
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0063968 A1

Sheu et al.

US 20100063968A1

(43) Pub. Date: Mar. 11, 2010

(54)

(75)

(73)

(21)

(22)

(63)

STRUCTURED NATURAL LANGUAGE
QUERY AND KNOWLEDGE SYSTEM

Phillip Sheu, Irvine, CA (US);
Atsushi Kitazawa, Tokyo (JP)

Inventors:

Correspondence Address:
KNOBBE MARTENS OLSON & BEAR LLP
2040 MAINSTREET, FOURTEENTH FLOOR
IRVINE, CA 92.614 (US)

Assignee: Biomedical Objects, Inc., Irvine,
CA (US)

Appl. No.: 12/619,111

Filed: Nov. 16, 2009

Related U.S. Application Data

Continuation of application No. 1 1/846,428, filed on
Aug. 28, 2007, now Pat. No. 7,620,542, which is a
continuation of application No. 10/286,506, filed on
Oct. 31, 2002, now Pat. No. 7,263,517.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)
G06F 3/048 (2006.01)

(52) U.S. Cl. 707/736; 715/764; 707/E17.136
(57) ABSTRACT

A structured natural language query and knowledge system is
provided to allow a user who lacks programming skills to
enter a database query or a rule in the form of a structured
natural language sentence. The scope of the sentence is pref
erably defined by an improved object relational query lan
guage, an object relational algebra, or both. Command and
conditions that appear in natural language form are defined
with corresponding formal query texts. A user is prompted to
compose a structured natural language sentence using the
defined commands and conditions. The user-selected com
mand and its arguments appear as the verb phrase of a struc
tured natural language sentence. The user-selected conditions
and their parameters appear as the adjective phrases of the
sentence. The sentence is parsed and changed into a translated
formal query text for formal database query and rule process
1ng.

ANY
WARIA
DEFINITIO

PROFR LSSR O SECFY
A WARABLE DEFINION PHRASE

MORE
WARABLE
EFINIONS

PROMPR USER O SELECT
A COAA

PROMP SER O SELECT
ARGUMEN(S) For THE COMMAN

ai

a2

22

a.

as
PROPT USER TO EAME TE
RESULT OF HE SELECTED
COMMAND (OPTIONA)

ANY
COMOTION?

ProPRt user to select
A CONDITON

PROMPRT SER TO SPECIF THE
PARAMETERS OF THE COON

MORE
CONTIONS

2

25

22
YES

af

Patent Application Publication Mar. 11, 2010 Sheet 1 of 14 US 2010/0063968A1

- 700

STRUCTURED NATURAL ANGUAGE QUERY AND KNOWLEDGE SYSTEM

7/27
OBJECT SCHEMA DEFINITION MODULE

//(2
VERB PHRASE DEFINITION MODULE

-- /2/7
ADJECTIVE PHRASE DEFINITION MODULE

4. / 2 ----- Z 7.7
STRUCTURED NATURAL LANGUAGE STRUCTURED NATURAL LANGUAGE
QUERY COMPOSITION MODULE RULE COMPOST ON MODULE

- ///
/467 QUERY TRANS ATION MODULE ut TRANS ATION out.

/ /27
FORMAL QUERY PROCESSING FORMAL RULE PROCESSING

7,507 MODULE MODULE

AA(7
DATABASE

FIG. 1

Patent Application Publication Mar. 11, 2010 Sheet 2 of 14 US 2010/0063968A1

2/47
PROMPT PROGRAMMER TO
DEFINE COMMAND NAME

227
PROMPT PROGRAMMER TO
DEFINE THE NUMBER OF

ARGUMENTS OF THE COMMAND

-- 2567

PROMP PROGRAMMER O
DEFINE THE TYPE OF EACH OF

THE ARGUMENTS

2407
PROMP PROGRAMMER TO

CREATE A FORMAL OUERY TEXT
TO CORRESPOND TO THE

COMMAND

2562
END

FIG.2

Patent Application Publication Mar. 11, 2010 Sheet 3 of 14 US 2010/0063968A1

3/7
PROM PT PROGRAMMER TO

DEFINE A CONDITION NAME

PROMP PROGRAMMER TO
DEFINE THE NUMBER OF

PARAMETERS OF THE CONDITION

327

3.307
PROM PT PROGRAMMER TO

DEFINE THE TYPE OF EACH OF
THE PARAMETERS

407
PROMPT PROGRAMMER TO

CREATE A FORMAL OUERY TEXT
O CORRESPOND TO THE

CONDITION

35(2
END

FIG. 3

Patent Application Publication Mar. 11, 2010 Sheet 4 of 14 US 2010/0063968A1

2027
START

ANY
VARABE
DEFINITION?

a22
PROMPR USER TO SPECFY

A VARABLE DEFINITION PHRASE

MORE
WARABLE
DEFINIONS

NO

PROMPR USER TO SELECT
A COMMAND

PROMP USER TO SELEC
ARGUMENT(S) FOR THE COMMAND

440

452

462
PROMPT USER TO NAME THE
RESULT OF THE SELECTED
COMMAND (OPTIONAL)

472
ANY

CONDITION?

22
PROMPR USER TO SELECT

A CONDITION

PROMPRT USER TO SPECIFY THE
PARAMETERS OF THE CONDITION

MORE
CONDITIONS

2.99

FIG.4

US 2010/0063968A1 Mar. 11, 2010 Sheet 5 of 14 Patent Application Publication

67/ Ç

US 2010/0063968 A1 Mar. 11, 2010 Sheet 6 of 14 Patent Application Publication

US 2010/0063968A1 Mar. 11, 2010 Sheet 7 of 14 Patent Application Publication

•-, , , , … ****** -

-----;; * · ********** --~~~~);

429,9 (7/97 47,9

Z 'f)I, H.

US 2010/0063968A1 Mar. 11, 2010 Sheet 8 of 14

2/2

Patent Application Publication

US 2010/0063968A1 Mar. 11, 2010 Sheet 9 of 14 Patent Application Publication

****** ¿U

| sw &

;*****************************'+'*'; + && !!rºw + x + 3 *********

Patent Application Publication Mar. 11, 2010 Sheet 10 of 14 US 2010/0063968 A1

. ...Al--- r n . -, - ... a '.' --- war -r-war-r Wv "u-. -- . .
- " - . . . - - - -

&sistry at 3:
Sis.

'83 vs':-
arts. As

tra-e-Yo -
Earl:- is : s:

:

:

i :

a

-

S S
S

S

US 2010/0063968A1 Mar. 11, 2010 Sheet 11 of 14 Patent Application Publication

US 2010/0063968A1 Mar. 11, 2010 Sheet 12 of 14 Patent Application Publication

(24/7/ 67,7/

sassissists:

(7/67/

** * * · *- - ----+---+---------

US 2010/0063968A1 Mar. 11, 2010 Sheet 13 of 14 Patent Application Publication

!

US 2010/0063968A1 2010 Sheet 14 of 14 11, Mar. ion icat Pub Patent Application

£29, 27/

s:FE is

US 2010/0063968 A1

STRUCTURED NATURAL LANGUAGE
QUERY AND KNOWLEDGE SYSTEM

CLAIM OF PRIORITY

0001. This application is a continuation application of
U.S. patent application Ser. No. 1 1/846,428, filed Aug. 28,
2007, which issued on Nov. 17, 2009 as U.S. Pat. No. 7,620,
542, which is a continuation application of U.S. patent appli
cation Ser. No. 10/286,506, filed Oct. 31, 2002, which issued
on Aug. 28, 2007 as U.S. Pat. No. 7.263,517, each of which is
incorporated by reference herein in its entirety.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The invention relates to the field of relational,
object-oriented and object relational databases. More particu
larly, the invention relates to a structured natural language
database query and knowledge system.
0004 2. Description of the Related Art
0005 Relational databases have been used widely for
many years. A relational database organizes data into tables
that include fields. Two tables that include a same field are
related to each other. Compared to the “flat file' approach that
stores all data into a single file, the relational approach of
tables is more flexible.

0006 Most relational database systems conform to the
Structured Query Language (SQL) standard. Commercial
Vendors produce SQL based database systems such as Oracle,
Sybase, Informix, Progress and Microsoft Access. These sys
tems use a SQL-type formal query language. The following
are examples of a formal query used to display the names and
salaries of those employees who make more than $100,000:

For each employee where employee.salary > 100000:
Display employee.name employee. Salary.

