
(19) United States
US 2012003 0341A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0030341 A1
Jensen et al. (43) Pub. Date: Feb. 2, 2012

(54) TRANSPARENT HEADER MODIFICATION
FOR REDUCING SERVING LOAD BASED ON
CURRENT AND PROJECTED USAGE

(75) Inventors: Brian W. Jensen, Raleigh, NC
(US); Mauro Marzorati, Lutz, FL
(US); Brian M. O'Connell,
Research Triangle Park, NC (US);
Keith R. Walker, Austin, TX (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(21) Appl. No.: 12/845,303

(22) Filed: Jul. 28, 2010

Publication Classification

(51) Int. Cl.
G06F 5/73 (2006.01)
GO6F 15/16 (2006.01)

(52) U.S. Cl. ... 709/224; 709/231
(57) ABSTRACT

A method and system for dynamically altering the delivery of
web content to end users based on server load. Responsive to
receiving a client request for web content, utilization metrics
are collected from each device involved in delivering the web
content. A device load level is determined for each device
based on the utilization metrics, a system load level is deter
mined for a Subset of the devices having the same device type
based on the device load levels, and a service level to provide
to the client is determined based on the system load level. The
request header is modified to specify the service level to
provide to the client, wherein the service level indicates the
web content variant to deliver. The request is sent with the
modified header to a selected device which serves the web
content according to the service level to the client.

CONTENT
300 SERVER

310 f DEVICE
METRICS

318 332
N - - - - - - - - - - - - - - - - - - Z

REQUEST WITH CONTENT
CLIENT CONTENT LOADBALANCER MODIFIEDHEADER SERVER

REQUEST SPECIFYING
302 Ll H. 304 SERVICELEVEL 312

REQUESTED CONTENT NEGOTIATIONMODULE REQUESTED DEVICE

SPECIFIED 330 SPECIFIED
316 SERVICELEVEL SERVICELEVEL 320

7 V
334 334 CONTENT

MANAGEMENT
CONSOLE

306

COLLECTED
DEVICE
METRICS

322

SERVER
POLICY ENGINE

DEVICE
POLICY

326
324

328

SERVICE
POLICY

DEVICE
METRICS

314

Patent Application Publication Feb. 2, 2012 Sheet 1 of 6 US 2012/0030341 A1

S
O s
v v

is v
2

w -
H CD H
Z Z

O | "If ||f c c

CO
O
r

CN
O
V

CO
v
V

1.
L
CD
2

is - 3. ?
?

as
9 / -
O
v

O
v
v

Patent Application Publication Feb. 2, 2012 Sheet 2 of 6 US 2012/0030341 A1

200

DATAPROCESSING SYSTEM

2 STORAGEDEVICES 208

PERSISTENT
STORAGE

RY

UNIT

FIG. 2

COMPUTER READABLE MEDIA

PROGRAMCODE

218
COMPUTER READABLE

STORAGEMEDIA

226
224

COMPUTER READABLE
SIGNAL MEDIA 222

COMPUTER PROGRAM
220 PRODUCT

Feb. 2, 2012 Sheet 3 of 6 US 2012/0030341 A1 Patent Application Publication

Patent Application Publication

BEGIN

COLLECT
402 SYSTEM

DATA

REPORT
404 SYSTEM

LOAD

DATA
RECEIVED

602 REQUEST NEW
SERVICE LEVEL

604

UPDATE SERVICE
LEVEL VALUE

6081| SEEP |

606

FIG. 6

Feb. 2, 2012 Sheet 4 of 6

BEGINISTANDBY

504 ACCEPT REQUEST
FROM CLIENT

READ SERVICE
LEVEL

GENERATE TCN
508 HEADERS FROM

SERVICE LEVEL

INSERTTCN HEADERS
INTO REQUEST

SEND REQUEST
TOWEB SERVER

RECEIVE
REQUESTED OBJECT

SEND OBJECT
TO CLIENT

FIG. 5

506

510

512

514

516

US 2012/0030341 A1

Patent Application Publication Feb. 2, 2012 Sheet 5 of 6 US 2012/0030341 A1

706 N MAP POLICYTOMETRICS

708 || Eiger's DEVICE FROM THRESHOLD

712
MORE

DEVICES

NO

714

716

718-1 MAP Policy torpe I
720-1 ESTABLISHLOADLEVEL FORTYPE I
722

sed
724

728- APPLY SERVICE POLICYONEACHTYPE I

71 FIG. 7

Patent Application Publication Feb. 2, 2012 Sheet 6 of 6 US 2012/0030341 A1

FIG. 8
BEGINISTANDBY

RECEIVE
REQUEST

DECODEMEDIA
804 FEATURE TAGS AND

ACCEPT HEADERS

802

806 FETCH REQUESTED
OBJECT WITH GIVEN

CONSTRAINTS

SERVE REGUESTED
OBJECT

SERVEERROR
812 DOCUMENT

US 2012/0030341 A1

TRANSPARENT HEADER MODIFICATION
FOR REDUCING SERVING LOAD BASED ON

CURRENT AND PROJECTED USAGE

BACKGROUND

0001 1. Field
0002 The disclosure relates generally to an improved data
processing system, and more specifically to a computer
implemented method, apparatus, and computer program
product for dynamically altering the delivery of web content
to end users based on current and projected server load.
0003 2. Description of the Related Art
0004 From its very beginnings as a collection of hyper
linked text documents, the World Wide Web (WWW) has
grown increasingly complex as it evolves to bring end users
increasingly rich web experiences. Such experiences now
include embedded programs and large binary objects as well.
This evolution has mostly occurred with backwards compat
ibility, such that new features are added without removing
support for the old features. Therefore, while the modern
methods of delivering a web experience are computationally
more expensive, the older methods are still valid and may be
leveraged to fulfill the core mission of a web application. By
creating several variants of the web content with increasing
degrees of richness, an appropriate level of web experience
may be delivered to an end user. Providing such richness
content variants is similar to methods in which multilingual
versions of content are developed and used.
0005 Content negotiation is a mechanism defined in the
HyperText Transfer Protocol (HTTP) specification that
enables a web server to serve different versions of a document
(or more generally, a resource) under the same Uniform
Resource Indicator (URI), so that a client agent can specify
which version best fits the client's capabilities. Each of these
different content versions is called a variant. Content nego
tiation helps determine what form content should take, given
the characteristics and preferences set on both the server and
client side. Thus, the same source data may be rendered in
various ways, based on different access scenarios and avail
able equipment. One of the most classic uses of the content
negotiation mechanism is serving an image in multiple image
formats, such as GIF or PNG format. If a user's browser does
not understand one format (e.g., PNG), the browser can still
display the other (e.g., GIF) version. Additionally, a docu
ment or resource may be available in several different repre
sentations. For example, the resource might be available in
different languages or different media types, or a combination
of the two. One way of selecting the most appropriate content
to serve the user is to provide the user with an index page and
allow the user to manually select the particular content variant
to be delivered. However, it is often possible for the server to
automatically choose the web content variant to be delivered.
Automatic content variant selection by the server can be
implemented because browsers can send, as part of each
content request, information about the variants they prefer.
For example, a browser may indicate that it would like to see
information in French, if possible, otherwise English is
acceptable. Browsers may indicate their variant preferences
in headers in the request, as detailed in RFC 2295 Trans
parent Content Negotiation. Transparent content negotiation
is an extensible negotiation mechanism, layered on top of
HTTP for automatically and efficiently retrieving the best
variant of content when a GET or HEAD request is made (i.e.,
when the URL is accessed). Transparent content negotiation

