wo 2017/177035 A1 | I 00 OO OO0 000 R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/177035 Al

12 October 2017 (12.10.2017) WIPO I PCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:

HO4L 29/06 (2006.01) GO6F 21/57 (2013.01)
GO6F 21/72 (2013.01) HO4L 9/08 (2006.01)
HO4W 12/10 (2009.01) HO04L 9/32 (2006.01)

International Application Number:
PCT/US2017/026399

International Filing Date:
6 April 2017 (06.04.2017)

Filing Language: English
Publication Language: English
Priority Data:

62/319,517 7 April 2016 (07.04.2016) US

Applicant: IDFUSION, LLC [US/US]; 100 4th St. S., Ste
110, Fargo, ND 58103 (US).

Inventors: WETTSTEIN, Gregory, Henry; 4206 N. 19th
Avenue, Fargo, ND 58102 (US). STOFFERAHN, Scott,
Byron; 1739 37th Avenue S., Fargo, ND 58104 (US). EN-
GEN, Richard, William; 3535 Woodbury Court S., Fargo,

ND 58103 (US). GROSEN, Johannes, Christian; 16213
70th Avenue N., Maple Grove, MN 55311 (US).

(74) Agents: IMS, Peter J. ct al.; Westman, Champlin &
Koehler, P.A., 900 Second Avenue South, Suite 1400,
Minneapolis, MN 55402-3319 (US).

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, S@G, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZIM, ZW.

(84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

[Continued on next page]

(54) Title: IDENTITY BASED BEHAVIOR MEASUREMENT ARCHITECTURE

RAM
(E.q.. RAM 314 of FIG. 4)

i
110 Iw=Hu(RullHu(C)) 108 | |
i i
1 i
2 i i
1
2 Premise 11 |
1
|

i

t

!

t

; 1stPremise 112
i

t

t 3 Premise 11
i

—
(E.g., ROM 314 of FIG. 4)
™~
(E.g., BIOS 324 of FIG. 4)

Memory
(E.g.. Memory 304 of FIG. 4)

FIG. 1

(57) Abstract: An Identity Based Behavior Measurement Architec-
ture (such as the BMA 100) and related technologies are described
herein. In an exemplary embodiment, the BMA (100) can be de-
rived from an IMA and use an identity model (110) to express a
deterministic measurement value for platform behavior.

WO 2017/177035 A1 AT 000 000 O

TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Published:
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

WO 2017/177035 PCT/US2017/026399

IDENTITY BASED BEHAVIOR MEASUREMENT ARCHITECTURE

FIELD
[0001] Described herein are systems related to identity based behavior measurement of
computer operating systems and corresponding devices, such as systems using an Integrity

Measurement Architecture (IMA).

BACKGROUND
[0002] Global networking has produced a system of unparalleled value to modern society.
Extracting value from this system of information exchange is based on the ability to
implement intelligent endpoint nodes on the network consisting of systems ranging in size
from supercomputers through wearable systems. The premise of the Internet-Of-Things,
popularized as IOT, suggests this trend should continue.
[0003] Unfortunately, this proliferation of intelligent endpoints has created an environment
unparalleled in the history of information security and risk management. Each endpoint
represents a potential failure point with respect to the desired system behavior being subverted
to the goals of an aggressor seeking to capture privileged information or disrupt the intended
functionality of the endpoint. The global network which synergizes the utility of these
endpoints also provides the framework for launching attacks against the endpoints from
anywhere in the world, with the added complication of little or no possibility for attributing
the origin of the attack.
[0004] Since the inception of global networking, the security strategy has been to protect
intelligent endpoints by sequestering them from access by the network at large using firewall
technology. Simple firewalls have given way to stateful firewalls and intrusion detection and
prevention systems which seek to recognize and optionally interdict attempts to subvert the
functionality of the protected systems. The effect of these systems has been to produce
architectures which are effectively soft targets once the perimeter protection systems have
been breached.
[0005] To maximize the effect of a compromised system, the focus by malicious actors has
been on the development of advanced persistent threat (APT) technologies which seek to
introduce long term behavioral modifications to the endpoint targets. This provides a
mechanism which persists the ability to exfiltrate information from the compromised systems

long past the initial breach. This strategy is particularly effective in the firewall model since it

1

WO 2017/177035 PCT/US2017/026399

allows other ‘soft’ targets in the interior of the protection domain to be attacked and infiltrated
without interdiction by the perimeter defense systems.

[0006] The response has been to employ additional protection systems to monitor internal
network traffic to interpret whether illicit behavior is being demonstrated by any internal
network endpoints. However, if aggressors avoid detection by perimeter systems it is likely
that internal network monitoring should also fail. Any type of traffic monitoring also faces
challenges associated with steganographic methods which shroud illicit traffic in ever
increasing quantities of legitimate traffic.

[0007] Furthermore, an industry movement toward the use of strong encryption may lead to
increasingly random data streams which can be used to camouflage illicit network traffic.
Major system compromises in recent years in the federal government, entertainment, retail and
healthcare industries have demonstrated the ability of attackers to persist information
exfiltration attacks for long periods of time without detection. In these attacks, aggressors have
exported hundreds of gigabytes of data without being detected by internal or perimeter defense
systems.

[0008] Maintaining the security of network endpoints has classically involved continually
applying updates to security vulnerabilities in operating systems and application platforms.
This strategy can be unreliable in the face of zero-day exploits which leverage previously
undiscovered software vulnerabilities to implement both the initial compromise and
subsequent persistence of attack systems.

[0009] Also, with more sophisticated security systems, a primary threat to effective security is
the economics of information technology. Vendors seek to appease markets that demand
platforms which implement the value proposition of ubiquitous networking but which do not
reward attention to the security implications of such systems. Addressing the modern
information security challenge demands attention to the economics of security which can
benefit from cost and complexity minimization on network endpoints. It has been doctrine in
the security industry that security and complexity are mutually incompatible. The recent
attention to containerization strategies is an attempt to reduce the complexity and attack
surface of service providing endpoints. While such systems provide isolation, they do not
provide a system for determining whether the behavior of the encapsulated system is
consistent with the intent of the system.

SUMMARY

2

WO 2017/177035 PCT/US2017/026399

[0010] A Behavior Measurement Architecture (BMA) and related technologies are described
herein. The BMA can be derived from an Integrity Measurement Architecture (IMA) and use
an identity model to express a deterministic measurement value for platform behavior.

[0011] In some exemplary embodiments, a system stored on a non-transitory computer
readable medium can include instructions for the BMA. The instructions can be executable to
use an identity model to express a deterministic measurement value representative of behavior
of an endpoint device of a group of service-providing network endpoints or a platform of the
group of service-providing network endpoints hosted on the endpoint device.

[0012] The system can also include instructions for a security supervisor provided by the
BMA and implemented through a daemon or an operating system program. The instructions
for the security supervisor can be executable to generate the unique identity for the endpoint
device based on the identity model including a hash function. The deterministic value
includes the unique identity for the endpoint device.

[0013] The instructions for the security supervisor can also be executable to verify behavior of
the endpoint device or the platform using the unique identity. The instructions can also be
executable to uphold a pre-defined behavioral state of the endpoint device or the platform and
support the execution of the application instructions stored in the memory of the endpoint
device using the unique identity. The instructions can also be executable to execute a pre-
determined action, via itself or a device derived from the security supervisor, if a behavior of
the endpoint device or the platform is inconsistent with the pre-defined behavioral state of the
endpoint device or the platform, according the unique identity of the endpoint device.

[0014] In some exemplary embodiments, the BMA can be based on three premises. The first
premise provides that the system behavior identity of an actor process is expressed by the
functional projection of the identity factors of the process over the identity factors of an acted
upon subject identity. The second premise provides that functional projections of first premise
represent a mutually exclusive and collectively exhaustive set of contours which represent a
set of values derived from the total number of unique actors and the total number of unique
subjects of the system. The third premise provides that neglecting inter-contour and extra-
contour time dependencies, a single deterministic measurement of the platform behavior is
given by an extension hash sum of an arbitrary ordering of the contour points from the second
premise. For example, each point can be projected into a range selected according to the

device identity.

WO 2017/177035 PCT/US2017/026399

BRIEF DESCRIPTION OF THE DRAWINGS
[0015] The systems and methods may be better understood with reference to the following
drawings and description. Non-limiting and non-exhaustive examples are described with
reference to the following drawings. The components in the drawings are not necessarily to
scale; emphasis instead is being placed upon illustrating the principles of the system. In the
drawings, like referenced numerals designate corresponding parts throughout the different
views.
[0016] FIG. 1 illustrates a block diagram of the example device that can implement a behavior
measurement architecture (BMA) in combination with a dynamic root of trust.
[0017] FIG. 2 illustrates a block diagram of an example information system that includes
example devices configured to use the BMA.
[0018] FIG. 3 illustrates a block diagram of an example device configured to use the BMA.
[0019] FIG. 4 illustrates a block diagram of another instance of the example device configured
to use the BMA.
[0020] FIG. 5 illustrates example operations of an Integrity Measurement Architecture (IMA)
implementation using LINUX.
[0021] FIG. 6 illustrates additional example operations 600 of the IMA implementation using
LINUX.
[0022] FIG. 7 illustrates a block diagram of another example device that can implement the
BMA using LINUX.
[0023] FIG. 8 illustrates a block diagram of another example device that can implement the
BMA through LINUX or using a different operating system.
[0024] FIG. 9 illustrates additional example operations that can be implemented by one or
more aspects of the BMA.
[0025] FIG. 10 illustrates additional example operations associated with the security
supervisor.

DETAILED DESCRIPTION

[0026] Embodiments of the invention are described more fully hereinafter with reference to
the accompanying drawings. Elements that are identified using the same or similar reference
characters refer to the same or similar elements. The various embodiments of the invention
may, however, be embodied in many different forms and should not be construed as limited to

the embodiments set forth herein. Rather, these embodiments are provided so that this

4

WO 2017/177035 PCT/US2017/026399

disclosure will be thorough and complete, and will fully convey the scope of the invention to
those skilled in the art.

[0027] Specific details are given in the following description to provide a thorough
understanding of the embodiments. However, it is understood by those of ordinary skill in the
art that the embodiments may be practiced without these specific details. For example,
circuits, systems, networks, processes, frames, supports, connectors, motors, processors, and
other components may not be shown, or shown in block diagram form to not obscure the
embodiments in unnecessary detail.

[0028] The terminology used herein is for describing embodiments only and is not intended to
be limiting of the invention. As used herein, the singular forms "a", "an" and "the" are
intended to include the plural forms as well, unless the context clearly indicates otherwise. It
will be further understood that the terms “includes”, “including”, "comprises" and/or
"comprising," when used in this specification, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations, elements, components, and/or groups
thereof.

[0029] It will be understood that when an element is referred to as being "connected" or
"coupled" to another element, it can be directly connected or coupled to the other element or
intervening elements may be present. In contrast, if an element is referred to as being "directly
connected" or "directly coupled"” to another element, there are no intervening elements present.
[0030] It will be understood that, although the terms first, second, etc. may be used herein to
describe various elements, these elements should not be limited by these terms. These terms
are only used to distinguish one element from another. Thus, a first element could be termed a
second element without departing from the teachings of the present invention.

