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(57) Abrégé/Abstract:

Systems and methods for applying deblocking filters to reconstructed video data are disclosed. Sample values in adjacent
reconstructed video blocks aremodified according to multiple passes of a deblocking filter. A filtering pass may correspond to
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(57) Abrégé(suite)/Abstract(continued):

processing or constructing of all or subset of samples to be deblocked. The number of processing or constructing for each sample
in a given pass may correspond to the pass index or order.
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(57) Abstract: Systems and methods for applying deblocking filters to reconstructed video data are disclosed. Sample values in adjacent
reconstructed video blocks aremodified according to multiple passes of a deblocking filter. A filtering pass may correspond to processing
or constructing of all or subset of samples to be deblocked. The number of processing or constructing for each sample in a given pass
may correspond to the pass index or order.
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Description

Title of Invention: SYSTEMS AND METHODS FOR APPLYING
DEBLOCKING FILTERS TO RECONSTRUCTED VIDEO DATA

[0001]

[0002]

[0003]

Technical Field

This disclosure relates to video coding and more particularly to techniques for

performing deblocking of reconstructed video data.

Background Art

Digital video capabilities can be incorporated into a wide range of devices, including
digital televisions, laptop or desktop computers, tablet computers, digital recording
devices, digital media players, video gaming devices, cellular telephones, including so-
called smartphones, medical imaging devices, and the like. Digital video may be coded
according to a video coding standard. Video coding standards may incorporate video
compression techniques. Examples of video coding standards include ISO/IEC MPEG-
4 Visual and ITU-T H.264 (also known as ISO/IEC MPEG-4 AVC) and High-Ef-
ficiency Video Coding (HEVC). HEVC is described in High Efficiency Video Coding
(HEVC), Rec. ITU-T H.265, December 2016, which is incorporated by reference, and
referred to herein as ITU-T H.265. Extensions and improvements for ITU-T H.265 are
currently being considered for the development of next generation video coding
standards. For example, the ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
(Moving Picture Experts Group (MPEG) (collectively referred to as the Joint Video
Exploration Team (JVET)) are studying the potential need for standardization of future
video coding technology with a compression capability that significantly exceeds that
of the current HEVC standard. The Joint Exploration Model 7 (JEM 7), Algorithm De-
scription of Joint Exploration Test Model 7 (JEM 7), ISO/IEC JTC1/SC29/WG11
Document: JVET-G1001, July 2017, Torino, IT, which is incorporated by reference
herein, describes the coding features that are under coordinated test model study by the
JVET as potentially enhancing video coding technology beyond the capabilities of
ITU-T H.265. It should be noted that the coding features of JEM 7 are implemented in
JEM reference software. As used herein, the term JEM may collectively refer to al-
gorithms included in JEM 7 and implementations of JEM reference software.

Video compression techniques reduce data requirements for storing and transmitting
video data by exploiting the inherent redundancies in a video sequence. Video com-
pression techniques may sub-divide a video sequence into successively smaller
portions (i.e., groups of frames within a video sequence, a frame within a group of
frames, slices within a frame, coding tree units (e.g., macroblocks) within a slice,

coding blocks within a coding tree unit, etc.). Intra prediction coding techniques (e.g.,
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intra-picture (spatial)) and inter prediction techniques (i.e., inter-picture (temporal))
may be used to generate difference values between a unit of video data to be coded and
a reference unit of video data. The difference values may be referred to as residual
data. Residual data may be coded as quantized transform coefficients. Syntax elements
may relate residual data and a reference coding unit (e.g., intra-prediction mode
indices, motion vectors, and block vectors). Residual data and syntax elements may be
entropy coded. Entropy encoded residual data and syntax elements may be included in
a compliant bitstream. Compliant bitstreams and associated metadata may be formatted
according to data structures.
Summary of Invention

In one example, a method of filtering reconstructed video data comprises receiving
an array of sample values including adjacent reconstructed video blocks for a
component of video data, and modifying sample values in the adjacent reconstructed
video blocks according to multiple passes of a deblocking filter.
Brief Description of Drawings
[fig. 1]FIG. 1 is a conceptual diagram illustrating an example of a group of pictures
coded according to a quad tree binary tree partitioning in accordance with one or more
techniques of this disclosure.
[fig.2]FIG. 2 is a conceptual diagram illustrating an example of a video component
sampling format in accordance with one or more techniques of this disclosure.
[fig.3]FIG. 3 is a conceptual diagram illustrating possible coding structures for a block
of video data in accordance with one or more techniques of this disclosure.
[fig.4A]FIG. 4A is a conceptual diagrams illustrating examples of coding a block of
video data in accordance with one or more techniques of this disclosure.
[fig.4B]FIG. 4B is a conceptual diagrams illustrating examples of coding a block of
video data in accordance with one or more techniques of this disclosure.
[fig.5A]FIG. 5A is a conceptual diagrams illustrating blocks of video data including a
deblocking boundary in accordance with one or more techniques of this disclosure.
[fig.5B]FIG. 5B is a conceptual diagrams illustrating blocks of video data including a
deblocking boundary in accordance with one or more techniques of this disclosure.
[fig.6]FIG. 6 is an example of a table that may be used to determine deblocking pa-
rameters in accordance with one or more techniques of this disclosure.
[fig.7]F1G. 7 is a block diagram illustrating an example of a system that may be
configured to encode and decode video data according to one or more techniques of
this disclosure.
[fig.8]FIG. 8 is a block diagram illustrating an example of a video encoder that may be

configured to encode video data according to one or more techniques of this disclosure.
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[fig.9]FIG. 9 is a block diagram illustrating an example of a video decoder that may be
configured to decode video data according to one or more techniques of this disclosure.
[fig. 10]FIG. 10 is a flowchart illustrating an example of performing deblocking
according to one or more techniques of this disclosure.
[fig. 11]FIG. 11 is a flowchart illustrating an example of performing deblocking
according to one or more techniques of this disclosure.
[fig.12]FIG. 12 is a flowchart illustrating an example of performing deblocking
according to one or more techniques of this disclosure.
[fig.13]FIG. 13 is an example of a table that may be used to determine deblocking pa-
rameters in accordance with one or more techniques of this disclosure.
[fig. 14A]FIG. 14A is a conceptual diagrams illustrating blocks of video data including
a deblocking boundary in accordance with one or more techniques of this disclosure.
[fig.14B]FIG. 14B is a conceptual diagrams illustrating blocks of video data including
a deblocking boundary in accordance with one or more techniques of this disclosure.
Description of Embodiments

In general, this disclosure describes various techniques for coding video data. In
particular, this disclosure describes techniques for performing deblocking of recon-
structed video data. It should be noted that although techniques of this disclosure are
described with respect to ITU-T H.264, ITU-T H.265, and JEM, the techniques of this
disclosure are generally applicable to video coding. For example, the coding
techniques described herein may be incorporated into video coding systems, (including
video coding systems based on future video coding standards) including block
structures, intra prediction techniques, inter prediction techniques, transform
techniques, filtering techniques, and/or entropy coding techniques other than those
included in ITU-T H.265. Thus, reference to ITU-T H.264, ITU-T H.265 and JEM is
for descriptive purposes and should not be construed to limit the scope of the
techniques described herein. Further, it should be noted that incorporation by reference
of documents herein should not be construed to limit or create ambiguity with respect
to terms used herein. For example, in the case where an incorporated reference
provides a different definition of a term than another incorporated reference and/or as
the term is used herein, the term should be interpreted in a manner that broadly
includes each respective definition and/or in a manner that includes each of the
particular definitions in the alternative.

In one example, a device for video coding comprises one or more processors
configured to receive an array of sample values including adjacent reconstructed video
blocks for a component of video data, and modify sample values in the adjacent recon-

structed video blocks according to multiple passes of a deblocking filter.
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In one example, a non-transitory computer-readable storage medium comprises in-
structions stored thereon that, when executed, cause one or more processors of a device
to receive an array of sample values including adjacent reconstructed video blocks for
a component of video data, and modify sample values in the adjacent reconstructed
video blocks according to multiple passes of a deblocking filter.

In one example, an apparatus comprises means for receiving an array of sample
values including adjacent reconstructed video blocks for a component of video data,
and means for modifying sample values in the adjacent reconstructed video blocks
according to multiple passes of a deblocking filter.

The details of one or more examples are set forth in the accompanying drawings and
the description below. Other features, objects, and advantages will be apparent from
the description and drawings, and from the claims.

Video content typically includes video sequences comprised of a series of frames. A
series of frames may also be referred to as a group of pictures (GOP). Each video
frame or picture may include a plurality of slices or tiles, where a slice or tile includes
a plurality of video blocks. As used herein, the term video block may generally refer to
an area of a picture or may more specifically refer to the largest array of sample values
that may be predictively coded, sub-divisions thereof, and/or corresponding structures.
Further, the term current video block may refer to an area of a picture being encoded or
decoded. A video block may be defined as an array of sample values that may be pre-
dictively coded. It should be noted that in some cases pixel values may be described as
including sample values of respective components of video data, which may also be
referred to as color components, (e.g., luma (Y) and chroma (Cb and Cr) components
or red, green, and blue components). It should be noted that in some cases, the terms
pixel values and sample values are used interchangeably. Video blocks may be ordered
within a picture according to a scan pattern (e.g., a raster scan). A video encoder may
perform predictive encoding on video blocks and sub-divisions thereof. Video blocks
and sub-divisions thereof may be referred to as nodes.

ITU-T H.264 specifies a macroblock structure including 16x16 luma samples. That
is, in ITU-T H.264, a picture is segmented into macroblocks. ITU-T H.265 specifies an
analogous Coding Tree Unit (CTU) structure, which may also be referred to as a
largest coding unit (LCU). In ITU-T H.265, pictures are segmented into CTUs. In ITU-
T H.265, for a picture, a CTU size may be set as including 16x16, 32x32, or 64x64
luma samples. In ITU-T H.265, a CTU is composed of respective Coding Tree Blocks
(CTB) for each component of video data (e.g., luma (Y) and chroma (Cb and Cr)).
Further, in ITU-T H.265, a CTU may be partitioned according to a quadtree (QT) par-
titioning structure, which results in the CTBs of the CTU being partitioned into Coding
Blocks (CB). That is, in ITU-T H.265, a CTU may be partitioned into quadtree leaf
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nodes. According to ITU-T H.265, one luma CB together with two corresponding
chroma CBs and associated syntax elements are referred to as a coding unit (CU). In
ITU-T H.265, a minimum allowed size of a CB may be signaled. In ITU-T H.265, the
smallest minimum allowed size of a luma CB is 8x8 luma samples. In ITU-T H.265,
the decision to code a picture area using intra prediction or inter prediction is made at
the CU level.

In ITU-T H.265, a CU is associated with a prediction unit (PU) structure having its
root at the CU. In ITU-T H.265, PU structures allow luma and chroma CBs to be split
for purposes of generating corresponding reference samples. That is, in ITU-T H.265,
luma and chroma CBs may be split into respect luma and chroma prediction blocks
(PBs), where a PB includes a block of sample values for which the same prediction is
applied. In ITU-T H.265, a CB may be partitioned into 1, 2, or 4 PBs. ITU-T H.265
supports PB sizes from 64x64 samples down to 4x4 samples. In ITU-T H.265, square
PBs are supported for intra prediction, where a CB may form the PB or the CB may be
split into four square PBs (i.e., intra prediction PB size types include MxM or M/
2xM/2, where M is the height and width of the square CB). In ITU-T H.265, in
addition to the square PBs, rectangular PBs are supported for inter prediction, where a
CB may by halved vertically or horizontally to form PBs (i.e., inter prediction PB
types include MxM, M/2xM/2, M/2xM, or MxM/2). Further, it should be noted that in
ITU-T H.265, for inter prediction, four asymmetric PB partitions are supported, where
the CB is partitioned into two PBs at one quarter of the height (at the top or the
bottom) or width (at the left or the right) of the CB (i.e., asymmetric partitions include
M/4xM left, M/4xM right, MxM/4 top, and MxM/4 bottom). Intra prediction data (e.g.,
intra prediction mode syntax elements) or inter prediction data (e.g., motion data
syntax elements) corresponding to a PB is used to produce reference and/or predicted
sample values for the PB.

JEM specifies a CTU having a maximum size of 256x256 luma samples. JEM
specifies a quadtree plus binary tree (QTBT) block structure. In JEM, the QTBT
structure enables quadtree leaf nodes to be further partitioned by a binary tree (BT)
structure. That is, in JEM, the binary tree structure enables quadtree leaf nodes to be
recursively divided vertically or horizontally. FIG. 1 illustrates an example of a CTU
(e.g., a CTU having a size of 256x256 luma samples) being partitioned into quadtree
leaf nodes and quadtree leaf nodes being further partitioned according to a binary tree.
That is, in FIG. 1 dashed lines indicate additional binary tree partitions in a quadtree.
Thus, the binary tree structure in JEM enables square and rectangular leaf nodes,
where each leaf node includes a CB. As illustrated in FIG. 1, a picture included in a
GOP may include slices, where each slice includes a sequence of CTUs and each CTU

may be partitioned according to a QTBT structure. FIG. 1 illustrates an example of
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QTBT partitioning for one CTU included in a slice. Thus, the binary tree structure in
JEM enables square and rectangular leaf nodes, where each leaf node includes a CB. In
JEM, CBs are used for prediction without any further partitioning. That is, in JEM, a
CB may be a block of sample values on which the same prediction is applied. Thus, a
JEM QTBT leaf node may be analogous a PB in ITU-T H.265.

A video sampling format, which may also be referred to as a chroma format, may
define the number of chroma samples included in a CU with respect to the number of
luma samples included in a CU. For example, for the 4:2:0 sampling format, the
sampling rate for the luma component is twice that of the chroma components for both
the horizontal and vertical directions. As a result, for a CU formatted according to the
4:2:0 format, the width and height of an array of samples for the luma component are
twice that of each array of samples for the chroma components. FIG. 2 is a conceptual
diagram illustrating an example of a coding unit formatted according to a 4:2:0 sample
format. FIG. 2 illustrates the relative position of chroma samples with respect to luma
samples within a CU. As described above, a CU is typically defined according to the
number of horizontal and vertical luma samples. Thus, as illustrated in FIG. 2, a 16x16
CU formatted according to the 4:2:0 sample format includes 16x16 samples of luma
components and 8x8 samples for each chroma component. Further, in the example il-
lustrated in FIG. 2, the relative position of chroma samples with respect to luma
samples for video blocks neighboring the 16x16 CU are illustrated. For a CU formatted
according to the 4:2:2 format, the width of an array of samples for the luma component
is twice that of the width of an array of samples for each chroma component, but the
height of the array of samples for the luma component is equal to the height of an array
of samples for each chroma component. Further, for a CU formatted according to the
4:4:4 format, an array of samples for the luma component has the same width and
height as an array of samples for each chroma component.

As described above, intra prediction data or inter prediction data is used to produce
reference sample values for a block of sample values. The difference between sample
values included in a current PB, or another type of picture area structure, and as-
sociated reference samples (e.g., those generated using a prediction) may be referred to
as residual data. Residual data may include respective arrays of difference values cor-
responding to each component of video data. Residual data may be in the pixel
domain. A transform, such as, a discrete cosine transform (DCT), a discrete sine
transform (DST), an integer transform, a wavelet transform, or a conceptually similar
transform, may be applied to an array of difference values to generate transform coef-
ficients. It should be noted that in ITU-T H.265, a CU is associated with a transform
unit (TU) structure having its root at the CU level. That is, in ITU-T H.265, an array of

difference values may be sub-divided for purposes of generating transform coefficients



CA 03095549 2020-09-29

WO 2019/188944 PCT/JP2019/012422

[0017]

[0018]

(e.g., four 8x8 transforms may be applied to a 16x16 array of residual values). For each
component of video data, such sub-divisions of difference values may be referred to as
Transform Blocks (TBs). It should be noted that in ITU-T H.265, TBs are not nec-
essarily aligned with PBs. FIG. 3 illustrates examples of alternative PB and TB com-
binations that may be used for coding a particular CB. Further, it should be noted that
in ITU-T H.265, TBs may have the following sizes 4x4, 8x8, 16x16, and 32x32. In
JEM, residual values corresponding to a CB are used to generate transform coefficients
without further partitioning. That is, in JEM a QTBT leaf node may be analogous to
both a PB and a TB in ITU-T H.265. It should be noted that in JEM, a core transform
and a subsequent secondary transforms may be applied (in the video encoder) to
generate transform coefficients. For a video decoder, the order of transforms is
reversed. Further, in JEM, whether a secondary transform is applied to generate
transform coefficients may be dependent on a prediction mode.

Transform coefficients may be quantized according to a quantization process. Quan-
tization approximates transform coefficients by amplitudes restricted to a set of
specified values. Quantization may be used in order to vary the amount of data
required to represent a group of transform coefficients. Quantization may be generally
described as being realized through division of transform coefficients by a scaling
factor and any associated rounding functions (e.g., rounding to the nearest integer).
Thus, inverse quantization (or “dequantization”) may include multiplication of co-
efficient level values by the scaling factor. It should be noted that as used herein the
term quantization process in some instances may generally refer to division by a
scaling factor to generate level values or multiplication by a scaling factor to recover
transform coefficients in some instances. That is, a quantization process may refer to
quantization in some cases and inverse quantization in some cases. A current block of
video data is reconstructed by performing inverse quantization on level values,
performing an inverse transform, and adding a set of prediction values to the resulting
residual. The sample values of the reconstructed block may differ from the sample
values of the current video block that were input into an encoding process. In this
manner, coding may be said to be lossy. However, it should be noted that the
difference in sample values may be considered acceptable to a viewer of the recon-
structed video.

Quantized transform coefficients (which may be referred to as level values) may be
entropy coded according to an entropy encoding technique (e.g., content adaptive
variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), probability interval partitioning entropy coding (PIPE), etc.). Further,
syntax elements, such as, a syntax element indicating a prediction mode, may also be

entropy coded. Entropy encoded quantized transform coefficients and corresponding
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entropy encoded syntax elements may form a compliant bitstream that can be used to
reproduce video data. A binarization process may be performed on syntax elements as
part of an entropy coding process. Binarization refers to the process of converting a
syntax value into a series of one or more bits. These bits may be referred to as “bins.”
FIGS. 4A-4B are conceptual diagrams illustrating examples of coding a block of video
data. As illustrated in FIG. 4A, a current block of video data (e.g., a CB corresponding
to a video component) is encoded by generating a residual by subtracting a set of
prediction values from the current block of video data, performing a transformation on
the residual, and quantizing the transform coefficients to generate level values. As il-
lustrated in FIG. 4B, the current block of video data is decoded by performing inverse
quantization on level values, performing an inverse transform, and adding a set of
prediction values to the resulting residual. It should be noted that in the examples in
FIGS. 4A-4B, the sample values of the reconstructed block differs from the sample
values of the current video block that is encoded. In this manner, coding may said to be
lossy. However, the difference in sample values may be considered acceptable or im-
perceptible to a viewer of the reconstructed video.

As illustrated in FIG. 4A, quantized transform coefficients are coded into a bitstream.
Quantized transform coefficients and syntax elements (e.g., syntax elements indicating
a coding structure for a video block) may be entropy coded according to an entropy
coding technique. Examples of entropy coding techniques include content adaptive
variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), probability interval partitioning entropy coding (PIPE), and the like.
Entropy encoded quantized transform coefficients and corresponding entropy encoded
syntax elements may form a compliant bitstream that can be used to reproduce video
data at a video decoder. An entropy coding process may include performing a bina-
rization on syntax elements. Binarization refers to the process of converting a value of
a syntax value into a series of one or more bits. These bits may be referred to as “bins.”
Binarization is a lossless process and may include one or a combination of the
following coding techniques: fixed length coding, unary coding, truncated unary
coding, truncated Rice coding, Golomb coding, k-th order exponential Golomb coding,
and Golomb-Rice coding. For example, binarization may include representing the
integer value of 5 for a syntax element as 00000101 using an 8-bit fixed length bina-
rization technique or representing the integer value of 5 as 11110 using a unary coding
binarization technique. As used herein each of the terms fixed length coding, unary
coding, truncated unary coding, truncated Rice coding, Golomb coding, k-th order ex-
ponential Golomb coding, and Golomb-Rice coding may refer to general imple-
mentations of these techniques and/or more specific implementations of these coding

techniques. For example, a Golomb-Rice coding implementation may be specifically
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defined according to a video coding standard, for example, ITU-T H.265. An entropy
coding process further includes coding bin values using lossless data compression al-
gorithms. In the example of a CABAC, for a particular bin, a context model may be
selected from a set of available context models associated with the bin. In some
examples, a context model may be selected based on a previous bin and/or values of
previous syntax elements. A context model may identify the probability of a bin having
a particular value. For instance, a context model may indicate a 0.7 probability of
coding a 0-valued bin and a 0.3 probability of coding a 1-valued bin. It should be noted
that in some cases the probability of coding a 0-valued bin and probability of coding a
I-valued bin may not sum to 1. After selecting an available context model, a CABAC
entropy encoder may arithmetically code a bin based on the identified context model.
The context model may be updated based on the value of a coded bin. The context
model may be updated based on an associated variable stored with the context, e.g.,
adaptation window size, number of bins coded using the context. It should be noted,
that according to ITU-T H.265, a CABAC entropy encoder may be implemented, such
that some syntax elements may be entropy encoded using arithmetic encoding without
the usage of an explicitly assigned context model, such coding may be referred to as
bypass coding.