Feb. 2, 2012

is called transparent because it makes all variants which
exist inside the source server visible to outside parties. Exten
sions to the transparent content negotiation are detailed in
RFC 2506—Media Feature Tag Registration Procedure. Con
tent negotiation, being a dialogue to produce an agreement on
a course of action, requires participation from all parties.
While transparent content negotiation may be used by brows
ers to specify the type of web experience to provide their end
users, browsers are only aware of their individual capabilities
and know nothing about the overall web content usage pat
terns or adoption levels. Browsers therefore are not in an
advantageous position to furnish any actionable information
to the content servers, and therefore are not in a position to
participate in this type of content negotiation.
0006. The flash crowd phenomenon where real-life
crowds gather Suddenly, spontaneously, and unpredictably is
a well understood phenomenon that has also been observed
on the World WideWeb, where the effect is the inability of a
web site to serve resources to users at the desired level, and
sometimes even crashing. This flash crowd effect often
occurs when a relatively unpopular web site catches the atten
tion of a large number of people and receives an unexpected
Surge in traffic. Typically less robust websites cannot cope
with the instant Surge in traffic and quickly become unavail
able. However, there are relatively large websites that must
contend with flash crowds on a regular basis, and at times lack
capacity and Suffer the same inability to serve resources at the
desired level. These may be sites that by their nature provide
ephemeral or event-driven content, and often include Vendor,
sports, news, and weather sites.
0007 People familiar with the art of delivering web con
tent will find it evident that it is more computationally expen
sive to deliver a complex, dynamic, and feature-rich web
experience than simpler ones based on mostly static or solely
on text elements. To maintain a consistent web experience for
end users that request a website, organizations that expect
flash crowds on their websites usually design their infrastruc
ture to the expected peak. This is an expensive proposition
that leads to under-utilized resources when the interest is low.
In addition, web content delivery failure may occur if the
assessment of expected peak is too low. Some organizations
choose to lessen the impact of fluctuating interest by varying
the amount of computational resources that are available as
the interest ebbs and flows by reducing resources available to
workloads that are considered to be less critical. However, if
the computational requirements of delivering the web content
can be dynamically altered to match the amount of interest a
website is receiving at any given time, organizations would
extract better value from their infrastructure investment.
Additionally, organizations would benefit from the value cre
ated in their user base by the ability to maintain a satisfactory
end user experience at all times for all workloads. Organiza
tions do vary the computational requirement of delivering
web content. Content shedding is the process of temporarily
removing the more expensive or heavy content from the web
site, especially when heavy traffic results in the system being
overloaded and immediate need is required to reduce hits on
the site. However, this is a slow and manual process that is
often done too late and becomes restorative in nature.

SUMMARY

0008 According to one embodiment of the present inven
tion, a computer implemented method, apparatus, and com
puter program product is provided for dynamically altering

US 2012/0030341 A1

the delivery of web content to end users based on current and
projected server load. Responsive to receiving a request from
a client, the illustrative embodiments collect utilization met
rics from each device in a plurality of devices involved in
delivering web content to end users. A device load level is
determined for each device based on the utilization metrics,
and a system load level is determined for a subset of the
plurality of devices having the same device type based on the
device load level for each device in the subset of devices. A
service level is determined to provide to the client based on
the system load level for the subset of devices. The illustrative
embodiments then modify the header in the request to specify
the determined service level to provide to the client, wherein
the determined service level indicates a variant of the web
content to deliver to the client. The request is sent with the
modified header to a selected device in the subset of devices,
wherein the device serves the web content according to the
determined service level to the client.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0009 FIG. 1 depicts a pictorial representation of a distrib
uted data processing system in which the illustrative embodi
ments may be implemented;
0010 FIG. 2 is a block diagram of a data processing sys
tem in which the illustrative embodiments may be imple
mented;
0011 FIG. 3 is a block diagram of an exemplary dynamic
web content delivery system in which the illustrative embodi
ments may be implemented;
0012 FIG. 4 is a flowchart of a process for reporting
resource utilization to a management console in accordance
with the illustrative embodiments;
0013 FIG. 5 is a flowchart of a process for dynamically
adjusting web content provided to a requesting client based
on current and projected server load in accordance with the
illustrative embodiments;
0014 FIG. 6 is a flowchart of a process for obtaining an
updated service level from the management console in accor
dance with the illustrative embodiments;
0015 FIG. 7 is a flowchart of a process for generating a
service level inaccordance with the illustrative embodiments;
and
0016 FIG. 8 is a flowchart of a process for handling, by a
web server, a web content request comprising a modified
header specifying a level of service in accordance with the
illustrative embodiments.

DETAILED DESCRIPTION

0017. As will be appreciated by one skilled in the art, the
present invention may be embodied as a system, method or
computer program product. Accordingly, the present inven
tion may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resi
dent Software, micro-code, etc.) or an embodiment combin
ing Software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module’ or “system.” Fur
thermore, the present invention may take the form of a com
puter program product embodied in any tangible medium of
expression having computer usable program code embodied
in the medium.
0018. Any combination of one or more computerusable or
computer readable medium(s) may be utilized. The com

Feb. 2, 2012

puter-usable or computer-readable medium may be, for
example but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appara
tus, device, or propagation medium. More specific examples
(a non-exhaustive list) of the computer-readable medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CDROM), an optical storage
device, a transmission media such as those Supporting the
Internet or an intranet, or a magnetic storage device.
0019. Note that the computer-usable or computer-read
able medium could even be paper or another suitable medium
upon which the program is printed, as the program can be
electronically captured, via, for instance, optical scanning of
the paper or other medium, then compiled, interpreted, or
otherwise processed in a Suitable manner, if necessary, and
then stored in a computer memory. In the context of this
document, a computer-usable or computer-readable medium
may be any medium that can contain, store, communicate,
propagate, or transport the program for use by or in connec
tion with the instruction execution system, apparatus, or
device. The computer-usable medium may include a propa
gated data signal with the computer-usable program code
embodied therewith, either in baseband or as part of a carrier
wave. The computerusable program code may be transmitted
using any appropriate medium, including but not limited to
wireless, wireline, optical fiber cable, RF, etc.
0020 Computer program code for carrying out operations
of the present invention may be written in any combination of
one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++
or the like and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user's computer, partly on the user's computer,
as a stand-alone software package, partly on the user's com
puter and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).
0021. The present invention is described below with ref
erence to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions.
0022. These computer program instructions may be pro
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine. Such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer pro
gram instructions may also be stored in a computer-readable
medium that can direct a computer or other programmable

US 2012/0030341 A1

data processing apparatus to function in a particular manner,
such that the instructions stored in the computer-readable
medium produce an article of manufacture including instruc
tion means which implement the function/act specified in the
flowchart and/or block diagram block or blocks.
0023 The computer program instructions may also be
loaded onto a computer or other programmable data process
ing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus
to produce a computer implemented process Such that the
instructions which execute on the computer or other program
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.
0024. With reference now to the figures and in particular
with reference to FIG. 1, an illustrative diagram of a data
processing environment is provided in which illustrative
embodiments may be implemented. It should be appreciated
that FIG. 1 are only provided as an illustration of one imple
mentation and is not intended to imply any limitation with
regard to the environments in which different embodiments
may be implemented. Many modifications to the depicted
environments may be made.
0025 FIG. 1 depicts a pictorial representation of a distrib
uted data processing system in which illustrative embodi
ments may be implemented. Network data processing system
100 is a network of computers in which the illustrative
embodiments may be implemented. Network data processing
system 100 contains network 102, which is the medium used
to provide communications links between various devices
and computers connected together within network data pro
cessing system 100. Network 102 may include connections,
Such as wire, wireless communication links, or fiber optic
cables.
0026. In the depicted example, server computer 104 and
server computer 106 connect to network 102 along with stor
age unit 108. In addition, client computers 110, 112, and 114
connect to network 102. Client computers 110, 112, and 114
may be, for example, personal computers or network com
puters. In the depicted example, server computer 104 pro
vides information, such as boot files, operating system
images, and applications to client computers 110, 112, and
114. Client computers 110, 112, and 114 are clients to server
computer 104 in this example. Network data processing sys
tem 100 may include additional server computers, client com
puters, and other devices not shown.
0027 Network data processing system 100 includes data
center 116 connected to network 102. Data center 116 may be
a single physical building or multiple physical buildings
designed to house two or more web servers. In other words,
data center 116 is a location at which two or more web servers
are loosely connected to provide web content services to
users. In the depicted example, data center 116 includes
server computer 104, server computer 106, and load balancer
118. Clients 110, 112, and 114 may send requests to access
documents or resources to data center 116 through network
102. Load balancer 118 located at data center 116 may dis
tribute workload evenly across two or more computers, net
work links, CPUs, hard drives, or other resources, in order to
obtain optimal resource utilization, maximize throughput,
minimize response time, and avoid overload. In this example,
load balancer 118 routes each request from a client to access
a selected web server in data center 116. For example, a
request from client 110 received at data center 116 may be

