Office de la Proprieté Canadian CA 2675692 C 2012/03/13

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 675 692
gln gfganisge ; 'f‘% age”gy of ; 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 2009/08/28 (51) CLInt./Int.Cl. GO6F 9/45(2006.01)
(41) Mise a la disp. pub./Open to Public Insp.: 2009/11/05 (72) Inventeurs/Inventors:
“1; . KLARER, ROBERT M.N., CA;
(45) Date de délivrance/lssue Date: 2012/03/13 PERRY. SEAN D. CA

(73) Proprietaire/Owner:
IBM CANADA LIMITED - IBM CANADA LIMITEE, CA

(74) Agent: WANG, PETER

(54) Titre : FILTRE DE CODE SOURCE DE PROGRAMME ASSISTE PAR COMPILATEUR
(54) Title: COMPILER-ASSISTED PROGRAM SOURCE CODE FILTER

SOURCE CODE

302 SET OF TRANSLATION UNITS
304
. COMPILER 314
SWITCH SYMBOL TABLE
_
320 -
300 | OUTPUT TEXT FILE 316
312 ' FILTERED ~ COORDINATES
SOURCE LISTING
(57) Abrégée/Abstract:

A computer implemented method, apparatus, and computer program product for filtering source code. A code filtering compiler
identifles an entry for a named entity in a symbol table. When a flag for the named entity in the symbol table indicates the named

RN S S S T
o e [[[
RS SNy f /]
RGNt o P A VA C I P O

:'\\"-".L\ RO ALMEARNGN
l._s . l_ . \“t-l. n l_a "v \! "'
S e S L
‘a‘"-“-;izf‘:%,:-:-;-:-:-:;‘:s’ T e S
RO RO
N e TN Ty

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2675692 C 2012/03/13

anen 2 675 692
13) C

(57) Abrege(suite)/Abstract(continued):

entity Is referenced In source code, the code filtering compiler retrieves coordinates from the entry for the named entity in the
symbol table. The coordinates identify a location of a definition associated with the named entity in the source code. The definition
for the named entity located at the coordinates from the source code Is copied into a filtered source listing. The filtered source
isting comprises a set of definitions from a set of header files associated with named entities that are referenced in the source
code. Definitions associated with entities that are unreferenced In the source code are absent from the filtered source listing.

10

CA 02675692 2009-08-28

ABSTRACT OF THE DISCLOSURE

A computer implemented method, apparatus, and computer program product for filtering
source code. A code filtering compiler identifies an entry for a named entity in a symbol table.
When a flag for the named entity in the symbol table indicates the named entity 1s referenced in
source code, the code filtering compiler retrieves coordinates from the entry for the named entity
in the symbol table. The coordinates identify a location of a definition associated with the
named entity in the source code. The definition for the named entity located at the coordinates
from the source code is copied into a filtered source listing. The filtered source listing comprises
a set of definitions from a set of header files associated with named entities that are referenced 1n

the source code. Definitions associated with entities that are unreferenced in the source code are

absent from the filtered source listing.

CA9200900017 28

10

15

20

25

CA 02675692 2009-08-28

COMPILER-ASSISTED PROGRAM SOURCE CODE FILTER

BACKGROUND

1. Field of the Invention:

[0001] The present invention relates generally to an improved data processing system and 1n
particular to a method and apparatus for generating source code files. More particularly, the
present invention is directed towards providing a computer implemented method, apparatus, and

computer usable program code for generating a filtered source code output file using a modified

compiler symbol table.

2. Description of the Related Art:
[0002] Computer programs are typically written in a high level language, such as, without

limitation C and C++. These computer programs may be referred to as source code. Ninety
percent (90%) or more of a program’s source code may be located in header files. A header file
is a text file containing the interface information for a library of functions needed by a compaler.
Header files are usually very large, as they declare the full interface of the operating system or
library of which they are a component. As a result, header files cause a large volume of code to
be included in a program’s source code. The code in header files may be written by a user,
obtained from standard libraries, obtained from open source libraries, and/or downloaded or
licensed from other third party sources. For example, one commonly used standard library
header file is, without limitation, the standard input/output header file (stdio.h).

[0003] A technique that is frequently used to reduce the compile time associated with standard
library headers and other frequently used third party header libraries are precompiled headers
(PCH). When a header file is compiled for the first time, the results of compilation are saved and
re-used by the compiler each subsequent time the same header file is encountered by the
compiler. However, precompiled headers do not assist a user in understanding the voluminous

code included in program headers.

CA9200900017 1

10

15

20

25

30

CA 02675692 2009-08-28

BRIEF SUMMARY

[0004] According to one embodiment of the present invention, a computer implemented
method, apparatus, and computer program product for generating a filtered source code listing 1s
provided. A code filtering compiler identifies an entry for a named entity in a symbol table. In

response to a flag in the entry for the named entity in the symbol table indicating the named

entity is referenced in source code corresponding to the symbol table, the code filtering compiler

retrieves coordinates from the entry for the named entity in the symbol table. The coordinates
identify a location of a definition associated with the named entity in the source code. The
definition for the named entity located at the coordinates from the source code 1s copied into a
filtered source listing. The filtered source listing comprises a set of definitions from a set of
header files associated with named entities that are referenced in the source code. Definitions
associated with entities that are unreferenced in the source code are absent from the filtered
source listing.

[0005] In another embodiment, a computer implemented method and computer program product
for filtering source code is provided. In this embodiment, a named entity in a declaration 1n
source code associated with a computer program is identified. An entry for the named entity 1s
created in a symbol table. The entry comprises a flag field. In response to the compiler
referencing the entry for the named entity, a flag in the flag field is set to indicate the named
entity is referenced in response to the process identifying a reference to the named entity in the

source code and referencing the entry for the named entity in the symbol table.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0006] Figure 1 is a pictorial representation of a network of data processing systems in which

illustrative embodiments may be implemented;

[0007] Figure 2 is a block diagram of a data processing system in which illustrative
embodiments may be implemented,;

[0008] Figure 3 is a block diagram of a code filtering compiler in accordance with an

i1llustrative embodiment;

CA9200900017 2

10

15

20

25

30

CA 02675692 2009-08-28

[0009] Figure 4 is a block diagram of a modified symbol table in accordance with an
1llustrative embodiment;

[0010] Figure 5 is a block diagram of an extended symbol table entry in accordance with an
illustrative embodiment;

[0011] Figure 6 is a flowchart of a process for creating a symbol table in accordance with an
illustrative embodiment; and

[0012] Figure 7 is a flowchart of a process for generating a filtered source text file in

accordance with an illustrative embodiment.

