PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

(11) International Publication Number:

(43) International Publication Date:

WO 93/06553

1 April 1993 (01.04.93)

GOGF 13/28 Al
(21) International Application Number: PCT/EP92/01965
(22) International Filing Date: 26 August 1992 (26.08.92)

(30) Priority data:

761,534 18 September 1991 (18.09.91) US

(71) Applicant (for DE only): IBM DEUTSCHLAND GMBH
[DE/DE]; Pascalstrake 100, D-7000 Stuttgart 80 (DE).

(71) Applicant (for all designated States except DE): INTERNA-
TIONAL BUSINESS MACHINES CORPORATION
[US/US]; Armonk, NY 10504 (US).

(72) Inventors: CARMON, Donald, Edward ; 5011 S. Alston
Ave. Apt. H205, Durham, NC 27713 (US). CROUSE,
William, George ; 5018 Holly Ridge Dr., Raleigh, NC
27612 (US). WARE, Malcolm, Scott ; 2712 Rockbridge
Court, Raleigh, NC 27604 (US).

(74) Agent: SCHAFER, Wolfgang; IBM Deutschland Infor-
mationssysteme GmbH, Patentwesen und Urheberrecht,
Pascalstrasse 100, D-7000 Stuttgart 80 (DE).

(81) Designated States: CS, DE, HU, PL, RU, European patent
(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU,
MC, NL, SE).

Published
With international search report.

(54) Title: MULTI-MEDIA SIGNAL PROCESSOR COMPUTER SYSTEM

D8P BYSTEM

i HOST SYSTEM
Dgp |
D8P DATA MEMORY |
neme | ||
(CODE FOR USER resUiTg) anD |1
JASK PROCESSES) PACKET ReauesT |!
LISTS | INTER-
| PROCESSOR
’l‘ [OMA
DSP | BUSMASTER
SYSTEM CONTROLLER
susN—~ |
< | pUENMASTER PROCESSOR HOST
—>
<— PACKETFLOW Qﬁﬁggggg pECRcE MEIJ\%TREYM&
o UBER TASKS
" T 1
INSTR/DATA HOSTTO o Df}f"
USMASTER c
ARBITRATION [5— 7 SKETFLOW o
INTERFACE ADDRESS
NTER-
g{glﬂt "“Sﬁi?.%"" HOST SYSTEM BUS
PROCESSOA
(08P) EXECUTION
CONTROLLER/

(57) Abstract

A multi-media user task (host) computer is interfaced to a high speed digital signal processor DSP which provides support
functions to the host computer via an interprocessor DMA bus master and controller. Support of multiple dynamic hard real-time
signal processing task requirements are met by posting signal processor support task requests from the host processor through the
interprocessor DMA controller to the signal processor and its operating system. The signal processor builds data transfer packet
request execution lists in a partitioned queue in its own memory and executes internal signal processor tasks invoked by users at
the host system by extracting signal sample data from incoming data packets presented by the interprocessor DMA controller in
response to its execution of the DMA packet transfer request queues built by the signal processor in the partitioned queue. Pro-
cessed signal values etc. are extracted from signal processor memory by the DMA interprocessor controller executing the parti-

tioned packet request lists and delivered to the host processor. A

very large number of packet transfers in support of numerous

user tasks and implementing a very large number of DMA channels is thus made possible while avoiding the need for arbitration
between the channels on the part of the signal processor or the host processor.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
CA
CF
CG
CH
CI
cM
cs
CczZ
DE
DK
ES

Austria
Australia
Barbados
Belgium
Burkina Faso
Bufgaria

Benin

Bravil

Canada
Central African Republic
Congo
Switzerland
Cote d'lvoire
Cameroon
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

FOR THE PURPOSES OF INFORMATION ONLY

Fl
FR
GA
GB
GN
GR
HU
IE
IT

KP

KR
LI
LK
LU
mC
MG
Ml

Finland

France

Gabon

United Kingdom
Guinca

Greeee

Hungary

Iecland

ltaly

Japan

Democratic People’s Republic
of Korca

Republic of Korea
Licchtenstein

Sri Lanka
Luxemboury
Mounaco
Madagascar

Mali

Mongolia
Mauritania

Malawi
Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovak Republic
Scaegal

Sovict Union

Chad

Togo

Ukraine

United States of America

)

¥y

¥

WO 93/06553

DESCRIPTION

MULTI-MEDIA SIGNAL PROCESSOR COMPUTER SYSTEM

Field of the Invention

This invention relates to signal processor computer
systems in general and to direct memory access control;
more specifically, it relates to a dynamic, hard
real-time, multi-task signal processing demands
commonly encountered in multi-media computer systems.

Prior Art

Signal processors are well known components in numerous
computer systems presently available. Specialized
Digital Signal Processors (DSPs) are commercially
available from a variety of manufacturers and are
utilized for the high speed, iterative execution of
algorithms employed to provide digital signal
filtering, speech recognition or speech synthesis,
servomechanism control, encoded speech generation,
compact disk hi fi sampled sound and music generation,
modem data modulating and demodulating functions,
facsimile data transmission encoding and decoding
functions, color and monochrome image data compression
and display functions, motion video processing
functions and numerous data protocol conversion or
encoding, error correcting or similar functions. In
fact, the suggested lists of potential digital signal
processor applications for high speed, repetitive
execution of such algorithms as Fourier transforms,
etc. on a high speed stream of digital analog signal

samples are widespread in the industry.

PCT/EP92/01965

WO 93/06553 PCT/EP92/01965

A particularly advantageous signal processor
architecture is known in U.S. Patent 4,794,517 assigned
to the assignee of this present application; reference
may be had thereto for an understanding of how digital
signal processors may be built and utilized. However,
it is evident to those of skill in the art that the
aforementioned signal processor architecture is but one
of many competing ones available in the marketplace.
Additionally, the uses for digital signal processors
are expanding at almost geometric rates, particularly
in the growing field of the so called multi-media
computer systems. In such systems a user may
simultaneously wish to execute numerous functions such
as speech encoding for transmission, motion video,
modem transmission and reception and perhaps background
CD music reproduction to name but a few audiovisual or
multi-media applications. These applications may be
run on a typical host system such as an IBM Personal
System/2 computer or any of a variety of similar
available multi-tasking computer systems commonly sold

today.

In such multi-media systems, signal processing tasks
are usually offloaded (via DMA) to the specialized,
high speed digital signal processor (DSP). However, as
speed and memory capacity of processors increase, the
DSP may take on execution of the user tasks themselves
as will become evident later. indeed, in such a
system, DMA function itself could be handled by the
DSP. If only a few channels of DMA access are
required, a typical DMA controller may allow the signal
processor and the host processor to service one or
several hardware devices. However, where the host
processor is a multi-tasking one and a large number of

1/0 devices exist, the provision of only a few DMA

WO 93/06553 PCT/EP92/01965

channels between the host multi-tasking processor and
the supporting digital signal processor may become a
bottleneck which is insurmountable when the DMA facility
is simultaneously shared by all operating I/0 devices

and various threads of task execution which are running.

Consider a typical multi-media environment that may
have numerous high fidelity audio signal samples being
processed utilizing independent host memory tables of
audio samples and multiple memory control tables and
energy and pitch envelopes stored in memory, and one
encounters a system with a need for providing more than
one hundred separate channels of DMA access in a time
period less than a millisecond. With 16 hi fi
stereophonic audio signal channels, each audio channel
requires transfer of 88,200 sample bytes per second. In
such a short time, one may consider that 100 channels
of DMA are. supporting over 100,000 block transactions
per second, with each block having its own unique
source and destination address and block transfer size.
Using a conventional DMA access device, a system
processor such as the digital signal processor would
have to be interrupted for a new data transfer to
support the required operations on the average of about
every 10 microseconds. Several machine cycles would be
required to support each transfer and the system would
soon become inoperative since no processor resource
‘'would remain capable of executing the actual signal
processing tasks in addition to those required to

control the DMA accesses.

In addition to typical audio applications, there may be
other host tasks under execution that require communiczfZ:-on
between the digital signal processor and the host

processor while the audio signals are being "played".

WO 93/06553 PCT/EP92/01965

An example might be a facsimile modem moving image data
to or from the host computer's system memory in
conjunction with the audio music, speech or background
being "played". In addition a speech recognition task
may be running which requires the moving of speech
templates to and from the host system memory to the
signal processor's memory for matching purposes and
then writing back speech recognition tokens as they are
recognized. A speech synthesis function may also be
operating and is retrieving phoneme data from the
system memory bank while a computer-aided display
application may be running in which the signal processor
is required to rotate a three dimensional object found
in an image screen buffer which requires numerous
complex iterative calculationms. The point being made
is that a huge number of effective DMA channels may-be
required in a complex multiprocessor and multi-tasking

environment supported by a signal processor.

Multiple DMA controller chip devices are known such as
that shown in U.S. Patent 4,831,523. Such devices
operate as peripheral device controllers and are
designed to connect a fixed number, four in the case of
the presently cited reference, of physical peripheral
devices to a system bus. Physical devices are not the
equivalent to multi-tasking processes that require
hard, real-time, processed signal samples in order to
carry out the task processes that a user desires. Four
physical peripheral devices show a limit of
approximately eight logical DMA channels and, in the
cited reference, devices are not serviced within any
fixed amount of time since the devices are serviced in
a round robin fashion and one device may take an
arbitrarily long time to complete its work, thus

removing the ability for any other real-time device to

R

WO 93/06553 PCT/EP92/01965

complete its work within a fixed period of time.

A direct memory access channel sharing mechanism is
also shown in the IBM Technical Disclosure Bulletin,
Vol. 30, No. 7 published December, 1987, pages 369 and
370. However, the mechanism shown requires I/0 device
hardware that can be dynamically reassigned. It
appears that this mechanism is a software one which
dynamically assigns a small number of hardware DMA
channels to requesting external hardware devices which
permits the sharing of the DMA channels. There is no
deterministic information on the size, number or time
period in which grant of service for any requests may
be made and no details are given as to how the hardware

device may make such a request. The system shown is

“not real-time in nature, i.e. requesting tasks whose

signal samples are to be processed and delivered do not
have to be serviced within precise and repetitive time
increments such as a CD music reproduction system with
88,200 bytes of information per second to be
transferred, processed and the processed signals
retransferred back for usage by the requesting task.

