20137163161 AT I 000 OO0 0O 00

<

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

31 October 2013 (31.10.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/163161 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification:
GO6F 9/30 (2006.01) GO6F 9/38 (2006.01)

International Application Number:
PCT/US2013/037768

International Filing Date:
23 April 2013 (23.04.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/638,677 26 April 2012 (26.04.2012) US
13/655,622 19 October 2012 (19.10.2012) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: INTERNATIONAL IP ADMINISTRATION, 5775
Morehouse Drive, San Diego, California 92121 (US).

Inventors: BROWN, Melinda J.; 5775 Morehouse Drive,
San Diego, California 92121 (US). MORROW, Michael
William; 5775 Morehouse Drive, San Diego, California
92121 (US). DIEFFENDERFER, James Norris; 5775
Morehouse Drive, San Diego, California 92121 (US).
STEMPEL, Brian Michael; 5775 Morehouse Drive, San
Diego, California 92121 (US). MCILVAINE, Michael
Scott; 5775 Morehouse Drive, San Diego, California
92121 (US).

Agent: PAULEY, Nicholas J.; 5775 Morehouse Drive,
San Diego, California 92121 (US).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: ELIMINATING REDUNDANT MASKING OPERATIONS IN INSTRUCTION PROCESSING CIRCUITS, AND RE-
LATED PROCESSOR SYSTEMS, METHODS, AND COMPUTER-READABLE MEDIA

Instruction Stream (18}

%

Instruction Processing Circuit (14)

Instruction
Cache
24)

| Instruction
| Memory
: (20)

i Instruction

............... ® Fotch Circuit wemire)

i Instruction
Decode Circuit

] : Py

LR !
) ; p] o
[HLCI Qo S [.
L [:
— ’ . Py

Execution
Pipeline(s) (12)

Instruction

Queue

Register(s) (16)

28

Tracking Table (32) AN

10
Fig. 1

(57) Abstract: Eliminating redundant masking operations in instruction processing circuits and related processor systems, methods,
and computer-readable media are disclosed. In one embodiment, a first instruction in an instruction stream indicating an operation
writing a value to a first register is detected by an instruction processing circuit, the value having a value size less than a size of the
first register. The circuit also detects a second instruction in the instruction stream indicating a masking operation on the first re -
gister. The masking operation is eliminated upon a determination that the masking operation indicates a read operation and a write
operation on the first register and has an identity mask size equal to or greater than the value size. In this manner, the elimination of
the masking operation avoids potential read-after-write hazards and improves performance of a CPU by removing redundant opera-
tions from an execution pipeline.

WO 2013/163161 A1 |IIWAT 00N AV AT O A

Published:
— with international search report (Art. 21(3))

WO 2013/163161 PCT/US2013/037768

ELIMINATING REDUNDANT MASKING OPERATIONS IN INSTRUCTION
PROCESSING CIRCUITS, AND RELATED PROCESSOR SYSTEMS,
METHODS, AND COMPUTER-READABLE MEDIA

PRIORITY APPLICATION
[0001] The present application claims priority to U.S. Provisional Patent Application
Serial No. 61/638,677 filed on April 26, 2012 and entitled “REMOVING
REDUNDANT MASKING INSTRUCTIONS FROM EXECUTION PIPELINES IN
INSTRUCTION PROCESSING CIRCUITS, AND RELATED PROCESSOR
SYSTEMS, METHODS, AND COMPUTER-READABLE MEDIA,” which is hereby

incorporated herein by reference in its entirety.

BACKGROUND
I. Field of the Disclosure

[0002] The technology of the disclosure relates generally to processing of pipelined

computer instructions in central processing unit (CPU)-based systems.

IL. Background

[0003] The advent of “instruction pipelining” in modern computer architectures has
yielded improved utilization of CPU resources and faster execution times of computer
applications. Instruction pipelining is a processing technique whereby a throughput of
computer instructions being processed by a CPU may be increased by splitting the
processing of each instruction into a series of steps. The instructions are executed in a
“processor pipeline” composed of multiple stages, with each stage carrying out one of
the steps for each of a series of instructions. As a result, in each CPU clock cycle, steps
for multiple instructions can be evaluated in parallel. A CPU may employ multiple
processor pipelines to further boost performance.

[0004] Occasionally, a pipeline “hazard” may arise wherein an instruction is
prevented from executing during its designated CPU clock cycle. For instance, a first
instruction that generates data relied upon by a second instruction may not completely
execute before the second instruction begins execution. In this instance, a hazard
(specifically, a “read-after-write” hazard) may occur. To resolve the read-after-write
hazard, the CPU may “stall” or delay execution of the second instruction until the first

instruction has completely executed.

WO 2013/163161 PCT/US2013/037768

[0005] One particular instance in which the possibility of a read-after-write hazard
may occur is during the execution of a masking instruction, which may include
operations for reading a value from a register, applying a specified mask, and/or writing
a resulting masked value back to the register. Such a masking instruction may be
dependent upon the execution of a preceding write instruction, raising the possibility of

encountering a read-after-write hazard.

SUMMARY OF THE DISCLOSURE

[0006] Embodiments of the disclosure provide eliminating redundant masking

operations in instruction processing circuits. Related processor systems, methods, and
computer-readable media are also disclosed. In this regard, in one embodiment, an
instruction processing circuit is provided. The instruction processing circuit is
configured to detect a first instruction in an instruction stream indicating an operation
writing a value to a first register, the value having a value size less than a size of the
first register. The instruction processing circuit is also configured to detect a second
instruction in the instruction stream indicating a masking operation on the first register.
The instruction processing circuit is further configured to eliminate the masking
operation upon a determination that the masking operation indicates a read operation
and a write operation on the first register and has an identity mask size equal to or
greater than the value size. In this manner, the elimination of the masking operation
avoids potential read-after-write hazards and other associated consequences caused by
dependencies between instructions in a pipelined computing architecture, and improves
performance of a central processing unit (CPU) by removing the redundant operations
from an execution pipeline.

[0007] In another embodiment, an instruction processing circuit is provided. The
instruction processing circuit comprises a means for detecting a first instruction in an
instruction stream indicating an operation writing a value to a first register, the value
having a value size less than a size of the first register. The instruction processing
circuit further comprises a means for detecting a second instruction in the instruction
stream indicating a masking operation on the first register. The instruction processing
circuit additionally comprises a means for eliminating the masking operation upon a

determination that the masking operation indicates a read operation and a write

WO 2013/163161 PCT/US2013/037768

operation on the first register and has an identity mask size equal to or greater than the
value size.