[0031] Unless otherwise defined, all terms (including technical and scientific terms) used
herein have the same meaning as commonly understood by one of ordinary skill in the art to
which this invention belongs. It will be further understood that terms, such as those defined in
commonly used dictionaries, should be interpreted as having a meaning that is consistent with
their meaning in the context of the relevant art and will not be interpreted in an idealized or
overly formal sense unless expressly so defined herein.

Introduction

WO 2017/177035 PCT/US2017/026399

[0032] The identity based behavior measurement architecture described herein addresses at
least the issues and security challenges described in the Background section. A security
supervisor associated with the BMA can implement verification of behavior of service-
providing network endpoints or a platform of the endpoints. Each of the endpoints include at
least a processor such as a central processing unit (CPU). Such endpoints may include devices
with a standard operating system, such as LINUX or WINDOWS. The system can handle the
plethora of network endpoints which contain privileged information and/or which may be used
to harbor malicious software. An endpoint may include a desktop or laptop computer, a
mobile device or any type of smart device (e.g., smart phone, tablet computer, smartwatch,
smart TV, smart appliance), any type of computer operating a firewall, network equipment
such as a router, a point of sale device or system, digital signage, an information exchange or
transport system, a control system such as an industrial control system, a data acquisition
system, a cloud microservice, a navigation system, and an autonomous car system, just to list
a handful.

[0033] The security supervisor can implement and maintain the system in a pre-defined
behavioral state and support the execution of applications needed to achieve desired services
of the endpoint. In an exemplary embodiment, the endpoint can verify its functionality on a
measurement of the desired functional behavior of the platform running on the device.
Optionally, for example, the supervisor can take a predetermined action on the detection of
undesired behavior such as issuing an alert indication, halting the system (a “kill switch”) or
resetting the system to a known state.

[0034] In an exemplary embodiment, the security supervisor can be implemented to address
the security needs of devices which are managing information which have no ex-post-facto
redress for information disclosure. These environments are defined as situations which lack a
reversibility path for information disclosure or system compromise. Examples of such
environments include: privileged healthcare information systems, personally sensitive
information system, and systems guarding the safekeeping of people and life. These are
distinct from payment systems and other reversible or partially reversible systems. For
instance, systems holding credit card information may be reversible through financial
remuneration. In privileged information systems or critical systems, since the disclosure of
information cannot be unlearned a breach of such systems’ security can be catastrophic. For

example, in the case of healthcare, knowledge regarding potentially sensitive information such

6

WO 2017/177035 PCT/US2017/026399

as genetic predisposition to disease, may threaten an individual’s future employment or cost of
insurance. Also, for example, in instances of mission critical systems, such as automotive and
flight control systems, a breach could threaten the safety and lives of people. Clearly breaches
of such systems are irreversible processes.
[0035] Furthermore, the catastrophic nature of securing such systems, creates a need for
insurance processes to intervene and serve as a governing influence. To meet such a possible
driving force in the market, an exemplary embodiment of the security supervisor can provide
quantifiable guarantees or behavior attestations for parties evaluating the integrity of an
insured system.

Identity Model
[0036] FIG. 1 illustrates a block diagram of the example device that can implement a behavior
measurement architecture (BMA) 100 in combination with a dynamic root of trust 102. This
combination offers the means to implement systems which support system compromise
detection. In some exemplary embodiments, the system is also based on and uses a security
supervisor derived from an identity-attestation architecture, such as shown in FIG 1. In one
exemplary embodiment illustrated in FIG. 1, the system includes a BMA 100 coupled to a
dynamic root of trust 102 that provides a reference to a behavior-based identity state of the
platform or an endpoint hosting the platform. The BMA 100 can detect compromised platform
behavior and provide a security supervisor 104 based on the BMA 100. The security
supervisor 104 is implemented through a daemon and/or an operating system program 106. In
one example, a security supervisor of the BMA can be implemented through a LINUX kernel.
[0037] As mentioned, in some exemplary embodiments, the security supervisor can be based
on an identity-attestation architecture. This model assumes each device can have a unique
identity assigned to it, such as by a provisioning organization. The attestable measurement
value of the platform is a manifestation of the intrinsic identity assigned to a device. Such an
architecture is based on the generation of an N-bit number used to represent an identity. The
identity is generated by applying a cryptographic hash function over two components, a range
selector and a credential. As shown in FIG. 1, the security supervisor 104 includes executable
instructions 108 stored in memory to generate a unique identity for a device under the BMA
100. This is formalized by the following description or extension operator:
In=Hm(RmIIHM(C)), where Iy is the identity, Ry is the range value of size M, C is the

credential, Il is a concatenation, and Hy is a hash function with digest size M.

7

WO 2017/177035 PCT/US2017/026399

[0038] The Ry value serves to select the possible range of functional values which can be
achieved by any given credential mapping. Absent knowledge of the range selector, the actual
credential used to formulate the identity is protected from disclosure by the infeasibility of
determining the 2+M sized function pre-image. An organization provisioning devices has a
top-level identity defined by some credential value such as a tax identification number. Once
the organizational identity is generated, it can serve as the Ry value for subordinate identities
within the context of the organization. The subordinate identity space is logically defined into
three separate groupings: users, services, and devices. An example representation of this
identity space may be described as an irreversibly directed acyclic multitree.

[0039] In such examples, the device identity can be derived by applying the basic identity
expression in the following form: Dy=Hm(OmIIHm(Dc)), where Dy is the device identity, Oy
is the organization’s identity, D¢ is the device’s credential, Il is a concatenation, and Hy is a
hash function with digest size M. In these examples, SHA256 can be used for Hy which yields
the device identity as a 256-bit injective mapping into a range selected by the organizational
identity.

[0040] The security supervisor in some embodiments can a functional expression of the
identity. This is a three-component expression which implements the following three
elemental functions of an identity: identity assertion, identity implementation, and identity
authentication. The identity assertion can be a 512-bit representation of the identity which
allows the device to indicate it is in possession of an implementation of the identity which can
be represented as a 2048-bit number. The identity authentication element can be a 256-bit
number used to authenticate the assertion and implementation of the identity. An ASCII
representation of the functional expression of the identity can be used for tooling and

expression needs. The following is an example format that can be used.

WO 2017/177035 PCT/US2017/026399

[0041] An ASN.1 representation of the identity may be used internally in the supervisor.

Behavior Measurement Architecture

[0042] In an exemplary embodiment, such as shown in FIG. 1, the security supervisor 104 can
use an identity model 110 such as the native Integrity Measurement Architecture (IMA) or a
modified version of IMA. The native IMA was originally implemented in a LINUX kernel by
the IBM Trusted Computing Group. Further, in such an embodiment, the BMA can include a
modified version of IMA.

[0043] The BMA 100 can use the identity model 110 (which is based on processor executable
instructions stored in memory) to express a deterministic measurement value for platform
behavior. In some exemplary embodiments, the modifications of the BMA 100 are based on
three premises. Each of the three premises is based on processor executable instructions stored
in memory. Also, besides these last-mentioned instructions, any of the instructions described
herein may be configured to be executable by a processor such as the CPU 302.

[0044] The instructions for the first premise 112 provide that the system behavior identity of
an actor process is expressed by the functional projection of the identity factors of the process
over the identity factors of an acted upon subject identity.

[0045] The instructions for the second premise 114 provide that functional projections of first
premise represent a mutually exclusive and collectively exhaustive set of contours which
represent an actor and subject set of values, such as an AxS set of values. The values define
the fundamental behaviors of the platform. ‘A’ represents the total number of unique actors
and ‘S’ represents the total number of unique subjects.

[0046] The instructions for the third premise 116 provide that, neglecting inter-contour and

extra-contour time dependencies, a single deterministic measurement of the platform behavior

WO 2017/177035 PCT/US2017/026399

is given by the extension hash sum of an arbitrary ordering of the contour points from the
second premise. Each contour is projected into a range selected by the device identity.

[0047] The identity model conceptually is analogous to ideas of quantum molecular orbital
theory. Each actor identity can be thought of as precessing through an orbit defined by its
interaction with a field of subject identities. Each of the contours represents the authorized
behaviors of an actor identity. The sum of all the contours (which can be thought of as a sum
of all behavioral orbits) represents a bounded measurement of the gross platform behavior.
This is analogous to the notion of the energy of a molecular system being modeled as a linear
combination of all the atomic orbitals used to describe the atoms in a molecule.

[0048] The third premise reflects the notion of the gross measurement of system behavior as
the sum of the behaviors of the individual actor identities. The important model simplification
of time invariance is inherent in this premise. Intra-contour time independence implies the
notion of neglecting the order in which actor identities interact with subject identities. Inter-
contour time independence implies the notion of neglecting any dependency in the ordering of
the actions of different actor identities.

[0049] Accepting the simplification of time independence implies that such a system is (AxS)
— 1 degenerate. As an example, a system with two actor identities and two subject identities
yields four behavior measurements, any combination of which reflects the deterministic
system behavior value. This is once again analogous to molecular orbital theory where
multiple molecular wave functions can yield the same molecular energy value.

[0050] The notion of degenerate representations of a single system behavior measurement has
implications with respect to both system management and the functional integrity of the gross
system measurement. The acceptance of time independence implies the security supervisor
can load the set of contours at system initialization time. A system reference quote taken at the
aforesaid time reflects the behavioral measurement of the system over its functional lifetime.
Any additional actor/subject contour projections result in a perturbation of the system
behavior measurement which is a detectable event. Upon or after detection of the perturbation,
the security supervisor may take a pre-specified action to protect the system.

[0051] From a security perspective, the simplification of time invariance implies an
acceptance of some loss in fidelity of the gross system measurement representing the system
behavior. Examples would be a situation where the integrity of the system is based on either

the order in which an actor acts on specific subjects or the order in which separate actors

10

WO 2017/177035 PCT/US2017/026399

operate. Increasing the precision of the gross system measurement includes a reduction in the
degeneracy level of the measurement model. This includes ordering of the contour points so
they are representative of the actor/subject trajectory path in the system being modeled. This
can be accomplished either in-situ when a measured system environment is designed, or by
capturing the contour points at some point in the system initialization process or a
combination of both procedures.

[0052] The factors used to compose the identities in a measured system must exhibit closure
over the system being measured. An example of this issue is in designing attested systems
which interact with other attested systems. A cyclic dependency is inherent in attempting to
include the measurement state of the counter-party system as a subject identity factor
secondary to that system depending, in turn, on the measurement status of the system being
constructed. A strategy for addressing this issue and the challenge of writable files is discussed
in the Exemplary BMA Implementation section.

[0053] Referring to the first premise, the actor identity is given by: Ay=Hy (F;...Fy), where
A is an actor identity, F is the actor identity dimensions, Hy is a hash function with a digest
size M. The dimensions used to create the actor identity are selected to reflect properties
which are important in regulating the actions of the actor over its subject field. Example
dimensions can include discretionary access control values, mandatory access control labels
and security capabilities.

[0054] The subject identity is given by: Sy=Hwm (F;...Fn), where Sy is a subject identity, F is
the subject identity dimensions, Hy, is a hash function with digest size M. The dimensions
used to create the subject identity may reflect the characteristic properties of the identity, such
as filename, cryptographic sum of file contents, file inode number, filesystem universally
unique identifier (UUID), discretionary access control values and mandatory access control
labels. An implementation may include a subject which is an operating system representation
of a remote network connection. In such an implementation, the characteristic properties may
include parameters such as the address and port number of the remote host.