U.S. Patent 4,807,121 shows a peripheral interface
system having an input/output processor connected to up
to four multiplexing units with each such unit providing
an interface for up to four controllers. The I/O
processor has a DMA channel that receives multiplexed
se;ial data from the multiplexers. Data is transferred
between the I/0 processor and any controller unit by
filling the storage area in a buffer from local memory
of the I/0 processor in a serial fashion over a DMA
channel. Only a single channel is provided and the
multiplexing scheme allows it to be utilized. Data

parcels are transferred from the controller to the

WO 93/06553 PCTI/EP92/01965

multiplexer on a time slot basis and from storage of
the multiplexer to the memory in a serial fashion.
However, there is no indication that this system has
any means of supplying the dynamic, hard real-time
requirement that would be presented by application

tasks of the sort as alluded to above running

simultaneously.
Objects of the Invention

In light of the foregoing difficulties in the known
prior art, it is an object of this invention to provide
an efficient multi-media computer system and data
transfer mechanism to support hard real-time

multi-tasking operations in a host processor.
Brief Summary of the Invention

A solution to the foregoing problems is provided in the
preferred embodiment of the invention by presenting
task requests to the signal processor from the host
processor, analyzing incoming requests for tasks, and
building a list of packet transfer requests in a
partitioned queue in memory, accessing the partitioned
queue with an interprocessor DMA controller and moving
the necessary data signal samples in or out of the
signal processor (DSP) via the DMA mechanism within a
fixed minimum prescribed time period. Data transfer
packet request lists are made up by the digital signal
processor (DSP) in the form of DMA control packets for

this embodiment.

Each packet request contains several words of control
information and the source and destination address for

the movement of the data samples. One address is the

WO 93/06553 PCT/EP92/01965

affected system memory address which will contain or
which will receive data or process samples,
respectively. The second address is the affected local
DSP instruction or data memory address to or from which
raw signal samples or processed signal samples will be
written or read. The control information incorporated
in the packets includes a number of data or instruction
bits which represent the size of the data block to be
“moved, and the direction of flow, i.e. whether
information is to flow to or from the DSP. The DMA
packet list constructed by the DSP's operating system
is held in the DSP's data memory and is sequentially
accessed and executed by the DMA controller hardware
interfacing to the DSP's buses and to the host
processor buses. The DMA processor accesses and
processes the full content of one partition in the
partitioned list of packet requests at regular time
intervals which are related to the maximum demand of
any possible selected user task running in the host
processor. For example, to support digital music
sample processing for audio playback from stereophonic
CD players, 88,200 16 bit samples must be delivered to
the signal processor, processed and presented to the
digital to analog converter or to the host processor on

a regularly recurring basis during each second.
Brief Description of the Drawings

The foregoing and still other objects of the invention
are met in a preferred embodiment which is further

described and illustrated in the drawings in which:

Fig. 1 illustrates a preferred embodiment in
schematic form with the operational flow of

data to and from the host processor and the

WO 93/06553

Fig.

Fig.

Fig.

Fiqg.

Fig.

Fig.

PCI/EP92/01965

digital signal processor via the interprocessor
DMA controller which interfaces to the
requisite system address and data buses in

both the host system and the digital signal

processor system.

jllustrates schematically the interconnection
between a digital signal processor system and
a host computer system via the interprocessor

DMA bus master and controller.

jllustrates schematically the flow of data in
a programmable form of the interprocessor DMA
I/0 bus master, controller and arbiter

according to the invention.

jllustrates in some detail the format and
content of the DMA packet requests built by
the digital signal processor and what the
encoding of these requests may signify.

shows the arrangement of Figs. 5 and 5B which
jllustrate the flow of data in and out of the
packet buffer and registers for data flow and
control within the interprocessor DMA

controller and arbiter.

jllustrates the schematic flow at the host
processor which builds digital signal processing
task work lists or requests and manages them

not to exceed the available signal processing

resource of the digital signal processor.

shows the arrangement of Figs. 7A and 7B

which illustrate the schematic flow of

WO 93/06553 PCT/EP92/01965

operation in the interprocessor DMA
controller and arbiter as it processes DMA
packet request lists built in the digital

signal processor.

Fig. 8 illustrates a portion of the DMA handler

hardware for a preferred embodiment of the

invention.

Fig. 9 shows the arrangement of Figs. 9A and 9B
which illustrate the DMA transfer process
executed by the DMA interprocessor arbiter

and controller.

Fig. 10 illustrates a high-level flow chart of the
packet list construction process in the DSP.

Detailed Description of the Preferred Embodiment of the

Invention

A full description of the preferred embodiment of the
invention will be given with respect to the
illustrations thereof shortly. At the outset, however,
it is deemed desirable to illustrate the magnitude of
the problem encountered and to further illustrate the
efficiency and improvement provided by utilizing the
system and DMA packet controller mechanism of the

present invention.

The management of data flow to and from a Digital
Signal Processor Subsystem (DSP) gould, as noted above,
pose potentially tremendous loadswon the DSP. As an
example, one may consider a commercially current
computer such as the Motorola 68030 which is a commonly

available processor forming the core of many PC's. A

WO 93/06553 PCI/EP92/01965

lo

typical DSP might be the Motorola 56000 PC processor
which may be implemented on the planar board of the
processor. There is a DMA path between the 56000 and
the 68030; however, the DMA hardware only relieves the
host processor 68030 and does nothing to improve the
functioning of the DSP 56000. For each word which must
be moved between the 68030 and the 56000, there is a
brief interruption to the 68030. During the
interruption, the bus of the host processor is granted
to the DMA device which then moves a word of data or
signal sample. However, once the word is acquired by
the DSP, the DSP must actually be interrupted. The DSP
must stop what it is then doing and move the data word

into its memory via an interrupt handler.

An estimate of the number of DSP processor cycles to
accomplish this is about 10. There is approximately a
one cycle loss due to the three-phase pipeline in the
56000; two to three more processor cycles are required
to save the contents of a few registers, several more
cycles of processor are required to establish an index
pointer to the DSP memory and to the modulo counter
index control. Finally, several additional processor
cycles are required to restore the DSP machine state
and return to the task that was interrupted. This all
amounts to approximately 10 pro-cessor cycles required
to move only a single word of data or sample to or from
the DSP. This DSP is of the type noted and re-ferred
to earlier as illustrated in U.S. Patent 4,794,517
which is also a three-phase pipelined DSP architecture.
The present invéntion provides an improved multi-media
system using a DMA packet machine, i.e. a programmed
mechanism for providing the data transfer in a more

efficient way. DMA transfers are initiated by software

WO 93/06553 PCT/EP92/01965

ll

requests made by the DSP, not by the DMA mechanism.
The DMA mechanism, which is the controller and arbiter,

" gets guaranteed service from the DSP within time
windows that repeat and have a length according to the
most demanding task to be supported in the host
processor's menu of multiple tasks. For example, a
time window of 726 microseconds is capable of meeting
32 bit (full word) samples necessary to support the
typical 88,200 digital stereo audio samples for
playback on the average of every 726 microseconds. At
the typical speed of operation of the DSP, over 100
such 32 bit packets could be processed within the 726
millisecond time interval. This would provide
capacity for more than 100 unique transactions or
communica-tion channels for data flow between tasks in
the multiprocessing host system and operations
performed in the DSP subsystem.

When the DMA controller reads a packet transfer request
placed in a partitioned queue by the service-requesting
DSP task as it executes, the DMA arbiter and controller
will arbitrate for the host system bus, e.g. the IBM
PS/2's microchannel or equivalent host bus and, when
access to the bus is granted by the host system to the
DMA controller and arbiter for the request placed by
the DSP, up to 16 bytes (dependent on buffer size) of
data may be moved to a first in first out (FIFO)
register buffer in the DMA controller. Once the bytes
are in FIFO, the DMA arbiter and controller will
arbitrate for the local DSP databus and once granted,
will move one 1l6-bit word and then drop the bus
request. This word will then be moved to the DSP's
memory and the DSP processor will be halted for one bus
cycle. Thus, for each word moved, the process will

consume one cycle in the DSP. The DMA controller and

WO 93/06553 PCI/EP92/01965

12

arbiter will continue to arbitrate for the local DSP
bus until the entire contents of the FIFO within the
DMA controller has been emptied. The DMA controller
will then make a new request to the host system buses

for more data to be moved.

It will be noted that the process for arbitrating for
either the system bus or the DSP bus is most efficiently
conducted by dedicated programmed hardware and processes
such as those implemented in a DMA arbiter and controller.
The packet list processing capability of the DMA
controller allows efficient utilization of both a host
system bus and the DSP bus. Recalling the prior art
design briefly described above, it may be seen that a
savings of nine out of ten average DSP cycles will be

realized with this design.

For example, returning to the aforementioned stereo hi
fi signal processing task required to support
stereophonic CD music, one must play out the standard
88,200 16-bit digital samples every second. This
requires the transfer of 88,200 words of data every
second between the host system processor which will be
reading the CD disk, transferring the read samples to
the DSP, receiving processed audio samples from the DSP
and reconstructing them in analog integrated sound
segments at the rate of 88,200 per second. In the prior
art machine and system noted above, this operation
alone would require 88,200 words per second times 10
cycles per word or 882,000 cycles per second of DSP
cycle capability to be exercised. In the preferred
embodiment of the present invention, only 88,200 DSP

cycles will be required, or about one tenth of those

utilized in the prior art.

WO 93/06553 PCT/EP92/01965

13

Turning to an example of a DMA arbiter controller and
list processor system in use, let us suppose that a
speech recognition task and a stereo hi fi CD audio
playback task are running simultaneously, as selected
at the host processor by a user, and which require the
facilities of a DSP to support them. The speech
recognition task will need approximately two DMA
channels for operation, one incoming and one outgoing,
each with a peak rate of approximately 256 words per
channel. The CD music task will require one DMA
channel with a peak rate of about 64 words for its
channel. Each time the CD audio task runs and the
signal processing tasks on the samples are run in the
DSP, the DSP will need to move 64 more words of data
from the host system processor memory to the DSP
memory. To do this, the DSP will call its operating
service routine for a DMA request each time it runs.

On each call, it will provide the next system processor
address to be accessed and the next internal memory
address and beginning count where the 64 words to be
fetched may be stored. Each time the speech recognition
task runs in the DSP, it will call the DSP's DMA
request service routine twice. Each request will have
a unique system address at the host system from which
information is to be withdrawn or to which it is to be
delivered and a unique DSP memory address where the
samples are to be stored or from which they are to be
fetched. The DSP will download two recognition templates
each time its iterative task runs in the DSP. Each

template will be approximately 256 words in length.