[0008] In a further embodiment, a method for processing computer instructions is
provided. The method comprises detecting a first instruction in an instruction stream
indicating an operation writing a value to a first register, the value having a value size
less than a size of the first register. The method also comprises detecting a second
instruction in the instruction stream indicating a masking operation on the first register.
The method further comprises eliminating the masking operation upon a determination
that the masking operation indicates a read operation and a write operation on the first
register and has an identity mask size equal to or greater than the value size.

[0009] In an additional embodiment, a non-transitory computer-readable medium is
provided, having stored thereon computer-executable instructions to cause a processor
to implement a method for detecting a first instruction in an instruction stream
indicating an operation writing a value to a first register, the value having a value size
less than a size of the first register. The method implemented by the computer-
executable instructions also includes detecting a second instruction in the instruction
stream indicating a masking operation on the first register. The method implemented by
the computer-executable instructions further includes eliminating the masking operation
upon a determination that the masking operation indicates a read operation and a write
operation on the first register and has an identity mask size equal to or greater than the

value size.

BRIEF DESCRIPTION OF THE FIGURES

[0010] Figure 1 is a block diagram of exemplary components provided in a
processor-based system for retrieving and processing computer instructions to be placed
into one or more execution pipelines, including an exemplary instruction processing
circuit configured to detect and eliminate redundant masking operations;

[0011] Figure 2 is a diagram illustrating an exemplary resulting instruction stream
generated by an instruction processing circuit based on detecting a first instruction
writing a value to a register and a second instruction indicating a redundant masking

operation;

WO 2013/163161 PCT/US2013/037768

[0012] Figure 3 is a flowchart illustrating an exemplary process for detecting and
eliminating redundant masking operations in an instruction stream by an instruction
processing circuit;

[0013] Figure 4 is a flowchart detailing an exemplary process for an instruction
processing circuit detecting a presence of a write instruction and a redundant masking
operation, and eliminating the redundant masking operation;

[0014] Figure 5 is a diagram showing exemplary instruction streams resulting from
an instruction processing circuit eliminating a redundant masking operation within a
single instruction decode group in an instruction decode circuit;

[0015] Figure 6 is a diagram illustrating exemplary instruction streams resulting
from an instruction processing circuit eliminating a redundant masking operation within
different instruction decode groups in an instruction decode circuit through the use of a
register write tracking table;

[0016] Figure 7 is a diagram showing an instruction processing circuit detecting an
instruction indicating an operation moving a value from a first register to a second
register, and setting an indicator associated with the second register in response; and
[0017] Figure 8 is a diagram of an exemplary processor-based system that can
include instruction processing circuits, including the instruction processing circuit of

Figure 1, configured to detect and eliminate redundant masking operations.

DETAILED DESCRIPTION

[0018] With reference now to the drawing figures, several exemplary embodiments

of the present disclosure are described. The word “exemplary” is used herein to mean
“serving as an example, instance, or illustration.” Any embodiment described herein as
“exemplary” is not necessarily to be construed as preferred or advantageous over other
embodiments.

[0019] Embodiments of the disclosure provide eliminating redundant masking
operations in instruction processing circuits. Related processor systems, methods, and
computer-readable media are also disclosed. In this regard, in one embodiment, an
instruction processing circuit is provided. The instruction processing circuit is
configured to detect a first instruction in an instruction stream indicating an operation
writing a value to a first register, the value having a value size less than a size of the

first register. The instruction processing circuit is also configured to detect a second

WO 2013/163161 PCT/US2013/037768

instruction in the instruction stream indicating a masking operation on the first register.
The instruction processing circuit is further configured to eliminate the masking
operation upon a determination that the masking operation indicates a read operation
and a write operation on the first register and has an identity mask size equal to or
greater than the value size. In this manner, the elimination of the masking operation
avoids potential read-after-write hazards and other associated consequences caused by
dependencies between instructions in a pipelined computing architecture, and improves
performance of a central processing unit (CPU) by removing the redundant operations
from an execution pipeline.

[0020] In this regard, Figure 1 is a block diagram of an exemplary processor-based
system 10 for retrieving and processing computer instructions to be placed into one or
more execution pipelines 12(0-Q). As will be discussed in more detail below, the
processor-based system 10 provides an instruction processing circuit 14 that is
configured to detect instructions and eliminate redundant masking operations. For
example, the instructions may indicate operations for reading data from and/or writing
data to registers 16(0-M), which provide local high-speed storage accessible by the
processor-based system 10. As discussed herein, “instructions” may refer to a
combination of bits defined by an instruction set architecture that direct a computer
processor to carry out a specified task or set of tasks. FExemplary instruction set
architectures include, but are not limited to, ARM, Thumb, and A64 architectures.
[0021] With continuing reference to Figure 1, instructions are processed in the
processor-based system 10 in a continuous flow represented by an instruction stream 18.
The instruction stream 18 may continuously advance as the processor-based system 10
is operating and executing the instructions. In this illustrated example, the instruction
stream 18 begins with instruction memory 20, which provides persistent storage for the
instructions in a computer-executable program.

[0022] An instruction fetch circuit 22 reads an instruction from the instruction
memory 20 and/or from an instruction cache 24, and may increment a program counter,
typically stored in one of the registers 16(0-M). The instruction cache 24 is an optional
buffer that may be provided and coupled to the instruction memory 20 and the
instruction fetch circuit 22 to allow direct access to cached instructions by the

instruction fetch circuit 22. The instruction cache 24 may speed up instruction retrieval

WO 2013/163161 PCT/US2013/037768

times, but at a cost of potentially longer read times if the instruction has not been
previously stored in the instruction cache 24.

