»UK Patent .,GB

(1) 2598880

(13)B

(45)Date of B Publication 06.07.2022

(54) Title of the Invention: COprocessor-accelerated verifiable computing

(51) INT CL: GO6F 11/30 (2006.01) GOG6F 9/38 (2018.01) GO6F 21/12 (2013.01)
(21) Application No: 2200657.1 (72) Inventor(s):
Jeb Linton
(22) Date of Filing: 22.06.2020 James Kraemer
Date Lodged: 19.01.2022 (73) Proprietor(s):

(30) Priority Data:

(31) 16503424 (32) 03.07.2019 (33) US
(86) International Application Data:

PCT/IB2020/055864 En 22.06.2020

(87) International Publication Data:
W02021/001721 En 07.01.2021

(43) Date of Reproduction by UK Office 16.03.2022

(56) Documents Cited:
CN 108763146 A
US 20190014436 A1

CN 101983375 A

(58) Field of Search:
As for published application 2598880 A viz:
INT CL GO6F
Other: CNABS,CNTXT,CNKI,DWPI,SIPOABS
updated as appropriate

Additional Fields
Other: WPI, EPODOC

International Business Machines Corporation
(Incorporated in USA - New York)

New Orchard Road, Armonk, New York 10504,
United States of America

(74) Agent and/or Address for Service:
IBM United Kingdom Limited
Intellectual Property Department, Hursley Park,
Winchester, Hampshire, S021 2JN, United Kingdom

g 088869¢ 99

1/8

e i e e wen e e G e e en wn e G e M a e e e e e en e e e G e e en e G G e e em e e i e e

#

q1 "O1d

A

o4t
P iaadioadion i s i ool I.MWi-f b asihaalioalioadiesdioa ool o odh el cadbnadinadi ot ol oo fi oo Jlo s i o il ool ool oo Bl e o B
ori
posmmg
» BOBESHIOA ;
flmwuuwmw(l;;lv @Nw
86, | .
IBFLISA
€ .
*
A
% %
-— -
461 u ..g 72
.;,ur - prdnnees .R.
; Jooiyg m“ wding
Puuuusmaaa’ s sessesunx 4
' 1
¢ ;
! :
! i
7 |
‘ _~
h% i

. Agousoyay, |

hdsssscsnanwur

FOB52003
1085300300 ; a0

/ winpy

e ma e mer Sme e tms mm mm mar S e (ms mm ma mar Sme et tam e me mar Ame et e W mA Aa A St Jme s e A Amc aad me ma e aa A Wt

084 TDPAA Gt
A 4
;oyduy ¢)
: g b7
S e o o 7 o o o o o7 o ﬁmm.ﬂwﬁhﬁw
M 3
- 2

ict(«|t)ﬂﬂ

747

F

AR RAR WM WA R AR AT WA R WRR R AR AR AR URR R R AR AR AR GRR WRR WA AR R RAR GRR WRR VR AV AR ARR VR SRR G AR AR AR WA R R AR AR

b

DI "DIA

0ok

\z::11xV:::;;::::x;zs::;xzs::;;xf

P wonoug
msmé,w

ropnnaaaanl 0e
7] /

GGl
apdiunTy
¥ *
’ \
s %
+ 3
’ 3
7 \
’ \
; !
’ 5
’ 3
? 3
" FA .
RN SO R
oy ™~ umiBorg
UOTEILIA | Amowmprg 3
, FOBEIO0I
soss003doy 903
BN
08t
09t FDP 051
P
0

N i - — o~ A — - - o~ - b o

k]

4

2/8

004

¢ DIA

(A3
”:::;\,.ﬁ
vondup
v wadoid
: ¥

LTI Y]

m&// -

¢ mding
|-

<<

IOSEA005Y
aiwpy

P Anowepay
1A _w\

I
1
5
1
+

68}

105530034 |

DL B T — .
AMILIOA, oy

P jooig |
e ;
- g6l 091

551
weidorg
Aoy

wrrenen

1]
3
3
3
»
?
?
2
H

BAARAAARC DD,

PR VPP

mBory
HonBIyLIaA

ii:-n.lfrnt-iu

55

-
W mmmnnw

ponsung
W]

G061

"

N
'
x
3
»
3
3
3
¥
¥
N
N
.

pdway

oel

-~

-

W

o

-~ LR TR
PR &

. AALLG

3

.
]
v

2
»

144

3/8

q¢ "OIA

freg
A
H
“)
0013011
564 “_“
L9
plats e mtis]
03 redeeeerenaaan,
adoy
GOTRIYLIOA |
08} N ™

00110 1 100TI01IG | D1L0I0T | 1011001101007

10111 | (11010181 | O110L10 1 0010801601100

1100 | (1OL0LIL0 | OLEGILY | DIO0I0ILGLLIO]