The three DMA requests represented by the single
request for the CD task and the two requests for the
speech recognition task will be placed in a segmented

queue by the DSP as they occur. As an example, the

WO 93/06553 PCT/EP92/01965

14

speech recognition task may have bequn and placed its
first request and then have been interrupted while the
CD task in the DSP took control and placed its DMA
request. After the CD task request was done, the
speech recognition task may be restarted and it will
place its second DMA request. If only these three
requests were placed during one 726 microsecond
interval during which a partitioned queue is built by
the DSP, they will not be serviced by the DMA
controller during the time that they are being placed
in the queue. At the next interrupt of a 1,378 hz
clock (1/726 microseconds) the next group of DMA
request packets that were placed in the previous 726
microseconds will be accessed and processed by the DMA

controller and arbiter.

In the present example, the DMA controller arbiter will
first find the packet request that asks for 256 words
to be moved for the speech recognition task. It will
load up the indicated control words from the packet
request to see how many words to move and will load the
modulo addressing control boundaries. It will then
read the host system memory address and the DSP memory
address and arbitrate for the host memory bus. Once a
grant to the host memory bus is received, the DMA
controller and processor will burst a number of bytes
(16 bytes in this embodiment) of data from the host
system processor memory to its own internal buffer. It
will then arbitrate for the DSP bus and each time it
receives a grant, it will write another word into the
DSP memory according to the DSP beginning memory
address which it read from the DMA packet control
request. After all 16 bytes have been written, it will
go back to arbitrate for the host system memory bus
again. The process will continue until all 256 words

WO 93/06553

15

have been moved. Then the DMA machine will read the
next packet in the DMA packet transfer request list.
According to this example, this will be the CD task
packet. For this packet, 64 words are to be moved
utilizing the same operation as previously described.
When all 64 words have been moved, the DMA arbiter and

controller will access the next packet transfer request

which will be the second packet for the speech
recognition task and, after processing it in the same
fashion, will see no more packets and will enter a
"wait state" until the 726 microsecond time window has
elapsed. If more DMA packet requests have been
arriving by being placed in the partitioned queue built
by the DSP during the current 726 microsecond window,

they will not be serviced until the next time window.

Turning to Fig. 1, the overall operational flow of this
type of process may be briefly envisioned beginning in
Box 1 of Fig. 1, the user at the host PC starts the
operations by invoking or selecting application program
requests for execution at the PC which will necessarily
involve digital signal processing tasks for their
support. Examples might be high fidelity audio
playback, speech recognition, modem data transfer and
facsimile data functions, motion video, speech
synthesis or any of a variety of applications from the
multi-media environment that are well understood to
those of skill in this art.

Thé host PC will request DSP tasks to be executed by
transmitting identification of the tasks requested to
the operating system of the DSP. This occurs in Box 2

of Fig. 1.

PCT/EP92/01965

WO 93/06553 PCT/EP92/01965

16

In Box 3, the DSP operating system builds partitioned
packet lists from any active task requests, placing an
end to the partition of requests at repetitive time
intervals. Fig. 10 shows the high-level process flow
for the DSP's packet list building operations. In one
preferred embodiment as discussed above, these
repetitive "End of List" (E.0.L.) time intervals occur

at every 726 microseconds.

The DSP will pace or clock an interprocessor DMA
controller as shown in Box 4 at the clock rate of every
726 microseconds and will continue building partitioned
packet request lists in order to carry out any active
tasks which may be running in the DSP or which are
requested by new user requests coming from the PC as

shown in Box 11.

In Box 5, the interprocessor DMA controller will
receive the pacing clock signal beginning a 726
microsecond time interval from the DSP as shown. In
Box 6, the interprocessor DMA controller begins reading
the packet list from a partition of the DMA request
packet list built by the DSP. The DMA controller will
arbitrate for the system or DSP data or memory buses as
appropriate for the requested packet transfer as shown
in Box 7, will receive the bus grant for access to the
appropriate bus as shown in Box 8 and will then transfer
a number of packets to or from the DMA buffer in Box 9
and rearbitrate for access to the system or DSP buses
as shown by the linkage between Box 9 and Box 7 until

all transfers are complete as shown in Box 10.

As is apparent from the foregoing brief description of
flow with respect to Fig. 1, some management by the
host system (or by the DSP if it has sufficient

WO 93/06553 PCT/EP92/01965

17

capacity, or by an auxiliary processor if desired) must
be exercised so that DSP task requests can all be
processed within the minimum time interval of, for
example, 726 microseconds, or suffer the consequence
that any further requesting user task may not have its
needs fulfilled in hard real-time. To accommodate this
requirement, a DSP resource management and allocation
scheme is implemented in the preferred embodiment here,
in the host processor. The management and allocation
function is illustrated schematically in Fig. 6 and
could be practiced by the DSP or auxiliary processor if
desired, and is described as follows.

The resource management and allocation function keeps
track of the total load that will be presented to the
DSP by any user invoked tasks. The load is measured in
terms of the total available DMA byte transfer bandwidth,
the length of the packet list and the available DSP
resource power or speed as measured in DSP execution
cycles in millions of instructions per second (MIPS).
The management and allocation function assures that
sufficient signal processor resource will be available
each 726 microsecond interval for all of the requested
DSP tasks in order to guarantee that each DSP task's
real-time DMA requirements may be met.

The total available resource is a function of the
particular system implementation, i.e. the speed of the
DSP in MIPS, the bandwidth transfer capability of the
DMA mechanism and the length of a partition in a packet
transfer request list to be built by the DSP. While
these may all be variable according to implementation,
once implemented they will be constant for the given
system. The DMA bandwidth is bounded, i.e. constrained

by the lesser of either the host processor's bus

WO 93/06553 PCI/EP92/01965

18

bandwidth, the DSP's instruction cycle time or the DMA
mechanism's hardware band-width. The packet list size
is bounded, as mentioned earlier, by the amount of the

available DSP data storage and the DSP instruction

clock speed.

In order to implement the resource management and
allocation function, each user task at the host system
will be required to contain an indication or
declaration of the total DSP task resource that will be
required in terms of maximum DMA bandwidth, packet list
length and DSP MIPS that will be consumed at a maximum
by the invoked task. As DSP tasks are requested by the
end users at the host system, the resource management
and allocation function in Fig. 6 allocates the declared
resource requirements to the requested DSP tasks in the
DSP. As long as all of the DSP task resource
requirements can be met within the constraints of the
system, the DSP task will be loaded into the DSP. This
is done by the host system placing a DSP task request
to the operating system of the DSP. If sufficient
resources are not available, the DSP task request
placed by the user will be rejected and an appropriate

user error message will be given.

In Fig. 6, operation is begun by the user requesting a
task at his PC: for example, speech recognition. The
speech recognition program in the host PC will be
called up and it will contain appropriate parameters
for the demands which it will place on bandwidth in
terms of maximum words per DMA window time, the maximum
DSP MIPS that it will require and the maximum DSP
memory storage that it may invoke as shown in Box 1 of
Fig. 6. The available maximum DSP resources are also

known to the system as having been entered by the user

WO 93/06553 PCT/EP92/01965

19

or by the system interrogating hardware encoded
registers (not shown) present in the DMA controller and

arbiter and in the DSP. This is shown in Box 2.

In Box 3 the sum of all user task requirements, i.e.
the total DMA requirement, is formed by adding together
the requirements for all presently active and any newly
requested'tasks. This is compared with the maximum
total DMA word transfer capability and the total DSP
resources in Box 3. If the word transfer total demand
exceeds the available resource, the task is not loaded
‘as shown in Box 4 and a return to the user selection of
tasks in Box 5 is indicated. If the user task total
DMA requirement is not exceeded, the system proceeds to
Box 6 where the sum of all active user task total DSP
instruction execution resources is compared with the
maximum available DSP MIPS. If the maximum is exceeded,
the new task will not be loaded as shown by the return
to Box 4 and 5. If, however, the total DSP MIPS are
not exceeded, the system proceeds to Box 7 where the
sum of all active user task total DSP storage
requirements is made and compared with the maximum
available DSP data storage size.

If the maximum is not exceeded, the DSP workload
manager process (which could reside in the DSP or an
auxiliary processor if desired) which performs the
resource management and allocation in the PC host will
proceed to Box 8 where it will load the task by
signalling the operating system of the DSP to invoke
the beginning of a new user selected task and then the

routine ends in Box 9.

As mentioned previously, DMA data packet transfer
request lists are built in partitioned form in memory

WO 93/06553 PCT/EP92/01965

20

of the DSP by the operating system of the DSP. As DSP
task requests are brought to the DSP's operating
system, it will form a list of DMA data packet transfer

requests necessary to support the requested task

execution. The format of the packet requests is shown

in Fig. 4.

In Fig. 4, a five-word DMA packet request containing
two control words which are stored in control registers
1 and 2, two words of host system memory address (being
the lower address and the upper address) and one word
of DSP memory address which represents the location
where a number of words to be moved to or from begins.
The encoding of the specific control words for the
control registers is shown in Fig. 4. These control
words are utilized by the interprocessor DMA arbiter
and controller as will be described in greater detail

later.

The operating system of the DSP builds the DMA packet
transfer request lists in memory. The addressing is
such that the memory operates as a circular buffer
within the DSP. The packet request list is a
partitioned list in that it contains a group of one or
more individual DMA packet transfer requests and an
ending "wait state" or "end of list" marker. The end
of the list in DSP memory contains a pointer back to
the beginning so that the "buffer” will be endlessly
traversed. The available DSP memory for constructing
the buffer must be large enough to contain at least two
complete packet request lists at any instant of time.
This is because the DMA controller hardware will be
processing the contents of one request list while the
operating system of the DSP is busy constructing the

contents of the next partition of the list. The

WO 93/06553 PCT/EP92/01965

21..

operating system of the DSP constructs the DMA packet
request lists (as shown in Fig. 10) for transferring
data by appending packet requests one by one to the
current packet list contents as active tasks in the DSP
place DMA requests either to fetch in new signal
samples for processing or to transfer processed samples

back to the requesting user task as appropriate.

A given task operating in the DSP requests a DMA packet
transfer by first loading internally specified DSP
registers with the desired source address, destination
address and any control information that is necessary,
and secondly by calling the operating system which
appends this request to the list it is currently
building in its partitioned lists. DSP tasks may make
packet transfer requests at any time. Such requests
may be asynchronous to the DMA arbiter and controller
list execution which is conducted in the DMA control
machine. The packet list execution by the DMA control
machine is paced at precise intervals of time by the
DSP's operating system which places a "wait packet" or
"end of list marker" as a marker at the end of a '
partition in the packet list which it is currently
building. 1In the preferred embodiment, these markers
are pre-written in the queue in memory so that they
occur at regular intervals as the queue is read by the
DMA device. At precisely recurring times, the DSP
signals the DMA controller to proceed with execution of
the packet transfer request list which is next to be
processed. The wait packet (E.O0.L.) will serve as a
means or a marker for stopping the DMA hardware when it
has completed processing the current list. As tasks in
the DSP continue making DMA packet data transfer
requests, the operating system will begin filling in
-the next partition in the packet list. DSPs such as

WO 93/06553 PCT/EP92/01965

22

the Motorola 56000 referred to earlier are well known
in the industry and the capability of their operating
system to build such lists in memory is well understood

by those of skill in the art and needs no further

description here.