[0023] Once the instruction is fetched by the instruction fetch circuit 22, the
instruction proceeds to an instruction decode circuit 26, which translates the instruction
into processor-specific microinstructions. In one embodiment, the instruction decode
circuit 26 holds an instruction decode group 28(0-N) comprising a plurality of
instructions present together in the instruction decode circuit 26 for simultaneous
decoding. After the instructions have been fetched and decoded, they are optionally
issued to an instruction queue 30 (i.e., a buffer for storing instructions) prior to being
issued to one of the execution pipelines 12(0-Q), or they may be issued immediately to
one of the execution pipelines 12(0-Q) for execution. In some embodiments, the
execution pipeline(s) 12(0-Q) may restrict the types of operations that can be carried out
by instructions that execute within the execution pipeline(s) 12(0-Q). For example,
pipeline Py may not permit read access to the registers 16(0-M); accordingly, an
instruction that indicates an operation to read register Ry could only be issued to one of
the execution pipeline(s) Py through Py,

[0024] With continuing reference to Figure 1, the instruction processing circuit 14 is
configured to eliminate redundant masking operations detected in the instruction stream
18. The instruction processing circuit 14 may be any type of device or circuit, and may
be implemented or performed via a processor, a DSP, an Application Specific Integrated
Circuit (ASIC), an FPGA or other programmable logic device, discrete gate or transistor
logic, discrete hardware components, or any combination thereof designed to perform
the functions described herein. In some embodiments, the instruction processing circuit
14 is incorporated into the instruction fetch circuit 22, the instruction decode circuit 26,
and/or the optional instruction queue 30. Additionally, some embodiments of the
instruction processing circuit 14 may use a register write tracking table 32 to store one
or more indicators, wherein each indicator is associated with and used to track values
written to one of the registers 16(0-M).

[0025] To provide an explanation of detecting and eliminating redundant masking
operations in the processor-based system 10 in Fligure 1, Figure 2 is provided. Figure 2
illustrates the instruction processing circuit 14 of Figure 1 detecting a write instruction
writing to a register (referred to in this example as register Rx), and subsequently

detecting a redundant masking instruction applying an identity mask to the value stored

WO 2013/163161 PCT/US2013/037768

in the register Rx. In this example, a detected instruction stream 34 represents a series
of instructions fetched in the instruction stream 18 and detected by the instruction
processing circuit 14. First in the detected instruction stream 34 is a MOVE_BYTE
write instruction 36. The MOVE_BY'TE write instruction 36 indicates an operation
writing an immediate value byte having a hexadecimal value of 0x3C into the register
Rx. After the MOVE_BYTE write instruction 36 executes, the register Rx (in this
example, a 32-bit register) contains zero values in its upper three bytes and the
hexadecimal value 0x3C in its lowest byte, as illustrated by register contents 38.

[0026] Further along in the detected instruction stream 34 is an AND_MASK
masking instruction 40. The AND_MASK masking instruction 40 indicates a read
operation to obtain a value from the register Rx, a masking operation to apply a mask 42
to the obtained value using a logical AND operation, and a write operation to store a
resulting masked value in the register Rx. In this example, the mask 42 has a single-
byte hexadecimal value of OxFI. It is commonly understood that a logical AND
operation on a 32-bit value using a mask having a single-byte hexadecimal value of
OxFF has the effect of zeroing out the top three bytes of the 32-bit value while
maintaining the value of the lowest byte. Consequently, because the register Ry
currently stores only a single-byte value, the result of the execution of the AND_MASK
masking instruction 40 using the mask 42 has no net effect on the value in the register
Ry, as illustrated by register contents 44. The mask 42, therefore, may be considered an
“identity mask™ with respect to the single-byte value in the register Rx. As referred to
more generally herein, an identity mask refers to a mask that (1) has a size of K bits,
where K is equal to or greater than the size of a target value to which the mask is
applied, and (2) has a value of 251 (i.e., the binary value of the mask value is a 1 bit
repeated K times), such that (3) applying the identity mask to the target value using a
logical AND masking operation results in the same target value. In this example, the
mask 42 is the same size (8 bits) as the byte value in register Rx, and the hexadecimal
value OxFT of the mask 42 is equivalent to a binary value of Ob11111111 (281, or 255 in
decimal notation).

[0027] Upon detecting the AND_MASK masking instruction 40 in the detected
instruction stream 34, the instruction processing circuit 14 determines that the
AND_MASK masking instruction 40 indicates a read operation and a write operation on

the register Rx, and that the AND_MASK masking instruction 40 uses an identity mask

WO 2013/163161 PCT/US2013/037768

(the mask 42) with a size equal to the size of the value stored in the register Rx. The
AND_MASK masking instruction 40 is therefore determined by the instruction
processing circuit 14 to be redundant. Accordingly, the instruction processing circuit 14
eliminates the masking operation of the AND_MASK masking instruction 40 from the
detected instruction stream 34.

[0028] A resulting instruction stream 46 illustrates one exemplary result. The
resulting instruction stream 46 includes a MOVE_BYTE write instruction 48
corresponding to the MOVE_BYTE write instruction 36 in the detected instruction
stream 34. In the resulting instruction stream 46, however, the instruction processing
circuit 14 eliminates the masking operation by replacing the AND_MASK masking
instruction 40 with a NO_OPERATION instruction 50, indicating that no operation is to
be executed. In some embodiments, the masking operation may be eliminated by
removing the AND_MASK masking instruction 40 from the resulting instruction stream
46 without replacing the AND_MASK masking instruction 40 with another instruction.
According to some embodiments, the masking operation may be eliminated by
modifying the AND_MASK masking instruction 40 to have no effect on the register Rx.
It is to be understood that, in some embodiments, the AND_MASK masking instruction
40 may be detected immediately subsequent to the MOVE_BYTE write instruction 36
in the detected instruction stream 34. According to some embodiments, the
MOVE_BYTE write instruction 36 and the AND_MASK masking instruction 40 may
be separated in the detected instruction stream 34 by other intervening instructions.
[0029] Figure 3, with further reference to Figures 1 and 2, illustrates an exemplary
generalized process for an instruction processing circuit configured to detect a write
instruction and remove a subsequent masking operation. In this example, the process
begins by the instruction processing circuit 14 detecting the MOVE_BYTE write
instruction 36 writing a value to the target register Rx, where the value has a value size
less than a size of the register Rx (block 52). The instruction processing circuit 14 next
detects the AND_MASK masking instruction 40 indicating a masking operation on the
register Rx (block 54). The instruction processing circuit 14, upon determining that the
AND_MASK masking instruction 40 indicates a read operation and a write operation on
the register Rx and has an identity mask size equal to or greater than the value size, then
eliminates the masking operation of the AND_MASK masking instruction 40 (block
56).

