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HARDWARE ACCELERATED MACHINE LEARNING

BACKGROUND
[0001] Machine learning is a subfield of computer science which focuses on
algorithms which can learn from and make predictions based on data. Machine learning
heavily draws upon neural networks for implementation and became practical for broad
usage with the advent of cloud computing which made access to large amounts of
computational processing power economical. Indeed, cloud computing and generally
inexpensive computer processing has made more computationally expensive and
computationally resource intensive variations of machine learning, such as deep belief

networks which involve implementing layers of networks economically accessible.

[0002] Accordingly, machine learning is generally performed using general purpose
central processing units (“CPU”), graphical processing units (“GPU”), or bulk general
purpose processing hardware. Machine learning processors have been proposed where
hardware acceleration was based on techniques to target a specific algorithm and/or
network architecture. Alternatively, machine learning hardware has been proposed based
on modeling the hardware more closely to neurologic architecture. In these cases, where
acceleration was based on the assumption that a neurological architecture would inherently
yield performance improvements, rather than performing hardware acceleration on

computer instructions and computer instruction processing.

BRIEF DESCRIPTION OF THE DRAWINGS
[0003] The Detailed Description is set forth with reference to the accompanying
figures.
[0004] Figure 1 is a top level context diagram for Hardware Accelerated Machine

Learning.
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[0005] Figure 2 is a block diagram of an example architecture for Hardware

Accelerated Machine Learning.

[0006] Figure 3 is a flow chart for an exemplary operation of a shift register for

Hardware Accelerated Machine Learning.

[0007] Figure 4 is a flow chart for an exemplary operation for fetching and executing

computer readable instruction in a machine learning hardware accelerator.

DETAILED DESCRIPTION

Context of Hardware Accelerated Machine Learning

[0008] As stated above, machine learning is a subfield of computer science which
focuses on algorithms which can learn from and make predictions based on data.
Typically these algorithms take the form of methods which process exemplar data and
then make generalizations to similar data. Often these methods take the form of statistical
regression or classification, although the field also includes methods such as reinforcement
learning which model the learning behavior of a reward-seeking agent's interaction with

the environment.

[0009] Recently, a set of methods typically referred to as “deep learning” have become
common in multiple commercially relevant uses. These methods are based on artificial
neural network research although in most cases modern deep learning techniques do not
attempt to directly model known aspects of biological cognition. Instead they use the idea
of a series of “layers” of “processing units”, each which is typically composed of a linear
operation followed by a nonlinearity. These layers may also include random processes,

and are typically, although not universally, densely connected.

[0010] These methods may include multilayer perceptrons, convolutional networks,

long short term memory, deep Q learning, restricted Boltzmann machines, and many other
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methods. While these methods differ in many respects, they share a common logical
structure of layers which process inputs and generate outputs, possibly recurrent in time,
and possibly utilizing stochastic noise. They may also utilize the concept of a “loss
function” which represents for a given set of data how well the network is performing.
Typically this loss function is further decomposed into a utility function which represents
the loss relative to the exemplar dataset, as well as a regularization loss which seeks to
minimize complexity and improve generalization performance. Typically, but not
universally, such systems learn via stochastic gradient descent, often with additional

extensions.

[0011] Regardless, both the training of deep learning networks, as well as the use of
trained networks, can be broken down into a very simple pattern of fundamental
computational building blocks. These are generalized tensor contractions, additive noise,
and element-wise nonlinearities. Although not always abstracted this way, a wide variety
of deep learning methods, as well as other machine learning or general computation can be

accomplished via these primitives.

[0012] These primitives may be implemented in terms of a typical central processing
unit (“CPU”) architecture, or may be implemented via a graphical processing unit
(“GPU”), which is a type of vector processor typically used for graphics workloads.
However, the consistent data flow, large number of multiplications, and specialized nature
of the non-multiplication operations allows for significant acceleration via hardware.
Hardware acceleration approaches have been proposed, many of which are either highly
specific to a particular network architecture or machine learning algorithm, or are
neuromorphic, in that they seek to duplicate the behavior of biological networks, rather

than implement deep learning algorithms.
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[0013] In contrast to those approaches, we propose an approach to hardware
accelerated machine learning that is not specific to a network architecture or machine
learning algorithm nor is neuromorphic. Note that typical machine learning workflows
comprise three basic operations: tensor contractions, addition of random noise, and
element-wise non-linear operations. Of these, tensor contractions typically make up the
bulk of the computational work on traditional computing architectures. Accordingly, we
propose a computing architecture to perform these operations along with an associated

computer instruction set. Figure 1 is a context diagram 100 of such an architecture.

[0014] Machine learning hardware acceleration is generally in the context of a
computer 102. Computer 102 may be any computing device including a standalone
computer, a networked server, or an embedded system specific to machine learning.
Computer 102 generally has a central processing unit (“CPU”) that is any processor that
executes computer readable instructions ranging from general purpose CPUs to embedded

controllers.

[0015] The CPU is communicatively coupled via a bus to a general memory 106. The
general memory 106 may be comprised of dynamic random access memory (“DRAM”),
but this need not always be the case. The general memory 106 is any computer readable
media and may store an operating system and other applications each comprised of

computer readable instructions.

[0016] Computer-readable media includes, at least, two types of computer-readable
media, namely computer storage media and communications media. Computer storage
media includes volatile and non-volatile, removable and non-removable media
implemented in any method or technology for storage of information such as computer
readable instructions, data structures, program modules, or other data. Computer storage

media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other



WO 2017/120517 PCT/US2017/012600

memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other non-transmission medium that can be used to store information for
access by a computing device. In contrast, communication media may embody computer
readable instructions, data structures, program modules, or other data in a modulated data
signal, such as a carrier wave, or other transmission mechanism. As defined herein,

computer storage media does not include communication media.

