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(57) Abstract: Record Linkage (RL) is the task of identifying two or more records referring to the same entity (e.g., a person, a
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trained to operate at industrial precision/recall operating points, and the shorter output rules are so clear that it can effectively ex-
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lines on the desired industrial operating points, and the improved understanding of the model's decisions led to faster debugging
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COST-SENSITIVE ALTERNATING DECISION TREES FOR
RECORD LINKAGE

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] Priority is claimed from US provisional patent applications
61406264 filed on 25-OCT-2010; 61409908 filed on 03-NOV-2010;
61466608 filed on 23-MAR-2011; and 61527926 filed 26-AUG-2011,
each incorporated herein by reference for all purposes (specifically
including all drawings, tables, equations and expressions) as if

expressly set forth.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] None

FIELD

[0003] The technology herein relates to databases and record
linkage, and more particularly to cost-sensitive alternating decision

trees for record linkage.

BACKGROUND AND SUMMARY

[0004] Many consumers want to research the background of
childcare providers, coaches, healthcare workers and home
contractors. Many of us want to reconnect with family and friends.

Business users often have good reason to check and monitor the
1
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background of potential employees and ensure they are the best
person for the job. Criminal checks can enable consumers to make
informed choices about the people they trust by delivering
appropriate and accurate public records information. Identity
verification can assist businesses and consumers to confirm that
someone is who they say they are.
[0005] Given enough time to search, you may be able to
discover if your prospective employee has been charged with DUI, if
your son’s soccer coach has ever been accused of domestic
violence, and where your old college roommate or high school
classmate is now living. But a significant challenge is to be sure the
information you are seeing pertains to the right person or corporation.
We are all concerned about detection and prevention of identity theft,
America's fastest-growing crime. Many of us once carried our social
security cards in our wallets, but the risk of identity theft has
cautioned us to now reveal our social security number to no one other
than our bank, our employer and our taxing authority on a confidential
need-to-know basis. Without a unique national identification number
that could serve as an index into a variety of records from many
different sources, it is challenging to accurately link such records
without making mistakes that could provide incorrect information,
damage someone’s reputation or destroy confidence in the
information source.
[0006] Figure 1 shows an example of the scope of the problem.
There are over 300 million people living in the U.S. alone, and billions
2
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of records pertaining to all those people. Take the example of trying
to find out accurate personal information about Jim Adler, age 68 of
Houston Texas. By analyzing available records, it may be possible to
find 213 records pertaining to “Jim Adler” but it turns out that those
213 records may pertain to 37 different Jim Adlers living all over the
country. It is desirable to link available records to determine which
ones pertain to the right Jim Adler as opposed to Jim Adler age 57 of
McKinney Texas, or Jim Adler age 32 of Hastings Nebraska, or Jim
Adler age 48 of Denver Colorado or any of the other 33 Jim Adlers for
whom there are records. It is further desirable to avoid incorrectly
linking Jim Adler the First Selectman of Canaan New Hampshire with
Jim Adler serving time in the Forrest City Arkansas Federal
Correctional Institute.

[0007] Some have spent significant effort to build comprehensive
databases that link related records to provide background, criminal,
identity and other checks for use by employers and consumers.
When consolidating information from multiple data sources, it is often
desirable to create an error-free database through locating and
merging duplicate records belonging to the same entity. These
duplicate records could have many deleterious effects, such as
preventing discoveries of important regularities, and erroneously
inflating estimates of the number of entities. Unfortunately, this
cleaning operation is frequently quite challenging due to the lack of a

universal identifier that would safely but uniquely identify each entity.
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[0008] The study of quickly and accurately identifying duplicates
from one/multiple data source(s) is generally recognized as Record
Linkage ("RL”). Synonyms in the database community include record
matching, merge-purge, duplicate detection, and reference
reconciliation. RL has been successfully applied in census
databases, biomedical databases, and web applications such as
reference disambiguation of the scholarly digital library CiteSeerX
and online comparison shopping.

[0009] One example non-limiting general approach to record
linkage is to first estimate the similarity between corresponding fields
to reduce or eliminate the confusion brought by typographical errors
or abbreviations. A straightforward implementation of similarity
function could be based on edit distance, such as the Levenshtein
distance. After that, a strategy for combining these similarity
estimates across multiple fields between two records is applied to
determine whether the two records are a match or not. The strategy
could be rule-based, which generally relies on domain knowledge or
on generic distance metrics to match records. However, a common
practice is to use Machine Learning (ML) techniques, to treat the
similarity across multiple fields as a vector of features and “learn”
how to map them into a match/unmatch binary decision. ML
techniques that have been tried for RL include Support Vector
Machines, decision trees, maximum entropy, or composite ML

classifiers tied together by boosting or bagging.
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[0010] Due to the importance of feature representation, similarity
function design is at the core of many record linkage studies. As
noted above, perhaps the most straightforward one is the
Levenshtein distance which counts the number of insert, remove, and
replace operations when mapping string A into B. Considering the
unbalanced cost of applying different operations in practice, it is
possible to modify the definition of edit distance to explicitly allow for
cost customization by designers. In recent years similarity function
design is increasingly focused on adaptive methods. Some have
proposed similar stochastic models to learn the cost factors of
different operations for edit distance. Rooted in the spirit of fuzzy
match, some consider the text string at the tuple level and proposes a
probabilistic model to retrieve the K nearest tuples with respect to an
input tuple received in streamed format. Exploiting the similarity
relation hidden under a big umbrella of linked pairs, some have
iteratively extracted useful information from the pairs to progressively
refine a set of similarity functions. Others introduce the similarity
functions from probabilistic information retrieval and empirically study
their accuracy for record linkage.
[0011] Whatever ingenious methods may be used for similarity
functions, it is desirable to integrate all of these field-level similarity
judgments into an overall match/no-match decision. Various learning
methods have been proposed for this task. Some have proposed
stacked SVMs to learn and classify pairs of records into
match/unmatch, in which the second layer of SVMs is trained on a