WO 2013/163161 PCT/US2013/037768

[0030] To illustrate a more detailed exemplary process of an instruction processing
circuit (e.g., the instruction processing circuit 14 of Figure 1) for eliminating redundant
masking operations in an instruction stream (such as the instruction stream 18 of Figure
1), Figure 4 is provided. 'The process in this example begins with the instruction
processing circuit detecting whether there are more instructions remaining to be
processed (block 58 in Figure 4). In some embodiments, this detection is accomplished
by detecting the presence of unprocessed instructions in an instruction fetch circuit
and/or an instruction decode circuit (such as the instruction fetch circuit 22 and the
instruction decode circuit 26, respectively, of Figure 1). If no remaining instructions are
detected, the instruction processing circuit returns to block 58 in Figure 4 and the
process begins anew.

[0031] If a remaining instruction is detected at block 58 of Figure 4, the instruction
processing circuit next determines whether the detected instruction is a write instruction
indicating an operation writing a value to a first register (such as one of the registers
16(0-M) of Figure 1, referred to in this example as the target register Rx) (block 60 of
Figure 4). In the event that the detected instruction is not a write instruction, normal
processing of the detected instruction continues (block 62 of Figure 4). If the detected
instruction is a write instruction, the instruction processing circuit then compares a size
of the value written to the register Rx with a size of the register Rx to determine if the
value size is less than the size of the register Rx (block 64 of Figure 4).

[0032] If the value size is determined to be less than the size of the register Rx, the
instruction processing circuit examines the detected instruction at block 66 of Figure 4
to evaluate whether the detected instruction includes a masking operation that indicates
a read operation and a write operation on the register Rx, and that has an identity mask
size equal to or greater than the size of the value last written to the register Rx. In some
embodiments, determining whether the masking operation has an identity mask size
equal to or greater than the size of the value previously written to the register Rx may be
accomplished by comparing the size of the identity mask to a pre-defined size and/or to
a numeric value of an indicator associated with the register Rx in the register write
tracking table. If any of the conditions in block 66 are not met, the detected instruction
is not identified as a redundant masking operation. Accordingly, the instruction
processing circuit may set a first indicator associated with the register Rx in the register

write tracking table to indicate that a value was written to the register Rx (block 68 in

WO 2013/163161 PCT/US2013/037768

10

Figure 4). In some embodiments, the first indicator associated with the register Rx in
the register write tracking table may comprise a Boolean flag indicating that a value of a
defined size (e.g., a value having a size of one byte) has been written to the register Ry.
Some embodiments may provide that the first indicator associated with the register Rx
in the register write tracking table is a numeric value indicating the size (e.g., in bits) of
a value written to the register Rx. After the instruction processing circuit sets the first
indicator, processing continues at block 62 of Figure 4.

[0033] However, if all of the conditions at decision block 66 of Figure 4 are
satisfied, the instruction processing circuit next determines whether the register write
tracking table contains a first indicator associated with register Rx, or whether the
detected instruction is within the same instruction decode group (such as the instruction
decode group 28(0-N) of the instruction decode circuit 26 of Figure 1) as the instruction
that last wrote to register Rx (block 70 of Figure 4). If neither of these conditions is
met, the detected instruction is not identified as a redundant masking operation.
Accordingly, the instruction processing circuit may set a first indicator associated with
the register Rx in the register write tracking table to indicate that a value was written to
the register Ry, as described in detail above (block 68 in Figure 4). If, however, either
of the conditions in decision block 70 of Figure 4 is met, the detected instruction is
identified as a redundant masking operation. The instruction processing circuit
therefore eliminates the masking operation of the detected instruction from the
instruction stream (block 72 of Figure 4). As discussed above with respect to Figure 2,
the masking operation may be eliminated by, for example, replacing the detected
instruction with an instruction indicating no operation (e.g., a NOP instruction), by
removing the detected instruction from the instruction stream without replacing it with
another instruction, or by modifying the detected instruction to have no effect on the
register Rx, among other ways. After elimination of the masking operation of the
detected instruction is complete, processing resumes at block 58 of Figure 4.

[0034] Referring back to decision block 64 of Figure 4, if the size of the value being
written to the register Rx is not less than the size of the register Ry, it is unlikely that
any subsequent instruction will apply a mask that would act as an identity mask for the
value in the register Rx. Thus, the instruction processing circuit next considers whether
the detected instruction indicates an operation copying a value from a source register

(such as one of the registers 16(0-M) of Figure 1, referred to in this example as the

WO 2013/163161 PCT/US2013/037768

11

register Ry) to the register Rx (block 74 of Figure 4). If not, the instruction processing
circuit clears a first indicator associated with the register Rx in the register write
tracking table (block 76 in Figure 4). Processing of the detected instruction then
continues (block 62 in Figure 4), and the instruction processing circuit returns to block
58 of Figure 4.

[0035] If, however, the detected instruction does indicate an operation copying a
value from the register Ry to the register Ry, it logically follows that an indicator
associated with the register Ry in the register write tracking table will also be applicable
to the register Rx once the operation of copying the value from the register Ry into the
register Rx has been executed. Accordingly, the instruction processing circuit copies a
first indicator associated with the register Ry in the register write tracking table into a
second indicator associated with the register Rx in the register write tracking table
(block 78 of Figure 4). This ensures that any subsequent masking operation that would
be considered redundant if applied to the register Ry will also be considered redundant
with respect to the register Rx. Processing of the detected instruction then resumes at
block 62 of Figure 4.

[0036] Figure 5 is provided to better illustrate an exemplary process for detecting
and eliminating a masking operation for a masking instruction that is detected in a same
instruction decode group as a write instruction. In Figure 5, the instruction processing
circuit 14 includes the instruction decode circuit 26, which processes an instruction
decode group 80 (e.g., the instruction decode group 28(0-N) of Figure 1). The
instruction decode group 80 comprises instructions Iy to Iy, and in this example includes
an ARM architecture LDRB (load register byte) instruction 82 and an ARM architecture
AND (logical AND) instruction 84. The LDRB instruction 82 retrieves a byte value
stored in a memory address specified by values stored in two of the registers (e.g., two
of the registers 16(0-M) of Figure 1) (referred to in this example as the registers Ry and
Rz), and writes the value into one of the registers (e.g., one of the registers 16(0-M) of
Figure 1) (here, the register Rx). The AND instruction 84 then applies a mask 86
having a hexadecimal value of OxI'F to the value in the register Rx, and stores the
masked result in the register Rx. Because the value written to the register Rx by the
LDRB instruction 82 is a single-byte value, the mask 86 having a hexadecimal value of
OxFF operates as an identity mask for the value stored in the register Rx. Accordingly,

the instruction processing circuit 14 will identify the masking operation of the AND

WO 2013/163161 PCT/US2013/037768

12

instruction 84 as redundant, and the masking operation will be eliminated from the
instruction stream (e.g., the instruction stream 18 of Figure 1) by the instruction
processing circuit 14.