DETAILED DESCRIPTION

[0013] As will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a system, method or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an embodiment
combining software and hardware aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the
form of a computer program product embodied in one or more computer readable medium(s)
having computer readable program code embodied thereon.

[0014] Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may be, for example, but not limited to,
an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus,
or device, or any suitable combination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium would include the following: an
electrical connection having one or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable

combination of the foregoing. In the context of this document, a computer readable storage

CA9200900017 3

10

15

20

25

30

CA 02675692 2009-08-28

medium may be any tangible medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus, or device.

[0015] A computer readable signal medium may include a propagated data signal with
computer readable program code embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a variety of forms, including, but not
limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable
signal medium may be any computer readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport a program for use by or in connection
with an instruction execution system, apparatus, or device.

[0016] Program code embodied on a computer readable medium may be transmitted using any
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc.,
or any suitable combination of the foregoing.

[0017] Computer program code for carrying out operations for aspects of the present invention
may be written in any combination of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++ or the like and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The program code may execute entirely on the user's computer, partly
on the user's computer, as a stand-alone software package, partly on the user's computer and
partly on a remote computer or entirely on the remote computer or server. In the latter scenario,
the remote computer may be connected to the user's computer through any type of network,
including a local area network (LAN) or a wide area network (WAN), or the connection may be

made to an external computer (for example, through the Internet using an Internet Service

Provider).

[0018] Aspects of the present invention are described below with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems) and computer program
products according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the tlowchart
illustrations and/or block diagrams, can be implemented by computer program instructions.
These computer program instructions may be provided to a processor of a general purpose

computer, special purpose computer, or other programmable data processing apparatus to

CA9200900017 4

10

15

20

25

30

CA 02675692 2009-08-28

produce a machine, such that the instructions, which execute via the processor of the computer or
other programmable data processing apparatus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or blocks.

[0019] These computer program instructions may also be stored in a computer readable medium
that can direct a computer, other programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions stored in the computer readable
medium produce an article of manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram block or blocks.

[0020] The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable apparatus or other devices to produce a
computer implemented process such that the instructions which execute on the computer or other
programmable apparatus provide processes for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0021] With reference now to the figures and in particular with reference to Figures 1-2,
exemplary diagrams of data processing environments are provided in which illustrative
embodiments may be implemented. It should be appreciated that Figures 1-2 are only
exemplary and are not intended to assert or imply any limitation with regard to the environments
in which different embodiments may be implemented. Many modifications to the depicted
environments may be made.

[0022] With reference now to the figures and in particular with reference to Figures 1-2,
exemplary diagrams of data processing environments are provided in which 1llustrative
embodiments may be implemented. It should be appreciated that Figures 1-2 are only
exemplary and are not intended to assert or imply any limitation with regard to the environments
in which different embodiments may be implemented. Many modifications to the depicted
environments may be made.

[0023] Figure 1 depicts a pictorial representation of a network of data processing systems in
which illustrative embodiments may be implemented. Network data processing system 100 1s a
network of computers in which the illustrative embodiments may be implemented. Network data

processing system 100 contains network 102, which is the medium wused to provide

CA9200900017 5

10

15

20

25

30

CA 02675692 2009-08-28

communications links between various devices and computers connected together within
network data processing system 100. Network 102 may include connections, such as wire,
wireless communication links, or fiber optic cables.

[0024] In the depicted example, server 104 and server 106 connect to network 102 along with
storage unit 108. In addition, clients 110, 112, and 114 connect to network 102. Clients 110,
112, and 114 may be, for example, personal computers or network computers. In the depicted
example, server 104 provides data, such as boot files, operating system images, and applications
to clients 110, 112, and 114. Clients 110, 112, and 114 are clients to server 104 in this example.
Network data processing system 100 may include additional servers, clients, and other devices
not shown.

[0025] In the depicted example, network data processing system 100 is the Internet with
network 102 representing a worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate
with one another. At the heart of the Internet is a backbone of high-speed data communication
lines between major nodes or host computers, consisting of thousands of commercial,
governmental, educational, and other computer systems that route data and messages. Of course,
network data processing system 100 also may be implemented as a number of different types of
networks, such as for example, an intranet, a local area network (LAN), or a wide area network
(WAN). Figure 1 is intended as an example, and not as an architectural limitation for the
different illustrative embodiments.

[0026] With reference now to Figure 2, a block diagram of a data processing system 1s shown
in which illustrative embodiments may be implemented. Data processing system 200 1s an
example of a computer, such as server 104 or client 110 in Figure 1, in which computer usable
program code or instructions implementing the processes may be located for the illustrative
embodiments. In this illustrative example, data processing system 200 includes communications
fabric 202, which provides communications between processor unit 204, memory 206, persistent
storage 208, communications unit 210, input/output (I/O) unit 212, and display 214.

[0027] Processor unit 204 serves to execute instructions for software that may be loaded into
memory 206. Processor unit 204 may be a set of one or more processors or may be a multi-

processor core, depending on the particular implementation. Further, processor unit 204 may be

CA9200900017 6

10

15

20

25

30

CA 02675692 2009-08-28

implemented using one or more heterogeneous processor systems in which a main processor 1s
present with secondary processors on a single chip. As another illustrative example, processor unit
204 may be a symmetric multi-processor system containing multiple processors ot the same type.
[0028] Memory 206, in these examples, may be, for example, a random access memory.
Persistent storage 208 may take various forms depending on the particular implementation. For
example, persistent storage 208 may contain one or more components or devices. For example,
persistent storage 208 may be a hard drive, a flash memory, a rewritable optical disk, a
rewritable magnetic tape, or some combination of the above. The media used by persistent
storage 208 also may be removable. For example, a removable hard drive may be used for
persistent storage 208.

[0029] Communications unit 210, in these examples, provides for communications with other
data processing systems or devices. In these examples, communications unit 210 is a network
interface card. Communications unit 210 may provide communications through the use of either
or both physical and wireless communications links.

[0030] Input/output unit 212 allows for input and output of data with other devices that may be
connected to data processing system 200. For example, input/output unit 212 may provide a
connection for user input through a keyboard and mouse. Further, input/output unmit 212 may
send output to a printer. Display 214 provides a mechanism to display information to a user.
[0031] Instructions for the operating system and applications or programs are located on
persistent storage 208. These instructions may be loaded into memory 206 for execution by
processor unit 204. The processes of the different embodiments may be performed by processor
unit 204 using computer implemented instructions, which may be located in a memory, such as
memory 206. These instructions are referred to as computer usable program code or computer
readable program code that may be read and executed by a processor in processor unit 204. The
computer readable program code may be embodied on different physical or tangible computer
readable media, such as memory 206 or persistent storage 208.