00101 ¢ (01016116 { 1100110 | OLBHOL001110

I3 | I01101601 | OLI0100 | LIDIDGOTG31I0]

GIOL0 | DOOTGIIOT | TEVERLEL | 0108101100110

GeO0D | OTIO00TG | GQ10I00 { DIOTIGOICTLIO]

81707 | 110010106 | OTI0ITT | 06600000000000 |

g101T | 0101IB110 | 1100110 | OLDII00I0BTIg0

01011 | 000000000 | 0110100 | GI00000000T101

OLII0 | OVICI0010 | 0010100 | 01DLI00T0DT100

0110 | TOLI0LI0 1 THIOH0] 1 0101000110110

W00} 010011017 | QYITE10 | 0101100100110

g "DIA

SLIOI0D
0010100
1100110
$010100

NS o

! (94

IOSSDO05Y
OO grdvmmmmey
mBoy
BOTEOHU2A

S RDDT TRT

084 w 594

00110 | 100110110 | 0110101 | O1OLI00TI6100]

(0111 | 11010101 | 0LIDLI0 f 00181061001100
(1100 | LIGI01TI0Y] OVI0LYE | o3e0i0lInitiog

J081OL | 101010110 [TTO0ITO | 0101106100110 | 55
1010 V101101001 | 010100 1 (1010001001101 s
157" FOT0107] GDOIO1I01 | G111101 | reenTotTaiii0.
F 00000 | 011010010 [0UI0ID0 | S10410010LI 108]
vS. | DIIO | 1TODIOTOD | OTI0TII '] 01001061001101 |,

I s PN ey ~
P30l | I050.] 1100110 [OTOTIO0IOUTIDG | ¢S
L0305 L 010111001 110110100 | 01000000001 101
01110 DOTToIoto] 0010106 | 91001004004 106)

.mmw\,ws&na” LGS L0-1 TTI010Y 1} 0101000110101 ,F
o0t 01001101F {roil1II0 [ampootortor s

TEmmm——_—

is

preeeeesnnns .
¢ Primary
: Program

Main
Processor

Data
Memory

; ,
Primary / ¢ Verification ¢ /
: :

s R a

4/8

Program

Py

Progessor

Data
Memory

States 410

¥

*

N o i

: Program
:

,

Q

States

pET SRRV |

¥ 2
150 s Program :

|
520

510

FIG. 5

logic :

Asswwmessassnat

Signal Bus e -

Crypto
COo-Processor | ocveeulonnns

sereeeesn o qgg

Verification
L]

logic

Crypto
Co-processor

5/8

Receive a pnmarv progrant
and a verification logic that
are generated based on a
target function

execute the main program

zmph,mmt the verification

logic 7
660
/

Use the telemetry at the
coprocassor inplementing the
verification logic to generate
a proof

Y

Collect telemetry from the
main processor executing the
primary program

Configure a main processor u}

650

/ Provide the proofica
yverifying conyputing device to
deterniine whether the
primary program is tampered
with

Provide the telemetry to the
COPTOCESSOr

[Configure a coprocessor to

FIG. 6

6/8

L OIH

274 004

a8 K mom/ \

...'.eo...'.:.e....:......ao...\a......no:

syuvaodieoy RaExsg SPERUOdIN Y [eTEeY

Ry Rapy
1o ydepy
HIOMIAN /

4 C(Sworsss
g€l S ;
¢ Bopgerdo

_. {5¥o0IA(]
1 28vamg agifung

{s1301A0(] 2Rnioig
S[qEIIng J (RIS

PR
®

s Rzt g

o = ol

30 GALC MY

R
v 064

s

98

174

ya

Wy

ovd <
4 424

1
:
i
A
¥
1
¥
:
: 63176}
4
1
4
1
A
4
'
4
W

A0 (510552004

20140} <

2L
‘ 924

4
Il
+
+
X
-

MY AN AN AN LAY ALY AN AR A IR AP S AN LY ARy A

7/8

RererrreResreRaRey

0ig

& OIA

8/8

6 ‘DIA4

| BIBMOS PUT JIRAPITH

984
Ga6 £96
prs / ““““““““““ : I
{ 3
= A oC
486 195
pd
045
reraiaaraa e 16 £i6 28 HOREZRERIA
CTTTOTTT m Muuwnnu - 4 Zi6 /
=3
g E\ UAH @ rL
/
046 juoraadnuniy
\ 5% \\ % \\ &% \\ aad \\ i \
e

\\%\\%\\@\\am\\ﬁ\\ﬁvgﬁ

1

COPROCESSOR-ACCELERATED VERIFIABLE COMPUTING

BACKGROUND

Technical Field

[0001] The present disclosure generally relates to verifiable computing.