[0017] The input/output (“I/O”) interface 108 facilities interaction of the computer 102
with other devices. The I/O interface 108 may be any controller card, such as a universal
asynchronous receiver/transmitter (UART) used in conjunction with a standard I/O
interface protocol such as RS-232 and/or Universal Serial Bus (USB). In the case of
highly parallel applications such as machine learning, the I/O interface may facilities one

or more I/O channels and/or parallel I/O channels.

[0018] The network interface 110, may potentially work in concert with the I/O
interface 108 and may be a network interface card supporting Ethernet and/or Wi-Fi
and/or any number of other physical and/or datalink protocols. Again, in the case of
highly parallel applications such as machine learning, multiple network interfaces 110

may be supported by the computer 102.

[0019] The computer 102 can host one or more machine learning hardware
accelerators 112. The hardware accelerator 112 is comprised of multiple banks of
computer memory 114 such as static random access memory (“SRAM”). The SRAMs
114 support concurrent random access. The In one embodiment the SRAMSs 114 support
very wide memory access (e.g., multiple byte access within a single computer instruction),
thereby supporting accessing vectors and larger sets of values in a single computer

instruction. Note that with respect to the hardware accelerator 112, the banks of computer



WO 2017/120517 PCT/US2017/012600

memory 114 are local but the general memory 106 is non-local. At times, the hardware
accelerator 112 may exchange local and non-local data. Such transfers are described

below.

[0020] The SRAMs 114 are accessed and operated on by multiple operational units
116. The operational units 116 are capable of simultaneously performing compute
operations and support a machine learning operation specific instruction set. The
operational units 116 lend themselves to many machine learning optimizations. In one
embodiment, the operational units 116 may be configured to perform lower precision fixed
point operations. For example, the IEEE 32 bit standard specifies 23 explicit bits for the
mantissa of a floating point number. A lower precision floating point operation would
have less than 23 bits to represent the mantissa. Specifically, although most deep learning
research has been done using 32 bit precision floating point arithmetic to represent real
numbers, recent findings have shown that for most deep learning workloads, much lower
precision and fixed point methods (less than 32 bit) can be utilized, particularly if
randomized round is utilized. The operational units 116 are described in further detail

below.

[0021] An SRAM/DRAM transfer unit 118 facilities fast transfer of data between
general memory 106 and the SRAM banks 114. Specifically the SRAM/DRAM transfer
unit 118 supports bulk copy operations such that large (multibyte) data transfers may be

performed in a single operation.

[0022] A machine learning hardware accelerator 112 contains additional features
which are described in greater detail with respect to Figure 2 below and elsewhere in this

disclosure.
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Definitions and Notation

[0023] Generally, both input data (i.e., examples to be learned or acted on), as well as
weight data (i.e., network parameters), are naturally represented as multidimensional
tensors. Typically, for the purposes of machine learning use cases, these tensors do not
use have a notion of covariant or contravariant indexes. Also, symmetric tensors may be
relevant, but such symmetry is often not formalized or is maintained explicitly via the
operations, rather than being an aspect of the tensor itself, making the use of tensors in
machine learning more similar to multi-dimensional arrays. In addition, contractions have
some slightly variant properties. For example, convolutions often do not exactly match
the typical tensor calculus notions of a contraction, but are quite computationally similar.

Thus we define a slightly more computational notion of tensors and contractions herein.

Tensor

[0024] A tensor is defined herein as a multidimensional rectangular array of real
numbers, usually represented by a relatively low precision (such as 16 bit rather than 32
bit) fixed point representation. Usually tensor data is stored in dynamic random access
memory (“DRAM”), and has a simple stride base layout, or is composed of a set of “tiles”,

each of which has a stride based layout.

Tensor Contraction

[0025] For the purposes of this work, a tensor contraction is defined as an operation
taking two input tensors, and producing an output tensor, via a set of multiplication and
accumulation operations. Tensor contractions are defined via a set of “index variables”.
The range of each index variable is a simple integer number, and is often, but not always,
simply the size of one of the tensor's dimensions, and the range of tensor indexes can be
specified independently. Specially, a tensor contraction has the form:

Ofi,i, .]=A[P,Q, .]*B[X, Y, ..]
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[0026] Here, the lower case indexes, 1, ], etc., represent a specific tensor index, the
capital letters outside of the brackets represent tensors, and the capital letters in the
brackets are multivariate polynomials of degree 1 or O over the set tensor indexes in full
generality, but typically are also just a single tensor index. The operation is presumed to
loop over the range of all indexes not specified on the output and add the results of the
multiplication of the left and right tensor elements similar to Einstein notation. For
example, a matrix multiply operation would be represented in this notation as:

Ofi, j] = Ali, k] * B[k, j]

[0027] A convolution of a three dimensional image (composed of X, Y, and C
dimensions, i.e., horizontal and vertical pixel location and a color or feature channel) with
a four dimensional convolutional kernel which operates over an image patch across all
channels, would be represented as:

O[x, y, co] = A[i, j, co, ci] * B[x +1,y +], ci]

[0028] Here, we see the use of simple polynomial (x +1). Note, the range of x, y, 1, j,
co, etc., must all be specified to make this a complete description of the operation to be
performed. In many cases, the logical option is to presume that the range of an index is
identical to the size of the dimensions which it operates over, but this is not universally

applicable.