Feb. 2, 2012

routed by load balancer 118 to web server 106. Web server
106 in response sends the requested web content back to
requesting client 110 via network 102.
0028. In this example, network data processing system
100 includes a single data center. However, network data
processing system 100 may be connected to multiple data
centers. Network data processing system 100 may also
include additional web servers, clients, and other devices not
shown.
0029 Program code located in network data processing
system 100 may be stored on a computer recordable storage
medium and downloaded to a data processing system or other
device for use. For example, program code may be stored on
a computer recordable storage medium on server computer
104 and downloaded to client computer 110 over network 102
for use on client computer 110.
0030. In the depicted example, network data processing
system 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
Suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data com
munication lines between major nodes or host computers,
consisting of thousands of commercial, governmental, edu
cational and other computer systems that route data and mes
sages. Of course, network data processing system 100 also
may be implemented as a number of different types of net
works, such as for example, an intranet, a local area network
(LAN), or a wide area network (WAN). FIG. 1 is intended as
an example, and not as an architectural limitation for the
different illustrative embodiments.
0031 Turning now to FIG. 2, an illustration of a data
processing system is depicted in accordance with an advan
tageous embodiment. In this illustrative example, data pro
cessing system 200 includes communications fabric 202,
which provides communications between processor unit 204.
memory 206, persistent storage 208, communications unit
210, input/output (I/O) unit 212, and display 214.
0032. Processor unit 204 serves to execute instructions for
software that may be loaded into memory 206. Processor unit
204 may be a number of processors, a multi-processor core, or
Some other type of processor, depending on the particular
implementation. A number, as used herein with reference to
an item, means one or more items. Further, processor unit 204
may be implemented using a number of heterogeneous pro
cessor systems in which a main processor is present with
secondary processors on a single chip. As another illustrative
example, processor unit 204 may be a symmetric multi-pro
cessor system containing multiple processors of the same
type.
0033 Memory 206 and persistent storage 208 are
examples of storage devices 216. A storage device is any
piece of hardware that is capable of storing information, Such
as, for example, without limitation, data, program code in
functional form, and/or other suitable information on either a
temporary basis and/or a permanent basis. Storage devices
216 may also be referred to as computer readable storage
devices in these examples. Memory 206, in these examples,
may be, for example, a random access memory or any other
suitable volatile or non-volatile storage device. Persistent
storage 208 may take various forms, depending on the par
ticular implementation.
0034) For example, persistent storage 208 may contain
one or more components or devices. For example, persistent

US 2012/0030341 A1

storage 208 may be a hard drive, a flash memory, a rewritable
optical disk, a rewritable magnetic tape, or some combination
of the above. The media used by persistent storage 208 also
may be removable. For example, a removable hard drive may
be used for persistent storage 208.
0035 Communications unit 210, in these examples, pro
vides for communications with other data processing systems
or devices. In these examples, communications unit 210 is a
network interface card. Communications unit 210 may pro
vide communications through the use of either or both physi
cal and wireless communications links.
0036 Input/output unit 212 allows for input and output of
data with other devices that may be connected to data pro
cessing system 200. For example, input/output unit 212 may
provide a connection for user input through a keyboard, a
mouse, and/or some other suitable input device. Further,
input/output unit 212 may send output to a printer. Display
214 provides a mechanism to display information to a user.
0037. Instructions for the operating system, applications,
and/or programs may be located in storage devices 216,
which are in communication with processor unit 204 through
communications fabric 202. In these illustrative examples,
the instructions are in a functional form on persistent storage
208. These instructions may be loaded into memory 206 for
execution by processor unit 204. The processes of the differ
ent embodiments may be performed by processor unit 204
using computer implemented instructions, which may be
located in a memory, Such as memory 206.
0038. These instructions are referred to as program code,
computer usable program code, or computer readable pro
gram code that may be read and executed by a processor in
processor unit 204. The program code in the different
embodiments may be embodied on different physical or com
puter readable storage media, Such as memory 206 or persis
tent storage 208.
0039 Program code 218 is located in a functional form on
computer readable media 220 that is selectively removable
and may be loaded onto or transferred to data processing
system 200 for execution by processor unit 204. Program
code 218 and computer readable media 220 form computer
program product 222 in these examples. In one example,
computer readable media 220 may be computer readable
storage media 224 or computer readable signal media 226.
Computer readable storage media 224 may include, for
example, an optical or magnetic disk that is inserted or placed
into a drive or other device that is part of persistent storage
208 for transfer onto a storage device, such as a hard drive,
that is part of persistent storage 208. Computer readable
storage media 224 also may take the form of a persistent
storage, such as a hard drive, a thumb drive, or a flash
memory, that is connected to data processing system 200. In
Some instances, computer readable storage media 224 may
not be removable from data processing system 200. In these
illustrative examples, computer readable storage media 224 is
a non-transitory computer readable storage medium.
0040 Alternatively, program code 218 may be transferred
to data processing system 200 using computer readable signal
media 226. Computer readable signal media 226 may be, for
example, a propagated data signal containing program code
218. For example, computer readable signal media 226 may
be an electromagnetic signal, an optical signal, and/or any
other Suitable type of signal. These signals may be transmit
ted over communications links, such as wireless communi
cations links, optical fiber cable, coaxial cable, a wire, and/or

Feb. 2, 2012

any other Suitable type of communications link. In other
words, the communications link and/or the connection may
be physical or wireless in the illustrative examples.
0041. In some advantageous embodiments, program code
218 may be downloaded over a network to persistent storage
208 from another device or data processing system through
computer readable signal media 226 for use within data pro
cessing system 200. For instance, program code stored in a
computer readable storage medium in a server data process
ing system may be downloaded over a network from the
server to data processing system 200. The data processing
system providing program code 218 may be a server com
puter, a client computer, or some other device capable of
storing and transmitting program code 218.
0042. The different components illustrated for data pro
cessing system 200 are not meant to provide architectural
limitations to the manner in which different embodiments
may be implemented. The different advantageous embodi
ments may be implemented in a data processing system
including components in addition to or in place of those
illustrated for data processing system 200. Other components
shown in FIG. 2 can be varied from the illustrative examples
shown. The different embodiments may be implemented
using any hardware device or system capable of running
program code. As one example, the data processing system
may include organic components integrated with inorganic
components and/or may be comprised entirely of organic
components excluding a human being. For example, a storage
device may be comprised of an organic semiconductor.
0043. As another example, a storage device in data pro
cessing system 200 is any hardware apparatus that may store
data. Memory 206, persistent storage 208, and computer
readable media 220 are examples of storage devices in a
tangible form.
0044. In another example, a bus system may be used to
implement communications fabric 202 and may be com
prised of one or more buses, such as a system bus or an
input/output bus. Of course, the bus system may be imple
mented using any Suitable type of architecture that provides
for a transfer of data between different components or devices
attached to the bus system. Additionally, a communications
unit may include one or more devices used to transmit and
receive data, Such as a modem or a network adapter. Further,
a memory may be, for example, memory 206, or a cache, Such
as found in an interface and memory controller hub that may
be present in communications fabric 202.
0045. The illustrative embodiments provide a mechanism
for varying the computational weight of web content pro
grammatically to stay ahead of increasing demand and main
tain a consistently satisfactory web experience for end users.
While existing content shedding methods provide web con
tent variants to end users based on the end user's browser
capabilities, the illustrative embodiments allow for dynami
cally modifying website quality or richness based on the
current and projected load on the web content servers. With
the illustrative embodiments, current resource utilization
information from all of the web servers in a data center
involved in the delivery of the web experience is periodically
collected and stored in a centralized location, Such as a man
agement console. From this collected information, a policy
engine connected to the management console and positioned
upstream from the web servers uses the collected resource
utilization information to calculate the overall utilization lev
els or loads for each individual web server due to current