[0032] Computer usable program code 216 is located in a functional form on computer readable
media 218 and may be loaded onto or transferred to data processing system 200. Computer
usable program code 216 and computer readable media 218 comprise computer program product

220 in these examples. In one example, computer readable media 218 may be, for example, an

CA9200900017 7

10

15

20

25

30

CA 02675692 2009-08-28

optical or magnetic disc that is inserted or placed into a drive or other device that is part of
persistent storage 208 for transfer onto a storage device, such as a hard drive that is part of
persistent storage 208. Computer readable media 218 also may take the form of a persistent
storage, such as a hard drive or a flash memory that is connected to data processing system 200.
[0033] Alternatively, computer usable program code 216 may be transferred to data processing
system 200 from computer readable media 218 through a communications link to
communications unit 210 and/or through a connection to input/output unit 212. The
communications link and/or the connection may be physical or wireless in the illustrative
examples. The computer readable media also may take the form of non-tangible media, such as
communications links or wireless transmissions containing the computer readable program code.
[0034] The different components illustrated for data processing system 200 are not meant to
provide architectural limitations to the manner in which different embodiments may be
implemented. The different illustrative embodiments may be implemented in a data processing
system including components in addition to or in place of those illustrated for data processing
system 200. Other components shown in Figure 2 can be varied from the illustrative examples
shown.

[0035] For example, a bus system may be used to implement communications fabric 202 and
may be comprised of one or more buses, such as a system bus or an input/output bus. Of course,
the bus system may be implemented using any suitable type of architecture that provides for a
transfer of data between different components or devices attached to the bus system.
Additionally, a communications unit may include one or more devices used to transmit and
receive data, such as a modem or a network adapter. Further, a memory may be, for example,
memory 206 or a cache such as found in an interface and memory controller hub that may be

present in communications fabric 202.

[0036] Generally, the majority of the source code in a computer program is code located in

header files. The header files are sometimes very large because they declare the full interface ot
the operating system or library of which they are a component. However, the application
programmer rarely uses more than a small fraction of each of the interfaces found in the header
files. For example, a program may include the standard input/output header and all the

associated interfaces, even if the programmer only uses the print function (printf). The

CA9200900017 8

10

15

20

25

30

CA 02675692 2009-08-28

illustrative embodiments recognize that header files frequently cause a large volume of unused
source code to be included in an application program. The embodiments further recognize that
this large volume of unused source code may result in a user having greater ditficulty 1n
understanding the code, analyzing the code, and/or debugging the code.

[0037] Thus, according to one embodiment of the present invention, a computer implemented
method, apparatus, and computer program product for generating a filtered source code listing 1s
provided. A code filtering compiler identifies an entry for a named entity in a symbol table. In
response to a flag in the entry for the named entity in the symbol table indicating the named
entity is referenced in source code corresponding to the symbol table, the code filtering compiler
retrieves coordinates from the entry for the named entity in the symbol table. The coordinates
identify a location of a definition associated with the named entity in the source code. The
definition for the named entity located at the coordinates from the source code 1s copied into a
filtered source listing. The filtered source listing comprises a set of definitions from a set of
header files associated with named entities that are referenced in the source code. Definitions
associated with entities that are unreferenced in the source code are absent from the filtered
source histing.

[0038] In another embodiment, a computer implemented method and computer program product
for filtering source code i1s provided. In this embodiment, a named entity in a declaration in
source code associated with a computer program is identified. An entry for the named entity 1s
created in a symbol table. The entry comprises a flag field. In response to a determination that
the entry for the named entity is referenced in the source code, the flag in the flag field 1s set to
indicate that the named entity is referenced in the source code. The entry for the named entity 1s
referenced where the code filtering compiler encounters a reference to the named entity in the
source code and references the entry for the named entity in the symbol table.

[0039] The filtered source listing may be used to perform at least one of compiling the filtered
source listing to reduce compile time, debugging the filtered source listing to reduce the amount
of code to be debugged and eliminate irrelevant code from the debugging process, improve
understanding of the program source code by eliminating irrelevant code, and providing
improved customer support by focusing customer support efforts on the filtered source listing

rather than attempting to analyze all of the code in the original source file.

CA9200900017 9

10

15

20

25

30

CA 02675692 2009-08-28

[0040] As used herein, the term “at least one of”’, when used with a list of items means that
different combinations of one or more of the items may be used and only one of each item 1n the
list may be needed. For example, “at least one of item A, item B, and item C” may include, for
example, without limitation, item A or item A and item B. This example also may include item
A, 1item B, and item C or item B and item C.

[0041] Referring now to Figure 3, a block diagram of a code filtering compiler is shown 1n
accordance with an illustrative embodiment. Compiler 300 is a software component that filters
source code 302 to generate a filtered output text file. Compiler 300 is implemented using any
type of compiler, assembler, language translator, source-to-source translator, or language
converter. For example, but without limitation, compiler 300 may be implemented as a source-
to-source compiler, a just-in-time (JIT) compiler, or a stage compiler.

[0042] Source code 302 is a computer program, which may be written in a high level language,
such as, but without limitation, C, C++, Java, JavaScript, Fortran, Cobol, or any other known or
available programming language. Source code 302 may also be referred to as a source listing or
source file. Users of programming languages, such as, but without limitation, C and C++,
frequently segment their program source code into one or more translation units. In this
example, source code 302 comprises set of translation units 304. A translation unit in set of
translation units 304 is a segment of code in source code 302 that includes a set of header files.
A translation unit may also optionally include only a set of include files or include a set of
include files in addition to the set of header files. As used herein, the term set refers to one or
more. Thus, the set of header files may include a single header file, as well as two or more
header files. Likewise, set of translation units 304 may include one or more translation units. A
single tfanslation unit may comprise only a portion of source code 302 or include all the code in
source code 302. In other words, set of translation units 304 may include only a single
translation unit that includes all of source code 302, two translation units, as well as three or
more translation units that include portions of source code 302.