[0055] The contour projection point for a given actor identity operating on a subject identity is
given by the following: Cy=Hy (AmlISm), where Cy is the contour point, Ay the actor
identity, Sy is the subject identity, |l is a concatenation, Hy is a hash function with a digest
size M. The Cy identity is the generic projection of the actor/subject identity interaction and

can be calculated in-situ by the system designer given a knowledge of the identity factors used

11

WO 2017/177035 PCT/US2017/026399

to represent the actor and subject. According to the third premise, this point is projected into a
device specific identity through the following function: Pyy=Hy (DumlICyp), where Dy is the
device identity, Cy is the contour point, |l is a concatenation, Hy is a hash function with digest
size M. The Py identity projection allows the measurement contours to be prepared as part of
the system image without security concerns over their content. The final platform
measurement is protected by managing the security of the device identity.

Some Exemplary BMA Implementations

[0056] FIG. 2 illustrates a block diagram of an example information system 200 that includes
example devices configured to use the BMA. The information system 200 in the example of
FIG. 2 includes first service server 202, first service database 204, second service server 206,
second service database 208, third service server 210, and third service database 212. The
servers and databases can be communicatively coupled over a network 214. The network 214
may be a computer network. The servers may each be one or more server computers.

[0057] The information system 200 may be accessible over the network 214 by user devices,
which may include desktop computers (such as device 216), laptop computers (such as device
218), smartphones (such as device 220), and tablet computers (such as device 222). In various
examples of such an online information system, users may search for and obtain content from
sources over the network 214, such as obtaining content from a search engine server, a content
server, or any other type of server providing a service over the network (such as the first,
second, and third service servers depicted in FIG. 2).

[0058] In an example, the first service server 202 can stores account information of users. The
first service server 202 is in data communication with the first service database 204. Account
information may include database records associated with respective users. Suitable
information may be stored, maintained, updated and read from the first service database 204
by the first service server 202. Examples include user identification information, user security
information, such as passwords and any of the security credentials described herein, account
balance information, and information related to content associated with user’s preferred
content items, and user interactions associated with user’s preferred content items and
associated content. The account information may also include demographic or psychographic
information associated with the user.

[0059] The first service server 202 (as well as the second and third service servers depicted in

FIG. 2) may be implemented using a suitable device. Each of the service servers may be

12

WO 2017/177035 PCT/US2017/026399

implemented as a single server, a plurality of servers, or another type of computing device
known in the art. Access to the service servers can be accomplished through a firewall that
protects the account management programs and the account information from external
tampering. Additional security may be provided via enhancements to the standard
communications protocols, such as Secure HITP (HTTPS) or the Secure Sockets Layer
(SSL). Such security may be applied to any of the servers of FIG. 2, for example.
Furthermore, the behavior measurement architecture and the security supervisor described
herein may be implemented on any one or more of the service servers depicted in FIG. 2.
[0060] The first service server 202 (as well as the second and third service servers depicted in
FIG. 2) each may provide a user configuration front end to simplify the process of accessing
the account information of the user. The user configuration front end may be a program,
application, or software routine that forms a graphical user interface. In an example, the user
configuration front end is accessible as a webpage. The webpage can provide fields for
selecting preferences, such as content preferences of the user. Content preferences and other
user configurable information may be changed and viewed when the user is logged on to the
system. User preferences and other configuration information may be saved to each service
server’s respective database.

[0061] The servers and databases may be implemented through a computing device. A
computing device can send and receive signals, such as via a wired or wireless network, or
may be capable of processing or storing signals, such as in memory as physical memory states,
and may, therefore, operate as a server. Thus, devices capable of operating as a server may
include, as examples, dedicated rack-mounted servers, desktop computers, laptop computers,
set top boxes, integrated devices combining various features, such as two or more features of
the foregoing devices, or the like. Servers may vary widely in configuration or capabilities, but
generally, a server may include a central processing unit and memory. A server may also
include a mass storage device, a power supply, wired and wireless network interfaces,
input/output interfaces, and/or an operating system, such as WINDOWS SERVER, MAC OS
X, UNIX, LINUX, FREE BSD, or the like.

[0062] Further, the servers and databases may be implemented as online server systems or
may be in communication with online server systems. An online server system may include a
device that includes a configuration to provide data via a network to another device including

in response to received requests for page views or other forms of content delivery. An online

13

WO 2017/177035 PCT/US2017/026399

server system may, for example, host a site, such as a social networking site, examples of
which may include Flicker, Twitter, Facebook, LinkedIn, or a personal user site (such as a
blog, vlog, online dating site, etc.). An online server system may also host a variety of other
sites, including business sites, educational sites, dictionary sites, encyclopedia sites, wikis,
financial sites, government sites, etc.

[0063] An online server system may further provide a variety of services that may include
web services, third-party services, audio services, video services, email services, instant
messaging (IM) services, SMS services, MMS services, FTP services, voice over IP (VOIP)
services, calendaring services, photo services, or the like. Examples of content may include
text, images, audio, video, or the like, which may be processed in the form of physical signals,
such as electrical signals, for example, or may be stored in memory, as physical states, for
example. Examples of devices that may operate as an online server system include desktop
computers, multiprocessor systems, microprocessor-type or programmable consumer
electronics, etc. The online server system may or may not be under common ownership or
control with the servers and databases described herein.

[0064] The network 214 may include a data communication network or a combination of
networks. A network may couple devices so that communications may be exchanged, such as
between a server and a client device or other types of devices, including between wireless
devices coupled via a wireless network, for example. A network may also include mass
storage, such as a network attached storage (NAS), a storage area network (SAN), or other
forms of computer or machine readable media, for example. A network may include the
Internet, local area networks (LLANs), wide area networks (WANSs), wire-line type
connections, wireless type connections, or any combination thereof. Likewise, sub-networks,
such as may employ differing architectures or may be compliant or compatible with differing
protocols, may interoperate within a larger network, such as the network 214.

[0065] Various types of devices may be made available to provide an interoperable capability
for differing architectures or protocols. For example, a router may provide a link between
otherwise separate and independent LANs. A communication link or channel may include, for
example, analog telephone lines, such as a twisted wire pair, a coaxial cable, full or fractional
digital lines including T1, T2, T3, or T4 type lines, Integrated Services Digital Networks
(ISDNs), Digital Subscriber Lines (DSLs), wireless links, including satellite links, or other

communication links or channels, such as may be known to those skilled in the art.

14

WO 2017/177035 PCT/US2017/026399

Furthermore, a computing device or other related electronic devices may be remotely coupled
to a network, such as via a telephone line or link, for example.

[0066] A user device, which may be any one of the devices 216-222 or endpoints described
herein, includes a data processing device that may access the information system 200 over the
network 214. A user device is operative to interact over the network 214 with any of the
servers or databases described herein. The user device may implement a client-side application
for rendering front end graphical user interfaces. Through such front ends electronic properties
and application data may be viewed and corresponding requests may be received and
submitted to any one the service servers depicted in FIG. 2. A user device may communicate
data to the information system 200, including data defining electronic properties and
interactions with content. A user device may receive communications from the information
system 200, including data associated with services of the servers depicted in FIG. 2. The
interactions and information described herein may be logged in data logs, and such logs may
be analyzed and monetized, as well as secured by one or more of the encryption and
decryption techniques described herein.

[0067] A user device and a content provider device may operate as a client device when
accessing information on the information system 200. A client device may include a
computing device capable of sending or receiving signals, such as via a wired or a wireless
network. A client device may, for example, include a desktop computer or a portable device,
such as a cellular telephone, a smart phone, a display pager, a radio frequency (RF) device, an
infrared (IR) device, a Personal Digital Assistant (PDA), a handheld computer, a tablet
computer, a laptop computer, a set top box, a wearable computer, an integrated device
combining various features, such as features of the forgoing devices, or the like. A client
device may vary in terms of capabilities or features. Claimed subject matter is intended to
cover a wide range of potential variations. For example, a cell phone may include a numeric
keypad or a display of limited functionality, such as a monochrome liquid crystal display
(LCD) for displaying text. In another example, a web-enabled client device may include a
physical or virtual keyboard, mass storage, an accelerometer, a gyroscope, global positioning
system (GPS) or other location-identifying type capability, or a display with a high degree of
functionality, such as a touch-sensitive color 2D or 3D display, for example. A client device
may include or may execute a variety of operating systems, including a personal computer

operating system, such as a WINDOWS, IOS or LINUX, or a mobile operating system, such

15

WO 2017/177035 PCT/US2017/026399

as [0S, ANDROID, or WINDOWS MOBILE, or the like. A client device may include or may
execute a variety of possible applications, such as a client software application enabling
communication with other devices, such as communicating messages, such as via email, short
message service (SMS), or multimedia message service (MMS), including via a network, such
as a social network, including, for example, FACEBOOK, LINKEDIN, TWITTER, FLICKR,
or GOOGLE+, to provide only a few possible examples. A client device may also include or
execute an application to communicate content, such as, for example, textual content,
multimedia content, or the like. A client device may also include or execute an application to
perform a variety of possible tasks, such as browsing, searching, playing various forms of
content, including locally or remotely stored or streamed video, or games. Also, at least some
of the features, capabilities, and interactions may be logged in data logs, and analyzed and
monetized, as well as secured by one or more of the encryption and decryption techniques
described herein.

[0068] The disclosed methods and systems may be implemented at least partially in a client-
server environment, a cloud-computing environment, a peer-to-peer environment, any other
type of distributed application architecture, or any combination thereof.

[0069] FIG. 3 illustrates a block diagram of an example device 300 configured to use the
BMA. This illustration of the example device includes a block diagram of an example
electronic device that can implement aspects of and related to example systems that can
provide the behavior-based integrity measurement architecture and the security supervisor
described herein. Each of the devices depicted in FIGS. 1-4, 7, and 8 may include at least part
of the device 300.

[0070] The device 300 includes a central processing unit (CPU) 302, which may include
multiple CPUs or data processing devices, memory 304, a power supply 306, and input/output
components, such as network interfaces 308 and input/output interfaces 310, and a
communication bus 312 that connects the elements of the electronic device. The network
interfaces 308 can include a receiver and a transmitter (or a transceiver), and an antenna for
wireless communications. The CPU 302 can include any type of data processing device as
well. Also, for example, the CPU 302 can include central processing logic.

[0071] The memory 304, which can include random access memory (RAM) 314 or read-only
memory (ROM) 316, can be enabled by memory devices. The RAM 314 can store data and

instructions defining an operating system 318 (such as any of the operating systems described

16

WO 2017/177035 PCT/US2017/026399

herein), data storage 320, and applications 322 (such as any applications providing services
over the network 214 and any of the security services described herein based on the behavior-
based integrity measurement architecture and/or the security supervisor. The applications 322
may include hardware (such as microprocessors), firmware, software, or any combination
thereof. Also, the memory 304 may include a non-transitory medium including instructions
corresponding to the applications 322 and/or the operating system 318. These instructions and
any instructions described herein may be executable by the CPU 302 or another type of
processing device. The ROM 316 can include basic input/output system (BIOS) 324 of the
electronic device.

