between the storage nodes are included within the chassis .
The storage cluster can run as an independent system in one
location according to some embodiments . In one embodi
ment , a chassis contains at least two instances of the power
distribution and the internal and external communication bus
which may be enabled or disabled independently . The inter
nal communication bus may be an Ethernet bus , however ,

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The described embodiments and the advantages
thereof may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings . These drawings in no way limit any changes in
form and detail that may be made to the described embodi
ments by one skilled in the art without departing from the
spirit and scope of the described embodiments .
[0006] FIG . 1 is a perspective view of a storage cluster
with multiple storage nodes and internal storage coupled to
each storage node to provide network attached storage , in
accordance with some embodiments .
[0007] FIG . 2 is a system diagram of an enterprise com
puting system , which can use one or more of the storage
clusters of FIG . 1 as a storage resource in some embodi
ments .
[0008] FIG . 3 is a block diagram showing multiple storage
nodes and non - volatile solid - state storage with differing

US 2020/0192756 A1 Jun . 18 , 2020
2

other technologies such as Peripheral Component Intercon
nect (PCI) Express , InfiniBand , and others , are equally
suitable . The chassis provides a port for an external com
munication bus for enabling communication between mul
tiple chassis , directly or through a switch , and with client
systems . The external communication may use a technology
such as Ethernet , InfiniBand , Fibre Channel , etc. In some
embodiments , the external communication bus uses different
communication bus technologies for inter - chassis and client
communication . If a switch is deployed within or between
chassis , the switch may act as a translation between multiple
protocols or technologies . When multiple chassis are con
nected to define a storage cluster , the storage cluster may be
accessed by a client using either proprietary interfaces or
standard interfaces such as network file system (NFS) ,
common internet file system (CIFS) , small computer system
interface (SCSI) or hypertext transfer protocol (HTTP) .
Translation from the client protocol may occur at the switch ,
chassis external communication bus or within each storage
node .

[0016] Each storage node may be one or more storage
servers and each storage server is connected to one or more
non - volatile solid - state memory units , which may be
referred to as storage units . One embodiment includes a
single storage server in each storage node and between one
to eight non - volatile solid - state memory units , however this
one example is not meant to be limiting . The storage server
may include a processor , dynamic random access memory
(DRAM) and interfaces for the internal communication bus
and power distribution for each of the power buses . Inside
the storage node , the interfaces and storage unit share a
communication bus , e.g. , PCI Express , in some embodi
ments . The non - volatile solid - state memory units may
directly access the internal communication bus interface
through a storage node communication bus , or request the
storage node to access the bus interface . The non - volatile
solid - state memory unit contains an embedded central pro
cessing unit (CPU) , solid - state storage controller , and a
quantity of solid - state mass storage , e.g. , between 2-32
terabytes (TB) in some embodiments . An embedded volatile
storage medium , such as DRAM , and an energy reserve
apparatus are included in the non - volatile solid - state
memory unit . In some embodiments , the energy reserve
apparatus is a capacitor , super - capacitor , or battery that
enables transferring a subset of DRAM contents to a stable
storage medium in the case of power loss . In some embodi
ments , the non - volatile solid - state memory unit is con
structed with a storage class memory , such as phase change
or other resistive random access memory (RRAM) or mag
netoresistive random access memory (MRAM) that substi
tutes for DRAM and enables a reduced power hold - up
apparatus .
[0017] One of many features of the storage nodes and
non - volatile solid - state storage units discussed below is the
ability to track and provide diagnostic information about
flash memory on a per package , die , plane , block or page
basis . Flash wear , changes or trends can be tracked over
time . In some embodiments , flash writes or reads can be
biased , based on the diagnostic information . A flash block
with a relatively high level of wear can be avoided for new
writes , which are instead directed to flash blocks with lower
levels of wear . These and further details of the storage
memory are discussed below .

[0018] FIG . 1 is a perspective view of a storage cluster
160 , with multiple storage nodes 150 and internal solid - state
memory coupled to each storage node to provide network
attached storage or storage area network , in accordance with
some embodiments . A network attached storage , storage
area network , or a storage cluster , or other storage memory ,
could include one or more storage clusters 160 , each having
one or more storage nodes 150 , in a flexible and reconfigu
rable arrangement of both the physical components and the
amount of storage memory provided thereby . The storage
cluster 160 is designed to fit in a rack , and one or more racks
can be set up and populated as desired for the storage
memory . The storage cluster 160 has a chassis 138 having
multiple slots 142. It should be appreciated that chassis 138
may be referred to as a housing , enclosure , or rack unit . In
one embodiment , the chassis 138 has fourteen slots 142 ,
although other numbers of slots are readily devised . For
example , some embodiments have four slots , eight slots ,
sixteen slots , thirty - two slots , or other suitable number of
slots . Each slot 142 can accommodate one storage node 150
in some embodiments . Chassis 138 includes flaps 148 that
can be utilized to mount the chassis 138 on a rack . Fans 144
provide air circulation for cooling of the storage nodes 150
and components thereof , although other cooling components
could be used , or an embodiment could be devised without
cooling components . A switch fabric 146 couples storage
nodes 150 within chassis 138 together and to a network for
communication to the memory . In an embodiment depicted
in FIG . 1 , the slots 142 to the left of the switch fabric 146
and fans 144 are shown occupied by storage nodes 150 ,
while the slots 142 to the right of the switch fabric 146 and
fans 144 are empty and available for insertion of storage
node 150 for illustrative purposes . This configuration is one
example , and one or more storage nodes 150 could occupy
the slots 142 in various further arrangements . The storage
node arrangements need not be sequential or adjacent in
some embodiments . Storage nodes 150 are hot pluggable ,
meaning that a storage node 150 can be inserted into a slot
142 in the chassis 138 , or removed from a slot 142 , without
stopping or powering down the system . Upon insertion or
removal of storage node 150 from slot 142 , the system
automatically reconfigures in order to recognize and adapt to
the change . Reconfiguration , in some embodiments ,
includes restoring redundancy and / or rebalancing data or
load .
[0019] Each storage node 150 can have multiple compo
nents . In the embodiment shown here , the storage node 150
includes a printed circuit board 158 populated by a CPU
156 , i.e. , processor , a memory 154 coupled to the CPU 156 ,
and a non - volatile solid - state storage 152 coupled to the
CPU 156 , although other mountings and / or components
could be used in further embodiments . The memory 154 has
instructions which are executed by the CPU 156 and / or data
operated on by the CPU 156. As further explained below , the
non - volatile solid - state storage 152 includes flash or , in
further embodiments , other types of solid - state memory .
[0020] FIG . 2 is a system diagram of an enterprise com
puting system 102 , which can use one or more of the storage
nodes , storage clusters and / or non - volatile solid - state stor
age of FIG . 1 as a storage resource 108. For example , flash
storage 128 of FIG . 2 may integrate the storage nodes ,
storage clusters and / or non - volatile solid - state storage of
FIG . 1 in some embodiments . The enterprise computing
system 102 has processing resources 104 , networking

