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THREE-DIMIENSIONAL LIDAR-BASED 
CLEAR PATH DETECTION 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation-in-part of U.S. 
application Ser. No. 12/474,594 filed on May 29, 2009, which 
is a continuation-in-part of U.S. application Ser. No. 12/108, 
581 filed on Apr. 24, 2008. U.S. application Ser. No. 12/474, 
594 and U.S. application Ser. No. 12/108,581 are incorpo 
rated herein by reference. 

TECHNICAL FIELD 

0002. This disclosure is related to automated or semi 
automated control of a motor vehicle. 

BACKGROUND 

0003. The statements in this section merely provide back 
ground information related to the present disclosure and may 
not constitute prior art. 
0004 Autonomous driving systems and semi-autono 
mous driving systems utilize inputs regarding the road and 
other driving conditions to automatically control throttle and 
steering mechanisms. Accurate estimation and identification 
ofa clearpath over which to desirably operate a motor vehicle 
is critical to Successfully replacing the human mind as a 
control mechanism for vehicle operation. 
0005 Road conditions can be complex. Under normal 
operation of a vehicle, the human operator makes hundreds of 
observations per minute and adjusts operation of the vehicle 
on the basis of perceived road conditions. One aspect of 
perceiving road conditions is the perception of the road in the 
context of objects in and around the roadway and navigating 
a clearpath through any objects. Replacing human perception 
with technology preferentially includes some means to accu 
rately perceive objects and continue to effectively navigate 
around Such objects. 
0006 Technological means for perceiving an object 
include data from visual cameras and radar imaging. Cameras 
translate visual images in the form of radiation Such as light 
patterns or infrared signatures into a readable data format. 
One Such data format includes pixelated images, in which a 
perceived scene is broken down into a series of pixels. Radar 
imaging utilizes radio waves generated by a transmitter to 
estimate shapes and objects present in front of the transmitter. 
Patterns in the waves reflecting off these shapes and objects 
can be analyzed and the locations of objects can be estimated. 
0007. Once data has been generated regarding the ground 
in front of the vehicle, the data must be analyzed to estimate 
the presence of objects from the data. By using cameras and 
radar imaging systems, ground or roadway in front of the 
vehicle can be analyzed for the presence of objects that might 
need to be avoided. However, the mere identification of 
potential objects to be avoided does not complete the analysis. 
An important component of any autonomous system includes 
how potential objects identified in perceived ground data are 
processed and manipulated to identify a clearpathin which to 
operate the vehicle. 
0008. One known method to identify a clear path in which 
to operate the vehicle is to catalog and provisionally identify 
all perceived objects and identify a clear path in light of the 
locations and behaviors of identified objects. Images may be 
processed to identify and classify objects according to their 
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form and relationship to the roadway. While this method can 
be effective in identifying a clear path, it requires a great deal 
of processing power, requiring the recognition and separation 
of different objects in the visual image, for instance, distin 
guishing between a tree along the side of the road and a 
pedestrian walking toward the curb. Such methods can be 
slow or ineffective to process complex situations or may 
require bulky and expensive equipment to Supply the neces 
sary processing capacity. 