[0037] Exemplary resulting instruction streams 88 of Figure 5 illustrate two
exemplary instruction streams that may result from the elimination of the masking
operation of the AND instruction 84 in some embodiments. In resulting instruction
stream 88(1), the AND instruction 84 has been completely removed, leaving only the
LDRB instruction 82. In contrast, in resulting instruction stream 88(2), the AND
instruction 84 has been replaced by an ARM architecture NOP (no operation)
instruction indicating no operation. In both of the resulting instruction streams 88, the
redundant masking operation of the AND instruction 84 has been eliminated, thus
avoiding potential read-after-write hazards and improving the performance of the CPU.
[0038] Figure 6 provides an illustration of the instruction processing circuit 14
detecting and eliminating a masking operation for a masking instruction based on an
indicator in the register write tracking table 32 of Figure 1. In Figure 6, the instruction
processing circuit 14 of Figure 1 includes the instruction decode circuit 26, which
processes instruction decode groups 90 and 92 (each of which may correspond to, for
instance, an instruction decode group such as the instruction decode group 28 of Figure
1). The instruction decode group 90 is processed first by the instruction decode circuit
26 and comprises instructions I to Iy, including an ARM architecture MOV (move)
instruction 94. The MOV instruction 94 indicates an operation to move an immediate
byte value having a hexadecimal value of OxAl into one of the registers (e.g., one of the
registers 16(0-M) of Figure 1) (referred to in this example as register Rx). Upon
encountering the MOV instruction 94, the instruction processing circuit 14 sets an
indicator 96 associated with the register Rx in the register write tracking table 32
(shown by arrow 98). In the embodiment illustrated by this example, the writing of a
byte value to a register is being tracked; accordingly, the indicator 96 in this example is
a Boolean flag that, when set, indicates that a byte value has been written to a
corresponding register. In other embodiments in which the writing of values of varying
sizes may be tracked, the indicator 96 may comprise a numeric value indicating the size
of a value that was previously written to a corresponding register.

[0039] The instruction decode circuit 26 next processes the instruction decode group

92, which comprises instructions Jy to Jx, and includes an ARM architecture AND

WO 2013/163161 PCT/US2013/037768

13

(logical AND) instruction 100. The AND instruction 100 applies a mask 102 having a
hexadecimal value of OxFF to the value in the register Rx, and stores the result in the
register Rx. The mask 102 having a hexadecimal value of OxFI operates as an identity
mask for any single-byte value; accordingly, to determine whether the masking
operation of the AND instruction 100 is redundant, the instruction processing circuit 14
examines the indicator 96 associated with the register Rx in the register write tracking
table 32 to determine if the register Rx contains a byte value (shown by arrow 104).
Because the indicator 96 in this example is set (indicating that a byte value was written
to the register Rx), the instruction processing circuit 14 concludes that the masking
operation of the AND instruction 100 is redundant, and the masking operation is
eliminated.

[0040] Figure 6 also shows exemplary resulting instruction streams 106 that may be
generated by the elimination of the masking operation of the AND instruction 100 in
some embodiments. In the resulting instruction stream 106(1), the AND instruction 100
has been completely removed, leaving only the MOV instruction 94. In contrast, in the
resulting instruction stream 106(2), the AND instruction 100 has been replaced by an
ARM architecture NOP (no operation) instruction indicating no operation. In both of
the resulting instruction streams 106, the redundant masking operation of the AND
instruction 100 has been eliminated, thus avoiding potential read-after-write hazards and
improving the performance of the CPU.

[0041] To better illustrate an instruction processing circuit copying an indicator
associated with a source register of a write operation into an indicator associated with a
target register of a write operation, Figure 7 is provided. In Figure 7, the instruction
processing circuit 14 of Figure 1 includes the instruction decode circuit 26, which
processes instruction decode groups 108, 110, and 112 (each of which may correspond
to, for instance, an instruction decode group, such as the instruction decode group 28 of
Figure 1). The instruction decode group 108 is processed first by the instruction decode
circuit 26, and comprises instructions Iy to Iy, which includes an ARM architecture
MOY (move) instruction 114. The MOYV instruction 114 indicates an operation to move
an immediate byte value having a hexadecimal value of 0x8F into one of the registers
(e.g., one of the registers 16(0-M) of Figure 1) (referred to in this example as register
Ry). Upon encountering the MOV instruction 114, the instruction processing circuit 14

sets an indicator 116 associated with the register Ry in the register write tracking table

WO 2013/163161 PCT/US2013/037768

14

32 (shown by arrow 118). In the embodiment illustrated by this example, the writing of
values of varying sizes are tracked; accordingly, the indicator 116 is a numeric value
indicating a size of a value that was recently written to a corresponding register (here,
an immediate byte value was written to the register Ry by the MOV instruction 114, so
the indicator 116 stores the numeric value 8). In other embodiments, only the writing of
a byte value or other defined value size to a register may be tracked. In that case, the
indicator 116 may be a Boolean flag that, when set, indicates that a value of a defined
size has been written to a corresponding register.

[0042] The instruction decode circuit 26 next processes the instruction decode group
110, which comprises instructions J, to Jx. The instruction decode group 110 includes
an ARM architecture MOV instruction 120 indicating an operation copying a value
stored in the register Ry into another one of the registers (e.g., one of the registers 16(0-
M) of Figure 1) (referred to in this example as the register Rx). Upon encountering the
MOV instruction 120, the instruction processing circuit 14 accesses the indicator 116
associated with the register Ry in the register write tracking table 32 (as shown by arrow
122). The instruction processing circuit 14 then determines that the indicator 116 has
been set, and consequently sets an indicator 124 associated with the register Rx in the
register write tracking table 32 (shown by arrow 126). In this manner, the instruction
processing circuit 14 may be able to detect redundant masking operations applied to the
register Rx.