Turning to Fig. 2, the overall physical layout and data
flow of packets of information from a typical host
system, such as the IBM PS/2 or the Motorola 68030
mentioned previously, over their respective host system
data and address buses to an interprocessor DMA
controller and arbiter, such as the Intel 82325
programmable micro-channel/DMA controller are shown.
Interfaces from the interprocessor DMA arbiter and
controller to a typical DSP such as that shown in IBM's
U.S. Patent 4,794,517 which is a three-phased pipelined
DSP or the Motorola 56000 as previously described, are
also shown. Packets of data are move to and from the
host system memory to a buffer within the DMA arbiter
and controller and to and from the buffer in the DMA
controller over the DSP memory buses to the DSP memory

for data or instructions.

A programmable interprocessor DMA/IO bus master
controller and arbiter such as is commercially
available in the form of the Intel 82325 chip set may
be employed for these purposes. This may be referred
to as the "bus master" hardware which performs the
actual transfer of requested data packets between the
host PC data store or memory and the DSP instruction or
data store. The bus master controller may be divided
into two major functional components: the packet list
processor and the DMA transfer handler. The packet
list processor, receives a "start" pacing signal from
the operating system of the DSP at the beginning of

WO 93/06553 PCT/EP92/01965

23

one, for example 726 microsecond, interval. It begins
reading a partition from the packet list built in the
DSP's memory from the address where it last encountered
a wait packet request which is a partition boundary or
marker. The control and address information in the DMA
packet request from the DSP memory is processed and
_passed to the DMA transfer handler mechanism that
performs the specified DMA transfer.

Control and address information in the packet request
list is processed and passed to the DMA mechanism's
transfer handler which performs the specified DMA
transfer as in any normal bus master driven device.
The process continues packet request by packet request
until a "wait packet" is again encountered. This stops
the DMA bus master hardware and terminates the
processing of the packet request list partition.

Return to the example alluded to earlier of a user who
wishes to run at his PC a speech recognition function
and a hi fi CD music playback function utilizing a DSP.
First the user will request a speech recognition and hi
fi function by selecting, perhaps, appropriate icons
via mouse or cursor or other means at his PC. This
selection will precipitate a request to load the
appropriate DSP tasks. The request flows through the
process shown in Fig. 6 to first ascertain that
appropriate amounts of DSP resource and DMA bandwidth
are available. Before these requested tasks are
actually loaded, resource management and allocation
functions are invoked (at the host PC in the preferred
embodiment here) to verify that sufficient resource
exists to satisfy the DSP task requirements that will
be declared by the user's invocation of requested

tasks. If sufficient resource exists as shown in Fig.

WO 93/06553 PCT/EP92/01965

24

6, the tasks will be loaded and the functions will
begin operation in the DSP. Otherwise, an appropriate
error message will be generated by the user's host PC
to notify the user that the requested tasks will not be

loaded.

It is assumed in this discussion that the operating
system of the DSP has already been initiated and that
prior to the receipt of any newly requested DSP
functions, it has been busily placing DMA transfer
requests and markers for any previously requested
functions in the packet list buffer and initiating or
clocking the DMA controller hardware once every
(partition ending) time interval, such as the assumed
726 microseconds. Assuming that no previous tasks were
requested, this example will suppose that the speéch
recognition task declares a requirement of two DMA
channels and bandwidth having a peak rate of 256 words
per channel and that the hi fi task declares a one DMA
channel bandwidth requirement with a peak rate of 64
words for its needs. Each time the CD task runs in the
DSP it will need to move 64 more words of data from the
host system processor memory in the form of digital
signal samples originally read from the CD disk. These
must be moved from host system memory to the DSP memory
into the circular "packet list" buffer for execution.
To do this, the DSP will call its operating system
service routine to place the DMA request and this will
be done each time the task runs, i.e. each time a 64
word sample must be processed. On each call, the DSP
will provide the next host system processor memory
address to be written to or read from and the next DSP
buffer address at which to begin the 64 word count.

In addition, each time the speech recognition task runs

WO 93/06553 PCT/EP92/01965

25

in the DSP, it will call the DMA request service of the
DSP's operating system. Each request will have a
unique system address and a unique DSP buffer address
for downloading two recognition templates from the host
system each time it runs. Each template will be 256
words in length in most speech recognition programs,
so, in all, three DMA requests will be written,
sequentially, into the DMA packet request list by the

DSP's operating system as they occur.

The three DMA packet transfer requests will be serviced
by the DMA controller and arbiter hardware during the
succeeding 726 microseconds following the posting of a
partition marker. The marker is a wait state or E.O.L.
in the DMA transfer request list segment being built by
the DSP. At the beginning of this next period of time,
the operating system for the DSP places a wait state
packet fequest as a "termination marker" in the
partition of the packet list it has just constructed
and will start the bus master DMA hardware with a clock

signal or pacing command.

The bus master DMA hardware will access the DSP memory,
find the packet which requests the move of 256 words
for the speech recognition task, load up the control
words present in the packet request to see how many
words it must move and what the modulo addressing
control boundaries will be. It then reads the system
host (PC) processor memory and the local DSP memory
addresses from the DMA packet transfer request. It
will then arbitrate for access to either the PC
microchannel or other host bus and when granted access
to the bus, will transfer some number (16 bytes) of
data from the host processor's memory to a buffer in
the DMA hardware. The DMA controller will then

WO 93/06553 PCT/EP92/01965

26

arbitrate for the DSP memory bus and each time it
receives a grant, it will write another word into the
DSP memory according to the DSP memory address which it
read from the DMA packet list request. The process
continues, as has been described previously, until all
of the necessary DMA packets have been processed. Even
if more DMA packet requests were being placed by the
DSP's operating system during the current 726
microsecond interval, they will not have been serviced
and will not be until the beginning of the next time
interval. The process continues repeatedly until all
the DSP tasks are eventually terminated by the user at

the host system.

It will be appreciated in this design that the DMA
packet transfer request list, together with the DSP and
DMA bandwidth allocation and control process (conducted
in the host PC in this embodiment) guarantees servicing
and movement of all DMA data packet transfer requests
within two times the basic clocking interval to the DMA
processor. Thus, DMA requests pending in the
partitioned list built by the DSP operating system in
the DSP memory in one interval will be accessed and
read by the DMA machine and executed within the next
726 millisecond time interval in the example given
above. If the samples were to be taken from the host
PC's memory and delivered to the DSP memory, that will
occur within the 726 microsecond time interval. During
the succeeding time interval, the DSP will begin
processing the data samples and constructing new DMA
packet requests for delivery of the processed samples
back to the host system. These requests will be placed
in the DMA request list partition succeeding the one
presently being executed by the DMA controller and
arbiter. Thus, at the next succeeding time interval,

WO 93/06553 PCT/EP92/01965

..27_

"finished samples" will be available for DMA transfer
from the DSP back to the host system processor with an
overall handling time delay of only two DMA intervals.

This same operating speed will be met for all pending
task requests provided that the total DSP resource
demanded by the tasks and the total DMA bandwidth are
not exceeded. This is assured by the allocation and
control mechanism operating in the host system PC.

This means that real-time "hard" tasks running in the
DSP can be guaranteed delivery of sufficient data or
removal of processed data to meet the requirements of
any requested user tasks. Since all tasks to be run in
the host are required to specify ahead of time what the
maximum number of words to be transferred by packet
request may be and what the maximum required instruction
processing MIPS at the DSP will be, the resource
allocator in the host PC will know precisely how long
the total DMA transfer request list may be at any given
instant and when the danger of exceeding the capability
exists so as not to allow invocation of any new tasks.

The DMA arbiter and controller is thus always
processing DMA packet transfer requests from memory in
the DSP that were placed there by tasks during a
previous time interval. And, while the DMA machine
works on its partition of the current DMA request list,
new DMA packet transfer requests are being placed into
the next succeeding partition of the DMA packet request
queue in DSP memory for access by the DMA mechanism and
execution at the next time interval. This design
allows for a simple migration path to multiple DSP
processors in a system. Each DSP processor would have
its own DMA packet transfer execution hardware acting
as bus master for the DSP bus or the host PC bus. 1In

WO 93/06553 PCT/EP92/01965

._.28_.

addition, if all DSPs share the same interrupt timing
source clock as the DMA machine, then host system
memory could provide a simple means or buffer for

moving data between DSPs.

Thus it may be seen that the DMA packet request
execution arbiter and controller provides a solid
solution to the problem of handling a large number of
communication channels or requests between the host
processor and the DSP or between multiple DSPs and
tasks running in all of the various processors.
Attempting to implement over 100 channels of DMA
utilizing hardware alone, such as by utilizing 100
unique DMA hardware devices, or 25 4-channel DMA
hardware devices would result in an expensive system
that would be almost impossible to arbitrate and
control. The DMA controller, arbiter and list
processor avoids the need for arbitration between the
100 DMA channels because they are time multiplexed in
that they will all be satisfied within the recurring
time interval for processing in a sequential fashion by
jndividual bus arbitrations, grants and data transfer

bursts which are guaranteed to be met within the time

interval prescribed.

As is apparent from the foregoing discussion, the
interprocessor DMA I/0 bus master controller and
arbiter is the key element of the system such as
depicted in Fig. 2. Turning to Fig. 3, the overall
data flow and main controls of the hardware of such an
arbiter and controller are shown. Such a controller
may be purchased commercially having sufficient
hardware and software capability to carry out
everything shown in Fig. 3 as the Intel Model 82325

programmable bus master controller and arbiter. The

WO 93/06553 PCT/EP92/01965

29..

DMA/IO bus master controller and arbiter (or simply
"bus master") utilizes four hardware controllers as
shown in Fig. 3. These are the packet controller 10,
the DMA handler and controller 11, the local DSP DMA
controller and arbiter 13 and the host system DMA

controller and arbiter 12.

In Fig. 3, packet controller 10 reads packet control
words from the DSP's data memory from the partitioned
request list posted therein by the DSP's operating
system. After reading in the five control words as
shown in Fig. 4 for a given packet request, the packet
controller 10 starts the DMA handler 11.