[0072] The power supply 306 contains power components, and facilitates supply and
management of power to the device 300. The input/output components of the device 300 can
facilitate communications between any components of the electronic device and components
of external devices (such as components of other devices of the information system 200, other
online server systems, and end user devices). For example, such components can include a
network card that is an integration of a receiver, a transmitter, and I/O interfaces, such as
input/output interfaces 310. The I/O components, such as I/O interfaces 310, can include user
interfaces such as monitors, keyboards, touchscreens, microphones, and speakers. Further,
some of the I[/O components, such as I/O interfaces 310, and the communication bus 312 can
facilitate communication between components of the electronic device, and can ease
processing performed by the CPU 302.

[0073] The device 300 can send and receive signals, such as via a wired or wireless network,
or may be capable of processing or storing signals, such as in memory as physical memory
states, and may, therefore, operate as a server or as a client device. The device can include a
server computer, dedicated rack-mounted servers, desktop computers, laptop computers, set
top boxes, integrated devices combining various features, such as two or more features of the
foregoing devices, or the like. Also, the device 300 may include or be one of the endpoints
mentioned herein. An endpoint may include a desktop or laptop computer, a mobile device or
any type of smart device (e.g., smart phone, tablet computer, smartwatch, smart TV, smart
appliance), any type of computer operating a firewall, network equipment such as a router, a
point of sale device or system, digital signage, an information exchange or transport system, a
control system such as an industrial control system, a data acquisition system, a cloud

microservice, a navigation system, and an autonomous car system, just to list a handful.

17

WO 2017/177035 PCT/US2017/026399

[0074] FIG. 4 illustrates a block diagram of another instance of the example device 300
configured to use the BMA 402. In FIG. 4, the device 300 in its RAM 314 includes BMA 402.
The BMA 402 illustrated in FIG. 4 can be derived from an integrity measurement architecture
and configured to use an identity model to express a deterministic measurement value for
platform behavior. The device 300 in its RAM 314 can also include a security supervisor 404
derived from or associated with the BMA 402 and configured to implement a verification of
behavior of service-providing network endpoints or a platform the endpoints.

[0075] In an exemplary embodiment, an operating system and/or one or more separate
applications (such as the operating system 318 and/or one or more of the applications 322,
respectively) can implement the behavior modeling of BMA. In such an example and others,
the BMA can be built off a standard IMA architecture, such as the LINUX IMA architecture.
An example difference between the known IMA and BMA is the addition of the BMA basing
a measurement event on the interaction of subject/actor identities rather than a change in file
content.

[0076] FIG. 5 illustrates example operations 500 of an enhanced IMA or BMA
implementation using LINUX. At 502, the MAP directive and its negation DONT_MAP can
be added to the measure, appraise and audit actions and their negations. This change is based
partially on the premise that the existing IMA code is based on a one measurement per inode
model. In the BMA, the number of measurements per inode is based on the number of
independent actor identities which operate on the inode.

[0077] In an exemplary embodiment of LINUX IMA or BMA implementation, to minimize
impact on the existing code structure and to support an enhanced functionality, an identity
contour cache can be implemented which is interrogated for a cache hit at 506 when a MAP
action is requested at 504. If the contour point is not found in the cache, a call to the
ima_store_measurement() function is made to generate a new measurement value 508 which is
used to extend the Platform Configuration Register (PCR) based hardware measurement value
510. Since the MAP action is functionally a super-set of the MEASURE action, a new
integrity measurement policy can be created which replaces the measure action with the map
action 512. The new integrity measurement policy is referred to as the identity integrity policy
herein.

[0078] In addition, the UID and EUID based action selectors can be replaced with an action

selection by capability masking at 514. The notion of using capability masking as a condition

18

WO 2017/177035 PCT/US2017/026399

for triggering a map or measure action is based on a regression of the original IMA
implementation. The uid directive can trigger an action based on a check of the real uid of the
process involved in the measurement. This can be triggered by the FILE_CHECK policy
directive: measure func=FILE CHECK mask=MAY READ uid=0, which can result in a
condition where a setuid binary run by a non-root user would not trigger a file measurement
but would when run by the root user. This behavior is not preferred if the reason for triggering
a file measurement is based on the assumption that a process with administrative privileges
should be monitored when accessing files. Since the Discretionary Access Control (DAC)
check is based on the effective identity of the process, a setuid binary run as a normal user
would circumvent DAC security checks but its action in doing so would not trigger a
measurement action.
[0079] To remedy the aforementioned problem with triggering the measurement action, the
euid directive can be added to the IMA policy at 516 that triggers a policy action based on the
effective identity of the process at 518. In addition, having the CAP_SETUID bit set in the
process capability mask at 520 triggers the identity check against all three of the user
identities (real, effective and saved) at 522. Since the CAP_SETUID capability allows the
process to assume, with respect to DAC checks, any of the three identities, this modification
triggers measurement for any root capable process at 522.
[0080] Experience with this anomaly suggested a superior method for triggering
measurements would be based on the capability mask of the process rather than any specific
user identity. This is consistent with the fact that permission checks throughout the LINUX
kernel are based on the capability mask of a process rather than its user identity. A new
‘capability= policy’ directive is included that supports either the keyword ‘any’, which
specifies a full capability mask, or a reduced capability mask specified in hexadecimal. An
action is triggered if the following action mask contains any non-zero bits. The action mask
can be given by: Apask=PmaskAEffmaskVPermask), where Aypask is the action mask, Pyask is
the policy mask, Effyask is the effective capabilities, and Peryask is the permitted capabilities.
[0081] The identity integrity policy implements a mapping action based on the following
FILE MMAP and FILE CHECK function checks.

map func=FILE_ MMAP mask=MAY_EXEC capability=any

map func=FILE_CHECK mask="MAY_READ capability=any

19

WO 2017/177035 PCT/US2017/026399

[0082] Capability masking in integrity policies can be beneficial as ambient capabilities are
implemented in the LINUX kernel security architecture. Ambient capabilities are an attempt to
address understood functional issues with the current capabilities model. One of the purposes
of ambient capabilities is to allow increased extension of granular permissions to binaries.
Also, capability based policy triggers can enable the detection of privilege violations
regardless of the DAC based identities assigned to an actor process.

[0083] FIG. 6 illustrates additional example operations 600 of the IMA implementation using
LINUX. An IMA based template can provide support for creation of actor and subject
identities as components of the event measurement. The ‘actor’ and ‘subject’ field names can
be added to the list of supported measurement fields at 602 as shown in FIG. 6. The
initialization functions assigned to these fields generate the Ay and Sy identity projections.
[0084] To support the extension of the Cy identity into the Py identity an additional member,
named genhash, can be added to the ima_template_desc structure of the LINUX Kernel at 604.
The ima_template_desc structure member contains a pointer to a function that is responsible
for generating the digest value over the template fields at 606. The digest value can be used to
extend a PCR measurement register at 610.

[0085] In an exemplary embodiment, the SHA256 hash function can be used as an identity
projection function. In such an embodiment, all identities are 32 bytes in length. SHA256 can
be beneficial over the SHA1 function, because the SHA1 function can be insecure even
though the first pre-image resistance strength of the function is relatively secure.

[0086] In an exemplary embodiment, such as to support the POSSUM protocol, the BMA
implementation maintains a kernel based 256-bit measurement register.

[0087] A measurement generation function can compute a device specific identity contour
point, e.g., Py, at 608, and extend the measurement register with the device specific identity
contour point at 610.

[0088] For compatibility with Trusted Platform Module (TPM) hardware, a digest value
consistent with the hardware implementation can be generated over the Py identity at 612 and
returned to the caller to be used to extend the PCR measurement register at 610.

[0089] An ‘actor’ field initialization function can compute the Ay identity based on the
generation of a SHA256 digest over a packed structure at 614 which includes the following

DAC identities: uid, euid, suid, gid, egid, sgid, fsuid and fsgid. In addition, the capabilities of

20

WO 2017/177035 PCT/US2017/026399

the Ay or associated processes are captured by including a bitmask representing the
intersection of the effective and permitted capabilities masks, e.g., EffyaskVPerMask, at 616.
[0090] A ‘subject’ field initialization function can compute the Sy identity by computing the
identity digest value over a packed structure at 618 which can include the SHA256 checksum
of the file contents, uid, gid and inode number. The filename can be included via the standard
filename field descriptor. The filename can be a diagnostic value. The initialization functions
can be used to extend the PCR measurement register.

[0091] FIG. 7 illustrates a block diagram of an example device that can implement the BMA
100 (shown in FIG. 1) using a LINUX kernel 702. As shown by FIG. 7, in an exemplary
embodiment, management interfaces to BMA 100 are accessible via a securityfs pseudo-
filesystem 702 that can be associated with or act as an example implementation of the security
supervisor. Management pseudo-files 704 can be grouped in a pseudodirectory that is a part of
the securityfs pseudo-filesystem 702, such as “/sys/kernel/security/ima/iso-identity”. Within
such a directory, at least one of the following files may implement management interfaces of
the security supervisor: the host identity file 706, the contours file 708, the map file 710, the
measurement file 712, the sealed file 714, the forensics file 716, and the pseudonym file 718.
[0092] The host identity file 706 may be write-only and used to set a device identity Dy value
which can serve as the range value for projecting the individual contour points. The device
identity may be set by writing a 64-character hexadecimal value to the file. The host identify
file 706 may create a device dependent host identity.

[0093] The contours file 708 may output the contents of the identity cache as a series of Cy
values in hexadecimal format, one value per line. The contents of this file represent the history
of subject and identity interactions. Also, in an example, the contours file 708 may relate to
time dependent behavior.

[0094] The map file 710 may be write-only and used to populate the BMA identity cache. The
map file may be a pseudo-file. The map file accepts a series of Cy values in hexadecimal
format, one value per line. In addition to being added to the identity cache, the identity
projections are extended with the Dy identity to yield Py identities which are used to update
the behavior-based identity measurement state of the platform as well as the PCR based
hardware measurement value. Also, in an example, the map file 710 may support loading a
platform behavior model according to the contours file being related to time dependent

behavior.

21

WO 2017/177035 PCT/US2017/026399

[0095] The measurement file 712 may be read-only and display a measurement status of the
platform and a current unitary measurement of platform behavior. This can be a 256-bit
measurement value which represents the extension hash sum of the Py identities. The purpose
is to provide a high-performance interface to the platform behavioral measurement. Since this
measurement is not anchored in hardware it must be considered advisory unless it is validated
with a hardware based reference quote.

[0096] The sealed file 714 can be write-only and used to seal the behavior-based identity
measurement state of the platform. Writing a 1 to this file removes the host_identity, contours,
map and pseudonym files, thus disabling any further modifications to the platform behavior
model. Internally it enables a counter which limits the number of subsequent actor and identity
interactions that are recorded. Once the measurement status of a platform is sealed, any
subsequent Ayrand Sy interactions are recorded and made available in the forensics file.
[0097] The forensics file 716 can provide a history of the events involved in a compromise,
such as during an event of a platform compromise. The forensics file may be a read-only
pseudo-file. The forensics file can provide tagged entries which document the policy event and
the identity factors that were involved in generating the event. The following is an example of
a forensic event in a sealed system:

function: 1

process: su
pathname: /etc/group
uid: 0

euid: 0

suid: 0

gid: 50

egid: 50

sgid: 50

fsuid: 0

fsgid: 50
capabilities: Ox 1{TfffTf

[0098] The forensic event can be generated by a FILE_CHECK policy action by an actor
process running the su binary accessing the /etc/group subject file. The actor process can run
with a set of capabilities and a set of DAC identities. In this example, it is a setuid binary
which has used its CAP_SETUID capability to modify its DAC access profile.