End
Or:
Select name, salary
From employee
Where employee.salary > 100000

0007. In the above queries, “employee' is the table name,
“name' and “salary' are fields of the “employee' table,
“where employee.salary>100000' is a condition and also a
qualification, and "Display employee.name employee. Sal
ary' and "Select name, salary are commands. A qualification
is a condition or a plurality of conditions connected by logical
connectors such as “and”, “or”, “and not or “or not.
0008 Object-oriented databases organize data into
objects. An object can have attributes, which can also be
objects. The recursive nature of an object permits ease of
manipulation. Objects can inherit characteristics from other
objects, making it easier to create new objects based on exist
ing ones. An object can be associated with a set of procedures
(methods) to manipulate its data.
0009 Attempts have been made to combine relational
databases and object-oriented databases to create object rela
tional databases. For example, American National Standards
Institute (ANSI) SQL-99 extends the conventional SQL

Mar. 11, 2010

query language to allow tables and fields to be manipulated as
objects. A typical ANSI SQL-99 query is expressed as:
0010 Select arguments
0011. From type var. . . . type var
0012. Where condition and condition ... and condition
0013. A condition is a method with the methods argu
ments applied to a variable. An argument of the “select
command can be a variable, an attribute of a variable or a
method with its arguments applied to a variable. With the
addition of methods, the scope of SQL-99 becomes wider
than the scope of conventional SQL.
0014. Unfortunately, ANSI SQL-99 still has significant
limitations. As described below in more detail, ANSI SQL-99
allows only “range' type variables and does not allow “set.”
“bag,” or temporary variables. The scope of a variable is
determined by its type (which is usually a relational table or a
class of objects) and cannot be an arbitrary set of objects.
Moreover, a condition under SQL-99 does not allow the val
ues produced by a method, whether produced as its returned
value or as its parameters, to be used in other conditions. In
addition, a method that does not return a logical “true' or
“false' value is not allowed to be a condition. Therefore, it
would be desirable to introduce a more general and more
powerful object relational query language.
0015 Conventional relational algebra has significant limi
tations too. Under relational algebra, an expression is simply
a relation such as a flat file or a set of records whose fields are
primitive values such as integers, floating point numbers and
text strings. Moreover, a condition of the “select operator is
restricted to:

0016 1. A comparison between two primitive values
Such as equal to, greater than, less than, greater than or
equal to, less than or equal to, not equal to:

0017 2. A comparison between a primitive value and a
set of primitive values produced by a Sub-query Such as
“is a member of “greater than all members of “greater
than any member of and so forth;

0.018. 3. A comparison between two sets of primitive
values produced by a Sub-query such as “is a Superset of
or “is a subset of'; and

0.019 4. A test on a set of primitive values such as “is an
empty set.”

0020. In addition, a method typically is not allowed to be
an expression under relational algebra. Therefore, it would be
desirable to introduce a more general and more powerful
object relational algebra.
0021 Conventional databases use data integrity con
straints and event triggers to enforce rules on the databases.
However, the scope of these rules is limited by the scope of the
query language used by the conventional databases. What is
desired is a knowledge system that permits more powerful
and more flexible ways of specifying rules.
0022 Finally, in a conventional relational or object rela
tional database, a user who lacks programming skills typi
cally cannot compose complex database queries, and must
rely on programs written by programmers to search and dis
play data. Therefore the user's options are frequently very
limited. It would be desirable to allow such a user to write
natural language type instructions to operate on a relational,
object-oriented or object relational database in real time.

SUMMARY OF THE INVENTION

0023 For purposes of summarizing the invention, certain
aspects, advantages and novel features of the invention have

US 2010/0063968 A1

been described herein. It should be understood that not nec
essarily all Such aspects, advantages or features will be
embodied in any particular embodiment of the invention.
0024. A structured natural language query and knowledge
system is provided to allow a user who lacks programming
skills to specify a database query in the form of a structured
natural language sentence. The user can also specify a rule in
the form of a structured natural language sentence. An
improved object relational query language and an object rela
tional algebra are also introduced. In a preferred embodiment,
the structured natural language is defined by the object rela
tional query language and the object relational algebra.
0025. One aspect of the invention relates to a computer
implemented method of composing a structured natural lan
guage database query. A user is prompted to select a com
mand from a set of defined commands and to specify one or
more arguments for the command. The selected command
and arguments are combined to form a verb phrase. The user
is also prompted to select Zero, one or more conditions from
a set of defined conditions and to specify Zero, one or more
parameters for each selected condition. Each selected condi
tion and its specified parameters are combined into an adjec
tive phrase. The verb phrase and the selected adjective
phrases are combined into a structured natural language data
base query.
0026. The structured natural language query is automati
cally translated into formal query text to be executed by a
formal query processing module. The structured natural lan
guage query is parsed to identify a verb phrase and Zero, one
or more adjective phrases. After finding a defined command
query text that corresponds to the parsed verb phrase and
finding a defined qualification query text that corresponds to
each of the parsed adjective phrases, the found query texts are
combined into a translated formal query text to be processed
by the query processing module.
0027. Another aspect of the invention is related to a com
puter-implemented method of creating an object relational
query for a database. A first variable can be defined as a range
variable and a second variable can be defined as a set variable.
A command and a qualification are also defined. The defined
command, qualification and variables are combined to form
an object relational query. Variables can also be defined as
temporary variables or bag variables.
0028 Still another aspect of the invention relates to a
computer-implemented method of creating an object rela
tional query for a database based on algebraic expressions. A
query is built upon one or more expressions. An expression is
a set of objects. Thus, a general method that returns as output
a set of objects is an expression. A select operator that selects
from a set of objects a Subset based on a qualification is also
an expression. Because an argument of a general method can
be a set of objects, general methods can be nested to produce
another expression.
0029. Yet another aspect of the invention relates to a com
puter-implemented method of processing queries expressed
in the improved object relational query language or the object
relational algebra for a relational, object-relational or object
oriented database system.
0030. Another aspect of the invention relates to a com
puter-implemented method of grouping structured natural
language queries, structured natural language rules or both

Mar. 11, 2010

queries and rules into a macro that in turn can be used as a
command or condition for other queries or rules.

BRIEF DESCRIPTION OF THE DRAWINGS

0031. The drawings and the associated descriptions are
provided to illustrate embodiments of the invention and not to
limit the scope of the invention.
0032 FIG. 1 illustrates one embodiment of a structured
natural language System.
0033 FIG. 2 illustrates one embodiment of a process of
defining a command.
0034 FIG. 3 illustrates one embodiment of a process of
defining a condition.
0035 FIG. 4 illustrates one embodiment of a process of
composing a structured natural language query.
0036 FIG. 5 illustrates example user interface screens that
prompts a user or a programmer to define an object variable.
0037 FIG. 6A is an example user interface screen that
prompts a user to select a command.
0038 FIG. 6B is another example user interface screen
that prompts a user to select a command.
0039 FIG. 7 is an example screen that prompts the user to
select command arguments and optionally name a result.
0040 FIG. 8A is an example screen that prompts the user
to select a condition.
0041 FIG. 8B is another example screen that prompts the
user to select a condition.
0042 FIG. 9 is an example screen that prompts the user to
specify parameters for the selected condition.
0043 FIG. 10 is an example screen that displays a com
posed query.
0044 FIG. 11 is an example screen that prompts the user
to type a structured natural language sentence.
0045 FIG. 12 is an example screen that displays a rule in
structured natural language.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

0046. The following subsections describe a structured
natural language query and knowledge system, an improved
object relational query language, and an object relational
algebra that embody various inventive features. As will be
recognized, many of these features can be implemented
within a given system without others. For example, the struc
tured natural language query system can be implemented in
conjunction with conventional database platforms, and need
not be implemented with the improved object relational query
language or with the object relational algebra. In addition, the
various inventive features can be implemented differently
than described herein. Thus, the following description is
intended only to illustrate, and not limit, the scope of the
present invention.
0047 A. Structured Natural Language Query and Knowl
edge System
0048 FIG. 1 illustrates one embodiment of a structured
natural language query and knowledge system 100. The
structured natural language system 100 allows a user without
programming skills to create a structured natural language
query to operate on a database, with the database operation
preferably done in real time. The system 100 can also allow a
user to convert a relational database into an object-relational
database. A structured natural language query may include a
verb phrase as a command and Zero, one or more adjective

US 2010/0063968 A1

phrases as a qualification. A variable definition phrase may
also be included in the structured natural language query. The
term "query' is broadly defined herein to include not only
commands that selector display data, but also commands that
create, update or delete data. One embodiment of the system
100 is programmed in Java. The system 100 can also be
programmed in C, C++ or other languages, operating plat
forms or application packages.
0049. As shown in FIG. 1, the system 100 includes a verb
phrase definition module 110 and an adjective phrase defini
tion module 120. The verb phrase definition module 110
allows a programmer to define verb phrases to correspond to
formal query texts. The adjective phrase definition module
120 allows a programmer to define adjective phrases to cor
respond to formal query texts. Formal query texts can be
methods, functions, Subroutines, procedures, SQL query
texts, or combinations of the above. The system 100 also
includes a structured natural language composition module
130 that allows a user to compose a structured natural lan
guage query using the defined verb phrases and adjective
phrases. The system 100 further includes a translation module
140 to translate the structured natural language query into
formal query text, and a formal query processing module 150
that processes the translated formal query text to return query
results from the underlying database 160, which can be a
commercial database system.
0050. The system 100 also includes an optional object
schema definition module 101. The module 101 allows a user
or a programmer to define an object class, including the
number of attributes and the type of each attribute for an
object class. If the underlying database 160 for the system 100
is a relational database, the object schema definition module
101 allows a user or programmer to associate an object class
with a table in the relational database, thus allowing the user
or programmer to define the relationships among the tables of
the relational database in terms of objects.
0051. For example, a programmer or a user can define a
class “polygon” to be associated with the table “POLYGON”
in a relational database. The table “POLYGON' includes a
“VERTICES' column. The class “polygon” is defined with
an “ID' attribute of text string type, and a “vertices' attribute
of “set of vertex” type. Another class “vertex' is associated
with the table “VERTEX in the relational database. The
class “vertex' is defined with a “name attribute of text string
type, a “x coordinate' attribute of number type, and a “y
coordinate' of number type. The object schema definition
module 101 thus stores the relationship that each element of
the “VERTICES' column in the “POLYGON’ table is the
name of a row in the “VERTEX” table. A group of “VER
TEX' tuples and a “POLYGON” tuple can thus be treated
together as a hierarchically structured “polygon' object class.
The programmer or user can then define verb phrases and
adjective phrases related to the “polygon” object class. If
there are no structural relationships among the tables, each
table is then treated as an independent object class, with each
relational tuple as a “flat object without hierarchical struc
tures. In any event, a user can still define verb phrases and
adjective phrases in structured natural language.
0052. If the underlying database for the system 100 is an
object-relational or object-oriented database, then the object
schema definitions can be simply imported from the under
lying database.