[0043] Set of translation units 302 comprises set of declarations 306. Set of declarations 306
may include a single declaration, as well as two or more declarations. A declaration may be a
code segment that instructs the compiler as to which memory cells are needed for a particular

function call associated with a named entity. In one example, a declaration may comprise an

CA9200900017 10

10

15

20

25

30

CA 02675692 2009-08-28

identification of an entity name, a return type, and an argument list for the named entity. As
used herein, a declaration in set of translation units 304 may also optionally include in-line
functions in the headers. An in-line function is a function that is defined in the header file.

[0044] Set of declarations 306 is a set of one or more declarations in set of translation units 304
of source code 302, which is sent to compiler 300. Compiler 300 comprises switch 308. Switch
308 1s software component that receives a user selection to filter source code 302. In response to
receiving the user’s selection to filter source code 302, switch 308 activates code filter 310 to
generate a text file containing filtered source listing 312.

[0045] Code filter 310 selects a translation unit from set of translation units 304 and filters out
declarations from header files that are not needed by the computer program from the selected
translation unit. The unused declarations that are filtered from the selected translation unit will
not appear in resulting filtered source listing 312. Code filter 310 iteratively selects each
translation unit in set of translation units 304 and only copies declaration for referenced named
entities into filtered source listing 312. The unused declarations are not copied into the filtered
source listing 312. In this manner, the declaration associated with unreferenced named entities
are removed from the original source code 302 until all the translation units in set of translation
units 304 have been filtered to eliminate unnecessary source code. In this manner, code filter

310 generates filtered source listing 312 in an output text file that is a minimal textual

representation of source code 302.
[0046] In this example, code filter 310 in compiler 300 processes each translation unit in set of
translation units 304. While compiler 300 processes a given translation unit, compiler 300
generates symbol table 314 for the translation unit. Symbol table 314 is a data structure that
includes an entry for each identifier in source code 302. Symbol table 314 may also be referred
to as a compiler dictionary. When compiler 300 encounters a named entity in source code 302,
compiler 300 looks up the named entity in symbol table 314 to obtain information associated
with the named entity. If the named entity is not found in symbol table 314, compiler 300
creates an entry in symbol table for the named entity. The entry in symbol table 314 for the
named entity contains information relating to the entity, such as, without limitation, the entity’s
name, the entity type, and the location of the entity declared. For example, if the named entity is

a function, the entry may include, without limitation, the function name, the return type, and the

CA9200900017 11

10

15

20

25

CA 02675692 2009-08-28

argument list for the function. In this embodiment, code filter 310 may also add additional

information associated with the entity.

[0047] In this embodiment, symbol table 314 includes flag 316 in addition to other information
for the named entity. Flag 316 is a field in the entry for the named entity that indicates whether
the entry is used, either directly or transitively, in source code 302. In other words, when a
named entity is identified in source code 302, compiler 300 looks up the entry in symbol table
314 that corresponds to the entity. If an entry is found in symbol table 314, compiler 300 sets
flag 316 corresponding to the entity to indicate that the entity has been looked up in symbol table
314. In one embodiment, flag 316 is a bit in a flag field that is set to indicate the named entity
was referenced in the symbol table.

[0048] Thus, when compiler 300 looks up an entry in symbol table 314 in the context of an
entity in source code 302, compiler 300 identifies the entry as one that is used or found 1n source
code 302. Compiler 300 sets flag 316 corresponding to the item that has been looked up. If flag
316 is set, it indicates that the named entity in a declaration or definition has been looked up 1n
symbol table 314.

[0049] An entry in symbol table 314 may also contains coordinates 318. Coordinates 318 are
the source file coordinates of the beginning token and end token of a declaration that corresponds
to the given entry. Code filter 310 uses coordinates 318 to locate declarations in source code 302
associated with named entities that have been looked up or otherwise referenced in symbol table
314.

[0050] In this embodiment, after processing a translation unit, code filter 310 identifies every
named entity in symbol table 314 that has been looked up or referenced by checking the flag for
each named entity. For every named entity in symbol table 314 with the flag set to indicate that
the entity has indeed been referenced in the symbol table, code filter 310 uses coordinates 318 to
locate the relevant portion of code in source code 302 that contains the declaration or definition
for the entity and copies that relevant portion of the code into filtered source list 312. The
declarations and definitions in the header files for entities that have not been referenced in
symbol table 314 and, therefore, are not used by the program, are not copied from source code

302 into filtered source list 312. Thus, symbol table 314 is an extended or improved symbol

CA9200900017 12

10

15

20

25

30

CA 02675692 2009-08-28

table that provides flag 316 and coordinates 318 for utilization by code filter 310 in creating
filtered source listing 312.

[0051] Sorting 320 is a software component that sorts symbol table 314 so that the order of
entries 1S equivalent to the order in which the corresponding declarations appear in the
preprocessed translation unit. Sorting 320 may be implemented using any known or available
software for sorting declarations in an output text file. Sorting 320 may be used in some cases
where the order in which definitions are output in filtered source listing 312 i1s important to
execution of the program. For example, in some high level languages, the definition of a type
should be presented in the source code before presenting the definition of the function that uses
that type as its return type.

[0052] Sorting 320 optionally sorts the definitions in the output text file to ensure that the
definitions are in the correct order, such as, without limitation, sorting the definition of a type in
the source file before the definition of the function that uses that type definition. Thus, sorting
320 sorts definitions based on the order of appearance of the definitions 1n the source file.

[0053] Compiler 300 then produces filtered source listing 312 in an output text file by visiting
in order of each entry in symbol table 314 and streaming all of the indicated tokens 1dentified in
coordinates 318 to the desired output text file in the order dictated by sorting 320. In another
embodiment, sorting 320 is not used. In this example, definitions are copied to the output text
file to generate filtered source listing 312 in alphabetical order of the entries in the symbol table.
[0054] Thus, filtered source listing 312 is a filtered version of the original source code 302
written in the same programming language as source code 302. However, some or all of the
unused code in the header files that is found in the original source code 302 is removed from
filtered source listing 312. In other words, source code 302 contains all the declarations that are
used by the program, as well as declarations and/or definitions in the header files that are not
used or needed by the program. Filtered source listing 312 contains all the declarations that are
used by the program, but one or more of the declarations and/or definitions that are not used by
the program have been removed. In this example, but without limitation, all of the unused
declarations and definitions have been removed from filtered source listing 312.