5
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vector of similarity values that are output by the first layer of SVMs.
Others consider the records in a database as nodes of a graph, and
apply a clustering approach to divide the graph into an adaptively
determined number of subsets, in which inconsistencies among
paired records are expected to be minimized. Some instead consider
features of records as nodes of a graph. Matched records would
excite links connecting corresponding fields, which could be used to
facilitate other record comparisons.
[0012] A well-performing pairwise classifier depends on the
representativeness of the record pairs selected for training, which
calls for an active learning approach to efficiently pick informative
paired records from a data pool. Some have described committee-
based active learning approaches for record linkage. Considering the
efficiency concern of applying an active learning model on a data pool
with quadratically large size, others propose a scalable active
learning method that is integrated with blocking to alleviate this
dilemma.
[0013] Despite its importance in producing accurate estimation of
duplicates in databases, insufficient attention has been given to
tailoring ML techniques to optimize the performance of industrial RL
systems.
[0014] Example illustrative non-limiting embodiments herein
provide cost sensitive extensions of the Alternating Decision Tree
(ADTree) algorithm to address these and other problems. Cost
Sensitive ADTrees (CS-ADTree) improve the ADTree algorithm which
6
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is well-suited to handle business requirements to deploy a system
with extremely different minimum false-positive and false-negative
error rates. One exemplary illustrative method assigns biased
misclassification costs for positive class examples and negative class
examples.
[0015] Exemplary illustrative non-limiting implementations
provide record linkage of databases by ADTree. Considering that a
problem of record linkage is that the business costs of misclassifying
a matched pair and an unmatched pair can be extremely biased, we
further propose CS-ADT which assigns a higher or lower
misclassification cost for matched pairs than for non-matched pairs in
the process of training ADTree. Experiments show CS-ADTree and
ADTree perform extremely well on a clean database and exhibit
superior performance on a noisy database compared with alternative
ML techniques. We also demonstrate how the run-time
representation of ADTree/CS-ADTree can facilitate human
understandability of learned knowledge by the classifier and yield a
compact and efficient run-time classifier.
[0016] Because ADTrees output a single tree with shorter and
easy-to-read rules, the exemplary illustrative non-limiting
technologies herein can effectively explain its decisions, even to non-
technical users, using simple score aggregation and/or tree
visualization. Even for very large models with hundreds of features,
score aggregation can be straightforwardly applied to perform feature
blame assignment — i.e., consistently calculate the importance of

7
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each feature on the final score of any decision. Improved
understanding of these models can lead to faster debugging and

feature development cycles.

[0017] Other non-limiting advantages features and advantages
include:

o Human-understandability

J Confidence measure

o Runtime efficiency from lazy evaluation

o Capture intuitive feature interactions

o Very competitive F-Measure

o Bake preference for precision into algorithm

o Better recall at high levels of precision

o Other.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] These and other features and advantages will be better
and more completely understood by referring to the following detailed
description of exemplary non-limiting illustrative embodiments in

conjunction with the drawings of which:

[0019] Figure 1 illustrates the record linking problem for personal
records;
[0020] Figure 2 shows an example non-limiting overall

execution-time data processing system 100;
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[0021] Figure 3 shows a further illustrative non-limiting data
processing system 100 encompassing both execution-time
components and training-time components;
[0022] Figure 4 shows an example non-limiting illustrative
“match/unmatch” test using an ADTree/CS-ADTree approach;
[0023] Figure 5 shows example non-limiting illustrative person
record linkage features;
[0024] Figure 6 shows an example non-limiting illustrative
Record Linkage Development Cycle;
[0025] Figure 7 shows an example illustrative comparison of
machine learning and record linkage approaches;
[0026] Figure 8 shows an example alternating decision tree and
an example conventional decision tree;
[0027] Figure 9 is an example non-limiting cost matrix for cost
sensitive learning;
[0028] Figure 10 is a non-limiting illustrative example of a pair of
person profile records;
[0029] Figure 11 is a non-limiting illustrative example of feature
values of phone_match;
[0030] Figure 12 is a non-limiting illustrative example of a tiny
ADTree for person linkage;
[0031] Figure 13 is a non-limiting illustrative example of a
confusion matrix for binary classification;
[0032] Figure 14 is a non-limiting illustrative comparison of
average’s for ADTree/CS-ADTree;

9
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[0033] Figure 15 is a non-limiting illustrative example of
Precision-Recall curves of ADTree/CS-ADTree;

[0034] Figure 16 is a non-limiting illustrative example of
threshold range of ADTree/CS-ADTree with respect to high range;
[0035] Figure 17A-17W are together an extended drawing
showing an example CS-ADTree (if name_suffix=differ, we get a
strong negative score and don’t query additional features) (to
assemble this drawing, place Figure 17A on the left, Figure 17B to
the right of Figure 17A, Figure 17C to the right of Figure 17B, and so
on);

[0036] Figure 17X shows a subset of certain relevant nodes from
the CS-ADTree shown collectively in the extended drawing of Figure
17A-17W which illustrates the effect of the name _suffix feature;
[0037] Figure 18 is an example partial CS-ADTree. Note how we
assign different scores to different birthday distances and query
additional features if birthday difference is unknown (infinite);

[0038] Figure 19 is an example non-limiting illustrative set of P-R
curves of 3 active learning approaches;

[0039] Figure 20 shows example non-limiting illustrative P-R
curves of ADTree and CS-ADTree on an example illustrative
evaluation dataset &; and

[0040] Figure 21 is an exemplary non-limiting illustrative
histogram of f-measure’s for ADTree, CS-ADTree, and alternative ML

techniques on €.

10
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DETAILED DESCRIPTION

[0041] Figure 2 shows a non-limiting illustrative example overall
data processing system 100 providing record linkage using
alternating trees and cost-sensitive learning. In the example shown,
data is acquired from a variety of different sources including for
example address history and real estate tax records, telephone
records, criminal and civil court records, licenses, professional
records, social graphs and social networking sites. This information
can be acquired electronically (e.g., through use of web crawlers or
other information harvesting technology), manually (e.g., through
visual record inspection, telephone calls, personal visits, interviews,
etc.) or both. In one example non-limiting implementation, the data
acquisition block 102 may comprise one or more computers
connected to the Internet or other electronic network that generates
and transmits queries over the network, receives responses and
stores the responses in non-transitory storage device(s).

[0042] In the example shown, the data acquired by data
acquisition 102 is cleaned, validated and standardized using one or
more data exchange computer processors 104 to provide outputs in
a standardized data model 106. One exemplary non-limiting
implementation uses one or more Hadoop clusters having sufficient
numbers of nodes to provide necessary processing resources.
[0043] The standardized data 106 is then provided to a
conventional blocking engine 108 that attempts to find groups of

records that are similar in some way. The blocked records are then
11
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provided a “Machine Learning” (ML) processor 110 that applies
alternate trees and cost-sensitivity to accurately link or match
records. The resulting record linkages are further processed by a
clustering process 112 to generate search indices 114 that are stored
in a non-transitory document store 116. In the illustrative
implementation, the blocking 108’s job is to avoid recall loss in
proposing pairwise judgments whereas the clustering 112’s job is to
turn pairwise judgments into correct partitioning of graph into entities.
Truth is derived from human judgments on record pairs, whereas
precision is based on True Positive/(True Positive + False Positive)
and Recall is based on True Positive/(True Positive + False
Negative).