Mar. 11, 2010

0053 Regarding structured natural language queries, an
example sentence is:

0.054 Create a group from range1 whose name is “cc’
(query A1)

0.055 Who are diagnosed to have disease “mild AD”
and who respond to medication “aericept.

0056. In the example query above, "create a group from
rangel whose name is cc is a verb phrase of the query,
“who are diagnosed to have disease mild AD is an adjective
phrase of the query, and “who respond to medication aeri
cept’ is another adjective phrase of the query. Within the verb
phrase, “create a group' is a command, “from range 1 is an
argument of the command, and “whose name is cc is a
result name of the command operation. Within each of the
adjective phrases, “who are diagnosed to have disease' and
“who respond to medication” are conditions, and "mild AD”
and “aericept are parameters of the conditions.
0057 The query and knowledge system 100 can also
include a structured natural language rule composition mod
ule 131, a rule translation module 141, and a formal rule
processing module 151. The modules 131, 141 and 151 are
described below in connection with rules.
0058. In FIG. 1, each of the modules 101-151 is preferably
implemented with Software executed by one or more general
purpose computers. Some or all of the modules could alter
natively be implemented in whole or in part within applica
tion-specific hardware. As will be recognized, the modules
need not run or reside on the same computer. For example,
modules 110-141 could be integrated into a client-side com
ponent that runs on a user computer, while the formal pro
cessing modules 150 and 151 could run on a remote server
that provides network-based access to a database. Further, the
translation modules 140 and 141 could be implemented as a
server-side component that translates natural language que
ries and rules received over a network from users. The mod
ules of the system 100 can be implemented in the same or
different computing languages, operating platforms or appli
cation packages.
0059 FIG. 2 illustrates one embodiment of a computer
implemented process to define a verb phrase. At block 210,
the system 100 prompts a programmer to define a command
name. A command name is a text string Such as “create a
group', 'combine two groups”, “find similar genes from two
groups”, “show elements of a group”, “store', and so forth.
The command is preferably defined with the appearance of a
natural language phrase and thus is easy for users without
programming skills to understand.
0060. At block 220, the programmer is prompted to define
the number of arguments for the command. For example, a
“create a group' command typically has 1 argument and a
“find similar genes from two groups' command typically has
2 arguments. The programmer may also define the selection
range for each argument. For example, one argument for a
patient name can be any user-entered text string, and another
argument for the name of an authorized insurer must be a
value from a pre-determined list of values. At block 230, the
programmer is prompted to define the data type of each of the
arguments of the command. A data type can be a primitive
data type such as integer, floating number, date or text string,
or another data type defined by a user or a programmer. A new
data type can be defined as a set of objects of a given data type.
For example, given the defined data type “vertex', a new data
type “Vertex Set can be defined such that each object of the
“Vertex Set' data type is a set of vertices. From block 230, the

US 2010/0063968 A1

process proceeds to block 240, where the programmer is
prompted to create a formal query text to correspond to the
defined verb phrase.
0061 The term “formal query text' is used broadly in the
present application to include text in the form of a query
language, the name of a collection of computer code Such as
a method, function, procedure or Subroutine, or the name of a
macro. For example for the condition "(a gene) is similar to
(another gene), a method, function, procedure or Subroutine
can be “Var0.similar(Varl)', with “Varo” and “Varl” repre
senting the two parameters of the condition respectively. As
another example, for the command “find similar genes from
two groups, a method, function, procedure or Subroutine can
be “find similar genes(argument1, argument2), with “argu
ment 1 and “argument2 representing the two arguments of
the command respectively. The collection of computer code is
stored in a system library (not shown). As described below, a
macro is a logical unit for a group of queries, a group of rules,
or a group of one or more queries and one or more rules.
0062. The process illustrated in FIG. 2 can be imple
mented in other orders. For example, in one embodiment, the
programmer is first prompted to create a formal query text for
a verb phrase to be defined. The system 100 parses the formal
query text, and determines the number of arguments for the
verb phrase and the data type of each of the arguments. The
programmer is then prompted to define a command name for
the verb phrase.
0063 FIG. 3 illustrates one embodiment of a computer
implemented process of defining a condition. At block 310,
the system 100 prompts a programmer to define a condition
name. Example condition names include “who are diagnosed
with disease' and “who respond to medication”. The process
then proceeds to block 320, where the programmer is
prompted to define the number of parameters for the condi
tion. At block 330, the programmer is prompted to define the
data type of each of the parameters, such as text, integer and
So forth. The programmer can also be prompted to specify if
a parameter is an input parameter or an output parameter. At
block 340, the programmer is prompted to create a formal
query text to correspond to the defined condition, for example
typing texts in a query language, specifying a macro name, or
specifying the name of a computer code collection Such as a
method name, function name, procedure name or Subroutine
name. The computer code collection is stored in the system
library.
0064. For example, for the condition “who are diagnosed
with disease', an example formal query text can be "-argu
ment1 >.diagnosed(<parameters) or '<argument1 >.
diagnosed=<parameters”. In this example, "-argument1d.”
represents the command argument of the related verb phrase,
and "-parameters' represents the condition parameter value
to be entered by the user.
0065. The process illustrated in FIG. 3 can be imple
mented in other orders. For example, in one embodiment, the
programmer is first prompted to create a formal query text for
the condition to be defined. The system 100 then parses the
formal query text and determines the number of parameters
for the condition and the data type of each of the parameters.
The programmer is then prompted to define a condition name.
0066. The verb phrases and adjective phrases can be
defined to correspond to complex queries. For example, the
condition “who are diagnosed with all diseases’ can be
defined to include a set parameter that allows a list of diseases.
A query with this condition finds patients who are diagnosed

Mar. 11, 2010

with all of the listed diseases. Another condition “who are
diagnosed with at least one of the diseases’ can be defined to
include a set parameter that allows a list of diseases. A query
with this condition finds patients who are diagnosed with at
least one of the listed diseases. In another arrangement, only
the condition “who are diagnosed with disease' is defined and
includes a parameter that allows only one entry of a disease
name. If a user wants to find patients who have both diseases
A and B, the user combines two such adjective phrases “who
are diagnosed with disease A and “who are diagnosed with
disease B'.
0067. It should be noted that verb phrases and adjective
phrases can be defined and used interchangeably to some
extent. For example, the more specific verb phrase “find
patients who are diagnosed with disease' serves the same
purpose as the combination of the more general verb phrase
“find patients' and the adjective phrase “who are diagnosed
with disease'. If a query is frequently invoked by users, it may
be preferable to define the query as a verb phrase that does not
require additional adjective phrases. It is also feasible to
define both specific and general verb phrases, and allow users
to use either the specific verb phrase or the general verb
phrase combined with adjective phrases.
0068. In one embodiment, a structured natural language
query can be created in the form of a question, such as “which
patients are diagnosed with disease mild AD and who
respond to medication aericept?'. It is equivalent to the
query “display patents who are diagnosed with disease mild
AD and who respond to medication aericept”. In the query
in the form of a question, the portion “which patients’ or
“which patients are serves as the verb phrase.
0069. A structured natural language query may include a
variable definition phrase. For example, as described below in
subsection B, if the improved object relational query lan
guage of subsection B is used in conjunction with the system
100, an example variable definition phrase can be “range of
<Variable> is polygon: abc. It means that the values of
<Variable> are obtained from a collection of objects named
“abc', whose elements are bound to the type “polygon'. A
variable definition phrase can include one or more variable
definitions.
0070 Although a user who is not a programmer may also
define a verb phrase and a condition, the term “programmer”
is used in connection with FIG. 2 and FIG. 3 because some
programming skills may be need to create a formal query text
that correspond to a defined verb phrase or condition.
0071 FIG. 4 shows one embodiment of a computer-imple
mented process of composing a structured natural language
query. In a preferred embodiment, the query is composed with
the improved object relational query language described in
subsection B. At a block 410, the process determines whether
variables will be defined by a user. If variables are to be
defined, the process proceeds to a block 420, where the pro
cess prompts a user to specify a variable definition phrase. It
should also be understood that variable definition phrases,
command and conditions need not be specified in any par
ticular order. In other words, variable definition phrases need
not be specified before the command is specified, and the
command need not be specified before conditions are speci
fied.
0072 FIG. 5 illustrates example screens that prompta user
or a programmer to specify a variable definition phrase. As
shown in FIG. 5, in an embodiment in accordance with an
improved object relational query language described below in

US 2010/0063968 A1

Subsection B, a user or programmer is prompted to create an
object name in the "Object Name” section 510. The user or
programmer is also prompted in the “Type' section 520 to
identify the variable type of the created object by selecting
from a list of types such as “range', “temp”, “set' and “bag.
The user or programmer is further prompted to identify the
data type of the created object by selecting an object from the
“Object Lists' section 530 to inherit the data type of the
selected object, or by selecting from the “Primitive Lists’
section 540 of primitive data types. The user or programmer
is prompted to specify in the “DataSource Element' section
550 the data source element for the created object. A data
Source element is a set of objects of the same type.
0073. In another embodiment in which the object-rela
tional algebra of subsection C is used, the blocks 410-430 are
omitted and the user is not prompted to define variables.
Variables are pre-defined by a programmer, and the user
directly proceeds to a block 440. In order to demonstrate both
options, FIGS. 6A and 8A are presented as example screens
that do not display variable definitions, while FIGS. 6B and
8B are presented as example screens that display variable
definitions.