US 2020/0192756 A1 Jun . 18 , 2020
3

resources 106 and storage resources 108 , including flash
storage 128. A flash controller 130 and flash memory 132 are
included in the flash storage 128. In various embodiments ,
the flash storage 128 could include one or more storage
nodes or storage clusters , with the flash controller 130
including the CPUs , and the flash memory 132 including the
non - volatile solid - state storage of the storage nodes . In some
embodiments flash memory 132 may include different types
of flash memory or the same type of flash memory . The
enterprise computing system 102 illustrates an environment
suitable for deployment of the flash storage 128 , although
the flash storage 128 could be used in other computing
systems or devices , larger or smaller , or in variations of the
enterprise computing system 102 , with fewer or additional
resources . The enterprise computing system 102 can be
coupled to a network 140 , such as the Internet , in order to
provide or make use of services . For example , the enterprise
computing system 102 could provide cloud services , physi
cal computing resources , or virtual computing services .
[0021] In the enterprise computing system 102 , various
resources are arranged and managed by various controllers .
A processing controller 110 manages the processing
resources 104 , which include processors 116 and random
access memory (RAM) 118. Networking controller 112
manages the networking resources 106 , which include rout
ers 120 , switches 122 , and servers 124. A storage controller
114 manages storage resources 108 , which include hard
drives 126 and flash storage 128. Other types of processing
resources , networking resources , and storage resources
could be included with the embodiments . In some embodi
ments , the flash storage 128 completely replaces the hard
drives 126. The enterprise computing system 102 can pro
vide or allocate the various resources as physical computing
resources , or in variations , as virtual computing resources
supported by physical computing resources . For example ,
the various resources could be implemented using one or
more servers executing software . Files or data objects , or
other forms of data , are stored in the storage resources 108 .
[0022] In various embodiments , an enterprise computing
system 102 could include multiple racks populated by
storage clusters , and these could be located in a single
physical location such as in a cluster or a server farm . In
other embodiments the multiple racks could be located at
multiple physical locations such as in various cities , states or
countries , connected by a network . Each of the racks , each
of the storage clusters , each of the storage nodes , and each
of the non - volatile solid - state storage could be individually
configured with a respective amount of storage space , which
is then reconfigurable independently of the others . Storage
capacity can thus be flexibly added , upgraded , subtracted ,
recovered and / or reconfigured at each of the non - volatile
solid - state storages . As mentioned previously , each storage
node could implement one or more servers in some embodi
ments .
[0023] FIG . 3 is a block diagram showing multiple storage
nodes 150 and non - volatile solid - state storage 152 with
differing capacities , suitable for use in the chassis of FIG . 1 .
Each storage node 150 can have one or more units of
non - volatile solid - state storage 152. Each non - volatile solid
state storage 152 may include differing capacity from other
non - volatile solid - state storage 152 on a storage node 150 or
in other storage nodes 150 in some embodiments . Alterna
tively , all of the non - volatile solid - state storages 152 on a
storage node or on multiple storage nodes can have the same

capacity or combinations of the same and / or differing
capacities . This flexibility is illustrated in FIG . 3 , which
shows an example of one storage node 150 having mixed
non - volatile solid - state storage 152 of four , eight and thirty
two TB capacity , another storage node 150 having non
volatile solid - state storage 152 each of thirty - two TB capac
ity , and still another storage node having non - volatile solid
state storage 152 each of eight TB capacity . Various further
combinations and capacities are readily devised in accor
dance with the teachings herein . In the context of clustering ,
e.g. , clustering storage to form a storage cluster , a storage
node can be or include a non - volatile solid - state storage 152 .
Non - volatile solid - state storage 152 is a convenient cluster
ing point as the non - volatile solid - state storage 152 may
include a non - volatile random access memory (NVRAM)
component , as will be further described below .
[0024] Referring to FIGS . 1 and 3 , storage cluster 160 is
scalable , meaning that storage capacity with non - uniform
storage sizes is readily added , as described above . One or
more storage nodes 150 can be plugged into or removed
from each chassis and the storage cluster self - configures in
some embodiments . Plug - in storage nodes 150 , whether
installed in a chassis as delivered or later added , can have
different sizes . For example , in one embodiment a storage
node 150 can have any multiple of 4 TB , e.g. , 8 TB , 12 TB ,
16 TB , 32 TB , etc. In further embodiments , a storage node
150 could have any multiple of other storage amounts or
capacities . Storage capacity of each storage node 150 is
broadcast , and influences decisions of how to stripe the data .
For maximum storage efficiency , an embodiment can self
configure as wide as possible in the stripe , subject to a
predetermined requirement of continued operation with loss
of up to one , or up to two , non - volatile solid - state storage
units 152 or storage nodes 150 within the chassis .
[0025] FIG . 4 is a block diagram showing a communica
tions interconnect 170 and power distribution bus 172
coupling multiple storage nodes 150. Referring back to FIG .
1 , the communications interconnect 170 can be included in
or implemented with the switch fabric 146 in some embodi
ments . Where multiple storage clusters 160 occupy a rack ,
the communications interconnect 170 can be included in or
implemented with a top of rack switch , in some embodi
ments . As illustrated in FIG . 4 , storage cluster 160 is
enclosed within a single chassis 138. External port 176 is
coupled to storage nodes 150 through communications inter
connect 170 , while external port 174 is coupled directly to
a storage node . External power port 178 is coupled to power
distribution bus 172. Storage nodes 150 may include varying
amounts and differing capacities of non - volatile solid - state
storage 152 as described with reference to FIG . 3. In
addition , one or more storage nodes 150 may be a compute
only storage node as illustrated in FIG . 4. Authorities 168 are
implemented on the non - volatile solid - state storages 152 , for
example as lists or other data structures stored in memory .
In some embodiments the authorities are stored within the
non - volatile solid - state storage 152 and supported by soft
ware executing on a controller or other processor of the
non - volatile solid - state storage 152. In a further embodi
ment , authorities 168 are implemented on the storage nodes
150 , for example as lists or other data structures stored in the
memory 154 and supported by software executing on the
CPU 156 of the storage node 150. Authorities 168 control
how and where data is stored in the non - volatile solid - state
storages 152 in some embodiments . This control assists in