SUMMARY 

0009. A method for detecting a clear path of travel for a 
vehicle includes generating a datastream corresponding to a 
three-dimensional scan of a target area Surrounding the 
vehicle from a vehicle LIDAR system, estimating a ground 
plane for a present vehicle location using the datastream 
corresponding to the three-dimensional scan of the target area 
Surrounding the vehicle, and comparing the datastream cor 
responding to the three-dimensional scan of the target area 
Surrounding the vehicle with the estimated ground plane to 
detect a clear path of vehicle travel. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0010. One or more embodiments will now be described, 
by way of example, with reference to the accompanying 
drawings, in which: 
0011 FIG. 1 illustrates an exemplary arrangement of a 
vehicle equipped with a camera and a radar imaging system in 
accordance with the disclosure; 
0012 FIG. 2 illustrates a known method to determine a 
clear path for autonomous driving in accordance with the 
disclosure; 
0013 FIG.3 illustrates an exemplary method to determine 
a clear path utilizing a likelihood analysis of an image in 
accordance with the disclosure; 
0014 FIG. 4 illustrates an exemplary method to analyze 
an image in accordance with the disclosure; 
0015 FIG. 5 illustrates an exemplary method to define a 
classification error by tuning a single threshold in accordance 
with the disclosure; 
0016 FIGS. 6A, 6B, and 6C illustrate an exemplary deter 
mination of an image difference by calculating an absolute 
image intensity difference in accordance with the disclosure; 
0017 FIG. 7 illustrates an exemplary method to classify a 
feature as a portion of a clear path and as a detected object at 
the same time as a method of image analysis in accordance 
with the disclosure; 
0018 FIG. 8 further illustrates an exemplary method to 
classify a feature as a portion of a clear path and as a detected 
object at the same time as a method of image analysis in 
accordance with the disclosure; 
0019 FIG. 9 illustrates an exemplary process to analyze 
an image through likelihood analysis in accordance with the 
disclosure; 
0020 FIG. 10 is a first processing scheme for detecting a 
clear path, in accordance with the disclosure; 
0021 FIG. 11 shows an exemplary current image includ 
ing an exemplary set of interest points identified on the cur 
rent image, in accordance with the present disclosure; 
0022 FIG. 12 shows an exemplary current image captured 
Subsequent to the image depicted in FIG. 11, in accordance 
with the present disclosure; 
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0023 FIGS. 13A and 13B show an exemplary matched 
point pair, the matched point pair comprising an interest point 
from a current image and a corresponding interest point from 
a previous image, and an exemplary pixel region Surrounding 
the points, in accordance with the present disclosure; 
0024 FIG. 13A depicts the interest point from the current 
image and the pixel region Surround the interest point, 
0025 FIG. 13B depicts the interest point from the previ 
ous image and the pixel region Surround the interest point; 
0026 FIG. 14 graphically illustrates use of an exemplary 
current image, an exemplary previous image, and operation 
of a host vehicle to determine the position of a viewed feature, 
in accordance with the present disclosure; 
0027 FIG. 15 graphically illustrates an exemplary over 
head map describing vertical positions of interest points at X 
and y coordinates in front of the host vehicle, in accordance 
with the present disclosure; 
0028 FIG. 16 shows a second processing scheme for 
detecting a clear path, in accordance with the present disclo 
Sure; 
0029 FIG. 17 shows an exemplary filtered image based 
upon pixel color intensity, in accordance with the present 
disclosure; 
0030 FIG. 18 shows an exemplary filtered image utilizing 
an edge recognition method, in accordance with the present 
disclosure; 
0031 FIG. 19 depicts an alternate exemplary process for 
the second processing scheme, in accordance with the present 
disclosure; 
0032 FIG. 20 shows an exemplary arrangement of a 
vehicle equipped with a three-dimensional LIDAR system in 
accordance with the disclosure; 
0033 FIG. 21 shows an exemplary image from a vehicle 
based three-dimensional LIDAR system in accordance with 
the disclosure; 
0034 FIGS. 22, 23, and 24 schematically show flowcharts 
in accordance with the disclosure; and 
0035 FIGS. 25 and 26 show exemplary processed images 
from a vehicle-based three-dimensional LIDAR system in 
accordance with the disclosure. 