[0044] Local and/or remote users can search the document store
116 via web browser based or other displays 118 and associated
input devices (e.g., touch screens, keyboards, pointing devices, voice
recognition input, smart phones, tablet computers, etc.) to access
(e.g., via the Internet) the stored information (e.g., a records check on
a son’s soccer coach, a prospective employee, an investment
advisor, etc.) on a free, trial or subscription basis.

[0045] The automated steps described above may be performed
by computer under control of software instructions stored in non-
transitory storage devices such as disk drives, flash memory devices
or any other conventional program store(s). Accuracy can be

measured on pairwise classification as match/no-match.

12
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[0046] Figure 3 shows a further illustrative example
implementation of system 100 encompassing both execution-time
components and training-time components. System 100 includes a
database 120 that is processed by blocking model 108 to provide a
blocked database for further processing by feature functions and
record linkage 126 for storage in a cleared database 128. Record
linkage 126 in turn is based on a learning model 110 obtained from a
machine learning process 130 using an active learning model that
operates on the blocked database 124 to develop a training database
134. The training database may use a crowdsourcing methodology
which in this illustrative non-limiting example is implemented via
Amazon’s Mechanical Turk platform, 136, to develop class labels 138
for input into training 140 used to develop the learning model 110.
Training 140 may also accept input from additional feature functions
142 and ADTree/CS-ADTree learning algorithm(s) to be described
below.
[0047] An output of record linkage 126 is a match/unmatch block
146 that determines whether two records should be linked. Figure 4
shows in more detail how two records containing a variety of fields
(e.g., name, address, telephone number, profession, etc.) are applied
to a feature set 148 through an ADTree/CS-ADTree process 150 to
make a “match/unmatch?” determination as to whether the records
should be linked or not.
[0048] Figure 5 shows an example of illustrative records that are
candidates for linkage based on an illustrative feature set. The

13
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illustrative non-limiting fields shown are “Name”, “Birthday”, Street
address”, “City/State” and “Phone number.” Each record contains the
name “Robert Jones” who lives in Seattle Washington and was born
in March of 1966. Note however that the phone numbers are
different (same area code, but different numbers), the street
addresses are different and the birthdays don’t match. Is this the
same Robert Jones or a different one? Figure 5 thus illustrates
different person record linkage features. There can be a number of
(e.g., over 40) different features that can be a mix of real-valued,
integer, Boolean, and categorical (e.g., phone match could be on
area code, area code + exchange, or exact match).

[0049] Figure 6 shows an exemplary illustrative non-limiting
record linkage development cycle. In the non-limiting example
shown, we identify pairs we are unsure of (200), send pairs to human
annotators (“mechanical turk”) (202), have the annotators label the
pairs as match/no-match (204), write features to cover identified edge
cases (206) and retrain the model with new data and features (208).
In addition to the feature set, a focus in our exemplary illustrative non-
limiting implementation was to choose an optimal machine learning

algorithm for record linkage.

Example Machine Learning Algorithms
[0050] Figure 7 shows an example non-limiting comparison of
different machine learning and record linkage techniques, and Figure

8 shows an example alternating decision tree and conventional

14
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decision tree. ADTrees were described by Freund and Mason, The
Alternating Decision Tree Learning Algorithm, Proceedings of the
16th International Conference on Machine Learning, 124-133 (1999).
They can be characterized as “Decision Trees meet Boosting”. A
standard boosting algorithm is used, but all features learned are of a
certain form. There are two kinds of nodes in illustrative
implementations: splitter nodes and prediction nodes. This does not
provide binary splits like with a DT — one can have multiple splitter
nodes (multiple questions) hanging off of each prediction node. Note
that decision trees and alternating decision trees provide good human
interpretability, capture feature interactions and handle diverse
feature types. However, they do not provide cost sensitivity. On the
other hand, cost-sensitive alternating decision trees provide all of
these advantages as well as cost-sensitivity.

[0051] Cost-Sensitive Learning

[0052] One common motivation for cost sensitive learning is the
scenario of training a classifier on a data set which contains a
significantly unequal distribution among classes. This sort of problem
usually consists of relative imbalances and absolute imbalances.
Absolute imbalances arise in data sets where minority class
examples are definitely scarce and under-represented, whereas
relative imbalances are indicative of data sets in which minority
examples are well represented but remain severely outnumbered by

majority class examples.
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[0053] A second motivation for cost sensitive learning is when
there are different "business costs" (real-world consequences)
between false positive and false negative errors. Cost sensitive
learning for the binary classification problem can be best illustrated by
a cost matrix adhering to data that consists of two classes: positive
class P and negative class N. For the sake of convenience, in the rest
of this paper we refer to examples/instances belonging to the positive
and negative classes as positive examples/instances and negative
examples/instances, respectively. In the person record linkage
context, a positive example is a pair of records which represent the
same person. A negative example is when the pair of records
represent two different people.
[0054] The cost matrix in Fig. 9 demonstrates the cost of four
different scenarios of classifying an instance into either positive class
P or negative class N. The correct classifications reside on the
diagonal line of the cost matrix and have a cost of 0, i.e., C(P,
P)=C(N, N)=0. Traditional reports on Record Linkage work often
assign equal costs to misclassifying a positive instance into a
negative instance and misclassifying a negative instance into a
positive instance, i.e., C(P, N)=C(N, P). This works perfectly fine
when the positive class and negative class are of equal interest.
Nevertheless, this is rarely true in the real business world. For
instance, failure to identify a credit fraud case (a “false negative”
error) would bring a much higher expense than the reverse case. On
the other hand, in a RL industrial setting, there are also many

16
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applications which are more averse to false positives than false
negatives. For instance, one illustrative industrial database may drive
an application which displays the history of addresses a person had
resided at and jobs they had held, among other things. In this
business, a false negative would generally mean that we would fail to
list a true address or true job title that a person had had. However, it
is considered far worse to make a false positive error whereby we
would say that a person had lived at an address or held a job that
pertained to someone else. Similar business tradeoffs are known
where a false positive in record linkage on a children’s immunization
database can lead to a child not being vaccinated for a dangerous
disease, whereas a false negative leads to a child receiving a
redundant, but harmless, vaccination.
[0055] In other terms, cost sensitivity asks “Do you care more
about precision or recall error?” For an airline, a recall error is worse
— the airline must identify all possible terrorists who are getting on the
plane. For a search engine in contrast, a precision error is worse than
a recall error. It is undesirable to falsely mix two people’s profiles.
Therefore, for search engines in our non-limiting examples, recall at
very high precision (99%+) is what we care about. It may be difficult
to obtain very high precision without cost sensitivity.
[0056] A classifier created for record linkage has the task of
classifying a pair of records in a database into match or unmatch.
Although academic systems typically target f-measure (the harmonic
mean of precision and recall), which weights false positive and false
17
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negative errors equally, as discussed previously, some industrial
applications typically consider false positives to be much more
expensive than false negatives (albeit with exceptions, such as with
the airline example cited earlier). Hence industrial systems targeting
high precision will frequently seek to maximize recall while ensuring

that precision is at least 1 for some €[0,1]. As an example, in one

example non-limiting database, there may be a requirement of
1=0.985, where 11=0.996 is a typical value. This implies that
misclassifying no-match cases, and thus making a false positive
error, should be much more expensive than misclassifying match
cases (yielding a false negative) in terms of cost, which gives rise to
the study of applying cost sensitive learning to tackle record linkage

problems.