Description of the Related Ars

[0002] Verifiable computing (or verified computing) enables a computer to offload computation of some function to
worker computing devices that may or may not be trustworthy, while maintaining verifiable results. The worker computing
devices evaluate the function and return the result with a proof that the computation of the function was carried out
correctly. Verifiable computing may also be used by a computing device running a untrusted program to verify that the
program is operating as expected. The introduction of verifiable computing arises from the increasingly common
phenomenon of outsourcing computation to untrusted user devices and also from the growing desire of computationally

weak clients to outsource tasks to computationally powerful services such as cloud computing.

SUMMARY

[0003] Some embodiments of the disclosure provide a verifiable computing system. A worker computing device of the
verifiable computing system receives a primary program and a verification logic that are generated based on a target
function. The worker computing device includes a main processor and a coprocessor. The main processor is configured to
execute the primary program and the coprocessor is configured to implement the verification logic. Telemetry is collected
from the main processor executing the primary program and provided to the coprocessor. The telemetry may include
program states of the primary program running on the main processor. The coprocessor implementing the verification logic
uses the telemetry to generate a proof. The proof is provided to a verifying computing device for determining whether the

primary program is tampered with.

[0004] In some embodiments, the telemetry is transferred through a one-way transparent bus. In some embodiments,
the telemetry is stored in a data memory of the main processor, and the coprocessor is allowed to access the data memory
of the main processor through a two-way cache-coherent interconnect. The coprocessor may modify content of the data
memory, including temporary variables of the primary program, and the modified content may affect execution of the

primary program.

2

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The drawings are of illustrative embodiments. They do not illustrate all embodiments. Other embodiments may
be used in addition or instead. Details that may be apparent or unnecessary may be omitted to save space or for more
effective illustration. Some embodiments may be practiced with additional components or steps and/or without all of the
components or steps that are illustrated. When the same numeral appears in different drawings, it refers to the same or

like components or steps.

[0006] FIG. 1a-b conceptually illustrates a verifiable computing system that performs a target function by running a
primary program in a main processor and a verification logic in a coprocessor, consistent with an exemplary embodiment.
[0007] FIG. 2 conceptually illustrates dataflow of the verifiable computing system, consistent with an exemplary
embodiment.

[0008] FIG. 3a-b conceptually illustrates generating the proof from telemetry.

[0009] FIG. 4 illustrates a two-way cache-coherent interconnect as the link between the main processor and the
COprocessor.

[0010] FIG. 5 illustrates a one-way transparent bus between the main processor and the coprocessor.

[0011] FIG. 6 conceptually illustrates a process for operating a verifiable computing system, consistent with an
exemplary embodiment.

[0012] FIG. 7 shows a block diagram of the components of a data processing system in accordance with an illustrative
embodiment of the present disclosure.

[0013] FIG. 8 illustrates an example cloud-computing environment.

[0014] FIG. 9 illustrates a set of functional abstraction layers provided by a cloud-computing environment, consistent

with an exemplary embodiment.

DETAILED DESCRIPTION

[0015] In the following detailed description, numerous specific details are set forth by way of examples in order to
provide a thorough understanding of the relevant teachings. However, it should be apparent that the present teachings
may be practiced without such details. In other instances, well-known methods, procedures, components, and/or circuitry
have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the

present teachings.

[0016] Some embodiments of the disclosure provide a verifiable computing system that separates primary program

processing from verification logic, specifically by running the primary program in a main processor (e.g., a central

3

processing unit or CPU) and the verification logic in a coherently-attached highly parallel coprocessor. In such a system,
program operation and system state collection are separated from the mathematical processing of that information when
computing a proof. The telemetry of the main processor running the primary program is passed across a link to the
coprocessor. The coprocessor uses parallelized computation to perform efficient mathematical operations based on the
received telemetry to generate the proof. The proof may be transmitted out of band from the execution of the program to a
verifier to prove that the program is not tampered with and the result of the program is not compromised. The design results

in the efficient balancing and optimization of the main processor and coprocessor workloads.

[0017] In some embodiments, a two-way cache-coherent interconnect between the CPU and coprocessor is used as
the link to pass the telemetry (including the collected system state) between the main processor and the coprocessor. The
program running on the main processor may be directly affected by the calculation of proof and its results. In some other
embodiments, a one-way transparent bus is used as the link to pass the telemetry between the main processor and the
coprocessor. The calculation of the proof by the coprocessor may have no real time effect on the operations of the main

processor running the program.