[0029] We may also generalize both the operation performed for each pair of tensor
elements (in this case multiplication) as well as the method to accumulate elements (in this
case summation). When the accumulation mechanism is not addition, we specify it as in
the following example, which implements “max-pooling”, and also illustrates the use of a
“constant” tensor which is O dimensional an contains a single element (in this case 1):

O[x, y] = max over A[x +1,y +]] * B[0]
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[0030] For 2x2 max pooling, 1 and j would range over [0, 2).

Parameters

[0031] The machine learning hardware accelerator described herein is configurable.
To provide examples to further understanding, a typical value as well as any likely
constraints are given for some design parameters. Of course as the hardware accelerator
disclosed is only meant as a concrete example of one method of implementing the
fundamental operations described via efficient hardware implementation, and these values

are not to be construed as limiting.

[0032] SRAM BANKS: Number of primary static random access memory

(“SRAM”) banks, minimum of 2, typically 8.
[0033] ELEM WIDTH: Bit width of an element, typically 16, minimum 2.

[0034] ACCUM_WIDTH: Width of an accumulator, typically 48, must be >= 2 *

ELEM WIDTH.

[0035] SRAM_WIDTH: Number of elements read during a single SRAM access of a

single bank, typically 512. Generally a power of 2.

[0036] SRAM DEPTH: Number of SRAM rows, each holding SRAM_ WIDTH *
ELEM WIDTH bits.  Typically 4096, resulting in a total size of SRAM of

SRAM BANKS * ELEM_ WIDTH * SRAM WIDTH * SRAM _DEPTH /8 =20MB.

[0037] SHIFT WIDTH: Number of elements that are the output of SRAM banks after
the rotation unit, must be <= (SRAM_BANKS - 1) * SRAM_WIDTH, typically 2048.

Generally a power of 2.

[0038] NUM_UNITS: Number of operations units, must be >= SHIFT WIDTH,

typically significantly larger, for example, 131072. Generally a power of 2.
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[0039] INDEX WIDTH: Width of an index register, typically 32 bits.

NUM_INDEXES: Number of index registers, typically 8.

[0040] Note that the memory widths, in particular the SRAM_ WIDTH are relatively
large. This is to enable the processing of tensor elements in a single operation.
Specifically, large memory widths available on a single access enable vectors and entire
tensor elements to be accessed during that single operation. Otherwise, multiple accesses
and multiple operations would be used thereby slowing down operation of tensor

calculations.

Components for a Machine Language Hardware Accelerator

[0041] Figure 2 is a block diagram 200 of a machine language hardware accelerator
112. A machine language hardware accelerator is typically implemented as logic gates
within a single integrated circuit. In some embodiments, a machine language hardware
accelerator 112 may be implemented in a field programmable gate array (“FPGA”) device
or equivalent. In production, a machine language hardware accelerator 112 may be

implemented as a custom chip comprised of multiple logic gates.

[0042] A machine language hardware accelerator 112 is comprised of the following
components:

e Data SRAM 114

e Shift Reader 202

e Multicast Network 204

e Qperation Units 116

e Index Registers (Addressing) 206
e DRAM Transfer Unit 118

e Instruction Decoder 208

These components are individually described in greater detail below.

10
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Data SRAM

[0043] The machine learning hardware accelerator keeps most data to be operated on
in multiple banks of SRAM (typically dual-port). There shall be SRAM BANKS number
of banks, each holding SRAM DEPTH rows, each consisting of SRAM WIDTH *
ELEM WIDTH bits, which are logically viewed as SRAM WIDTH elements of
ELEM WIDTH size. SRAM is viewed logically as a single linear address space
consisting of elements of ELEM_WIDTH bits in size, with a total of SRAM BANKS *
SRAM WIDTH * SRAM DEPTH elements. Logical SRAM location i, referred to as
M][i] below, exists at a location computed by:

LR = floor(i / SRAM_WIDTH)
LO=1-LR

B =LR % SRAM_BANKS

R =LR/SRAM BANKS
O=LO * ELEM WIDTH

where LR represents the “logical row”, LO represents the “logical element offset” within
the row, and B is the physical bank number, R is the physical row number within that
back, and O is the bit offset within that row of the first bit of the element, the following
ELEM_ WIDTH bits comprising the whole of the element. (Note that the % operator is

the modulus operator).

[0044] Alternatives to the above approaches are presented below herein along with

other modifications.

Shift Reader

[0045] The shift reader 202 provides addressing logic and a barrel rotate and barrel
shifter to allow logical access of SHIFT WIDTH logically contiguous elements beginning
at any logical offset, A, within SRAM. Figure 3 is a flow chart 300 of the operation of the

shift reader 202 given the address of the first element.

11
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[0046] In block 302, for each bank B, simultaneously perform a read of row floor((A +

B * SRAM_WIDTH) / SRAM WIDTH).

[0047] In block 304, concatenate the SRAM_ BANKS * SRAM_ WIDTH entries into a

single logical list of entries.

[0048] In block 306, rotate the results left by (floor(A / SRAM WIDTH) %

SRAM BANKS) * SRAM_ WIDTH elements.

[0049] Shift the results left by A % SRAM_ WIDTH elements.

[0050] Via proper pipelining, this results in a read of SHIFT WIDTH contiguous
elements from any logical address per clock cycle. By duplicating the addressing and
rotate/shift logical, for dual-port SRAM, this typically would be extended to up to two

independent reads of SHIFT WIDTH contiguous elements per clock cycle.