lllustrative Feature Design

[0057] To build a strong record linkage system, coming up with a
proper feature representation is highly useful. To accomplish that
goal, most existing work concentrates on designing similarity
functions estimating the similarity levels between corresponding fields
in a pair of records. Although this kind of method can efficiently
capture some of the semantic similarity between a pair of records
despite various levels of distortions of textual strings, it leaves out
some crucial signals. For instance, a rare name match in records
should be considered more likely to be a duplicate than a common

name match (e.g. two “Hannah Philomene’s” are more likely to the

18
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same than two “John Smith’s”). More generally, our experience is that
achieving the highest levels of accuracy requires the design of at
least dozens of heterogenous features so that the system can
attempt to exploit every possible signal that is detectable by the
feature designer. Given these requirements, working with a machine-
learning algorithm which produces a human-understandable run-time
model greatly facilitates feature development and debugging.

[0058] An illustration of one illustrative feature design starts with
the example of a pair of person profile records shown in Fig. 10.
Although the pair only differs by one character across all fields, it can
be clearly identified as a non-match by anyone familiar with American
naming conventions, since it is apparent that these two individuals
are likely father and son. However, this example would be predicted
as a match by many record linkage platforms because of the degree
of textual similarity. Our first feature is thus name_suffix, which is a
categorical feature with three possible values: match if the name
suffixes match (i.e. John Smith Jr. vs. John Smith Jr.), differ if the
name suffixes differ, and none if this feature does not apply (e.g. if
one or both records do not contain a name suffix).

[0059] The second feature is related to name frequency, which is
global _name_frequency. It is a numeric feature characterizing
frequency of the name in the population. Note that if the names do
not match, we consider the feature value in that case to be positive

infinite. This feature is negatively correlated to the record linkage

19
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decision, i.e., a large value of global name_frequency would
decrease the likelihood that the two records match.

[0060] The third feature is telephone number match, i.e., phone
_match, which is a categorical feature. US phone numbers can be
segmented into three parts. Records matching on different parts or
different conjunctions of parts of phone number should be considered
duplicates with varied likelihood. Besides a no_match where phone
numbers are different in all three parts, Fig. 11 illustrates the other
four feature values phone _match can take. The advantage of this
feature is that in lieu of determining the cost of variation in different
part of phone numbers either manually or adaptively, we directly push
the different match scenarios into the ML algorithm as feature values
to make the algorithm figure out the appropriate strategy for “ranking”

different match cases.

[0061] A partial list of other features used in this system include
the following:
Feature Name Explanation
street_address_match returns “true" if street name and
house humber match
birthday_difference returns the number of days
separating the birthdays
regional_population returns the population of the

region that the two records have in

common or positive infinity if not

in the same region. (rationale: two

records known to share a

New York City address are

less likely to match than two addresses

sharing a Topeka, Kansas address)
name_matches returns number of matching names

(rationale: particularly useful for

criminal matching, where criminals

may match on multiple aliases)
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Table 1: Other Non-Limiting Features

[0062] As can be seen from these feature examples, the
construction of a high-precision, industrial-strength record linkage
system requires a lengthy list of complex features which are the result
of extensive feature engineering. It is thus useful that the illustrative
machine learning algorithm supports the feature development
process.

Exemplary lllustrative Non-Limiting ML Algorithms

Alternating Decision Trees (ADTrees)

[0063] The ADTree algorithm is a combination in a peculiar way
of the decision tree and boosting algorithms. There are two kinds of
nodes in an ADTree. One is the splitter node which specifies the
condition that should be tested for the instance. The other is the
prediction node, which assigns a real-valued score to instances
satisfying conditions at different points. An ADTree can be split
multiple times at any point, i.e., it can attach more than one splitter
node at any single prediction node. This is different from a decision
tree since (1) generally, a decision tree can only be split once at each
point, and (2) the split can only be performed at the bottom of the
tree, i.e., the prediction leaves, in the progress of tree generation.
Upon determining the class label of an instance, ADTree sums up the
score of the prediction nodes of all paths on which the condition
specified by the splitter nodes are all satisfied by the instance. The

sign of the summation is the class label of the instance. Note that a
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conventional decision tree also decides the class label of an instance
by going through a path in the tree hierarchy. The difference is that
there is just one path and only the prediction leaf at the bottom
determines the class label of the instance.

[0064] A toy example of a person-linking ADTree, shown in Fig.
12, was built from a database of over 50,000 labeled examples
consisting of a mixture of criminal and non-criminal person records.
There are five features illustrated in this model which were described
above. Let's suppose the model is considering the pair of records
shown in Figure 5.

[0065] For this example, we first note that the root prediction
node starts us off with a score of 0.140. The relatively small positive
score indicates a slight predominance of positive (“match") examples
in the training corpus. We then see that Feature 1,
street_address_match, returns “none" (yes:-0.291), so we test
Feature 2, which returns 3.3 million, since that is the population of the
Seattle Metropolitan Area. Since feature 2 returned “yes” (+0.399),
we now query features 4 and 6. Feature 4 returns 1000, the
frequency of "Robert Jones" and thus answers “no” (-0.667), while
Feature 6 tests the "regional population” feature again and decides
“no” (-0.206), this time since the population is not less than 75,917.5.
Feature 3 returns 14, which is less than 417.5, giving a "yes" decision
(1.325). Feature 5 returns 1 since there is only one matching name,

so the decision is also “yes" (-0.101).
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[0066] Summing these values, the class label is thus determined
through calculating
0.140-0.291+0.399-0.667-0.206+1.325-0.101=0.599, i.e. a
relatively low-confidence match. Note also that we can determine the
amount of "blame" to assign to each feature by summing the
prediction nodes of each feature. Consequently, we can see that
“regional_population" contributes 0.399 - 0.206 = 0.193 to the final
score, which is very helpful in feature engineering.
[0067] Finally, note the following two benefits of ADTrees. Firstly,
if Feature 1 had returned “no" because street_address_match did not
return “none”, we would not have tested features 2, 4, and 6, thus
reaping a major gain in run-time performance. Secondly, note how
the ADTree seamlessly mixed real-valued features with a boolean
feature (street_address _match), a property which simplifies
development and facilitates the incorporation of heterogeneous
features in a record linkage model.
[0068] As a second example, consider the name_suffix feature
described above. Due to the importance of this feature, ADTree
generally puts it somewhere near the root node. The example in Fig.
5 illustrates this. “name_suffix=differ" is a child of the root node and is
the eighth feature chosen. If the name suffix differs, we decrease the
score (making a match less likely) by —2.89 and don’t query any
additional features. On the other hand, if the suffixes don'’t differ, the
score is basically unaffected (adding 0.039 is trivial in the context of
the other, much larger values) and we query many other features.
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Note that one additional feature is whether “name_suffix=match",

which gets a strong positive value of 1.032 if true.