As described above, intra prediction data or inter prediction data may associate an
area of a picture (e.g., a PB or a CB) with corresponding reference samples. For intra
prediction coding, an intra prediction mode may specify the location of reference
samples within a picture. In ITU-T H.265, defined possible intra prediction modes
include a planar (i.e., surface fitting) prediction mode (predMode: 0), a DC (i.e., flat
overall averaging) prediction mode (predMode: 1), and 33 angular prediction modes
(predMode: 2-34). In JEM, defined possible intra-prediction modes include a planar
prediction mode (predMode: 0), a DC prediction mode (predMode: 1), and 65 angular
prediction modes (predMode: 2-66). It should be noted that planar and DC prediction
modes may be referred to as non-directional prediction modes and that angular
prediction modes may be referred to as directional prediction modes. It should be noted
that the techniques described herein may be generally applicable regardless of the
number of defined possible prediction modes.

For inter prediction coding, a motion vector (MV) identifies reference samples in a
picture other than the picture of a video block to be coded and thereby exploits
temporal redundancy in video. For example, a current video block may be predicted
from reference block(s) located in previously coded frame(s) and a motion vector may
be used to indicate the location of the reference block. A motion vector and associated
data may describe, for example, a horizontal component of the motion vector, a

vertical component of the motion vector, a resolution for the motion vector (e.g., one-
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quarter pixel precision, one-half pixel precision, one-pixel precision, two-pixel
precision, four-pixel precision), a prediction direction and/or a reference picture index
value. Further, a coding standard, such as, for example ITU-T H.265, may support
motion vector prediction. Motion vector prediction enables a motion vector to be
specified using motion vectors of neighboring blocks. Examples of motion vector
prediction include advanced motion vector prediction (AMVP), temporal motion
vector prediction (TMVP), so-called “merge” mode, and “skip” and “direct” motion
inference. Further, JEM supports advanced temporal motion vector prediction
(ATMVP), Spatial-temporal motion vector prediction (STMVP), Pattern matched
motion vector derivation (PMMVD) mode, which is a special merge mode based on
Frame-Rate Up Conversion (FRUC) techniques, and affine transform motion com-
pensation prediction techniques.

As described above, quantization may be realized through division of transform coef-
ficients by a scaling factor and further may be used in order to vary the amount of data
required to represent a group of transform coefficients. That is, increasing the scaling
factor (or degree of quantization) reduces the amount of data required to represent a
group coefficients. In ITU-T H.265, the degree of quantization may be determined by a
quantization parameter, QP. In ITU-T H.265, for a bit-depth of 8-bits, the QP can take
52 values from O to 51 and a change of 1 for QP generally corresponds to a change in
the value of the quantization scaling factor by approximately 12%. It should be noted
that more generally, in ITU-T H.265, the valid range of QP values for a source bit-
depth is: -6*(bitdepth-8) to +51 (inclusive). Thus, for example, in the case where the
bit-depth is 10-bits, QP can take 64 values from -12 to 51, which may be mapped to
values 0 to 63 during dequantization. In ITU-T H.265, a quantization parameter may
be updated for each CU and a respective quantization parameter may be derived for
each of luma and chroma components. It should be noted that as the degree of quan-
tization increases (e.g., transform coefficients are divided by a larger scaling factor
value), the amount of distortion may be increased (e.g., reconstructed video data may
appear more “blocky” to a user).

In some cases, blocking artifacts may cause coding block boundaries of reconstructed
video data to be visually perceptible to a user. In order to reduce blocking artifacts, re-
constructed sample values may be modified to minimize artifacts introduced by the
video coding process. Such modifications may generally be referred to as filtering. It
should be noted that filtering may occur as part of an in-loop filtering process or a
post-loop filtering process. For an in-loop filtering process, the resulting sample values
of a filtering process may be used for predictive video blocks (e.g., stored to a
reference frame buffer for subsequent encoding at a video encoder and subsequent

decoding at a video decoder). For a post-loop filtering process the resulting sample
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values of a filtering process are merely output as part of the decoding process (e.g., not
used for subsequent coding). For example, for an in-loop filtering process, the sample
values resulting from filtering a reconstructed block would be used for subsequent
decoding (e.g., stored to a reference buffer) and would be output (e.g., to a display).
For a post-loop filtering process, the reconstructed block without modification would
be used for subsequent decoding and the sample values resulting from filtering the re-
constructed block would be output.

[0024]  With respect to the equations used herein, the following arithmetic operators may be

used:
+ Addition
- Subtraction
* Multiplication, including matrix multiplication
/ Integer division with truncation of the result toward zero. For example, 7

/4 and —7 / —4 are truncated to 1 and —7 / 4 and 7 / —4 are truncated to
-1.

Y
Z f(@) The summation of f{ i) with i taking all integer values from x up to

i=x

and including y.

[0025] Further, the following mathematical functions may be used:

x ; z<Xx
Clip3(x,y,z)= <Y ; z>Y
z ; otherwise

Cliple(x) =Clip3(0, (1 << BitDepthc) — 1, x ), where is BitDepthc bitdepth

of chroma channel

abs(x) is the absolute value of x.

X ; X>=y

Max(x,y)={
y , X<¥

[0026]  Further, the following definitions of logical operators may be applied:
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[0028]

[0029]

[0030]

x && y Boolean logical "and" of x and y

x | | y Boolean logical "or" of x and y

! Boolean logical "not"

x?y‘z If xis TRUE or not equal to 0, evaluates to the value of y; otherwise,

evaluates to the value of z.

Further, the following relational operators may be applied:

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to
== Equal to

= Not equal to

Further, the following bit-wise operators may be applied:

X > y Arithmetic right shift of a two's complement integer
representation of x by y binary digits. This function is defined
only for non-negative integer values of y. Bits shifted into the
most significant bits (MSBs) as a result of the right shift have a
value equal to the MSB of x prior to the shift operation.

x << y  Arithmeticleft shift of a two's complement integer representation
of x by y binary digits. This function is defined only for
non-negative integer values of y. Bits shifted into the least
significant bits (LSBs) as a result of the left shift have a value
equal to 0.

Deblocking (or de-blocking), deblock filtering, performing deblocking, or applying a
deblocking filter refers to the process of smoothing video block boundaries with
neighboring reconstructed video blocks (i.e., making boundaries less perceptible to a
viewer). Smoothing the boundaries of neighboring reconstructed video blocks may
include modifying sample values included in rows or columns adjacent to a boundary.
ITU-T H.265 provides where a deblocking filter is applied to reconstructed sample
values as part of an in-loop filtering process. ITU-T H.265 includes two types de-
blocking filters that may be used for modifying luma samples: a Strong Filter which
modifies sample values in the three adjacent rows or columns to a boundary and a
Weak Filter which modifies sample values in the immediately adjacent row or column
to a boundary and conditionally modifies sample values in the second row or column
from the boundary. Further, ITU-T H.265 includes one type of filter that may be used
for modifying chroma samples, i.e., a Normal Filter.

FIGS. 5A-5B illustrate sample values included in video blocks P and Q having a
boundary. As used herein, video blocks P and Q are used to refer to adjacent video

blocks having a block boundary at which deblocking may be applied. The manner in
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which sample values are modified may be based on defined filters, where pi and qi
represent respective sample values in a column for a vertical boundary and sample
values in a row for a horizontal boundary and pi’ and qi’ represent modified sample
values. Defined filters may define samples that are to be modified (or filtered) and
samples that are used to determine how samples are to be modified. For example, as il-
lustrated in FIG. SA, in one example, samples values in each of the first three columns
adjacent to the deblocking boundary may be modified (illustrated as filtered samples)
based on sample values includes in the each of the first four columns adjacent to the
deblocking boundary (illustrated as support samples).

As described above, ITU-T H.265 includes two types of filters that may be used for
modifying luma samples: a Strong Filter and a Weak Filter. Simplified definitions of
the Strong Filter and Weak Filter equations for modifying luma sample values are
provided below. The definitions are simplified in that they do not include clipping op-
erations provided in ITU-T H.265 (i.e., in ITU-T H.265, filtered values are clipped
based on a value tC, described below), however, reference is made to Section 8.7.2.5.7
of ITU-T H.265, which provides the complete definitions.

Strong Filter

po= (pz + 2%p1 + 2%po + 2*qo+ q1 + 4)/8
pr'={pz + p1 +po + qo+ 2)/4

pz=(2*ps + 3*pz + p1 + po+ qo + 4)/8
qo'=(p1+ 2%po + 2%qo + 2*q1 + q2 + 4)/8

qr={(po+qo+ q1+qz+2)/4
q2= (po+ qo + q1 + 3¥q2+ 2*qs + 4)/8

Weak Filter

A =(9%(qo—po) — 3 * (q1 — p1) + 8)/16

po=po+A

go=qo—A

Where p1 and q1 are conditionally modified, as described below, as follows
Ap = ((pat+ po+ 1)/2 - p1+ AN)/2

Aq = ((ga+ po+ 1V/2 - q1- A)/2

pr=pi+Ap

Qr=qi+Aq

Further, ITU-T H.265 includes one type of filter that may be used for modifying
chroma samples: Normal Filter. Simplified definitions for the Normal Filter equations

for modifying chroma sample values are provided below.

Normal Filter
A=({qo—po)*4+pi—qi +4¥8
po=po+A

qo=qo-A
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[0033]  Deblocking may be performed based on a deblocking granularity. ITU-T H.265
provides an 8x8 deblocking granularity. That is, in ITU-T H.265 for an area of a
picture, each edge lying on the 8x8 grid is evaluated to determine if a boundary exists.
Further, in ITU-T H.265, a boundary strength (Bs) is determined for each boundary. In
ITU-T H.265, Bs is determined as one of O, 1, or 2 as follows:

P and Q are two adjacent coding blocks then the filter strength Bs is specified as:

If one of the blocks (P or QQ) has an intra prediction mode, then Bs = 2;
Else if P and Q belong to different TBs and P or Q has at least one
non-zero
transform coefficient, then Bs =1,
Else if the reference pictures of P and Q are not equal, then Bs=1;
Else if the difference between x or y motion vector component of P
and Q is equal or greater than one integer sample, then Bs = 1;
Else, Bs = 0.

[0034] In ITU-T H.265, based on the QP used for coding the CBs including video blocks P
and Q (which may be referred to as QPp and QPy), variables t-’ and ” are determined.
FIG. 6 provides a table for determining tc’ and 8’. In ITU-T H.265, the index Q is de-

termined as follows:
For Luma:
For p’:
Q =Clip3(0, 51, gP.+(slice beta offset div2 << 1))
Fort;
Q = Clip3(0, 53, qP+2*(bS-1)+(slice tc offset div2 << 1)),
where,
qPL=(QPq + QPp + 1)/2;
slice_beta offset div2 is an offset value that applies to the slice of video data

that includes sample qp0; and

slice tc_offset_div2 is an offset value that applies to the slice of video data that

includes sample qp,.

[0035] ITU-T H.265, variables 3 and tc are derived as follows:
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B=P"* (1 <<(BitDepthy — 8))
tc =t * (1 << ( BitDepthy — 8 ))
where, BitDepthy specifies the bit depth of luma samples.

[0036] ITU-T H.265, defines a variable d, where d is determined based on luma sample

values as follows:
dp0 = abs(pz,0— 2*p1,0 + Poo )
dp3 = abs(p2,3 - 2*]31,3 + po,g)
dq0 = abs( q2,0 — 2*q1,0 + Qo0 )
dq3 = abs( q23 — 2*qu3 + qo3 )
dpq0 = dp0 + dq0
dpq3 = dp3 + dq3
dp =dp0 + dp3
dgq =dq0 +dq3
d = dpq0 + dpq3
[0037]  Further, in ITU-T H.265 a variable dpq is set to a value based on the values of d and
(. Finally, in ITU-T H.265, each of Bs, tC, 3, and d are used to determine which filter
type to apply (e.g., Strong Filter or Weak Filter). Further, in ITU-T H.265, for the
chroma component, the Normal Filter is applied only when Bs equals 2. That is, in
ITU-T H.265, deblocking only occurs for the chroma component if one the blocks P or
Q is generated using an intra prediction mode.
[0038] It should be noted, that it may be useful to generally describe a deblocking filter
according to a set of filter parameters. For example, for a set of sample values {a...b}

included in a row or column, a corresponding deblocked sample value, y[n] may be

specified based on the following equation:
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b
vin] = Z coef flm)xn +m)

=g

Where,

A filter length is determined as abs(a-b+1);

coeff{m] provides a filter tap value (also referred to as a filter coefficient). For
example, for {a...b} ={0...4}, a set of tap values may be {1, 2, 3,2, 1};

x[ntm] provides input sample values corresponding to support samples, it

should be noted that the support size may be greater than or equal to the filter length.

Further, in ITU-T H.265, the deblocking filter may be applied differently to CTU
boundaries that coincide with slice and tile boundaries compared with CTU boundaries
that do not coincide with slice and tile boundaries. Specifically, ITU-T H.265 specifies
a flag, slice_loop_filter_across_slices_enabled_flag, present in a slice segment header
that enables/disables the deblocking filter across CTU boundaries that coincide with
top and left slice boundaries. ITU-T H.265 provides the following definition for
slice_loop_filter_across_slices_enabled_flag:

slice_loop_filter_across_slices_enabled_flag equal to 1 specifies that in-loop filtering
operations may be performed across the left and upper boundaries of the current slice.
slice_loop_filter_across_slices_enabled_flag equal to O specifies that in-loop op-
erations are not performed across left and upper boundaries of the current slice. The in-
loop filtering operations include the deblocking filter and sample adaptive offset filter.
When slice_loop_filter_across_slices_enabled_flag is not present, it is inferred to be
equal to pps_loop_filter_across_slices_enabled_flag.

Where pps_loop_filter_across_slices_enabled_flag is present in a picture parameter
set (PPS) and ITU-T H.265 provides the following definition for
pps_loop_filter_across_slices_enabled_flag:

pps_loop_filter_across_slices_enabled_flag equal to 1 specifies that in-loop filtering
operations may be performed across left and upper boundaries of slices referring to the
PPS. pps_loop_filter_across_slices_enabled_flag equal to O specifies that in-loop
filtering operations are not performed across left and upper boundaries of slices
referring to the PPS. The in-loop filtering operations include the deblocking filter and
sample adaptive offset filter operations.

NOTE — Loop filtering across slice boundaries can be enabled while loop

filtering across tile boundaries is disabled and vice versa.
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Similarly, a flag, loop_filter_across_tiles_enabled_flag, present in a PPS enables/
disables the deblocking filter across CTU boundaries that coincide with tile
boundaries. ITU-T H.265 provides the following definition for
loop_{filter_across_tiles_enabled_flag:

loop_{filter_across_tiles_enabled_flag equal to 1 specifies that in-loop filtering op-
erations may be performed across tile boundaries in pictures referring to the PPS.
loop_filter_across_tiles_enabled_flag equal to O specifies that in-loop filtering op-
erations are not performed across tile boundaries in pictures referring to the PPS. The
in-loop filtering operations include the deblocking filter and sample adaptive offset
filter operations. When not present, the value of loop_filter_across_tiles_enabled_flag
is inferred to be equal to 1.

As described above, for deblocking, the index Q is determined based on
slice_beta_offset _div2 and slice tc_offset div2. In ITU-T H.265, the values of
slice_beta_offset_div2 and slice_tc_offset_div2 may be included in a slice segment
header and have the following definitions:

slice_beta_offset_div2 and slice_tc_offset_div2 specify the deblocking parameter
offsets for 3 and tc (divided by 2) for the current slice. The values of
slice_beta_offset_div2 and slice_tc_offset_div2 shall both be in the range of -6 to 6,
inclusive. When not present, the values of slice_beta_offset_div2 and
slice_tc_offset_div2 are inferred to be equal topps_beta_offset_div2 and
pps_tc_offset div2, respectively.

Where pps_beta_offset_div2 and pps_tc_offset_div2 are present in a PPS and ITU-T
H.265 provides the following definition for pps_beta_offset_div2 and
pps_tc_offset_div2:

pps_beta_offset_div2 and pps_tc_offset_div2 specify the default deblocking
parameter offsets for [ and tc (divided by 2) that are applied for slices referring to the
PPS, unless the default deblocking parameter offsets are overridden by the deblocking
parameter offsets present in the slice headers of the slices referring to the PPS. The
values of pps_beta_offset_div2 and pps_tc_offset_div2 shall both be in the range of -6
to 6, inclusive. When not present, the value of pps_beta_offset_div2 and
pps_tc_offset_div2 are inferred to be equal to 0.

As described above, ITU-T H.265 provides an 8x8 deblocking granularity. In JEM,
deblocking is performed according to a grid specified by a variable minCUWidth for a
horizontal boundary or a variable minCUHeight for a vertical boundary, where the
default values of minCUWidth and minCUHeight are 4. A value of d is also de-
termined in JEM where the calculation of d is same with that in ITU-T H.265. Based
on the value of d above, a determination is made whether to perform deblocking on the

boundary. That is, if d < 3, a deblocking filter is used for the current boundary other,
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no deblocking is performed on the boundary. Further, in JEM a determination to use a
strong or a weak filter is identical that in ITU-T H.265. Finally, in the JEM reference
software, the luma filter coefficients for the strong deblocking filters is identical with
the coefficients used in ITU-T H.265. Deblocking as performed in ITU-T H.265 and
JEM may be less than ideal. In particular deblocking as perform in ITU-T H.265 and
JEM fail to consider various coding parameters and properties of reconstructed video
data when performing deblocking.

FIG. 7 is a block diagram illustrating an example of a system that may be configured
to code (i.e., encode and/or decode) video data according to one or more techniques of
this disclosure. System 100 represents an example of a system that may encapsulate
video data according to one or more techniques of this disclosure. As illustrated in
FIG. 7, system 100 includes source device 102, communications medium 110, and des-
tination device 120. In the example illustrated in FIG. 7, source device 102 may
include any device configured to encode video data and transmit encoded video data to
communications medium 110. Destination device 120 may include any device
configured to receive encoded video data via communications medium 110 and to
decode encoded video data. Source device 102 and/or destination device 120 may
include computing devices equipped for wired and/or wireless communications and
may include, for example, set top boxes, digital video recorders, televisions, desktop,
laptop or tablet computers, gaming consoles, medical imagining devices, and mobile
devices, including, for example, smartphones, cellular telephones, personal gaming
devices.

Communications medium 110 may include any combination of wireless and wired
communication media, and/or storage devices. Communications medium 110 may
include coaxial cables, fiber optic cables, twisted pair cables, wireless transmitters and
receivers, routers, switches, repeaters, base stations, or any other equipment that may
be useful to facilitate communications between various devices and sites. Commu-
nications medium 110 may include one or more networks. For example, commu-
nications medium 110 may include a network configured to enable access to the World
Wide Web, for example, the Internet. A network may operate according to a com-
bination of one or more telecommunication protocols. Telecommunications protocols
may include proprietary aspects and/or may include standardized telecommunication
protocols. Examples of standardized telecommunications protocols include Digital
Video Broadcasting (DVB) standards, Advanced Television Systems Committee
(ATSC) standards, Integrated Services Digital Broadcasting (ISDB) standards, Data
Over Cable Service Interface Specification (DOCSIS) standards, Global System
Mobile Communications (GSM) standards, code division multiple access (CDMA)

standards, 3rd Generation Partnership Project (3GPP) standards, European Telecom-



CA 03095549 2020-09-29

WO 2019/188944 PCT/JP2019/012422

[0047]

[0048]

[0049]

munications Standards Institute (ETSI) standards, Internet Protocol (IP) standards,
Wireless Application Protocol (WAP) standards, and Institute of Electrical and
Electronics Engineers (IEEE) standards.