Multicast Network

[0051] Turning back to Figure 2, the multicast network 204 provides a general
mechanism to permute and duplicate entries being read by the shift reader 202 and apply
them to the operation units 116. Specifically, on a per-instruction basis each operation
unit 116 will be given one element from the multicast network 204, and each of these
elements must come from an entry within the SHIFT WIDTH outputs of the associated
shift reader 202, or must be 0. The reordering and duplication done by the multicast unit
204 is not fixed, and may be varied by software. The modification is done through either a
“preload” mechanism by which a multicast pattern is loaded into the multicast network
204, between groups of normal operation, or via additional “pattern” information present
in each instruction, or some combination, allowing potentially per-instruction variability
of the multicast. In typical use, there will be two independent multicast networks 204,

each connected to an independent shift reader 202, allowing for two elements to be sent to

12
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each operation unit for each clock cycle. Multiple alternatives are explicitly contemplated

below, and yet further alternatives are possible.

[0052] Generally, with regard to tensor contractions, each output is held in the
accumulator of an operational unit 116, and the goal of the multicast network 204 is to
route the two operands of the tensor operation (typically multiplication) from the input

tensors or tiles to the appropriate operation unit.

A. Bit Operation Multicast Network
[0053] A bit operation multicast network 204 consists of a series of layers, each layer
of which either passes the elements through identically, or performs some fixed
permutation or fanout operation, based on a layer-wide bit specified in the currently
executing instruction. The early layers are SHIFT WIDTH elements wide, and via
fanouts extend until the layers are NUM_UNITS elements wide. In implementation, a
layer is envisioned to be set of fixed traces with layerWidth*ELEM_ WIDTH one-bit
multiplexers with a shared select line. In addition, it is envisioned that in order to meet
timing requirements, layers of buffers may need to be inserted in parts of the multicast
network 204. In this case, instruction execution will be pipelined such that the select line
for later layers and operation arriving at the operation units is appropriately delayed

relative to the original memory read.

[0054] The choice of the number of layers and the fixed permutations to use is based
on providing maximal flexibility among typical machine learning work flows, specifically
tensor contractions. Given that the output is considered to be a tile of a tensor, by
rounding all tile sizes to a power of two, the bits of the binary index of an operation unit

can be considered a set of coordinates, where each coordinate comprises a contiguous

13
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number of bits within the index. This limitation on tensor dimension sizes significantly

simplifies the types of data rearrangement needed.

[0055] The input tensors will likely choose to use only some of these coordinates,
possibly with an offset (i.e., the addition of tensor index appearing only on the right hand
side). In addition, the input will likely choose to broadcast the same value across multiple
output coordinates, for cases where a given input's tensor coordinates are independent of

one of the output indexes.

[0056] For example, imagining SHIFT WIDTH to be 16, each input arriving from the
shift rotator may be given an index in the range [0,16), which can represented in binary as
4 bits (low bit firsts) as (10, 11, 12, 13). Imagining NUM_UNITS to be 256, the output units

may each be given an index similarly (00, ol, 02... 07).

[0057] Now, imagine one wished to take a 2x2 tensor I from the input, and apply it to

a 2x2x2x2 tensor O, such that O[w,x,y,z] is given input from A[x,y].

[0058] This can be done by providing output (00, ol...) the value from input (02, 03,
o4, 05). That is, there is a relation between which input element is sent to which
operational unit, and the bits of the indexes of the associated input element and operational

unit.

[0059] To perform these operations, two set of layers are used. The first set of layers,
called the permutation layers, are designed to permute elements in ways which are useful
to machine learning workflows. The second set of layers, called the duplication layers,

duplicates entries, providing fanout.

[0060] The first set of layers consist of a series of “shuffles” that logically rearrange
the bits of the index to allows transpose operations on tiles which have power of two sizes,

as well as to allow “packing” entries for various accumulations. Or in other words, the

14
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first layer permutes the entries, such that the bits composing their indexes are also

permuted.

[0061] To describe the details of this layer, we begin by defining a permutation
operation, parameterized on a number, B which is between 0 and SHIFT WIDTH-2
inclusive. This operation moves bit B+1 to the low bit, and shift all bits after bit B+1 to

the left, leaving bits prior to B+1 as they are.

[0062] This permutation is described by the following python code:
def do perm(x, B):
N = len(x)
P =2 ** (B+1)
P2 =2 ** (B+2)

return [x[(1/P2)*P2 + 2*#(1%P) + ((1%P2)/P)] for 1 in range(N)]

[0063] We use 2*(SHIFT WIDTH-1) layers, each of which performs a specific
permutation, or performs an identity permutation. The permutations begin with B =
SHIFT WIDTH-2 and go down to O, and then repeat the same pattern again. Describing
this entire procedure in Python code, we write the following:
def do perms(x, bits):

B = int(math.log(len(x), 2)) # Number of bits

L =2%(B-1)

for 1 in range(L):

if bits[i]:

x =do_perm(x, B - (i%(B-1)) - 2)

else:
X=X
return x

15
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[0064] For a simple example of a transpose of a 4x4 tensor, where SHIFT WIDTH =
4, we wish to perform permutations 0, 2 and 1 in that order. Since the permutation options
are [2, 1, 0, 2, 1, 0], we wish to engage permutations in the bit pattern [0, O, 1, 1, 1, 0].
Using the example code above we see:

x=[0,1,2,3,4,56,7,8,9,10, 11, 12, 13, 14, 15]
print do_perms(x, [0, 0, 1, 1, 1, 0])
[0065] Which outputs

[0,4,8,12,1,5,9,13,2,6, 10, 14,3,7, 11, 15]

[0066] If we view the original X as a 4x4 tensor, this is clearly a transpose of that

tensor.