[0018] FIG. 1a-b conceptually illustrates a verifiable computing system 100 that performs a target function by running
the primary program in a main processor and the verification logic in a coprocessor, consistent with an exemplary
embodiment. In the example, a user uses the verifiable computing system to perform a target function 105 at one or more
worker computing devices that the user may or may not trust. During performance of the target function or upon completion
of the target function, the verifiable computing system produces a proof 195 to show that the worker computing devices

executed the target function correctly and that the primary program of the target function is not tampered with.

[0019] The verifiable computing system 100 is implemented by a computing cloud, which interconnects a worker
computing device 110 (“worker”), a verifier computing device 120 (“verifier"), and a compiler computing device 130
(“compiler”). In some embodiments, the worker computing device 110, the verifier computing device 120, and the compiler
computing device 130 are resources in the computing cloud available to the user. The worker computing device 110 may or
may not be trusted by the user, while the compiler computing device 130 and the verifier computing device 120 are trusted
by the user. In some embodiments, a client computing device 140 (“client”) trusted by the user implements the compiler

computing device 130 and the verifier computing device 120.

[0020] The worker computing device 110 includes a main processor 150 and a coprocessor 160. In some
embodiments, the main processor 150 and the coprocessor 160 are different integrated circuits (ICs) in the worker
computing device 110. In some embodiments, the main processor 150 and the coprocessor 160 are modules of software

instructions being executed by one or more processing units (e.g., a processor) of a computing device. In some

4

embodiments, the main processor 150 and the coprocessor 160 are modules of hardware circuits implemented by one or
more |Cs of an electronic apparatus. An example computing device 700 that may implement the worker computing device
110, the verifier computing device 120, the compiler computing device 130, or the client computing device 140 will be

described below by reference to FIG. 7.

[0021] The target function 105 is compiled into a primary program 155 and a verification logic 165. FIG. 1a illustrates
the compilation of the target function 105 into the primary program 155 and the verification logic 165. The compiler
computing device 130 compiles the source code of the target function 105 into the primary program 155 and the
corresponding verification logic 165. The primary program 155 is compiled to be run by the main processor 150 and the
verification logic 165 is compiled to be executed by the coprocessor 160 (or to configure the coprocessor 160). The primary
program 155 is compiled to generate telemetry that includes program states of the primary program. In some embodiments,
the primary program 155 is compiled to generate program states that are encoded and/or in particular positions and
sequences. The verification logic 165 is compiled to process the generated telemetry from the primary program 155 and

generate a proof,

[0022] FIG. 1b illustrates execution of the primary program by the main processor 150 and the verification logic 165 by
the coprocessor 160. The main processor 150 executes the primary program 155 based on program input 170 to generate
output 175. The program input 170 may be encrypted, or it may be a statement regarding an underlying secret as part of a
zero-knowledge protocol. In some embodiments, the underlying secret is held by the worker computing device 110 and not
revealed to the target function 105 and the client 140. In some embodiments, the underlying secret is held by the client

computing device 140 and not revealed to the worker computing device executing the primary program 155.

[0023] The operations in the main processor 150 are monitored and recorded as instrumentation or telemetry 180. The
telemetry 180 may include content of various memories, registers, or storage devices used by the main processor 150. The
telemetry may also include data captured from buses interconnecting different components within the main processor 150.
When the main processor 150 is executing the primary program 155 of the target function 105, the telemetry may include

program states of the primary program. The telemetry 180 is made available to the coprocessor 160 through a link 190.

[0024] The coprocessor 160 includes resources capable of implementing highly parallelized computation for
performing mathematical operations. The resources of the coprocessor 160 are configured by the verification logic 165 to
process the telemetry 180 of the main processor 150 to generate the proof 195. FIG. 1b shows the coprocessor 160
generating the proof 195 based on the telemetry 180 from the main processor 150. In some embodiments, the telemetry

180 includes program states of the primary program 155, and the proof 195 is generated based on the program states. If

5

the primary program has been tampered with or is otherwise compromised, the program states may not behave as

expected and the proof 195 will fail the check at the verifier computing device 120.

[0025] The verifier computing device 120 receives the proof 195 and uses the proof to determine whether the primary
program 155 has been tampered with. Specifically, the proof 195 is used to determine whether the primary program 155
has generated the program states in an expected fashion in order to arrive at the output 175. The proof 195 may also be
used (e.g., by the verifier computing device 120) to determine whether the output 175 is validly generated by the main

processor 150,

[0026] In some embodiments, the proof 195 is mathematically generated based on the program states in the telemetry
180 to ensure faithful execution of the target function without tampering. FIG. 2 conceptually illustrates dataflow of the
verifiable computing system 100, consistent with an exemplary embodiment. As illustrated, the client computing device 140
generates two keys, a public key 210 and a private key 220 (or secret key). The keys 210 and 220 are generated based on
a security parameter of the client. The private key 220 is to be used by the verifier 120 to verify the eventual proof 195. The
public key 210 is used to compile the target function 105 and to generate the primary program 155 and the veriffication logic
165.