Storage devices may include any type of device or storage medium capable of storing
data. A storage medium may include a tangible or non-transitory computer-readable
media. A computer readable medium may include optical discs, flash memory,
magnetic memory, or any other suitable digital storage media. In some examples, a
memory device or portions thereof may be described as non-volatile memory and in
other examples portions of memory devices may be described as volatile memory.
Examples of volatile memories may include random access memories (RAM),
dynamic random access memories (DRAM), and static random access memories
(SRAM). Examples of non-volatile memories may include magnetic hard discs, optical
discs, floppy discs, flash memories, or forms of electrically programmable memories
(EPROM) or electrically erasable and programmable (EEPROM) memories. Storage
device(s) may include memory cards (e.g., a Secure Digital (SD) memory card),
internal/external hard disk drives, and/or internal/external solid state drives. Data may
be stored on a storage device according to a defined file format.

Referring again to FIG. 7, source device 102 includes video source 104, video
encoder 106, data encapsulator 107, and interface 108. Video source 104 may include
any device configured to capture and/or store video data. For example, video source
104 may include a video camera and a storage device operably coupled thereto. Video
encoder 106 may include any device configured to receive video data and generate a
compliant bitstream representing the video data. A compliant bitstream may refer to a
bitstream that a video decoder can receive and reproduce video data therefrom.
Aspects of a compliant bitstream may be defined according to a video coding standard.
When generating a compliant bitstream video encoder 106 may compress video data.
Compression may be lossy (discernible or indiscernible to a viewer) or lossless.

FIG. 8 is a block diagram illustrating an example of video encoder 200 that may
implement the techniques for encoding video data described herein. It should be noted
that although example video encoder 200 is illustrated as having distinct functional
blocks, such an illustration is for descriptive purposes and does not limit video encoder
200 and/or sub-components thereof to a particular hardware or software architecture.
Functions of video encoder 200 may be realized using any combination of hardware,
firmware, and/or software implementations. In one example, video encoder 200 may
be configured to encode video data according to the techniques described herein.
Video encoder 200 may perform intra prediction coding and inter prediction coding of
picture areas, and, as such, may be referred to as a hybrid video encoder. In the

example illustrated in FIG. 8, video encoder 200 receives source video blocks. In some
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examples, source video blocks may include areas of picture that has been divided
according to a coding structure. For example, source video data may include mac-
roblocks, CTUs, CBs, sub-divisions thereof, and/or another equivalent coding unit. In
some examples, video encoder may be configured to perform additional sub-divisions
of source video blocks. It should be noted that the techniques described herein are
generally applicable to video coding, regardless of how source video data is partitioned
prior to and/or during encoding. In the example illustrated in FIG. 9, video encoder
200 includes summer 202, transform coefficient generator 204, coefficient quantization
unit 206, inverse quantization/transform processing unit 208, summer 210, intra
prediction processing unit 212, inter prediction processing unit 214, filter unit 216, and
entropy encoding unit 218. As illustrated in FIG. 8, video encoder 200 receives source
video blocks and outputs a bitstream.

[0050]  In the example illustrated in FIG. 8, video encoder 200 may generate residual data by
subtracting a predictive video block from a source video block. Summer 202 represents
a component configured to perform this subtraction operation. In one example, the sub-
traction of video blocks occurs in the pixel domain. Transform coefficient generator
204 applies a transform, such as a discrete cosine transform (DCT), a discrete sine
transform (DST), or a conceptually similar transform, to the residual block or sub-
divisions thereof (e.g., four 8x8 transforms may be applied to a 16x16 array of residual
values) to produce a set of residual transform coefficients. Transform coefficient
generator 204 may be configured to perform any and all combinations of the
transforms included in the family of discrete trigonometric transforms. Transform co-
efficient generator 204 may output transform coefficients to coefficient quantization
unit 206.

[0051]  Coefficient quantization unit 206 may be configured to perform quantization of the
transform coefficients. As described above, the degree of quantization may be
modified by adjusting a quantization scaling factor which may be determined by quan-
tization parameters. Coefficient quantization unit 206 may be further configured to
determine quantization values and output QP data that may be used by a video decoder
to reconstruct a quantization parameter to perform inverse quantization during video
decoding. For example, signaled QP data may include QP delta values. In ITU-T
H.265, the degree of quantization applied to a set of transform coefficients may depend
on slice level parameters, parameters inherited from a previous coding unit, and/or op-
tionally signaled CU level delta values.

[0052]  Asillustrated in FIG. 8, quantized transform coefficients are output to inverse quan-
tization/transform processing unit 208. Inverse quantization/transform processing unit
208 may be configured to apply an inverse quantization and/or an inverse trans-

formation to generate reconstructed residual data. As illustrated in FIG. §, at summer
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[0053]

[0054]

210, reconstructed residual data may be added to a predictive video block. In this
manner, an encoded video block may be reconstructed and the resulting reconstructed
video block may be used to evaluate the encoding quality for a given quality for a
given prediction, transformation type, and/or level of quantization. Video encoder 200
may be configured to perform multiple coding passes (e.g., perform encoding while
varying one or more coding parameters). The rate-distortion of a bitstream or other
system parameters may be optimized based on evaluation of reconstructed video
blocks. Further, reconstructed video blocks may be stored and used as reference for
predicting subsequent blocks.

As described above, a video block may be coded using an intra prediction. Intra
prediction processing unit 212 may be configured to select an intra prediction mode for
a video block to be coded. Intra prediction processing unit 212 may be configured to
evaluate a frame and/or an area thereof and determine an intra prediction mode to use
to encode a current block. As illustrated in FIG. 8, intra prediction processing unit 212
outputs intra prediction data (e.g., syntax elements) to filter unit 216 and entropy
encoding unit 218.

Inter prediction processing unit 214 may be configured to perform inter prediction
coding for a current video block. Inter prediction processing unit 214 may be
configured to receive source video blocks and calculate a motion vector for PUs, or the
like, of a video block. A motion vector may indicate the displacement of a PU, or the
like, of a video block within a current video frame relative to a predictive block within
a reference frame. Inter prediction coding may use one or more reference pictures.
Further, motion prediction may be uni-predictive (use one motion vector) or bi-
predictive (use two motion vectors). Inter prediction processing unit 214 may be
configured to select a predictive block by calculating a pixel difference determined by,
for example, sum of absolute difference (SAD), sum of square difference (SSD), or
other difference metrics. A motion vector and associated data may describe, for
example, a horizontal component of the motion vector, a vertical component of the
motion vector, a resolution for the motion vector (e.g., one-quarter pixel precision), a
prediction direction and/or a reference picture index value. Further, a coding standard,
such as, for example ITU-T H.265, may support motion vector prediction. Motion
vector prediction enables a motion vector to be specified using motion vectors of
neighboring blocks. Examples of motion vector prediction include advanced motion
vector prediction (AMVP), temporal motion vector prediction (TMVP), so-called
“merge” mode, and “skip” and “direct” motion inference. Inter prediction processing
unit 214 may be configured to perform motion vector prediction according to one or
more of the techniques described above. Inter prediction processing unit 214 may be

configured to generate a predictive block using the motion prediction data. For
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[0055]

[0056]

[0057]

example, inter prediction processing unit 214 may locate a predictive video block
within a frame buffer (not shown in FIG. 8). It should be noted that inter prediction
processing unit 214 may further be configured to apply one or more interpolation
filters to a reconstructed residual block to calculate sub-integer pixel values for use in
motion estimation. Inter prediction processing unit 214 may output motion prediction
data for a calculated motion vector to filter unit 216 and entropy encoding unit 218.

As described above, deblocking refers to the process of smoothing the boundaries of
reconstructed video blocks. As illustrated in FIG. 8, filter unit 216 receives recon-
structed video blocks and coding parameters (e.g., intra prediction data, inter
prediction data, and QP data) and outputs modified reconstructed video data. Filter unit
216 may be configured to perform deblocking and/or Sample Adaptive Offset (SAO)
filtering. SAO filtering is a non-linear amplitude mapping that may be used to improve
reconstruction by adding an offset to reconstructed video data. It should be noted that
as illustrated in FIG. 8, intra prediction processing unit 212 and inter prediction
processing unit 214 may receive modified reconstructed video block via filter unit 216.
That is, in some cases, deblocking may occur in-loop, i.e., predictive video blocks
stored in a reference buffer may be filtered. In some cases, deblocking may occur post-
loop, i.e., after video data has been reconstructed and prior to being output to a display,
for example. The techniques described herein may be applicable in-loop deblocking,
post-loop deblocking, and/or combinations thereof.

As described above, deblocking as performed in ITU-T H.265 and JEM may be less
than ideal. In one example, according to the techniques herein, filter unit 216 may be
configured to select different filtering lines (in some cases, the number of samples
deblocked on each side of boundary may be different) based on one or more of: block
size on each side of boundary (one or both), boundary strength, prediction mode used
by blocks on each side of boundary, prediction mode (e.g. intra, inter, skip) of sample
being deblocked (e.g., use weaker filter for boundary close to reference samples), QP
value of sample being deblocked, block size corresponding to the sample being
deblocked, block size corresponding to the samples being used for deblocking, motion
vectors for blocks on each side of boundary being deblocked, motion vectors for
sample being deblocked, and/or motion vectors for sample being used for deblocking.

Samples on each side of a block boundary (perpendicular to the boundary edge) may

be represented as:
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[0058]

[0059]

[0060]

[0061]

[0062]

[0063]

[0064]

[0065]

.. DP8PTPEPsPAPIP2PIPO | 90 Q1 Q243 Q4 956 Q7 q8 ...

Where,
| represents the block boundary edge.

The samples px, where x is a positive integer starting at 0, represents the P-side of the
boundary. The samples gy where y is a positive integer starting at 0, represents the
Q-side of the boundary.

In an example, P-side represents samples outside the current CU, Q-side represents
samples inside the current CU.

In an example, P-side represents samples inside the current CU, Q-side represents
samples outside the current CU.

In an example, P-side represents samples outside the current block, Q-side represents
samples inside the current block.

In an example, P-side represents samples inside the current block, Q-side represents
samples outside the current block.

Referring FIG. 5A, samples p,,and g, correspond to line R[x] when deblocking
vertical edge.

Referring FIG. 5B, samples p,,and q,, correspond to line R[y] when deblocking
horizontal edge.

One example of a wider (i.e. larger number of samples deblocked), stronger filter for
P-side of the boundary, referred to as WSOOP P-side filter, is:

ps’ = (7*prt2*pstpstpatpstpatpitpotqot 8) >> 4

ps’ = (6*prtpet2*pstpatpstpatpitpotqetqit 8) >> 4

pd’ = (5*pripetpst2¥patpstprpitpetqotqitqyt 8) >> 4

Py’ = (4 prtpetpstpat2*prtprtpitpotqotqitqrtgst 8) >> 4

P = (3*prtpstpstpatpst2*prtpitpotqetqitqatqitqets) >> 4

P’ = QFprHpetpstpatpitoat2 ¥ prtpot ot qrtaatqatqatyst8) >> 4
po’ = (prpetPstPatpstpatpit2¥potqotqitaatqstgetstgst8) >> 4

where, p,” represents the sample value after deblocking at position corresponding to p

One example of a wider (i.e. larger number of samples deblocked), stronger filter for
Q-side of the boundary, referred to as WS00Q Q-side filter, is:
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g6 = (7*qrt2*qe+qstaatqstget qitqotpet 8) >> 4

a5’ = (6%qrtq6T2%qstqatqstgatqitqetpetprt 8) >> 4

a9’ = (5*qrtqetqst2*qatqstaatqrrqotpetprtpat 8) >> 4

a5’ = (4*qrtqetqstqet2¥qstqatqtqetpotpitpatpst 8) >> 4

@' =(3*qrtastdstaatast2¥* Qe qitqetpetprpatpstpat8) >> 4

@’ = (2*qr+aetastaatast Q2 it qetpotpiprpatpatpst8) > 4
Q' = (A7+Q6tQstatastarrqut2 ¥ qotpotpitpatpatpatpstpsts) >> 4

where, q,” represents the sample value after deblocking at position corresponding to g
[0066]  One example of a narrow (i.e. smaller number of samples deblocked), strong filter
for P-side of the boundary, referred to as HEVC_P P-side filter, is:

P = (P2t 2*p+2¥pp+2*qu+q+4) >> 3
p'=(p2+pitpotqt2) >>2
P =(2%ps+3*pytptpotqetd) >> 3

where, p,” represents the sample value after deblocking at position corresponding to p

[0067]  One example of a narrow (i.e. smaller number of samples deblocked), strong filter
for Q-side of the boundary, referred to as HEVC_Q Q-side filter, is:

Q=(p+2*p+2Fq+2%q+qt4)>>3
@' =(ptqgtat+tqgpt+2) >2

Q= (Pt @t t3¥q@p+2*q+4)>>3

where, q,” represents the sample value after deblocking at position corresponding to q

[0068] One example of a narrow (smaller number of samples deblocked), strong filter for P-
side of the boundary, referred to as NSOOP P-side filter, is:

Po'= (p2 +2*p+2¥po+2*qetq; +4) >> 3
p1'= (p2tp1t potqet4) >> 3
P2'=.(pat2¥pat3¥pot p1+ potd) >>3

where, p,” represents the sample value after deblocking at position corresponding to p

[0069]  One example of a narrow (smaller number of samples deblocked), strong filter for Q-
side of the boundary, referred to as NS00Q Q-side filter, is:
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[0070]

[0071]

[0072]

[0073]

[0074]

[0075]

qo’: (QZ +2*q1+2*q0+2*p0+p1 +4) >> 73
Q1= (q2tqi+ qotpotd) >> 3
qz': (q4+2*q3+3 *q2+ q1+ q0+4) >> 73

where, q,” represents the sample value after deblocking at position corresponding to q,
One example of a narrow (smaller number of samples deblocked), strong filter for P-
side of the boundary, referred to as NSOOP P-side filter, is:

Po'= (P2 +2*p1H2%pe+2*qotq; +4) >> 3

1= (p2tp1t potqot2) >>2

p2'= (pa+2*ps+3*pat p1t+ pot4) >> 3

One example of a narrow (smaller number of samples deblocked), strong filter for Q-
side of the boundary, referred to as NS00Q Q-side filter, is:

Qo= (92 +2%q1+2*qo+2*potp1 +4) >> 3

Q"= (q2tqit qotpet2) >> 2

Q'= (qa+2*qs+3*qut+ qut+ qot4) >> 3

One example of a narrow (smaller number of samples deblocked), strong filter for P-
side of the boundary, referred to as NSOOP P-side filter, is:

po’z (p2 +2*p1+2*p0+2*q0+q1 +4) >> 3
p1'= (p21pit potqot2) >> 2
p2'= (2*p3t3*pat pit potqotd) >>3

One example of a narrow (smaller number of samples deblocked), strong filter for Q-
side of the boundary, referred to as NS00Q Q-side filter, is:

qO/: (q2 +2*q1+2*q0+2*p0+p1 +4) >>3
ql': (q2+q1+ q0+p0+2) >>
G@'= (2*qs+3%qt qit qot po +4) >> 3

One example of a narrow (smaller number of samples deblocked), weak filter for P-
side of the boundary, referred to as NWOOP P-side filter, is:

A=ClLp3(—te, te, ((((Q—po) << 2)+pi—q+4) >>3))
po' = Cliple(po+ A)

where, p,” represents the sample value after deblocking at position corresponding to p

X

One example of a narrow (smaller number of samples deblocked), weak filter for Q-
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side of the boundary, referred to as NW00Q Q-side filter, is:
A=Clip3(—te, te, ((((Qo~po) << 2)+pi—qu1+4) >> 3))

qo' = Cliple(go—A)

where, q,” represents the sample value after deblocking at position corresponding to g
[0076] One example of a filter for P-side of the boundary, referred to as FOP P-side filter, is:

po’ = (136*pg + 120*qg + 128) >> 8
p’ =(151*p; + 105%qe + 128) >> 8
P2’ = (166%pg + 90*qyo + 128) >> 8
p3’ = (181%*ps + 75%*q; + 128) >> 8
P4’ =(196%py + 60%*q2 + 128) >> 8
ps’ =(211%p; +45%q;3 + 128)>> 8
ps’ = (226*py +30%q4 + 128) >> 8
Py = (241%p; + 15%q;s + 128) >> §
[0077]  One example of a filter for Q-side of the boundary, referred to as FOQ Q-side filter,
is:
Qo’ = (120%py + 136%q7 + 128 ) >> 8
qi’ = (105%p1o + 151 *qe + 128) >> 8
42" = (90*p1 + 166*qs + 128) >> 8
qs° = (75%p1p + 181%qq + 128) >> 8
q4 = (60*py3 + 196*q3 + 128) >> 8
Q5" = (45*p14 + 211*qp + 128) >> 8
qs’ = (30%p1s + 226%q; + 128) >> 8
q7’ = (15*p1s + 241*qo + 128) >> 8
[0078]  One example of a filter for P-side of the boundary, referred to as F1P P-side filter, is:
po’= (2*p1+4*petqotqit4) >> 3
pi'= 2*prt4*ptpotqoetd) >> 3
P2'= (pstprtprtpot2) >> 2
p3"= (patpstpztpit2) >>2

[0079] One example of a filter for Q-side of the boundary, referred to as F1Q Q-side filter,

is:
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Qo= (2*qit4*gotpotpit4) >>3
Q1= (2*qe+4*qrtqetpot4) >> 3
qz,: (q3+q2+q1+q0+2) > 2

Q3= (Qatqatqetq+2) >> 2

PCT/JP2019/012422

[0080]  In one example, the distance of a sample being deblocked from the boundary may be

inversely proportional to the distance between the support sample assigned the largest

tap value and the sample being deblocked. Further, the distance of a second largest tap

value from a sample being deblocked may be proportional to the distance of the sample

from the boundary. Filters F2P and F2Q described below provide example imple-

mentations of such a filtering. One example of a filter for P-side of the boundary,

referred to as F2P P-side filter, is:
po’ = (136%pg + 2%py + 120%qs + 256) >> 9
p1’ = (151%py + 4*p; + 105%qs + 256) >>9
p2’ = (166%*pg + 8%py + 907*q1o + 256) >> 9
p3’ = (181%ps + 16%ps + 75%q; + 256) >> 9
P4’ = (196%ps + 32%ps + 60*q)2 + 256) >> 9
ps’ = (211%*p; + 64%ps + 45%q)3 + 256) >> 9

Ps’ = (226%py + 128*ps + 30*q14 + 256) >> 9
P7’ = (241*p1 + 256*]37 + 15*(:115 + 256) >>9Q

[0081] One example of a filter for Q-side of the boundary, referred to as F2Q Q-side filter,

is:
qo’ = (120%pg + 2%qo + 136%*q; + 256) >> 9
qi” = (105%*py + 4%q; + 151*qs + 256) >> 9
Q" = (90%py; + 8*qx + 166*qs + 256) >> 9
Q@ = (75*p12 +16*q3 + 181*q4 +256) >> 9
g4’ = (60%py3 + 32%qq + 196%g3 +256) >> 9
qs’ = (45%pys + 64%qs + 21 1*qp + 256) >> 9

qs’ = (30*pys5 + 128*qs + 226%q; +256) >> 9
q7’ = (15%*p16 + 256%qy + 241*qy + 256) >> 9

[0082] One example of a filter for P-side of the boundary, referred to as F4P P-side filter, is:
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Ps’ = (7*prt2¥petpstpatpstpat pitpotqet 8) >> 4

ps’ = (6*p7tpe+2*pstpatpstpatprtpotqotqit 8) >> 4

pa’ = (5*pripstpst2*patpstpatpitpotaetqitqet 8) >> 4

p3” = (A*prpstpstpat2*psHpatprtpotqotqitqatast 8) >> 4

P2’ = (3*prtpetpstpatpst2¥potpitpotqotqitqrtgstgst8) >> 4

P’ = Q*prpetpstpatpstpat2¥pitpotqetqitqetqstqatgst8) >> 4

Po” = (P76 tPs P4 P3Pt P12%potqotqitqatgstgatqstqets) >> 4
[0083] One example of a filter for Q-side of the boundary, referred to as F4Q Q-side filter,

is:

qs’ = (7T*q7+2*qetqstqatqs+qot qr+qotpot 8) >> 4

gs’ = (6*qrtqet2*qstqatqitaetqitqotpotpit 8) >> 4

G4’ = (5*q7tqetqst2*qetqstqatqitqotpotpitpzt 8) >> 4

93" = (4*q7+qsTqs+qat2¥qstqatqitqotpotpitpatpst 8) >> 4

G’ = 3*qrtqstqsTqsTq3+2* Qi+ qotpotpitpatpstpat8) >> 4

qQi’ = (2*qrqetqstqat Qs Qa2 *qrHqotpotpiHpatpatpatpst8) >> 4

Q" = (q7+qetastQatastaztqit2*qotpetpitpa tpytpatpsTpet8) >> 4

[0084]  In one example, according to the techniques herein, gradient computation may be
used in selection of filter parameters, number of samples to be deblocked on one (or
both) side of block boundary. Gradient may be computed using samples in line R[x].