[0067] Generally, it is possible to rearrange bits to invoke many types of tensor
permutations. For two dimensional tensors, this allows all permutations. For three
dimensional tensors, this supports 5 of the 6 possible permutations. For four dimensional
tensors, this method supports 6 of the 12 possible permutations, specifically, those listed
below:

0123
0132
0213
0231
0312
1023
1203
1230
1302
2013
2301
3012

16



WO 2017/120517 PCT/US2017/012600

[0068] Unsupported permutations may be implemented at the cost of additional cycles
via doing contractions against a constant tensor to implement part of the permutation,
followed by a second operation to implement the remaining permutation. However, by
careful arrangement of tensor dimension order via software, this may be avoided in the

vast majority of cases.

[0069] The second set of layers (after leaving the shift reader) serve to duplicate
entries. Initially, the width of the layer doubles with each layer. If the duplication is
invoked, each entry results in two entries. If the duplication is not invoked, the entries
with the lower index are passed through, and the higher index entries are O filled. Once
the layer width matches the number of operation units, further duplications copy half of
the entries and discard the other half, and the pass-through case is a trivial identity
function. The specific duplication pattern suggested varies at each layer, and is
parameterized by the layer number L, which ranges from 0 to log2(NUM_UNITS)-1, such
that the vector of output entries O[i] is pulled from the set of input entries as follows:

P=2"L

O[i] =I[floor(i / (2 * P)) * P +1 % P]
[0070] As an illustrative example, presume that SHIFT WIDTH = 8, and that
NUM _UNITS=16. This would result in 4 layers. Further, presume that the value read
from the shift reader 202 were as follows:

0,1,2,3,4,5,6,7

[0071] If the O'th and 1'st duplication are engaged, but the 2'nd and 3'rd are left as
identity, we arrive at the following input at the operation units 116

0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3
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[0072] If the 2'th and 3'rd duplication are engaged, but the 0'th and 1'st are left as
identity, we arrive at the following input at the operation units

0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3

B. Fully Reprogrammable Multicast Network
[0073] A fully reprogrammable multicast network 204 consists of a broadcast Benes
network (also known as rearrangeable non-blocking network) with support for general 2x2
switching nodes which are capable of broadcast. Each switching node contains two bits to
specify the permutation or broadcast operation to be performed, which are implemented
via latches and 1 bit multiplexors. This allows arbitrary multicast patterns to be specified,
which allows relating of any input to any set of outputs. If the SHIFT WIDTH <
NUM_UNITS, the first logo(NUM_UNITS/SHIFT WIDTH) layers of the network will be
truncated, and any inputs which would have come from the prior layer can be presumed to

be zero.

[0074] Reconfiguration of the permutation network requires the loading of
(2log(NUM_UNITS)-1)NUM_UNITS bits of data. This data may be loaded either via
DRAM or SRAM. This loading will necessarily take a significant number of clock cycles,
and requires support for addressing the latches within the permutation network. However,
in cases where the number of cycles in which a given permutation is used is large enough,
the generality of permutation support (including support for tensor widths which are not
powers of two) may make this method worthwhile. Specifically, this method allows the
full set of arbitrary polynomial indexes to be implemented in one cycle for input tiles
which fit within SHIFT WIDTH and output tiles which fit within NUM_UNITS. In
addition, it is possible to provide resilience to manufacturing defects or damage leading to
faulty operation units by allowing spare operational units to be connected in as

replacements.
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C. Parity Benes Multicast Network
[0075] The parity Benes multicast network is an option more general than the bit
operation multicast network, but less intensive for reload operations than the fully

reprogrammable multicast network.

[0076] This network has the same basic structure of the general broadcast Benes
network above, however instead of configuring each switching node independently, each
switching node for a given layer of the network is set to be the parity of its index AND-ed
with a configurable per-layer value. That is, for layer I, element i, the choice of which
element from the switching node to pick is given by:
c[l,i] = PARITY(AND(p[l1], 1))

where, AND represents the element-wise AND of the log,(NUM_UNITS) bit wide index 1
with the per layer logo(NUM_ UNITS) bit wide configuration value p[l]. PARITY(x)

represent the parity function over the set of remaining bits.

[0077] This mechanism requires only log,(NUM_UNITS)(2log2(NUM_UNITS) - 1)

bits to specify p[l] for all layers, or for NUM_UNITS = 64k, 496 bits

[0078] However, all tensor permutations operations of tiles with widths which are a
power of two, as well as all power two based multicasts are supported by this method,
making it more general than the bit operation multicast network, but less expensive than
the fully reprogrammable multicast network. In addition, while the full values of p[l]
could be specified on a per instruction basis, it is also possible to specify the logical
permutation and broadcast operation to be performed and compute the required bits via a
combinatorial circuit on-chip, resulting in a reduced instruction width, or removing the
need to perform an additional SRAM lookup. Finally, permutations could be stored in a

small independent SRAM, allowing small instructions which only index data.
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[0079] This idea of configuring the full set of switching nodes using a function of a

smaller set of configuration parameters and the node index can be generalized.

D. Benes Permutation Network and Simple Duplication Network
[0080] In this variant, the permutation portion of the bit operation multicast network is
replaced by a simple Benes network (non-broadcast) for which the configuration is loaded,
however the fixed set of duplication layers is retained. Because the number of bits needed
to specify an arbitrary Benes permutation layer is (2logy(B)-1)B/2 bits, if SHIFT WIDTH

<=ELEMENT WIDTH, such a network can be loaded from SRAM in a single read.