[0099] The pseudonym file 718 may be write-only and used to declare identity factor
pseudonyms for subject identities. Pseudonyms can be used with BMA to address files which

have variable contents or may be involved in Time of Measurement/Time of Use (TOMTOU)
22

WO 2017/177035 PCT/US2017/026399

or open-writer violations as part of their acceptable use pattern. A pseudonym is declared for a
subject by writing the pathname of the file to the pseudonym file. This causes an integrity
inode cache entry to be allocated for the file. The flags entry for the inode has the
IMA_PSEUDONYM and IMA_COLLECTED flags set. The ima_hash digest value for the
structure is set to a value which is serially extended from the Dy identity. Once defined, any
Sy subject identities generated from this inode use the derived digest value rather than a
checksum over the file contents. This yields a constant identity value for files whose contents
can be variable by the system. Any TOMTOU or open-writer violations involving inodes with
the IMA_PSEUDONYM set may be disregarded. To provide support for BMA pseudonyms
the security_inode_unlink function may be modified to include a call to the
integrity_inode_free function. This may insure the integrity inode cache entry for a subject
declared as a pseudonym is destroyed if the file is removed.

[00100] Subject pseudonyms can be configured to be declared by the security supervisor as
part of the initialization of a measured platform. Once the behavior-based identity state of the
platform is sealed, the pseudonym digest value cannot be restored. This can result in an off-
contour projection for an interaction involving the given subject. Subject pseudonyms can be
implemented to counter some IMA problems secondary to writable files. Subject pseudonyms
can be configured by the security supervisor during system initialization processes. The
pseudonyms can also be a synthetic file hash derived from a platform identity and can be
irrevocably lost in cases of inode unlink.

[00101] The management interfaces or the securityfs interfaces are configured to simplify the
design and implementation of a measured application platform. The contour points that
illustrate the platform behavior measurement can either be captured at a known point in the
system initialization process by reading the contents of the contours file or generated by
tooling developed to support the security supervisor. A security supervisor or an equivalent
entity can define the platform measurement by writing the contours into the map file followed
by sealing of the platform measurement state.

[00102] In a dynamic root of trust environment, a hardware quote taken, such as during or
after the sealing of the platform measurement state, provides a reference to the behavior-based
identity state of the platform. The reference to the identity state can be anchored in the
hardware state of the device. Any subsequent actor or subject interactions which have not been

defined or whose identity factors are modified can generate a perturbation in the platform

23

WO 2017/177035 PCT/US2017/026399

measurement which can be verified by subsequent reference quotes. The nature of the
violation can be determined through the contents of the forensics file.

Security Supervisor

[00103] The security supervisor, such as the security supervisor 104, 404, or 804, includes an
architecture built on or associated with the BMA. The architecture of the security supervisor
can implement a measured application platform for hosting applications or execution
environments with documented system behavior. The security supervisor’s architecture
supports the execution environments, such as a native binaries environment, a virtual machine
environment, and a container environment. The security supervisor can implement a
replacement for the initialization process started during booting of the computer system
process. For example, in a LINUX environment init can be replaced with the security
supervisor’s version of init.

[00104] The security supervisor can include a native Trusted Execution Technology (TXT)
environment which extends the Dynamic Root of Trust Measurement (DRTM) into the
behavioral measurement state of the platform. In a virtual machine implementation, the
security supervisor may run as the primary client of the system supervisor or hypervisor
[00105] The security supervisor can run entirely from RAM based block devices. In an
exemplary embodiment, a block device driver, such as the HugePageDisk (HPD), can
implement a dynamically sizable block device. In such an implementation, the security
supervisor can use the composite hardware and software behavior measurement supplied by
the BMA to allow decryption and encryption of the contents of the RAM based block device.
[00106] In an exemplary embodiment, at least one of three separate block based filesystems
can be used to support a security supervisor instance: root {e.g., “/”), system configuration
(e.g., “/etc/system™), or platform configuration (e.g., “/etc/platform™). The contents of the
“letc/system” filesystem can be created at system provisioning time and can define the
operational function the system may perform. The “/etc/platform™ filesystem can be created to
hold site specific configuration information and may be field configurable via 2-factor
authentication technology.

[00107] The security supervisor may include an encrypted filesystem image format. Such a
format may implement an Advanced Encryption Standard (AES) including an AES256-CBC
(i.e., AES256 cipher block chaining) encrypted system image. Such an image may be further

24

WO 2017/177035 PCT/US2017/026399

secured with a hash function such as HMAC-SHA256. The format can also include anti-
forensic provisions for the encrypted images.

[00108] The security supervisor may include a filesystem image loader that can check for the
presence of files named contours and pseudonyms in a respective directory, such as the /boot
directory of a loaded filesystem. If found, the loader can write these files into corresponding
file systems. For example, in a LINUX implementation, the files can be written to a virtual
filesystem such as specific securityfs for the security supervisor. The filesystem images used
by a security implementation are stored in the /boot directory of the boot device. In an
example, each image file has a companion file with a certain suffix, such as a .seal suffix,
which contains the encryption key and initialization vector for the encrypted image. The image
sealing file can be symmetrically encrypted with a key which is PCR sealed to the
measurement state of the platform at the time it is to be loaded.

[00109] FIG. 8 illustrates a block diagram of another example device that can implement the
BMA 100 (shown in FIG. 1) through LINUX (such as the device illustrated in FIG. 7) or using
a different operating system. The device includes an operating system kernel 800 configured
to initiate a launch sequence and compile the launch sequence into a kernel image that
maintains the integrity of the launch sequence. The device also includes a security bootloader
802 configured to initialize a system identity and root filesystem after launch of the kernel.
[00110] The device also includes a security supervisor program 804. The security supervisor
program 804 is configured to launch after launch of the security bootloader 802. The security
supervisor program 804 is also configured to host applications or execution environments with
documented system behavior 806a-806¢. The applications or execution environments 806a-
806c can include native binaries environments, virtual machine environments, or container
environments.

[00111] The security supervisor program 804 is also configured to use an anonymous key
agreement protocol 808 that allows at least two endpoint devices (such as any two of the
devices 216-220 illustrated in FIG. 2 or device 300 illustrated in FIG. 3) to establish a shared
secret over an insecure channel using a key exchange. The security supervisor program 804 is
also configured to generate a unique identity for at least one of the endpoint devices based on
an identity model including a hash function (such as the identity model 110 illustrated in FIG.

1). The security supervisor program 804 is also configured to generate a key for the key

25

WO 2017/177035 PCT/US2017/026399

exchange through key scheduling based on the generated unique identity and an epoch
associated with a period of time of the key exchange.

[00112] The security supervisor program 804 is also configured to verify behavior of the
endpoint devices or a platform running on the endpoint devices against a respective pre-
defined behavioral state for each one of the endpoint devices or the platform. The security
supervisor program 804 is also configured to execute a pre-determined action if a behavior of
at least one of the endpoint devices or the platform is inconsistent with the respective pre-
defined behavioral state.

[00113] FIG. 9 illustrates additional example operations 900 that can be implemented by one
or more aspects of the BMA (such as the example BMA 100). The operations 900 include
initiating a launch sequence and compiling the launch sequence into a kernel image that
maintains the integrity of the launch sequence at 902. The operations 900 also include
initializing a system identity and root filesystem at 904.

[00114] The operations 900 also include, after compiling the launch sequence and initializing
the system identity and root filesystem, hosting, by a security supervisor, applications or
execution environments with documented system behavior at 906. The applications or
execution environments can include a native binaries environment, a virtual machine
environment, or a container environment.

[00115] The operations 900 also include, after compiling the launch sequence and initializing
the system identity and root filesystem, using an anonymous key agreement protocol that
allows at least two endpoint devices to establish a shared secret over an insecure channel using
a key exchange at 908. The operations 900 also include generating (such as by the security
supervisor) a unique identity for at least one of the endpoint devices based on an identity
model] including a hash function at 910. The operations 900 also include generating a key for
the key exchange through key scheduling based on the generated unique identity and an epoch
associated with a period of the key exchange at 912. The operations also include verifying
behavior of the endpoint devices or a platform running on the endpoint devices against a
respective pre-defined behavioral state for each one of the endpoint devices or the platform at
914. The operations 900 also include, at 916, after compiling the launch sequence and
initializing the system identity and root filesystem, executing a pre-determined action if a
behavior of at least one of the endpoint devices or the platform is inconsistent with the

respective pre-defined behavioral state.

26

WO 2017/177035 PCT/US2017/026399

[00116] FIG. 10 illustrates additional example operations 1000 associated with the security
supervisor. The outline for a system launch sequence can be: kernel, security bootloader,
security supervisor, and counter-party validation. The sequence can be a trusted launch
sequence initiated from a kernel filesystem at 1002, such as an initramfs filesystem, and
compiled into the kernel image at 1004. The integrity of the launch platform can be protected
by the kernel image being covered under a trusted boot policy. The trusted boot policy may be
loaded into Trusted Platform Module (TPM) non-volatile RAM (NVRAM) at 1006 during the
system provisioning process. After kernel launch the system can be prepared for execution of
the security supervisor’s version of init (e.g., sinit) by the security bootloader at 1008. For
example, the bootloader may be sboot. The loader can be responsible for initializing the
system to a point where a system monitoring program, such as the tcsd TPM management
daemon, can function.

[00117] Once the trusted platform resources are initialized, the security bootloader can read a
device identity (such as an ASN1 encoded functional device identity) from TPM NVRAM at
1010. The device identity can be PCR read sealed to the bootloader measurement state of the
platform. In an example, a reduced form of the implementation of the identity is written to a
pseudofile, such as the host_identity pseudofile of LINUX, to set the device identity. The
identity may be loaded into a time delimited keyring for passage to the security supervisor at
1012.

[00118] With the device identity (or an identity of an aspect of the device) loaded at 1012, the
bootloader configures an appropriately sized block device, such as an HPD, at 1014, and
unseals the keying material for the filesystem image at 1016. The loader decrypts the
filesystem image at 1018 and loads it into the provisioned block device at 1020. When the
load is completed the bootloader pauses the system and switches the root namespace to the
block device 1022. The bootloader executes the security supervisor as its replacement at 1024.
[00119] The security supervisor can re-start the TPM management system at 1026. A device
identity manager may be started at 1028 which transfers the device identity into restricted
process memory for subsequent use. The identity manager can provide support for clients
which need to prove to remote systems that they are running in a system with a specific
identity.

[00120] An example client includes the POSSUM protocol. The POSSUM protocol

implements a minimalistic system for implementing autonomous remote attestation between

27

WO 2017/177035 PCT/US2017/026399

two platforms. Successfully completing a POSSUM attestation includes each platform proving
that it possesses a specific identity and behavior. The result of a POSSUM attestation may be a
security context which allows subsequent communications between the two platforms to be
protected by providing integrity and confidentiality guarantees which are based on the current
system behavior value provided by the BMA.

[00121] At 1030, the security supervisor loads and configures itself from the system
configuration filesystem. It performs the system initialization based on information from the
configuration filesystem at 1030 and enters platform management mode at 1032. The platform
management mode loads the platform configuration filesystem at 1034. Support can be
implemented in this mode for detection of a 2- factor USB authentication token to request a
configuration dialogue for the system. The contents of the dialogue can be persisted by
creation of a new platform configuration filesystem image.