US 2020/0192756 A1 Jun . 18 , 2020
4

determining which type of erasure coding scheme is applied
to the data , and which storage nodes 150 have which
portions of the data . Each authority 168 may be assigned to
a non - volatile solid - state storage 152. Each authority may
control a range of inode numbers , segment numbers , or other
data identifiers which are assigned to data by a file system ,
by the storage nodes 150 , or by the non - volatile solid - state
storage 152 , in various embodiments .
[0026] Every piece of data , and every piece of metadata ,
has redundancy in the system in some embodiments . In
addition , every piece of data and every piece of metadata has
an owner , which may be referred to as an authority . If that
authority is unreachable , for example through failure of a
storage node , there is a plan of succession for how to find
that data or that metadata . In various embodiments , there are
redundant copies of authorities 168. Authorities 168 have a
relationship to storage nodes 150 and non - volatile solid - state
storage 152 in some embodiments . Each authority 168 ,
covering a range of data segment numbers or other identi
fiers of the data , may be assigned to a specific non - volatile
solid - state storage 152. In some embodiments the authorities
168 for all of such ranges are distributed over the non
volatile solid - state storages 152 of a storage cluster . Each
storage node 150 has a network port that provides access to
the non - volatile solid - state storage (s) 152 of that storage
node 150. Data can be stored in a segment , which is
associated with a segment number and that segment number
is an indirection for a configuration of a RAID (redundant
array of independent disks) stripe in some embodiments .
The assignment and use of the authorities 168 thus estab
lishes an indirection to data . Indirection may be referred to
as the ability to reference data indirectly , in this case via an
authority 168 , in accordance with some embodiments . A
segment identifies a set of non - volatile solid - state storage
152 and a local identifier into the set of non - volatile solid
state storage 152 that may contain data . In some embodi
ments , the local identifier is an offset into the device and may
be reused sequentially by multiple segments . In other
embodiments the local identifier is unique for a specific
segment and never reused . The offsets in the non - volatile
solid - state storage 152 are applied to locating data for
writing to or reading from the non - volatile solid - state stor
age 152 (in the form of a RAID stripe) . Data is striped across
multiple units of non - volatile solid - state storage 152 , which
may include or be different from the non - volatile solid - state
storage 152 having the authority 168 for a particular data
segment .
[0027] If there is a change in where a particular segment
of data is located , e.g. , during a data move or a data
reconstruction , the authority 168 for that data segment
should be consulted , at that non - volatile solid - state storage
152 or storage node 150 having that authority 168. In order
to locate a particular piece of data , embodiments calculate a
hash value for a data segment or apply an inode number or
a data segment number . The output of this operation points
to a non - volatile solid - state storage 152 having the authority
168 for that particular piece of data . In some embodiments
there are two stages to this operation . The first stage maps an
entity identifier (ID) , e.g. , a segment number , inode number ,
or directory number to an authority identifier . This mapping
may include a calculation such as a hash or a bit mask . The
second stage is mapping the authority identifier to a par
ticular non - volatile solid - state storage 152 , which may be
done through an explicit mapping . The operation is repeat

able , so that when the calculation is performed , the result of
the calculation repeatably and reliably points to a particular
non - volatile solid - state storage 152 having that authority
168. The operation may include the set of reachable storage
nodes as input . If the set of reachable non - volatile solid - state
storage units changes the optimal set changes . In some
embodiments , the persisted value is the current assignment
(which is always true) and the calculated value is the target
assignment the cluster will attempt to reconfigure towards .
This calculation may be used to determine the optimal
non - volatile solid - state storage 152 for an authority in the
presence of a set of non - volatile solid - state storage 152 that
are reachable and constitute the same cluster . The calcula
tion also determines an ordered set of peer non - volatile
solid - state storage 152 that will also record the authority to
non - volatile solid - state storage mapping so that the authority
may be determined even if the assigned non - volatile solid
state storage is unreachable . A duplicate or substitute author
ity 168 may be consulted if a specific authority 168 is
unavailable in some embodiments .
[0028] With reference to FIGS . 1-4 , two of the many tasks
of the CPU 156 on a storage node 150 are to break up write
data , and reassemble read data . When the system has deter
mined that data is to be written , the authority 168 for that
data is located as above . When the segment ID for data is
already determined the request to write is forwarded to the
non - volatile solid - state storage 152 currently determined to
be the host of the authority 168 determined from the
segment . The host CPU 156 of the storage node 150 , on
which the non - volatile solid - state storage 152 and corre
sponding authority 168 reside , then breaks up or shards the
data and transmits the data out to various non - volatile
solid - state storage 152. The transmitted data is written as a
data stripe in accordance with an erasure coding scheme . In
some embodiments , data is requested to be pulled , and in
other embodiments , data is pushed . In reverse , when data is
read , the authority 168 for the segment ID containing the
data is located as described above . The host CPU 156 of the
storage node 150 on which the non - volatile solid - state
storage 152 and corresponding authority 168 reside requests
the data from the non - volatile solid - state storage and corre
sponding storage nodes pointed to by the authority . In some
embodiments the data is read from flash storage as a data
stripe . The host CPU 156 of storage node 150 then reas
sembles the read data , correcting any errors (if present)
according to the appropriate erasure coding scheme , and
forwards the reassembled data to the network . In further
embodiments , some or all of these tasks can be handled in
the non - volatile solid - state storage 152. In some embodi
ments , the segment host requests the data be sent to storage
node 150 by requesting pages from storage and then sending
the data to the storage node making the original request .
[0029] In some systems , for example in UNIX - style file
systems , data is handled with an index node or inode , which
specifies a data structure that represents an object in a file
system . The object could be a file or a directory , for example .
Metadata may accompany the object , as attributes such as
permission data and a creation timestamp , among other
attributes . A segment number could be assigned to all or a
portion of such an object in a file system . In other systems ,
data segments are handled with a segment number assigned
elsewhere . For purposes of discussion , the unit of distribu
tion is an entity , and an entity can be a file , a directory or a
segment . That is , entities are units of data or metadata stored