The DMA handler 11 breaks down the packet byte count
indicated in the DMA packet control words into a number
of bursts of data. Depending upon the direction of
transfer, as indicated by the direction of transfer bit
in the DMA packet request, the DMA handler 11
repetitively initiates either the host system bus
master controller 12 or the DSP bus master controller
13 to cause arbitration for the appropriate buses and
transfer of the appropriate size burst of data to or
from the beginning addresses as noted in the DMA
request packet read from the DSP memory. When the
affected DMA arbiter and controller completes the DMA
transfer, it signals the DMA handler controller 11
which signals either a new burst or packet or, due to
keeping count, when it realizes it has exhausted the
requirement of the packet by count request and
acknowledges its completion back to the packet
controller 10. The packet controller 10 will then read
in another set of packet control words for another DMA
operation and the process will continue until the DSP's
DMA packet transfer control list partition has been

WO 93/06553 PCT/EP92/01965

30

traversed and a "wait state" packet has been

encountered.

Pending DMA packet transfer requests contain the five
words of information as shown in Fig. 4 where the
format of the informa-tion is broken down in accordance
with contents with DSP's memory starting address, the
PC's upper and lower range starting addresses and the
control register contents for the DMA machine. Each
five word DMA packet request when fetched into the
packet controller 10 of Fig. 3 is executed in a process
as shown in Fig. 7 by the DMA list processor which is

contained in the packet controller 10.

In Fig. 7, "wait state" is a DMA packet list partition
boundary indicated by direction control bits 01 and 02
from Fig. 4 both being zero as indicated on Fig. 4.
Wait state is the beginning point for execution of a
DMA list process in processor 10 of Fig. 3. It begins
at Box 20 and flows through Boxes 21, 22, 23, 24 or
onward to Boxes 25-28 as shown in Fig. 7. The
directional control bits are read in Box 29 of Fig. 7
and an appropriate decision is made to enter wait mode
or to transfer from the host system memory to the DSP
memory or from DSP memory to the host system memory in
accordance with the content of the indicator bits 01
and 02 from Fig. 4. Blocks 30-32 are the pointer
incrementation controls and Boxes 33A, 33B and 33C
compare the total count up to a maximum of 255 (equal

to 256 words maximum) .

Fig. 5 shows schematically some of the effective
buffers and registers contained in the DMA arbiter and
controller in packet control block 10 of Fig. 3. In
Fig. 5, register 14 is made up of several segments as

WO 93/06553 PCT/EP92/01965

31

shown and is the DMA packet pointer. It is a 16-Dbit
register that can only be read by the DSP and contains
the 12 least significant bits of the pointer to the DMA
packet request list in the DSP data store. The register
is updated by hardware and the three high order bits
will be zero. The three lowest order bits and bit 15
do not exist as such and are read as zeros in the
implementation given. The data in the data storage
that will be loaded into this register is stored as .a
byte address. Register 19 is composed of several parts
and contains the system or host system memory address.
It is a 32-bit register that is not readable or
writable by either the DSP or by the system processor
for the host system. It contains the address to the
host system memory or I/0 space that will be used for
packet transfer. The lower 24 bits of this register 19
are autoincrementing for the host system processor
memory transfers. The selection of memory or I/0 space
is indicated by the system memory/IO bit. The address
stored in this register is a byte address.

Register 18 is the DSP memory address and is a 16-bit
auto-incrementing register which is not readable or
writable by either the DSP or the host system PC. It
contains the address to the DSP's data or instruction
store that will be used for packet transfer. Modulo
control bits are used to control incrementing of this
register. The data in the data store that will be
loaded into this register is stored as a word or
instruction address with only the lower 15 bits used to

form an address to the data store.

The DMA handler 11 in Fig. 3 is initiated by the start
DMA signal from the packet controller 10 as shown in
Fig. 3. The DMA handler 11 initially converts the

WO 93/06553 PCT/EP92/01965

32.

packet count received from the packet controller 10
into a packet byte count. The DMA handler's function
is to break down the packet byte count into burst
counts since the internal buffer of the DMA controller
mechanism contains two 16-byte by g8-bit RAMs in the
present embodiment so that the burst size is limited to
32 bytes at a time. If the byte or word bit from the
control registers shows byte mode, data will not be
packed in the data store. Oonly the lower order byte of
data store is used for the bus master operations. Under

this condition a normal burst size of 16 bits is used.

DMA transfers take place utilizing the burst count
(bc). The bc is equal to the burst size except when
the remaining or beginning packet count is less than
the burst size. The packet byte count is repetitively

broken down into bursts until it has been exhausted.

In Fig. 8, the initial byte count is loaded into the
accumulator 35. The DMA handler hardware 11 contains
the hardware shown in Fig. 8. The burst size is based
on the value of the byte/word bit contained in the
control information in the DMA transfer request. If
the sign bit is zero, this means the value in the
accumulator 35 is greater than the burst size. The
burst size is preselected according to the system being
utilized as described earlier. Byte count is loaded
into the system and into the DSP's DMA byte counter and
the DMA handler 11 looks at the direction bits.

1f the direction bits read in Box 29 of Fig. 7 indicate
a read from the host system memory, the DMA handler 11
switches controls of the input data multiplexer to the
system data port as shown at the output of Box 1l in
Fig. 3. The system buffer controls will also be

WO 93/06553 PCT/EP92/01965

._33...

selected and the DMA handler 11 will start the system
master controller 12. System master controller 12 will
proceed to load internal RAM buffer 14 and will
interpret the operation as a read from the host system
memory to the buffer. After writing data to the buffer
14, the system master controller 12 will acknowledge
com-pletion of the transfer back to the DMA handler 11

as shown by the signal line in Fig. 3.

Upon recei#ing the completion signal} the DMA handler
11 will then switch the buffer controls to the DSP's
DMA controller 13. The DMA handler 11 will then start
the DSP's DMA controller 13 which will pfoceed'to
transfer data from buffer 14 to the DSP memory, and
upon completion, will acknowledge back to the DMA
handler 11 that it has completed the transfer.

If the DMA handler 11 detected a write to system memory
as the direction of transfer, the DMA handler controller
11 will switch controls of the input data multiplexer

to the DSP DMA data port and the DSP's DMA buffer
controls will be selected for buffer 14 for the DSP's
DMA controller 13. DMA handler 11 will then start the
DSP DMA controller 13 which will interpret the operation
as a read from the DSP memory to the buffer 14.
Controller 13 will proceed to load up buffer 14 and
after reading the data into buffer 14 will acknowledge
completion of the transfer back to the handler 1l.

When it detects that the DSP DMA operation has been
completed, the DMA handler 11 will switch the buffer
controls to the system side, initiate the host system
bus master controller 12, and transfer data from buffer
14 to the host system memory. Upon completion,
controller 12 will acknowledge that fact back to the
DMA handler 11. '

WO 93/06553 PCI/EP92/01965

..34_

After the first burst has been transferred, DMA handler
11 loads the accumulator 35 in Fig. 8 with the
remaining byte count. If, once again, the sign bit 1is
zero, the burst count is set equal to the burst size
and this amount of data is transferred via DMA operation.
However, if the sign bit is a 1, the count in the
accumulator 35 will be less than the burst size in the
pburst register 36. The two to one multiplexer 37 will
then select the content of the accumulator for the last
and final DMA transfer. A 1 for the sign bit is taken
as a negative number and a 0 for the sign bit is taken
as a positive number or 0. Zero detection is important
since it is the indication that a burst count of zero
should not be performed. After the packet byte count
is exhausted, DMA handler 11 responds to the packet
controller 10 in Fig. 3 with an acknowledgement of

completion.

The DSP's DMA arbiter and controller 13 of Fig. 3 is a
portion of the aforementioned Intel 82325 programmable
DMA I/O controller. It utilizes the DSP address
counter with modulo as well as byte counter contents
loaded with the burst count as shown by the outputs
from Box 14 and 15 directed into Box 13 in Fig. 3.
Packet controller 10 loads the address counter in 13
and the DMA handler controller 11 loads the byte
counter and resets the internal buffer address when
initiating the start of DSP DMA operations. DMA
handler 11 also sets up the DMA buffer data paths and
controls prior to starting the DSP's DMA controller 13.
The DSP's DMA byte count counter in 13 counts by one or
two whenever the bus master's operation involves a data
storage. The byte counter counts by one in byte mode
and two in word mode. The byte counter counts by four

WO 93/06553 PCT/EP92/01965

...35_

when the operation involves an instruction store as may
be seen in Block 38 of Fig. 5. Upon receiving a start
signal the DSP DMA controller 13 operates either to
read data from the DSP and store it in the internal
buffer 14 or to read it from buffer 14 and store it in
the DSP or to read the buffer and store it in the
instruction store of the DSP in accordance with the

control bit information direction bits 01, 02 as shown

in Fig. 4.

The host system bus master controller and arbiter 12 in
Fig. 3 is also a portion of the Intel 82325 chip. This
controller is responsible for the bi-directional
movement of data between the host PC buses and internal
RAM buffer 14 in Fig. 3. This controller 12 utilizes
an eight-point grey code sequencer which is clocked at
30 nanoseconds and gives burst cycles of 240 nanoseconds.
The controller contains the logic for arbitrating for
the host system bus, byte alignment, data steering,
stride and hold functions for modulo memory addressing
and internal buffer packing logic. By "stride" is
meant the increment of address jumping from a starting
address in memory to the next succeeding starting
address. By "hold" is meant the number of words
(addresses) from a beginning address that are to be
read out each time. By "skip" is meant the number of
words (addresses) not read (i.e. the number of words by
which "stride" exceeds "hold" values). The controller
12 interfaces to the packet controller 10 and DMA
handler 11 as shown in Fig. 3. The interface to the
packet controller 10 is simply a control word interface
and the control word parameters from the control word
in Fig. 4 are passed to the host bus master and arbiter.
These include the direction bits, the byte word

indicator, the system upper and lower addresses, etc.

WO 93/06553 PCT/EP92/01965

.36

as shown in Fig. 3. The direction bits inform the

controller 12 whether to perform read or write
operations on the host system memory. The system M/IO
bit informs the controller 12 whether to read or write

either the host PC's memory or its I/0 space. The

upper and lower system addresses concatenated together

specify the starting address used by the controller 12

for bus master operations. The system address counter

is capable of incrementing over 20 bits so all
operations are ordered on 1 megabyte boundaries. The
stride/hold and enable bits inputted to controller 12
from packet controller 10 allow the system host address
incrementer to have the capability to jump, i.e. do a
modulo or block memory addressing when enabled. The
stride and hold values are byte values passed to the
controller 12 by the packet controller 10. The "hold"
value is inclusive within "stride" in the general

formula "hold plus skip equals stride" as alluded to

earlier.