[0085]  In an example multiple gradients may be computed using samples in line R[x] and
used in selection of filter parameters, number of samples to be deblocked on one (or
both) side of block boundary. In another example, multiple gradients may be computed
using samples in line R[x] and operations such as averaging of gradients, maximum
gradient, minimum gradient, may be used in selection of filter parameters, number of
samples to be deblocked on one (or both) side of block boundary.

[0086]  In one example, function invocation xCalDQp(R[x]) computes gradient, as follows:
abs(p, —2*pi+po)

[0087]  In one example, function invocation xCalDQq(R[x]) computes gradient, as follows:
abs(qz ~2*q1+qo) |

[0088]  In one example, function invocation xCalDQpLargeBlock(R[x]) computes gradient,

as follows:
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[0089]

[0090]

[0091]

[0092]

[0093]

[0094]

Max(Max(Max(Max(Max( abs(p2—2*p1+po),
abs(ps—2*p2tp1)),
abs(ps—2*pstp2)),
abs(ps—2*patps)),
abs(ps —2*ps+ps)),
abs(p7—2*petps))

In one example, function invocation xCalDQqLargeBlock(R[x]) computes gradient,

as follows:
Max(Max(Max(Max(Max( abs(qz—2*q1+qo),
abs(q3=2*qotqu)),
abs(qs—2*q3tq2)),
abs(qs—2%q4tqs)),
abs(qs —2*qstq4)),
abs(q7~2*qe*qs))
In one example, function invocation xCalDQpLargeBlock(R[x]) computes gradient,

as follows:

(abs(p2—2*pi+po) + abs(ps—2%pe+p1) + abs(ps —2*patps) + abs(pr —2*petps) + 4) >>
2

In one example, function invocation xCalDQqLargeBlock(R[x]) computes gradient,

as follows:

(abs(ge—2*q1+qo) + abs{qs—2%qz+q1) + abs(qs —2*qatqs) + abs(qr —2*qe+qs) + 4) >>
2

In one example, function invocation xCalDQpLargeBlock(R[x]) computes gradient,

as follows:

(abs{pe—2*p1+po) + abs(pa—2*patp1) + abs(ps —2*patps) + abs(pr —2*petps) + 2) >>
2

In one example, function invocation xCalDQqLargeBlock(R[x]) computes gradient,
as follows:

(abs{qz—2*q1+qo) + abs(qz—2*qe+qy) + abslqs —2%qatqa) + abs(qr —2*getqs) + 2) >>
2

In one example, function invocation xCalDQpLargeBlock(R[x]) computes gradient,

as follows:

(abs(p2—2*p1+po) + abs(pz—2*pat+p1) + abs(ps —2*pat+p2) + abs(ps —2*patps) + 4) >>
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[0095]

[0096]

[0097]

[0098]

[0099]

[0100]

[0101]

In one example, function invocation xCalDQqLargeBlock(R[x]) computes gradient,

as follows:

(abs(qz—2*q1+qo) + abs(qs—2%qa+qu) + abs(qs ~2%qa+qa) + abs(qs ~2*qat+qa) + 4) >>
2

In one example, function invocation xCalDQpLargeBlock(R[x]) computes gradient,
as follows:

(abs(pa—2*p1+po) + abs(ps—2*pz+p1) + abs(ps —2*patpa) + abs(ps —2%patps) + 2) >>
2

In one example, function invocation xCalDQqLargeBlock(R[x]) computes gradient,

as follows:

(abs(gz~2%q1+qo) + abs(gs—2%qa+q1) + abs(qs —2*qs+q2) + abs(qs —2%qatga) + 2) >>
2

In one example, function invocation xCalDQpLargeBlock(R[x]) computes gradient,

as follows:
(abs(pa—2*p1tpo) + abs(ps —2*pstps) + 1)>> 1

In one example, function invocation xCalDQqLargeBlock(R[x]) computes gradient,

as follows:

(abs(qz—2*qi+qo) + abs(qs —2%qat+qa) + 1) >>1
In one example, a subset of second-order differences computed at p1, pa,...,ps may be
used to compute xCalDQpLargeBlock(R[x]) where second order difference at py is
abs(pn.1 — 2*py + par1).  Similarly, a subset of second-order differences computed at q,
q2,...,qs may be used to compute xCalDQqLargeBlock(R[x]) In one example, the
rounding offset in the function invocation xCalDQpLargeBlock(R[x]) and

xCalDQqLargeBlock(R[x]) can be dropped.

In one example, function invocation xUseStrongFilteringlLargeBlock Rlxl, d,
bSidePisLargeBlk, bSideQisLargeBlk) computes a Boolean variable, as follows, where
examples for determined bSidePisLargeBlk, bSideQisLargeBlk are provided below:

((abs((bSidePisLargeBlk ? p7.p4) - po) + abs((bSideQisLargeBlk ? g7.q4) - qo)< (B>>
3)) && (d < (B >> 2)) && (abs(go- po) < ((tc * 5 + 1) >> 1)))? TRUE:FALSE, where B
and tc are thresholds.

In one example, function invocation xUseStrongFilteringLargeBlock (R[x], d, bSide-

PisLargeBlk, bSideQisLargeBlk) computes a Boolean variable, as follows:
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sps = Abs(ps — po)
if (bSidePisLargeblk)
{
sp3 = max( sp3, max(Abs( p7 — p3 ), Abs( p7—po))
3
sq3 = Abs(qo~ q3)
- if (bSideQisLargeblk)
{
sqs = max( sqs, max(Abs( g7 — q3 ), Abs( q7 — qo )))
}
xUseStrongFilteringLargeBlock: sp; + sqs < (>> 3) && (d < (B >> 2)) && (abs(qo- po)
<((tc * 5 + 1)>> 1)))? TRUE:FALSE.

[0102]  In one example, function invocation xUseStrongFilteringLargeBlock (R[x], d, bSide-
PisLargeBlk, bSideQisLargeBlk) computes a Boolean variable, as follows:

sp3 = Abs(p3 —po)
if (bSidePisLargeblk)
{
sp3 = (sp3 + Abs( p7 —p3) + 1)>>1
}
sq3 = Abs(qo— q3)
if (bSideQisLargeblk)
{
8q3 = (sqs + Abs(q7 — q3) ) + 1)>>1
}
xUseStrongFilteringlargeBlock: sps + sq3 < (B>> 3) && (d < (B >> 2)) && (abs(qg- po)
< ((tc * 5+ 1)>>1)))? TRUE:FALSE

[0103]  In one example, function invocation xUseStrongFilteringLargeBlock (R[x], d, bSide-
PisLargeBlk, bSideQisLargeBlk) computes a Boolean variable, as follows:
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sp3 = Abs(p3 —po)
if (bSidePisLargeblk)

{
sp3 = (sps T Abs(p7—po) ) + 1)>>1
}
sq3 = Abs(qo—q3)
if (bSideQisLargeblk)

{

sqs = (sq3 + Abs(q7 = qo) + 1)>>1

}
xUseStrongFilteringLargeBlock: sp; + sq3 < (B>> 3) && (d < (B >> 2)) && (abs(qo- po)

<((tc * 5+ 1) >> 1)))? TRUE:FALSE

In one example, the rounding offset in the function invocation xUseStrongFilter-
ingLargeBlock can be dropped.

In one example, the condition used in selecting number of samples to be deblocked
on one (or both) side of a boundary corresponds to the dimension (of current and/or
neighboring block), perpendicular to block boundary, exceeding a threshold. In some
cases, when a subset of transform coefficients is set to zero for a block, based on block
size, then the threshold used in the comparison may be based on the properties of the
subset of zero coefficients. For example, when transform coefficients is set to zero for
coefficients in column position greater than or equal to 32 and row position greater
than or equal to 32 (with row, column indexing starting at 0). then the dimension per-
pendicular to block boundary is compared to threshold value of 32.

In an example a signal may be received in the bitstream indicating whether all
transform coefficients are zero for a block of samples. Such a signal may be received
for e.g. for each color component, for a group of color components, for some spatial
partitioning of samples, for some spatio-temporal partitioning of samples. In HEVC,
for each color component a coded block flag (CBF) was signaled (either explicitly or
implicitly by use of an inference rule in case of absence of explicit signal) - cbf_luma,
cbf_cb, cbf_cr; moreover a flag was also signaled (explicitly and implicitly) indicating
if any of the color components in the transform tree contained non-zero transform co-
efficients and was referred to as residual quad tree root CBF - rqt_root_cbf.

In one example the number of samples to be deblocked on one (or both) side of a

boundary may be based on the type of edge being deblocked (e.g. vertical block edge,
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[0108]

[0109]

[0110]

horizontal block edge). channel type (e.g. luma, chroma), whether all transform coef-
ficients are zero for block of samples on one (or both) side of a boundary, whether
block of samples on one (or both) side of boundary make use of coding modes such as
Local Illumination Compensation (LIC) which may be based on a linear model for illu-
mination changes, whether block of samples on one (or both) side of boundary make
use of cross component prediction (which may be based on linear model), whether
block of samples on one (or both) side of boundary make use prediction that is de-
termined for blocks smaller than the transform, whether block of samples on one (or
both) side of boundary make use techniques wherein large block (e.g. CU) is par-
titioned into sub-blocks (e.g. sub-CUs) and motion information is derived for these
sub-blocks.

In one example, according to the techniques herein, a larger number of samples is
(e.g. 7) is deblocked on each side of the block boundary when dimension of the current
block, perpendicular to the block boundary, is greater than or equal to a threshold (e.g.
32) and a smaller number of samples (e.g. 3) is deblocked on each side of the block
boundary when dimension of the current block, perpendicular to the block boundary, is
smaller than a threshold (e.g. 32). For example, if ((width of current block >= 32 and
edge type is vertical) or (height of current block >=32 and edge type is horizontal))
deblock larger number of samples on each side of the block boundary.

In one example, according to the techniques herein, a larger number of samples is
(e.g. 7) is deblocked on the side of the block boundary where dimension of the block,
perpendicular to the block boundary, is greater than or equal to a threshold (e.g. 32)
and a smaller number of samples (e.g. 3) is deblocked on side of the block boundary
where dimension of the block, perpendicular to the block boundary, is smaller than a
threshold (e.g. 32). For example: if ((width of one block >= 32 and edge type is
vertical) or (height of one block >=32 and edge type is horizontal)) deblock larger
number of samples for that block at the block boundary. Here if the left-side of a
vertical boundary edge has a block size 4 (rows) x 64 (columns) and the right-side has
a block size 4 (rows) x 16 (columns) then larger number of samples may be deblocked
on left-side versus the right side.

In one example, according to the techniques herein, filter unit 216 may be configured
to select filter parameters (including, e.g., a number of coefficients) used for de-
blocking based on one or more of: distance of sample being deblocked (in number of
samples) from boundary, block size(s) on each side of boundary, boundary strength,
prediction mode used by blocks on each side of boundary, prediction mode of sample
being deblocked (e.g., use weaker filter for boundary close to reference samples), QP
of sample being deblocked (e.g., use stronger filters for larger QP), block size corre-

sponding to the sample being deblocked (e.g., use stronger filters for larger block size),
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block size corresponding to the samples being used for deblocking, motion vectors for
blocks on each side of boundary being deblocked (e.g., if the MV difference is larger
than a threshold then do not perform any deblocking since samples on different side of
the boundary may belong to different objects), and/or motion vectors for sample being
deblocked; motion vectors for sample being used for deblocking. It should be noted
that, block size corresponding to a sample may include the block size of CU the sample
belongs to, block size of TU the sample belongs, to or the block size of PU the sample
belongs to.

In one example, according to the techniques herein, filter unit 216 may be configured
to select filter parameters (including, e.g., a number of coefficients) used for de-
blocking based on the type of edge being deblocked (e.g. vertical block edge,
horizontal block edge), channel type (e.g. luma, chroma), whether all transform coef-
ficients are zero for block of samples on one (or both) side of a boundary, whether
block of samples on one (or both) side of boundary make use of coding modes such as
Local Illumination Compensation (LIC) which may be based on a linear model for illu-
mination changes, whether block of samples on one (or both) side of boundary make
use of cross component prediction (which may be based on linear model), whether
block of samples on one (or both) side of boundary make use prediction that is de-
termined for blocks smaller than the transform, whether block of samples on one (or
both) side of boundary make use techniques wherein large block (e.g. CU) is par-
titioned into sub-blocks (e.g. sub-CUs) and motion information is derived for these
sub-blocks.

In one example, according to the techniques herein, filter unit 216 may be configured
to select filter parameters (including, e.g., a number of coefficients) used for de-
blocking based on the type of edge being deblocked (e.g. vertical block edge,
horizontal block edge), channel type (e.g. luma, chroma), whether all transform coef-
ficients are zero for block of samples on one (or both) side of a boundary, whether
block of samples on one (or both) side of boundary make use of coding modes such as
Local Illumination Compensation (LIC) which may be based on a linear model for illu-
mination changes, whether block of samples on one (or both) side of boundary make
use of cross component prediction (which may be based on linear model), whether
block of samples on one (or both) side of boundary make use prediction that is de-
termined for blocks smaller than the transform, whether block of samples on one (or
both) side of boundary make use techniques wherein large block (e.g. CU) is par-
titioned into sub-blocks (e.g. sub-CUs) and motion information is derived for these
sub-blocks.

In one example selecting filter parameters may include selecting wider stronger

filtering.
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In one example, according to the techniques herein, filter unit 216 may be configured
to select a set of deblocking filter parameters (e.g. wider stronger filtering) for both
sides when dimension of the current block, perpendicular to the block boundary, is
greater than or equal to a threshold (e.g. 32). For example, if ((width of current block
>= 32 and edge type is vertical) or (height of current block >=32 and edge type is
horizontal)) then wider stronger filtering is selected for each side of the block
boundary.

In one example, according to the techniques herein, filter unit 216 may be configured
to select filter parameters for each side of block boundary independently based on
dimension of the block, perpendicular to the block boundary, for the corresponding
side. For example, when dimension of the block perpendicular to the block boundary
on one side is greater than or equal to a threshold (e.g. 32) then a set of deblocking
filter parameters (e.g. wider stronger filtering) may be selected for that side. For
example: if ((width of one block >= 32 and edge type is vertical) or (height of one
block >=32 and edge type is horizontal)) wider stronger filtering is selected for the side
of the block boundary corresponding to the block.

In one example, according to the techniques herein, sub-CU boundary may be
deblocked based on whether all transform coefficients are zero for blocks (e.g. CU) on
one (or both) side of a boundary. For example, deblock sub-CU boundary when all the
transform coefficients for the CU is zero.

In one example, according to the techniques herein, sub-block boundary may be
deblocked based on whether all transform coefficients are zero for a block on one (or
both) side of a boundary. For example, deblock sub-block boundary when all the
transform coefficients for the block is zero.

In one example, according to the techniques herein, sub-CU boundary may be
deblocked based on whether all transform coefficients are zero for blocks (e.g. CU) on
one (or both) side of a boundary and quantization step size is large (e.g QP greater than
or equal to a threshold). For example, deblock sub-CU boundary when all the
transform coefficients for the CU is zero and QP is greater than a threshold.

In one example, according to the techniques herein, sub-block boundary may be
deblocked based on whether all transform coefficients are zero for a block on one (or
both) side of a boundary and quantization step size is large (e.g QP greater than or
equal to a threshold). For example, deblock sub-block boundary when all the transform
coefficients for the block is zero and QP is greater than a threshold.

In one example, according to the techniques herein, a block boundary may be
deblocked when Local Illumination Compensation (LIC) is used for blocks on one (or
both) side of a boundary and all the transform coefficients for that block is zero.

In one example, according to the techniques herein, all four boundaries of a block
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(i.e. left, right, top, bottom) a block boundary may be deblocked when Local Illu-
mination Compensation (LIC) is used for a block and all the transform coefficients for
that block is zero.

In one example, according to the techniques herein, a block boundary may be
deblocked when Local Illumination Compensation (LIC) is used for blocks on one (or
both) side of a boundary and all the transform coefficients for that block is zero and
quantization step size is large (e.g QP greater than or equal to a threshold).

In one example, according to the techniques herein, all four boundaries of a block
(i.e. left, right, top, bottom) a block boundary may be deblocked when Local Illu-
mination Compensation (LIC) is used for a block and all the transform coefficients for
that block is zero and quantization step size is large (e.g QP greater than or equal to a
threshold).

In one example, according to the techniques herein, a block boundary may be
deblocked when cross component prediction is used for blocks on one (or both) side of
a boundary and all the transform coefficients for that block is zero.

In one example, according to the techniques herein, a block boundary may be
deblocked when cross component prediction is used for blocks on one (or both) side of
a boundary and all the transform coefficients for that block is zero and quantization
step size is large (e.g QP greater than or equal to a threshold).

In one example, according to the techniques herein, filter unit 216 may be configured
to perform deblocking according to multiple filtering passes. In one example, a
filtering pass may correspond to processing/constructing of all/subset of samples to be
deblocked. The number of processing/construction(s) for each sample in a given pass
may correspond to the pass index/order. The subset of samples to be deblocked may
correspond to the pass index/order. In one example, every pass may correspond to
processing/constructing of all of samples to be deblocked exactly once. In one example
of such a case, deblocked samples from the previous iteration (as well as non-
deblocked samples) may be used to construct deblocked samples for current iteration.
In one example of such a case, deblocked samples from the previous and current
iteration (as well as non-deblocked samples) may be used to construct deblocked
samples. In this case, an ordering may be specified for constructing deblocked
samples. In one example, the number of iterations may be determined based on one or
more of: the slice type; the block size; the skip flags of the current CU and its
neighboring CUs; the prediction mode(Intra\inter) of the current CU and its
neighboring CUs; the sample position to be de-blocked; whether d < f3; and/or the
strong or weak filter determination condition provided in JEM described above;
distance of sample being deblocked (in number of samples) from boundary; block

size(s) on each side of boundary; boundary strength; prediction mode used by blocks
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on each side of boundary; prediction mode of sample being deblocked; QP of sample
being deblocked; block size corresponding to the sample being deblocked; block size
corresponding to the samples being used for deblocking; motion vectors for blocks on
each side of boundary being deblocked; motion vectors for sample being deblocked;
and/or motion vectors for sample being used for deblocking. In one example, the
iteration number may determine one or more filter parameters.

[0127]  In an example, N-pass deblocking with a pre-determined deblocking support may be

represented as:
For iterldx=0 to (N-1)
For pos = posM to posN // samples being deblocked
temp[pos] =1 pos(samples values at pass iterldx in
deblocking support)
For pos = posM to posN

Update sampleValue[pos] with temp[pos]

[0128]  Where f_pos() is a linear transformation of the form:
F_pos(samples values at pass iterfdx in deblocking support)

= Z coef f_posim]campleValue[m, iterIdx]

medsblocking support

with the coeff_pos[] being an array of values dependent on position pos of sample
being deblocked. It should be noted, that each sampleValue[] being used may be
generated using deblocking in the previous iteration. Also, the deblocking support does
not change from one iteration to next.

Performing an iteration-by-iteration analysis provides:

For iterldx 0, the samples used are the non-deblocked samples so for each pos:

temp[pos] = f pos(samples values at pass 0 in deblocking support).