US 2020/0192756 A1 Jun . 18 , 2020
5

by a storage system . Entities are grouped into sets called
authorities . Each authority has an authority owner , which is
a storage node that has the exclusive right to update the
entities in the authority . In other words , a storage node
contains the authority , and that the authority , in turn , con
tains entities .
[0030] A segment is a logical container of data in accor
dance with some embodiments . A segment is an address
space between medium address space and physical flash
locations , i.e. , the data segment number , are in this address
space . Segments may also contain meta - data , which enable
data redundancy to be restored (rewritten to different flash
locations or devices) without the involvement of higher level
software . In one embodiment , an internal format of a seg
ment contains client data and medium mappings to deter
mine the position of that data . Each data segment is pro
tected , e.g. , from memory and other failures , by breaking the
segment into a number of data and parity shards , where
applicable . The data and parity shards are distributed , i.e. ,
striped , across non - volatile solid - state storage 152 coupled
to the host CPUs 156 (See FIG . 5) in accordance with an
erasure coding scheme . Usage of the term segments refers to
the container and its place in the address space of segments
in some embodiments . Usage of the term stripe refers to the
same set of shards as a segment and includes how the shards
are distributed along with redundancy or parity information
in accordance with some embodiments .
[0031] A series of address - space transformations takes
place across an entire storage system . At the top is the
directory entries (file names) which link to an inode . Modes
point into medium address space , where data is logically
stored . Medium addresses may be mapped through a series
of indirect mediums to spread the load of large files , or
implement data services like deduplication or snapshots .
Medium addresses may be mapped through a series of
indirect mediums to spread the load of large files , or
implement data services like deduplication or snapshots .
Segment addresses are then translated into physical flash
locations . Physical flash locations have an address range
bounded by the amount of flash in the system in accordance
with some embodiments . Medium addresses and segment
addresses are logical containers , and in some embodiments
use a 128 bit or larger identifier so as to be practically
infinite , with a likelihood of reuse calculated as longer than
the expected life of the system . Addresses from logical
containers are allocated in a hierarchical fashion in some
embodiments . Initially , each non - volatile solid - state storage
152 may be assigned a range of address space . Within this
assigned range , the non - volatile solid - state storage 152 is
able to allocate addresses without synchronization with
other non - volatile solid - state storage 152 .
[0032] Data and metadata is stored by a set of underlying
storage layouts that are optimized for varying workload
patterns and storage devices . These layouts incorporate
multiple redundancy schemes , compression formats and
index algorithms . Some of these layouts store information
about authorities and authority masters , while others store
file metadata and file data . The redundancy schemes include
error correction codes that tolerate corrupted bits within a
single storage device (such as a NAND flash chip) , erasure
codes that tolerate the failure of multiple storage nodes , and
replication schemes that tolerate data center or regional
failures . In some embodiments , low density parity check
(LDPC) code is used within a single storage unit . Reed

Solomon encoding is used within a storage cluster , and
mirroring is used within a storage grid in some embodi
ments . Metadata may be stored using an ordered log struc
tured index (such as a Log Structured Merge Tree) , and large
data may not be stored in a log structured layout .
[0033] In order to maintain consistency across multiple
copies of an entity , the storage nodes agree implicitly on two
things through calculations : (1) the authority that contains
the entity , and (2) the storage node that contains the author
ity . The assignment of entities to authorities can be done by
pseudorandomly assigning entities to authorities , by split
ting entities into ranges based upon an externally produced
key , or by placing a single entity into each authority .
Examples of pseudorandom schemes are linear hashing and
the Replication Under Scalable Hashing (RUSH) family of
hashes , including Controlled Replication Under Scalable
Hashing (CRUSH) . In some embodiments , pseudo - random
assignment is utilized only for assigning authorities to nodes
because the set of nodes can change . The set of authorities
cannot change so any subjective function may be applied in
these embodiments . Some placement schemes automatically
place authorities on storage nodes , while other placement
schemes rely on an explicit mapping of authorities to storage
nodes . In some embodiments , a pseudorandom scheme is
utilized to map from each authority to a set of candidate
authority owners . A pseudorandom data distribution func
tion related to CRUSH may assign authorities to storage
nodes and create a list of where the authorities are assigned .
Each storage node has a copy of the pseudorandom data
distribution function , and can arrive at the same calculation
for distributing , and later finding or locating an authority .
Each of the pseudorandom schemes requires the reachable
set of storage nodes as input in some embodiments in order
to conclude the same target nodes . Once an entity has been
placed in an authority , the entity may be stored on physical
devices so that no expected failure will lead to unexpected
data loss . In some embodiments , rebalancing algorithms
attempt to store the copies of all entities within an authority
in the same layout and on the same set of machines .
[0034] Examples of expected failures include device fail
ures , stolen machines , datacenter fires , and regional disas
ters , such as nuclear or geological events . Different failures
lead to different levels of acceptable data loss . In some
embodiments , a stolen storage node impacts neither the
security nor the reliability of the system , while depending on
system configuration , a regional event could lead to no loss
of data , a few seconds or minutes of lost updates , or even
complete data loss .
[0035] In the embodiments , the placement of data for
storage redundancy is independent of the placement of
authorities for data consistency . In some embodiments ,
storage nodes that contain authorities do not contain any
persistent storage . Instead , the storage nodes are connected
to non - volatile solid - state storage units that do not contain
authorities . The communications interconnect between stor
age nodes and non - volatile solid - state storage units consists
of multiple communication technologies and has non - uni
form performance and fault tolerance characteristics . In
some embodiments , as mentioned above , non - volatile solid
state storage units are connected to storage nodes via PCI
express , storage nodes are connected together within a
single chassis using Ethernet backplane , and chassis are
connected together to form a storage cluster . Storage clusters
are connected to clients using Ethernet or fiber channel in

US 2020/0192756 A1 Jun . 18 , 2020
6

some embodiments . If multiple storage clusters are config
ured into a storage grid , the multiple storage clusters are
connected using the Internet or other long - distance network
ing links , such as a “ metro scale ” link or private link that
does not traverse the internet .

[0036] Authority owners have the exclusive right to
modify entities , to migrate entities from one non - volatile
solid - state storage unit to another non - volatile solid - state
storage unit , and to add and remove copies of entities . This
allows for maintaining the redundancy of the underlying
data . When an authority owner fails , is going to be decom
missioned , or is overloaded , the authority is transferred to a
new storage node . Transient failures make it non - trivial to
ensure that all non - faulty machines agree upon the new
authority location . The ambiguity that arises due to transient
failures can be achieved automatically by a consensus
protocol such as Paxos , hot - warm failover schemes , via
manual intervention by a remote system administrator , or by
a local hardware administrator (such as by physically
removing the failed machine from the cluster , or pressing a
button on the failed machine) . In some embodiments , a
consensus protocol is used , and failover is automatic . If too
many failures or replication events occur in too short a time
period , the system goes into a self - preservation mode and
halts replication and data movement activities until an
administrator intervenes in accordance with some embodi
ments .