[0055] Figure 4 is a block diagram of a modified symbol table in accordance with an

illustrative embodiment. Source code translation unit 400 is a translation unit in a set of

CA9200900017 13

10

15

20

25

30

CA 02675692 2009-08-28

translation units in program source code, such as set of translation units 304 in Figure 3. Source
code translation unit 400 may be a portion of the source code in a computer program or it may
include all of the source code in the computer program. Source code translation unit 400 may
include any number of declarations. In this example, but without limitation, source code
translation unit 400 includes declaration A 402, declaration B 404, and declaration C 406.
However, a translation unit may include only a single declaration, two declarations, four
declarations, or any other number of declarations.

[0056] Symbol table 408 is a modified compiler dictionary, such as symbol table 314 1n Figure
3. Symbol table 408 includes an entry corresponding to each declaration in source code
translation unit 400. In this example, a compiler with a code filter processes source code
translation unit 400 to identify declarations. Each time the code filter identifies a declaration,
such as declaration A 402, the code filter generates a corresponding entry in symbol table 408.
In this example, entry A 410 corresponds to declaration A 402, entry B 412 corresponds to
declaration B 404, and entry C 414 corresponds to declaration C 406. Each entry in symbol table
comprises information associated with the corresponding declaration, such as, but without

limitation, an entity name, return type, argument, a flag, and/or coordinates of the location of the

declaration in the source code.

[0057] Figure 5 is a block diagram of an extended symbol table entry in accordance with an
illustrative embodiment. Symbol table entry 500 is an extended entry in a compiler symbol
table, such as entry A 410 in symbol table 408 in Figure 4 or symbol table 314 1n Figure 3.
Name 502 is an identifier of a named entity in a program’s source code. An entity may be, for
example and without limitation, a variable, a function, a type, a template, or a namespace. Flag
504 is a flag that indicates whether the named entity has been referenced by the compiler. When
the compiler references a named entity for the first time, it sets flag 504 associated with that
named entity to indicate that the entry for the named entity has been referenced in the symbol
table. In other words, flag 504 indicates whether the compiler has looked up the named entity in
the symbol table. Beginning token coordinates 506 is the location of a beginning of a declaration
that includes the named entity in the source code. End token coordinates 508 is a location of the
end of the declaration that includes the named entity in the source code. Coordinates 506 and

508 may be implemented using any type of coordinates or location identification. In this

CA9200900017 14

10

15

20

25

30

CA 02675692 2009-08-28

example, Beginning token coordinates 506 is a number of characters from the start of the source
code file at which the beginning of the declaration is located in the original source code file.
Beginning token coordinates 506 may also be, without limitation, a number of lines from the
start of the source code file and a number of characters from the start of a given line at which the
beginning of the declaration is located in the original source code file. End token coordinates
508 may be implemented as an identification of the number of characters from the start of the
source code file at which the end of the declaration is located in the original source code file.
End token coordinates 508 may also identify a number of lines from the start of the source code
file and a number of characters from the start of a given line at which the end of the declaration
1S located 1n the original source code file.

[0058] Figure 6 is a flowchart of a process for creating a symbol table in accordance with an
illustrative embodiment. The process in Figure 6 may be implemented by software for filtering
source code, such as, but without limitation, code filter 310 in Figure 3.

[0059] The process begins by identifying a name associated with an entity in source code (step
602). A determination is made as to whether the name was previously declared (step 604). If the
name was not previously declared, the process makes a determination as to whether this 1s a
declaration (step 606). In other words, the process determines if the identified name 1s found 1n a
declaration. If this is not a declaration, an error is reported (step 608) with the process
terminating thereafter.

[0060] Returning to step 606, if this is a declaration, an entry is created in the compiler’s
symbol table for the name (step 610). In other words, each time an entity is declared for the first
time in source code, the compiler creates an entry for the entity in the symbol table. After
creating the entry at step 610or if the name is declared previously at step 604, the process makes
a determination as to whether this is a definition (step 612). If this portion of the source code 1s
not a definition, the process makes a determination as to whether the name is referenced 1n the
code (step 614). If no, the process terminates thereafter. If the name is referenced in the code in
any way, the flag associated with the entry in the symbol table is set to indicate that the named
entity is referenced (step 616) with the process terminating thereafter.

[0061] Returning to step 612, in response to a determination that this portion of the source code

is a definition, coordinates of a beginning token for the definition is recorded in the entry in the

CA9200900017 15

10

15

20

25

30

CA 02675692 2009-08-28

symbol table (step 618). Coordinates for an ending token for the definition is also recorded in
the entry in the symbol table (step 620) with the process terminating thereafter.

[0062] In another embodiment, instead of reporting an error at step 608, the process creates an
entry for the named entity in the symbol table and continues executing steps 612 through 620
until the process terminates.

[0063] Figure 7 1s a flowchart of a process for generating a filtered source text file in
accordance with an illustrative embodiment. The process in Figure 7 may be implemented by
software for filtering source code, such as, but without limitation, code filter 310 in Figure 3.
Steps 710-714 may be implemented by software for sorting definitions, such as, but not limited
to, sorting 320 in Figure 3.

[0064] The process begins by making a determination as to whether an unfiltered name is in a
compiler’s symbol table (step 702). An unfiltered name is a named entity in the source code that
has not yet been processed by the code filter. If an unfiltered name is found in the symbol table,
the process makes a determination as to whether a flag associated with the name is set in the
symbol table to indicate the name is referenced in the source code (step 704). If no, the process
returns to step 702. If a flag in the symbol table is set indicating the name is referenced in the
source code, the process retrieves coordinates of the beginning token and the end token of a
definition corresponding to the name in the header file in the source code and locates the
definition corresponding to the name in the header file in the source code using the coordinates
of the beginning token and the coordinates of the end token (step 706). In this example, the
beginning and ending token coordinates are found in the symbol table entry for the unfiltered
name. The corresponding definition is copied into the filtered text file (step 708). The process
then returns to step 702. This process continues iteratively until all the named entities in the
symbol table have been processed by the code filter.

[0065] When no unfiltered names are found in the symbol table, a determination is made as to
whether to sort the filtered text file (step 710). If yes, the definitions in the filtered text file are
sorted (step 712). After sorting in step 712 or if no sorting is required at step 710, the filtered
source text file is output (step 714) with the process terminating thereafter.