0074 Variable definition phrases can also be automati
cally generated based on the selected commands and condi
tions. In the example described below in subsection B with
two object classes “polygon' and “vertex', the condition
“contains' requires two polygons as inputs and returns a true
value if the first polygon contains the second. The system 100
stores the specification that the “contains' condition requires
two input parameters of polygon class. When the condition
“contains' is selected by the user, the system 100 automati
cally generates a variable definition phrase to define the two
input parameters as range variables of polygon class. In
another example, the condition “intersection' requires two
input parameters of polygon class and an output parameter as
the intersection polygon of the two input polygons. The
“intersection' condition returns a “true' logical value. The
system 100 stores the specification that the “intersection”
condition requires two input parameters of polygon class and
an output parameter of polygon class. When the user selects
the “intersection' condition, the system 100 automatically
generates a variable definition phrase to define the two input
parameters and the output parameter. The two input param
eters are preferably defined as range variables and the output
parameter is preferably defined as a temporary variable. If the
output parameter is used as an input parameter of another
condition, then the input parameter of the other condition do
not need to be defined again.
0075. At the block 440, the user is prompted to select a
command from a list of defined commands. In one embodi
ment, the user is prompted to select from a list of defined
commands that are applicable to the objects defined in the
variable definition phrase. For example, if the variable defi
nition phrase defines a variable “polygon', then the user can
select from those commands that are applicable to the “poly
gon' variable, such as “enlarge”, “reduce”, “rotate”, “mea
sure area', and so forth. FIG. 6A and FIG. 6B are example
user interface screens that prompt the user to select a com
mand from a list 610 of commands. Compared to FIG. 6A,
FIG. 6B includes an additional section 620 that displays the
defined variables. The defined variables are also displayed in
the sentence section 630.

0076 Referring back to FIG. 4, from the block 440, the
process proceeds to a block 450, where the user is prompted

Mar. 11, 2010

to select one or more arguments for the selected command. At
a block 460, in one embodiment that preferably uses the
object relational algebra of Subsection C, the user is prompted
to optionally specify a result name of the selected command.
The command, arguments and optional result name form a
verb phrase. FIG. 7 is an example screen that prompts the user
to select command arguments and optionally name a result.
Depending on the number and type of defined arguments for
the command, the user may be prompted to identify one or
more arguments. As shown in FIG. 7, in one embodiment in
accordance with an object relational algebra described below
in Subsection C, for the command "create a group', the user is
prompted to select a data type from section 710, select a data
source element from section 720, and optionally name a result
of the command in section 730.

(0077 Referring back to FIG.4, if the user wishes to select
a condition, then the process proceeds from a block 470 to a
block 480, where the user is prompted to select a condition
from a list of defined conditions. In one embodiment, the user
is prompted to select from a list of defined conditions that are
applicable to the objects defined in the variable definition
phrase. For example, for a variable “polygon’’, conditions
Such as "contains”. “intersect' and “is a square' are appli
cable to the “polygon variable. FIG. 8A is an example screen
that prompts the user to select from a list of conditions. A
defined verb phrase is displayed in section 810 and as part of
a structured natural language sentence in sentence section
830. The user selects a condition from a list of conditions in
section 820. FIG.8B is another example screen that prompts
the user to select from a list of conditions. Compared to FIG.
8A, FIG. 8B includes an additional section 840 that displays
the defined variables. The defined variable definition phrase
and verb phrase are displayed as parts of a sentence in the
sentence section 830.

(0078 Referring back to FIG.4, at a block 490, the user is
prompted to specify the parameters of the selected condition.
In one embodiment, multiple conditions are allowed to share
the same condition name but with different numbers of
parameters. FIG. 9 is an example screen that prompts the user
to specify parameters for the selected condition. As shown in
FIG. 9, for the condition “Who are diagnosed to have’, the
user can type in a disease name in section 910, or select from
a list of disease names in section 920. The selected condition
and parameters forman adjective phrase. In one embodiment,
the composition module 130 automatically puts quotation
marks around the specified values of command arguments,
named result and condition parameters. If the condition has
one or more output parameters, the user can also specify an
additional condition by defining the output parameters of the
original condition as the input parameters of the additional
condition. The additional condition thus evaluates a condition
based on the output produced by the original condition.
(0079 Referring back to FIG.4, at a block 495, the user is
prompted to indicate whether more conditions will be
entered. If more conditions will be entered, then the process
returns to the block 480. Otherwise the process proceeds to an
end block 498. If the process returns to the block 480 to
specify another adjective phrase, the user is also prompted to
specify a logical connector such as “and”, “or' or “and not to
join the two adjective phrases.
0080. As described above, FIGS. 5-9 are example screens
of one embodiment that prompts a user to select from lists of
defined commands and conditions. The user selects a com
mand in FIG. 6A or FIG. 6B, selects arguments for the com

US 2010/0063968 A1

mand in FIG.7, selects a condition in FIG. 8A or FIG.8B, and
specifies parameters for the condition in FIG. 9. In one
embodiment, the user or a programmer also defines variables
in FIG. 5.
0081. The specified verb phrase and adjective phrases
form a composed structured natural language query. FIG. 10
is an example screen that shows a composed structured natu
ral language query sentence in section 1040 including a verb
phrase in section 1020 and adjective phrases in section 1030.
In FIG. 10, the query appears in a preferred form of an
imperative sentence. The query may also include a variable
definition phrase, such as the phrase "range of rangel is
Case:Case' shown in Sections 1010 and 1040 of FIG. 10. The
user can also be given the option to directly type a structured
natural language query into the system 100, as shown in the
sentence section 1110 of FIG. 11. Experienced users may
prefer this option. Users can also use a combination of direct
typing and Screen selection, for example typing the condi
tions or commands they are familiar with and selecting other
conditions or commands from the menus. The composed
query is then sent to the translation module 140 for transla
tion.
0082. The translation module 140 parses the composed
query to identify the verb phrase, the adjective phrases and the
optional variable definition phrase. In a preferred embodi
ment, the translation module 140 looks for keywords that
indicate defined verb phrases or defined adjective phrases.
For example, in one embodiment where all conditions start
with the word “who' or “whose', the translation module 140
searches for words “who' and “whose and identifies any
Such words as signaling the start of an adjective phrase. How
ever, if the word “who' or “whose' is enclosed in quotation
marks in the composed query, then it is considered to repre
sent an argument, named result or parameter value instead of
the start of a condition. The translation module 140 also
searches for logical connectors “and”, “or”, “or not and “and
not'. A logical connector indicates the end of one adjective
phrase and the start of another adjective phrase. By searching
for condition labels and logical connectors, the module 140
can identify an adjective phrase as separated from the rest of
the query and separated from the other adjective phrases.
0083. The translation module 140 also searches for key
words of the defined conditions to identify the conditions. For
example, the translation module 140 searches for keywords
Such as "diagnosed’ or “respond as identifying the condition
“who are diagnosed with the disease' or “who respond to
medication'.

0084. The translation module 140 also searches for key
words of the defined commands to identify the command. For
example, the module 140 searches for keywords such as
“create a group' or “add elements to a group' to identify the
corresponding commands. The module 140 can also search
for keyword “from to signal a command argument and key
word “whose name is to signal a named result.
0085. If the command and conditions are not typed by a
user but selected from lists of defined commands and condi
tions, then the parsing process can be simplified. Because the
system 100 associates each of the defined commands and
conditions with its corresponding formal query text, the cor
responding formal query text can be stored at the same time
the user selects a command or condition. The stored corre
sponding formal query texts (or their identifiers) are com
bined by the translation module 140 to form a translated
formal query text. On the other hand, if the user enters a

Mar. 11, 2010

structured natural language query by typing instead of select
ing from lists, then the parsing process first identifies the verb
phrase and adjective phrases, and then combines their corre
sponding formal query texts.
I0086. In a preferred embodiment, the translation module
140 detects errors in a query and automatically corrects errors
or Suggests corrections to errors. Query errors may include
misspellings (for example “diagnosed misspelled as "diag
noised’), missing words (for example “who respond to medi
cation” entered as “who respond to'), out-of-order structures
(for example adjective phrases appearing before the verb
phrase), or other grammar errors. The translation module 140
corrects these errors and transforms the query to a correct
query. In one arrangement, the translation module 140 returns
the detected errors and a Suggested corrected query to the
user, and asks the user to confirm that the corrected query is
what the user intended to compose.
0087. The translation module 140 combines the corre
sponding formal query texts of the verb phrase and adjective
phrases of the structured natural language query to form a
translated formal query text. The user-specified command
argument values and condition parameter values are incorpo
rated into the translated formal query text. The formal query
processing module 150 receives the translated formal query
text and processes the text on the underlying database to
produce results.
I0088. The underlying database 160 can be relational,
object-oriented or object relational. For a relational underly
ing database, if the translated query text is already in the form
of one or more SQL queries, then the formal query processing
module 150 directly executes the SQL queries on the under
lying relational database. If the translated query text is not in
SQL query form, then the formal query processing module
150 converts the translated query text into one or more con
Verted SQL queries, and executes the converted queries on the
underlying relational database. Likewise, for an object or
object relational underlying database, the query processing
module 150 directly executes the translated query text, or
converts the translated query text into one or more converted
queries that can be directly executed on the underlying data
base.
I0089. If the query processing module 150 cannot directly
execute the translated query text and cannot convert the trans
lated query context, query processing module 150 still pro
cesses the translated query text to return query results from
the underlying database 160. For example, in one embodi
ment with a relational underlying database, using the
improved object relational query language described in Sub
section B, a first variable “t' is defined as a range variable
from a first data source element of five polygon objects. A
second variable 's' is defined as a range variable from a
second data source element of three polygon objects. For a
qualification “where t and S intersect, the translated query
text “t.intersect(s) cannot be directly executed on the rela
tional underlying database. The query processing module 150
enumerates the fifteen combinations of the polygon objects of
the two data source elements to determine whether the quali
fication is true. In addition to the brute-force evaluation of all
possible combinations, optimization methods, for example
rearranging the order of the conditions in a qualification, can
also be employed.
0090. In one preferred embodiment, the structured natural
language system 100 works in conjunction with the improved
object relational query language described in Subsection B.