[0037] As authorities are transferred between storage
nodes and authority owners update entities in their authori
ties , the system transfers messages between the storage
nodes and non - volatile solid - state storage units . With regard
to persistent messages , messages that have different pur
poses are of different types . Depending on the type of the
message , the system maintains different ordering and dura
bility guarantees . As the persistent messages are being
processed , the messages are temporarily stored in multiple
durable and non - durable storage hardware technologies . In
some embodiments , messages are stored in RAM , NVRAM
and on NAND flash devices , and a variety of protocols are
used in order to make efficient use of each storage medium .
Latency - sensitive client requests may be persisted in repli
cated NVRAM , and then later NAND , while background
rebalancing operations are persisted directly to NAND .
[0038] Persistent messages are persistently stored prior to
being replicated . This allows the system to continue to serve
client requests despite failures and component replacement .
Although many hardware components contain unique iden
tifiers that are visible to system administrators , manufac
turer , hardware supply chain and ongoing monitoring quality
control infrastructure , applications running on top of the
infrastructure address virtualize addresses . These virtualized
addresses do not change over the lifetime of the storage
system , regardless of component failures and replacements .
This allows each component of the storage system to be
replaced over time without reconfiguration or disruptions of
client request processing .
[0039] In some embodiments , the virtualized addresses are
stored with sufficient redundancy . A continuous monitoring
system correlates hardware and software status and the
hardware identifiers . This allows detection and prediction of
failures due to faulty components and manufacturing details .
The monitoring system also enables the proactive transfer of

authorities and entities away from impacted devices before
failure occurs by removing the component from the critical
path in some embodiments .
[0040] FIG . 5 is a multiple level block diagram , showing
contents of a storage node 150 and contents of a non - volatile
solid - state storage 152 of the storage node 150. Data is
communicated to and from the storage node 150 by a
network interface controller (NIC) 202 in some embodi
ments . Each storage node 150 has a CPU 156 , and one or
more non - volatile solid - state storage 152 , as discussed
above . Moving down one level in FIG . 5 , each non - volatile
solid - state storage 152 has a relatively fast non - volatile
solid - state memory , such as non - volatile random access
memory (NVRAM) 204 , and flash memory 206. In some
embodiments , NVRAM 204 may be a component that does
not require program / erase cycles (e.g. , DRAM , MRAM , or
phase change memory (PCM)) , and can be a memory that
can support being written vastly more often than the
memory is read from . Moving down another level in FIG . 5 ,
the NVRAM 204 is implemented in one embodiment as high
speed volatile memory , such as dynamic random access
memory (DRAM) 216 , backed up by energy reserve 218 .
Energy reserve 218 provides sufficient electrical power to
keep the DRAM 216 powered long enough for contents to
be transferred to the flash memory 206 in the event of power
failure . In some embodiments , energy reserve 218 is a
capacitor , super - capacitor , battery , or other device , that
supplies a suitable supply of energy sufficient to enable the
transfer of the contents of DRAM 216 to a stable storage
medium in the case of power loss . The flash memory 206 is
implemented as multiple flash dies 222 , which may be
referred to as packages of flash dies 222 or an array of flash
dies 222. It should be appreciated that the flash dies 222
could be packaged in any number of ways , with a single die
per package , multiple dies per package (i.e. multichip pack
ages) , in hybrid packages , as dies on a printed circuit board
or other substrate . In some embodiments , the hybrid package
may include a combination of memory types , such as
NVRAM , random access memory (RAM) , CPU , field pro
grammable gate array (FPGA) , or different sized flash
memory in the same package . In the embodiment shown , the
non - volatile solid - state storage 152 has a controller 212 or
other processor , and an input output (I / O) port 210 coupled
to the controller 212. I / O port 210 is coupled to the CPU 156
and / or the network interface controller 202 of the flash
storage node 150. Flash input output (1/0) port 220 is
coupled to the flash dies 222 , and a direct memory access
unit (DMA) 214 is coupled to the controller 212 , the DRAM
216 and the flash dies 222. In the embodiment shown , the
I / O port 210 , controller 212 , DMA unit 214 and flash I / O
port 220 are implemented on a programmable logic device
(PLD) 208 , e.g. , a field programmable gate array (FPGA) . In
this embodiment , each flash die 222 has pages , organized as
sixteen kB (kilobyte) pages 224 , and a register 226 through
which data can be written to or read from the flash die 222 .
In further embodiments , other types of solid - state memory
are used in place of , or in addition to flash memory illus
trated within flash die 222 .
[0041] FIG . 6 is a multiple level block diagram , showing
a controller 212 , flash dies 222 , and interior details of flash
dies 222. Diagnostic information relating to the flash
memory 206 can be obtained on a per flash package 602 , per
flash die 222 , per flash plane 604 , per flash block 606 , and / or
per flash page 224 basis across the entirety of a storage

US 2020/0192756 A1 Jun . 18 , 2020
7

cluster 160 , in some embodiments . In the example shown in
FIG . 6 , the flash memory 206 includes multiple flash pack
ages 602. Each flash package 602 includes multiple flash
dies 222 , each of which in turn includes multiple flash planes
604. Each flash plane 604 includes multiple flash blocks 606
each of which in turn includes multiple flash pages 224. The
diagnostic information is gathered or generated by the
controller 212 of each non - volatile solid - state storage unit
and forwarded to the CPU 156 of the corresponding storage
node . In some embodiments , the CPU 156 performs further
analysis on the diagnostic information and generates further
diagnostic information . The controller 212 and / or the CPU
156 can write the diagnostic information to a memory in the
storage cluster , for example the flash memory 206 or the
DRAM 216 of a non - volatile solid - state storage unit , the
memory 154 (See FIG . 1) coupled to the CPU 156 in a
storage node , or other memory of the storage cluster , storage
node , or non - volatile solid - state storage unit . The diagnostic
information can be stored as metadata , in some embodi
ments .

(0042] One type of diagnostic information is obtained by
tracking bit errors per flash page 224 or per codeword . Each
flash page 224 has multiple codewords , in some embodi
ments . Incidents of error correction could be reported and
these incidents may be used as a source on which to base the
diagnostic information . For example , the controller 212
could track bit errors of the flash memory 206 and forward
the information about the bit errors to the CPU 156 , which
could then tabulate this and / or generate further diagnostic
information . Bit errors , or error corrections , can be tracked
from feedback from an error correction block 608 in the
controller 212 in some embodiments . The CPU 156 or the
controller 212 could track wear of flash blocks 606 in the
flash memory 206 , e.g. , by establishing and updating a wear
list in memory coupled as described above , responsive to or
based on some of the diagnostic information . Such tracking
could include ranking flash blocks 606 as to levels of wear ,
or comparing flash blocks 606 as to levels of wear . The flash
memory 206 can be characterized over time , based on the
diagnostic information . Characterization information could
indicate changes or trends in the flash memory 206 , such as
increases in the rate of errors or error correction over time .
This characterization can be performed at any of the levels
of granularity discussed above .
[0043] In some embodiments , the characterization or diag
nostic information combines lower - level information from
the flash memory 206 itself , such as bit error rates or types
of errors (e.g. a zero is read as a one or a one is read as a
zero) , with higher - level application data . The higher - level
application data could include retention time (e.g. how long
a particular piece of data has been in the flash memory 206) ,
file type , frequencies or relative arrival times of updates ,
erases or writes for specific files or other pieces of data ,
inter - arrival times , performance metrics , cacheability , etc.
For example , the wear list expresses wear per flash package
602 , die 222 , block 606 or other portion of flash memory
206 , in terms of age , number of reads , number of writes ,
number of erasure cycles , and / or other parameters . In some
embodiments , a retention list is established and maintained ,
which tracks how old data is in a particular flash package
602 , die 222 , block 606 or other portion of flash memory ,
i.e. , how long the data has resided since it was last written .
Either of these metrics , or a combination of these or other
metrics , could be used to characterize the flash memory .