For iterldx 1,
temp[pos] = f pos(samples values at pass 1 in deblocking
support).
Since {_pos() are linear transformations and the deblocking support does not change,
the above can be re-written as:

For iterldx 1,

templpos] = g_pos(samples values at pass 0 in deblocking support).

Where g_pos() is a linear transformation similar to f_pos() that depends on position
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pos, but with different coefficient values.

This simplification can be performed recursively for each iteration resulting in a
filtering operations that are depends only on the original sample values at iteration O
leading to an equivalent single-pass. Due to finite precision used in some cases, the
final coefficient values may be approximated leading to an approximate single-pass
representation of the multi-pass filtering operation.

In one example, according to the techniques herein, filter unit 216 may be configured
to extend filter lines and the corresponding filter coefficients. In one example, the
sample lines to be filtered may be extended to eight at one side. In one example, for
line O and line 1, the filter coefficients may be { 1, 1,1,1,1,2,2,2,1,1, 1,1, 1 }/16;
for line 2 and line 3, the filter coefficients may be { 1, 1, 1, 1, 1, 1, 1, 1}/8; and the
filter coefficients for other lines may be { 1, 2, 2, 2, 1}/8, where line 0 denotes the
nearest sample line to the boundary.

It should be noted that in JEM, the reconstructed samples are always used to filter
samples in the deblocking process. In one example, according to the techniques herein,
filter unit 216 may be configured to use modified sample values resulting from de-
blocking to filter other samples values. In one example, modified sample values may
be used as inputs when filtering other samples value. In one example, a filtering order
may be specified. In one example, a filter order may perform deblocking from the
farthest line from boundary to the nearest line.

As described above, deblocked samples are typically clipped to lie within a range of
values. The range of values may be based on the original sample value and other pa-
rameters received in a bitstream. In an example, the range of values is [original sample
value - t_c, original sample value + t_c]. In one example, according to the techniques
herein, filter unit 216 may be configured to adjust a clipping function based on one or
more of: the sample values in the last one or more rounds in the multiple pass de-
blocking; a QP value; a slice type; a current prediction mode(Intra/Inter); a current skip
flag value; the intra prediction modes of samples to be deblocked; the motion vector of
samples to be deblocked; the sample position (e.g., different samples can use different
clipping functions); the CU position (e.g., different CU can use different clipping
functions); and/or any of the other conditions describe above.

In one example, according to the techniques herein, filter unit 216 may be configured
to perform the filtering techniques described herein based on a block size. For
example, one or more of the filtering techniques described herein may be applied on a
boundary, where the block sizes around the boundary are larger than a threshold. For
example, a determination of whether to perform a filtering techniques may be as
follows: (1) check each set of 4x4 samples on each side of boundary (i.e., since

minimum CU size is 4x4 luma samples); (2) if any one set of 4x4 samples belongs to a
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CU with size larger than a thresholds (e.g., 64), the filtering technique will be
performed on the current boundary. In one example, according to the techniques
herein, filter unit 216 may be configured to perform the filtering techniques described
herein based on one or more of: slice type; whether a block shape is rectangular; where
a block shape is square; the skip flags of the current CU and its neighboring CUs; the
prediction mode(Intra\inter) of the current CU and its neighboring CUs; the sample
position to be de-blocked.
[0133]  In one example, according to the techniques herein, filter unit 216 may be configured
to perform the wider-stronger luma filtering as follows:
First, determine whether P-side makes use of large blocks as follows, as:
bSidePisLargeBlk = ( (edge type is vertical and po belongs to block (e.g. CU)
with width >= 32) | | (edge type is horizontal and po belongs to block (e.g. CU) with
height >= 32) )? TRUE : FALSE
Next, determine whether Q-side makes use of large blocks as follows, as:
bSideQisLargeBlk = ( (edge type is vertical and qo belongs to block {e.g. CU)
with width >= 82) | | (edge type is horizontal and qo belongs to block (e.g. CU) with
height >= 32) )? TRUE : FALSE
Next, derive the following variables:
dOP =bSidePisLargeBlk ? XCalDQpLargeBlock(R[0]) : XCalDQp (RI0])
d1P = bSidePisLargeBlk ? XCalDQpLargeBlock(RI3]) : XCalDQp RI[3])
d0Q =bSideQisLargeBlk ? XCalDQqLargeBlock(R[0]) : XCalDQq (RI[0])
d1Q =bSideQLargeBlk ? XCalDQqLargeBlock(R[3]) : XCalDQq (RI[3])
dOL = dOP + d0Q
d3L=d1P +d1Q
dL = doL + d3L

Next, Conditionl and Condition2 are evaluated as follows:
Conditionl = (dL.< 8) ? TRUE : FALSE

Condition2 = (xUseStrongFilteringLargeBlock(R[0], d0L, bSidePisLargeBlk,
bSideQisLargeBlk) && xUseStrongFilteringLargeBlock(R[3], d3L, bSidePisLargeBlk,
bSideQisLargeBlk)) ? TRUE:FALSE

[0134]  When Conditionl, Condition2 and bSidePisLargeBlk is TRUE then a wider-stronger
filter is applied to the P-side of the boundary (e.g. WSOOP).

[0135]  When Conditionl, Condition2 and bSideQisLargeBlk is TRUE then a wider-stronger
filter is applied to the Q-side of the boundary. (e.g. WS00Q)

[0136]  In one example, Condition2 may be modified as follows:
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Condition2 = (When block on either side of boundary makes use of Local
Illumination Compensation and the CBF of that block is 0) ? TRUE :
( (xUseStrongFilteringLargeBlock(R[0], dOL, bSidePisLargeBlk, bSideQisLargeBlk)
&& xUseStrongFilteringLargeBlock(R[3], d3L, bSidePisLargeBlk,

bSideQisLargeBlk)) ? TRUE:FALSE )

In one example, according to the techniques herein, filter unit 216 may be configured
to perform the chroma filtering as follows:

When, (edge type is vertical and p, belongs to CU with width >= 32) | | (edge type is
horizontal and p, belongs to CU with height >= 32) && (edge type is vertical and qq
belongs to CU with width >= 32) | | (edge type is horizontal and q, belongs to CU with
height >= 32), then a narrow strong filter (e.g NSOOP and NS00Q) may be used,

Otherwise, narrow weak filter may be used (e.g. NWOOP and NWO00Q).

In one example, according to the techniques herein, filter unit 216 may be configured
to perform the chroma filtering as follows:

When, (p, belongs to CU with width >= 32 and p, belongs to CU with height >= 32)
Il (qo belongs to CU with width >= 32 and q, belongs to CU with height >= 32), then a
narrow strong filter (e.g NSOOP and NSOOQ) may be used, Otherwise, narrow weak
filter may be used (e.g. NWOOP and NW00Q).

In one example, according to the techniques herein, filter unit 216 may be configured
to perform deblock filtering according to the example flowchart illustrated in FIG. 10.
In one example, filter unit 216 may be configured to perform deblock filtering
according to the flowchart illustrated in FIG. 10 for luma samples. FIG. 10 illustrates
an example where for a current block (e.g., one of a P block or a Q block) one of the
following types of deblocking may be applied: a wide stronger filter, a strong filter, a
weak filter, or no filtering. In one example, applying a wide stronger filter may include
applying the WSOOP and WS00Q filters described above. In one example, applying a
strong filter may include applying the HEVC_P and HEVC_Q filters described above.
In one example, applying a weak filter may include applying the weak filter in HEVC,
described above as Weak Filter. As illustrated in FIG. 10, a wider stronger filter is
applied at 408, no filter is applied at 412, a strong filter is applied 416, and a weak
filter is applied at 418 based on whether: a large block condition is true at 402, a large
block gradient condition is true at 404, a large block strong filter condition is true at
406, a gradient condition is true at 410, and a strong filter condition is true at 414.

In one example, a large block condition may include whether the following is true:

If(EDGE_VER && (cur_block width>=32Il adjacent_block_width>=32)) I

(EDGE_HOR &é&(cur_block_height>=32Il adjacent_block_height>=32)))
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Where

EDGE_VER is a vertical boundary type,

EDGE_HOR is a horizontal boundary type,

cur_block_width is a current block width, e.g., in luma samples,
cur_block_height is a current block height, e.g., in luma samples,
adjacent_block width is an adjacent block width, e.g., in luma samples, and
adjacent_block_height is an adjacent block height, e.g., in luma samples.

[0141]  In one example, a large block gradient condition may include whether Condition 1,
described above, is true. In one example, a large block strong filter condition may
include whether one of the example Condition2, described above, is true.

[0142]  In one example, a gradient condition may include whether d < 3, where d is de-

termined as follows:
dOP = XCalDQp (R[0])
d1P = XCalDQp (R[3])
d0Q = XCalDQq (R[0])

d1Q = XCalDQq (R[3])

do = doP + d0OQ;
d3 =dIP+d1Q;
d=d0 + d3;

[0143]  In one example, a strong filter condition may include whether the following is true:
(xUseStrongFilteringLargeBlock(R[0], dO, false, false) && xUseStrongFilter-
inglargeBlock(R[3], d3, false, false)) ? TRUE:FALSE
In one example, according to the techniques herein, filter unit 216 may be configured
to perform deblock filtering according to the example flowchart illustrated in FIG. 11.
In one example, filter unit 216 may be configured to perform deblock filtering
according to the flowchart illustrated in FIG. 11 for chroma samples. FIG. 11 il-
lustrates an example where for a current block (e.g., P block or a Q block) one of the
following types of deblocking may be applied: a wide stronger filter, or a weak filter.
In one example, applying a wide stronger filter may include applying the NSOOP and
NS00Q filters described above. In one example, applying a weak filter may include
applying the as NWOOP and NWO0OQ filters described above. As illustrated in FIG. 11,
a wider stronger filter is applied at 504, and a weak filter is applied at 506 based on
whether: a large block condition is true at 502.
[0144]  In one example, a large block condition may include whether the following is true:
If(EDGE_VER && (cur_block width>=32Il adjacent_block_width>=32)) I
(EDGE_HOR &é&(cur_block_height>=32Il adjacent_block_height>=32)))
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Where

EDGE_VER is a vertical boundary type,

EDGE_HOR is a horizontal boundary type,

cur_block_width is a current block width, e.g., in chroma samples,
cur_block_height is a current block height, e.g., in chroma samples,
adjacent_block width is an adjacent block width, e.g., in chroma samples, and
adjacent_block_height is an adjacent block height, e.g., in chroma samples.

In one example, filter unit 216 may be configured to perform deblock filtering for
chroma samples of a P block or a Q block) based on the following condition set:

If(EDGE_VER && (cur_Q_block_width>= TH_w)) Il (EDGE_HOR &&
(cur_Q_block_height >=TH_h)) is TRUE, apply NSO0OQ on Q samples. Otherwise,
apply a weak filter on Q samples (e.g., NWO00Q Q-side filter).

If(EDGE_VER && (cur_P_block_width>=TH_w)) Il (EDGE_HOR & &
(cur_P_block height >= TH_h)) is TRUE, apply NSOOP on P samples. Otherwise,
apply a weak filter on P samples (e.g., NWOOP P-side filter).

Where

EDGE_VER is a vertical boundary type,

EDGE_HOR is a horizontal boundary type,

cur_Q_block_width is a current Q block width, e.g., in chroma samples,

cur_Q _block_height is a current Q block height, e.g., in chroma samples,

cur_P_block_width is a current P block width, e.g., in chroma samples,

cur_P _block_height is a current P block height, e.g., in chroma samples,

TH_w is a width threshold (e.g., 32 samples), and

TH_h is a height threshold (e.g., 32 samples).

It should be noted that a threshold value (e.g., TH_w and/or TH_h), in some
examples may include a predefined value (e.g., 16 or 32), in some examples may be
signaled in a parameter set, in some examples may be signaling in a slice header, and
in some examples may be the CTU size in a current portion of video.

Referring to FIG. 11, in one example, the large block condition may be replaced with
a luma filter condition. That is, for example, if a strong filter is applied to a luma
block, the wide stronger filter may be applied to the collocated chroma block at 504,
otherwise a weak filter may be applied to the collocated chroma block at 506.

In one example, according to the techniques herein, filter unit 216 may be configured
to perform deblock filtering according to the example flowchart illustrated in FIG. 12.
In one example, filter unit 216 may be configured to perform deblock filtering
according to the flowchart illustrated in FIG. 12 for chroma samples. FIG. 12 il-
lustrates an example where for a current block (e.g., P block or a Q block) one of the

following types of deblocking may be applied: a wide stronger filter or a weak filter. In
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one example, applying a wide stronger filter may include applying the NSOOP and
NS00Q filters described above. In one example, applying a weak filter may include
applying the as NWOOP and NWO0OQ filters described above. As illustrated in FIG. 12,
a wider stronger filter is applied at 608 and a weak filter is applied at 606 based on
whether: a large block condition is true at 602 and a large block strong filter condition
is true at 604.

In one example, a large block condition may include whether the following is true:

If((EDGE_VER && (cur_block_width>=TH_w && adjacent_block_width>=
TH_w)) Il

(EDGE_HOR && (cur_block_height>=TH_h Il adjacent_block_height>=TH_h)))

Where

EDGE_VER is a vertical boundary type,

EDGE_HOR is a horizontal boundary type,

cur_block_width is a current block width, e.g., in chroma samples,

cur_block_height is a current block height, e.g., in chroma samples,

adjacent_block_ width is an adjacent block width, e.g., in chroma samples, and
adjacent_block_height is an adjacent block height, e.g., in chroma samples

TH_w is a width threshold (e.g., 32 samples), and

TH_h is a height threshold (e.g., 32 samples).

It should be noted that a threshold value (e.g., TH_w and/or TH_h), in some
examples may include a predefined value (e.g., 16 or 32), in some examples may be
signaled in a parameter set, in some examples may be signaling in a slice header, and
in some examples may be the CTU size in a current portion of video. In one example, a
threshold value is larger than 4.

In one example, a wider strong filter condition may include whether both a first
condition and a second condition are true. That is, a strong filter condition may be true
when both the first condition and the second condition are true. In one example, a first

condition may be true when d < 3, where d is determined as follows:
dp0 = xCalcDP(RC[0]);
dq0 = xCalcDQ(RC[O]));
dp1 = xCalcDP(R¢[1]);

dql = xCaleDQRc[1]);

d0 =dp0 + dq0;
dl =dpl +dql;
d=d0+dl.

Where,
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R¢[N] corresponds to chroma lines perpendicular to the edge being deblocked and at
distance N from the top of current chroma segment being deblocked; and

In one example, a second condition may be true when

((abs(p3 - p0) + abs(q3 - qO)< (> 3)) && (d < (f >> 2)) && (abs(q0- p0) < ((tC * 5
+1)>>1)))

is true for R[0] and R[1].

In one example, a second condition may be true when

((abs(p3 - p0) + abs(q3 - qO)< (P> 3)) && (d < ( >> 2)) && (abs(q0- p0) < ((tC * 5
+1D)>>1)

is true for R[0].

It should be noted that in one example, an edge is deblocked as segments, where the
segment length may be a function of the smallest dimension allowed fora CU/
TU/PU/subPU. Further, when 2xN and Nx2 CU’s are the shortest and thinnest blocks
allowed in chroma channel then the chroma segment length may be 2.

It should be noted that according to the chroma filtering above, two lines per-
pendicular to the edge being deblocked are processed as the basic segment. In one
example, four lines may be processed as the basic segment. In one example, when four
lines are processed as the basic segment, a first condition may be true when d < 3,

where d is determined as follows:

dp0 = xCalcDP(Rc[0]);
dq0 = xCalcDQ(Rc[0]);
dp3 = xCalcDP(Rc[3]);

dg3 = xCalcDQ(R([31]);

d0 = dp0 + dqo;
d3 = dp3 + dg3;
d=4d0+dl.

Further, in one example, when four lines are processed as the basic segment, a
second condition may be true when

((abs(p3 - p0) + abs(q3 - qO)< (P> 3)) && (d < ( >> 2)) && (abs(q0- p0) < ((tC * 5
+1D)>>1)

is true for R[0] and R[3].

As described above, in ITU-T H.265, the deblocking filter may be applied differently
to CTU boundaries that coincide with slice and tile boundaries compared with CTU
boundaries that do not coincide with slice and tile boundaries. Specifically, in ITU-T
H.265, slice_loop_{filter_across_slices_enabled_flag enables/disables the deblocking

filter across CTU boundaries that coincide with top and left slice boundaries. In one
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example, according to the techniques herein, when support samples of a deblocking
filter exceeds a boundary (e.g., picture/slice/tile) a deblocking filter using the support
samples may not be allowed. In one example, according to the techniques herein, when
support samples of a deblocking filter exceeds a boundary (e.g., picture/slice/tile) and
using sample values across a boundary (e.g., slice) is disabled, a padding operation
may be used to generate support sample values. For example, one of: a numeric scalar,
circular, replicate, or symmetric padding may be used to generate a support sample,
where a numeric scalar padding operation pads according to a constant value, a circular
padding operation pads with circular repetition of sample values, a replicate padding
operation pads by repeating border sample values, and a symmetric padding operation
pads with a mirror reflection of sample values.

As described above, in ITU-T H.2635, filtered values are clipped based on a value tc.
In particular, for the Strong Filter in ITU-T H.265, described above, p;” values are
clipped to (p; - 2* te, pi + 2% tc) and q;° values are clipped to (q; - 2* tc, @i + 2% tc). As
described above, in ITU-T H.265, the variable t-’ (and thus, the value of t¢) is de-
termined based on the index Q which is determined based on qP,, which is equal to:
(QPg + QPp + 1)/2. In the some cases of video coding, (e.g., proposed techniques for
coding high dynamic range (HDR) video), the values of the QP may be changed at
CU-level or CTU-level. In these cases, the range of the clipping operation provided in
ITU-T H.265 based on index Q may be inadequate. In one example, according to the
techniques herein, different values of t-” may be determined for the P side samples and
the Q side samples. That is, a P side tc” value, tep’, and a corresponding P side t¢ value,
tep, may be used to clip p;” values and a Q side tc” value, teo’, and a corresponding Q
side t¢ value, tcq, may be used to clip q;” values. In one example, respective a P side
index Q, Q,, and Q side index Q, Q,, may be determined by substituting qP; with re-
spective values of QP and QP in the Q index equation above. Thus, according to the
techniques herein, p;” values may be clipped to (p; - 2* tep, p; + 2* tcp) and q;” values
may be clipped to (q; - 2* teq, i + 2% teg). It should be noted that p;” values and gy’
values may include filtered values generated according to any filter described herein.
Thus, the techniques for clipping p;” values and q;” values based on respective tep and t
co may be applicable to any filter described herein.

It should be noted that in some cases, a video block (e.g., a CU) may include internal
TU boundaries and blocking artifacts may appear within the video block. In some
cases, when a video block has a dimension larger than 64, deblocking of internal TU
boundaries may be disabled. In one example, according to the techniques herein, de-
blocking may be performed along video block boundaries and also along any internal
TU boundaries even in cases where a video block has a dimension larger than 64.

Referring to FIGS. 5A-5B, some cases, a P block or a Q block may include multiple
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objects. For example, referring to FIG. 5A, in one example, columns p; to p; may
correspond to a first object, columns p, to pymay correspond to a second object, and
columns ¢, to q; may correspond to a third object. In such a case, when samples in
columns p, to p, are filtered using samples in one or more column ps; and g, to s, as
support samples, the resulting filter sample values in columns p, to p, may appear
blurred. Further, in some cases deblocking may lead to smearing of dominant sample
value(s) and/or introduce other visual artifacts.

As described above, a corresponding deblocked sample value, y[n] having support
samples, may be specified based on the following equation:

b

ylnl= ) coefflmlafn +m]

m=a

Where,
A filter length is determined as abs(a-b+1);
coefflm] provides a filter tap value (also referred to as a filter coefficient);

x[n+m] provides input sample values corresponding to support samples.

In one example, according to the techniques herein, in order to avoid a blurring or an
artifact caused by distinct objects being included in filtered samples and support
samples, one or more clipping operations may be applied to the term x[n+m]. In one
example, the term x[n+m] may be replaced with Clip3( x[n] - 2* t¢, x[n] + 2* tc,
X[n+m]).