US 2012/0030341 A1

demand level on each device (device loads). From the indi
vidual device loads, the policy engine may calculate an over
all utilization level or load on the system due to the current
demand level on plurality of the web servers (system load).
The utilization levels can be discrete (low, medium, high) or
continuous (a number quantity). The policy engine may then
determine the level of service (i.e., the particular content
variant) that a web server should provide to a client that
requests content from the web server based on the determined
system load.
0046. A load balancer, acting as the client browser, may
then use the transparent content negotiation protocol to
modify the header of the client request and indicate the con
tent variant that should be served to the end users as deter
mined by the policy engine. A load balancer is a device in a
network that is located between a client requesting a resource
and the web servers that may provide the resource to the client
and distributes the load across the web servers by routing
client requests to selected web servers. Whereas web servers,
application servers, and other types of servers may know the
amount of resources that each server is using individually,
load balancers know the aggregate amount of traffic they are
managing for each of these servers that are downstream. In
one embodiment, the load balancer may modify the client
request by injecting media feature tags in the header of the
request for the established service level, and route the modi
fied request to a selected downstream web server. When the
downstream web server receives the modified client request,
the web server may fulfill the request and deliver a variant of
the requested content in a manner that is appropriate for the
current level of utilization of the service in the system.
0047. The illustrative embodiments provide several
advantages to traditional approaches of adding computational
resources on demand for delivering web content. For
instance, the illustrative embodiments match the Supply of
computing resources to demand for computing resources,
which lessens the demand while keeping the Supply constant
and ensuring a satisfying web experience for end users. Since
providing computing resources is an expensive proposition,
the illustrative embodiments intrinsically achieve satisfactory
web experiences in a more cost-effective manner, as com
pared to traditional approaches of adding computational
resources on demand. In addition, the illustrative embodi
ments allow for making adjustment decisions rapidly, that a
human could not make, which leads to timely application of
corrective actions, and which in turn yield shorter-lived
exception situations. All else being equal, content providers
want to provide the richest most satisfying experience to their
end users, while not spending money in creating content to
Support complex and rich experiences if such experiences are
not to be provided to the user. Therefore, content shedding is
an exception condition that is entered into reactively as a
response to an alarm of dwindling system resources and
should last for only brief periods. Content shedding, like all
corrective actions, has the most impact the earlier an excep
tion condition is identified. Furthermore, faster application of
corrective actions leads to reduced cost. A system that is able
to react quickly to changing conditions is one that may be
made to run more efficiently due to the confidence that spare
reserve capacity can be reduced. This reduction in reserve
capacity leads to lower deployed capacity, which costs less to
procure and maintain. Moreover, the illustrative embodi
ments achieve protection of brand image with the graceful

Feb. 2, 2012

failure of the system. A system that fails gracefully will mask
its failure from its users and continue to provide service, even
if in a degraded manner.
0048. With reference now to FIG.3, a block diagram of an
exemplary dynamic web content delivery system in which the
illustrative embodiments may be implemented is shown. Web
content delivery system 300 may be implemented in a net
work of data processing systems, such as network data pro
cessing system 100 in FIG. 1. Web content delivery system
300 is a data processing system that includes a plurality of
hardware and software components or modules that web con
tent delivery system 300 uses to dynamically alter the deliv
ery of web content to end users based on the current and
projected load on the web servers. Web content delivery sys
tem 300 is shown to include client 302, load balancer 304,
management console 306, policy engine 308, and content
servers 310-314. However, it should be noted that web con
tent delivery system 300 is only meant as an example and not
intended as a limitation on different illustrative embodiments.
In other words, web content delivery system 300 may include
more or fewer components as necessary to accomplish pro
cesses of the different illustrative embodiments.

0049 Client 302 is an example of client 110, 112, or 114 in
FIG. 1. Client 302 may include client application 316, which
may comprise a web browser through which one or more
resources may be requested from content servers 310-314. A
browser is a program capable of Submitting a request for
information 318 identified by a URL at the client machine.
Retrieval of information on the web is generally accom
plished with an HTML-compatible browser, such as, for
example, Internet Explorer R, which is available from
Microsoft Corporation. In one embodiment, client 302 may
request and receive access to a particular web resource using
a standard communication protocol. Such as Hypertext Trans
fer Protocol (HTTP).
0050 Content servers 310-314 are examples of servers
104 or 106 in FIG.1. Content servers 310-314 are devices that
provide information technology content to requesting clients
over a network, such as network 102 in FIG.1. In one embodi
ment, content servers 310-314 comprise a cluster of web
servers that delivers (serves) a requested object, Such as a web
page, using HTTP over the Internet. These web servers may
deliver HTML documents and any additional content that
may be included by a document, such as images, style sheets
and JavaScripts. Application 316 in client 302 may initiate
communication by making a request for a specific resource
using HTTP and at least one of content servers 310-314 may
deliver the resource or an error message ifunable to provide
the resource. Each web server in the cluster may deploy
several applications providing one or more different services
to users. An application providing a given service may be
replicated on multiple web servers in the cluster. The repli
cation of the application allows multiple requests to access
given content to be handled concurrently by two or more
servers. In addition, replication of the application on multiple
web servers also allows the content to remain available even
if one server providing the content is down or unavailable.
Each content server also periodically measures and collects
system metrics about the content server, Such as the set of
device metrics 320 collected by content server 312. The fre
quency at which device metrics are collected by a content
server may be configured by a system administrator. Device
metrics are device measurements of the web server's current
resource usage. Examples of device metrics may include, but

US 2012/0030341 A1

are not limited to, available RAM, available storage, available
CPU, available network bandwidth, number of page faults per
Second, or number of process threads, among others.
0051. Management console 306 is coupled to load bal
ancer 304 and policy engine 308. Management console 306 is
a centralized component from which a system administrator
may configure and monitor components in the system via a
flexible interface. In one embodiment, management console
is Software program residing in a data processing apparatus,
such as data processing system 200 in FIG. 2. Management
console 306 may reside in a separate data processing appara
tus from load balancer 304 and policy engine 308, or alterna
tively, load balancer 304, management console 306, and
policy engine 308 may be located within the same apparatus.
Management console 306 receives metrics reported from
each content server 310-314 and stores these collected device
metrics 322 in memory. Management console 306 provides
these collected device metrics 322 to policy engine 308 to be
used in determining the level of service (i.e., the particular
content variant) to provide to a client based on the system load
in response to receiving a request for web content from the
client. Management console 306 also provides an interface to
enable a system administrator to input the policies that are
used in the content variant determination.
0052 Policy engine 308 is coupled to load balancer 304
and management console 306. Policy engine 308 comprises a
component that uses the input provided by a system admin
istrator that defines policies to be applied to collected device
metrics 322. In this example, these policies include a device
policy 324, type policy 326, and service policy 328. These
administrator-specified policies are applied against collected
device metrics 322 to determine the level of service to provide
to a requesting client based on the current load on the web
server system.
0053) Device policy 324 is a policy that is applied to the
device metrics collected from a content server to calculate the
load level on that individual content server. The device load
level is a label that is used to describe the overall utilization or
load on a device based on the current demand as reflected in
the collected device metrics. In one embodiment, the device
load level may comprise a weight value of low, normal, or
high, or the load level may comprise a number quantity. To
determine the device load level for a content server, device
policy 324 first assigns weight values to the metrics reported
by and collected from a content server, and these values
reflect the relative weight or importance of one metric against
another from the same content server. An n-tuple, which is a
fixed size collection of elements, may be used in device policy
324 to describe the device metrics measured for each device
and the weight assigned to each metric. For example, metric
values collected for the central processing unit (CPU) or
memory of a content server may take the form of a percentage
of CPU or memory usage. In this scenario, n-tuples for the
device policy for such usages may be as follows: <=10%
usage is low, <=50% usage is normal, <=80% usage is
high. In another example, for metric values collected for the
network and disk usage of a content server, the n-tuples for
such usages may be as follows: <=100 units usage is low,
< 500 units usage is normal, <=1000 units usage is high.
0054) Once weight values (e.g., low, normal, high, or
numerical values) are assigned to each metric collected from
the content server, a threshold level also specified in device
policy 324 is used to determine the overall device load level
on the content server. The threshold level is a singleton value