[0043] The instruction decode circuit 26 then processes the instruction decode
group 112, which comprises instructions Ko to Ky. The instruction decode group 112
includes an ARM architecture AND (logical AND) instruction 128. The AND
instruction 128 reads the value stored in the register Rx, applies a mask 130 having a
hexadecimal value of OxFF to the value in the register Rx, and stores the result in the
register Rx. Because the value originally written to the register Ry by the MOV
instruction 114 and subsequently copied into the register Rx by the MOV instruction
120 is a byte value, the mask 130 having a hexadecimal value of OxII' operates as an
identity mask for the value stored in the register Rx. Accordingly, to determine whether
the masking operation of the AND instruction 128 is redundant with respect to the
register Rx, the instruction processing circuit 14 examines the indicator 124 associated
with the register Rx in the register write tracking table 32 (shown by arrow 132).

Because the indicator 124 in this example has been set, the instruction processing circuit

WO 2013/163161 PCT/US2013/037768

15

14 may conclude, based on the numeric value of the indicator 124, that the masking
operation of the AND instruction 128 is redundant, and the masking operation may be
eliminated (not shown).

[0044] The instruction processing circuits for eliminating redundant masking
operations according to embodiments disclosed herein may be provided in or integrated
into any processor-based device. Examples, without limitation, include a set top box, an
entertainment unit, a navigation device, a communications device, a fixed location data
unit, a mobile location data unit, a mobile phone, a cellular phone, a computer, a
portable computer, a desktop computer, a personal digital assistant (PDA), a monitor, a
computer monitor, a television, a tuner, a radio, a satellite radio, a music player, a digital
music player, a portable music player, a digital video player, a video player, a digital
video disc (DVD) player, and a portable digital video player.

[0045] In this regard, Figure 8 illustrates an example of a processor-based system
134 that can employ the instruction processing circuit 14 illustrated in Figure 1. In this
example, the processor-based system 134 includes one or more central processing units
(CPUs) 136, each including one or more processors 138. The processor(s) 138 may
comprise the instruction processing circuit (IPC) 14. The CPU(s) 136 may have cache
memory 140 coupled to the processor(s) 138 for rapid access to temporarily stored data.
The CPU(s) 136 is coupled to a system bus 142 and can intercouple master and slave
devices included in the processor-based system 134. As is well known, the CPU(s) 136
communicates with these other devices by exchanging address, control, and data
information over the system bus 142. For example, the CPU(s) 136 can communicate
bus transaction requests to a memory controller 144, as an example of a slave device.
Although not illustrated in Figure 8, multiple system buses 142 could be provided.
[0046] Other master and slave devices can be connected to the system bus 142. As
illustrated in Figure 8§, these devices can include a memory system 146, one or more
input devices 148, one or more output devices 150, one or more network interface
devices 152, and one or more display controllers 154, as examples. The input device(s)
148 can include any type of input device, including but not limited to input keys,
switches, voice processors, etc. The output device(s) 150 can include any type of output
device, including but not limited to audio, video, other visual indicators, etc. 'The
network interface device(s) 152 can be any device(s) configured to allow exchange of

data to and from a network 156. The network 156 can be any type of network,

WO 2013/163161 PCT/US2013/037768

16

including but not limited to a wired or wireless network, a private or public network, a
local area network (LAN), a wide local area network (WLAN), and the Internet. The
network interface device(s) 152 can be configured to support any type of
communication protocol desired. The memory system 146 can include one or more
memory units 158(0-N).

[0047] The CPU(s) 136 may also be configured to access the display controller(s)
154 over the system bus 142 to control information sent to one or more displays 160.
The display controller(s) 154 sends information to the display(s) 160 to be displayed via
one or more video processors 162, which process the information to be displayed into a
format suitable for the display(s) 160. The display(s) 160 can include any type of
display, including but not limited to a cathode ray tube (CRT), a liquid crystal display
(LCD), a plasma display, etc.

[0048] Those of skill in the art will further appreciate that the various illustrative
logical blocks, modules, circuits, and algorithms described in connection with the
embodiments disclosed herein may be implemented as electronic hardware, instructions
stored in memory or in another computer-readable medium and executed by a processor
or other processing device, or combinations of both. The master devices and slave
devices described herein may be employed in any circuit, hardware component,
integrated circuit (IC), IC chip, or semiconductor die, as examples. Memory disclosed
herein may be any type and size of memory and may be configured to store any type of
information desired. To clearly illustrate this interchangeability, various illustrative
components, blocks, modules, circuits, and steps have been described above generally
in terms of their functionality. How such functionality is implemented depends upon
the particular application, design choices, and/or design constraints imposed on the
overall system. Skilled artisans may implement the described functionality in varying
ways for each particular application, but such implementation decisions should not be
interpreted as causing a departure from the scope of the present invention.

[0049] The various illustrative logical blocks, modules, and circuits described in
connection with the embodiments disclosed herein may be implemented or performed
with a processor, a DSP, an Application Specific Integrated Circuit (ASIC), an FPGA or
other programmable logic device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform the functions described

herein. A processor may be a microprocessor, but in the alternative, the processor may

WO 2013/163161 PCT/US2013/037768

17

be any conventional processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any other such configuration.

[0050] The embodiments disclosed herein may be embodied in hardware and in
instructions that are stored in hardware, and may reside, for example, in Random Access
Memory (RAM), flash memory, Read Only Memory (ROM), Electrically
Programmable ROM (EPROM), Electrically FErasable Programmable ROM
(EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of
computer readable medium known in the art. An exemplary storage medium is coupled
to the processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be
integral to the processor. The processor and the storage medium may reside in an ASIC.
The ASIC may reside in a remote station. In the alternative, the processor and the
storage medium may reside as discrete components in a remote station, base station, or
server.

[0051] It is also noted that the operational steps described in any of the exemplary
embodiments herein are described to provide examples and discussion. The operations
described may be performed in numerous different sequences other than the illustrated
sequences. Furthermore, operations described in a single operational step may actually
be performed in a number of different steps. Additionally, one or more operational steps
discussed in the exemplary embodiments may be combined. It is to be understood that
the operational steps illustrated in the flow chart diagrams may be subject to numerous
different modifications as will be readily apparent to one of skill in the art. Those of
skill in the art would also understand that information and signals may be represented
using any of a variety of different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols, and chips that may be
referenced throughout the above description may be represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles, or any
combination thereof.