[0027] The program input 170 may be encrypted, or it may be a statement regarding an underlying secret as part of a
zero-knowledge protocol. The main processor 150 is operating the primary program 155, which is configured to include
program states in the telemetry 180. The coprocessor 160 is implementing the verification logic 165, which encodes the
telemetry 180 into the proof 195 according to the public key 210. If the verification logic 165 and the primary program 155
are not tampered with, the proof 195 generated by the coprocessor 160 is expected to pass the check at the verifier 120
using the private key 220. However, if the primary program 155 or the verification logic 165 is compromised, the proof 195

is unlikely to pass the check at the verifier 120.

[0028] FIG. 3a-b conceptually illustrates generating the proof from telemetry. The content of the telemetry is collected
from various parts of the main processor 150. The content includes program states (e.g., S1 through S8) of the primary
program. FIG. 3a illustrates an example content of the telemetry 180 if the primary program is not tampered with. The
program states in the telemetry are properly coded (e.g., in proper polynomial representation based on the public key 210)
and/or in expected positions and sequences. Based on this telemetry content, the coprocessor 160 (running the verification
logic 165) generates a proof that passes the check at the verifier computing device 120. FIG. 3b illustrates another
example content of the telemetry 180 if the primary program is tampered with. The content may include program states that

are improperly coded (e.g., not in proper polynomial representation based on the public key 210, illustrated in bold), not in

6

expected positions or sequences, or missing entirely. Based on this telemetry content, the coprocessor 160 generates a

proof that fails the check at the verifier computing device 120.

[0029] As illustrated in FIG. 1, the link 190 delivers the telemetry 180 from the main processor 150 to the coprocessor
160. In some embodiments, the link 190 is a two way link that allows the coprocessor 160 to affect the operations of the
main processor 150 in real time. FIG. 4 illustrates a two-way cache-coherent interconnect as the link between the main

processor 150 and the coprocessor 160, consistent with an exemplary embodiment.

[0030] As illustrated, the main processor 150 uses a data memory 410 to store data generated by the primary program
155, including program states of the primary program and other variables or status of the program. The data memory 410 is
also accessible by the coprocessor 160, and the content of the data memory 410 is used as the telemetry 180 by the
coprocessor 160 to generate the proof 195. In some embodiments, the coprocessor 160 may modify the content of the data
memory 410, including temporary variables of the primary program. Thus, the primary program 155 running on the main
processor 150 may be directly affected by the calculation of proof by the coprocessor 160. The sequences of program

states of the primary program 155 may also be affected by the calculation of the proof at the coprocessor 160.

[0031] In some embodiments, the link 190 is a one-way link to pass the telemetry from the main processor to the
coprocessor. FIG. 5 illustrates a one-way transparent bus between the main processor and the coprocessor. As illustrated,
the program states generated by the main processor 150 is sent to the coprocessor 160 through a signal bus 520 as part of
the telemetry. The calculation of the proof by the coprocessor 160 have no real time effect on the operations of the main
processor 150. The main processor 150 uses a data memory 510 to store program states of the primary program and other
variables. However, the coprocessor 160 has no write access to the data memory 510. In other words, the sequence of

program states of the primary program is not affected by the calculation of the proof at the coprocessor 160.

[0032] FIG. 6 conceptually illustrates a process 600 for operating a verifiable computing system, consistent with an
exemplary embodiment. In some embodiments, the process 600 is performed by a worker computing device that uses a
coprocessor to generate a proof for a primary program running on a main processor. In some embodiments, one or more
processing units (e.g., processor) of a worker computing device in a verifiable computing system (e.g., the worker

computing device 110) perform the process 600 by executing instructions stored in a computer readable medium.

[0033] The worker computing device receives (at step 610) a primary program and a verification logic that are
generated based on a target function. The worker computing device configures (at step 620) a main processor to execute
the primary program. The worker computing device configures (at step 630) a coprocessor to implement the verification

logic. The coprocessor may be a configurable logic array that includes large number of parallel computing resources that

7

can be configured to implement the verification logic to process telemetry of the main processor into a proof for determining

whether the primary program is tampered with.

[0034] The worker computing device collects (at step 640) telemetry from the main processor while the main processor
is executing the primary program. The telemetry may include program states of the primary program running at the main

processor, or other variables or status of the program.