[0066] Thus, according to one embodiment of the present invention, a computer implemented

method, apparatus, and computer program product for generating a filtered source code listing is

CA9200900017 16

10

15

20

25

CA 02675692 2009-08-28

provided. A code filtering compiler identifies an entry for a named entity in a symbol table. In
response to a flag in the entry for the named entity in the symbol table indicating the named
entity 1s referenced in source code corresponding to the symbol table, the code filtering compiler
retrieves coordinates from the entry for the named entity in the symbol table. The coordinates
identify a location of a definition associated with the named entity in the source code. The
definition for the named entity located at the coordinates from the source code is copied into a
filtered source listing. The filtered source listing comprises a set of definitions from a set of
header files associated with named entities that are referenced in the source code. Definitions
associated with entities that are unreferenced in the source code are absent from the filtered
source listing. '

[0067] In another embodiment, a computer implemented method and computer program product
for filtering source code is provided. In this embodiment, w named entity in a declaration in
source code associated with a computer program is identified. An entry for the named entity is
created in a symbol table. The entry comprises a flag field. In response to a determination that
the entry for the named entity is referenced in the source code, the flag in the flag field is set to
indicate that the named entity is referenced in the source code. The entry for the named entity is
referenced where the code filtering compiler encounters a reference to the named entity in the
source code and references the entry for the named entity in the symbol table.

[0068] Thus, the embodiments provide a technique to filter a computer source code so that
unused code, such as unnecessary declarations found in header files, are eliminated. In other
words, the embodiments generate a minimal programming code listing in a textual format.
Filtering source code reduces the amount of code in a high-level language program, which may
be used to assist a user in understanding program code, debug code by eliminating irrelevant
code segments, and provide improved customer support. Filtering source code may also be used
during compilation to reduce compile time. The filtered code improves debugging and customer
support by eliminating irrelevant information from the source code so that a user is only dealing
with the code that may be causing the bug or other problems with program. The filtered code
listing may also be used in test-case generation for service and support generation, program code

analysis, program understanding, and shortened compilation time.

CA9200900017 17

10

15

20

25

30

CA 02675692 2009-08-28

[0069] The flowchart and block diagrams in the Figures illustrate the architecture, functionality,
and operation of possible implementations of systems, methods and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative implementations, the functions
noted in the block may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It will
also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer instructions.

[0070] The terminology used herein is for the purpose of describing particular embodiments
only and is not intended to be limiting of the invention. As used herein, the singular forms "a",
"an" and "the" are intended to include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the terms "comprises" and/or
"comprising," when used in this specification, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations, elements, components, and/or groups
thereof.

[0071] The description of the present invention has been presented for purposes of illustration
and description, but is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art
without departing from the scope and spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the invention and the practical application,
and to enable others of ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the particular use contemplated.

[0072] The invention can take the form of an entirely hardware embodiment, an entirely

software embodiment or an embodiment containing both hardware and software elements. In a

CA9200900017 18

10

15

20

25

30

CA 02675692 2009-08-28

preferred embodiment, the invention is implemented in software, which includes but 1s not
limited to firmware, resident software, microcode, etc.

[0073] Furthermore, the invention can take the form of a computer program product accessible
from a computer-usable or computer-readable medium providing program code for use by or in
connection with a computer or any instruction execution system. For the purposes of this
description, a computer-usable or computer readable medium can be any tangible apparatus that
can contain, store, communicate, propagate, or transport the program for use by or in connection
with the instruction execution system, apparatus, or device.

[0074] The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a
rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk
— read only memory (CD-ROM), compact disk — read/write (CD-R/W) and DVD.

[0075] A data processing system suitable for storing and/or executing program code will
include at least one processor coupled directly or indirectly to memory elements through a
system bus, such as a communications fabric. The memory elements can include local memory
employed during actual execution of the program code, bulk storage, and cache memories which
provide temporary storage of at least some program code in order to reduce the number ot times
code must be retrieved from bulk storage during execution.

[0076] Input/output or I/O devices (including but not limited to keyboards, displays, pointing
devices, etc.) can be coupled to the system either directly or through intervening I/O controllers.
[0077] Network adapters may also be coupled to the system to enable the data processing
system to become coupled to other data processing systems or remote printers or storage devices
through intervening private or public networks. Modems, cable modem and Ethernet cards are
just a few of the currently available types of network adapters.

[0078] The description of the present invention has been presented for purposes of illustration
and description, and is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the

art. The embodiment was chosen and described in order to best explain the principles of the

CA9200900017 19

CA 02675692 2009-08-28

invention, the practical application, and to enable others of ordinary skill in the art to understand

the invention for various embodiments with various modifications as are suited to the particular

use contemplated.

CA9200900017 20

10

15

20

25

30

CA 02675692 2011-05-18

CLAIMS

What 1s claimed 1s:

. A computer implemented method of filtering source code, the computer implemented
method comprising:

identifying an entry for a named entity in a modified symbol table, wherein the entry
comprises an identifier of the named entity in a program source code, a flag in a flag field and a
pair of coordinates representing a start and an end of a declaration including the named entity in
the program source code;

responsive to the flag in the entry for the named entity in the modified symbol table
indicating the named entity is referenced in the source code associated with modified the symbol
table, retrieving the pair of coordinates from the entry for the named entity in the modified
symbol table, wherein the pair of coordinates identify a start and an end location of a relevant
portion of code for a definition associated with the named entity in the source code; and

copying the relevant portion of code for the definition from the source code using the pair
of coordinates into a filtered source listing, wherein the filtered source listing comprises a set of
relevant portions of code for definitions from a set of header files associated with named entities
that are used in the source code directly or transitively and referenced in the modified symbol
table, and wherein irrelevant portions of code for definitions associated with entities that are

unreferenced in the source code are absent from the filtered source listing.

2. The computer implemented method of claim 1 further comprising:

responsive to the flag in the entry for the named entity in the moditied symbol table
indicating the named entity is unreferenced in the source code corresponding to the modified
symbol table, filtering the irrelevant portions of code for definitions associated with the named

entity that is unreferenced from the source code to generate the filtered source listing, wherein

any irrelevant portions of code for definitions from the set of header files for the named entity

that is unreferenced are absent from the filtered source listing,

CA920090017 21

10

15

20

25

30

CA 02675692 2011-05-18

3. The computer implemented method of claim 2 further comprising:

responsive to receiving a selection to sort the set of definitions in the filtered source
listing, sorting the set of relevant portions of code for definitions in the filtered source listing
according to a predetermined order to form a sorted filtered source listing, wherein the
predetermined order of entries is equivalent to an order in which corresponding declarations

appear 1n a preprocessed translation unit.

4. The computer implemented method of claim 3 turther comprising:
outputting the sorted filtered source listing as a minimal programming code listing 1n a

same program language as a program language of the source code .

5. The computer implemented method of claim 1, wherein the coordinates comprises first
coordinates of a beginning token for the location of the relevant portion of code for the detinition
in the source code and second coordinates of an ending token for the location of the relevant

portion of code for the definition in the source code.