US 2010/0063968 A1

For example, a user creates a variable definition phrase “range
of rangel is case:case' in FIG. 10, to define rangel as a range
variable in accordance with the improved query language
described in subsection B. The first “case' in “case:case'
represents a data type and the second "case' represents a data
source element. Alternatively, the system 100 prompts the
user to define a variable by selecting from a list of data types,
a list of data source elements, and as a range, temporary, set or
bag variable. However, the structured natural language sys
tem 100 can also work with conventional relational, object
oriented, and object relational databases. The improved
object relational query language or the object relational alge
bra would expand the scope of permitted queries, but is not a
prerequisite for the structured natural language system 100.
0091 Rules can also be composed in structured natural
language form and used in the system 100 for data integrity
and other purposes. For example, a rule can be presented in
the form “On <event>. If <qualification> then <command-'.
“On <event>. If <qualification> then <command otherwise
<command2-”, or “On <event>. If <qualification> then
<qualification2>''. Using a computer system for medical use
as an example, rules can be used to ensure that a patient's age
entered into the system is greater than Zero, that penicillin is
not administered if the patient is known to be allergic to it, that
two types of medications of negative interaction are not
administered to the same patient, and so forth. A rule's scope
can be defined to apply to a single object, to apply to all
objects of a class, or to all objects. In one embodiment, the
structured natural language system 100 allows a user to define
a rule by specifying a qualification and a command of the rule.
When an event happens (for example, when a patient's tem
perature changes), if a qualification (for example, patient's
body temperature exceeds 102 degrees Fahrenheit) is satis
fied, then a command (for example, send a warning to a nurse
or physician) is activated according to the rule. In some
embodiments, events and qualifications can be used inter
changeably.
0092 Structured natural language queries and structured
natural language rules are typically used in different contexts.
For example, the system 100 monitors the qualification and
the optional event of a rule at all times, and executes the rule's
command when the qualification and optional event are met.
On the other hand, a query is typically executed based on a
user instruction. In addition, a rule is typically displayed in
the form of “if qualification . . . then command else com
mand 2' or “if qualification 1 then qualification2 form,
while a query is typically displayed in the “command quali
fication form. However, since a structured natural language
rule and a structured natural language query typically each
includes a command and a qualification, it is thus feasible to
use a rule and a query interchangeably. In one embodiment, a
user can select a defined query as a rule, or select a defined
rule as a query.
0093 FIG. 12 shows an example screen displaying a rule
in the form of a structured natural language sentence. A rule
includes an optional variable definition phrase, a verb phrase
(command) and one or more adjective phrases (qualification).
A rule may also include one or more event phrases. A rule can
have a second verb phrase corresponding to the action when
the qualification is false. In FIG. 12, section 1220 displays the
qualification “any of Patient.CurrentVisit treatments inter
act', and section 1230 displays the command “display mes
sage string treatment check: interact. Section 1210 dis
plays the formal query text that corresponds to the rule. The

Mar. 11, 2010

qualification and the command can be specified by a user, for
example using the screens of FIGS. 6A-9.
0094. A set of rules can be grouped into a logical unit
named a "macro. A user or a programmer can specify the
relationship among the rules within the macro, and to use a
“goto statement followed by a label to invoke another rule.
The label identifies the other rule to be invoked. For example,
a macro for approving or rejecting a loan application can
include the following rules:

if house-or-rent = “house' then goto (rule-house); else goto (rule-rent);
rule-house: if house-value - 500,000 and income - 40,000 then
return(true);
else goto (rule-house2);
rule-house2: if house-value > 5,000,000 then return(true); else
return(false).
rule-rent: if income > 60,000 then return(true); else return(false).

0095. In the example above, goto (rule-house) repre
sents evaluating another rule identified by the label “rule
house'. “Return (true) represents returning a decision to
approve the loan application. Instead of returning a “true' or
“false' logical value, a rule can also return an object or data
source element (DSE) as output.
0096. In real world applications, rules can be far more
complex than the example above. The macro and the “goto'
statement allow a user or a programmer to specify relation
ships among the rules. The user or programmer is prompted to
assign a macro name to the macro. In addition, a rule or a
macro can be used as a condition or command in a query or in
another rule.

0097. A plurality of queries, or a combination of one or
more rules and one or more queries, can also be grouped into
a macro. Queries can be identified by labels, and “goto'
statements followed by labels can be used to invoke other
queries or rules. A macro can be associated with an object or
a class of objects.
0098. Similar to the manner of composing a structured
natural language query, a user can compose rules instructured
natural language form. Similar to a query sentence, a rule
sentence has one or more adjective phrases to specify the
qualification of the rule, and a verb phrase to specify the
action to be taken when the qualification is true. A rule sen
tence can have a second verb phrase corresponding to the
action to be taken when the qualification is false. A rule
sentence can also have one or more optional event phrases,
each corresponding to an event.
(0099 Referring to FIG. 1, the rule composition module
131 prompts a user to compose a rule by selecting one or more
adjective phrases as qualification, one or two verb phrases as
commands, and optional adjective phrases as events. The user
can also specify a macro of rules and/or queries and specify
the relationships among the rules and/or queries within the
macro. The rule translation module 141 translates a rule into
a formal query text. In one embodiment, the rule translation
module 141 can also directly translate a rule into a function,
procedure or Subroutine in a host programming language of
the system 100, such as Java, C, C++, and so forth. The rule
processing module 151 evaluates the qualification and Sub
sequently executes the command corresponding to the quali
fication. In addition, the module 151 monitors the occurrence
of the optional events of the rules.

US 2010/0063968 A1

0100 B. Improved Object Relational Query Language
0101. A query or a rule under the improved object rela
tional query language can be expressed in the following form:

Variable specifier

variable specifier
command
where qualification

0102 For each possible value of the variables defined in
the variable specifiers, if it satisfies the qualification, then the
command is executed. The bracket “I” indicates a qualifi
cation is optional. A qualification includes one or more con
ditions (each condition represented by a method or macro)
and the conditions parameters. A command includes a
method or macro and the command's arguments. An argu
ment can be a constant or a variable. A method that returns a
Boolean true or false value is a logical method. A macro that
returns a Boolean true or false value is a logical macro.
Otherwise a method/macro is called a general method or
general macro. A method or macro can have one or more input
parameters or output parameters. If a general method/macro
is used as a condition, the condition is considered true once
executed, regardless of the value returned by the method/
macro. In the simplest case, a qualification consists of one
method or macro with its parameters, and the qualification
can be built recursively as follows:
0103) If C. and B are qualifications then (C. and B) is a
qualification.
0104. If C. and B are qualifications then (O. or f3) is a
qualification.
0105. If C is a qualification then (not O.) is a qualification.
0106 A variable specifier can be declared in one of the
following forms:

(a) Range of<variable-id is <data-types:<DSE>
(b) Temp of <variable-ido is <data-types
(c) Set of<variable-id is <data-types:<DSE>
(d) Bag of <variable-id is <data-types:<DSE>
(e) Set Temp of<variable-id is <data-types
(f) Bag Temp of <variable-ido is <data-types

0107 “Data-type' in the forms above represents the for
mat of the data values, such as integer, floating point, logical,
text, date, and user-defined data formats. “DSE' in the forms
above represents “data source element.” A data source ele
ment can be a user-defined set of objects, a table, a class, a
spreadsheet file that includes a set of data rows, an attribute of
an object whose value is a set, a method that returns a set of
objects, a set variable as shown in form (c) above, a bag
variable as shown in form (d) above, the result of a previous
query, an object relational expression as described below in
more detail in subsection C, and the like.
0108. In addition, a DSE can be a set of structured data
Such as a tree, a directed asynchronous graph (DAG) or a
semi-structured data set Such as an extended markup lan
guage (XML) document. A data type can be bound to a DSE
in a variety of ways. A subset of a DSE can be formed as
another DSE that binds to a data type. For example, assume a
tree DSE “T” with two subsets (nodes) called “Person” and
“Organization'. A binding Person:T may define the collec

Mar. 11, 2010

tion of Person nodes of “T” as a new DSE. A data type can also
be bound to an XML document by the use of tags. For
example, binding a class A (ainteger, b:String) to the XML
document below results in a DSE with an object A1 of type A
whose value is (10, “America). The tags <A1 > and </A1>
may be ignored because the object A1 can be inferred from
the attributes a and b.

0109 Additionally, a data source element can be dynami
cally generated to contain the results from one or more pre
vious queries. A variable defined in form (a) above is a range
variable. A variable defined in form (b) is a temporary vari
able. A variable defined inform (c) is a set variable. A variable
defined in form (d) is a bag variable. A variable defined in
form (e) is a temporary set variable. A variable defined in
form (f) above is a temporary bag variable.
0110. A range variable obtains its possible values from its
associated DSE. A set of bag variable's value is a set identified
by the associated DSE. Unlike a set that contains only distinct
values such as {1,2,3,4}, a bag can contain duplicate values
such as {1, 2, 3, 4, 1,3}. Set variables and bag variables can
be used to build the domains of range variables or temporary
variables. Set and bag variables can also be used to aggregate
objects in order to forman argument of a method that requires
a set orabagas an argument. A temporary variable is typically
used as an output parameter of a general method. The value of
a temporary variable is computed at the time the correspond
ing method or macro for the query is evaluated. A temporary
set or bag variable's value is a set identified by the associated
DSE and computed at the time the corresponding method or
macro for the query is evaluated.
0111. The above forms illustrate a preferred syntax of the
improved object relational query language. Other syntax
forms can be used without departing from the sprit and scope
of the invention. For example, in another syntax form, Vari
ables are declared using the form:

<variable-ido datatype: <data-types, variabletype: <variable-types, dse:
<DSE
with <variable-types indicating a variable type of range, temporary, set,
bag, temporary set or temporary bag variable.