In one example, the term x[n+m] may be modified such that a support sample
x[n+m] is excluded from the summation if abs(x[n+m] - x[n]) is greater than a
threshold. It should be noted that in the case where coeff[m] corresponds to an average
distribution (i.e., coeff[m] = 1/filter length, where filter length equals (abs(a-b+1))), the
coeff[m] is calculated as 1/(filter length- excluded samples). It should be noted that in

the case where coeff[m] corresponds to a Gaussian distribution (i.e.,
>b _coefffim] =1

, where filter length equals abs(a-b+1)). In one example, the term x[n+m] may be
modified such that for every support sample x[n+m] where abs(x[n+m] - x[n]) that is
greater than a threshold is satisfied, the value of support sample x[n+m] is substituted
with the value of x[n]. It should be noted that the threshold value may be based on a
combination of one or more of: a predefined value (e.g., 2 or 4), a value signaled in a
parameter set, a value signaled in a slice header, a value based on a QP value (e.g., a
QP value of a current sample and/or a support sample), and/or a value based on

prediction information (e.g., an intra prediction mode and/or motion information of a
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current sample and/or a support sample).

In one example, different filters may be applied at different sample positions with
respect to a boundary. For example, samples close to the boundary may be filtered
using strong filters and samples far from the boundary may be filter using weak filters.
For example, samples in column p0 to p1 may be filtered according to a strong filter
and samples in columns p2 to p4 may be filtered according to a weak filter. In one
example, for chroma deblocking (or luma deblocking), a threshold (e.g., 2, 3, 4) may
be used to such that if the positional distance between the current sample and the
sample nearest to the boundary is smaller than the threshold, a strong filter will be
applied. In one example, the threshold may be based on one or more of: block size on
each side of boundary (one or both); boundary strength; prediction mode used by
blocks on each side of boundary; prediction mode of sample being deblocked; QP of
sample being deblocked; block size corresponding to the sample being deblocked;
block size corresponding to the samples being used for deblocking; motion vectors for
blocks on each side of boundary being deblocked; motion vectors for sample being
deblocked; and/or motion vectors for sample being used for deblocking.

It should be noted that in some cases of video coding, the luminance transform coef-
ficients (e.g., after quantization) corresponding to a CU may be 0, and the CU may be
divided into sub-PUs for motion compensation (e.g., ATMVP). In such a case,
according to the techniques herein luminance deblocking may be performed along sub-
PU boundaries and further, along the CU boundaries in some examples.

It should be noted that in some cases of video coding, the chrominance transform co-
efficients (e.g., after quantization) corresponding to a CU may be 0, and the CU may
be divided into sub-PUs for motion compensation (e.g., ATMVP). In such a case,
according to the techniques herein chrominance deblocking may be performed along
sub-PU boundaries and further, along the CU boundaries in some examples.

As described above, in ITU-T H.265, for luma each of Bs, t¢, 3, and d are used to
determine which filter type to apply (e.g., Strong Filter or Weak Filter). In particular, if
d is less than 3, a variable dStrong is determined as follows:

d_strong = abs( p; - pp ) + abs( o - q3 )

Whether a Strong Filter or Weak Filter is applied is determined based on the value of
d_strong as follows:

-If ((d_strong < ( f>>3)) && (d < (p >>2)) && (abs(po—qo ) <than (5 *tC+1)>>
1,

-The Strong filter is applied;
— Otherwise,

-The Weak filter is applied.
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In one example, according to the techniques herein dStrong may be determined as
follows:

d_strong = (bSidePisLarge ? max(abs(p, - p-), max(abs(p; - py), abs(ps- p3))) : abs(ps -
po)) + (bSideQisLarge ? Max(abs(qp - q;), max(abs(qs - gp), abs(q, - gs))) : abs(qs - qo));

With respect to the deblocking filter implementations in JEM, when one of the
following conditions is valid, luma deblocking cannot be performed in parallel as
indicated below. That is, for example, deblocking may not be performed on both the
left and right vertical boundaries of a block or the top and bottom horizontal
boundaries of a block in parallel. That is, deblocking cannot be performed on two
block boundaries in parallel, as the filtering process for one boundary may involve the
samples deblocked by the filtering process for another boundary. Thus, samples at the
center of a block may be covered by both of the deblocking filters at each corre-
sponding edge.

If (Cur_EDGE_VER && cur_block_width == 4), no parallel deblocking of current
block vertical boundaries;

If (Cur_EDGE_VER && adjacent_block_width == 4), no parallel deblocking of
adjacent block vertical boundaries;

If (Cur_EDGE_HOR && cur_block_height == 4), no parallel deblocking of current
block horizontal boundaries;

If (Cur_EDGE_HOR && adjacent_block_width == 4), no parallel deblocking of
adjacent block horizontal boundaries;

Where,

Cur_EDGE_VER is a current vertical boundary,

Cur_EDGE_HOR is a current horizontal boundary,

cur_block_width is a current block width, e.g., in luma samples,

cur_block_height is a current block height, e.g., in luma samples,

adjacent_block_width is an adjacent block width, e.g., in luma samples, and

adjacent_block_height is an adjacent block height, e.g., in luma samples.

In one example, according to the techniques herein, for each of the conditions above,
deblocking may be performed on luma samples at a boundary as follows:

If (Cur_EDGE_VER && cur_block_width == 4 && adjacent_block_width > 4), for
Cur_EDGE_VER only perform deblocking on adjacent block samples;

If (Cur_EDGE_VER && cur_block_width == 4 && adjacent_block_width == 4),
for Cur_EDGE_VER do not perform deblocking;

If (Cur_EDGE_VER && cur_block_width > 4 && adjacent_block_width == 4), for
Cur_EDGE_VER only perform deblocking on current block samples;

If (Cur_EDGE_VER && cur_block_width > 4 && adjacent_block_width > 4), for
Cur_EDGE_VER perform deblocking on current block samples and adjacent block



CA 03095549 2020-09-29

WO 2019/188944 PCT/JP2019/012422

[0173]

[0174]

[0175]

[0176]

[0177]

samples;

If (Cur_EDGE_HOR && cur_block_height == 4 && adjacent_block_height > 4), for
Cur_EDGE_HOR only perform deblocking on adjacent block samples;

If (Cur_EDGE_HOR && cur_block_height == 4 && adjacent_block_height == 4), for
Cur_EDGE_HOR do not perform deblocking;

If (Cur_EDGE_HOR && cur_block_height > 4 && adjacent_block_height == 4), for
Cur_EDGE_HOR only perform deblocking on current block samples;

If (Cur_EDGE_HOR && cur_block_height > 4 && adjacent_block_height > 4), for
Cur_EDGE_HOR perform deblocking on current block samples and adjacent block
samples.

In a manner similar to that described above, for chroma deblocking, cases where
parallel deblocking are limited occur when respective block cur_block _height,
adjacent_block_height, cur_block_width, adjacent_block_width are equal to the
threshold of 2. Thus, according to the techniques herein, for chroma samples, de-
blocking may be performed as described above where the threshold value 4 is replaced
with the threshold value of 2 in the conditional statements.

In one example, according to the technique herein, instead of not performing de-
blocking on an edge for a block having dimension less than or equal to a threshold
value, a narrower filter may be applied to samples at the edge. For example, in the case
where (Cur_EDGE_VER && cur_block_width == 4 && adjacent_block_width > 4),
deblocking may be performed as follows:

For Cur_EDGE_VER perform deblocking on adjacent block samples according filter
width and perform deblocking on the one adjacent column of samples at
Cur_EDGE_VER for the current block.

In a similar manner, a narrower filter may be applied to samples at the edge for each
of the cases described above. Thus, in general, according to the techniques herein, a
video encoder (and/or video decoder) may be configured to determine when parallel
deblocking is limited, for example, due to overlapping deblocking filters (e.g., a filter
width being greater than half the block’s width (or height)), and modify which samples
which would otherwise be deblocked. It should be noted that in some cases, parallel
deblocking may be limited based on the samples which are used for deblocking
support. According to the techniques herein, a video encoder (and/or video decoder)
may be configured to determine when parallel deblocking is limited do to samples in a
block may being used for deblocking support for multiple deblocking filters.

As described above, for a F4P P-side filter, one of the computations includes:
po’ = (p7tPs+PstPatpstp2tP1t2*potqotqitqotgstqetqstast8) >> 4

It should be noted that if a g-side is size 8 and the opposite edge from the current
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edge makes use of strong HEVC filter then the samples gs and q¢ may be modified by
the strong HEVC deblocking operation for the opposite side. Parallel processing
cannot occur of deblocking edges that are parallel to each other. In one example, to
prevent this, the p-side should use long filters (i.e., stronger filters) only if the g-side
length (perpendicular to the edge) is greater than or equal to 16. This condition (e.g.,

LargeBlk condition) be checked in one of the following ways:

LargeBlk condition: (Both sides of the edge have length perpendicular to the

edge >= 16 ) ? TRUE : FALSE;

LargeBlk condition: (Both sides of the edge have length perpendicular to the

edge >=32) ? TRUE: FALSE;

OR

LargeBlk condition: (Large block side of the edge has length perpendicular to
the edge >= 32 AND other block side of the edge has length perpendicular to the edge
>= 16) 2 TRUE: FALSE. Note, when both block size length is same then we would
require that both be >=32.  Wider-stronger filters are only used for side with length >=
32.

[0178]  In one example, according to the techniques herein, a set of deblocking filters may
make use of a bilinear operation. In one example, block boundary samples p; and q; for

i=0 to S-1 are replaced by linear interpolation as follows
py’ = (f;* Middle,, + (64— £,)* B,+ 32) » 6), clipped to p, + tc

q;" = (gyxMiddle , +{64— g,)*Q, + 32) » 6), clipped to q, + tr

[0179] In-one-example f;. -Middle_, F, g, -and-Qmaybedetermined-as provided in-Table-1.
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s, t
(p-side,
q-side)

Filter kernels

7,7

fi =59—1i+%8 canalso be described as f = $59,50,41,32,23,14,5}

4; =59 —ix 9 canalse bedescribed as g = {59,50,41,32,23,14,5]

Middles; = (2% (pp +qo) 1 + g1 + P2 + G20z + g3ty + qutps + gstp: + e + 8)
>4

Pr={pe+p, + 115 1, s={ge+ g+ 1

55

f; =58—i%13, can also be described as f = [5845,32,19,6}

g; =58 ~i» 13, canalso be described as g — {58,45,32,19,6}

Middless = (2% (p, +qo +P1 + Q1 + P2 + ) Hps + qatpy +qu +8) >4
Po={ps+ps+ 1%L Ge=(gatgs+>1

3,3

fi =53 —i#21, canalse be describedas = 53,3211}

g: =753 —i%21, canalso be described as g = {53,32,11}
Middlegz =3¢ {p, +q,+p +q) +2%{(py +qz) +8) > 4
Pa={pztpat1)»1, Q={(g+g+1>»1

7,5

i=52—i=9 conalsobedescribed as f = {59,50,41,32,23,14,5)

gi =58 —ix 13, can also be described as g = {58,45,32,19,6}

Middless = (2% (p, + qo + @ + g2) + Dy +po+Ps + gatps + gatpstps + 8) > 4
Br=pe+p +1)» 1 Qe={gatgs+ 1

7.3

i =59—i«9 canalse be described az f = {59,50,41,32,23,14,5}

g: =53 —ix 21, can also be described as g = £53,32,11}

Middlegs = (2% (p, + qo )+ o+ 26 (g +q2) + 11 + Gy + Patpatpatys +0 +8) > 4
Po={petpt1)» 1L Ga={g+tq@u+1>1

5,3

£ =58 —t 13, can also be described as f = {5845,32,1%,6)

g; =53 —i# 21, can also be described as g = £53,32,11}

Middlegs = (2% (p, + qo +py + g1 + P2 + g2l 40+ gy +patps +8) > 4
Ps={ptp+1D>»1L G={g+teap+D>»1

5,7

g; =759 —i+ 9, can also be described as g = {59,50,41,32,23,14 5}

f; =58 —i %13, can also be described as f = {56,45,32,19,6)

Middleg; = (2 (g, +po + 1 +72) + @1 +qotga + pataa + Pyt tqe +8) > 4
Gr={getag+U>»1 P=(ptps+»1

3,7

g: =59 — i+ B,can also be described as g = {59,50,41,32,23,14,5}

fi =53 —1i «21, can alse be described as f = {53,32,11}

Middleg; = (2# (ot p) tpo +2 2 (p+p)+u +11 + Qatqatqutgs g+ B) > 4
=gt +D» 1, P={ptp+tD>1

Table 1

With respect to Table 1, it should be noted that for 7,5; 7,3; 5,3; 5,7; and 3,7 the
weights of p; and q; for Middle are not the same and derived from 7,7 by adding ad-
ditional terms.

In one example, according to the techniques herein, a set of deblocking filters may
make use of a bilinear operation if either side is greater than or equal to 32.

In one example, according to the techniques when either side is greater than or equal
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to 32 bilinear deblocking may be performed as provided in Table 2.

P-side Q-side st

>=32 >=32 7,7

>=32 <32 7.3

<32 >=32 3,7
Table 2

In one example, according to the techniques when either side is greater than or equal

to 32 bilinear deblocking may be performed as provided in Table 3.

P-side Q-side s,t

>=132 >=132 77

>=132 <32 7,5

<32 >=32 57
Table 3

In one example, according to the techniques when either side is greater than or equal

to 32 bilinear deblocking may be performed as provided in Table 4.

P-side Q-side s,t

>=32 >=32 5,5

>=3) <32 53

<32 >=32 35
Table 4

In one example, according to the techniques when either side is greater than or equal

to 32 bilinear deblocking may be performed as provided in Table 5.

P-side Q-side s,t

>=32 >=32 7,7

>=32 <32 7.3

<32 >=32 3,7

<32 <32 33
Table 5

In one example, according to the techniques when either side is greater than or equal

to 32 bilinear deblocking may be performed as provided in Table 6.

P-side Q-side s,t

>=32 >=132 7,7

>=32 <32 7.5

<32 =137 5,7

<32 <32 5.5
Table 6

In one example, according to the techniques when either side is greater than or equal

PCT/JP2019/012422
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to 32 bilinear deblocking may be performed as provided in Table 7.

P-side Q-side s,t

>=32 >=32 5,5

>=32 <32 5.3

<32 >=32 3.5

<32 <32 3.3
Table 7

In one example, according to the techniques herein, a set of deblocking filters may
make use of a bilinear operation if either side is greater than or equal to 16. In such a
case, in Tables 2-7, 32 may be replaced with 16. In one example for Tables 5, 6, and 7,
the last column (s,t) of rows with P-side length not equal to Q-side length may make
use of (3,3),(5,5),(3,3) respective filtering. In one example, whether a set of deblocking
filters makes use of a bilinear operation may be additionally conditioned on whether a
strong filter condition is true. For example, any of the strong filter conditions described
above. In one example, whether a set of deblocking filters makes use of a bilinear

operation may be additionally conditioned as follows:
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The variables dpq0, dpq3, dp, dq, and d are derived as follows:
dp0 = abs(pzo— 2 * pro + poo)
dp3 = abs(pzs— 2 * p13 + po3)
dq0 =abs(qz0— 2 * quo + qoo)
dg3 =abs(q2s— 2 * qus+ qos)

and then,

if (p side is greater than or equal to 16)
dp0 =(dp0+ abs(ps0—2*pao+pso)+1)>>1
dp3 =(dp3 + abs(psa— 2 *pas+pss) +1)>>1

if (q side is greater than or equal to 16)
dq0 =(dq0 +Abs(qs0— 2 * qao+qao) +1)>>1
dg3=(da3+Abs(qs3— 2 *qas+qas)+1)>>1

dpq0 =dp0 + dq0
dpq3 =dp3 +dg3
dp =dp0 + dp3
dq = dq0 + dq3

d =dpq0 + dpq3

When d is less than 8, the following ordered steps apply:

The variable dpq is set equal to 2 * dpq0.

sps = abs{ ps — po)

if (p side is greater than or equal to 16)
sps=(sps+abs(pr—ps)+ 1D >>1

sqz=abs(qa—qo)
if (q side is greater than or equal to 16)
sqa = (sqs+abs(qr—qa)+ D >>1

StrongFilterCondition = (dpq is less than (B >> 2), sps + sqs is less than (8 >> 3),
and abs(po—qo)isless than (5 *tc+ 1) >> 1) ? TRUE : FALSE

It should be noted that in some examples: control parameter values for luma and
chroma (e.g., 3, tC, etc.) may not be the same and signaled using different set of syntax
elements; control parameter values for chroma may be derived from control parameter
values for luma; deblocking may be performed only on subPU edges that align with
8x8 (luma) and 4x4 (chroma) boundary; deblocking of edges of a current block may be
based on the usage of linear model (LM) chroma; deblocking of edges of a current
block may be based on the usage of separate partitioning trees; deblocking of edges of
a current block may be based on the usage of pulse code modulation (PCM); and/or de-

blocking of edges of a current block may be based on the usage of transform quan-
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tization bypass mode. It should be noted that PCM is a lossless coding mode for a
block of samples. In an example of PCM coding, samples are directly represented by a
predefined number of bits. The bit depth used for PCM may be signaled in parameter
set(s).

With respect to deblocking of edges of a current block based on the usage of LM
chroma and/or deblocking of edges of a current block may be based on the usage of
separate partitioning trees, in one example, deblock may be performed on edges of
current block when LM chroma is used for a chroma block and/or separate trees is
used for luma and chroma and/or transform coefficients received is zero. With respect
to in one example, for separate trees deblocking may be performed only on a chroma
edge (e.g. TU edges, PU edges, subPU edges, CU edges) co-incident with a 4x4
chroma grid.

In one example, when the large block condition is not TRUE and the strong filter
condition is TRUE then NSOOP and NS0OOQ are used to deblock the edge.

In one example, when the large block condition is not TRUE and the strong filter
condition is TRUE then the (s,t)=3,3 filters are used to deblock the edge.

It should be noted that in some cases, a deblocking boundary may include a
horizontal CTU boundary. For example, referring to FIG. 5B, in some cases, samples
py.x may be included in the CTU which is above the CTU including samples qy,x. For
purposes of coding the top line in a current CTU, a typical video coder implementation
stores N rows of samples in the bottom lines of the CTU above the current CTU. For
example, in the case where the deblocking boundary in FIG. 5B is a CTU boundary, a
video coder stores values px,0 for performing intra prediction coding of line gx,0. A
CTU line buffer refers to the lines of sample values above the current CTU which are
stored for coding the current CTU. As the number of lines included in the CTU line
buffer increases, memory costs of an video coder implementation increases. It should
be noted that in some cases, data corresponding to sample values is also stored (e.g.,
prediction mode (and associated information e.g., intra prediction mode, bi-
pred/uni-pred, motion vectors, reference index, etc.), block size, coefficient coding
flags, etc.) Thus, in order to avoid increasing implementation costs, it is desirable to
avoid increasing the number of lines included in the CTU line buffer solely for
purposes of performing deblocking. For example, if all coding features of a proposed
video coding standard require a CTU line buffer to store four lines of sample values, a
deblocking filter that requires the CTU line buffer to be increased to store seven lines
of sample values would increase implementation costs.

As described above, JEM describes the coding features that are under coordinated
test model study by the JVET as potentially enhancing video coding technology
beyond the capabilities of ITU-T H.265. Further, in response to a “Joint Call for
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Proposals on Video Compression with Capabilities beyond HEVC,” jointly issued by
VCEG and MPEG, multiple descriptions of video coding were proposed by various
groups at the 10th Meeting of ISO/IEC JTC1/SC29/WG11 16-20 April 2018, San
Diego, CA. As a result of the multiple descriptions of video coding, a draft text of a
video coding specification is described in “Versatile Video Coding (Draft 1),” 10th
Meeting of ISO/IEC JTC1/SC29/WG11 16-20 April 2018, San Diego, CA, document
JVET-J1001-v2, which is incorporated by reference herein, and referred to as JVET-
J1001. “Versatile Video Coding (Draft 2),” 11th Meeting of ISO/IEC
JTC1/SC29/WG11 10-18 July 2018, Ljubljana, SI, document JVET-K1001-v4, which
is incorporated by reference herein, and referred to as JVET-K1001, is an update to
JVET-J1001. Proposed techniques in each of JVET-J1001 and JVET-K1001 are being
implemented and evaluated using a Test Model (VITM) and Benchmark Set (BMS).
The existing deblocking filter in BMS modifies up to three samples perpendicular to
edges.