DMA handler 11 initiates the start of operations at the
system bus master controller and arbiter 12. Once
jnitiated, the controller 12 has complete control of
the internal RAM buffer 14 to which it provides buffer
addresses and the write enable signals and accepts or
receives buffer data. The burst count and the new
packet count parameters are passed by the DMA handler

11 to the controller 12.

The overall operation of the packet controller 10 is
initiated by a signal from the DSP referred to
previously as the "pacing" control. Beginning in

Fig. 9, the flow of operations at the packet controller
10 of Fig. 3 are detailed. The packet controller 10
begins with the pacing signal from the DSP. In Box 40

WO 93/06553 PCT/EP92/01965

_37...

it accesses the DSP's data memory where the DMA packet
list resides and reads the cycle counter. It gets the
first DMA packet pointer start position in Box 41 from
the DSP and then reads the DSP data memory and cycle
counter in Block 42. 1In Block 43 the pointer is
incremented and a test is made in Block 44 to see if
the end of the packet list in the DSP's DMA packet
request list has been reached. If the end has not been
reached, the controller reads the direction bits in Box
45 and, if both are 0, indicating that a "wait mode"
packet has been encountered, it increments the packet
pointer four times in Block 46 and returns to Block 40

to await a new pacing signal.

If the "wait mode" bits have not been encountered,
operation continues to Box 48 where the control
register is read as indicated by the packet pointer.
In Box 49 the pointer is incremented and a check is
made of the high order bits to see if they are greater
than 0. If they are greater than 0, in Box 51 no
loading of the hold and stride parameters is made.
However, if the bits 11-15 are non-zero, the load is
made for hold and stride values to the address of the
bits contained in bits 11-15 from the control word

registers 1 and 2 as shown in detail in Fig. 4.

In Box 53 the system address register bits 08-23 are
loaded with the data that is indicated by the pointer
which is then incremented in Box 54 and the system
address is stored as the byte address. The system
address is loaded with the register bits 00-07 in Box
55 with any data indicated by the pointer and the
pointer is incremented in Box 56 where the specified
DSP address register is loaded with the data indicated

by the pointer which is then incremented in Box 58.

WO 93/06553 PCT/EP92/01965

.38.

In Box 59 the DSP address is stored as the word address
and the transfer is performed in Box 60 from or to the
DSP address that is indicated by initiating the DMA
handler 11 of Fig. 3. Operation continues back to Box
42 to read the next DSP data memory address, etc.
Checks are made again for the end of the list in Box 44
and if the end of the list has been reached, Box 47 is
encountered which loads the DMA pointer address with
the packet pointer starting position so that the packet
controller will loop back to the next partition of the

segmented DMA request list built by the DSP.

From the foregoing it will be instantly appreciated
that what has been described is an overall computer
system comprised of a DMA subsystem and a host to DMA
and DMA to DSP set of subsystems which are uniquely
suited to the demands of hard, real-time multi-tasking
applications such as those encountered in a multimedia
computer system. The elements of the overall multimedia
computer system comprise well known and commercially
available components including DSPs, DMA I/O arbiters
and controller chips and host PC system computers as
have been variously described and alluded to above.

It is the configuration of the system and the subsystems
and the means of control and of communication between
the subsystems and the individual processors that have
provided the unique benefits of the present invention,
wherefore it will be evident to those of skill in the
art that numerous departures in the hardware/software
structure of the system and subsystems included in it
will be possible without departing from the spirit and
scope of the method of operation or the functional

system structure. For example, while currently

WO 93/06553 PCT/EP92/01965

39..

availablé signal processor speed and memory capacity
are excellent, still faster processors with larger
memory may soon be available, whereupon relocation of
the resource management function from the DP to the DSP
will be practical; or, on the contrary, relocation of
the management of DSP resource demand may be allotted
to an auxiliary processor in the same system as the DP
and DSP or the DSP may have such speed and memory
capacity that it is able not only to perform DSP tasks
but to manage allocation of its own resource and
actually run user tasks as well in place of the DP, all
without departing from the spirit and scope of this
invention. Also, the DMA may be replaced entirely when
the DSP takes on direct execution of user task programs,
so an inter-processor DMA I/0 controller will not be
required so long as the DSP's operating system can
manage and allocate the DSP signal processing resource
with managed task lists, just as the DMA I/0 controller
and DSP packet lists are managed in the preferred
embodiment. For example, the DSP's packet list
requests could be processed and handled by the DSP
itself, as could the initial allocation of resource
task, once a DSP of sufficient speed and resident
memory capacity is available. 1In brief, the invention
here contemplates the performance of user tasks,
resource allocation, data transfer list building,
execution of signal processing tasks in support of user
tasks, and total substitution of the DMA function by
using a single DSP itself once higher speeds of
execution and/or greater memory capacities are

available in such DSPs.

WO 93/06553

PCT/EP92/01965

- 40 -
CLAIMS

A multimedia computer system, comprising a digital
processor for executing user task programs which
place signal processing demands on said system in
supporting execution of any requested said user

tasks, and further including:

means adapting said digital processor to undertake
only those user task program requests whose
combined signal processing resource requirements
do not exceed said system's available signal

processing resource capacity.

A multimedia computer system as described in claim

1, further comprising:

a first digital processor, DP, for executing user

task programs;

a second digital processor, DSP, for executing

signal processing programs in support of
requirements of said first processors execution of

said user task program; and

means for adapting said DP to present to said DSP
digital signal processing requests whose combined
signal processing resource requirements do not

exceed said DSP's available signal processing

resource capacity.

A system as described in claim 2, further

comprising:

WO 93/06553 PCT/EP92/01965

41

means, responsive to the receipt of digital signal
processing requests at said DSP, for adapting said
DSP to construct a partitioned queue of direct
memory access, DMA, data transfer requests to move
data to or from said DSP in support of said
processing requests, said partitioned QUeue
including regularly recurring time interval

markers inserted by said DSP.

4. A system as described in claim 3, wherein:

said DMA data transfer requests are each provided
by said DSP with fields of specifying data

defining memory, source and destination addresses,
direction of transfer, number of data units to be
transferred, and operational control indicators as

well as an end of request indicator.

5. A system as described in claim 2, further

comprising:

an interprocessor direct memory access input and
output controller, DMA/IO, for controlling the

movement of data between said DP and said DSP; and

data and address buses interconnecting said DMA/IO
controller with said DP and with said DSP.

6. A system as described in claim 3, further comprising:
an interprocessor direct memory access input and

output controller, DMA/IO, for controlling the
movement of data between said DP and said DSP; and

WO 93/06553

10.

PCI/EP92/01965

42

data and address buses interconnecting said DMA/IO

controller with said DP and with said DSP.

A system as described in claim 4, further

comprising:

an interprocessor direct memory access input and
output controller, DMA/IO, for controlling the
movement of data between said DP and said DSP; and

data and address buses interconnecting said DMA/IO

controller with said DP and with said DSP.
A system as described in claim 6, wherein:

said DMA/IO controller executes data transfer
petween said DP and said DSP by accessing said
partitioned queue and controlling the movement of
data in accordance with said fields of specifying

data in said requests.
A system as described in claim 7, wherein:

said DMA/IO controller executes data transfer
between said DP and said DSP by accessing said
partitioned queue and controlling the movement of
data in accordance with said fields of specifying

data in said requests.
A system as described in claim 6, 7 or 9, wherein:

said DSP constructs a partition of said queue and
places DMA/IO data transfer requests therein
during regularly occurring time intervals during

which intervals said DMA/IO controller executes

WO 93/06553

11

12.

13.

PCT/EP92/01965

43

data transfers based on requests from another

partition of said queue.

A system as defined in any of claims 1 through 9,

further including:

means for assessing the DSP resource requirements
needed to support each user task program upon
selection thereof by a user, said assessment
including a determination of said user selected
task program's maximum data unit transfer
requirement during a specified time iﬁterval, the
maximum required execution speed and the maximum

amount of DSP memory required.
A system as defined in claim 10, further including:

means in said DP for assessing the DSP resource
requirements needed to support each user task
program upon selection thereof by a user, said
assessment including a determination of said user
selected task program's maximum data unit transfer
requirement during a specified time interval, the
maximum required execution speed and the maximum
amount of DSP memory required.

A system as defined in claim 7 or 9, wherein:

said DMA/IO controller includes a buffer memory
and executes said data transfer requests by
accessing said memory source address, moving data
therefrom to said buffer, accessing said memory
destination address and moving data thereto from

said buffer.

WO 93/06553

14.

15.

PCT/EP92/01965

44

A method of controlling operation in a multi-media
task compute system having a first digital processor,
DP, for executing user task programs and a second
digital processor, DSP, for executing digital

signal processing programs in support of execution
requirements of said user task programs in said

DP, comprising steps at said DP of:

determining the total DSP resource required to
support any active user-requested task programs

for execution;

comparing said total DSP resource requirement with

the maximum available DSP resources; and

inhibiting execution of any said user-selected
task program at said DP if said task program's DSP
resource requirement causes said total DSP resource
requirement to exceed said maximum available DSP

resource.

A method of controlling operation in a multi-media
task computer system having a first digital
processor, DP, for executing user task programs
and a second digital processor, DSP, for executing
digital signal processor programs in support of
execution requirements of said user task programs
in said DP, an interprocessor direct memory access
input and output, DMA/IO, for controlling the
movement of data between said DP and said DSP, and
data and address buses interconnecting said DMA/IO
controller with said DP and with said DSP, and
said DMA/IO controller includes a buffer memory,
comprising steps for execution of said data
transfer requests at said DMA/IO controller of:

WO 93/06553

16.

17.

PCT/EP92/01965

__45_

accessing said data to be transferred in said DP

or in said DSP;
moving said data to said DMA/IO buffer memory;

accessing said memory of said DP or said DSP where

said data is to be written; and

transferring said data to said memory of said DP
or said DSP.

A method as described in claim 15, further

comprising steps of:

executing said data transfer requests in a
partition of said queue in a time interval in
which said DSP is constructing another said

partition of said queue.

A method as described in claim 16, further
comprising steps for each said data transfer at
said DMA/IO of:

arbitrating for a grant of bus access to said
buses necessary to access said data to be

transferred and receiving a bus grant therefore;

transferring said data to said buffer of said
DMA/IO controller;

arbitrating for a grant of bus access to said
busses necessary to deliver said data to be
transferred to the desired destination therefore

and receiving said bus grant; and

WO 93/06553

18.