Feb. 2, 2012

that is used by policy engine 308 to determine which metrics
collected from the content server should reflect the overall
device load level on the content server. Examples of the
threshold level in the device policy may include highest,
average', 'all', and lowest. Thus, when policy engine 308
applies device policy 324 to a set of device metrics 320
collected for content server 312, if the threshold level speci
fied in device policy 324 is highest, policy engine 308 may
determine that the metric in the set of metrics collected for the
content server that has the highest assigned weight value will
be representative of the content server's overall load level. In
a similar manner, a threshold of lowest would cause policy
engine 308 to determine that the metric that has the lowest
assigned weight value for the content server is representative
of the content server's load level. A threshold of “average
causes policy engine 308 to coalesce the n-tuples for the
metrics of the content server into a single device load level
value, wherein the determined device load level is an average
of all of the assigned weight values for that content server.
Like the average threshold level, a threshold of all causes
policy engine 308 to coalesce the n-tuples for the metrics of
the content server into a single device load level value. How
ever, the 'all threshold level requires that all weight values of
the content server be at a maximum load level (e.g., high)
before policy engine 308 may determine that the content
server is operating at an overloaded device load level, and
thus a content variant that provides a less rich web experience
and is less computationally expensive may be delivered to the
requesting client.
0055 Type policy 326 is a policy that is applied to indi
vidual device load levels or to a group or subset of content
servers having the same device type to weight the device
metrics according to the type of device. In other words, when
calculating device load, the type of device may factor into the
determination of whether the device load is low, normal, or
high. A server is a same device type as another server if its
physical and logical attributes match those specified in the
device type attributes specified by an administrator.
Examples of physical attributes include the hardware class,
Such as mainframe, enterprise server, or department server,
and typically subsets of hardware class including the CPU
architecture or as granular as the manufacturer, hardware
type, and hardware model. Examples of logical attributes
include the operating system, such as IBM(R AIX(R) or
Linux R, operating system version and patch level, and type of
application infrastructure, such as for example, IBM HTTP or
Apache R. HTTP web servers, IBM WebSphere(R) or Apache
Tomcat R web application servers, IBM DB2R, or MySQL(R)
database, etc. IBM, AIX, WebSphere, and DB2 are trade
marks of International Business Machines Corporation, reg
istered in United States, other countries, or both. Linux is a
registered trademark of Linus Torvalds in the United States,
other countries, or both. Therefore, a type policy may weight
device load levels according to relative importance of each
metric according to the device type. For example, a device
type known to aggressively make use of any available RAM
may have available RAM weighted less than on other device
types. The system administrator may chose to further define
additional device types via management console 306. These
additional device types may include any combination of the
physical and logical attributes that may be discovered to
influence the weight of metrics.
0056. The system load level is a label that is used to
describe the overall utilization or load on the system (i.e., the

US 2012/0030341 A1

Subset of same-device type content servers) due to current or
projected demand as reflected in the device metrics collected
for the subset of content servers. The system administrator
may define in the type policy whether the system load level is
based on the current load of the system (current server utili
Zation), the projected load of the system (anticipated server
utilization), or both. The current load on the system is the load
measured on the system at the current point in time, while the
projected load is an estimate of where the system load will be
N time from now based on an algorithm the administrator
specifies, or an algorithm that is calculated based on analyZ
ing past system load level results. One example where pro
jected load may be utilized is in serving large files, such as
media streaming. When determining which bit rate of media
to serve to an end user, a projection of system load from now
until N time from now may be useful, where N is the duration
or expected duration (given many users close a stream before
it ends) of the media. Thus if a two hour media is requested,
the content server may serve a reduced bit rate stream if the
projected load within the next two hours suggests higher bit
rates streams will fail. In addition, if past system load level
results show the content servers have a high percentage of
failure once the CPU utilization of the content servers
exceeds 75% for 2 minutes, then the content server may serve
less intensive resources to the requesting end users once this
utilization event occurs, even if the 75% measurement is not
in and of itself a current load problem.
0057 N-tuples may also be used in type policy 326 to
describe the system load level. For example, the system load
level may comprise a weight value of low, normal, or high, or
the load level may comprise a number quantity. To determine
the system load level for a subset of content servers of the
same device type, policy engine 308 first reads both the type
policy 326 and the device load levels calculated from apply
ing the device policy 324 to each content server in the subset
from memory. A threshold level also specified in type policy
326 is then used to determine the overall system load level on
the subset of content servers. Examples of the threshold level
in type policy 326 may include highest, average, all, and
lowest. Thus, when policy engine 308 applies type policy
326 to the device load levels for a plurality of content servers
of the same type (e.g., content servers 310, 312,314), if the
threshold specified in device policy is highest, policy engine
308 may determine that the device load level that has the
highest assigned weight value for the Subset of content serv
ers of the same type is representative of the current load level
on the system. In a similar manner, a threshold of lowest
would cause policy engine 308 to determine that the device
load level that has the lowest weight value for the subset of
content servers of the same type is representative of the cur
rent load level on the system. A threshold of average causes
policy engine 308 to determine that the current load level on
the system is an average of the weights of all of the device load
levels for those content servers. Like the average threshold
level, a threshold of all causes policy engine 308 to coalesce
the n-tuples for the device load levels into a single system load
level value. However, the all threshold level requires that all
device load levels of all of the content servers in the subset be
at a maximum load level (e.g., high) before policy engine
308 may determine that the content servers are operating at an
overloaded system load level, and thus a content variant that
provides a less rich web experience and is less computation
ally expensive may be delivered to the requesting client.

Feb. 2, 2012

0.058 Service policy 328 is a policy that is applied to the
system load level calculated from the subset of content serv
ers of the same type. Service policy 328 is used to determine
the level of service to provide to requesting client 302 based
on the current load on the system. A service level is a label that
describes the level of end user experience that the service is
providing at any given time, wherein each level of service
may provide more or less web content and features to the end
user than another level of service. Service levels providing
reduced content and features may remove the more expensive
or heavy content from the website. Examples of service levels
may include normal service, static-only service, mobile-only
service, dynamic service, etc., as may be defined locally by
each installation. A normal level may describe the default
experience level, static-only may describe an experience level
provided through easily-cached static objects only, mobile
only may describe an experience level that is being provided
for light-weight mobile clients, and dynamic may describe an
experience level in which all content and features are pro
vided to the client. Service policy 328 includes a table that
may be referenced by policy engine 308 to map the availabil
ity of a particular content service level to a given system load
level. In other words, based on the system load level that is
determined from applying type policy 326 to the aggregated
device metrics for a subset of content servers of the same type,
service policy 328 specifies which service level (i.e., variant
of the web content) should be requested from one of the
content servers that provides the web content. For example,
service policy 328 may specify that if the system load level is
determined to be low or normal, the service level at which the
content server that provides the web content to the requesting
client may operate at the dynamic service level, thereby pro
viding full web content and features to the end user. In con
trast, service policy 328 may also specify that if the system
load level is determined to be high, the service level at which
the content server that provides the web content to the
requesting client may operate at the static service level.
thereby serving low bit rate media streams and reducing
number of graphics provided to the end user.
0059 Load balancer 304 is an example of load balancer
118 in FIG.1. Load balancer 304 comprises a software pro
gram running on a data processing apparatus that is used to
distribute workload evenly across the content servers in order
to achieve optimal resource utilization and maximize
throughput, while minimizing response time and avoiding
overload. Load balancer 304 manages the various requests to
access web content on the data cluster to enable optimal
performance of the applications on the cluster. Load balancer
304 is a front-end component for controlling and managing
the loads on two or more servers. Load balancer 304 performs
load balancing based on device metrics collected for the two
or more content servers connected to load balancer 500. Load
balancer 304 may be a software component, a hardware com
ponent, or a combination of hardware and software. Typi
cally, all requests to access content on a data cluster are routed
by load balancer 304 to a backend server such as content
servers 310, 312, or 314, depending upon the load on each
server. The load refers to the amount of work currently being
performed by the server. Load balancer 304 receives a request
from client 302 for an application, selects a given content
server to run the application, and distributes the request to the
selected backend content server. Load balancer 304 listens on
the port where external client 302 connects to access web
services. Load balancer 304 forwards requests to one of the