Temperature , in a temperature list or table , could also be
used . Various further tables and categories for characterizing
flash could be added . In this manner , monitoring of the flash
memory 206 is combined across multiple dimensions of
flash and system metrics . Results of the monitoring can be
indexed into a table or other data structure , in order to
determine changes to flash settings for specific portions of
the flash memory 206 to optimize reads , writes or erases
(e.g. , to an address range) . This is in contrast to standard
solid - state drives , which do not have access to die - level
monitoring , and cannot make adjustments to that level of
granularity .
[0044] In some embodiments , the CPU 156 sends the
diagnostic information , or summarizes the diagnostic infor
mation in a report and sends the report , via a network . The
diagnostic information or the report could be sent to an
appropriate person or organization , which could include an
owner or operator of a storage cluster , a manufacturer of
storage nodes , a manufacturer of flash memory 206 , flash
packages 602 or flash dies 222 or other interested or autho
rized party . These reports could benefit the manufacturers ,
which can use the information for warranty service and / or to
highlight manufacturing and reliability problems and guide
improvements . The reports also benefit users , who can plan
system maintenance , repairs and upgrades based on the
details in the reports . Actual behavior of the flash memory
206 over time can be compared to predicted behavior or to
warranties if applicable .
[0045] The CPU 156 or the controller 212 could make
decisions based on the diagnostic information . For example ,
if it is determined that a flash block 606 has a high level of
wear , the CPU 156 or the controller 212 could determine to
write some of the user data to another flash block 606 with
a lower level of wear . The controller 212 may bias a read
from the flash memory , or a write to the flash memory 206 ,
as a response to producing or obtaining the diagnostic
information . Depending on the type of flash , and whether
specific features are available on flash dies 222 , this biasing
can take different forms . Biasing the writes or the reads may
extend the lifespan of some or all of the flash memory 206 .
For example , some types of flash dies 222 may support a
variable write time , a variable write voltage , a variable read
time , a variable reference voltage , a variable reference
current or a variable number of reads . The controller 212
could determine , based on the diagnostic information , to
direct a flash die 222 to apply a specified value of one of the
above variable parameters to a specified write or read . The
specified value could be applied to specified writes or reads
to flash pages 224 , flash blocks 606 , flash dies 222 , and / or
flash packages 602. The controller 212 could determine to
apply a stronger error correction code for a particular flash
page 224 or flash block 606 , or apply a different program
and / or read mechanism to adjust for particular conditions
such as high error rate , long retention time , and various
combinations , etc. Thus , the granularity of the application of
variable parameters to writes or reads of the flash memory
206 can match and be supported by the granularity of the
diagnostic information itself .
[0046] The flash memory is a multi - dimensional space
where sampling and extrapolation can be used . Data points
that are close to sampling points for various dimensions
(location , retention time , file type , etc.) can be used to
predict what the ideal parameter settings should be for that
operation , e.g. , read , write , erase , etc. Predictions (based on

US 2020/0192756 A1 Jun . 18 , 2020
8

matches and / or data extrapolation) are a type of use of the
diagnostic information or system telemetry . In some
embodiments , the controller 212 samples the reads or the
writes of a particular flash page 224 , flash block 606 , flash
die 222 or flash package 602 , determines diagnostic infor
mation , extrapolates , determines a parameter setting , and
applies that parameter setting for an extrapolated region or
space .
[0047] Continuing with the above examples , the variable
parameters are applicable to multiple scenarios . In a case
where a flash block 606 is experiencing an increase in read
errors , the controller 212 could direct the flash block 606 to
perform repeated reads at differing reference voltages or
reference currents . If a variable reference voltage or a
reference current is not available , the controller 212 could
perform the multiple reads without varying the reference
voltage or current . The controller 212 , or the CPU 156 could
then perform statistical analysis of the reads and determine
a most likely bit value for each read of data in the flash block
606. In cases where a variable write parameter is supported
in flash dies 222 , a value of a variable write parameter can
be selected in an attempt to increase write or read reliability
of the flash die 222. Similarly , in cases where a variable read
parameter is supported in flash dies 222 , a value of a variable
read parameter can be selected in an attempt to increase read
reliability of the flash die 222. In some embodiments a value
for a variable write or read parameter could be selected in
response to a determination that some portion of flash
memory 206 has greater wear relative to another portion . As
a further example , some types of flash dies 222 may have
and support changing from multilevel cell (MLC) operation
to single cell (SLC) operation . SLC flash has one bit per cell ,
and MLC flash has more than one bit per cell . Examples of
MLC flash include two bits per cell for four levels , three bits
per cell (also known as triple level cell or TLC) for eight
levels , four bits per cell (also known as quad level cell or
QLC) and so on . The CPU 156 or the controller 212 could
direct a flash die 222 to change from MLC operation to SLC
operation in order to increase reliability of reads or writes .
This change may be in response to determining that some
portion of the flash memory 206 has greater wear relative to
another portion .
[0048] FIG . 7 is a flow diagram of a method for die - level
monitoring in a storage array , which can be practiced on or
by embodiments of the storage cluster , storage nodes and / or
non - volatile solid - state storages in accordance with some
embodiments . Actions of the method can be performed by a
processor , such as the CPU of a storage node or the
controller of a non - volatile solid - state storage . User data is
distributed throughout a plurality of storage nodes , with
erasure coding , in an action 702. The user data is accessible
via the erasure coding , even if two of the storage nodes
become unreachable . User data is read , with error correction
as applicable , in an action 704. Bit errors and / or error
correction incidents are tracked , in an action 706. Error
information is forwarded from non - volatile solid - state stor
ages to storage nodes , in an action 708 .
[0049] Continuing with FIG . 7 , diagnostic information is
generated at various levels , in an action 710. For example ,
the diagnostic information could be generated at the level of
the flash package , flash die , flash plane , flash block , or flash
page . The flash memory is characterized over time , in an
action 712. This characterization could be performed at any
or all of the above levels . The diagnostic information is sent