DETAILED DESCRIPTION 

0036 Referring now to the drawings, wherein the show 
ings are for the purpose of illustrating certain exemplary 
embodiments only and not for the purpose of limiting the 
same, FIG. 1 illustrates an exemplary arrangement of camera 
110 located on the front of a vehicle 100 and pointed toward 
the ground in front of the vehicle 100 in accordance with the 
disclosure. Camera 110 is in communication with processing 
module 120 containing logic to process inputs from camera 
110. The vehicle 100 may also be equipped with a radar 
imaging system 130, which, when present, is also in commu 
nication with processing module 120. It should be appreci 
ated by those having ordinary skill in the art that the vehicle 
100 could utilize a number of methods to identify road con 
ditions in addition or in the alternative to the use of camera 
110 and the radar imaging system 130, including GPS infor 
mation, information from other vehicles in communication 
with the vehicle 100, historical data concerning the particular 
roadway, biometric information Such as Systems reading the 
visual focus of the driver, a radar imaging system, or other 
similar systems. The disclosure herein can be applied to vari 
ous device arrangements and is therefore not limited thereby. 
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0037. The camera 110 is a device well known in the art 
capable of translating visual inputs in the form of light, infra 
red, or other electro-magnetic (EM) radiation into a data 
format readily capable of analysis, e.g., a digital, pixelated 
image. In one embodiment, the camera 110 uses a charge 
coupled device (CCD) sensor to generate images indicating a 
field-of-view. Preferably, the camera 110 is configured for 
continuous image generation, e.g., 30 images generated per 
second. Images generated by the camera 110 may be stored in 
memory within the camera 110 or transferred to the process 
ing module 120 for storage and/or analysis. Preferably, each 
image generated by the camera 110 is a two-dimensional 
image of known pixel dimensions comprising a plurality of 
identifiable pixels. The plurality of identifiable pixels may be 
stored and analyzed using an array. Each pixel may be repre 
sented in the array as a set of bits or a plurality of sets of bits 
wherein the bits correspond to a color on a predetermined 
palette or color map. Each pixel may be expressed as a func 
tion of a plurality of color intensity values such as in a red 
green-blue (RGB) color model or a cyan-magenta-yellow 
key (CMYK) color model. Preferably, each pixel comprises a 
plurality of sets of bits wherein each set of bits corresponds to 
a color intensity and a color intensity value e.g., a first set of 
bits corresponds to a red color intensity value, a second set of 
bits corresponds to a green color intensity value, and a third 
set of bits corresponds to blue color intensity value on the 
RGB color model. 

0038. The radar imaging device 130 is a device well 
known in the art incorporating a transmitter capable of emit 
ting radio waves or other EM radiation, a receiver device 
capable of sensing the emitted waves reflected back to the 
receiver from objects in front of the transmitter, and means to 
transfer the sensed waves into a data format capable of analy 
sis, indicating for example range and angle from the objects 
off which the waves reflected. Alternatively, the radar imag 
ing device 130 may be replaced or supplemented with a light 
detection and ranging (LIDAR) system configured to transmit 
and receive optical energy. The received optical energy may 
be used to determine object geometric dimensions and/or 
geometrical proximity to the vehicle 100. It will be noted that 
radar imaging device 130 is optional and unnecessary to 
perform many of the methods disclosed herein, wherein pro 
cessing of visual images is capable of accomplishing clear 
path detection. 
0039. The processing module 120 is illustrated in FIG. 1, 
and described herein as a discrete element, such illustration is 
for ease of description and it should be recognized that the 
functions performed by this element may be combined in one 
or more devices, e.g., implemented in Software, hardware, 
and/or application-specific integrated circuitry. Preferably, 
the processing module 120 is a general-purpose digital com 
puter comprising a microprocessor or central processing unit, 
storage mediums comprising non-volatile memory including 
read only memory and electrically programmable read only 
memory, random access memory, a high speed clock, analog 
to digital and digital to analog circuitry, and input/output 
circuitry and devices and appropriate signal conditioning and 
buffer circuitry. The processing module 120 has a set of 
processing algorithms, comprising resident program instruc 
tions and calibrations stored in the non-volatile memory and 
executed to provide the respective functions of each com 
puter. The algorithms are preferably executed during preset 
loop cycles. Algorithms are executed by the central process 
ing unit and are operable to monitor inputs from the afore 
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mentioned sensing devices and execute control and diagnos 
tic routines to control operation of the actuators, using preset 
calibrations. Loop cycles may be executed at regular inter 
vals, for example each 3.125, 6.25, 12.5, 25 and 100 milli 
seconds during ongoing engine and vehicle operation. Alter 
natively, algorithms may be executed in response to 
occurrence of an event. 
0040. The processing module 120 executes algorithmic 
code stored therein to monitor related equipment such as 
camera 110 and radar imaging system 130 and execute com 
mands or data transfers as indicated by analysis performed 
within the processing module. Processing module 120 may 
include algorithms and mechanisms to actuate autonomous 
driving control by means known in the art and not described 
herein, or processing module 120 may simply provide infor 
mation to a separate autonomous driving system. Processing 
module 120 is adapted to receive input signals from other 
systems and the operator as necessary depending upon the 
exact embodiment utilized in conjunction with the control 
module. 