[00335] The worker computing device provides (at step 650) the telemetry to the coprocessor. In some embodiments,
the telemetry is provided to the coprocessor by transferring the telemetry through a one-way transparent bus. In some
embodiments, the telemetry is stored in a data memory of the main processor, such that the telemetry is provided to the
coprocessor by allowing the coprocessor to access the data memory of the main processor through a two-way cache-
coherent interconnect. In some of these embodiments, the coprocessor may modify content of the data memory and the

modified content may affect execution of the primary program.

[0036] The worker computing device uses (at step 660) the telemetry at the coprocessor implementing the verification
logic to generate a proof according to a set of mathematical operations. If the telemetry is properly coded and/or the
program states are in expected positions and sequences, the set of mathematical operations is expected to generate a
proof that passes the check at the verifier. On the other hand, if the telemetry includes program states that are improperly
coded, not in expected positions or sequences, or missing entirely, the set of mathematical operations is expected to

generate a proof that fails at the verifier.

[0037] The worker computing device provides (at step 670) the proof to a verifying computing device to determine
whether the primary program is tampered with. The proof may be transmitted out of band from the execution of the program

to a verifier to prove that the program was not tampered with and the result of the program is trustworthy.

[0038] The present application may be a system, a method, and/or a computer program product at any possible
technical detail level of integration. The computer program product may include a computer readable storage medium (or
media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present

disclosure.

[0039] The computer readable storage medium can be a tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a

semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific

8

examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or
Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or
other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other

transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.

[0040] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer or external storage
device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The
network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls,
switches, gateway computers and/or edge servers. A network adapter card or network interface in each
computing/processing device receives computer readable program instructions from the network and forwards the
computer readable program instructions for storage in a computer readable storage medium within the respective
computing/processing device. Computer readable program instructions for carrying out operations of the present disclosure
may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source
code or object code written in any combination of one or more programming languages, including an object oriented
programming language such as Smalltalk, C++ or the like, and procedural programming languages, such as the "C"
programming language or similar programming languages. The computer readable program instructions may execute
entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic
cirouitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable
program instructions by utilizing state information of the computer readable program instructions to personalize the

electronic circuitry, in order to perform aspects of the present disclosure.

[0041] Aspects of the present disclosure are described herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer program products according to embodiments of the disclosure. It

will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the

9

flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions. These
computer readable program instructions may be provided to a processor of a computer, or other programmable data
processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or
other programmable data processing apparatus, create means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a
computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other
devices to function in a particular manner, such that the computer readable storage medium having instructions stored
therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in

the flowchart and/or block diagram block or blocks.

[0042] The computer readable program instructions may also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other
programmable apparatus or other device to produce a computer implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks. The flowchart and block diagrams in the Figures (e.g., FIG. 6) illustrate the
architecture, functionality, and operation of possible implementations of systems, methods, and computer program products
according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams
may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for
implementing the specified logical function(s). In some alternative implementations, the functions noted in the blocks may
oceur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks
in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that

perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.

[0043] FIG. 7 shows a block diagram of the components of data processing systems 700 and 750 that may be used to
implement a worker computing device in a verifiable computing system in accordance with an illustrative embodiment of the
present disclosure. It should be appreciated that FIG. 7 provides only an illustration of one implementation and does not
imply any limitations with regard to the environments in which different embodiments may be implemented. Many

modifications to the depicted environments may be made based on design and implementation requirements.

[0044] Data processing systems 700 and 750 are representative of any electronic device capable of executing
machine-readable program instructions. Data processing systems 700 and 750 may be representative of a smart phone, a

computer system, PDA, or other electronic devices. Examples of computing systems, environments, and/or configurations

10

that may represented by data processing systems 700 and 750 include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, hand-held or laptop devices, multiprocessor systems, microprocessor-
based systems, network PCs, minicomputer systems, and distributed cloud computing environments that include any of the

above systems or devices.

[0045] The data processing systems 700 and 750 may include a set of internal components 705 and a set of external
components 755 illustrated in FIG. 7. The set of internal components 705 includes one or more processors 720, one or
more computer-readable RAMs 722 and one or more computer-readable ROMs 724 on one or more buses 726, and one or
more operating systems 728 and one or more computer-readable tangible storage devices 730. The one or more operating
systems 728 and programs such as the programs for executing the process 600 are stored on one or more computer-
readable tangible storage devices 730 for execution by one or more processors 720 via one or more RAMs 722 (which
typically include cache memory). In the embodiment illustrated in FIG. 7, each of the computer-readable tangible storage
devices 730 is a magnetic disk storage device of an internal hard drive. Alternatively, each of the computer-readable
tangible storage devices 730 is a semiconductor storage device such as ROM 724, EPROM, flash memory or any other

computer-readable tangible storage device that can store a computer program and digital information.