0. The computer implemented method of claim 1 further comprising;
performing a debug process on a minimal programming code listing of the filtered source

listing wherein the minimal programming code listing contains relevant information.

7. A computer implemented method for filtering source code, the computer implemented

method comprising:

identifying a named entity in a declaration in the source code associated with a computer
program, by a code filtering compiler;

creating an entry for the named entity in a modified symbol table, wherein the entry
comprises an identifier of the named entity in a program source code, a flag field and a pair of
coordinates representing a start and an end of a relevant portion of code for a declaration
including the named entity in the program source code; and

responsive to the compiler identifying a reference to the named entity in the source code
and referencing the entry for the named entity in the modified symbol table, setting the tlag in

the flag field to indicate the named entity is referenced directly or transitively in the source code.

CA920090017 22

10

135

20)

25

CA 02675692 2011-05-18

8. The computer implemented method of claim 7 further comprising:

responsive to the code filtering compiler identifying the relevant portion of code for a
definition associated with the named entity in the source code, recording coordinates for the start
of the relevant portion of code for the declaration and the end of the relevant portion of code for
the declaration in the source code in a coordinates field of the entry for the named entity in the

modified symbol table.

9. The computer implemented method of claim 7, wherein the coordinates comprises first
coordinates of a beginning token for the location of the start of the relevant portion of code for
the declaration and second coordinates of an ending token for the location of the end of the

relevant portion of code for the declaration.

10. The computer implemented method of claim 7 further comprising:

identifying a set of entries for a set of referenced named entities in the modified symbol
table, wherein each entry in the set of entries for the set of referenced named entities contains the
flag in the flag field indicating that each named entity corresponding to the each entry in the set
of entries 1s referenced 1n the source code directly or transitively;

retrieving a set of coordinates frorri the set of entries for the set of referenced named
entities, wherein the set of coordinates identify pairs of coordinates for each entry of a set of
relevant portions of code for definitions associated with the set of referenced named entities 1n
the source code; and

copying the set of the relevant portions of code for definitions located at the set of
coordinates from the source code into a filtered source listing, wherein the filtered source listing
comprises the relevant portions of code for definitions from a set of header files associated with
named entities that are referenced in the source code, and wherein irrelevant portions of code tor

definitions associated with entities that are unreferenced in the source code are absent from the

filtered source listing.

CA920090017 23

10

15

20

25

30

CA 02675692 2011-05-18

11. A computer program product for filtering source code, the computer program product
comprising:

a computer usable medium having computer usable program code embodied therewith,
the computer usable program code comprising;

computer usable program code configured to identify an entry for a named entity in a
moditied symbol table, wherein the entry comprises an identifier of the named entity in a
program source code, a flag in a flag field and a pair of coordinates representing a start and an
end of a relevant portion of code for a declaration including the named entity in the program
source code;

computer usable program code configured to retrieve coordinates from the entry for the
named entity in the symbol table in response to the flag in the entry for the named entity in the
modified symbol table indicating the named entity is referenced in the source code associated
with the modified symbol table, wherein the pair of coordinates identify a start and an end
location of a relevant portion of code for a definition associated with the named entity in the
source code; and

computer usable program code configured to copy the relevant portion of code for the
definition from the source code using the pair of coordinates into a filtered source listing,
wherein the filtered source listing comprises a set of relevant portions of code for definitions
from a set of header files associated with named entities that are used in the source code, directly
or transitively and referenced in the modified symbol table and wherein irrelevant portions of
code for definitions associated with entities that are unreferenced in the source code are absent

from the filtered source listing.

12. The computer program product of claim 11 further comprising:

computer usable program code configured to filter the irrelevant portions of code for
definitions associated with the named entity that is unreferenced from the source code to
generate the filtered source listing in response to the flag in the entry for the named entity in the
modified symbol table indicating the named entity is unreferenced in the source code
corresponding to the modified symbol table, wherein any irrelevant portions of code for

definitions from the set of header files for the named entity that is unreferenced are absent from

the filtered source listing.

CA920090017 24

10

15

20

295

30

CA 02675692 2011-05-18

13. The computer program product of claim 12 further comprising:
computer usable program code configured to sort the set of relevant portions of code for
definitions in the filtered source listing in a predetermined order to form a sorted filtered source

listing 1n response to receiving a selection to sort the set of relevant portions of code for
definitions 1n the filtered source listing, wherein the predetermined order of entries 1s equivalent

to an order 1in which corresponding declarations appear in a preprocessed translation unit.

14. The computer program product of claim 13 further comprising:
computer usable program code configured to output the sorted filtered source listing as a
minimal programming code listing 1n a same program language as a program language of the

source code.

15. The computer program product of claim 11, wherein the coordinates comprises first
coordinates of a beginning token for the location of the relevant portion of code for the definition

in the source code and second coordinates of an ending token for the location of the relevant

portion of code for the definition in the source code.

16. The computer program product of claim 11 further comprising:
computer usable program code configured to perform a debug process on a minimal
programming code listing of the filtered source listing wherein the minimal programming code

listing contains relevant information.

17. A computer program product for filtering source code, the computer program product
comprising:
a computer usable medium having computer usable program code embodied therewith,

the computer usable program code comprising:

computer usable program code configured to identify a named entity in a declaration in

the source code associated with a computer program, by a code filtering compiler;

computer usable program code configured to create an entry for the named entity in a

modified symbol table, wherein the entry comprises an identifier of the named entity in a

CA920090017 25

10

15

20

25

30

CA 02675692 2011-05-18

program source code, a flag in a flag field and a pair of coordinates representing a start and an
end of a relevant portion of code for a declaration including the named entity in the program
source code; and

computer usable program code configured to set the flag in the flag field to indicate the
named entity 1s referenced directly or transitively in the source code in response to the compiler
identifying a reference to the named entity in the source code and referencing the entry for the

named entity in the modified symbol table.

18. The computer program product of claim 17 further comprising:

computer usable program code configured to record coordinates for the start of the
relevant portion of code for the declaration and the end of the relevant portion of code for the
declaration in the source code in a coordinates field of the entry for the named entity in the
modified symbol table in response to the code filtering compiler identifying a definition

associated with the named entity in the source code.

19. The computer program product of claim 17, wherein the coordinates comprises first
coordinates of a beginning token for the location of the relevant portion of code for the start of
the declaration and second coordinates of an ending token for the location of the relevant portion

of code tor the end of the declaration.