19.

20.

PCT/EP92/01965

._.46._

transferring said data to be transferred from said

buffer to its desired destination.

A method of controlling operation in a multi-media
task computer system having a first digital
processor, DP, for executing user task programs, a
second digital processor, DSP, for executing
digital signal processing programs in support of
execution requirements of said user task programs

in said DP, comprising steps in said DSP of:

constructing a partitioned queue of data transfer

requests; and

inserting partition markers in said queue at

regularly recurring time intervals.
A multi-media task computer subsystem, comprising:

a first digital processor means, DP, for executing

user task program; and

means adapting said DP to present to a digital
signal processor, DSP, digital signal processing
requests whose combined DSP resource requirements
do not exceed said DSP's available signal

processing resource.

A multi-media task computer subsystem as described

in claim 19, further comprising:

an inter-processor direct memory access input and
output controller means, DMA/IO, for controlling

the movement between said DP and said DSP.

WO 93/06553 ' PCT/EP92/01965

21.

22.

23.

24.

4‘7

A multi-media signal processor subsystem, comprising:

a digital signal processor, DSP, for executing

signal processing programs; and

means adapting said DSP to construct a partitioned
queue of DMA data transfer requests for movement

of data to or from outside of said DSP by inserting
markers in said queue at regularly occurring time

intervals.

A multi-media digital signal processor, DSP,
subsystem as described in claim 21, further

comprising:

an inter-processor direct memory access input and
output controller means, DMA/IO, for controlling

the movement of data into or out of said DSP.

A multi-media processor subsystem as described in

claim 22, wherein:

said DMA/IO executes said movement of data in
accordance with said data transfer requests in a
partition of said partitioned queue during the
time interval in which said DSP is constructing

another partition in said queue.

A method of controlling a multi-media task computer
subsystem comprising steps at a digital processor,

DP, for executing user task programs of:

WO 93/06553 PCT/EP92/01965

48

determining for each user task program to be
executed, the total digital signal processor, DSP,
resource required to support said DP's execution

of any active said user task programs;

comparing said total required DSP resource with

the maximum available DSP resources; and

inhibiting execution at said DP of any said user
task program if said program's DSP resource
requirement causes said maximum available DSP

resource to be exceeded.

25. In a multi-media signal processor subsystem having
a digital signal processor, DSP, for executing
signal processing programs, a method of operation

including steps at said DSP of:

constructing a partitioned queue of DMA data
transfer requests for movement of data to or from
outside of DSP by inserting markers in said queue

at reqularly occurring time intervals.

26. A method as described in claim 25, further

comprising steps of:

constructing further said partitions of said queue
during a time interval while another partition of
said queue is having said DMA data transfer

requests serviced.

WO 93/06553

PCT/EP92/01965

1/13
INVOKES, SELECTS AN ;
_ .| APPL. PROG. REQ e
DIGITAL SIG. PROC. TASK
USER |(HI FI, SPEECH RECO, ETC.)
AT
HOST !
(PC))
HOST REQ. DSP TASK | FIG. 1
DSP BUILDS PARTITIONED | -3
PACKET LISTS FROM
ACTIVE TASK REQ.
v 4 i
DSP PACES L
INTERPROCESSOR || INTER-PROCESSOR
DMA CONTROLLER DMA CONTROLLER
| | : v
| | | READS PACKET LIST |6
| , I BEGINNING FROM
l , | NEXT POSITION
l
L 11 I
DSP KEEP BUILDING | ~ 7
PARTIONED LIST OF ARBITRATES FOR SYS |
PACKET REQ. IN ORDER OR DSP BUSSES (AS
TO CARRY OUT ACTIVE APPROP.) FOR REQ ||
TASKS PACKET TRANSFER
v 8
REC. BUS GRANT

v

9
TRANSFERS PKT(S)
TO/FROM BUFFER |

10

!

TRANSFER COMPLETE

PCT/EP92/01965

WO 93/06553

2/13

1S3N03H L3X0ovd
ANV (SLINS3y

(S38S300Hd XSVl
H3sn HOJ 3009)

“ |
_ |
_ Y3TONVH “
_ /HITIOBINOO | |
| NOILNJ3X3 (dsq)
el |
HOSS300Hd
SN8 W31SAS LSOH “ “H3IN| “ VLIBIg
|
Sgaav A | zoutaine | | —
MQ» 7 MOTH L3N0V ==| uaisvisne | | |
i @N H A_ﬁ H | OL LSOH “ WLVa/dLSNI
| | < [wov
007V
mwwﬁoﬂww: 308NOS3H “ JOV4HILNI B A“ o
W3LSAS mommwoomm _ ﬂw___..mm&%%w | MOTLINOVd =
1SCH 1SOH || oLdsa [>
! _ " A—~sng
|w3mtodnoo | ~| W3lsis
H31SYWSNE dsa
_ VYWa
| yoss3adoud VALY,
“ -H3LN| sisi
_
|
|
_
|

W3LSAS 1SOH

HO/ANV S31dWVS AHOWIN
TVYNDIS MSVL H3SN) NOILONYLSNI
AHOWIW Vviva dsa
dsa :
W3LSAS dsa

WO 93/06553 PCT/EP92/01965
3/13
1% - DIR
BYTE/
DSP DATA >
FIG. 3 BUS MEM %OQSR%NI “ | controL| _ WORD
. 3 WORD 1 SYS M/IO
PACING z;":cDK%L_?
10 4] CNT
\
' 15 STRIDE
" LOAD HL LOAD CNTL
SYS. ADDR. | PACKET / WORD 2 | CONTROL [~ TABLE
CONT- ‘ ™ WORD 2 PTR
ROLLER > pSP
B/W
< (_LOAD DSP
START ADDRESS DMA ADDR
DMA— /\LOAD
HANDLER DMA
Fﬁ% HANDLER MODULE
PACKET DIR
STRIDE |/ |BYTE/ BYTE [\pMa |BI[S | BYTE/
JHOLD WORD sYs COUNT | HANDLER 13 WORD
M/10 OPERATION LDMA
START COMPLETE REQ
sYS v v V /
OFF 4 SYS [|| START LOMA T
CHIP “ovs | . DMA (/LD BURST | DPS DMA |~ LDMA
INTE. comp. | HANDLER BUSMASTER [Io,GNT
HosT == & g LDMA CON- L= EN
12 SYSTEM NEW CONT-~ COMPLETE| TROLLER REGIN
N\ “Bus PACKET| ROLLER & BUS ARB
MASTER [~ s e
ENABLE CONT- ENABLE DIR BITS) EN
SYSADDR| ROLLER & | (BURST CNT BUF ?NYTE/ Rggz REG1
—| BUS ARB | _ ORD our ouT
LOAD__| DATA [[CNTL=
SYSADDR MUX= §YS
(HLD LOAD & SYS§ DECREMENT
svs | | A ENABLE DMA BUFFER
BUFFER |1 | | HOLD CNT
WE H.L7] PACKET RESET DSP
BUFFER BUFFADDR
/ ‘ s%’?é-m ENABLE DSP
ReseT | 7 —> BUFFADDR
SYs ™ —>
BUFFADDR /) (EnpBLE SYS N4
SWAP DATA BUFFADDR HL | DSP INST/DATA
IN, OUT MEMS. BUS

HOST SYS.
MEM BUS

WO 93/06553 PCT/EP92/01965
4/13
4/13
8 H.0.B. = CONTROL 8 LOB.
| REG 1LOAD [
[I]
CNTL REG 1 00{01{02]03]|04{05(06{07]{08|08{10 {11 {1213 |14 |15
CNTL REG 2 1 L
HOST LOWER L
ADDR # OF WORDS,
HOST UPPER INSTRUCTIONS
ADDR OR BYTES IN
BYTE MODE
DSP ADDR TO BE
TRANSFERRED
_ (‘00X IS
B VD 258 WORDS/
FOR FUTURE USE INSTRS/BYTES)
0:WORD (BIT 07 IS W/B
- INDICATOR CONTROL BIT)
00 091011 {1213 |14 |15 +BYTE (ONLY VALID FOR
— SYS 1/0 MODE XFERS TO/
L | , FROM DSP DS AND SINGLE
I BYTE MEM XFER)
TABLE PTR.
MEMORY MODULO ON DSP ADDRESS
ROW/COLUMN 000: NO MODULO
MODULO 00 32 WORDS
010: 64 WORDS
oi: 128 WORDS
100: 2568 WORDS
0: DSP ADDRESS WORD ok oi2 WORDS
1: DSP ADDRESS BYTE 111: 2048 WORDS
0: HOST SYS MEM ADDRESS
1 HOST SYS 1/0 ADDRESS
FIG. 4 DIRECTION BITS 01,02
. 00: WAIT MODE
01: FROM DSP DS TO HOST SYS MEM
'10: FROM HOST SYS MEM TO DSP IS
11: FROM HOST SYS MEM TO DSP DS

END OF LIST CONTROL INDICATOR BIT

WO 93/06553 PCT/EP92/01965
5/13

DATA ovo DATA MUST BE FIG. 5A |

N1 ST | qwap | EVEN ALIGNED i

EN SYS IN |] MUX Jy |

REGIN X18 SWAP DATAMUX |

sYs DATA DATA MUX jq—SYS |

MEM .

ADDR. DSP l

I

~ RES SYS BUFFADDR |

BUFADDR | sys L[+ |ADDRH ' !

—— BUFF nﬁu} 0] A3 - AO (HIGH) !

< ——— |ADDRHp— ,

18| ENSYS R :

BUFADDDRH ~ DsP BUFCNTL :

RES SYS BUFFADDR = SYS |

BUFADDR .

" 5urF - sox |00 (LOW) !

| A3 - AD (LOW -

—————JADDR1 [7] A3 - A0 L |

ENSYS | 7 i

f UFADDDR . BUFCNTL 32 BYTE i

DSP WE [, = SYS DMA i

SYS HWE | MUX o HwE 3ETER :

- 4 BUFCNTL WORD BY i

= SYS 8 BIT RAMS) :

|

LOC WE » !

—— "5 21 I

SYS LWE | MUX > LWE !

iy !

L BUFCNTL BUFFER !

TO ?_YS = SYS g\ég DATA OUT x

DATA SWAP fa :

OUT<—— MUX ouT I< |

+—— SWAP DATA OUT | X168 la— EN SYS REG OUT !