Record 1 Record 2 Comment
Name Robert  Robert Jones Name Frequency = 1000
Jones

Birthday 3/1/1966 3/15/1966 Birthday difference = 14

Address 121 Walnut 234 Chestnut
St St.
City/State Seattle, WA Seattle, WA Population of Seattle region = ¢. 3.3
million

Table 2: An example comparison of two records

Cost Sensitive Alternating Decision Tree

[0069] We formulate a novel implementation of ADTree
equipped with cost sensitive learning, called Cost Sensitive
Alternating Decision Tree (CS-ADTree). This example non-limiting
adaptation of ADTree provides a framework of cost sensitive learning
and also applies a cost sensitive ML technique to the problem of
record linkage.

[0070] Cost sensitive learning additionally assigns a cost factor

ce(0,0) to each example x,y, in the database to quantify the cost

!

of misclassifying x; into a class label other than y. In the standard

boosting algorithm, the weight distribution over the data space is
revised in an iterative manner to reduce the total error rate. Cost
sensitive learning operates in a similar manner, but it operates over a
space of examples in which the weight distribution has been updated
in a biased manner towards examples with higher costs. According to
the “translation theorem", the classifier generated in this way will be

conceptually the same as the one that explicitly seeks to reduce the
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accumulated misclassification cost over the data space. We will
examine three different methods of biasing the training data to
account for the business preference for false negatives vs. false

positives. The baseline weight update rule of ADTree is,

. 3 —— LT WL Mg

[0071] In the illustrative methodsherein, AdaC2, the weight

update rule for ADTree is modified as,

L FRETS

41 ¢ e £ .
where

[0072] The intuition here is straightforward. We hope weights of
the examples with higher costs are increased faster than those with
lower costs. According to Lemma 1 (listed below), the learning focus
of ADTree will be biased towards examples with higher costs.
[0073]
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[0 075] S|nce ‘w";}!‘;"' fdy (5‘-‘};5 -\,.-"vlr?_ S 1, \e.f':}"‘l"‘_g_ fdy rt -l ), -,\;".M"_ {dy i —h:‘!g;l
are all greater than 0, Z is minimized when the following two

conditions are both satisfied:

WAy Ny

[0076] 1. Absolute difference between and

IS maximized.

[0077] 2. Absolute difference between

W W (e nsdz o and (W Ud n—da) | o
is maximized.
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[0078] This means examples reaching conditions d Nd, or

¢ N=dz gre largely from just one class. In an extreme case, if all
weights are exactly the same, like in first iterative round, and the

number of examples reaching d.Nd, or #: M 7z s fixed, minimizing Z

would result in a perfect split. Q.E.D.

[0079] Corollary 1. Precondition d, and condition d, that maximize

the Z create a suboptimal split.
[0080] PROOF:
[0081] Following Lemma 1, Z can be maximized when the

following two conditions are both satisfied:

ey v i E coa -, 5 .
I. -\;‘f }\"V+ {ady M J;H' = & W _ fidy £ el \I
:..')- Y R }'v_l. {dy M =g ? = x‘f.c" 1'1-"_ K fly 111 =iy 1

[0082] This means the number of positive examples and

a1 s

negative examples reaching conditions d.Nd, or should

be close to each other to get Z to approach 0. An observer at this
point can conclude little knowledge regarding the class label
information of the instance reaching this point, which means the split
is suboptimal. In an extreme case, when weights of all examples are

the same, like in first iterative round, the number of positive and

a1 7 —dn

negative examples reaching d Nd, or are exactly

matched. The split concludes no knowledge and thus is a worst one.
Q.E.D.
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[0083] Given the modified weight update rule, the original

equation for calculating scores a, and a, at each iterative round no

longer guarantees the error rate could be decreased fastest. Inspired

by the induction of optimized a for AdaC2, a, and a, can be modified

1 In e W (dy Midy ]
I A —_— = K - - —
@1 = 3 M T dinda ) ang

to
v — Ly S WpldyNadyl
@2 = 5 Wy i m—ds)

[0084] Now that we have modified the weight update rule and

equations for calculating prediction scores a, and a,, we formulate

CS-ADTree in Algorithm 2 below.
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Algorithm 2 Cost Sensitive Alternating Decision Tree
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Adaptive Boosting

[0085] Since ADTree shares many similarity with boosting, we
would like to firstly introduce Ada.Boost, the most popular boosting
algorithm, in brief for better understandability of AD Tree. Algorithm |
gives the procedure of applying Ada.Boost to derive the classifier
H(x) from database S. A weight distribution W is maintained to

sample database S into training data set S; at each round. It is initially
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a uniform distribution, which means all examples are equally likely to
be selected into the first sampled data set S;. At each round t4, the
weak hypothesis h; i.e., trained classifier, is generated by training the
base learner L, on the sampled data set S;. Then, the weighted error
& is calculated through summing the weights of the instances in S
that are misclassified by h;. Provided the weak classifier h;, performs
at least slightly better than a random guess on classifying S, i.e., &>
0.5, it is guaranteed that a; > 0. Based on this, the weight distribution
W is updated for the next iterative round by decreasing the weights of
the correctly classified examples and increasing the weights of the
misclassified examples both with a factor of ¢*. Since hard-to-learn
examples are prone to be misclassified, their weights are therefore
effectively increased with the progress of iterative weights updating.
In other words. the proportion of difficult examples in the training data
set for creating the weak hypothesis is guaranteed to be increasing.
After AdaBoost exhausts N iterative rounds, it outputs the final
classifier which is basically a set of N generated hypotheses. The
prediction of final hypothesis on an unlabeled instance is a majority
voting of the classes predicted by the individual hypotheses weighted
by a:. a; is monotonically increased with the decrease of ¢, therefore
it is also considered as a margin of the hypothesis h; and can be used
to weigh h; in voting for classifying

instances « € A’

[0086] It is known that AdaBoost can achieve arbitrary low error

rate on training data set as long as enough iterative rounds can be
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guaranteed. Furthermore it was empirically discovered that AdaBoost
has no issue of overfitting to the training data set even with an
extremely large number of iterative rounds. Schapire et al, Boosting
the margin: A new explanation for the effectiveness of voting
methods, The Annals of Statistics, 26(5):1651 1685, 1998) later
introduced the margin theory to explain this amazing yet a bit
counter-intuitive property of AdaBoost. From the practical point of
view, the beauty of the illustrative non-limiting AdaBoost technique is
that the classification performance of a weak classifier can be
significantly improved by creating and combining an ensemble set of
such weak classifiers through the procedure of AdaBoost. Boosting a
decision tree can yield very good classifiers. A problem is, however,
the classification rules concluded by boosting decision trees through
AdaBoost may lack the intuitive interpretability by human beings,
which is a most desirable but non-limiting property of decision tree

learning algorithms.