[0052] The previous description of the disclosure is provided to enable any person
skilled in the art to make or use the disclosure. Various modifications to the disclosure

will be readily apparent to those skilled in the art, and the generic principles defined

WO 2013/163161 PCT/US2013/037768

18

herein may be applied to other variations without departing from the spirit or scope of
the disclosure. Thus, the disclosure is not intended to be limited to the examples and
designs described herein, but rather is to be accorded the widest scope consistent with

the principles and novel features disclosed herein.

WO 2013/163161 PCT/US2013/037768

19

What is claimed is:

1. An instruction processing circuit configured to:

detect a first instruction in an instruction stream indicating an operation writing a
value to a first register, the value having a value size less than a size of
the first register;

detect a second instruction in the instruction stream indicating a masking
operation on the first register; and

eliminate the masking operation upon a determination that the masking
operation indicates a read operation and a write operation on the first
register and has an identity mask size equal to or greater than the value

size.

2. The instruction processing circuit of claim 1 further configured to, in response to
a detection of the first instruction:

set a first indicator associated with the first register in a register write tracking
table; and

eliminate the masking operation based on the first indicator.

3. The instruction processing circuit of claim 1 configured to detect the first
instruction and the second instruction within a single instruction decode group in an

instruction decode circuit.

4. The instruction processing circuit of claim 1 configured to eliminate the masking

operation by removing the second instruction from the instruction stream.

5. The instruction processing circuit of claim 1 configured to eliminate the masking
operation by replacing the second instruction in the instruction stream with an

instruction indicating no operation.

6. The instruction processing circuit according to claim 1, configured to:
detect the first instruction as an ARM architecture-based instruction selected
from the group consisting of an LDRB instruction, a MOV instruction,

and an AND instruction; and

WO 2013/163161 PCT/US2013/037768

20

detect the second instruction as an ARM architecture-based AND instruction.

7. The instruction processing circuit of claim 2 configured to set the first indicator
associated with the first register and indicating the value size in the register write

tracking table.

8. The instruction processing circuit of claim 2 further configured to detect the first
instruction and the second instruction as not being within a single instruction decode

group in an instruction decode circuit.

0. The instruction processing circuit according to claim 2, further configured to:
detect a third instruction in the instruction stream indicating an operation
copying the value from the first register to a second register; and
in response to a detection of the third instruction, set a second indicator
associated with the second register in the register write tracking table

based on the first indicator.

10. The instruction processing circuit of claim 1 integrated into a semiconductor die.

11. The instruction processing circuit of claim 1 further comprising a device selected
from the group consisting of: a set top box, an entertainment unit, a navigation device, a
communications device, a fixed location data unit, a mobile location data unit, a mobile
phone, a cellular phone, a computer, a portable computer, a desktop computer, a
personal digital assistant (PDA), a monitor, a computer monitor, a television, a tuner, a
radio, a satellite radio, a music player, a digital music player, a portable music player, a
digital video player, a video player, a digital video disc (DVD) player, and a portable
digital video player.

12. An instruction processing circuit, comprising:

a means for detecting a first instruction in an instruction stream indicating an
operation writing a value to a first register, the value having a value size
less than a size of the first register;

a means for detecting a second instruction in the instruction stream indicating a

masking operation on the first register; and

WO 2013/163161 PCT/US2013/037768

13.

21

a means for eliminating the masking operation upon a determination that the
masking operation indicates a read operation and a write operation on the
first register and has an identity mask size equal to or greater than the

value size.

The instruction processing circuit of claim 12, further comprising:

a means for setting a first indicator associated with the first register in a register

write tracking table in response to a detection of the first instruction;

the means for eliminating the masking operation comprising a means for

eliminating the masking operation based on the first indicator.

14.

15.

16.

The instruction processing circuit according to claim 13, further comprising:

a means for detecting a third instruction in the instruction stream indicating an
operation copying the value from the first register to a second register;
and

a means for setting a second indicator associated with the second register in the
register write tracking table based on the first indicator in response to a

detection of the third instruction.

A method for processing computer instructions, comprising:

detecting a first instruction in an instruction stream indicating an operation
writing a value to a first register, the value having a value size less than a
size of the first register;

detecting a second instruction in the instruction stream indicating a masking
operation on the first register; and

eliminating the masking operation upon a determination that the masking
operation indicates a read operation and a write operation on the first
register and has an identity mask size equal to or greater than the value

size.

The method of claim 15, further comprising:

responsive to detecting the first instruction, setting a first indicator associated

with the first register in a register write tracking table,

wherein eliminating the masking operation is based on the first indicator.

WO 2013/163161 PCT/US2013/037768

22

17. The method of claim 16, further comprising:
detecting a third instruction in the instruction stream indicating an operation
copying the value from the first register to a second register; and
responsive to detecting the third instruction, setting a second indicator associated
with the second register in the register write tracking table based on the

first indicator.

18. A non-transitory computer-readable medium having stored thereon computer-
executable instructions to cause a processor to implement a method comprising:
detecting a first instruction in an instruction stream indicating an operation
writing a value to a first register, the value having a value size less than a
size of the first register;
detecting a second instruction in the instruction stream indicating a masking
operation on the first register; and
eliminating the masking operation upon a determination that the masking
operation indicates a read operation and a write operation on the first
register and has an identity mask size equal to or greater than the value

size.

19. The non-transitory computer-readable medium of claim 18 having stored thereon
the computer-executable instructions to cause the processor to implement the method
further comprising:

responsive to detecting the first instruction, setting a first indicator associated
with the first register in a register write tracking table,

wherein eliminating the masking operation is based on the first indicator.

20. The non-transitory computer-readable medium of claim 19 having stored thereon
the computer-executable instructions to cause the processor to implement the method
further comprising:
detecting a third instruction in the instruction stream indicating an operation
copying the value from the first register to a second register; and
responsive to detecting the third instruction, setting a second indicator associated
with the second register in the register write tracking table based on the

first indicator.

PCT/US2013/037768

WO 2013/163161

1/8

0T

od

)

T 814

(z€) @1qeL Suppel L
91N 1915180y

'd

°d

E-3

2.