Svs [&——SYS ADDR PTR

DMA kb——sTRIDE
SYS |
ADDR ADDRL4 | D SYS ADDR HL

CNTR <——EN SYS ADDR

<+——BURST COUNT

SYs
BC = 4 DMA
10R 2 ADDR lu—— D BURST CNT (BC)
CNTRL: EN BURST CNT (BO)

i o, e) em—m o w4 mwm ¢ aaea o .

FIG. | FIG.
5A | 68
FIG. 5

WO 93/06553

FIG.

PCT/EP92/01965
6/13

5B

14

LER FIG. 3)

EN

—> Xi8

REG20UT | OUT

(THIS REGISTER IS SHARED
BY THE PACKET CONTROLLER
AND THE DSP/DMA CONTROL-

£ FROM DSP

DSP k3— DATA BUS IN
REG1

IN B, EN DSP
X18 REGIN

18

VA

DSP

DSP BUFADDR<3— BUFF

ADDR

<3+—— RESET DSP BUFADDR

k3—— EN DSP BUFADDR

EN 14
REGIOUT /
REG1 ~ TO DSP
ouT DATA BUS

DSP
REG2

|
|
i
i
i
i
|
|
|
i
|
|
|
i
i
i
|
|
i
{
i
i
i
|
|

DSP ADDR PTR
)

~ 10 DSP
DATA BUS

> X8

LD DSP ADDR{ DMA

DSsP

BURST

BURST

SIZE —>] BYTE

>
DSP GNT | ENTR

CNTR

ACCUM —>{ MUX
ULATOR |

— m—n 4 e——t b - 4 wmma ¢ awen | amem ¢ o b e b

SIGN BIT

ADDR

L~ TO DSP
ADDR BUS

LOAD

COUNT<t——1 pspP BC— DSP

36

DMA

BYTE > Bc= 1,2, 0R 4
DSP_.| CNTR (TO DSP CONTROLLERS)
GNT e ————

| Sl FIG. 5

WO 93/06553 PCT/EP92/01965
7/13
\V
1|
MAX WORDS PER MAX DSP MEM
DMA WINDOW TiMg | MAX DSP MIPS | ™ grone
2
-
DSP MAX
ENTER <
AR RESOURCE AVAIL.
FOR USER'S SYSTEM
3
SUM OF
ALL ACTIVE NO

SER TASK(S) TOTAL
DMA REQ. > MAX
WORDS DSP

5\

USER SEL
TASK(S)
MAX. DMA REQ.

4
/

TASK NOT LOADED

USER TASK(S) TOTAL
DSP MIPS > MAX
DSP MIPS

?

ALL ACTIVE
USER TASK(S) TOTAL

DSP STORE REQ >
MAX DSD
STORE

FIG. 6

LOAD TASK
BY SIGNALING
DSPOS |

END

WO 93/06553 PCT/EP92/01965
8/13
FIG. TA
| FIG.
7A
FIG.
v %2 FIG. !
CNTL=-DS[PTR] 78
START<-0
INCR PTR
23
YES _~REACHE
| r EOL
24
N NO
PTR<-DS[PTR]
SET NEW BOL < .
INC PTR
(25
Vv

3 &4

IF CNTL BITS 14,13 # 00 THEN HOST SYST. BUS
ADDR REG (18:31)<-DS [PTR] LOAD POINTER
CONT. TO HOST BUS ADDR REG (UPPER WORD)

l INC PTR

(26

IF CNTL BITS 14,13 # 00 THEN HOST SYST. BUS
ADDR REG (0:15)<«-DS [PTR] LOAD POINTER
CONT. TO HOST BUS ADDR REG (LOWER WORD)

INC PTR
(27

IF CNTL BITS 14,13 # 00 THEN DSP ADDR
REG.<-DS [PTR]JLOAD POINTER TO DSP
ADDR REG (LOWER ADDR. WORD)

WO 93/06553

(00) WAIT MODE

PCT/EP92/01965

(01) DSP (DS) TO SYS M

(1‘1) SYS MEM TO DSP DS

(10) SYS MEM TO DSP IS.

30
\ v

l /31

P9 [P9 ADDR]<-DS [DSP ADDHA]
INCR DSP ADDR

INCR HOST ADDR (IF HOST MEM)
DECR COUNT

IS [DSP ADDR}- HOST [HOST ADDR

INCR DSP ADDR

INCR HOST ADDR (IF HOST MEM)
DECR COUNT

DS [DSP ADDR]}«-HOST [HOST ADDH
INCR DSP ADDR
INCR HOST ADDR (IF HOST MEM)
DECR COUNT

33C
NO

FIG. 7B

YES

WO 93/06553

PCT/EP92/01965

10/13
INITIAL
BYTE
COUNT
2-1 MUXES
b
ACCUMULATOR
38
BURST SIZE
\V/ V 6 v a7
2'S COMPLEMENT 0 1 d
NETWORK > 2 _1Muxes
SIGN
BIT JJ
REMAINING
BYTE COUNT BURST

COUNT

WO 93/06553

11/13

BEGIN SIGNAL FROM

DSP PACKET READY PACING

CONTROL

;

FIG. 9

40

ACCESS DSP DATA
MEMORY PACKET LIST
READ CYCLE
COUNTER

PCT/EP92/01965

FIG. SA

FIG. 8B

FIG. 9A

y

4

GET PACKET
POINTER START

!

42

READ DSP DATA
MEMORY COUNTER

—D' v

INCREMENT
POINTER

44

EAD EN
OF LIST REG. =

NO

/46

INCREMENT
PACKET POINTER
4X

JHEX 16"
YES

LOAD DMA POINTER WITH
PACKET POINTER START

|/47

YES

45

READ
DIR BITS
= HEX 006
?

NO

WO 93/06553

PCT/EP92/01965

56

v /

INCREMENT POINTER
J] /57

LOAD DSP ADDR.
REG. WITH DATA
INDICATED BY POINTER

READ CNTL REG 4
INDICATED BY
PACKET POINTER
{7 49
/
INCREMENT
POINTER
NO | NO LOAD OF
> HOLD &
STRIDE
YES

V

% 62
LOAD HOLD & STRIDE

VALUES TO ADDR. OF
BITS 11-15

v

sys. ADDR. REa.)/ 58

BITS 08-23 LOADED

WITH DATA INDIC < |

BY POINTER

J,

STORE SYS ADDR.
AS BYTE ADDR.

INCREMENT POINTER |/54

! — 55

LOAD SYS. ADDR.

REQ. BITS 00-07 WITH
DATA INDIC. BY POINTER

L e

INCREMENT POINTER I

J7 /59

STORE DSP ADDR.

AS WORD ADDR.

J7 /60

PERFORM TRANSFER
FROM/TO DSP ADDR.
INDIC. BY INITIATING
DMA HANDLER FIG. 3

FIG. 9B

WO 93/06553 PCT/EP92/01965

13/13

('ENTRY POINT FORM TASK)

¢

LOAD PACKET

il FIG. 10

;

WRITE PACKET
REQUEST INTO
PACKET LIST

!

INCREMENT PACKET
POINTER TO POINT TO
NEXT PACKET LOCATION

J;

READ DATA AT LOCATON
THAT PACKET POINTER
IS POINTING TO

PACKET
POINTER AT \ YES
END OF LIST
EOL
?

v

SET PACKET POINTER =
BEGINNING OF LIST POINTER
WHICH IMMEDIATELY FOLLOWS

E.O.L. MARKER

1

SAVE PACKET POINTER

(RETURN TO TASK)

>

INTERNATIONAL SEARCH REPORT

PCT/EP 92/01965

International Application No

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate ail)6

Int.C1. 5 GO6F13/28

According to International Patent Classification (IPC) or to both National Classification and IPC

1. FIELDS SEARCHED

Minimum Documentation Searched?

Classification System

Classification Symbols

Int.C1. 5 GO6F

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched?

M. DOCUMENTS CONSIDERED TO BE RELEVANT?

Y REAL ‘TIME SYSTEMS

model and ada'

see page 6, line 46 - page 7, 1ine 15
see page 2, line 32 - Tine 61
see page 5, line 15 - line 44

see page 7, line 1 - line 21
see page 8, line 35 - line 41
see page 12, line 1 - Tine 8
see page 18, line 10 - page 21, line 20

Category ° Citation of Document, ! with indication, where appropriate, of the relevant passages 12 Relevant to Claim NoAd
Y EP,A,0 317 481 (INTERNATIONAL BUSINESS 1-3,14,
MACHINES CORPORATION) : 19,20,24
24 May 1989

1-3,14,

vol. 1, no. 1, June 1989, DORDRECHT NL 19,20,24
pages 7 - 25 , XP000275796
T.P.BAKER ET AL. 'the cyclic executive

© Special categories of cited documents 110

other means

Iater than the priority date claimed

»P* document published prior to the international filing date but

#T# later document published after the international filing date
or priority date and not in conflict with the application but

#A* document defining the general state of the art which is not h i i
considered to be gf par%cular relevance ;tve& :i‘:) :nd«mnd the principle or theory underlying the
E* earlier document but published on or after the international rx* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
#L* document which may throw doubts on priority claim(s) or involve an inventive step
which is cited to establish the publication date of another #y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to invoive an inventive step when the
#O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-

ments, such combination being obvious to a person skilled
in the art,
#&* document member of the same patent family

IV. CERTIFICATION

18 DECEMBER 1992

Date of the Actual Completion of the Internationsi Search

Date of Mailing of this International Search Report

07, 0193

International Searching Authority

Signature of Authorized Officer

EUROPEAN PATENT OFFICE JONES H.D.

Form PCT/ISA/210 (second shest) (Jmuary 1985)

PCT/EP 92/01965

International Application No
0. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)
Category © Citation of Document, with indication, where appropriate, of the relevant passages Relevant to Claim No.
X COMPUTER ARCHITECTURE NEWS 15,16,
vol. 19, no. 4, June 1991, NEW YORK US 18,
pages 132 - 137 , XP000228943 21-23,
S.C.WRAY 'time-sequenced DMA for 25,26
multimedia computers'
A see page 135, line 1 - page 136, line 15 3-12
A PATENT ABSTRACTS OF JAPAN 3-26

vol. 011, no. 032 (P-541)30 January 1987
& JP,A,61 201 338 (NEC CORP) 6 September

1985
see abstract

Farm PCT/ISA/210 (exira sheat) (Jamzary 1985}

ANNEX TO THE INTERNATIONAL SEARCH REPORT

ON INTERNATIONAL PATENT APPLICATION NO. EX 920122204

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 18/12/92

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0317481 24-05-89 JP=-A- 1142964 05-06-89

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