[00122] Once the supervisor configures itself at 1030, it can enter a platform management
mode based on the system and platform configuration information at 1032. The platform
configuration information can accrue through the launch process. The system images in such
cases can include contour and pseudonym definitions, and the system behavior measurement
state can also be defined in the platform management mode. The security supervisor can seal
the behavior-based identity state measurement at 1036 and begin executing the platform role
definition at 1038. In the platform management mode, the supervisor may be responsible for
maintaining the service providing status state of the device. Before carrying out application
and usage dependent actions at 1042 the supervisor can conduct an identity attestation
exchange 1040 with an appraising counter-party to verify its behavioral conformance status.
For example, in platform management mode, the security supervisor may choose to create
additional processes whose behavior is measured and maintained separately from that of the
platform. In one implementation, this alternate measurement of behavior would create a set of
pseudo-files, such as illustrated in FIG. 7, which provide the same measurement functionality
for this process and any subordinate processes.

[00123] In an exemplary embodiment, the security supervisor can implement a minimalistic
system for implementing autonomous mutual remote attestation between two verifying
platforms. Completing such a minimalistic system protocol exchange includes that two
platforms prove their current behavioral measurement is consistent with what has been

designated as acceptable for the platform. Since the security supervisor is configured to deploy

28

WO 2017/177035 PCT/US2017/026399

into environments where there may be hundreds or thousands of endpoints the behavioral
status measurement is linked to the intrinsic identity of the device. This scheme provides a
framework for guaranteeing no two devices have the same behavioral measurement, even if
they possess identical operating systems and/or application frameworks. Violation of the
integrity of any one device thus does not lead to information which would be of value in
spoofing or attacking the integrity status of other devices in the service delivery framework.
[00124] The security supervisor can operate in either one-to-one or one-to-many collaboration
environments. Implicit in the collaboration model is the ability to carry out device
authentication and mutual platform attestation.

POSSUM Protocol

[00125] In an exemplary embodiment, the security supervisor can use POSSUM protocol.
POSSUM protocol can provide a simple and easily verifiable protocol for authenticating a
device and verifying its platform behavior measurement. In early embodiments, deployed field
devices used Internet Protocol Security (IPsec) as a protocol suite for secure Internet Protocol
(IP) communications. IPsec provides security by authenticating and encrypting each IP packet
of a communication session. In embodiments, [Psec can be used as the collaboration transport
layer and the POSSUM protocol can replace RACOON authentication and key negotiation
system of IPsec.

[00126] In an exemplary embodiment, the POSSUM protocol can provide support for
implementing an Elliptic Curve Diffie-Hellman (ECDH) key exchange between two devices,
predicated on the mutual identities and platform measurement status of the devices. The
ECDH exchange may be based on an elliptic curve algorithm such as Curve25519 or an
alternative algorithm. The protocol is based on a packet oriented send/acknowledgement
model. Packets can be encrypted with AES256-CBC and the resultant payload can be integrity
protected with an HMAC-SHA256 function, such as a HMAC-SHA256 checksum. Alternate
algorithms for encryption and integrity may also be used.

[00127] With POSSUM, the payload and verifier can be sent atomically as a single packet.
The authentication of the POSSUM protocol exchange can be implemented through One Time
Epoch Differential Key Scheduling (OTEDKS). The OTEDKS key scheduling function is
based on a reduced form of the functional device identity described herein. The reduced form
of the device identity implementation and the authentication element of the identity can be

treated as arrays of eight separate 32-bit values. In such an example, the requested

29

WO 2017/177035 PCT/US2017/026399

authentication time can be subtracted from each 32-bit value to yield the epoch differential
vector for the identity element. The authentication differential vector is exclusively or-ed with
the identity implementation vector and vice-versa to give two starting points for key
scheduling. The total number of key iteration rounds can be produced by treating each 32-bit
value of the identity implementation starting vector as a standard epoch date. The day of the
month represented by each epoch date is summed and added to a floor value, such as 250, to
determine the number of key iteration rounds.

[00128] The starting round value from the identity implementation can be hashed with
HMAC-SHA256 function with the key supplied by the value derived from the identity
authentication vector. The output of the hash can provide the input to the next key scheduling
round. The output can be also exclusively or-ed with the HMAC key and hashed with
SHA?256 to serve as the HMAC key value for the next round.

[00129] In example embodiments using Cipher block chaining (CBC) encryption, the
initialization vector for encryption is taken as the midpoint value in the key scheduling rounds.
As mentioned herein, one of the daemons maintained by security supervisor’s version of init is
the identity manager. An application which uses generation of an OTEDKS key, can pass a
buffer to be encrypted along with the desired authentication time to the daemon. Such a
daemon can generate the keying material and encrypt the buffer. This model is configured to
thwart the identity manager from being used as a key oracle in the case of a compromise of the
platform.

[00130] In example embodiments using the POSSUM protocol, database driven exchanges of
platform integrity status can be avoided. The POSSUM approach is a very simplistic
framework which does not require any infrastructure outside the confines of two participating
parties to be involved in the validation of platform behavior state. In order to simplify the
logistics of this approach, identity verification files can be used. The identity verification files
may have an .ivy extension and can include ASN1 encoded repositories of one or more of the
following information: reduced device identity, platform public key, soft platform
measurement, and hardware reference quote.

[00131] The device provisioning process can generate an identity verification file which can
be used in a POSSUM protocol exchange to verify the operational state of a device. Enhanced
security can use identity verification files for a device to be privileged to the devices which are

using them to attest platform behavior. However, the compromise of an identity verification

30

WO 2017/177035 PCT/US2017/026399

file does not allow the construction of a device which can spoof the behavior of the platform
represented by the identity verification file, since the unreduced implementation of the identity
is included to produce a specific device behavior measurement. The unreduced device identity
is protected by BMA methods and procedures which have been discussed herein.

[00132] In exemplary embodiments, a device requesting authentication with a counterparty
can generate an authentication packet with one or more of the following elements: replay
nonce, quote nonce, and ECDH public key. The replay nonce is used to support the replay
avoidance guarantee of the protocol and the quote nonce is used by the receiving party for the
generation of the platform quote. Such a packet can be encrypted with the OTEDKS keying
material for the requested authentication time.

[00133] Also, in such embodiments with a device requesting authentication with a
counterparty, a challenge packet can be constructed with one or more of the following
elements: authentication time, identity challenge, and authentication challenge. The identity
challenge can be derived from the identity assertion component of the functional identity. The
resulting packet can be sent to the desired communication party. In some examples, the
resulting packet can be integrity protected, such as by an HMAC-SHA256 function. In such
examples, a checksum key can be derived using the HMAC-SHA256 function from the
OTEDKS epoch key and the value in the soft platform measurement state pseudo-file.

[00134] The receiving party can use the identity challenge to locate the identity verification
file of its communication counterparty. The soft platform measurement state and
authentication time can be used to carry out integrity verification and decryption of the
authentication challenge. If such a process is successful, an identity challenge packet for the
current device is constructed to send to the initiating party. In such examples, a ECDH key
may be returned when the challenge is formed from the shared key provided by the initiating
party.

[00135] The initiating party subsequent to receipt of the identity challenge from its counter-
party validates the authentication challenge. If validation is successful, the ECDH derived
shared key is used to encrypt a platform measurement packet containing a hardware reference
quote based on the nonce supplied in the counter-party challenge.

[00136] Subsequent receipt of the platform measurement packet, the counter-party decrypts
the reference quote with the ECDH session setup key. If the decryption and validation of the

reference quote is successful, a platform measurement packet is generated and returned to the

31

WO 2017/177035 PCT/US2017/026399

initiator. Subsequent validation of the counter-party platform behavior, the initiator signals
completion of the circuit setup by sending a circuit rekeying request. The counter-party can
reply with an ECDH key response, and the shared key from the initiator is used as the session
key for any further communication.

[00137] The POSSUM protocol implementation includes the initiating party and the counter-
party validating their hardware reference quotes before a final shared key is established. Since
the reference quote is derived from the platform measurement, a functional guarantee is
produced that the initiating party and the counter-party have verified platform behavior.
[00138] With network address translation (NAT), firewalls, and configuration of devices in
DMZ network zones, an exemplary embodiment may include a non-IPsec based transport
layer. One implementation may include using the POSSUM protocol extended to be a general
purpose message oriented communications framework of the transport layer. The POSSUM
protocol can provide a framework for a system authenticating the identity of a device and its
operational behavior status.

[00139] Successful execution of a POSSUM exchange includes communications between
devices with a mutually agreed upon shared secret. In [Psec-based implementations, the secret
is used to derive the authentication key and initialization vectors for an ESP based tunnel. An
extension of POSSUM, otherwise known as PossumPipe, can support subsequent device
communications when IPsec is not a viable option. The shared secret, which can be based on
ECDH, is used as an ephemeral key to authenticate and integrity verify subsequent packet
exchanges.

[00140] POSSUM implements unique characteristics with respect to the exchange of secured
packets. For example, each packet encryption key and initialization vector are derived from
the session shared secret by hash extension summing of the secret by the unencrypted contents
of the packets which have been sent. The initiating party and the counter-party each include
sent and received registers with information from the packets.

[00141] Compromise of the session key (which includes the shared key) or the secret is
useless in decrypting any individual packet of communications between the parties because
the entire unencrypted history of the communication stream up to the packet must be
available. Each transmitted frame includes a nonce of random size, which is discarded by both
the sender and receiver. This measure thwarts the deduction of subsequent packet keys even if

the complete contents of a communication stream is known. Another innovation of the

32

WO 2017/177035 PCT/US2017/026399

protocol is to perturb a key, such as a HMAC-SHA256 key, used to generate the integrity
checksum of a packet with the measurement state of the platform. Compromise of a platform
is thus represented as an inability of a counter-party to verify the integrity of communications
from an affected device. Implementation of this latter feature is the basis for generating the
measurement state of a platform. Because of high packet transmission rates, it is beneficial to
obtain platform measurements at a rate which would otherwise be constrained by the hardware
performance of the TPM.

Some Additional Exemplary Embodiments

[00142] In some additional exemplary embodiments, the extension operators may include a
non-commutative operation, based on cryptographic hash functions, used to define an acyclic
path through a measurement space to a terminus such as a current system measurement. A
new system measurement of a device or a platform may be defined by the following equation:
Miew (V) = Hu(MoylIHN(V)), where Hy is a hash function with digest size M, M., is current
system measurement, and V is a is a measurement vector. For example, V can be a binary
value which reflects an event which is to be integrated into the measurement state of the
system.

[00143] In such an exemplary embodiment and others such as the embodiments described
above, the hardware root of trust or the TPM can use a standard such as the TCG standard
1.2/2.0. The hardware root of trust or the TPM can use PCRs, asynchronous encryption
primitives (such as RCA and EC), NVRAM, and various hashing functions (such as SHAI,
SHA256, SHA385, and SM3). Access to the NVRAM can be tied to PCR values and a
processor bus state. Attestations of platform behavior can be generated by signing the content
of one or more PCRs with a private key linked to the identity of the TPM. The aforesaid
features can form a measure launch environment (MLE) with safer mode extensions (SMX).
The TMP NVRAM is used to bind MLE to platform hardware and boot status via the launch
control and trusted boot policies.