(z1) (s)aurjadid
uoIIN29X3

8¢
/./vmr Z_
W (0€) . (22)
. 8nanp . 3 & HN24ID Y2324
M uononJIsu| uoildnJisuj
(92)
1IN2J1D 9podaq
uononJIsu|
b my s

(¥T) unau mc_mmmuo& uonRoNJIsU|

"y

Y

(91) (s)4235182y

(v2)
ayoe)
uonodNJIsU|

(02)
Aowap

uoNIIsU|

(8T) weau1s uol11dNIISU|

PCT/US2013/037768

WO 2013/163161

2/8

174 74—

gE e

¢ '3

J€X0 00X0 00%0

00x0

J€X0 00X0 00%0

00x0

Xy J191s139Y JO S1UlIU0)

NOILVY43dO ON &t ()G

DEX0# %Y 3LAG IAOIN

A 174

(9%) wesaJis uodniisu| 3ullNsay

...............................

e

T

14X0# Y XY MSVIN ANV *

ov

JEX0# *d 3LAG IAOIN

(f€) weal1s uol1NJIIsU| PalILlRQ

9¢

(£T) 1N241D 8UISS3204d UOIIDNJISU|

WO 2013/163161 PCT/US2013/037768
3/8

Detect the MOVE_BYTE write instruction 36 indicating

52 - | gn operation writing a value to register Ry, where the
p g g

value has a value size less than a size of register Ry

A

Detect the AND_MASK masking instruction 40

>4 indicating a masking operation on register Ry
¥
Eliminate the masking operation of the AND_MASK
masking instruction 40 upon a determination that the
AND_MASK masking instruction 40 indicates a read
56 g

operation and a write operation on register Ry, and
has an identity mask size equal to or greater than the
value size

Fig. 3

WO 2013/163161

PCT/US2013/037768
4/8

Continue with normal

¥ o processing of detected
; instruction i
A&
More 62
58~ { instructions to No
process?
Yes
¥
- Detected ™
/ instruction \
60 i indicates operation =~No '\
. writing value to -
\(egister R/
Yes
. 76
N ¢
Detected ™ 5’/
Value being instruction ™. Clear first indicator
written has a value indicates an associated with register
64 i size less than size \ operation copying Rx in register write 3
of register Ry 2 value from reg;st// tracking table
{0 reglster X?
Yes Yes Copy indicator associated
fﬁ with register Ryin register
66 TN write tracking table into
\\’2& - Y & second indicator ry
Detec,tefa instruction includes a*maskmg associated with register
operatlon that indicates a read opera*tro\n Rxin register write
7 “and a write operation on register Ry, and ™ ~Now tracking table
that has an identity mask size equal to or .~
greater than the size of the value Iast %
e w\rltten to register Rf - Set first indicator 78
'\\ P - associated with
NG } register Ry in
Yes register write

Reg’ster write tracklng tébje
/,cdntams first indicator assouatéd\
e with register Ry, OR detected S
\\\ instruction in same decode group
\a§ instruction that last wrote to*”

N e
\\\ register Ry? s

Yes

Eliminate masking
operation of
detected
instruction

72~

"‘NO"'""

tracking table

4

68

Fig. 4

PCT/US2013/037768

WO 2013/163161

5/8

(2)88 i dON L

[24 ““d] “*Y gya1

L]
=

[24 ““d] “*Y gya1

(88) sweauis uononaisu| SunnNsay

G '3

lfﬁm ¥ ¥ u%\o-ﬁ(
14X0# *4 *d ANV

—

\\

[24 ““d] “*d gyai

9

(92)
“_DUL_U mUOUmD Co_ausbmc_

(PT) unou1d
8UISS9204d UOI1ONJISU|

8

8

08

PCT/US2013/037768

6/8

WO 2013/163161

9 '3l (z€) a1qel
Supjoed] AN 19315189y

0 iy P

44X0# XY *Y ANV

vOT Thor *

of
i 0 oY —
86)
dON) m |
T ;
()90t A :
Tl T TVX0# 4 AOW
TVX0# %4 AOW T T |
........ . y
: P N —
et TVX0# 4 AOW i o0
.| UN2J1D 9p023Q UOIINAISU|

(90T) sweauis uoranJisul Sunnsay o ?ﬁ:_:e_u
8UISS920.4d UOIIONJIISU|

WO 2013/163161

Instruction Processing

7/8

Instruction Decode Circuit (26)

108
MOV Ry, #Ox8F

114 M""’ .

Jo

MOV Ry, Ry

In

Ko

AND Ry, Ry, HOXFF

P
128 =7 |

Kn

118

PCT/US2013/037768

124

132

Fig. 7

116

Rm 0

Register Write Tracking
Table (32)

PCT/US2013/037768

WO 2013/163161

8/8

8 "314 oo (esm) (o)t
m,/, JOMIBN ¢ »\ -
g Ngaa - 1° °4aa
S0
(v¥T)
(0ST) (8¥T) (est) 13]j043U0)
(s)aa1n2Q (s)ao1nQ (s)201n2q AowsIy
p:&:o p:mc_ CRLIPEI]! .
~ ylomiaN ,,...m T
vt
..... < LR,
(vST)
(s)49]j042u0) Aeldsiq
(vT)
Jdl (ovT)
ayoe) ¥
(8€T) (097) (291)
(s)4ossa20.d 091 X (s)40sse204d
..................................... (s)Aejdsiq
(9€T) (s)ndd 03pIA

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/037768

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30 GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

13 June 1978 (1978-06-13)
the whole document

paragraph [0038]

paragraph [0044]

paragraph [0049]

A WO 89/09962 Al (KING ED [US])
19 October 1989 (1989-10-19)
the whole document

A US 4 095 278 A (KIHARA TOSHIMASA)

A US 2002/178346 Al (ELIAS GEORGE [IL] ET
AL) 28 November 2002 (2002-11-28) 18
paragraph [0015] - paragraph [0023]

1,12,15,
18

1,12,15,

1,12,15,
18

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

15 July 2013

Date of mailing of the international search report

22/07/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Moraiti, Marina

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/037768
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 4095278 A 13-06-1978 JP S5245232 A 09-04-1977
us 4095278 A 13-06-1978
US 2002178346 Al 28-11-2002 NONE
WO 8909962 Al 19-10-1989 AU 3413889 A 03-11-1989
WO 8909962 Al 19-10-1989

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report