Operation Units

[0081] The operation units 116 consist of a large number (NUM_UNITS) of
independent and identical units 116, each of which typically would contain three registers,
A, R, and S, and a number of functional units. In addition, each operation unit 116
receives two elements per clock cycle, one from each multicast network 204. These
values are called B and C, and are ELEM_WIDTH bits wide. The operational units 116
are all controlled by a single instruction decoder, and all perform the same operation each

clock cycle.

[0082] During each clock cycle, each operation unit 116 performs an operation based
on its previous register values, the new inputs B and C from memory, and per instruction
control elements including D, a 4 bit per instruction constant. Each operation unit 116

then updates its registers.

Operation Unit Registers

[0083] The operational unit 116 will have the following registers:

A - Accumulator register, holds ACCUM_WIDTH bits interpreted as a signed

integer
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R - RNG state register, holds data used to generate pseudorandom numbers

S - Status register, hold 4 booleans S[0] to S[3]

Operations

[0084] During each cycle, the operational unit 116 logically performs operations
comprised of computer instructions limited to a set of machine learning primitives. The
primitives are atomic operations determined to perform operations used in machine
learning that typically take multiple instructions in a traditional processor. Specifically, an
atomic operation is an operation that is performed as a discrete unit of functionality and
cannot be subdivided. Thus hardware that support functionality that can be performed in a
single operation that takes multiple operations in a traditional processor accelerate

performance of the functionality by the number of operations saved.

[0085] Examples of functionality to be performed in a single operation rather than
multiple operations on a traditional processor include tensor contractions, addition of
random noise, and element-wise non-linear operations. The instructions include the set of
the following primitive operations:

SET: A := B // Set Accumulator

MAC: A +=B * C// Multiply Accumulate

ARN: A +=R // Add D bits of Random Noise

LTR: A := (A - B) * C// Linear transform

SHR: A := A >> D // Shift right

CMP: S[D] :=(B <= A <=C) // Compare A to range, update S[D]

OUT: // Output data from operation units to SRAM, see overall operations
SRD: R = A // Seed RNG values

RET: // Return, done with this computation

[0086] In addition, during each cycle, unless the instruction is SRD, the R registers are

updated to produce a new pseudo-random value. This may be done via a linear feedback
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shift register (“LFSR”), possibly linking R registers from multiple operation units to

increase mixing.

[0087] This set of instructions could be extended as needed. For example, for max-
pooling operations, the following additional instruction may be useful:

MMA: A :=max(A, B * C) // Multiply, Max Accumulate

Per Instruction Control Values for the Operation Units

[0088] The control values for the operation units 116 on a per-instruction basis are as

follows:

[0089] Operation: Which operation to perform of those listed in the previous section.

[0090] Condition: For each S[i], what value S[i] must have to perform this operation.
This can be O, 1, or “don’t-care” for each. The output of each test is AND-ed together to
decide if the operation should be performed. Since each entry would typically be

represented as 2 bits, this component of the instruction take 8 bits.

[0091] D: Value used for CMP and SHR.

[0092] Again, there are many variations. For example, the conditional execution
could be defined as a 16 bit number, which represents under which of each of the 16

conditions possible based on S the operation should be performed.

Index Registers and Address Unit

[0093] The index registers 206 are global to the operation units 116 and the instruction
decoder 208, and track various index variables to control addressing and allow looping
and other operations to be performed easily. Each index register 206 stores an integer

value, INDEX WIDTH bits wide, and there are NUM_INDEXES registers.

[0094] Each instruction contains some number of address references, which allow the

computation of an SRAM or DRAM address via the index registers.
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[0095] Each address reference contains a base memory offset as well as a
INDEX WIDTH wide multiplier for each index register, for a total of NUM_INDEXES +
1 values per address reference. To compute the memory address, the following sum is
computed:

A =B + Sum over i=[0, NUM_INDEXES) of M[i] * R[i]
where B is the base address, and M[i] is the multiplier for each index register, and R][i]

represents the current value of each index register.

[0096] Instructions also contain an index register update, which again consists of
NUM_INDEXES numbers of INDEX WIDTH size, U[i], as well as a set of booleans BJ[i]
and performs the following update:

R[i] :=BJ[i] ? (R[i] + U[i]) : UJi]

where Ul[1] is the list of index register updates and ? is the trinary if-then-else operator.

[0097] Thus for each instruction, memory references can be computed from index

registers, and the index registers can be updated.

[0098] Finally, each instruction specifies an index register test, consisting of a choice
of index register, 1, to test, and a maximum value, M. The test is considered true if:

R[i]<M

[0099] Each instruction then specifies a next instruction number for both the case
where the test is true, and the case where the test is false. This allows creation of looping

constructs.

DRAM Transfer Unit

[00100] The DRAM transfer unit 118 is invoked in a separate section of each
instruction, independent of the operation for the operation units. It specifies an SRAM

and a DRAM location (possibly with some alignment requirements), as well as an
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operation (read or write). The operation may also be a no-op. This initiates a read/write
to/from DRAM from/to SRAM. This operation will not complete by the beginning of the
next instruction, due to the instruction pipeline depth relative to the DRAM latency, thus
software must be aware of the latency. The width of the data transfer is typically as large

as 1s possible given DRAM bandwidth.

[00101] Alternately, the DRAM transfer unit 118 may be restricted to only perform
reads into SRAM, and writes may be sourced from the operational units. In this case, it is
possible to perform pre-fetch from DRAM via the use of a second instruction decoder
which operates some number of cycles ahead of the primary instruction decoder, and
places results into an associative cache. Then, when the instruction is scheduled on the
main instruction decoder, the value is fetched from the cache and written to SRAM, thus
making DRAM access appear deterministic. For write operations, a write though cache

may be used to prevent the need for full DRAM round trip.