CE2-related: Longer Tap Deblocking Filter,” 11th Meeting of ISO/IEC
JTC1/SC29/WG11 10-18 July 2018, Ljubljana, SI, document JVET-K0369-13 which is
referred to herein as JVET-K0369, describes a deblocking filter which modifies up to
seven samples perpendicular to edges being deblocked. Further, in order to restrict the
CTU line buffer size, the filter described in JVET-K0369 restricts the filtering op-
erations for horizontal edges overlapping with CTU boundaries. In particular, JVET-
K0369 describes a deblocking filter which modifies sample values according to Table
8A and provides where for the horizontal edges which overlap with the CTU
boundaries, the deblocking filter is modified as illustrated in Table 8B.
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Output pixel Filter coefficients Input pixels
{p7, s, D5, D4, P3, P2, PL, PO, 0, 41, % 93, G4, G5, 6, 47

ps 6, 38 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, p7to qo
0, 0, 0, 0O

ps 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, O, O prtoqu
0, 0, 0, 0

pe 4, 1,1, 38 1, 1, 1, 1, 1, 1, 1, 0, p7to qz
0, 0, 0, O

ps 3, 1, 1, 1, 38,1, 1, 1, 1, 1, 1, 1, p7to qs
0, 0, 0, O

p2 2, 1, 1, 1, 1, 3 1, 1, 1, 1, 1, 1, p7to qe
1, 0, 0, O

pr 1, 1, 1, 1, 1, 1, 8 1, 1, 1, 1, 1, p7to gs
1, 1, 0, 0

po’ {1, 1, 1, 1, 1, 1, 1, 2 1, 1, 1, 1, p7to qs
1, 1, 1, o

qo 0, 1, 1, 1, 1, 1, 1, 1, 2 1, 1, 1, ps to qv
1, 1, 1, 1}

qr 0, o0, 1, 1, 1, 1, 1, 1, 1, 3 1, 1, ps to q7
1, 1, 1, 1}

q7 0, 0 0 1, 1, 1, 1, 1, 1, 1, 3, 1, p4to qr
1, 1, 1, 2

qs’ o, 0, 0, 0 1, 1,1, 1, 1, 1, 1, 8, ps to q7
1, 1, 1, 8

qd {0, 0, 0, 0,0 1, 1, 1, 1, 1, 1, 1, p2 to q7
3, 1, 1, 4

as {0, 0, 0o, 0, 0, 0 1, 1, 1, 1, 1, 1, p1to q7
1, 3 1, 5

a6 0, 0, 0, 0,0, 0 0 1, 1, 1, 1, 1, po to q7
1, 1, 38, 6

Table 8A
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Output pixel Filter coefficients Input pixels
{p7, P6, D5, P4, P8, P2, PL, DO, 40, 41, G2, 43, Q4, G5, 6, q7

pe 0, o0, 0, 0, 6 3, 1, 1, 1, 1, 1, 1, pato qe
1, 0, 0, 0O

pr 0, 0,0, 0 5 1, 3 1, 1, 1, 1, 1, p3to qs
1, 1, 0, 0

pd {0, 0, 0, 0, 5 1, 1, 2 1, 1, 1, 1, psto qs
1, 1, 1, 0}

qo’ 0, 0, 0, 0, 4, 1, 1, 1, 2, 1, 1, 1, psto qr
1, 1, 1, 1}

ar’ 0, 0, 0, 0 3 1, 1, 1, 1, 3, 1, 1, psto q7
1, 1, 1,.1

qe o, 0,0, 0 2 1, 1, 1, 1, 1, 3, 1, pato g7
1, 1, 1, 2

qs 0, 0,0, 0 1, 1, 1, 1, 1, 1, 1, 3 ps to q7
1, 1, 1, 3

qd 90, 0o, 0, 0, 0 1, 1, 1,1, 1, 1, 1, p2to g7
3 1, 1, 4

a5 {0, 0, 0, 0 0 0 1, 1, 1, 1, 1, 1, pLto q7
1, 3, 1, 5

qs {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, po to g7
1, 1, 3, 6

Table 8B
It should be noted that modifying the deblocking filter are provided in JVET-K0369

for horizontal edges overlapping with CTU boundaries does not reduce the line buffer
requirements for chroma sample values. Further, as illustrated in Table 8B, in addition
to “zeroing out” filter coefficients for p7 to p4, filter coefficient values are changed for
p3 to q7. Thus, JVET-KO0369 requires storing additional filter sets to be used for
filtering CTU boundaries, which requires additional memory for storing the coef-
ficients.

In one example, according to the techniques herein, the usage of a long tap filter,
which may include a filter that modifies and/or has a filter support that includes a least
three or more lines from px,0 to px,i may be limited. In one example, for luma and/or
chroma deblocking if the following condition is met (EDGE_TYPE is EDGE_HOR
&& Current Boundary is align with a CTU boundary), a long tap filter is not applied
for side P, where EDGE_TYPE is EDGE_HOR indicates the current boundary is a
horizontal boundary. In one example, for luma and/or chroma deblocking if the
following condition is met (EDGE_TYPE is EDGE_HOR &é& curPos.y % CTUSize in
luma samples == 0), a long tap filter is not applied for P, where, curPos.y is the vertical

luma position of the current block to be deblocked. In one example, for luma and/or
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chroma deblocking if the following condition is met (EDGE_TYPE is EDGE_HOR
&& curPosC.y % CTUSize in chroma samples == 0), a long tap filter is not applied for
P, where, curPosC.y is the vertical chroma position of the current block to be
deblocked. In one example, for luma and/or chroma deblocking if the following
condition is met (EDGE_TYPE is EDGE_HOR && Current Boundary is align with a
CTU boundary), a long tap filter is not applied for side Q and side P. In one example,
for luma and/or chroma deblocking if the following condition is met (EDGE_TYPE is
EDGE_HOR && curPos.y % CTUSize in luma samples == 0), a long tap filter is not
applied for side Q and side P. In one example, for luma and/or chroma deblocking if
the following condition is met (EDGE_TYPE is EDGE_HOR && curPosC.y %
CTUSize in chroma samples == 0), a long tap filter is not applied for side Q and side
P. In one example, when a long tap filter is not applied, another filter which modifies
fewer samples and/or includes a filter support utilizing fewer lines from px,0 to px.i
(e.g., one, two, or three lines). For example, a weak or strong filters described herein
may be applied in cases where a long tap filter is not allowed to be applied. It should
be noted that, as provided in ITU-T H.265, the % operand is the modulus operand
which provides the remainder of x divided by y.

In one example, when a long tap filter is not applied, sample values beyond a target
line buffer threshold (e.g., three or four) may be made not-available and pre-
determined values may be used for the corresponding sample positions. Table 9 il-
lustrates an example where a long tap filter includes the long tap filter described above
with respect to Table 8A and a target line buffer threshold is four. Thus, sample values
for p4 to p7 are not-available. As illustrated in Table 9, values for p4 to p7 are not
modified for deblocking. Further, as illustrated in Table 9, p4 to p7 the filter coef-
ficients are indicated an NA, which indicates that a sample value for each of p4 to p7 is
not available in the line buffer. In one example, for each p4 to p7, the sample value
may be set to the sample value of p3 and the filter coefficients in Table 8A may be

used for deriving modified sample value for p3’ to q2°.
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Output pixel Filter coefficients Input

tp7, Pe,  P5, P4, D3, P2, PL PO, 4o, 1, 92, G3, G4, 95, 46, 47 pixels

ps INA,NA,NA,NA, 3, 1, 1, 1, 1, 1, 1, 1, 0, O, p7to qs
0, 0}

Py {NA,NA,NA,NA, 1, 3, 1, 1, 1, 1, 1, 1, 1, 0, p7to g4
. 0, O}

pr {NA,NA,NA,NA, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, p7to qs
0, O

po {NA,NANA,NA, &, 1, 1, 2, 1, 1, 1, 1, 1, 1, prto qs
1, O

qo’ {NA,NA,NA,NA, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, pé to g7
1, 1

ar {NA,NA,NA,NA, 1, 1, 1, 1, 3 1, 1, 1, 1, 1, psto qr
1

q2 {NA,NA,NA,NA, 1, 1, 1, 1, 1, 1, 3 1, 1, 1, pato g7
1, 2

qs NA,NA,NA,NA, 1, 1, 1, 1, 1, 1, 1, 3 1, 1, pato g7
1, 3

qs fNA,NA,NA,NA, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, pzto q7
4}

a5 {NA,NA,NA,NA, o0, 0, 1, 1, 1, 1, 1, 1, 1, 3, p1 to q7
1, 5}

qs {NA,NA,NA,NA, o0, 0, 0, 1, 1, 1, 1, 1, 1, 1, po to q7
3, 6}
Table 9

Further, in one example, values derived from sample values that are available may be
used for the corresponding sample positions. In one example, for each p4 to p7, the
sample value may be set to the average sample value of p3 and p2 and the filter coef-
ficients in Table 8A may be used for deriving modified sample value for p3’ to q2°.

In one example, when a long tap filter is not applied, the filtering process may be
modified based on the position of a sample being deblocked (e.g., based on whether
the sample value is above the CTU horizontal boundary OR within a certain distance
of the CTU horizontal boundary) and a corresponding filter which do not access/
deblock samples beyond the target line buffer threshold may be selected. For example,
with respect to the example illustrated in Table 9, for p3’and p2’ different rules may be
applied from deriving sample values for p4 to p7.

In one example, when a long tap filter is not applied, the control process may be
modified based on the position of a sample being deblocked and a corresponding filter
which do not access/deblock samples beyond the target line buffer threshold may be
selected. For example, (s=3, t=7) filter of Table 1 for luma, (s=3, t=5) filter of Table 1

for luma, F1P for luma, and/or chroma weak filter for chroma may be selected.
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In one example, when a long tap filter is not applied, the deblocking grid may be
changed, so that samples beyond the target line buffer threshold are not accessed/
deblocked. For example, the deblocking grid may be moved so that the horizontal edge
is at a distance of 4 below the horizontal CTU edge.

As described above, in ITU-T H.265, based on the QP values used for coding the
CBs including video blocks P and Q (which may be referred to as QPP and QPQ),
variables tC’ and 3’ are determined. The derivation of the index Q for the luma
channel is described above. For the chroma channel, ITU-T H.265, provides if the
chroma is equal to 4:2:0, a variable QpC is determined as specified in the table il-
lustrated in FIG. 13 based on the index qP1 as follows:

qPi=((Qpg+Qpp+1)>>1)+cQpPicOffset

where,

cQpPicOffset is a variable specifying the picture-level chroma quantization
parameter offset, and

cQpPicOffset = pps_cb_qp: offset for Cb, and

cQpPicOffset = pps cr qp offset for Cr

It should be noted that in ITU-T H.265, if the chroma format is equal to 4:2:2 or
4:4:4, QpC is set equal to Min(qP1i, 51).

For Chroma, t.’ is determined using the table illustrated in FIG. 6 and the index Q
which is determined as follows for t.’:

Q = Clip3(0, 53, Qpet+2*+(slice_tc_offset_div2 << 1))

The proposed techniques in each of JVET-J1001 and JVET-K1001 provide where
separate partitioning trees may be used for partitioning the luma and chroma channels.
In cases where separate partitioning trees are used for partitioning the luma and
chroma channels, it may be useful to increase the amount to which a QP value for the
chroma channel can be varied with respect to a QP value for the luma channel. That is,
for example, respective QP offset values, which may be signaled on a slice level, for
the each component of the chroma channel may be increased. It should be noted that
ITU-H.265 provides the following chroma channel QP offset syntax elements:

pps_cb_qp_offset and pps_cr_qp_offset specify the offsets to the luma quantization
parameter Qp”Y used for deriving Qp’Cb and Qp’Cr, respectively. The values of
pps_cb_qgp_offset and pps_cr_qp_offset shall be in the range of -12 to +12, inclusive.
When ChromaArrayType is equal to 0, pps_cb_qp_offset and pps_cr_qp_offset are not
used in the decoding process and decoders shall ignore their value.

slice_cb_qp_offset specifies a difference to be added to the value of

pps_cb_qgp_offset when determining the value of the Qp’Cb quantization parameter.
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The value of slice_cb_qp_offset shall be in the range of -12 to +12, inclusive. When
slice_cb_qp_offset is not present, it is inferred to be equal to 0. The value of
pps_cb_qgp_offset + slice_cb_qp_offset shall be in the range of -12 to +12, inclusive.
slice_cr_qgp_offset specifies a difference to be added to the value of pps_cr_qp_offset
when determining the value of the Qp’Cr quantization parameter. The value of
slice_cr_qp_offset shall be in the range of -12 to +12, inclusive. When
slice_cr_qp_offset is not present, it is inferred to be equal to 0. The value of
pps_cr_qp_offset + slice_cr_qp_offset shall be in the range of -12 to +12, inclusive.
Changes to the derivation of chroma QP values may effect chroma channel de-
blocking in cases where deblocking parameters are based on a QP value. According to
the techniques herein the derivation of deblocking parameters based QP value(s) may
be modified, e.g., in cases where separate partitioning trees may be used for par-
titioning the luma and chroma channels.
In one example according to the techniques herein, cQpPicOffset may be derived as
follows:
cQpPicOffset = pps_cb _qp offset + slice cb _qp_offset for Cb, and
cQpPicOffset = pps_cr_qp_offset + slice cr qp_offset for Cr

In one example, a CU level chroma QP offset value may be signaled (for e.g., during
a palette mode coding). The chroma QP derivation used for deblocking may make use
of the CU level chroma QP offset. For example, if the variables CuQpOffsetCb and
CuQpOffsetCr represent Cb and Cr offset, then the chroma QP offset may be derived
as:
cQpPicOffset = pps cb_gp offset + slice ¢b_qp_offset + CuQpOffsetcy, for Cb
cQpPicOffset = pps_cr _qp offset + slice cr gp_offset + CuQpOffsetc, for Cr

In some cases an additional luma and chroma QP offset value may be used for blocks
undergoing a type of processing (e.g., adaptive color transform). These QP offsets may
be used for deriving the QP for luma and chroma. As a result, the deblocking processes
may depend on the additional luma and chroma QP offsets.

In some examples, when separate partitioning trees are used for partitioning the luma
and chroma channels, the chroma QP value may be computed based on partition tree
type. For example, in one example, the chroma QP value may be determined as

follows:

qPi=(( Qpox o+ Qpsxp +1) >> 1)+ cQpPicOffset

where, Qpui p, Opoi @ are luma quantization parameters corresponding to

chroma block on P-side and chroma block on Q-side respectively.

In one example, Qpui_p and/or Qpyy_o may be derived from a combination of one or
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more of: QP values of multiple corresponding luma blocks; the number of samples of
the luma block corresponding to the chroma block; the luma QP value corresponding
to a predetermined chroma position. In some examples, Qpyi_p and/or Qpyy_o may be
derived using a function such as, for example, an integer averaging with rounding
function, a maximum value function. It should be noted, that it possible to have a
partial luma block corresponding to a chroma block. FIGS. 14A-14B illustrate
examples of possible luma partitionings corresponding to chroma blocks P and Q,
where each of the luma blocks have a QP values QP_X. In the example, illustrated in
FIG. 14A the chroma block P is collocated with the luma blocks having QP values
QP_1 and QP_3 and the chroma block Q is collocated with the luma blocks having QP
values QP_2 and QP_4. In the example, illustrated in FIG. 14B the chroma block P is
collocated with the luma blocks having QP values QP_1, QP_3, and QP_5 and the
chroma block Q is collocated with the luma blocks having QP values QP_2 and QP_4.
In one example, for the example illustrated in FIG. 14A, Qpyi_p and Qpuy_o may be
derived as follows:
Qpotk p=(QP_1+QP 3+1)>>1
Qpoik 0 =(QP_2+QP_4+1)>>1
In one example, for the example illustrated in FIG. 14B, Qpyy_p and Qpuy_o may be
derived as follows:
Qpox p =(QP_1+QP_5+2*QP_3 +2)>>1
Qpoik 0 =(QP 2+ QP_4+1 ) >>1
In one example, Qpui_p and/or Qpyi_o may be derived by identifying a set of chroma
positions and for each chroma position identifying a corresponding luma positions. For
each, corresponding luma position, a corresponding QP value may be determined. The
corresponding QP values may be used to derive Qpux_p and/or Qpui -
As described above, in one example, a wider strong filter condition may include
whether both a first condition and a second condition are true, where a first condition
may be true when d < 3, where d is determined as follows:

dp0 = xCalcDP(R[0]);
dq0 = xCalcDQ(Rc[0]));
dpl =xCalcDP(R([1]);
dql =xCalcDQRc[1]);
d0 = dp0 + dq0;

dl =dpl +dql;

d=d0+dl.
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Where,

R¢[N] corresponds to chroma lines perpendicular to the edge being deblocked and at
distance N from the top of current chroma segment being deblocked; and

In one example, a filter condition may include a condition is that is true when d < f3,

where d is determined as follows:

dp0 = xCalcDP(R[0]);

dq0 = xCalcDQR[O]);

d0 = dp0 + dq0;
d=d0+dl.

In some examples, the condition may be checked for x sample segments of the
chroma deblocking boundary (e.g., x=2). This reduces the number of lines which a
gradient needs to be computed in the worst-case. It should be noted that in the worst
case the first condition would compute gradients (xCalcDQP for every line) whereas
the above condition would compute gradients once every 2 lines.

As described above, ITU-T H.265, variables [3 and tcare used for filtering decisions
and clipping operations. For example, [3 and/or tc are used to determine whether a
strong filter is used and/or to clip filtered sample values. It should be noted that in
JVET-K1001 the peak signal to noise ratio (PSNR) is higher than a given level of
quantization compared to ITU-T H.265. Thus, in some cases, it may be useful to
modify 3 and/or tc in order to modify deblocking strength. That is, if the level of
distortion is at a given level of quantization is lower, the amount of perceived
blockiness is lower and thus, less deblocking is needed. In one example, 3 may be
modified by as follows: § = 3 << n. In one example, 3 may be modified by as follows:
3 =P >>n. In one example, t- may be modified by as follows: tc = tc << n. In one
example, t- may be modified by as follows: tc = tc >> n. In one example, n may be de-
termined based on a combination of one or more of: Slice type, QP value, block size,
bit depth, intra prediction mode, motion vectors (e.g., magnitude), channel type, and/or
component type. For example, in one example, tc = tc >> 2 may be used for intra slices
and t¢ = tc >> 4 may be used for inter slices. In one example, t- = tc >> 2 may be used
for the luma component and tc = tc >> 4 may be used for chroma components.

“CE2-2.1.1: Long deblocking filters and fixes,” 11th Meeting of ISO/IEC
JTC1/SC29/WG11 10-18 July 2018, Ljubljana, SI, document JVET-K0307-v1 which
is referred to herein as JVET-KO0307, describes longs filters and decisions for the luma
component. Based on the filtering techniques described above, the filtering techniques
in JVET-K0307 may be modified to enable use of long asymmetric filters. For long
asymmetric filters, the number of samples deblocked on the larger block side is greater

than that on the smaller block side. The deblocking decision processes to select from
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this extended filter set are described in detail below. The extended filter set may be

used for strong deblocking throughout the deblocking.

In one example, according to the techniques herein, luma stronger filters are used
when either side has a large block and a modified strong filter condition is met. In one

example, a luma large block corresponds to a width >= 32 for a vertical edge, and a

height >= 32 for a horizontal edge.