[00144] The MLE can be derived from the security supervisor and yield M(HW/BOOT).
MHW/BOOT) is a hardware boot aggregate value measurement. It can be an extension sum
over hard and firmware items such as system firmware and boot sector. The security
supervisor can access an authenticated code module that then uses a launch control policy with
the security supervisor to generated a trusted boot policy. The trusted boot policy then can be

used to provide the MLE.

33

WO 2017/177035 PCT/US2017/026399

[00145] The measurement of the platform behavior can be provided by the following unitary
definition of platform behavior based on actor and subject modeling: B = M(A°S). This is
based on the following three premises that are derived from the three premises described
above. The first derived premise is the interaction of an actor and subject identity yields
behavior identity. The second derived premise is that the platform behavior is the time
dependent or time independent extension sum of all behavior identities. The third derived
premise is that platform measurement is the extension sum of the device identity with the
platform behavior. These derived premises are supported by the following unitary definition of
platform behavior based on actor and subject modeling:

B=

An Sm[a]
Z 2 M(Hy (4D Hy ()
i=0 j=0

, where A;is the actor identity, S; is the subject identity, Il is a concatenation, and Hy is a hash
function with a digest size M.

[00146] Also, the aforesaid operator is non-commutative in that M(A°S;) + M(A°S1) #
M(A>°S1) + M(A;°S)). It can be a time invariant model, which is N-1 degenerate and has one
unique behavior with multiple unitary definitions. It can also be a time dependent model that
is non-degenerate and has one unique behavior with one unitary definition. The non-
degenerate model can be more complex.

[00147] In such embodiments, actor and subject identities can include hash compressions of
entity specific identity characteristics. The actor can be the context of execution and can
include DAC components such as uid, guid, euid, etc., MAC labels, and capability masks. The
subject can include a filesystem inode or network socket. The subject can also include remote
network addresses or ports, hash of file contents, DAC components, MAC labels, etc.

[00148] In some example embodiments, the Hamiltonian path of an actor identify over its
subject field yields a contour. In such a model, as in others described herein, extra-
dimensional compromise relates to when the platform behavior is off the contour. This is
readily detectable as mentioned prior. Intra-dimensional compromise, such as when the
platform behavior remains on the contour, can be resolved by the stochastic methods

described herein.

34

WO 2017/177035 PCT/US2017/026399

[00149] The security supervisor can provide a minimalistic implementation of a platform built
for attesting the behavioral from its acceptable 'behavioral orbit. Due to the avalanche effect
of the cryptographic hashes used to formulate the participating identities, an intra-dimensional
compromise implies no variation could have existed in any of the dimensional factors used in
the composition of an actor or subject identity.

[00150] An example of an intra-dimensional compromise would be a situation where Bob
finds Mary's password on a sticky-note under Mary's keyboard. Bob uses Mary's credentials to
login and access information which Mary is authorized to view but Bob is not. The system is
operating within its BMA contour mappings but with its desired information disclosure
behavior compromised.

[00151] An extra-dimensional compromise is a situation where an actor identity goes 'off-
contour' secondary to a change in any of the dimensional factors used in the composition of
the Ay or Sy identities. This results in a Cyy identity not included in the gross system behavior
measurement and as such can become a detectable event. These types of compromises are thus
highly amenable to detection by deterministic behavioral modeling.

[00152] Intra-dimensional compromises are poorly suited for detection by integrity
measurement architectures since there appears to be no violation of system integrity, function
or behavior. Detecting this type of compromise may occur through the application of
behavioral prediction techniques which seek to determine if the application or system is being
used in a manner inconsistent with a normal pattern of usage.

[00153] An intra-dimensional system compromise can represent the limit of detection of an
integrity monitoring system. Extending integrity measurement detection limits may require
increasing the dimensionality of the elements used to model system behavior. By modeling
behavior based on actor and subject identity interactions, each of which are composed of
multiple dimensional elements, the BMA can yield a higher level of sensitivity then systems,
such as standard IMA, which models system integrity primarily on file contents.

[00154] The modeling of actor and subject interactions is similar in concept to mandatory
access control models based on type enforcement systems which base access control decisions
on subject and object label intersections. The Cy contour points are the identities of the
intersection points in a type enforcement system. Expressed in this manner, the BMA contour
of an actor is the set of allowed access conditions for a subject over an object label field in a

type enforcement system.

35

WO 2017/177035 PCT/US2017/026399

[00155] The architecture can include adding the MAC labels of an actor and subject to the set
of identity factors used in the composition of the Ay and Sy identities. This integrates type
enforcement behavior into the overall platform behavioral measurement. BMA modeling thus
offers synergies to type enforcement systems by linking the defined enforcement model to a
quantifiable measurement of the platforms conformance to that model.

[00156] Regardless of the identity factors used, BMA contour modeling has at its basis the
notion of a white list of permitted behaviors. Specifying a BMA contour map is the equivalent
of defining the set of behaviors which the system will be allowed to demonstrate and then
deriving a single measurement value which reflects the sum of these desired behaviors. Any
behaviors outside the bounds of the model perturbs this single measurement of platform
behavioral state. The container metadata can include behavior contour map.

[00157] An important emerging issue is the notion of containerization which involves
providing private implementations of system resources to a process and its subordinates.
Technically the concept of containerization can be manifested in the BMA as a reduction in
subject dimensionality.

[00158] While containerization is important with respect to isolation and subject
dimensionality reduction, it does not address the problem of unintended actor and subject
interactions or behavior. For example, a web server running in a container can still experience
a security violation which could be used to subvert the behavior of the container or the
application it is supporting. Given this, behavioral modeling is useful for container technology
as well. The BMA can provide namespace support for the identity cache and unsharing the
identity cache allows the specification of an alternate set of contour points to define the
desired behavior of the actor and subject interactions in a container.

[00159] The identity model of the BMA can use TPM PCR extension to express the platform
behavior in the form of a hardware measurement. A resettable PCR register can be used as the
target for the measurement extensions.

[00160] The concept of a virtual TPM is understood in full virtualization models. Extending
this architecture to containers may require an assessment of complexity and the notion of a
'supervisor' process for each container which is responsible for implementing the virtual TPM
measurement state of the container.

[00161] Field experience with the BMA in the form of the supervisor demonstrates the utility

of this approach to the practical application of securing limited service network endpoints. A

36

WO 2017/177035 PCT/US2017/026399

LINUX based behavioral assessment system can provide an economically viable way to use
commodity hardware to implement service providing endpoints which are capable of self-
detecting compromise. Advances in isolation technologies, such as containerization and
virtualization, provide a framework to minimize the application development costs associated
with using such platforms.

[00162] Measured application platforms represent a paradigm shift in how security
architectures are developed. The notion of systems self-detecting an alteration in their
behavior will be critical given the effectiveness being demonstrated by current detection and
prevention systems.

[00163] The BMA implements aa sensitive system for detecting variations in platform
behavior. The implementation demonstrates that management interfaces can be implemented
which assist in the tooling and development of integrity modeled systems. Harnessing the
effectiveness of integrity modeling may benefit from integration of these systems with type
enforcing mandatory access control systems. Extending the identity paradigm to other
subjects, such as network socket connections, may provide a mechanism to enable the
detection of anomalous behavior which may be intra-dimensional in nature given only file

based subject dimensionality.

37

WO 2017/177035 PCT/US2017/026399

WHAT IS CLAIMED IS:

1. A system stored on a non-transitory computer readable medium, comprising:
instructions for a behavior measurement architecture (BMA) derived from an integrity
measurement architecture (IMA), which are executable to use an identity
model to express a deterministic measurement value representative of
behavior of an endpoint device of a group of service-providing network
endpoints or a platform of the group of service-providing network endpoints
hosted on the endpoint device; and
instructions for a security supervisor provided by the BMA and implemented through
a daemon or an operating system program, which are executable to:
generate a unique identity for the endpoint device based on the identity model
including a hash function, wherein the deterministic measurement
value includes the unique identity for the endpoint device;

verify behavior of the endpoint device or the platform using the unique
identity;

uphold a pre-defined behavioral state of the endpoint device or the platform
and support execution of application instructions stored in memory of
the endpoint device using the unique identity; and

execute a pre-determined action, via itself or a device derived from the
security supervisor, if a behavior of the endpoint device or the platform
is inconsistent with the pre-defined behavioral state of the endpoint
device or the platform, according the unique identity of the endpoint
device.

2. The system of claim 1, wherein the BMA is based on three premises consisting of:

a first premise implemented by instructions stored on the non-transitory computer
readable medium and executable to generate a behavior identity of an actor
process that is expressed by a functional projection of identity factors of the
actor process over identity factors of an acted upon a subject identity;

a second premise implemented by instructions stored on the non-transitory computer
readable medium and executable to generate functional projections of the first

premise that represent a mutually exclusive and collectively exhaustive set of

38

WO 2017/177035 PCT/US2017/026399

contours that represent a set of values derived from a total number of unique
actors and a total number of unique subjects associated with the platform; and

a third premise implemented by instructions stored on the non-transitory computer
readable medium and executable to neglect inter-contour and extra-contour
time dependencies and perform a single deterministic measurement of the
behavior of the service-providing network endpoints that is given by the hash
function on an arbitrary ordering of contour points of the set of contours
generated by the second premise.

3. The system of claim 2, wherein the behavior identity of the actor process is given by the
following equation Ay=Hy (FA;...FAy), where Ay is an actor identity, FA is actor
identity dimensions, and Hy is the hash function with a digest size M, and wherein
the subject identity is given by the following equation Sy=Huy (FS;...FSn), where Sy
is the subject identity, and FS is subject identity dimensions.

4. The system of claim 3, wherein each point of the contour points for a given actor identity
operating on a subject identity is given by the following equation Cy=Hp (AmlISy),
where Cy is a contour point.

5. The system of claim 4, wherein the contour point Cy is projected into the unique identity
for the endpoint device through the following equation Py=Hy; (DumIICyp), where Dy is
an identity for the endpoint device, Cy is the contour point, and |l is a concatenation.

6. The system of claim 1, wherein the instructions for the security supervisor are further
executable to generate the unique identity for the endpoint device by applying the
hash function over at least two components of the endpoint device or the platform, a
range selector, and a credential.

7. The system of claim 6, wherein the instructions for the security supervisor are further
executable to generate the unique identity for the endpoint device according to the
following equation: Iy=Hm(RmIIHM(C)), where Ly is the unique identity, Ry is a range
value of size M, C is the credential, Il is a concatenation, and Hy, is the hash function

with digest size M.

8. The system of claim 6, wherein the endpoint device belongs to an organization
provisioning devices, and wherein the instructions for the security supervisor are

further executable to generate the unique identity for the endpoint device according to

39

WO 2017/177035 PCT/US2017/026399

the following equation: Dy=Hpn(OmIIHy(Dc)), where Dy is the unique identity, Oy is
an identity of an associated organization, D¢ is a credential of the endpoint device, Il is
a concatenation, and Hy is the hash function with digest size M.

9. The system of claim 1, wherein the hash function includes a secure hash algorithm 2
(SHA-2) function.

10. The system of claim 9, wherein the hash function includes a SHA-256 or SHA-512
function.

11. The system of claim 1, wherein the pre-determined action includes issuing an alert
indication, halting the system or resetting the system to a pre-defined state.

12. The system of claim 1, further comprising instructions for a dynamic root of trust, which
are executable to provide a reference to a behavior-based identity state of the endpoint
device or the platform.