to an appropriate destination possibly via a network , in an
action 714. In a decision action 716 , it is determined whether
a flash block has a high level of wear . This determination is
based on the diagnostic information . If the answer is no , flow
branches back to the action 706 , to continue tracking bit
errors or error correction . If the answer is yes , a flash block
does have a high level of wear , flow proceeds to the decision
action 718. In the decision action 718 , it is determined
whether to write to a differing flash block . If the answer is
yes , the writing should be to a differing flash block , flow
branches back to the action 706 , to continue tracking bit
errors or error correction . If the answer is no , the writing
should be to the block that has the high level of wear , flow
proceeds to the decision action 720 .
[0050] In the decision action 720 , it is determined whether
to bias a write . If the answer is no , flow proceeds to the
decision action 724. If the answer is yes , flow proceeds to
the action 722 where a variable write parameter is deter
mined and applied . In the decision action 724 , is determined
whether to bias a read . If the answer is no , flow proceeds
back to the action 706 , to continue tracking bit errors or error
correction . If the answer is yes , flow proceeds to the action
726. In the action 726 , a variable read parameter is deter
mined and applied . Flow then proceeds back to the action
706 , to continue tracking bit errors or error correction . In
variations of the above method , the determinations of
whether to bias a write or a read could be made in differing
orders , or could be based on other aspects of diagnostic
information . Diagnostic information could be stored in
various memory locations in a storage cluster .
[0051] It should be appreciated that the methods described
herein may be performed with a digital processing system ,
such as a conventional , general - purpose computer system .
Special purpose computers , which are designed or pro
grammed to perform only one function may be used in the
alternative . FIG . 8 is an illustration showing an exemplary
computing device which may implement the embodiments
described herein . The computing device of FIG . 8 may be
used to perform embodiments of the functionality for a
sto age node or a non - volatile solid - state storage in accor
dance with some embodiments . The computing device
includes a central processing unit (CPU) 801 , which is
coupled through a bus 805 to a memory 803 , and mass
storage device 807. Mass storage device 807 represents a
persistent data storage device such as a disc drive , which
may be local or remote in some embodiments . The mass
storage device 807 could implement a backup storage , in
some embodiments . Memory 803 may include read only
memory , random access memory , etc. Applications resident
on the computing device may be stored on or accessed via
a computer readable medium such as memory 803 or mass
storage device 807 in some embodiments . Applications may
also be in the form of modulated electronic signals modu
lated accessed via a network modem or other network
interface of the computing device . It should be appreciated
that CPU 801 may be embodied in a general - purpose
processor , a special purpose processor , or a specially pro
grammed logic device in some embodiments .
[0052] Display 811 is in communication with CPU 801 ,
memory 803 , and mass storage device 807 , through bus 805 .
Display 811 is configured to display any visualization tools
or reports associated with the system described herein .
Input / output device 809 is coupled to bus 505 in order to
communicate information in command selections to CPU

US 2020/0192756 A1 Jun . 18 , 2020
9

801. It should be appreciated that data to and from external
devices may be communicated through the input / output
device 809. CPU 801 can be defined to execute the func
tionality described herein to enable the functionality
described with reference to FIGS . 1-7 . The code embodying
this functionality may be stored within memory 803 or mass
storage device 807 for execution by a processor such as CPU
801 in some embodiments . The operating system on the
computing device may be MS - WINDOWSTM , UNIXTM ,
LINUXTM , iOSTM , CentOSTM , AndroidTM , Redhat LinuxTM ,
z / OSTM , or other known operating systems . It should be
appreciated that the embodiments described herein may be
integrated with virtualized computing system also .
[0053] Detailed illustrative embodiments are disclosed
herein . However , specific functional details disclosed herein
are merely representative for purposes of describing
embodiments . Embodiments may , however , be embodied in
many alternate forms and should not be construed as limited
to only the embodiments set forth herein .
[0054] It should be understood that although the terms
first , second , etc. may be used herein to describe various
steps or calculations , these steps or calculations should not
be limited by these terms . These terms are only used to
distinguish one step or calculation from another . For
example , a first calculation could be termed a second cal
culation , and , similarly , a second step could be termed a first
step , without departing from the scope of this disclosure . As
used herein , the term " and / or ” and the “ p ” symbol includes
any and all combinations of one or more of the associated
listed items .
[0055] As used herein , the singular forms “ a ” , “ an ” and
“ the ” are intended to include the plural forms as well , unless
the context clearly indicates otherwise . It will be further
understood that the terms “ comprises ” , “ comprising ” ,
“ includes ” , and / or “ including ” , when used herein , specify
the presence of stated features , integers , steps , operations ,
elements , and / or components , but do not preclude the pres
ence or addition of one or more other features , integers ,
steps , operations , elements , components , and / or groups
thereof . Therefore , the terminology used herein is for the
purpose of describing particular embodiments only and is
not intended to be limiting .
[0056] It should also be noted that in some alternative
implementations , the functions / acts noted may occur out of
the order noted in the figures . For example , two figures
shown in succession may in fact be executed substantially
concurrently or may sometimes be executed in the reverse
order , depending upon the functionality / acts involved .
[0057] With the above embodiments in mind , it should be
understood that the embodiments might employ various
computer - implemented operations involving data stored in
computer systems . These operations are those requiring
physical manipulation of physical quantities . Usually ,
though not necessarily , these quantities take the form of
electrical or magnetic signals capable of being stored , trans
ferred , combined , compared , and otherwise manipulated .
Further , the manipulations performed are often referred to in
terms , such as producing , identifying , determining , or com
paring . Any of the operations described herein that form part
of the embodiments are useful machine operations . The
embodiments also relate to a device or an apparatus for
performing these operations . The apparatus can be specially
constructed for the required purpose , or the apparatus can be
a general - purpose computer selectively activated or config

ured by a computer program stored in the computer . In
particular , various general - purpose machines can be used
with computer programs written in accordance with the
teachings herein , or it may be more convenient to construct
a more specialized apparatus to perform the required opera
tions .
[0058] A module , an application , a layer , an agent or other
method - operable entity could be implemented as hardware ,
firmware , or a processor executing software , or combina
tions thereof . It should be appreciated that , where a soft
ware - based embodiment is disclosed herein , the software
can be embodied in a physical machine such as a controller .
For example , a controller could include a first module and a
second module . A controller could be configured to perform
various actions , e.g. , of a method , an application , a layer or
an agent .
[0059] The embodiments can also be embodied as com
puter readable code on a non - transitory computer readable
medium . The computer readable medium is any data storage
device that can store data , which can be thereafter read by
a computer system . Examples of the computer readable
medium include hard drives , network attached storage
(NAS) , read - only memory , random - access memory , CD
ROMs , CD - Rs , CD - RWs , magnetic tapes , and other optical
and non - optical data storage devices . The computer readable
medium can also be distributed over a network coupled
computer system so that the computer readable code is
stored and executed in a distributed fashion . Embodiments
described herein may be practiced with various computer
system configurations including hand - held devices , tablets ,
microprocessor systems , microprocessor - based or program
mable consumer electronics , minicomputers , mainframe
computers and the like . The embodiments can also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a wire - based or wireless network .
[0060] Although the method operations were described in
a specific order , it should be understood that other operations
may be performed in between described operations ,
described operations may be adjusted so that they occur at
slightly different times or the described operations may be
distributed in a system which allows the occurrence of the
processing operations at various intervals associated with
the processing .
[0061] In various embodiments , one or more portions of
the methods and mechanisms described herein may form
part of a cloud - computing environment . In such embodi
ments , resources may be provided over the Internet as
services according to one or more various models . Such
models may include Infrastructure as a Service (IaaS) ,
Platform as a Service (PaaS) , and Software as a Service
(SaaS) . In IaaS , computer infrastructure is delivered as a
service . In such a case , the computing equipment is gener
ally owned and operated by the service provider . In the PaaS
model , software tools and underlying equipment used by
developers to develop software solutions may be provided as
a service and hosted by the service provider . SaaS typically
includes a service provider licensing software as a service on
demand . The service provider may host the software , or may
deploy the software to a customer for a given period of time .
Numerous combinations of the above models are possible
and are contemplated .
[0062] Various units , circuits , or other components may be
described or claimed as “ configured to ” perform a task or