US 2012/0030341 A1

backend content servers, which usually replies to the load
balancer, thereby allowing load balancer 304 to reply to client
302 without the client ever knowing about the internal sepa
ration of functions. Load balancer 304 also prevents clients
from contacting backend content servers directly, which may
have security benefits by hiding the structure of the internal
network and preventing attacks on the kernel's network Stack
or unrelated services running on other ports.
0060 Load balancer 304 is a specific type of load balancer
that uses information available in the application layer of the
OSI (Open Systems Interconnection) Reference Model to
make load balancing decisions. The OSI Reference Model
comprises a set of seven layers (application, presentation,
session, transport, network, data, and physical) that define the
different stages that data must go through to travel from one
device to another over a network. Each layer adds its own set
of special, related functions that prepare the data for the next
layer. The application layer, or layer 7, is the layer that inter
acts with the operating system or application whenever the
user chooses to transfer files, read messages or perform other
network-related activities. HyperText Transfer Protocol
(HTTP) is an example of an application layer protocol.
0061 Like a typical load balancer, load balancer 304 com
prises the ability to read and understand the HTTP protocol to
make load balancing decisions, such as those required for
cookie-based affinity. Cookie-based affinity is where the load
balancer checks the existence of a cookie (having been set on
a prior visit to the web site), and so the previous network
check to determine which server will give the user fastest
service (usually due to being physically closer to the user)
does not need to be made, and so the load balancer can save
time by automatically routing the user to the previous server
they were on. However, load balancer 304 in the illustrative
embodiments is enhanced to allow for modifying HTTP
headers in a client request. Once the policy engine determines
the level of service (i.e., the particular content variant) that a
content server should provide to a client that requests content
from the content server based on the determined system load,
load balancer 304, acting as the client browser, uses the trans
parent content negotiation protocolas defined in RFC 2295 to
specify the content variant that should be delivered to the end
users by modifying the header of the client request. Informa
tion in the request headers informs the receiving content
server how to handle the request. For example, as load bal
ancer 304 may modify or add to the current HTTP headers in
the request, the headers in the request may instruct the content
servers to serve low bit rate media to the requesting end user.
In one embodiment, load balancer 304 may modify the client
request by injecting media feature tags in the HTTP header of
the request for the service level determined by policy engine
308. A media feature tag is a standard description and nego
tiation mechanism in order to identify and reconcile the form
of information to the capabilities and preferences of the par
ties involved as defined in RFC 2506—Media Feature Tag
Registration Procedure. A media feature tag may comprise a
string consisting of one or more of the following US-ASCII
characters: uppercase letters, lowercase letters, digits, colon
(":"), slash ("/"), dot (“ ”) percent("%), and dash (“-”). Thus,
media feature tags injected within a request header inform the
receiving content server what media the requesting client
browser Supports, and the headers in the request inform the
receiving content server how to handle the request. Taking
language as an example, media feature tags may specify the
browser prefers English (en), but is also capable of Spanish

Feb. 2, 2012

(es). However, the headers may request a language of Span
ish, Such that if the requested page is available in Spanish, the
content server will serve the Spanish version to the end user.
0062 Load balancer 304 conserves computational
resources by using content negotiation module 330 to trans
parently modify the headers of the content requests to reduce
computational load on the servers, while still enabling the
servers to provide an error-free web experience for end users
even under load conditions. HTTP headers in the client
request may include multiple dimensions, such as media type,
language, encoding, and character-set, as specified in the
Accept, Accept-Language. Accept-Encoding, and Accept
Charset headers, respectively, as defined in RFC 2616, sec
tion 14 Header Field Definitions. Load balancer 304 may
perform header modification in one of two ways. The first
method of header modification comprises language replace
ment. For instance, language replacement comprises a
method in which the Accept-Language header in the content
request 318 is modified to a predetermined “language' sup
ported by the content server that requires less computational
resources to deliver. For example, if a page is available in
English, the web content creators may create two pages, a
standard page and a lightweight or “content shedded page.
On the content server, these pages may be stored in distinct
directories. If a determination is made that the system load
level is such that computational resources need to be con
served, load balancer 304 may modify the Accept-Language
header of content request 318 before sending the request with
the modified header 332 to a selected content server. For
example, if the client sends a request with an Accept-Lan
guage header of “en, load balancer 304 may modify the
header to request a content-shedded variant, such as "en
shed. When the selected content server receives the modified
request, a configuration directive on the content server may
direct the content server to retrieve content for the request
from the “content shedded directory, and serve the content at
the service level specified in the request 334 to the client end
user. Thus, the content server is now able to intelligently
fulfill requests for web content and deliver a variant of the
requested content in a manner that is appropriate for the
current level of utilization of the service in the system.
0063. The second method of header modification com
prises header replacement. Header replacement comprises a
method for modifying any header delivered with a content
request if that modification results in reduced computational
load on the system as needed. For example, to reduce load,
load balancer 304 may remove a header from the content
request that specifies the client can render FlashR) content.
Flash is a registered trademark of Adobe Systems Incorpo
rated. Flash content may be particularly computationally
intensive to serve, and therefore modifying the header to
prevent the serving of such content will reduce computational
server load. Load balancer 304 may prevent Flash content (or
other content) from being served by removing an Accept
header that specifies client compatibility with Flash. The
content server is configured to provide other content in place
of Flash content if that Accept header lacks a Flash designa
tion, thus reducing computational load.
0064 One implementation of the aspects of the illustrative
embodiments may be as follows: a system administrator of a
web service inputs into policy engine 308 the several policies
that are to be used, such as the device policy 324, the type
policy 326, and the service policy 328. The system adminis
trator may provide this policy input via management console

US 2012/0030341 A1

306. Each device that participates in the delivery of the web
content is enabled to periodically report a set of system met
rics to a centralized location, Such as management console
306. Management console 306 stores these reported metrics
from all of the reporting devices as collected device metrics
322. The device metrics reported for each device may be
dependent upon the type of the device. For instance, a data
base server may report a metric such as block I/O activity to
management console 306, whereas a load balancer would not
report such a metric. Periodically at configurable intervals,
management console 306 activates policy engine 308 to apply
the collected device metrics 322 against device policy 324 to
determinea device load level for each content server. A device
load level represents an overall current load level on that
device. Once the policy engine 308 determines the device
load level for each reporting content server, the policy engine
308 applies the type policy 326 to all content servers of the
same device type to determine an overall system load level for
the subset of content servers. Once the policy engine 308
determines the system load level for the subset of content
servers, the policy engine applies the service policy 328 to the
system load level to determine the level of service at which
the content server should deliver the requested content to
client 302. Policy engine 308 writes the determined device
load levels, system load level, and service level to the man
agement console 306. Load balancer 304 is used to distribute
the end users requests to one or more content servers. Load
balancer 304 periodically polls or queries the management
console 306 to obtain the current service level at which con
tent should be delivered to a requesting client based on the
current load level of the system. In one embodiment, load
balancer 304 may insert a service level label directly into the
layer 7 header as a defined media feature tag for transparent
content negotiation and allow the content server to locate and
serve the appropriate object variant. The content negotiation
features in the HTTP protocol transparent as in the case of
transparent content negotiation or server-driven—allows
load balancer 304 to negotiate the best-matching variant of
content with respect to the overall system load and service
level to be delivered to the requesting client.
0065 FIG. 4 is a flowchart of a process for reporting
resource utilization to a management console in accordance
with the illustrative embodiments. The process described in
FIG. 4 comprises a resource utilization collection process that
may be implemented by each web content server (e.g., 310,
312, and 314) in web content delivery system 300 in FIG.3.
The resource utilization collection process enables the man
agement console to obtain metrics comprising the load on
each web content server in the system.
0066. The process begins with a web server collecting data
comprising resource utilization metrics that reflect the current
load on the web content server (step 402). Once the metrics
are collected, the web content server reports the metrics to a
central location, such as management console 306 in FIG. 3
(step 404). The web server makes a determination whether the
data has been received by the management console (step 406).
If the management console has not received the data (no
output of step 406), the process returns to step 404 to report
the metrics to the management console. However, if the web
content server determines that the management console has
received the data (yes output of step 406), the data collection
process sleeps until the next iteration of the data collection
process is initiated (step 408). The data collection process

Feb. 2, 2012

may be initiated periodically by the web server at defined time
intervals to ensure the management console is provided with
updated utilization metrics.
0067 FIG. 5 is a flowchart of a process for dynamically
adjusting web content provided to a requesting client based
on current and projected server loads in accordance with the
illustrative embodiments. The process described in FIG. 5
comprises an overview of the web content negotiation pro
cess that may be implemented by load balancer 304 in web
content delivery system 300 in FIG.3 to service requests for
web content. The web content negotiation process allows the
load balancer to determine and specify the service level that a
web server should provide to the client, while also reducing
computational load on the servers and still enabling the serv
ers to provide an error-free web experience for end users even
under higher load conditions.
0068. The process begins with the load balancer, respon
sive to receiving a client request for web content, making a
determination as to whether the request is a new request (step
502). A request is not new if the request is a duplicate of the
original request, such as when a browser repeatedly requests
a page as it retries its request operation due to lack of timely
response. In this case, there is no need for the load balancerto
pass along the repeated requests if the original request is
already being handled, and thus the request may be discarded.
A request is also not new if the request is for a static resource
that the load balancer has cached, in which case the load
balancer can save web server resources by immediately
returning the cached content. If the request from the client is
not a new request (no output of step 502), the process returns
to wait to receive another client request for processing.
0069. However, if the request from the client is determined
to be a new request (yes output of step 502), the load bal
ancer accepts the request (step 504) and then reads the service
level of the requested web content (step 506). The service
level is determined by the policy engine by applying the
service policy to the given system load level for the subset of
servers involved in provided the web content and stored in
memory, as described in the process of FIG. 7. The service
level is the content variant that should be requested from a
web server and provided to the requesting client. Once the
load balancer reads the service level and thereby determines
the content variant to be provided by a selected content server,
the load balancer may use the transparent content negotiation
protocol to specify the content variant that should be deliv
ered to the client by modifying the header of the request based
on the service level (step 508). The variant is one of a set of
web content versions that is delivered to the requesting client
based on the load on the web servers involved in providing the
requested content.
0070 The load balancer then inserts the transparent con
tent negotiation header information into the client request to
form a modified header (step 510). The load balancer acts as
a web browser of the client and forwards the request compris
ing the modified header to a particular web server selected by
the load balancer to service the request (step 512). When the
load balancer receives the requested object delivered at the
specified service level from the selected web server (step
514), the load balancer then forwards the object delivered at
the specified service level to the requesting client (step 516).
0071 FIG. 6 is a flowchart of a process for obtaining an
updated service level from the management console in accor
dance with the illustrative embodiments. The process
described in FIG.6 may be implemented by load balancer 304