0112 Some examples are used below to more clearly
explain the invention. Returning to the preferred syntax, an
example database is defined with two classes, “vertex' and
"polygon', with a polygon object defined by a set of vertices
and a vertex object defined by two coordinates.
0113 Class vertex (name: String, X: integer, y: integer)
key: name
0114 Class polygon (name: String, vertices: set of vertex)
key: name
0115 Associated with the class polygon, two conditions,
“intersect' and “contain, are defined. The “intersect' condi

US 2010/0063968 A1

tion takes two polygons as inputs and returns a true value if
the pair of input polygons intersect with each other. The
“contain condition takes two polygons as inputs and returns
a true value if the first polygon contains the second.
0116. Some example queries using the improved object
relational query language are presented below. The following
query finds the names and the vertices of all polygons from
the data source element abc;

0117 Range of t is polygon: abc (duery B1)
0118 Retrieve (t. name, t. vertices)
0119 The following query finds all pairs of polygons from
the data source element abc where one polygon contains the
other:

Range of t is polygon:abc
Range of S is polygon:abc
Retrieve (t.name, S.name)
Where t.contains(s)

(query B2)

0120 In the query above, “where t.contains(s) is a quali
fication. For this qualification, “s” is a parameter of the con
dition “contains’.

0121 The following query shows all polygons from the
data source element abc that are contained in polygon C, do
not intersect with polygon E, and whose sizes are greater than
5:

Range of t is polygon:abc
Range of S is polygon:abc
Range of r is polygon:abc
Varu is float
s.show ()
Where t.name.eq(“C) and t.contains(s) and rname.eq(“E)
and (not rintersect(s)) and s.size(u) and u.gt(5)

(query B3)

0122) The following query shows all polygons from the
data source element abc that intersect with polygon E, in
which the intersection is a square whose size is greater than 5,
and whose vertices contain a square whose size is greater than
10:

Range of t is polygon:abc
Range of S is polygon:abc
Setu is vertex
Set w is vertex:s.vertices
War v is float
Varx is float
s.show ()
Where t.name.eq(“E”) and S.intersection (t, u, v) and
is-square(u) and V.gt(5) and -is-square(w) and w.size(X) and
X.gt(10)

(query B4)

0123. In the query above, “intersection' is a general
method associated with a polygon. It takes another polygonas
the input and returns the intersection (a set of vertices) and the
area of the intersection as the output. The qualification
“t.name.eq(“E”) and S.intersection (t, u, v) and is-square(u)
and V.gt(5) and is-square(w) and w.size(X) and X.gt(10)
includes several conditions joined by the logical connector

Mar. 11, 2010

“and”. The condition “is-square' is applied to a set of vertices
to determine if the collection of vertices form a square.
0.124. The improved object relational language is similar
to ANSI SQL-99 in some aspects. For example, query B3 can
be rewritten in SQL-99 form:

Selects.show ()
From tabc, Sabc, rabic
Where t.name = “C” and rname = 'E' and

t.contains(s) and not rintersect(s) and s.size() >5

0.125 However, the improved object relational language
has significant advantages over ANSI SQL-99. For example,
query B4 cannot be rewritten in SQL-99. Compared to the
improved object relational language, ANSI SQL-99 allows
only "range’ type variables and does not allow set, bag,
temporary, temporary set or temporary bag variables. Under
SQL-99, the scope of a variable is determined by its “range'
type and cannot be an arbitrary data source element. More
over, a condition under SQL-99 cannot produce any value
other than a logical true or false value, so a general method
cannot be used as a condition or argument. The improved
object relational language removes these limitations.
I0126. A rule in the improved object relational query lan
guage can be expressed in the form of

variable specifier

variable specifier
On eventif qualification then command else command2.
Or

variable specifier

variable specifier
On eventif qualification1 then qualification2

I0127. A rule expressed in the second form “On event if
qualification 1 then qualification2 is equivalent to a rule in
the first form “On event if qualification then command
else command2. However the second form may be more
user-friendly in Some situations. For example, the following
rule in the second form:

If the patient has prescription X then the patient cannot have prescription y
is equivalent to a rule in the first form:
If the patient has prescription X and the patient has prescription y then
report("constraint violation')

I0128 Optionally, a rule can also include a label that iden
tifies the rule, one or more input parameters and one or more
output parameters. An input parameter is a parameter whose
value is used in the qualification of the rule. An output param
eter is a parameter whose value is returned as computed by a
command or condition of the rule. A macro in the improved

US 2010/0063968 A1

object relational query language can be expressed in the form
of:
0129. On event: Object Type Macro Macro-Name
(parameter. parameter)

global Variable specifier

gobal variable specifier
label1: ru?e?query 1;

0130. In the example above, “Object type” refers to the
data type of the optional return value. “Parameter refers to an
input or output parameter of the macro. “Label1 represents
the label that identifies a rule or a query “rule/query 1,
“label2 represents the label that identifies a rule or a query
“rule/query2’. An event may be the addition of a new object,
the deletion or modification of an object, or a user-defined
event. A rule or a query identified by a label can be invoked by
another rule or query with a “goto(label)' statement.
0131 C. Object Relational Algebra
0132) The object relational algebra is preferably charac
terized as follows:

0.133 1. A DSE is an object relational expression (“ex
pression hereinafter in subsection C).

0.134 2. An expression is “type bound if all elements of
the expression have the same non-primitive type. Oth
erwise it is “type free'. A type free expression represents
a relation such as a flat file or a set of records whose fields
are primitive values such as integers, floating point num
bers and text strings.

0.135 3. If E is a type bound expression, then O(E) is a
type-bound expression, where P is a qualification. The
operator O (called the “Select operator) returns as result
objects in E that satisfy P. P may include conditions
associated with the type of the expression, conditions
associated with the attributes of the objects of the
expression, or both. If E is a type free expression, then
O(E) is a type free expression, where P is a qualifica
tion. The operator O (called the “Select operator)
returns as result objects in E that satisfy P.

0.136 4. If E is an expression, then II (E) is a type free
expression, where S is a set of attributes. The operator II
(called the “Project” operator and the projection from E)
removes those objects of E that satisfy the attributes
specified in S from each object of E, and returns as result
the other objects of E that do not satisfy the attributes
specified in S. In rare occasions, II (E) can be a type
bound expression.

I0137) 5. If E and F are expressions then:
0.138 ExF is an expression. The operator (Cartesian
Product) computes the set {(x,y)|xeE, yeF};

0.139 EUF is an expression. The operator (Union)
computes the union of the two expressions; and

0140 E-F is an expression. The operator (Differ
ence) computes the difference between the two
expressions.

0141 6. If E is an expression then SGA(E) is a type free
expression. The operator G (called the 'Aggregate'
operator) groups the objects of E according to the set of
attributes specified in S (in the form: attribute, attribute,
. . .), and for each group computes the set of aggregate

Mar. 11, 2010

functions in the form of aggregate-function (attribute) or
aggregate-function(object). The aggregate functions
can include primitive functions such as min, max, mean,
variance, avg, Sum, count that can be applied to a group
of primitive values. The aggregate functions can also
include general functions defined by users or program
mers that can be applied to a group of non-primitive
objects. A general function is a user or programmer
defined non-primitive function operated on a set of non
primitive objects. For example, a user or programmer
can define a “best image' general function to process a
collection of visual image files and return as output the
visual image file with the best signal-to-noise ratio.
When the general function is called to operate, the gen
eral function typically calls a program, a procedure, a
query, a collection of primitive functions, a collection of
primitive and general functions, or a collection of other
general functions. In rare occasions, SGA (E) can be a
type bound expression.

0.142 7. If f is a method or macro that returns a DSE as
its result, then f(arguments) is an expression. Whether
f(arguments) is type free or type bound is determined by
the type of the elements in the DSE. If all elements of the
DSE belong to the same type and the type is not primi
tive, the expression is type-bound; otherwise it is type
free.

0.143 Some example object relational expressions are
shown below with an object class “patient' and a data source
element “hospital' defined.
0144. To retrieve those patients of hospital who are diag
nosed to have mild AD and who respond to the medication
“Aericept”, call the set S1:

(0145 S1<OP1 (hospital), where P1 =diagnosed(“mild
AD) and respond to(Aericept”) (cquery C1)

0146 To retrieve those patients of hospital who are diag
nosed to have moderate AD and who respond to the medica
tion Aericept, call the set S2:

0147 S2C-OP2(hospital), where P2=diagnosed.(“mod
erate AD') and respond to(Aericept) (query C2)

0.148. To compute the union of S1 and S2 and call the
result S:

0149 Se-S1US2 (query C3)
0150. To find the average age of the male and female
patients in S:

0151 G)(S) (query C4)
0152 To extract the gene profiles of the patients in S1, call

it G1:

I0153 G1-II.(S1) (query C5)
0154) To extract the gene profiles of the patients in S2, call

it G2:

I0155 G2-II.(S2) (query C6)
0156 To compare G1 and G2, and plot the results:
0157 Compare profile and plot(G1.G2) (query C7)
0158. The queries can be combined in a number of ways.
For example, queries C1 to C4 can be combined into one
query as:

0159 Ge(Op. (hospital)UO,2(hospital))
(query C8)

0160 Compared to conventional relational algebra, the
object relational algebra enables the manipulation of complex
objects. Under relational algebra, a data source element is
simply a relation Such as a flat file or a set of records whose
fields are primitive values. Moreover, as described above in
the Background section, a condition of the “select” operator is

US 2010/0063968 A1

restricted to simple comparisons of primitive values. In addi
tion, a method is not allowed to be an expression under
relational algebra. Finally, aggregation functions under con
ventional relational algebra are restricted to functions such as
minimum, maximum, mean, Variance, average, Sum and
count, which can be applied only to primitive values. The
object relational algebra removes these limitations and pro
vides significant advantages over conventional relational
algebra.
0161 Although the present invention has been described
in terms of certain preferred embodiments, other embodi
ments will be apparent to those of ordinary skill in the art from
the disclosure herein. Additionally, other combinations,
omissions, Substitutions and modifications will be apparent to
the skilled artisan in view of the disclosure herein. For
example, the modules of the structured natural language sys

Method
Name

Gt

Ge.