13. The system of claim 1, wherein the security supervisor is implemented through a LINUX
kernel and the derived IMA includes a modified version of a native IMA implemented
through the LINUX kernel.

14. The system of claim 2, further comprising instructions for management interfaces to the
BMA, which are configured to be accessible via a pseudo-filesystem, wherein the
pseudo-filesystem includes a pseudodirectory having files that implement the
management interfaces, and wherein the files within the pseudodirectory include a
host identity file that is configured to generate the unique identity for the endpoint
device that can serve as a range value for projecting contour points of the second
premise.

15. The system of claim 14, wherein the files within the pseudodirectory further include a
contours file configured to provide contour points based on an actor identity and a
subject identity of respective components within the endpoint device or the platform,
the contour points including a history of interactions between actor and subject

components within the endpoint device or the platform.
16. The system of claim 15, wherein the files within the pseudodirectory further include a

map file configured to extend the contour points of the contours file by an identity for

the endpoint device to generate the unique identity of the endpoint device.

40

WO 2017/177035 PCT/US2017/026399

17. The system of claim 16, wherein the files within the pseudodirectory further include a
measurement file to provide a measurement status of the platform derived from a hash
sum of respective unique identities of the group of service-providing network
endpoints.

18. The system of claim 15, wherein execution of the pre-determined action by the security
supervisor includes disabling at least the contours file by a sealed file of the
pseudodirectory such that afterwards interactions between actor and subject
components within the endpoint device or the platform are recorded in a forensics file
of the pseudodirectory, the forensics file being configured to provide a log of events
possibly involved in a compromise of the endpoint device or the platform.

19. An apparatus, comprising:
an operating system kernel configured to initiate a launch sequence and compile the

launch sequence into a kernel image that maintains integrity of the launch
sequence;
a security bootloader configured to initialize a system identity and root filesystem
after launch of the kernel; and
a security supervisor program configured to:
launch after launch of the security bootloader;
host applications or execution environments with documented system
behavior, the host applications or execution environments including a
native binaries environment, a virtual machine environment, or a
container environment;
use an anonymous key agreement protocol that allows at least two endpoint
devices to establish a shared secret over an insecure channel using a
key exchange;
generate a unique identity for at least one of the endpoint devices based on an
identity model including a hash function;
generate a key for the key exchange through key scheduling based on the
generated unique identity and an epoch associated with a period of the

key exchange;

41

WO 2017/177035 PCT/US2017/026399

verify behavior of the endpoint devices or a platform running on the endpoint
devices against a respective pre-defined behavioral state for each one
of the endpoint devices or the platform; and
execute a pre-determined action if a behavior of at least one of the endpoint
devices or the platform is inconsistent with the respective pre-defined
behavioral state.
20. A method, comprising:
initiating a launch sequence and compiling the launch sequence into a kernel image
that maintains integrity of the launch sequence;
initializing a system identity and root filesystem; and
after compiling the launch sequence and initializing the system identity and root
filesystem, the method further comprising:
hosting, by a security supervisor, applications or execution environments with
documented system behavior, the applications or execution environments
including a native binaries environment, a virtual machine environment, or a
container environment;
using an anonymous key agreement protocol that allows at least two endpoint devices
to establish a shared secret over an insecure channel using a key exchange;
generating a unique identity for at least one of the endpoint devices based on an
identity model including a hash function;
generating a key for the key exchange through key scheduling based on the generated
unique identity and an epoch associated with a period of the key exchange;
verifying behavior of the endpoint devices or a platform running on the endpoint
devices against a respective pre-defined behavioral state for each one of the
endpoint devices or the platform; and
executing a pre-determined action if a behavior of at least one of the endpoint devices

or the platform is inconsistent with the respective pre-defined behavioral state.

42

WO 2017/177035

1/10

PCT/US2017/026399

RAM

102

(E.g., RAM 314 of FIG. 4)

11 lv=Hu(RmllHu(C))

2nd Premise

i

i

i

i

; 1st Premise
]

i

{ 3rd Premise
i

ROM

(E.g., ROM 314 of FIG. 4)

N
(E.g., BIOS 324 of FIG. 4)

BIOS

Memory
(E.g., Memory 304 of FIG. 4)

FIG. 1

WO 2017/177035 PCT/US2017/026399

2/10

N
—
co

ND
N
N

N
—
(@]

N
N
o

Network
214

NS
(]
(o]

|I\)
()
=~
N
e
N

FIG. 2

WO 2017/177035

PCT/US2017/026399

3/10
CPU
312
302 /
A Power
IR Supply Interface
Operating 314 \ Circuitry
System 306
N
318
Data storage
N
- - 320 Network g
Applications Interfaces ‘\
322 308
Input/Output |4e
Interfaces -\
310
ROM \ 300
BIOS -\316
24 [
Memory 304

FIG. 3

WO 2017/177035 PCT/US2017/026399

4/10
CPU
] 312
302 /
RAM Interface
314 Circuitry
g
i BMA ;
5 402 ;
i g Network |4g¢———
i i Interfaces [
i i \
i i 308
i Security i
! Supervisor E
: W |
{ § Input/Output | 4g—
f { Interfaces [
i ; \
5 ; 310
i
Power
Supply
K306
ROM
BIOS —\316
324 BN 300
304 =
Memory

FIG. 4

WO 2017/177035

PCT/US2017/026399

5/10

Add MAP and DON'T_MAP

500
v

l

502

Request MAP action

l

Interrogate identity contour cache

Contour
point missing in
cache

?

Generate measurement value

l

508

Extend PCR value

Replace UID and EUID with an action selection
using capability masking

510

l M

[2

Create new integrity measurement
policy

Set CAP_SETUID bit in mask

l 512

Add EUID directive to the policy

l 516

EUID directive triggers policy

S

520

action

518

v
Identity check and]
> measurement of root \
process(es) 522

FIG. 5

WO 2017/177035

6/10

PCT/US2017/026399

Add ‘actor’ and ‘subject’ field names to measured fields

600
v

l

602

Extend Cw identity into the Pw identity, supported by
adding genhash to the ima_template_desc structure

l

604

Generate SHA1 digest

Generate digest value over the template fields

—> value over the Py

l

identity
B
606)

Compute a device specific identity contour point

612

l

608

Extend a PCR measurement register

<

610

Capture capabilities of A

Compute Aw identity —\
614

Compute Sw identity ﬂ
618

FIG. 6

and associated processes

)

616

WO 2017/177035

7/10

PCT/US2017/026399

RAM

(E.g., RAM 314 of FIG. 4)

Securityfs pseudo-filesystem 702

Management pseudo-files 704

host identity file 706

contours file 7

08

measurement file 712

sealed file 714

forensics file 7

16

pseudonym file

1

(@]

]
!
}
]
]
!
}
]
]
!
i map file 710
]
]
!
}
]
]
!
}
]
]

(E.g., ROM 314 of FIG. 4)
N

(E.g., BIOS 324 of FIG. 4)

Memory
(E.g., Memory 304 of FIG. 4)

FIG. 7

WO 2017/177035 PCT/US2017/026399

8/10

RAM
(E.g., RAM 314 of FIG. 4)

OS KERNAL 800

Security Bootloader 802

Security Supervisor 804

Application or environment 1 806a

Application or environment N 806b

Application or environment N + 1 806¢

Key Agreement Protocol 808

(E.g., ROM 314 of FIG. 4)

BIOS Memory
~~

(E.g., BIOS 324 of FIG. 4) (E.g., Memory 304 of FIG. 4)

FIG. 8

WO 2017/177035

9/10

Initiate and compile a launch sequence —\

l 902

Initiate a system identity and root filesystem —\

PCT/US2017/026399

900
v

on the endpoint device(s) against respective pre- \

defined behavioral states
914

904 Generate a unique
»| identity for endpoint
A 4 device(s)
Host applications and envirgnments by the Security
Supervisor \
906
v
Use an anonymous key agreement protocol <
l 908
Generate a key for the key exchange through key
scheduling \
l 912
Verifying behavior of the device(s) or a platform running
—>

Execute a pre-determined action
Inconsistent

(such as by the Security Supervisor)
?

~

FIG. 9

916

910

WO 2017/177035

Initiate a launch sequence

l

1002

Compile the launch sequence

l

1004

Load trusted boot policy into
TPM

I

1006

Prepare system for execution
of Security Supervisor

)

1008

Read a device identity from
TPM NVRAM

'

1010

Load device identity (or
identity of aspect of the
device) keyring for passage
to the security supervisor

1012

}

Bootloader configures an
appropriately sized block
device, such as an HPD

1014

10/10

PCT/US2017/026399

o 1000

Security supervisor re-starts

Security supervisor loads and

the TPM configures itself
N N
1028 1030
Security supervisor re-starts Security supervisor enters
the TPM platform management mode
N N
1026 1032
Bootloader executes the Platform management mode

security supervisor as block
device’s replacement

loads the platform
configuration filesystem

T R

[

Switch the root namespace to
the block device

Security supervisor seals the
behavior-based identity state
measurement

T N
1022

b

Load filesystem image into
the provisioned block device

Security supervisor executes
the platform role definition

T N
1020

l N
1038

Decrypt the keying material for
the filesystem image

Security supervisor conducts
an identity attestation
exchange

T N
1018

Vo

Bootloader unseals the keying
material for the filesystem
image

Security supervisor carries out
application and usage
dependent actions

S
1016

FIG. 10

)
1042

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/026399

INV.
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

A. CLASSIFICATION OF SUBJECT MATTER

HO4L29/06 GO6F21/72 HO4W12/10 GO6F21/57 HO4L9/08
HO4L9/32

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HOAL GO6F HO4W

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 8 677 115 B2 (PARIS ERIC L [US] ET AL) 1-20
18 March 2014 (2014-03-18)
figures 1-5

column 2 - column 11

US 9 124 640 B2 (SWEET CARSON [US] ET AL) 1-20
1 September 2015 (2015-09-01)
figures 1A-10E

column 4 - column 35

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance P P Y ying
"E" earlier application or patent but published on or after the international "X* document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) orwhich is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
speoial reason (as specified) considered to involve an inventive step when the document is
"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report

27 June 2017 06/07/2017

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040, .
Fax: (+31-70) 340-3016 Madzharova, Violeta

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/026399

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A Iso/iec: "ISO/IEC 11889-1:2015(E) - 1-20
Trusted Platform Module Library - Part 1:
Architecture (Corrected version from
01.04.2016)",

Switzerland,

1 April 2016 (2016-04-01), pages 1-278,
XP055384914,

Retrieved from the Internet:
URL:https://www.iso.org/standard/66510.htm
1

[retrieved on 2017-06-26]
page 3 - page 253

A JACQUIN LUDOVIC ET AL: "Towards trusted 1-20
software-defined networks using a
hardware-based Integrity Measurement
Architecture",

PROCEEDINGS OF THE 2015 1ST IEEE
CONFERENCE ON NETWORK SOFTWARIZATION
(NETSOFT), IEEE,

13 April 2015 (2015-04-13), pages 1-6,
XP032782124,

DOI: 10.1109/NETSOFT.2015.7116186
[retrieved on 2015-06-01]

Sections II - VI

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2017/026399
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 8677115 B2 18-03-2014 NONE
US 9124640 B2 01-09-2015 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - wo-search-report
	Page 56 - wo-search-report
	Page 57 - wo-search-report