Alternating decision tree

[0087] ADTree is a new combination of decision tree with
boosting. It inherits the learning capability of boosting, and is easy
and intuitive to be interpreted for its structural representation of base
classification rules in a visualized fashion similar to decision tree.
There are two kinds of nodes in ADTree. One is the splitter node
which specifies the condition that should be tested for the instance.

The other is the prediction node which assigns a real-valued score to
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instances satisfying conditions at different points. An ADTree can be
split multiple times at any part, i.e attach more than one splitter node
at any single prediction node. This is different from decision tree
since firstly, decision tree can only be split at most once at each part
and secondly, the split can be only performed at bottom of the tree,
i.e., the prediction leaves. Upon determining the class label of an
instance, the illustrative ADTree sums up the score of the prediction
nodes of all paths on which the condition specified by the splitter
nodes are all satisfied by the instance. The sign of the summation is
the class label of the instance. Note that a conventional decision tree
also decides the class label of an instance by going through a path
in the tree’s hierarchy. The difference is that there is just one path
and the only the prediction leaf at the bottom determines the class

label of the instance.
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[0088] The cost factor ¢(i) can also be put in other spots of the
weight update equation. For instance, it can be put inside the

exponential term e”®¥. When example x is misclassified by r,, we
have sgn-r(x)y>0. A high cost inside the exponential term would

thus increase the weight of the example in exponential order. This is
the idea of illustrative AdaC1. Its weight update rule and prediction

score equations of AdaC1 can be adapted for ADTree as,
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[0089] The cost factor can also be put both inside and outside
the exponential term in the weight update equation, which gives rise
to illustrative AdaCa3. Its weight update rule and prediction score

equations can be adapted for ADTree as,
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[0090] Despite the fact that cost sensitive learning can manifest

itself in different forms in boosting, we chose to create CS-ADTree in
one illustrative non-limiting implementation by integrating AdaC2 into
ADTree’s training procedure since the weight updating rule of AdaC2
weighs each example by its associated cost item directly, which

naturally fits the algorithm into the realm of the translation theorem. In
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addition, our preliminary empirical studies showed that AdaC2

performed the best across a number of benchmarks.

Example Non-Limiting Evaluation Parameters

[0091] Most of the time the metrics for evaluating a classifier’s
performance on record linkage problem are precision, recall and their
harmonic mean, f~measure— metrics obtained by fixing the
classifier's decision threshold to zero. A confusion matrix shown in
Fig. 13 is always helpful to fully capture what these metrics stand for.
A quick impression is that a confusion matrix is very similar to a cost
matrix. The difference is that what resides in the matrix is the number
of instances satisfying the scenario specified by the row and column
indexes. Therefore (True Positive) and (True Negative) are the
number of correctly classified positive and negative instances,
respectively. FP (False Positive) and FN (False Negative) are the
number of instances falsely classified into positive class and negative
class, respectively. Considering a matched pair of records as a
positive example, and an unmatched pair of records as a negative
example, precision, recall, and f-measure for record linkage are

defined as,
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[0092] From the definitions, precision measures the accuracy of
a classifier’s predictions of positive instances, while recall tests the
completeness of a classifier's coverage of real positive instances. It is
clear that there is a trade-off between precision and recall. This can
be seen by the explanation that if all instances are frivolously
predicted as positive, recall is maximized to be 1, whereas precision
is equal to the proportion of positive examples in the database, which
can be very bad in some illustrative circumstances. To this end, f-
measure is frequently used to measure the overall performance of a
classification algorithm when the relative importance of recall and
precision are evenly balanced.

Customization of evaluation metrics

[0093] Good performance at a single threshold such as zero may
lead to unwanted subjectivity. Recent studies show that the
performance of a classifier should be evaluated upon a range of
thresholds. An appealing property of ADTree is that instead of merely

N
outputting a hard class label, it gives a score value, 3’ r(x), to

=0
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estimate the confidence level of its decision. While ADTree generally
uses the sign function to classify unlabeled instances, other
numerical value can also be used to serve as the threshold. In this
case, the classifier of ADTree can be represented as

N
Hx)=sgn( X (r(x))—d), where d#0. Since the business priority for the

=0
industrial database on which we were working was to keep precision
above a threshold which was in excess of 99%, precision in a high
range was of much more interest to us and we thus focused on
metrics other than f~measure. In this example non-limiting
implementation, we start by setting the threshold, d, to be large
enough to make precision=1, and then tune down the threshold to
progressively decrease precision down to 0.985 in steps of 0.001 to
determine the recall that we are able to achieve at varying high
precision levels.
Choice of cost ratio
[0094] Some business applications do have strategies to decide
costs for different examples. For instance, the amount of money
involved in a transaction can be used to quantify the cost related to it.
Nevertheless for many other applications such as record linkage, the
only prior knowledge available is often the biased interest towards
one class over the other. In industrial applications, this is usually
expressed as a requirement that the precision be at least 1, where in
our applications, we generally had 1m=0.985 and a more typical

requirement for T was in excess of 0.995. Note that two parameters
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influence the precision of the classifier, the cost factor, C, and the
required precision, 1. We have found that a reasonable heuristic is to
adjust your cost factor C so that the threshold, d, that yields your
desired precision, 11 is close to 0, this generally yields close to
optimal recall at 1. We give an informal theoretical justification for this

heuristic below.

Non-Limiting Example

[0095] Objectives The following provides experimental results of
ADTree and CS-ADTree for comparing records of person profile
databases. The objectives here are to 1. demonstrate the
effectiveness of ADTree and CS-ADTree on classifying pairs of
record into match/unmatch for record linkage; 2. illustrate how the
run-time representation of ADTree can enable humans’ interpretation
of the classifier derived by ADTree; 3. demonstrate the
competitiveness of ADTree/CS-ADTree with alternative ML
techniques heavily used by most existing record linkage frameworks;
and 4. Show how CS-ADTree demonstrates superior performance to
ADTree at both very high precision requirements.