US 2020/0192756 A1 Jun . 18 , 2020
10

tasks . In such contexts , the phrase " configured to " is used to
connote structure by indicating that the units / circuits / com
ponents include structure (e.g. , circuitry) that performs the
task or tasks during operation . As such , the unit / circuit /
component can be said to be configured to perform the task
even when the specified unit / circuit / component is not cur
rently operational (e.g. , is not on) . The units / circuits / com
ponents used with the " configured to ” language include
hardware -- for example , circuits , memory storing program
instructions executable to implement the operation , etc.
Reciting that a unit / circuit / component is “ configured to "
perform one or more tasks is expressly intended not to
invoke 35 U.S.C. 112 , sixth paragraph , for that unit / circuit /
component . Additionally , " configured to ” can include
generic structure (e.g. , generic circuitry) that is manipulated
by software and / or firmware (e.g. , an FPGA or a general
purpose processor executing software) to operate in manner
that is capable of performing the task (s) at issue . “ Config
ured to ” may also include adapting a manufacturing process
(e.g. , a semiconductor fabrication facility) to fabricate
devices (e.g. , integrated circuits) that are adapted to imple
ment or perform one or more tasks .
[0063] The foregoing description , for the purpose of
explanation , has been described with reference to specific
embodiments . However , the illustrative discussions above
are not intended to be exhaustive or to limit the invention to
the precise forms disclosed . Many modifications and varia
tions are possible in view of the above teachings . The
embodiments were chosen and described in order to best
explain the principles of the embodiments and its practical
applications , to thereby enable others skilled in the art to
best utilize the embodiments and various modifications as
may be suited to the particular use contemplated . Accord
ingly , the present embodiments are to be considered as
illustrative and not restrictive , and the invention is not to be
limited to the details given herein , but may be modified
within the scope and equivalents of the appended claims .
What is claimed is :
1. A method for die - level monitoring in a storage cluster ,

comprising :
performing error correction of reads of a non - volatile

solid state storage ;
forwarding error information , based at least in part on the

error correction , from a controller for the non - volatile
solid - state storage ; and

characterizing the non - volatile solid state storage by com
bining the error information at differing time points
from the controller for the non - volatile solid state
storage .

2. The method of claim 1 , wherein the characterization of
the non - volatile solid state storage indicates at least one
change in the non - volatile solid - state storage .

3. The method of claim 1 , further comprising :
biasing at least one of a read from or a write to the
non - volatile solid state storage , responsive to the com
bining the error information .

4. The method of claim 1 , further comprising :
tracking wear of a plurality of blocks of the non - volatile

solid state storage , based on the error information .
5. The method of claim 1 , wherein combining the error

information further comprises :
tracking bit errors per page , each page having a plurality
of codewords ; and

forwarding information pertaining to the bit errors from
the non - volatile solid state storage to a processor of a
storage node of the storage cluster .

6. The method of claim 1 , further comprising :
reporting incidents of the error correction , wherein the

error information is based on the incidents of the error
correction .

7. The method of claim 1 , further comprising :
determining to which of a plurality of blocks to write a

portion of user data , based on the error information .
8. A non - transitory machine - readable medium having

executable instructions to cause one or more processing
units to perform a method , comprising :

performing error correction of reads of a non - volatile
memory ;

forwarding error information , based at least in part on the
error correction , from a controller in non - volatile solid
state storage ; and

characterizing the non - volatile solid state storage by com
bining the error information at differing time points
from the controller for the non - volatile solid state
storage .

9. The non - transitory machine - readable medium of claim
8 , wherein the characterization of the non - volatile solid state
storage indicates at least one change in the non - volatile
solid - state storage .

10. The non - transitory machine - readable medium of
claim 8 , further comprising :
biasing at least one of a read from or a write to the

non - volatile solid state storage , responsive to the com
bining the error information .

11. The non - transitory machine - readable medium of
claim 8 , further comprising :

tracking wear of a plurality of blocks of the non - volatile
solid state storage , based on the error information .

12. The non - transitory machine - readable medium of
claim 8 , wherein combining the error information further
comprises :

tracking bit errors per page , each page having a plurality
of codewords ; and

forwarding information pertaining to the bit errors from
the non - volatile solid state storage to a processor of a
storage node of the storage cluster .

13. The non - transitory machine - readable medium of
claim 8 , further comprising :

reporting incidents of the error correction , wherein the
error information is based on the incidents of the error
correction .

14. The non - transitory machine - readable medium of
claim 8 , further comprising :

determining to which of a plurality of blocks to write a
portion of user data , based on the error information .

15. A storage system , comprising :
a plurality of storage nodes having non - volatile solid state

storage ; and
each non - volatile solid - state storage having a controller

configured to ;
perform error correction of reads of a non - volatile
memory ;

forwarding error information , based at least in part on
the error correction , from a controller in non - volatile
solid - state storage ; and

US 2020/0192756 A1 Jun . 18 , 2020
11

characterizing the non - volatile solid state storage by
combining the error information at differing time
points from the controller for the non - volatile solid
state storage .

16. The system of claim 15 , wherein the characterization
of the non - volatile solid state storage indicates at least one
change in the non - volatile solid - state storage .

17. The system of claim 15 , wherein the controller is
further configured to :

biasing at least one of a read from or a write to the
non - volatile solid state storage , responsive to the com
bining the error information .

18. The system of claim 15 , wherein the controller is
further configured to :

tracking wear of a plurality of blocks of the non - volatile
solid state storage , based on the error information .

19. The system of claim 15 , wherein combining the error
information further comprises :

tracking bit errors per page , each page having a plurality
of codewords ; and

forwarding information pertaining to the bit errors from
the non - volatile solid state storage to a processor of a
storage node of the storage cluster .

20. The system of claim 15 , wherein the controller is
further configured to :

reporting incidents of the error correction , wherein the
error information is based on the incidents of the error
correction .