Instruction Decoder + SRAM

[00102] The instruction decoder 208 will typically contain its own SRAM, whose width
is optimized for the largest possible instruction, although it may also reuse system SRAM,
possibly including a caching mechanism to reduce bank read conflicts. Each cycle, the
instruction decoder reads a new instruction and orchestrates the activity of the various

units as described in the operation section.

Alternate SRAM Design

[00103] Alternately, the SRAM banks 114 may exist as 2 banks, each SHIFT WIDTH
elements wide. Each bank would typically feed one of the two shift registers and typically
has very few addresses (as few as 4 per bank). This simplifies that addressing, causing
exactly one address to be loaded onto the shift-loader, which then simply performs a rotate

of the data from the single wide address. Outputs can be written to either bank, and
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sections of either bank can be scheduled to be written to or read from DRAM, possibly
including a non-trivial mapping from multiple regions of DRAM to a single address. For
example, presuming that 128 elements can be writing to DRAM for each clock cycle, one
approach would be to support a write of any 128 element aligned offset within an address

of either bank to be scheduled for read or write during each clock cycle.

Overall System Operation

[00104] On each cycle, a single new instruction is read by the instruction decoder 208.
Because instructions are heavily pipelined, operations for multiple previous instructions
are occurring while the new instruction is being fetched by the decoder 208. Figure 4 is a
flow chart of the operation of the decoder 208. To clarify the flow, the logical order will
be described here, but multiple independent steps may be scheduled on the same clock
cycle if possible, and some steps, such as propagating the elements through the multicast

network may take more than one clock cycle, with internal pipeline latches.

[00105] In block 402, fetch and load instruction from current instruction pointer (“IP”)

register.
[00106] In block 404, update index registers.
[00107] In block 406, perform index register test and set new IP for next instruction.

[00108] In block 408, compute addresses for DRAM transfer (if any) and schedule

transfer via the DRAM transfer unit 118.

[00109] In block 410, compute addresses for tensor element B and tensor element C

memory access, if relevant to the fetched instruction type.

[00110] In block 412, load SRAM data for B and C into SRAM data banks 114, if

relevant to the fetched instruction type.
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[00111] In block 414, propagate loaded data through shift loaders, if relevant to the

fetched instruction type.

[00112] In block 416, propagate loaded data to operation units 116 through multicast

networks 204, if relevant to the fetched instruction type.

[00113] Inblock 418, perform operation in the operation unit 116.

[00114] Note, if the operation to perform is “OUT”, a contiguous portion of the data
from the operation units is written to an SRAM location specified as a memory reference,
with the portion being an aligned region with the operation unit index space and defined
by another memory reference. Additionally, a write length is defined which may be less

than SHIFT WIDTH. Alternately outputs can be written directly to DRAM.

Example of a Convolution Use Case

[00115] The machine learning hardware acceleration techniques above can be used to
implement the logical operation of generalized tensor contractions, additive noise, and
element-wise nonlinearities. Since these operations are typically performed in the above
order repeatedly for deep networks (once per layer), we presume this same order.

However this is not required.

[00116] To make the operations concrete, we examine a specific operation, convolution
followed by a random round, followed by a leaky RELU nonlinearity, of an image which
is 256 wide by 256 high by 64 feature channels deeps with a kernel that is operates over a
3x3 x,y region, and maps 64 input channels to 64 output channels. The input tensor
representing the image and the kernel will be presumed to already exist within SRAM
organized such that:

D[ci, x, y] =M[D_o + ¢1*65536 + 256*x + y]
K[i, j, ¢, co] = K[K o +1*16384 +1*4096 + 64*ci + co]
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[00117] We will also presume area exists for the output at:

OJco, x, y] =M[O_o + co*65536 + 256*x +y]

[00118] Where M[i] represent logical memory locations via the non-alternate memory
layout. We also presume default values for all parameters. We presume the bit operation

multicast network.

[00119] Logically, we iterate over every x value from 0 to 256 in steps of 6 elements,
and for each one, compute the output for all y and co for the x values in question as a
single tile, performing an inner accumulation over 1, J, and ci. Then we add noise, reduce

precision, and perform the nonlinearity, followed by writing out the results.

[00120] To do this, we map the various logical tensor indexes to index registers as
follows:

r0=xrl =cir2 =113 =] r4 = co (for output to main memory)

[00121] We define two specific multicast patterns, one for the kernel, and the other for
the input. For the kernel, we define a pattern which maps input elements [0,64) to all
operational units, such that U[i] = I[1/2048]. This can be done via enabling all duplication
layers < 12, disabling all duplications layer >= layer 12, and disabling all permutation

layers. We call this pattern PK.

[00122] For the input, we define a pattern which maps repeats all 2048 input elements
64 times. This can be done via enabling all duplication layers < 6, disabling all

duplications layer >= layer 6, and disabling all permutation layers, we call this pattern PL

[00123] We also make a set of constants C, and load them into memory such that we
can use the permutation layer pattern which enables all duplication layers and no

permutations layers to provide the constant to all operational units.
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[00124] The following is the logical instruction stream which performs the above
operation:

00: SET // Zero all accumulators
B=constant 0x0000
0=0,r1=0,12=0,r3=0
01: MAC // Add up each row of i
B=M[D o + 65536*rl + 256*r0 + 256*r2 + r3] via PI C=M|K o +
16384*r2 + 4096*r3 + 64*rl1] via PK
3 +=11f (r3 <2) goto 1, else goto 2
02: MAC // Add up each column of j
B=M[D o + 65536*rl + 256*r0 + 256*r2 + r3] via PI C=M|K o +
16384*r2 + 4096*r3 + 64*rl1] via PK
r2+=1,13=0
if (r2 <2) goto 1, else goto 3
03: MAC // Over each input channel
B=M[D o + 65536*rl + 256*r0 + 256*r2 + r3] via PI C=M|K o +
16384*r2 + 4096*r3 + 64*rl1] via PK
rl+=1,12=0,r3=0if (r2 <63) goto 1, else goto 4
04: ARN 15 bits // Add noise to implement random round
05: SHR 16 // Shift down by 16 to get back to 8.8
06: CMP -> S[0] // See if we are >= 0.0
B=constant 0x0000
C=constant Ox7{ff
07: LTR if !'S[0] // If less, multiply by .1 * 0x1000
B=constant 0x0000
C=constant 0x199
08: LTR if S[0] // If >=, multiply by 0x1000
B=constant 0x0000
C=constant 0x1000
09: ARN 11 bits // Add noise to implement random round
10: SHR 12 // Shift down to remove factor of 0x1000
r4 =01f (r0 <252) goto 11, else goto 13
11: OUT // Normal output case
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offset = 2048*r4
M[D o + 65536%r4 + 256*10]
size = 2048
4 +=1
if (r4 < 64) goto 11, else goto 12
12: SET // Rezero accumulators and get next 6 rows
B=constant 0x0000
0 +=6 goto 0
13: OUT // Special end output case to handle last 2 rows
offset = 2048*r4
M[D o + 65536%r4 + 256*10]
size=512
4+=1
if (r4 < 64) goto 11, else goto 14
14: RET

Conclusion

[00125] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are disclosed as

example forms of implementing the claims.
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CLAIMS

1. A system to perform hardware acceleration for machine learning, comprising:

multiple banks of random access memory;

a shift reader;

a plurality of operational units configured to access at least a portion of the random
access memory concurrently;

a multicast network communicatively coupled to the memory and the shift reader;
and

an instruction decoder comprised of an accumulator, one or more registers, and a
random number generator, wherein the instruction decoder is configured to process
instructions restricted to an instruction set comprised machine learning primitives,

configured to perform memory transfers and dispatch instructions to the operational units.

2. The system of claim 1, wherein the random access memory is comprised of static
random access memory and is configured to be accessed with a memory width sufficient

to perform vector operations with a single access.

3. The system of claim 1, wherein each bank of random access memory is coupled
with shift readers sufficient to perform shifts such that the shift readers need not change
the address of the memory rotating the entire bank of random access memory.

4. The system of claim 1, further comprising a plurality of index registers, wherein
the instructions of the instruction set are configured to calculate memory addresses from
the index registers and update the index registers within the atomic operation of the

instruction.

5. The system of claim 1, wherein the shift reader is configured to perform a shift
operation between the random access memory banks via:

simultaneously reading data from a plurality of the memory banks based on a
logical offset;

concatenating the read data read into a single logical list;

rotating the read data in the single logical list based on the logical offset and the
width of memory that may be read in a single operation; and

shifting the read data based on the logical offset and the width of memory that may

be read in a single operation.
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6. The system of claim 1, wherein the multicast network is configured to permute
data and copy data from the shift reader and the memory via operation of the operational

units.

7. The system of claim 6, wherein the multicast network is comprised of a plurality of
permutation layers and a plurality of duplication layers, the permutation layers configured

to perform atomic transpose operations of tensor tiles.

8. The system of claim 6, wherein the multicast network is a broadcast rearrangeable
non-blocking network with 2x2 switching units, each unit retaining state as to a
permutation or broadcast function to be performed, such that the network may be

dynamically configured to an arbitrary multicast algorithm.

9. The system of claim 6, wherein the multicast network is a is a parity rearrangeable
non-blocking network such that a full set of switching nodes is configured based at least

on a set of parameters less than the number of switching nodes and a node index.

10.  The system of claim 6, wherein the multicast network is a is a non-broadcast
rearrangeable non-blocking network such that wherein duplication is performed via simple

duplication.

11. The system of claim 1, further comprising a transfer unit configured to perform
wide bulk copy operations between non-local memory and the local random access

memory.

12. The system of claim 1, wherein the operational units are configured to have an
accumulator with a memory width sufficient to perform vector operations with a single

acCCess.

13. The system of claim 1, wherein the operational units are configured with a pseudo-

random number generator and a pseudo-random number register.

14. The system of claim 1, wherein the operational units are configured to process an

atomic multiply and accumulate maximum (MMA) operation.

15. The system of claim 1, wherein the operational units are configured to perform

floating point operations with a mantissa precision of less than 24 bits.
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For each SRAM bank B, simultaneously perform a read of
the row at the lowest integer of B multiplied by the width of
the SRAM plus the logical offset A, the lowest integer divided
by the width of the SRAM

302

Concatenate the entries (number of SRAM banks * the width
of the SRAM) into a single logical list of entries

304

Rotate the entries left by the width of the SRAM multiplied by
the lowest integer of logical offset A divided by the width of
the SRAM modulo the number of SRAM banks

306

Shift the results left the logical offset A modulo the width of
the SRAM

308

Figure 3
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400 ~\
Fetch and load instruction from current IP register
402
Update index registers
404
Perform index register test and set new IP for next instruction
406
,
Compute addresses for DRAM transfer if any, and schedule
transfer
408
rCompute addresses for tensor element B and tensor element
C memory access
410
Load SRAM data for B and C
412
Propagate loaded data via shift loaders
414
Propagate data loaded data to operation units via multicast
networks
416

? Perform operation in operation unit '
418

Figure 4
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