[0096] Non-Limiting Implementation ADTree, CS-ADTree, boosted
decision tree, and decision tree algorithms are all implemented based
on the JBoost platform. The SVM algorithm is implemented based on
SVM-Light.
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Performance of ADTree/CS-ADTree

[0097] In one non-limiting example, we used a database S with
match/unmatch labels assigned by expert internal annotators which
had 20,541 pairs of person profile records characterized by more
than 42 features including those described above. Since the cost of
hiring experts is relative high, we later switched to Amazon’s
Mechanical Turk (MT) System which provides a significantly cheaper
and faster way to collect label data from a broad base of non-expert
contributions over the web. A drawback of this method is that the
database is likely to become noisy since it is possible that some
workers on MT (“Turkers") are purely spammers and some are
lacking in the necessary domain knowledge for the task.

[0098] We report average results for a 10-fold cross validation.
For these initial experiments, we held the number of boosting iterative
rounds, 7, fixed at 200 and we used a cost factor of (=4 based on
earlier experiments showing these to be optimal values over the
precision range [0.985,1].

[0099] With T and C determined, the record linkage performance
of CS-ADTree, ADTree, and CS-ADTree with cost-sensitive learning
frameworks of AdaC1 and AdaC3 on our initial person profile
database ¢S are studied. Their average recall are given in Fig. 14,
which clearly shows that CS-ADTree performs the best across all
methods under comparison. Average recall can sometimes be
misleading when the physical P-R curves of two methods under

comparison cross in P-R space. In this case, it would be nonsensical
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to conclude one method is better than the other based on the area
under P-R curve which is conceptually equal to the averaged recall.
To that end, we also plot P-R curves of all methods under
comparison in Fig 15. One can clearly see that CS-ADTree can
consistently contain other methods in terms of P-R curve, which
validates the supremacy of CS-ADTree.

[00100] One perspective on how CS-ADTree is able to achieve
this superior performance can be seen in Fig. 16. CS-ADTree
achieves a given level of precision at a much lower threshold than the
other three methods. It is particularly instructive to look at CS-ADTree
as compared to ADTree. CS-ADTree achieves 0.995 precision at a
threshold of roughly 0, while ADTree achieves this at about 4. An
intuition as to CS-ADTree’s superiority is that the model is seeking to
push positive examples to have scores above 0 and negative scores
below 0. In the case of CS-ADTree, we are able to put our threshold,
d, at about the same threshold as the model’s threshold, whereas
with ADTree, the model is not “aware” that the threshold of interest to

us is 4. In summary:

o Setting threshold at c. 4.0 in ADTree gives 99.5%
precision

o ADTree treats false positives and false negatives equally

o CS-ADTree achieves 99.5% precision at c. 0.0

o CS-ADTree algorithm is optimizing relative to 0.0

[00101] To demonstrate how run-time representation of CS-

ADTree can help a practitioner better understand the record linkage
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problem of his/her database in a human-interpretable way, we
present a snapshot of a CS-ADTree generated by our initial labeled
database Sin Fig. 17A-W, and also partial snapshot of that tree in
Fig. 17X. In Fig. 17A-W (and see also the specific nodes shown in
Figure 17X), one can clearly see that the decision node of
name_suffix resides right below the root node. When
name_suffix=differ, the corresponding path ends immediately and
assigns a large negative score to the instance under consideration,
otherwise CS-ADTree would go on to check many other features.
This is exactly as predicted by our discussion for the name_suffix
feature above. Note also that this tree can be very efficiently
computed if the features are lazily evaluated. If the name suffix
differs, there is no need to compute the values for features 14 - 18,
which all have name _suffix # “differ" as a precondition (in fact, 87 out
of the 100 features in this sample CS-ADTree have this as a
precondition). More hierarchical levels are involved in the example in
Fig. 18. If the value of feature birthday _difference for a pair of records
is relatively small, (the birthdays are less than 432.5 days apart), CS-
ADTree would terminate the corresponding path by just examining
the value of birthday _difference. This is intuitive because having
nearly matching birthdays is a strong “match” indicator. We don’t
need to ask further questions to reach a decision. Otherwise it asks if
birthday _difference is greater than 5x10", i.e., infinity, which is how
we indicate a null value (birthday isn’t present on one or the other
records). In this case, CS-ADTree would continue to check a number
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of other features to determine the match/unmatch status of the pair of
records. So in both cases, the derived model is easy to understand
and can be seen to be doing something reasonable.

[00102]  Efficiency Our non-limiting experiments also show that
ADTree and CS-ADTree are efficient at training and run-time. Given
50 candidate features, a training set of 11,309 example pairs, and a
pre-computed feature vector, we trained the system on JBoost using
CS-ADTree for 200 iterations in 314 seconds. On a major run of the
system using a Python implementation and a 100 node model, the
model performed 180 record pair comparisons per second per
processor, including both the time to compute feature computations
and the computation in the CS-ADTree. All statistics were on an Intel
Xeon 2.53 GHz processor with 60 GB of RAM.

Performance of ADTree/CS-ADTree with active learning

[00103] The initial database s can be amplified by picking records
from a data pool with size 8%x10° which are then presented to Turkers
for labeling. Denoting the pairwise classifier trained on Sto be #, the
principle of choosing records are based on three active learning
approaches listed as follows,

[00104] The first example non-limiting approach serves as our

baseline active learning model, which is basically to randomly choose
res, s.t., #(r)>-3. The reason we choose -3 as the threshold to pick

records is based on the empirical observation that examples in § that

are given a prediction score by 7 greater than —3 exhibit an
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appropriate proportion between positive and negative examples, i.e.,
negative examples shouldn’t be excessively outnumbered by positive
examples to avoid Turkers from clicking “match" all the way through.
[00105] The second illustrative non-limiting approach is based on
the randomized parameter approach. Instead of always splitting with
the feature of minimum loss Z, we enable CS-ADTree to always
randomly choose 1 of the 3 features with minimum losses across all

features. A committee of 5 CS-ADTree’s trained on sis then created

as {H,,H,,H,,,,H,}, records res with minimal absolute committee

4
score, i.e., | 2 (#(n)l, will be picked for class labeling.
i=0

[00106] An additional example non-limiting approach is pretty

straightforward. We choose records res with minimal absolute

prediction score by #, i.e., |#(r)|, since it represents a small margin
given the natural threshold 0 which signifies the uncertainty of # for
classifying the particular instance. This approaches resonates with
our argument that a model that yields our desired precision, 1 at a
threshold close to 0 will have close to optimal recall.