US 2012/0030341 A1

in web content delivery system 300 in FIG. 3. The load
balancer performs the process to obtain, from the manage
ment console, the current service level at which a selected
web server should operate based on the current load level of
the system. The load balancer may store the retrieved service
level value in a cache memory of the load balancer for quick
aCCCSS,

0072 The process begins with the load balancer request
ing a service level from the management console (step 602).
The load balancer may periodically poll the management
console for the service level information at time intervals
defined by a system administrator. The frequency of the time
intervals may be based on the volatility of the web service and
the capacity of the web servers. For instance, it the service
volatility is high, the poll frequency would likely be higher
than if the service volatility is low so that the system load can
be averaged to avoid rash decisions. If service volatility is
low, the poll frequency would likely be lower because a
Sudden plummet of system load is likely a meaningful event
that requires service level reduction. In addition, a web server
system with a large capacity does not need to be polled as
often as one that is constantly overutilized. In one embodi
ment, the poll frequency may be performed every two to five
minutes, in addition to sending a simple HTTP request every
30 seconds to all the web servers to ensure the servers are
responding (the failure of a web server is evidence that the
system load is high). If a server fails to report on time, an
intermediate poll may be initiated to obtain updated service
level information.

0073. A determination is then made by the load balancer
whether or not the service level for the service has changed
since the last time the load balancer retrieved the service level
(step 604). The service level may change due to variations in
the workload amount of a web server, which changes the
device and system load levels from which the policy engine
calculates the service level. If the service level for a requested
service has not changed (no output of step 604), the service
update process is placed in a sleep state (step 608) until the
process is initiated again by the policy engine (step 606).
However, if the service level for a requested service has
changed (yes output of step 604), the load balancer updates
the service level value with the changed service level (step
606). The service update process may be initiated periodi
cally by the load balancer at defined time intervals to ensure
the load balancer is provided with the current service level
value.

0074 FIG. 7 is a flowchart of a process for generating a
service level inaccordance with the illustrative embodiments.
The process described in FIG. 7 may be implemented by
policy engine 306 in web content delivery system 300 in FIG.
3. This method is the main process undertaken by the policy
engine to generate the appropriate service level to be provided
to the layer 7 load balancer. The service level generation
process may be initiated on a periodic basis by the policy
engine at defined time intervals to ensure the load balancer is
provided with the current service level at which a selected
web server should operate and deliver content to the request
ing client. Within the process, each device load level is aggre
gated by device type to establish a load level for a subset of
web servers comprising the same device type, against which
the type policy is applied to each device type subset to estab
lish the overall service level for the system. The service level
may then be inserted by the load balancer into the header of
the client request.

Feb. 2, 2012

0075. The process begins with the policy engine reading
the device policy (step 702) and reading the device metrics
collected for a device (e.g., web server) from the management
console (step 704). The policy engine then maps the device
policy to the metrics for the device (step 706). This step
comprises applying the device policy to the metrics for a
device to assign an n-tuple value to each metric, such as low,
medium, or high, based on the value of the metric. Once the
individual metric n-tuple values are assigned, the policy
engine establishes a device load level using a threshold
defined in the device policy (step 708). Examples of the
threshold load level in the device policy may include high
est, average, all, and lowest. The threshold load level
specifies which of the metrics are to be used in establishing
the overall load level for the device (e.g., only the metric with
the highest load value (peak) since the last poll, only the
metric with the lowest load value, the average of the metric
load values, etc. The policy engine then writes the device load
level to memory (step 710).
0076 A determination is then made by the policy engine
as to whether there are other individual devices to process
(step 712). If there are additional individual devices to pro
cess (yes output of step 712), the process loops back to step
702. However, if there are no more individual devices to
process (no output of step 712), the policy engine reads the
type policy (step 714) and the load level calculated for each
device of the same device type (step 716). The policy engine
then maps the type policy to the device load levels for the
devices of the same type (step 718). This step comprises
applying the type policy to the individual device load levels to
assign an n-tuple value to each device load level. Such as low,
medium, or high, based on the value of the load level. Once
the individual device load level n-tuple values are assigned,
the policy engine establishes a system load level using a
threshold defined in the type policy (step 720). Examples of
the threshold level in the type policy may include highest,
average, all, and lowest. The threshold level specifies
which of the device load levels are to be used in establishing
the overall load level for the system (e.g., only the device load
level with the highest load value since the last poll, only the
device load level with the lowest load value, the average of the
device load level values, etc.). The policy engine then writes
the system load level to memory (step 722).
0077. A determination is then made by the policy engine
as to whether there are other device type subsets to process
(step 724). If there are additional device type subsets to pro
cess (yes output of step 724), the process loops back to step
714. However, if there are no more device type subsets to
process (no output of step 724), the policy engine reads the
service policy and applies the service policy to the calculated
system load level to determine the level of service at which a
selected web server should deliver the requested content to a
client (step 726). Examples of service levels may include
normal service, static-only service, mobile-only service,
dynamic service, etc., as may be defined locally by each
installation. The policy engine may apply the service policy to
the calculated system load level by accessing a table that
maps the availability of a service level (i.e., variant of the web
content) to a given system load level. The policy engine then
writes the service level to memory (step 728), wherein the
service level may be accessed by the load balancer in the
process described in FIG. 5. The service level generation
process then sleeps until the next iteration of the service level
generation process is initiated (step 730).

US 2012/0030341 A1

0078 FIG. 8 is a flowchart of a process for handling a web
content request comprising a modified header specifying a
level of service in accordance with the illustrative embodi
ments. The process described in FIG.8 may be implemented
by web servers 310, 312, or 314 in web content delivery
system 300 in FIG. 3 to service client requests for web con
tent.

007.9 The process begins with the web server receiving a
client request for web content (step 802). The client request
comprises aheader modified by the load balancer using trans
parent content negotiation to specify a service level in which
the web server should provide the requested content. Upon
receiving the request, the web server decodes the media fea
ture tags in the request and headers in the request (step 804).
The web server then fetches the requested object with the
given service level constraints specified in the request (step
806). Thus, the web server selects the particular variant of the
requested content that is appropriate for the service level
specified in the request.
0080. The web server then makes a determination as to
whether a variant of the requested object that is appropriate
for the service level constraint is found (step 808). If an
appropriate variant is found (yes output of step 808), the
web server serves the requested content to the client (step
810). However, if an appropriate variant is not found (no
output of step 808), an error document is served to the client
(step 812).
0081. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0082. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
0083. The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of

Feb. 2, 2012

illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.
I0084. The invention can take the form of an entirely hard
ware embodiment, an entirely software embodiment or an
embodiment containing both hardware and software ele
ments. In a preferred embodiment, the invention is imple
mented in software, which includes but is not limited to
firmware, resident Software, microcode, etc.
0085. Furthermore, the invention can take the form of a
computer program product accessible from a computer-us
able or computer-readable medium providing program code
for use by or in connection with a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer readable medium can be any
tangible apparatus that can contain, Store, communicate,
propagate, or transport the program for use by or in connec
tion with the instruction execution system, apparatus, or
device.

I0086. The medium can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system (or appa
ratus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or Solid
state memory, magnetic tape, a removable computer diskette,
a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read/write (CD-R/W)
and DVD.

I0087. A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.
I0088. Input/output or I/O devices (including but not lim
ited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers.