In one example, a luma stronger filter may be defined as follows:

Block boundary samples p; and q; for i=0 to S-1 are then replaced by linear inter-

polation as follows:

=%+ % +32} 3 6), clipped to +tc

S =4 2432} 2 6).clipped to +tc
wheref i Widdle st P sand ) s-aregiven-below in-Table-10:

PCT/JP2019/012422

7,7
. =59 —ix%, ranalso bedescribedas f=
(p side:
. =59—ix9, canalsobedescribedasg=
. =2x++++++++48) >4
q side:
7 ={++ 13> 1 ={++1>»1
7,3
. =59 —ix9, canalso be described as f=
(p side:
. =53 —i»21, vanalso bedescribedas g =
) =2t 2 () + +8) Bde
q side:
5 ={++ 1)1, ={++1) =1
3,7
o =5% —i%9, canalso bedescribedasg=
(p side:
3 =53 —i%21, canalso bedescribedas f =
3 = (2t + 2 (H)+ + 4+ +8) > 4w
q side:
7 ={(++10»1 =H++D1
Table 10

In one example, the control process is further based on gradients computed for two
lines of four sample segments; comparison of absolute pixel value difference with tc;

and comparison of other absolute pixel value differences with 3. More gradients are

computed for large block side. The control process may be as follows:
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1. The variables dpq0, dpq3, dp, dg, and d are derived as follows:
dp0, dp3, dq0, dg3 are first derived as in ITU-T H.265
dpq0, dpq3, dp, dq, d are then derived as in ITU-T H.265

As in ITU-T H.265, When d is less than B, the following ordered steps apply:
a. dpq is derived as in ITU-T H.265.

b. sps=Abs(ps—po), derived as in ITU-T H.265
if (p side is greater than or equal to 32)
sps = (aps+ Abs(pr—pa)+ D >>1

c. sqs = Abs(qgg— q3 ), derived as in ITU-T H.265
if (q side is greater than or equal to 32)

sqz = (sqa+Abs(qr—q3) + 1) >>1

d. As in ITU-T H.265 derive, StrongFilterCondition = (dpq is less than
(B >> 2), sps +sqaisless than ({p or g side is greater than or equal to
32 ) 2 (3% >> 5) : (B> 3)), and Abs{po—qo) is less than
(5*tc+1) > 1)? TRUE : FALSE

e. if (p side or q side is greater than or equal to 32)
Set dSp1, dSp2 to Abs( ps ~ pg)
Set dSq1, dSq2 to Abs(qs — qo)
if(q side is greater than or equal to 32)
dSql =abs(qs- 2 * g2 + qo)
dSq2 = abs(qs - 2 * qs + qo)
if(p side is greater than or equal to 32)
dSp1=abs(s- 2 * pz + po)
dSp2 = abs(ps - 2 * ps + po)
Compute d_strongl and d_strong?2 as:
d_strongl=dSp1+dSql
d_strong2= dSp2+dSq2
, Compute StrongFilterCondition = ( StrongFilterCondition &&
((d_strongl < ((3 * beta) >> 5)) && (d_strong2 < ((3 * beta) >> 5)) ) ) 2 TRUE : FALSE
f.  When StrongFilterCondition is TRUE, use luma stronger filter (may be

selected based on block-sizes at edge boundary).

[0223]  In one example, a control process may be as follows:
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The variables dpq0, dpq3, dp, dq, and d are derived as follows:
dp0, dp3, dq0, dg3 are first derived as in ITU-T H.265

dpq0, dpq3, dp, dq, d are then derived as in ITU-T H.265

As in ITU-T H.265, When d is less than B, the following ordered steps apply:

dpq is derived as in ITU-T H.265.
sps = Abs( p3 — po ), derived as in ITU-T H.265
if (p side is greater than or equal to 32 && q side is greater than or

equal to 16)

sp3 = (sps+ Abs(p7—p3) + 1)>>1
sqs = Abs( qo — q3 ), derived as in ITU-T H.265

if (q side is greater than or equal to 32 && p side is greater than or
equal to 16)

sq3 =(sqz+ Abs(q7 —q3) +1)>>1

As in ITU-T H.265 derive, StrongFilterCondition = (dpq is less than

(B >> 2), sps +sq3 is less than ( ((p side is greater than or equal to 32

&& q side is greater than or equal to 16)) OR (q side is greater than or equal

to 32 && p side is greater than or equal to 16)) ? (3*p >> 5) :

(B >>3)), and Abs(po—qp) is less than (5*tc+1) >> 1) ? TRUE :

FALSE

[0224] It should be noted that the conditions (p side is greater than or equal to 32 && q side

is greater than or equal to 16) and (q side is greater than or equal to 32 && p side is
greater than or equal to 16) determine if a luma stronger filter may be applied. It
should be noted that in other examples, additional conditions may be applied (e.g., one
or more preceding conditions) may be used to determine if a luma stronger filter may

be applied. In one example, additional conditions may be as follows:
if (p side is greater than or equal to 32 && q side is greater than or equal to 16) ||
(q side is greater than or equal to 32 && p side is greater than or equal to 16);
however for (7,7, 7,3, 3,7) the decision process is (p side is greater than or equal to 32 ||
q side is greater than or equal to 32). The idea is the lower threshold selection of 3 * B
>> 5 instead of § >> 3 applies for any of these luma stronger filter preceding decision

Process.

[0225]  In one example, according to the techniques describe herein luma may be deblocked
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according to a 4x4 luma sample grid (or in some examples according to a 8x8 luma
sample grid). In this example, luma stronger filters, described above as WSOOP P-side
filter and WS00Q Q-side filter may be used for large blocks where large block cor-
responds to width >= 32 for a vertical edge, and height>=32 for a horizontal edge and
the adjacent block is greater than or equal to 16. The control process may be further
based on gradients computed for two lines of 4 sample segments; comparison of
absolute pixel value difference with tc; and comparison of other absolute pixel value
differences with f3, as described in further detail below. Further, when p0 belongs to
CTU above current CTU, the following limited support luma filter provided in Table
8B above may be used.

[0226]  In some cases, a subset of samples are not accessible. In such cases, a control process
using this subset of samples may be affected. This may lead to asymmetry in the com-
putation of a gradient. In some examples, in this cases, another control process may be
used.

[0227]  In one example, the control process may be as follows:
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The variables dpq0, dpq3, dp, dq, and d are derived as follows:
dpO0, dp3, dq0, dg3 are first derived as in ITU-T H.265
LongTapDeblocking = ((p side >=32 && q side>=16) || (p side >= 16 &&
gside>=32) ) )?TRUE : FALSE
ControlSamplesAccessible = po belongs to CTU above current CTU ? FALSE :
TRUE
if ( LongTapDeblocking )
if (p side is greater than or equal to 32 && ControlSamplesAccessible )
dp0 = (dp0 +Abs(pso—2*peotpso)+1)>>1
dp3 ={(dp3 +Abs(psz—2*pas+pss)+1)>>1

if {q side is greater than or equal to 32)
dq0 =(dq0 +Abs(qs0— 2 * qeo+qao) +1)>>1
dg3 =(dq3 +Abs(qs3—~2* qua+qaa)+1)>>1

dpq0, dpq3, dp, dq, d are then derived as in I'TU-T H.265

As in ITU-T H.265, When d is less than B, the following ordered steps apply:
dpq is derived as in ITU-T H.265.

sps =Abs( ps — po), derived as in ITU-T H.265
if (p side is greater than or equal to 32 && LongTapDeblocking &&
ControlSamplesAccessible)
spz=(sp3+Abs(pr—p3)+ D >>1
sqa =Abs{ qo — gz ), derived as in ITU-T H.265

if (q side is greater than or equal to 32 && LongTapDeblocking)
sqs = (sqz+Abs(qr—qz) + 1) >>1 .
As in ITU-T H.265 derive, StrongFilterCondition = (dpq is less than

(B >> 2), sps + sqs is less than ( LongTapDeblocking ) ? (3*8 >> 5):(8 >> 3)),
and Abs( po — qo) is less than (5 * tc + 1) >> 1) ? TRUE : FALSE

When StrongFilterCondition is TRUE and LongTapDeblocking is TRUE, use
luma stronger filter on the side with length perpendicular to boundary edge greater than

or equal to 32,

Otherwise, When StrongFilterCondition is TRUE and LongTapDeblocking is
FALSE, use another strong filter (e.g. HEVC strong filter HEVC_P, HEVC_Q) .

[0228]  In one example, thresholds used in comparisons may also be based on position. For
example, whether the edge being deblocked is aligned with the CTU boundary.
[0229]  In one example, one of the following may be needed for a 4x4 luma deblocking grid :
When block-width/height-is-equal-to-4-for-vertical-edge/horizontal- edge respectively -and-if the
HEVCfilter-on/off-condition-(i.2.-d-<-Beta, where -d=-do+-ds-and-dg = dpg + dgo-and ds=-dys +
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dq3} is- evaluated-to- true- for- the respective- edge - then- this- method- would - euforce- HEVC-
normal Aweak- filter- with- maximum- one- sample- modification.- Therefore the- following- HEVC-
condition-is checked |} < 10{t, ) where § = (9= (g, — po} — (3= (g, — P} + 8 > 4.-and-if-
the-condition-is-evaluated to-tue, then-samples g, -and g, sre-modified, otherwise no-filtering jz-
applied. -

When-block-widih/height is- equal- to-4- for- vertical - edge/horizontal- edge-respectively, - then-a-
maximum- of three-samples-are used-in-filter- decision-and - only-one-sample-is- modified by the
filter. i.e pd is-used-to-replace p! in- strongiweak- filter- condition- checks: and - both- strong- and-

weak filter-are-only allowed to modify p, and g,

In one example, according to the techniques describe herein chroma may be
deblocked according to a 2x2 chroma sample grid (or in some examples according to a
4x4 luma sample grid). In this example, HEVC_P P-side and HEVC_Q Q-side filters
described above, may be used. Further, when p, belongs to CTU above current CTU,
the chroma weak filter described above as NWOOP above may be used. In one
example, the strong filter may be used when the HEVC luma strong filter condition
computed for chroma is TRUE and any of the following conditions is true:

-The edge type is vertical an py belongs to CU with width >= 16 (chroma
samples) and qp belongs to CU with width >= 16 (chroma samples)

-The edge type is horizontal and py belongs to CU with height >= 16 (chroma
samples) and qp belongs to CU with height >= 16 (chroma samples)

Referring again to FIG. 8, entropy encoding unit 218 receives quantized transform
coefficients and predictive syntax data (i.e., intra prediction data and motion prediction
data). It should be noted that in some examples, coefficient quantization unit 206 may
perform a scan of a matrix including quantized transform coefficients before the coef-
ficients are output to entropy encoding unit 218. In other examples, entropy encoding
unit 218 may perform a scan. Entropy encoding unit 218 may be configured to perform
entropy encoding according to one or more of the techniques described herein. In this
manner, video encoder 200 represents an example of a device configured to receive an
array of sample values including adjacent reconstructed video blocks for a component
of video data, and modifying sample values in the adjacent reconstructed video blocks
according to multiple passes of a deblocking filter.

Referring again to FIG. 7, data encapsulator 107 may receive encoded video data and
generate a compliant bitstream, e.g., a sequence of NAL units according to a defined
data structure. A device receiving a compliant bitstream can reproduce video data
therefrom. Further, a device receiving a compliant bitstream may perform a sub-

bitstream extraction process, where sub-bitstream extraction refers to a process where a
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device receiving a compliant bitstream forms a new compliant bitstream by discarding
and/or modifying data in the received bitstream. It should be noted that the term
conforming bitstream may be used in place of the term compliant bitstream.

Referring again to FIG. 7, interface 108 may include any device configured to
receive data generated by data encapsulator 107 and transmit and/or store the data to a
communications medium. Interface 108 may include a network interface card, such as
an Ethernet card, and may include an optical transceiver, a radio frequency transceiver,
or any other type of device that can send and/or receive information. Further, interface
108 may include a computer system interface that may enable a file to be stored on a
storage device. For example, interface 108 may include a chipset supporting Peripheral
Component Interconnect (PCI) and Peripheral Component Interconnect Express (PCle)
bus protocols, proprietary bus protocols, Universal Serial Bus (USB) protocols, I>C, or
any other logical and physical structure that may be used to interconnect peer devices.

Referring again to FIG. 7, destination device 120 includes interface 122, data de-
capsulator 123, video decoder 124, and display 126. Interface 122 may include any
device configured to receive data from a communications medium. Interface 122 may
include a network interface card, such as an Ethernet card, and may include an optical
transceiver, a radio frequency transceiver, or any other type of device that can receive
and/or send information. Further, interface 122 may include a computer system
interface enabling a compliant video bitstream to be retrieved from a storage device.
For example, interface 122 may include a chipset supporting PCI and PCle bus
protocols, proprietary bus protocols, USB protocols, I>’C, or any other logical and
physical structure that may be used to interconnect peer devices. Data decapsulator 123
may be configured to receive and parse any of the example parameter sets described
herein.

Video decoder 124 may include any device configured to receive a bitstream and/or
acceptable variations thereof and reproduce video data therefrom. Display 126 may
include any device configured to display video data. Display 126 may comprise one of
a variety of display devices such as a liquid crystal display (LCD), a plasma display, an
organic light emitting diode (OLED) display, or another type of display. Display 126
may include a High Definition display or an Ultra High Definition display. It should be
noted that although in the example illustrated in FIG. 7, video decoder 124 is described
as outputting data to display 126, video decoder 124 may be configured to output video
data to various types of devices and/or sub-components thereof. For example, video
decoder 124 may be configured to output video data to any communication medium, as
described herein.

FIG. 9 is a block diagram illustrating an example of a video decoder that may be

configured to decode video data according to one or more techniques of this disclosure.
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In one example, video decoder 300 may be configured to decode transform data and
reconstruct residual data from transform coefficients based on decoded transform data.
Video decoder 300 may be configured to perform intra prediction decoding and inter
prediction decoding and, as such, may be referred to as a hybrid decoder. In the
example illustrated in FIG. 9, video decoder 300 includes an entropy decoding unit
302, inverse quantization unit 304, inverse transform coefficient processing unit 306,
intra prediction processing unit 308, inter prediction processing unit 310, summer 312,
filter unit 314, and reference buffer 316. Video decoder 300 may be configured to
decode video data in a manner consistent with a video coding system. It should be
noted that although example video decoder 300 is illustrated as having distinct
functional blocks, such an illustration is for descriptive purposes and does not limit
video decoder 300 and/or sub-components thereof to a particular hardware or software
architecture. Functions of video decoder 300 may be realized using any combination of
hardware, firmware, and/or software implementations.

As illustrated in FIG. 9, entropy decoding unit 302 receives an entropy encoded
bitstream. Entropy decoding unit 302 may be configured to decode syntax elements
and quantized coefficients from the bitstream according to a process reciprocal to an
entropy encoding process. Entropy decoding unit 302 may be configured to perform
entropy decoding according any of the entropy coding techniques described above.
Entropy decoding unit 802 may determine values for syntax elements in an encoded
bitstream in a manner consistent with a video coding standard. As illustrated in FIG. 9,
entropy decoding unit 302 may determine quantized coefficient values and predication
data from a bitstream. In the example illustrated in FIG. 9, inverse quantization unit
304 receives quantized coefficient values and outputs transform coefficients. Inverse
transform processing unit 306 receives transform coefficients and outputs recon-
structed residual data.

Referring again to FIG. 9, reconstructed residual data may be provided to summer
312. Summer 312 may add reconstructed residual data to a predictive video block and
generate reconstructed video data. A predictive video block may be determined
according to a predictive video technique (i.e., intra prediction and inter frame
prediction). Intra prediction processing unit 308 may be configured to receive intra
prediction syntax elements and retrieve a predictive video block from reference buffer
316. Reference buffer 316 may include a memory device configured to store one or
more frames of video data. Intra prediction syntax elements may identify an intra
prediction mode, such as the intra prediction modes described above. Inter prediction
processing unit 308 may receive inter prediction syntax elements and generate motion
vectors to identify a prediction block in one or more reference frames stored in

reference buffer 316. Inter prediction processing unit 310 may produce motion com-
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pensated blocks, possibly performing interpolation based on interpolation filters.
Identifiers for interpolation filters to be used for motion estimation with sub-pixel
precision may be included in the syntax elements. Inter prediction processing unit 310
may use interpolation filters to calculate interpolated values for sub-integer pixels of a
reference block.

Filter unit 314 may be configured to perform filtering on reconstructed video data.
For example, filter unit 314 may be configured to perform deblocking and/or Sample
Adaptive Offset (SAO) filtering, e.g., based on parameters specified in a bitstream.
Further, it should be noted that in some examples, filter unit 314 may be configured to
perform proprietary discretionary filtering (e.g., visual enhancements, such as,
mosquito noise reduction). Filter unit 314 may operate in a similar manner to filter unit
216. As illustrated in FIG. 9, a reconstructed video block may be output by video
decoder 300. In this manner, video decoder 300 may be configured to receive an array
of sample values including adjacent reconstructed video blocks for a component of
video data and modify sample values in the adjacent reconstructed video blocks
according to multiple passes of a deblocking filter.

In one or more examples, the functions described may be implemented in hardware,
software, firmware, or any combination thereof. If implemented in software, the
functions may be stored on or transmitted over as one or more instructions or code on a
computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which cor-
responds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

By way of example, and not limitation, such computer-readable storage media can
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium
that can be used to store desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any connection is properly
termed a computer-readable medium. For example, if instructions are transmitted from
a website, server, or other remote source using a coaxial cable, fiber optic cable,

twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared,
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radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or
wireless technologies such as infrared, radio, and microwave are included in the
definition of medium. It should be understood, however, that computer-readable
storage media and data storage media do not include connections, carrier waves,
signals, or other transitory media, but are instead directed to non-transitory, tangible
storage media. Disk and disc, as used herein, includes compact disc (CD), laser disc,
optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks
usually reproduce data magnetically, while discs reproduce data optically with lasers.
Combinations of the above should also be included within the scope of computer-
readable media.

Instructions may be executed by one or more processors, such as one or more digital
signal processors (DSPs), general purpose microprocessors, application specific in-
tegrated circuits (ASICs), field programmable logic arrays (FPGAS), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable
for implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a
combined codec. Also, the techniques could be fully implemented in one or more
circuits or logic elements.

The techniques of this disclosure may be implemented in a wide variety of devices or
apparatuses, including a wireless handset, an integrated circuit (IC) or a set of ICs
(e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.

Moreover, each functional block or various features of the base station device and the
terminal device used in each of the aforementioned embodiments may be implemented
or executed by a circuitry, which is typically an integrated circuit or a plurality of in-
tegrated circuits. The circuitry designed to execute the functions described in the
present specification may comprise a general-purpose processor, a digital signal
processor (DSP), an application specific or general application integrated circuit
(ASIC), a field programmable gate array (FPGA), or other programmable logic
devices, discrete gates or transistor logic, or a discrete hardware component, or a com-
bination thereof. The general-purpose processor may be a microprocessor, or alter-

natively, the processor may be a conventional processor, a controller, a microcontroller
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or a state machine. The general-purpose processor or each circuit described above may
be configured by a digital circuit or may be configured by an analogue circuit. Further,
when a technology of making into an integrated circuit superseding integrated circuits
at the present time appears due to advancement of a semiconductor technology, the in-
tegrated circuit by this technology is also able to be used.

Various examples have been described. These and other examples are within the
scope of the following claims.

<Cross Reference>

This Nonprovisional application claims priority under 35 U.S.C. § 119 on provisional
Application No. 62/651,058 on March 30, 2018, No. 62/654,379 on April 7, 2018, No.
62/655,029 on April 9, 2018, No. 62/656,291 on April 11, 2018, No. 62/677,629 on
May 29, 2018, No. 62/679,716 on June 1, 2018, No. 62/696,309 on July 10, 2018, No.
62/711,420 on July 27, 2018, No. 62/714,755 on August 5, 2018, No. 62/732,556 on
September 17, 2018, No. 62/733,067 on September 18, 2018, No. 62/735,090 on
September 22, 2018, No. 62/737,596 on September 27, 2018, the entire contents of

which are hereby incorporated by reference.
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Claims

A method of filtering reconstructed video data, the method comprising:
receiving an array of sample values including adjacent reconstructed
video blocks for a component of video data; and

modifying sample values in the adjacent reconstructed video blocks
according to multiple passes of a deblocking filter.

The method of claim 1, wherein filter parameters of a deblocking filter
at each pass are determined based on one or more coding parameters.
A device for coding video data, the device comprising one or more
processors configured to perform any and all combinations of the steps
of claims 1-2.

The device of claim 3, wherein the device includes a video encoder.
The device of claim 3, wherein the device includes a video decoder.

A system comprising:

the device of claim 4; and

the device of claim 5.

An apparatus for coding video data, the apparatus comprising means
for performing any and all combinations of the steps of claims 1-2.

A non-transitory computer-readable storage medium comprising in-
structions stored thereon that, when executed, cause one or more
processors of a device for coding video data to perform any and all

combinations of the steps of claims 1-2.
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8 10 11 6

10 15 12 8

11 19 18 13
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[Fig. 4B]
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[Fig. 11]

905
d3aimid
AVIM
Alddv

A

L1 "OId

v0S
d3.114d
HIONOHILS
AdIM A1ddV

ON

205
¢NOLLIONOD
0719 IODHV

1HV1S




13/16

CA 03095549 2020-09-29

PCT/JP2019/012422

WO 2019/188944

[Fig. 12]
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[Fig. 13]
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