[00107] We pick 1000 pairs of records from the data pool using
each of the three active learning approaches, which yields 3000
records in total. We also pick another 5000 pairs of records using
active learning approach 1 to serve as the independent data set & for

evaluating the learning models. The P-R curves of CS-ADTree
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trained on ¢ plus the records picked by each of three active learning
approaches are given in Fig. 19, which clearly shows active learning
approaches 2 and 3 perform better than the baseline approach.
[00108] Expanded by the 3000 pairs of records picked by active
learning approaches, S now becomes noisier since it is unavoidable
that class labels assigned by Turkers will be partially erroneous.
Using ADTree and CS-ADTree to derive classifiers from s, Fig. 20
shows the P-R curves of applying these classifiers on independent
data set &, which clearly indicates CS-ADTree exhibits improved
performance compared to ADTree for record linkage of a noisy
database.

[00109] In order to demonstrate the competitiveness of
ADTree/CS-ADTree against other popular ML techniques used by
record linkage designers, we also apply decision tree (DT), boosted
DT (7=200), and SVMs to classify pairs of records in €. The kernel
function selected for SVMs is the Gaussian kernel with 0=0.1.
Empirical study discovers that SVMs cannot efficiently handle the
original feature representation, i.e., a mixture of categorical and
numerical features. Thus we apply two strategies to transform the
features to cater for SVMs’ needs. Categorical features are all
transferred into discrete integers for both strategies. For numerical
features, strategy 1 is uniform bucketing which evenly divides its data
range into 5 buckets, and transforms the feature value into the
integral index of the bucket it falls in. Strategy 2 is informative

bucketing which efficiently makes use of the information provided by
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the CS-ADTree structure after training. If numerical feature fis split

on values of p <p.<...<p_in the training process of CS-ADTree, any
feature value v of f will be rewritten into integer /, s.t., p<v<p_.. Using

0 as the threshold for ADTree/CS-ADTree, Fig. 21 shows the f-
measure of ADTree, CS-ADTree, boosted decision tree, decision
tree, and SVM's using two bucketing strategies. It is obvious that
ADTree and CS-ADTree both perform better than alternative ML
techniques on record linkage of €. They can also be used in
combination with such other techniques.

[00110] Applicant incorporates herein by reference as if expressly
set forth herein Chen et al, “The Case for Cost-Sensitive and Easy-
To-Interpret Models in Industrial Record Linkage,” 9th International
Workshop on Quality in Databases (Seattle WA August 29, 2011).

[00111]  While the technology herein has been described in
connection with exemplary illustrative non-limiting embodiments, the
invention is not to be limited by the disclosure. The invention is
intended to be defined by the claims and to cover all corresponding
and equivalent arrangements whether or not specifically disclosed

herein.
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WE CLAIM

1. Arecord linkage method comprising:

(a) acquiring data with a computer processing arrangement
executing program instructions and connected to an electronic
network;

(b) blocking the acquired data;

(c) applying a feature set with a machine learning model based at
least in part on alternating decision trees to selectively link the
blocked acquired data;

(d) storing the selectively-linked data in a non-transitory storage;
and

(e) enabling users to access and search said non-transitory

storage via said electronic network.

2. The method of claim 1 wherein the alternating decision

trees are cost-sensitive.

3. A record linkage method comprising:

(@) acquiring data with a computer processing arrangement
executing program instructions and connected to an electronic
network;

(b)  blocking the acquired data;
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(c) applying a feature set with a machine learning model based at
least in part on a cost-sensitive machine learning algorithm to
selectively link the blocked acquired data;

(d)  storing the selectively-linked data in a non-transitory storage;
and

(e) enabling users to access and search said non-transitory

storage via said electronic network.

4. A non-transitory storage medium arrangement storing
computer program instructions that operate on plural records, said
storage medium arrangement storing the following computer program
instructions:

(a) blocking instructions that block the plural records and store
the blocked plural records in a blocked database; and

(b) training instructions that operate on the contents of the
blocked database to provide active machine learning, said active
machine learning including generating a machine learned model

using a cost-sensitive alternate decision tree.

5. The non-transitory storage medium arrangement of claim 4
wherein the storage medium arrangement further stores execution
instructions that use said learned model including the cost-sensitive

alternate decision tree to determine whether to link records.
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6. The non-transitory storage medium arrangement of claim 5
wherein the execution instructions use the cost-sensitive alternate
decision tree to link records by classifying a pair of records in a

database into match or unmatch

7. The storage medium arrangement of claim 4 wherein the

training instructions provide for recall at precisions in excess of 99%.

8. The non-transitory storage medium arrangement of claim 4
wherein the training instructions generate a learned model that is

understandable by humans.

9. The non-transitory storage medium arrangement of claim 4

wherein the training instructions assign a cost factor c€(0,¢) to

each example x,y. in the blocked database to quantify the cost of

misclassifying x; into a class label other than y.

10. The non-transitory storage medium arrangement of claim 4
wherein the training instructions update a weight distribution in a

biased manner towards examples with higher costs.

11. The non-transitory storage medium arrangement of claim 4
wherein the training instructions provide boosting to derive a classifier

from the blocked database.
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12. A method of operating on plural records comprising:

(a) blocking the plural records to provide a blocked database;
and

(b) operate on the contents of the blocked database to
generate a machine learned model using a cost-sensitive alternate

decision tree.

13. The method of claim 12 further including using said learned
model including the cost-sensitive alternate decision tree to

determine whether to link records.
14. The method of claim 13 further including using the cost-
sensitive alternate decision tree to link records by classifying a pair of

records in a database into match or unmatch.

15. The method of claim 12 further including providing for recall

at precisions in excess of 99%.

16. The method of claim 12 further including generating a

learned model that is understandable by humans.

17. The method of claim 12 further including updating a weight

distribution in a biased manner towards examples with higher costs.
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18. The method of claim 12 further including boosting to derive

a classifier from the blocked database.

19. A system for operating on plural records comprising:

a blocker that blocks the plural records to provide a blocked
database;

a machine learner that operates on the contents of the blocked
database to generate a machine learned model using an alternate
decision tree; and

an execution component connected to the Internet that provides
a background check or an identity check on demand at least in part in
response to records linked based on said machine-learned model in

response to a user search requested over the Internet.

20. The system of claim 19 wherein the alternate decision tree

is cost-sensitive.
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A cost matrix for cost sensitive learning
ID Company Address Name Phone #
Evanston Ronald
Person 1 Chiropractic E?/—;thgn IN, Eugene 219-821-
Life Center 46123 | Raulston, 8900
Ave
Inc Sr.
Evanston Ronald
Person 2 Chiropractic E?/Zlitgn IN, Eugene 219-821-
Life Center 46123 | Raulston, 8900
Ave
Inc Jr.
FIG. 10

An example of a pair of person profile records
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