[0046] The set of internal components 705 also includes a R/W drive or interface 732 to read from and write to one or
more portable computer-readable tangible storage devices 786 such as a CD-ROM, DVD, memory stick, magnetic tape,
magnetic disk, optical disk or semiconductor storage device. The instructions for executing the process 600 can be stored
on one or more of the respective portable computer-readable tangible storage devices 786, read via the respective R/W

drive or interface 732 and loaded into the respective hard drive 730.

[0047] The set of internal components 705 may also include network adapters (or switch port cards) or interfaces 736
such as a TCP/IP adapter cards, wireless Wi-Fi interface cards, or 3G or 4G wireless interface cards or other wired or
wireless communication links. Instructions of processes or programs described above can be downloaded from an external
computer (e.g., server) via a network (for example, the Internet, a local area network or other, wide area network) and
respective network adapters or interfaces 736. From the network adapters (or switch port adaptors) or interfaces 736, the
instructions and data of the described programs or processes are loaded into the respective hard drive 730. The network
may comprise copper wires, optical fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or

edge servers.

[0048] The set of external components 755 can include a computer display monitor 770, a keyboard 780, and a
computer mouse 784. The set of external components 755 can also include touch screens, virtual keyboards, touch pads,

pointing devices, and other human interface devices. The set of internal components 705 also includes device drivers 740

1"

to interface to computer display monitor 770, keyboard 780 and computer mouse 784. The device drivers 740, R/W drive or
interface 732 and network adapter or interface 736 comprise hardware and software (stored in storage device 730 and/or
ROM 724).

[0049] It is to be understood that although this disclosure includes a detailed description on cloud computing,
implementation of the teachings recited herein are not limited to a cloud computing environment. Rather, embodiments of
the present disclosure are capable of being implemented in conjunction with any other type of computing environment now
known or later developed. Cloud computing is a model of service delivery for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, network bandwidth, servers, processing,
memory, storage, applications, virtual machines, and services) that can be rapidly provisioned and released with minimal
management effort or interaction with a provider of the service. This cloud model may include at least five characteristics, at

least three service models, and at least four deployment models.

[0050] On-demand self-service: a cloud consumer can unilaterally provision computing capabilities, such as server

time and network storage, as needed - automatically without requiring human interaction with the service’s provider.

[0051] Broad network access: capabilities are available over a network and accessed through standard mechanisms

that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and PDAs).

[0052] Resource pooling: the provider's computing resources are pooled to serve multiple consumers using a multi-
tenant model, with different physical and virtual resources dynamically assigned and reassigned according to demand.
There is a sense of location independence in that the consumer generally has no control or knowledge over the exact
location of the provided resources but may be able to specify location at a higher level of abstraction (e.g., country, state, or

datacenter).

[0053] Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases automatically, to quickly
scale out and rapidly released to quickly scale in. To the consumer, the capabilities available for provisioning often appear

to be unlimited and can be purchased in any quantity at any time.

[0054] Measured service: cloud systems automatically control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active
user accounts). Resource usage can be monitored, controlled, and reported, providing transparency for both the provider

and consumer of the utilized service.

12

[0055] Software as a Service (SaaS): the capability provided to the consumer is to use the provider's applications
running on a cloud infrastructure. The applications are accessible from various client computing devices through a thin
client interface such as a web browser (e.g., web-based e-mail). The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with

the possible exception of limited user-specific application configuration settings.

[0056] Platform as a Service (PaaS): the capability provided to the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using programming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud infrastructure including networks, servers, operating systems,
or storage, but has control over the deployed applications and possibly application hosting environment configurations.
Infrastructure as a Service (laaS); the capability provided to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure
but has control over operating systems, storage, deployed applications, and possibly limited control of select networking

components (e.g., host firewalls).

[0057] Private cloud: the cloud infrastructure is operated solely for an organization. It may be managed by the

organization or a third party and may exist on-premises or off-premises.

[0058] Community cloud: the cloud infrastructure is shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations). It may

be managed by the organizations or a third party and may exist on-premises or off-premises.

[0059] Public cloud: the cloud infrastructure is made available to the general public or a large industry group and is

owned by an organization selling cloud services.

[0060] Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized or proprietary technology that enables data and application

portability (e.g., cloud bursting for load-balancing between clouds).

[0061] A cloud-computing environment is service oriented with a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is an infrastructure that includes a network of interconnected

nodes.