20. The computer program product of claim 17 further comprising:

computer usable program code configured to identify a set of entries for a set of
referenced named entities in the modified symbol table, wherein each entry in the set of entries
for the set of referenced named entities contains a flag in the flag field indicating that each
named entity corresponding to the each entry in the set of entries is referenced in the source code
directly or transitively;

computer usable program code configured to retrieve a set of coordinates from the set of

entries for the set of referenced named entities, wherein the set of coordinates identify pairs ot
coordinates for each entry of a set of relevant portions of code for definitions associated with the

set of referenced named entities in the source code; and

CA920090017 26

10

15

20

25

30

CA 02675692 2011-05-18

computer usable program code configured to copy the set of relevant portions of code for
definitions located at the set of coordinates from the source code into a filtered source listing,
wherein the filtered source listing comprises relevant portions of code for definitions from a set
of header files associated with named entities that are referenced in the source code, and wherein
irrelevant portions of code for definitions associated with entities that are unreferenced in the

source code are absent from the filtered source listing.

21. A code filtering compiler in a data processing system comprising:

a bus system;

a communications system coupled to the bus system,;

a memory connected to the bus system, wherein the memory includes computer usable
program code; and

a processing unit coupled to the bus system, wherein the processing unit executes the
computer usable program code to:

identify an entry for a named entity in a modified symbol table, wherein the entry
comprises an identifier of the named entity in a program source code, a flag in a flag field and a
pair of coordinates representing a start and an end of a declaration including the named entity in
the program source code;

identity the flag in the entry for the named entity in the modified symbol table indicating
the named entity 1s referenced in source code associated with the modified symbol table, retrieve
the pair of coordinates from the entry for the named entity in the modified symbol table, wherein
the pair of coordinates identity a start and an end location of a relevant portion ot code for a

definition associated with the named entity in the source code; and

copy the relevant portion of code for the definition from the source code, using the pair of
coordinates, into a filtered source listing, wherein the filtered source listing comprises a set of
relevant portions of code for definitions from a set of header files associated with named entities

that are used in the source code, and wherein irrelevant portions of code for detinitions

associated with entities that are unreferenced in the source code are absent from the filtered

source listing.

CA920090017 27

10

135

20

25

CA 02675692 2011-05-18

22. The code ftiltering compiler of claim 21, wherein the processing unit further executes the
computer usable program code to:

filter 1rrelevant portions of code for definitions associated with the named entity that is
unreterenced from the source code to generate the filtered source listing in response to the flag in
the entry for the named entity in the modified symbol table indicating the named entity is
unreterenced in the source code corresponding to the modified symbol table, wherein the filtered
source listing does not contain any definitions from the set of header files for the named entity

that 1s unreferenced.

23. The code filtering compiler of claim 21, wherein the processing unit further executes the
computer usable program code to:

recetve a selection to sort the set of definitions in the filtered source listing and sort the
set of detinitions 1n the filtered source listing according to a predetermined order to form a sorted
filtered source listing, wherein the predetermined order of entries is equivalent to an order in

which corresponding declarations appear in a preprocessed translation unit.

24. The code filtering compiler of claim 21, wherein the processing unit further executes the
computer usable program code to:
output the sorted filtered source listing as a minimal programming code listing in a same

program language as a program language of the source code.

25. The code filtering compiler of claim 21, wherein the coordinates comprises first
coordinates of a beginning token for the location of the start of the relevant portion of code for
the definition in the source code and second coordinates of an ending token for the location of

the end of the relevant portion of code for the definition in the source code.

CA920090017 28

FIG. 2

CA 02675692 2009-08-28

100 14

WA AR AN AV AR Y AR Y VAR AN AN R AN AN N mmmmmmwmm

PERSISTENT
PROCESSOR UNIT MEMORY STORAGE

204 t A 206 t 208

210 t 212 t 214
COMMUNICATIONS INPUTIOUTPUT
isPLAY

COMPUTER
READABLE

220

302 SET OF TRANSLATION UNITS
304
| COMPILER 314
3£n3. o - | .
SWITCH SYMBOL TABLE
"
ool 318
300 | OUTPUT TEXT FILE 316
399 _ FILTERED | | | COORDINATES
| SOURCE LISTING
FI1G. 3
400 408 500
SOURCE CODE [
TRANSLATION UNIT SYMBOL TABLE SYMBOL TABLE ENTRY |
402

DECLARATION B

404

DECLARATION ©
406
FIG. 4

DECLARATION A ——1+| ENTRYA 502
- -FLAG

CA 02675692 2009-08-28

2/4

SOURCE CODE

504

‘ BEGINNING TOKEN
. COORDINATES
412 ' 508
ENTRY C o0
~ END TOKEN
COORDINATES
414

FIG. 5

CA 02675692 2009-08-28

3/4
START)
602 " IDENTIFY A NAME
604 -
NAME
YES DECLARED
PREVIOUSLY
? .
TNO
6006 . 608
THIS A DECLARATION M0 ~ REPORT ERROR
YES
610 CREATE ANENTRY
INSYMBOL TABLE
SADEFNTIONSYES - 618
- ?
612 ‘ RECORD
¢ NO COORDINATES OF
BEGINNING TOKEN
NAME
. NO
REFERENCED IN
CODE? RECORD
' COORDINATES OF
ENDING TOKEN
SET FLAG TO INDICATE
616 _ THATTHENAMED 620
ENTITY IS REFERENCED

FIG. 6

SORT DEFINITIONS IN
712 FILTERED TEXT FILE |

" OUTPUTFILTERED |

714

702

UNFILTERED
NAME IN SYMBOL
. TABLE?

o

710

SOURCE TEXT FILE

CA 02675692 2009-08-28

YES

NO

4/4

704

FLAG ™
SET TO INDICATE
THE NAME IS REFERENCED
IN THE CODE
2 |

YES

'RETRIEVE COORDINATES AND
LOCATE THE CORRESPONDING
DEFINITION IN THE HEADER FILE

BEGINNING TOKEN AND THE

COPY THE CORRESPONDING
DEFINITIONS INTO THE
FILTERED TEXT FILE

FIG. 7

NO

USING THE COORDINATES OF THE |

COORDINATES OF THE END TOKEN |

706

~708

SOURCE CODE

302 SET OF TRANSLATION UNITS
304
: COMPILER 314
320 ' FILTER '
. . 318
300 | QUTPUT TEXT FILE 310 316
215 | FLTERED | B COORDINATES

| SOURCE LISTING

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - abstract drawing