I0089 Network adapters may also be coupled to the system
to enable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modem and Ethernet cards are just a few of
the currently available types of network adapters.
0090 The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention

US 2012/0030341 A1

for various embodiments with various modifications as are
Suited to the particular use contemplated.
What is claimed is:
1. A computer implemented method of delivering web

content responsive to a request from a client, comprising:
collecting, in a memory of a computer, utilization metrics

from each device in a plurality of devices involved in
delivering web content to end users;

determining, by the computer, a device load level for each
device based on the utilization metrics:

determining, by the computer, a system load level for a
subset of the plurality of devices of a same device type
based on the device load level for each device in the
Subset of devices;

determining, by the computer, a service level to provide to
the client based on the system load level for the subset of
devices;

modifying, by the computer, a header in the request to
specify the determined service level to provide to the
client, wherein the determined service level indicates a
variant of the web content to deliver to the client; and

sending, by the computer, the request with the modified
header to a selected device in the subset of devices,
wherein the selected device is directed to serve the web
content according to the determined service level to the
client.

2. The computer implemented method of claim 1, wherein
modifying the header in the request is performed by a layer 7
load balancer that receives the request from the client.

3. The computer implemented method of claim 1, wherein
the determining steps of determining a device load level.
determining a system load level, and determining a service
level is performed on a periodic basis at defined time intervals
by a policy engine.

4. The computer implemented method of claim 1, wherein
determining a device load level for each device based on the
device load metrics further comprises:

applying a device policy to the collected utilization metrics
of a device by assigning, based on a value of the utiliza
tion metric, a weight value to each utilization metric;

determining the device load level for the device based on
the weight values of the utilization metrics and a thresh
old level specified in the device policy, wherein the
threshold level in the device policy specifies whether the
device load level is one of a highest assigned weight
value, a lowest assigned weight value, or an average of
the assigned weight values of the utilization metrics; and

writing the device load level to memory.
5. The computer implemented method of claim 4, wherein

determining a system load level for a subset of devices of a
same device type based on the device load level for each
device in the subset further comprises:

applying a type policy to the device load level determined
for each device in the Subset of devices by assigning,
based on a value of the device load level, a weight value
each device load level;

determining the system load level for the subset of devices
based on the weight values of the device load levels and
a threshold level specified in the type policy, wherein the
threshold level in the type policy specifies whether the
system load level is one of a highest assigned weight
value, a lowest assigned weight value, or an average of
the assigned weight values of the device load levels; and

writing the system load level to memory.

Feb. 2, 2012

6. The computer implemented method of claim 5, wherein
determining a service level of web content to deliver to the
client based on the system load level further comprises:

applying a service policy to the system load level deter
mined for the Subset of devices by assigning, based on a
value of the system load level, a variant of the web
content; and

writing the service level to memory.
7. The computer implemented method of claim 2, wherein

the load balancer modifies the header by:
reading the service level stored in memory;
generating, using transparent content negotiation protocol,

a modifiedheader based on the service level, wherein the
modified header specifies a variant of the web content to
deliver to the client; and

inserting the modified header into the request.
8. The computer implemented method of claim 7, wherein

the modified header comprises media feature tags.
9. The computer implemented method of claim 1, wherein

the variant of the web content delivered to the client com
prises web content delivered at a reduced bit rate stream.

10. The computer implemented method of claim 1, further
comprising:

receiving, at the selected device, the request with the modi
fied header;

decoding the modified header;
fetching the variant of the web content specified in the

modified header; and
serving the variant of the web content to the client.
11. A computer program product of delivering web content

responsive to a request from a client, the computer program
product comprising:

a computer readable storage medium;
first program instructions to collect, in a memory of a

computer, utilization metrics from each device in a plu
rality of devices involved in delivering web content to
end users;

second program instructions to determine, by a processing
unit in the computer, a device load level for each device
based on the utilization metrics:

third program instructions to determine a system load level
for a subset of the plurality of devices of a same device
type based on the device load level for each device in the
Subset of devices;

fourth program instructions to determine a service level to
provide to the client based on the system load level for
the subset of devices;

fifth program instructions to modify a header in the request
to specify the determined service level to provide to the
client, wherein the determined service level indicates a
variant of the web content to deliver to the client; and

sixth program instructions to send the request with the
modified header to a selected device in the subset of
devices, wherein the selected device is directed to serve
the web content according to the determined service
level to the client,

wherein the first, second, third, fourth, fifth, and sixth
program instructions are stored on the computer read
able storage medium.

12. The computer program product of claim 11, wherein
the fifth program instructions to modify the header in the
request is executed by a layer 7 load balancer that receives the
request from the client.

US 2012/0030341 A1

13. The computer program product of claim 11, wherein
the second program instructions to determine a device load
level for each device based on the device load metrics further
comprises:

first program Sub-instructions to apply a device policy to
the collected utilization metrics of a device by assigning,
based on a value of the utilization metric, a weight value
to each utilization metric;

second program Sub-instructions to determine the device
load level for the device based on the weight values of
the utilization metrics and a threshold level specified in
the device policy, wherein the threshold level in the
device policy specifies whether the device load level is
one of a highest assigned weight value, a lowest assigned
weight value, or an average of the assigned weight val
ues of the utilization metrics; and

third program sub-instructions to write the device load
level to memory.

14. The computer program product of claim 13, wherein
the third program instructions to determine a system load
level for a subset of devices of a same device type based on the
device load level for each device in the subset further com
prises:

first program Sub-instructions to apply a type policy to the
device load level determined for each device in the sub
set of devices by assigning, based on a value of the
device load level, a weight value each device load level;

second program Sub-instructions to determine the system
load level for the subset of devices based on the weight
values of the device load levels and a threshold level
specified in the type policy, wherein the threshold level
in the type policy specifies whether the system load level
is one of a highest assigned weight value, a lowest
assigned weight value, or an average of the assigned
weight values of the device load levels; and

third program Sub-instructions to write the system load
level to memory.

15. The computer program product of claim 14, wherein
the fourth program instructions to determine a service level of
web content to deliver to the client based on the system load
level further comprises:

first program Sub-instructions to apply a service policy to
the system load level determined for the subset of
devices by assigning, based on a value of the system load
level, a variant of the web content; and

second program Sub-instructions to write the service level
to memory.

16. The computer program product of claim 12, wherein
the fifth program instructions to modify the header further
comprises:

first program Sub-instructions to read the service level
stored in memory;

second program Sub-instructions to generate, using trans
parent content negotiation protocol, a modified header
based on the service level, wherein the modified header
specifies a variant of the web content to deliver to the
client; and

third program Sub-instructions to insert the modified
header into the request.

Feb. 2, 2012

17. The computer program product of claim 16, wherein
the modified header comprises media feature tags.

18. The computer program product of claim 11, wherein
the variant of the web content delivered to the client com
prises web content delivered at a reduced bit rate stream.

19. The computer program product of claim 11, further
comprising:

seventh program instructions to receive, at the selected
device, the request with the modified header;

eighth program instructions to decode the modified header;
ninth program instructions to fetch the variant of the web

content specified in the modified header; and
tenth program instructions to serve the variant of the web

content to the client.
20. A computer system for managing web content respon

sive to a request from a client, comprising:
a processor, a computer readable memory, and a computer

readable storage medium;
first program instructions to collect utilization metrics

from each device in a plurality of devices involved in
delivering web content to end users;

second program instructions to determine a device load
level for each device based on the utilization metrics;

third program instructions to determine a system load level
for a subset of the plurality of devices of a same device
type based on the device load level for each device in the
Subset of devices;

fourth program instructions to determine a service level to
provide to the client based on the system load level for
the subset of devices;

fifth program instructions to modify a header in the request
to specify the determined service level to provide to the
client, wherein the determined service level indicates a
variant of the web content to deliver to the client; and

sixth program instructions to send the request with the
modified header to a selected device in the subset of
devices, wherein the selected device is directed to serve
the web content according to the determined service
level to the client.

21. The computer system of claim 20, wherein the com
puter system comprises a loadbalancer that performs the first,
second, third, fourth, fifth, and sixth program instructions,
and wherein the computer system comprises the Subset of
devices, wherein the selected device serves the web content
according to the determined service level to the client.

22. A computer implemented method of delivering web
content, comprising:

receiving, at a load balancer, a request for web content from
a client;

responsive to receiving the request, modifying, by the load
balancer, aheader in the request to specify a service level
to provide to the client, wherein the service level indi
cates a variant of the web content to deliver to the client;
and

sending, by the load balancer, the request with the modified
header to a selected device in the subset of devices,
wherein the selected device is directed to serve the web
content according to the determined service level to the
client.