13

[0062] Referring now to FIG. 8, an illustrative cloud computing environment 850 is depicted. As shown, cloud
computing environment 850 includes one or more cloud computing nodes 810 with which local computing devices used by
cloud consumers, such as, for example, personal digital assistant (PDA) or cellular telephone 854A, desktop computer
854B, laptop computer 854C, and/or automobile computer system 854N may communicate. Nodes 810 may communicate
with one another. They may be grouped (not shown) physically or virtually, in one or more networks, such as Private,
Community, Public, or Hybrid clouds as described hereinabove, or a combination thereof. This allows cloud computing
environment 850 to offer infrastructure, platforms and/or software as services for which a cloud consumer does not need to
maintain resources on a local computing device. It is understood that the types of computing devices 854A-N shown in Fig.
8 are intended to be illustrative only and that computing nodes 810 and cloud computing environment 850 can
communicate with any type of computerized device over any type of network and/or network addressable connection (e.g.,

using a web browser).

[0063] Referring now to FIG. 9, a set of functional abstraction layers provided by cloud computing environment 850 (of
FIG. 8) is shown. It should be understood that the components, layers, and functions shown in FIG. 9 are intended to be
illustrative only and embodiments of the disclosure are not limited thereto. As depicted, the following layers and

corresponding functions are provided:

[0064] Hardware and software layer 960 includes hardware and software components. Examples of hardware
components include: mainframes 961; RISC (Reduced Instruction Set Computer) architecture based servers 962; servers
963; blade servers 964; storage devices 965; and networks and networking components 966. In some embodiments,

software components include network application server software 967 and database software 968.

[0063] Virtualization layer 970 provides an abstraction layer from which the following examples of virtual entities may
be provided: virtual servers 971; virtual storage 972; virtual networks 973, including virtual private networks; virtual

applications and operating systems 974; and virtual clients 975.

[0066] In one example, management layer 980 may provide the functions described below. Resource provisioning 981
provides dynamic procurement of computing resources and other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 982 provide cost tracking as resources are utilized within the cloud
computing environment, and billing or invoicing for consumption of these resources. In one example, these resources may
include application software licenses. Security provides identity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal 983 provides access to the cloud-computing environment for
consumers and system administrators. Service level management 984 provides cloud computing resource allocation and

management such that required service levels are met. Service Level Agreement (SLA) planning and fulfillment 985

14

provide pre-arrangement for, and procurement of, cloud computing resources for which a future requirement is anticipated

in accordance with an SLA.

[0067] Workloads layer 990 provides examples of functionality for which the cloud computing environment may be
utilized. Examples of workloads and functions which may be provided from this layer include: mapping and navigation 991;
software development and lifecycle management 992; virtual classroom education delivery 993; data analytics processing
994, transaction processing 995; and workload 996. In some embodiments, the workload 996 performs some of the
operations of the compiler computing device 130, the verifier computing device 120, and/or the client computing device
140. The workload 996 may also performs the function of the worker computing device 110 by distributing primary program

and verification logic to main processor(s) and coprocessor(s) in worker computing devices 110.

[0068] The foregoing one or more embodiments implement a verifiable computing system within a computer
infrastructure by having one or more computing devices having a main processor that runs primary programs of a target
function and a coprocessor that generates a proof based on the telemetry of the main processor for determining whether
the primary program is tampered with or not. The computer infrastructure is also used to compile the target function to

generate the primary program and the verification logic to be run at the main processor and the coprocessor.

15

CLAIMS

1. A computer-implemented method comprising:

receiving, at a computing device comprising a main processor and a coprocessor, a primary program and a
verification logic that are generated based on a target function;

configuring the main processor to execute the primary program and the coprocessor to implement the verification
logic;

collecting telemetry from the main processor executing the primary program;

using the telemetry at the coprocessor implementing the verification logic to generate a proof; and

providing the proof to a verifying computing device for determining whether the primary program is tampered with.

2. The computer-implemented method of claim 1, wherein providing the telemetry to the coprocessor comprises

transferring the telemetry through a one-way transparent bus.

3. The computer-implemented method of claim 1, wherein the telemetry is stored in a data memory of the main
Processor.
4, The computer-implemented method of claim 3, wherein providing the telemetry to the coprocessor comprises

allowing the coprocessor to access the data memory of the main processor through a two-way cache-coherent

interconnect.

5. The computer-implemented method of claim 3, wherein:
the coprocessor modifies content of the data memory, and

the modified content affects execution of the primary program.

6. The computer-implemented method of claim 1, wherein the telemetry comprises program states of the primary

program running at the main processor.

7. The computer-implemented method of claim 6, wherein:
the proof and the program states are generated according to a public key,
the verifier computing device checks the proof based on a private key, and

the public key and the private key are generated based on a security parameter.

16

8. A system comprising means adapted for carrying out all the steps of the method according to any preceding
method claim.
9. A computer program comprising instructions for carrying out all the steps of the method according to any

preceding method claim, when said computer program is executed on a computer system.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - CLAIMS
	Page 25 - CLAIMS