Lt

Le

Ne

Gt

Ge.

Lt

Le

Ne

Gt

Ge.

Lt

11
Mar. 11, 2010

tem 100 can be combined or separated into more or fewer
modules. Some of the actions illustrated in the flowcharts can
be executed in parallel, in sequence or in different orders.
Accordingly, the present invention is not to be limited by the
description of the preferred embodiments, but is to be defined
by reference to the appended claims.
0162 The following tables list some sample methods
included in one embodiment of the system. It should be
understood that not all of the methods listed below need to be
included in a system of the invention, and that additional
methods can be defined.

System Provided Methods

Sample Logical Methods
(0163

Return
Argument Value Commen

(First Argument: single, Boolean Returns TRUE if single type an
Second Argument: single) First Argument > Second

Argument.
(First Argument: single, Boolean Returns TRUE if single type an
Second Argument: single) First Argument >= Secon

Argumen
(First Argument: single, Boolean Returns TRUE if single type an
Second Argument: single) First Argument < Second

Argument.
(First Argument: single, Boolean Returns TRUE if single type an
Second Argument: single) First Argument<= Secon

Argument.
(First Argument: single, Boolean Returns TRUE if single type an
Second Argument: single) First Argument == Secon

Argument.
(First Argument: single, Boolean Returns TRUE if single type an
Second Argument: single) First Argument = Secon

Argument.
(First Argument: integer, Boolean Returns TRUE if integer type an
Second Argument: integer) First Argument > Second

Argumen
(First Argument: integer, Boolean Returns TRUE if integer type an
Second Argument: integer) First Argument >= Second

Argument.
(First Argument: integer, Boolean Returns TRUE if integer type an
Second Argument: integer) First Argument < Second

Argument.
(First Argument: integer, Boolean Returns TRUE if integer type an
Second Argument: integer) First Argument<= Second

Argumen
(First Argument: integer, Boolean Returns TRUE if integer type an
Second Argument: integer) First Argument == Second

Argumen
(First Argument: integer, Boolean Returns TRUE if integer type an
Second Argument: integer) First Argument = Secon

Argument.
(First Argument: String, Boolean Returns TRUE if the result of First
Second Argument: string) Argument. Compare To (Second

Argument) is greater than 0.
Compare To is a method of the
String class of Java.

(First Argument: String, Boolean Returns TRUE if the result of First
Second Argument: string) Argument. Compare To (Second

Argument) is greater than 0.
Compare To is a method of the
String class of Java.

(First Argument: String, Boolean Returns TRUE if the result of First
Second Argument: string) Argument. Compare To (Second

Argument) is greater than 0.
Compare To is a method of the
String class of Java.

US 2010/0063968 A1 Mar. 11, 2010
12

-continued

Method Return
Name Argument Value Comment

Le (First Argument: String, Boolean Returns TRUE if the result of First
Second Argument: string) Argument. Compare To (Second

Argument) is greater than O.
Compare To is a method of the
String class of Java.

Eq. (First Argument: String, Boolean Returns TRUE if string type and
Second Argument: string) First Argument and Second

Argument are the same.
Ne (First Argument: String, Boolean Returns TRUE if string type and

Second Argument: string) First Argument and Second
Argument are not the same.

Sample General Methods
(0164

Method Return
Name Parameter Value Comment

8S (First Argument: singles, Boolean Returns TRUE if single type and
Second Argument: singles) First Argument is assigned to

Second Argument.
add (First Argument: singles, Boolean For single type, adds First

Second Argument: singles, Argument and Second Argument,
Third Argument: singles) Substitutes the value into Third

Argument, and returns TRUE.
Sub (First Argument: singles, Boolean For single type, Subtracts Second

Second Argument: singles, Argument from First Argument,
Third Argument: singles) Substitutes the value into Third

Argument, and returns TRUE.
mult (First Argument: singles, Boolean For single type, multiplies First

Second Argument: singles, Argument by Second Argument,
Third Argument: singles) Substitutes the value into Third

Argument, and returns TRUE.
div (First Argument: singles, Boolean For single type, divides First

Second Argument: singles, Argument by Second Argument,
Third Argument: singles) Substitutes the value into Third

Argument, and returns TRUE.
8S (First Argument: integeri, Boolean Returns TRUE if integer type and

Second Argument: integer I) First Argument is assigned to
Second Argument.

add (First Argument: integeri, Boolean For integer type, adds Firs
Second Argument: integeri, Argument and Second Argument,
Third Argument: integer I) Substitutes the value into Third

Argument, and returns TRUE.
Sub (First Argument: integer I, Boolean For integertype, Subtracts Second

Second Argument: integeri, Argument from First Argument,
Third Argument: integer I) Substitutes the value into Third

Argument, and returns TRUE.
mult (First Argument: integer I, Boolean For integertype, multiplies First

Second Argument: integeri, Argument by Second Argument,
Third Argument: integer I) Substitutes the value into Third

Argument, and returns TRUE.
div (First Argument: integeri, Boolean For integer type, divides First

Second Argument: integeri, Argument by Second Argument,
Third Argument: integeri) Substitutes the value into Third

Argument, and returns TRUE.
8S (First Argument: Strings, Boolean Returns TRUE if string type and

Second Argument: strings) First Argument is assigned to
Second Argument.

8X (First Argument: Boolean For single type, First Argument
DataSourceElement dise, DataSourceElement, and Second
Second Argument: string Argument string (fieldname
fieldName, Third Argument: specified), sets the maximum
single result) value to result and returns TRUE.

8X (First Argument: Boolean For integer type, First Argument
DataSourceElement dise, DataSourceElement, and Second
Second Argument: string Argument string (fieldname

US 2010/0063968 A1

Method
Name

min

min

aVg

count

union

unional

dereference

Parameter

integer result)
(First Argument:
DataSourceElement dise,
Second Argument: string

single result)
(First Argument:
DataSourceElement dise,
Second Argument: string

integer result)
(First Argument:
DataSourceElement dise,
Second Argument: string

single result)
(First Argument:
DataSourceElement dise,
Second Argument: integer
result)
(First Argument:
DataSourceElement dise,
Second Argument:
DatasourceElement dse)

(First Argument:
DataSourceElement dise,
Second Argument:
DatasourceElement dise)

(First Argument:
DataSourceElement dise,
Second Argument:
DatasourceElement dse)

fieldName, Third Argument:

fieldName, Third Argument:

fieldName, Third Argument:

fieldName, Third Argument:

13

-continued

Return
Value Comment

specified), sets the maximum
value to result and returns TRUE.

Boolean For single type, First Argument
DataSourceElement, and Second
Argument string (fieldname
specified), sets the minimum

Boolean For integer type, First Argument
DataSourceElement, and Second
Argument string (fieldname
specified), sets the minimum

Boolean For single type, First Argument
DataSourceElement, and Second
Argument string (fieldname
specified), sets the average value
o result and returns TRUE.

Boolean For integer type, First Argument
DataSourceElement, and sets the

to result and returns
TRUE.

DataSource Uses First Argument
Element DataSourceElement and Second

Argument DataSourceElement to
set the values and returns
DataSourceElement.

DataSource Uses First Argument
Element DataSourceElement and Second

Argument DataSourceElement to
set the values and returns
DataSourceElement.

DataSource Uses First Argument
Element DataSourceElement and Second

Argument DataSourceElement to
set the values and returns
DataSourceElement.

Sample Logical Methods Related to Dates
(0165

Method
Name

before

after

Parameter

(First Argument: date when)

(First Argument: date when)

Return
Value Comment

Boolean Returns TRUE Only if the time
point is before the time point of
the when object.

Boolean Returns TRUE Only if the time
point is after the time point of
the when object.

Additional Sample Methods
(0166

Method

Name

isNull

cast

Parameter

None

(First Argument:
(PrimitiveData Type dt)

Return

Value Comment

Boolean Returns TRUE if NULL.

Boolean Returns the value as the

PrimitiveData Type value.

value to result and returns TRUE.

value to result and returns TRUE.

Mar. 11, 2010

US 2010/0063968 A1 Mar. 11, 2010
14

-continued

Method Return
Name Parameter Value Comment

gt (First Argument: integer or Boolean Returns TRUE if the value >
string, integer, shortint, First Argument.
ongint, single, real)

ge (First Argument: integer or Boolean Returns TRUE if the value >=
string, integer, shortint, First Argument.
ongint, single, real)

t (First Argument: integer or Boolean Returns TRUE if the value <
string, integer, shortint, First Argument.
ongint, single, real)

le (First Argument: integer or Boolean Returns TRUE if the value <=
string, integer, shortint, First Argument.
ongint, single, real)

eq (First Argument: integer or Boolean Returns TRUE if the value ==
string, integer, shortint, First Argument.
ongint, single, real)

le (First Argument: integer or Boolean Returns TRUE if the value =
string, integer, shortint, First Argument.
ongint, single, real)

8S (First Argument: integer or Boolean Assigns the value of the
string, integer, shortint, argument and returns TRUE.
ongint, single, real)

add (First Argument: integer or Boolean Adds First Argument and
string, integer, shortint, Second Argument, Substitutes
ongint, single, real, the value into Second
Second Argument: integer Argument, and returns TRUE.
or string, integer, shortint,
ongint, single, real)

Sub (First Argument: integer or Boolean Subtracts the value from First
shortint, longint, single, Argument, Substitutes the
real, value into Second Argument,
Second Argument: integer and returns TRUE.
or shortint, longint, single,
real)

mult (First Argument: integer or Boolean Multiplies the value by First
shortint, longint, single, Argument, Substitutes the
real, value into Second Argument,
Second Argument: integer and returns TRUE.
or shortint, longint, single,
real)

div (First Argument: integer or Boolean Divides the value by First
shortint, longint, single, Argument, Substitutes the
real, value into Second Argument,
Second Argument: integer and returns TRUE.
or shortint, longint, single,
real)

getAllMatches (First Argument: String Boolean Searches for the argument
pattern) pattern as match pattern, and

returns the results in an array
of the REMatch type.

getMatch (First Argument: String Boolean Searches for the argument
pattern) pattern as pattern, and returns

he first match.
isMatch (First Argument: String Boolean Searches for the argument

pattern) pattern as match pattern, and
returns TRUE if matched.

has MoreFlements (First Argument: string Boolean Regular expression pattern
pattern)

has MoreMatches (First Argument: string Boolean Regular expression pattern
pattern)

ends.With (First Argument: String Boolean Determines if the string ends
suffix) with the specified suffix.

Equals.IgnoreCase (First Argument: String Boolean Compares the string with
anotherString) another string.

startsWith (First Argument: String Boolean Determines if the string starts
prefix) with the specified prefix.

What is claimed is: ables comprising a range variable, a bag variable, a set
1. A computer-implemented method of creating a query in variable, a temporary variable, a temporary bag variable,

an object-relational query language, the method comprising: or a temporary set variable; and the domains of the one
prompting, via a user interface provided by a computer or more constants or variables are chosen from a list of

system, a user to define one or more constants or vari- defined object-relational data source elements;

US 2010/0063968 A1

prompting, via the user interface, a user to choose one or
more previously defined object-relational methods;

prompting, via the user interface, the user to choose from a
list of defined object oriented variables and constants as
one or more arguments to the one or more object-rela
tional methods selected;

prompting, via the user interface, the user to choose an
optional one or more conditions from at least a set of
defined conditions, and prompting the user to choose
from a list of defined object oriented variables and con
stants as one or more parameters for the one or more
Selected conditions; and

using the responses received from the user and an object
relational query language to create an object-relational
compatible query.

2. The method of claim 1, further comprising receiving
from the user, via the user interface, in response to a prompt
for an argument of one of the one or more object-relational
methods or a parameter of one of the one or more conditions,
a constant or a variable that is declared to be a range variable,
a bag variable, a set variable, a temporary variable, a tempo
rary bag variable, or a temporary set variable.

3. The method of claim 1, further comprising receiving
from the user, via the user interface, in response to a prompt
for an argument of one of the one or more object-relational
methods or a parameter of one of the one or more conditions,
a previously created constant or variable.

4. The method of claim 1, further comprising receiving
from the user, via the user interface, in response to a prompt
for an object-relational data source element, an object-rela
tional query created recursively.

5. A computer system for creating a query in an object
relational query language, the system comprising:

a database comprising previously defined object-relational
methods, object-relational algebra operators, defined
object-relational data source elements, and defined con
ditions;

a user interface, provided by the computer system, adapted
to prompt a user to choose one or more constants or
variables comprising a range variable, a bag variable, a
set variable, a temporary variable, a temporary bag Vari
able, or a temporary set variable; and the domains of the
one or more constants or variables are chosen from a list
of defined object-relational data source elements;

the user interface further adapted to prompt a user to
choose one or more previously defined object-relational
methods:

the user interface further adapted to prompt the user to
choose from a list of defined variables and constants as
one or more arguments to the one or more object-rela
tional methods selected or the one or more object-rela
tional algebra operators;

the user interface further adapted to prompt the user to
choose an optional one or more conditions from at least
a set of defined conditions, and adapted to prompt the
user to specify one or more defined variables and con
stants as one or more parameters for the one or more
Selected conditions; and

a query translation module of executable program code
running on the computer system configured to use an
object-relational language to create an object-relational
query with the responses received from the user.

6. The system of claim 5, further comprising a formal query
processing module in communication with the database, the

15
Mar. 11, 2010

formal query process module configured to search the object
relational database for data entries that satisfy a formal query
text of the object-relational query.

7. The system of claim 6, wherein the user interface is
further adapted to convey to the user the data entries from the
object-relational database found by the formal query process
ing module to satisfy a formal query text of the object-rela
tional query.

8. The system of claim 5, wherein the parameters of at least
one of the one or more object-relational conditions comprise
a constant or a variable that is declared to be a range variable,
a bag variable, a set variable, a temporary variable, a tempo
rary bag variable, or a temporary set variable.

9. The system of claim 5, wherein the object-relational data
Source elements comprise a previously created constant or
variable.

10. The system of claim 5, wherein the parameters of at
least one of the one or more object-relational conditions com
prise a previously created constant or variable.

11. The system of claim 5, wherein the object-relational
data source elements comprise an object-relational query cre
ated recursively.

12. A computer-implemented method of creating an
object-relational rule, the method comprising:

prompting, via a user interface provided by a computer
system, a user to define one or more constants or vari
ables comprising a range variable, a bag variable, a set
variable, a temporary variable, a temporary bag variable,
or a temporary set variable; and the domains of the one
or more constants or variables are chosen from a list of
defined object-relational data source elements;

prompting, via the user interface, the user to choose an
optional one or more conditions from at least a set of
defined conditions, and prompting the user to choose
from a list of defined object oriented variables and con
stants as one or more parameters for the one or more
Selected conditions;

prompting, via the user interface, the user to choose one or
more previously defined object-relational methods;

prompting, via the user interface, the user to choose from a
list of defined object oriented variables and constants as
one or more arguments to the one or more methods
Selected; and

using the responses received from the user to create an
object-relational rule comprising one or more variables,
with the one or more conditions as a premise of the
object-relational rule and the one or more object-rela
tional methods as a consequence of the object-relational
rule.

13. The method of claim 12, further comprising receiving
from the user, via the user interface, in response to a prompt
for an argument of one of the one or more object-relational
methods or a parameter of one of the one or more conditions,
a constant or a variable that is declared to be a range variable,
a bag variable, a set variable, a temporary variable, a tempo
rary bag variable, or a temporary set variable.

14. The method of claim 12, further comprising receiving
from the user, via the user interface, in response to a prompt
for an argument of one of the one or more object-relational
methods or a parameter of one of the one or more conditions,
a previously created constant or variable.

15. The method of claim 12, further comprising receiving
from the user, via the user interface, in response to a prompt

US 2010/0063968 A1

for an object-relational data source element, an object-rela
tional query created recursively.

16. A computer system for creating an object-relational
rule, the system comprising:

a database comprising previously defined object-relational
methods, object-relational algebra operators, defined
object-relational data source elements, and defined con
ditions;

a user interface, provided by the computer system, adapted
to prompt a user to choose one or more constants or
variables comprising a range variable, a bag variable, a
set variable, a temporary variable, a temporary bag Vari
able, or a temporary set variable; and the domains of the
one or more constants or variables are chosen from a list
of defined objected relational data source elements;

the user interface further adapted to prompt the user to
choose an optional one or more conditions from at least
a set of defined conditions, and prompting the user to
specify one or more defined variables and constants as
one or more parameters for the one or more selected
conditions;

the user interface further adapted to prompt the user to
choose one or more previously defined object-relational
methods:

the user interface further adapted to prompt the user to
choose from a list of defined variables and constants as
one or more arguments to the one or more object-rela
tional methods selected or the one or more object-rela
tional algebra operators; and

a rule translation module of executable program code run
ning on the computer system configured to use an
object-relational language to create an object-relational
rule with the responses received from the user.

Mar. 11, 2010

17. The system of claim 16, further comprising a formal
rule processing module in communication with the database,
the formal rule processing module configured to search the
object-relational database for data entries that satisfy a formal
rule text of the object-relational rule.

18. The system of claim 17, wherein the user interface is
further adapted to convey to the user the data entries from the
object-relational database found by the formal rule process
ing module to satisfy the premise of the formal rule text of the
object-relational rule.

19. The system of claim 17, wherein the formal rule pro
cessing module is further adapted to execute the one or more
object-relational methods in a consequence part of the object
relational rule based on the data entries from the object
relational database found by the formal rule processing mod
ule that satisfy the premise of the object-relational rule.

20. The system of claim 16, wherein the parameters of at
least one of the one or more object-relational conditions com
prise a constant or a variable that is declared to be a range
variable, a bag variable, a set variable, a temporary variable,
a temporary bag variable, or a temporary set variable.

21. The system of claim 16, wherein the object-relational
data source elements comprise a previously created constant
or variable.

22. The system of claim 16, wherein the parameters of at
least one of the one or more object-relational conditions com
prise a previously created constant or variable.

23. The system of claim 16, wherein the object-relational
data source elements comprise an object-relational query cre
ated recursively.