0041 FIG. 2 illustrates a known method to determine a 
clear path for autonomous driving in accordance with the 
disclosure. Image 10 is generated corresponding to the road 
way in front of vehicle 100. Through one of various methods, 
objects 40A, 40B, and 40C are identified within image 10, 
and each object is categorized and classified according to 
filtering and trained object behaviors. Separate treatment of 
each object can be computationally intensive, and requires 
expensive and bulky equipment to handle the computational 
load. An algorithm processes all available information 
regarding the roadway and objects 40 to estimate a clear path 
available to vehicle 100. Determination of the clear path 
depends upon the particular classifications and behaviors of 
the identified objects 40. 
0042 FIG.3 illustrates an exemplary method to determine 
a clear path for autonomous or semi-autonomous driving in 
accordance with the disclosure. Image 10 is depicted includ 
ing ground 20, horizon 30, and objects 40. Image 10 is col 
lected by camera 110 and represents the road environment in 
front of vehicle 100. Ground 20 represents the Zone of all 
available paths open to travel without any discrimination on 
the basis of objects that might be present. The method of FIG. 
3 determines a clearpath upon ground 20 starts by presuming 
all of ground 20 is clear, and then utilizes available data to 
disqualify portions of ground 20 as not clear. In contrast to the 
method of FIG. 2 which classifies every object 40, the method 
of FIG. 3 instead analyzes ground 20 and seeks to define a 
likelihood from available data that some detectable anomaly 
which may represent object 40 limits or makes not clear that 
portion of ground 20. This focus upon ground 20 instead of 
objects 40 avoids the complex computational tasks associated 
with managing the detection of the objects. Individual clas 
sification and tracking of individual objects is unnecessary, as 
individual objects 40 are simply grouped together as a part of 
the overall uniform limitation upon ground 20. Ground 20, 
described above as all paths open to travel without discrimi 
nation, minus limits placed on ground 20 by areas found to be 
not clear, define clear path 50, depicted in FIG.3 as the area 
within the dotted lines, or an area with some threshold like 
lihood of being open for travel of vehicle 100. 
0043 Object 40 that creates not clear limitations upon 
ground 20 can take many forms. For example, an object 40 
can represent a discrete object Such as a parked car, a pedes 
trian, or a road obstacle, or object 40 can also represent a less 
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discreet change to Surface patterns indicating an edge to a 
road, Such as a road-side curb, a grass line, or water covering 
the roadway. Object 40 can also include an absence of flat 
road associated with ground 20, for instance, as might be 
detected with a large hole in the road. Object 40 can also 
include an indicator without any definable change in height 
from the road, but with distinct clear path implications for that 
segment of road, such as a paint pattern on the roadway 
indicative of a lane marker. The method disclosed herein, by 
not seeking to identify object 40 but merely to take visual cues 
from ground 20 and anything in proximity to the ground in 
image 10, evaluates a likelihood of clear versus not clear and 
adjusts the control of vehicle 100 for the presence of any 
object 40. 
0044) Numerous methods for automated analysis of two 
dimensional (2D) images are possible. Analysis of image 10 
is performed by an algorithm within processing module 120. 
FIG. 4 illustrates one exemplary method which may be 
applied to analyze image 10 in accordance with the disclo 
sure. This method subdivides image 10 and identifies a sub 
image or patch 60 of ground 20 for analysis, extracts features 
or analyzes the available visual information from patch 60 to 
identify any interesting or distinguishing features within the 
patch, and classifies the patch according to a likelihood of 
being a clear path according to analysis of the features. 
Patches with greater than a certain threshold of likeliness are 
classified as clear, and a compilation of patches can be used to 
assemble a clear path within the image. 
0045 Patch 60, as a sub-image of image 10, can be iden 
tified through any known means, such as random search or 
Swarm search of image 10. Alternatively, information regard 
ing the presence of an object 40 available from some other 
Source of information, Such as radar imaging system 130, can 
be used to identify a patch to analyze the portion of image 10 
which should describe object 40. Image 10 may require many 
patches 60 to analyze the whole image. In addition, multiple 
overlaying patches or patches of different size could be used 
to fully analyze a region of image 10 containing information 
of interest. For instance, a small patch 60 might be used to 
analyze a small dot on the road; however, a large patch 60 
might be required to analyze a series of dots which in isolation 
might seem uninteresting, but in context of the entire series, 
could indicate an object 40 of interest. In addition, the reso 
lution of patches applied to a particular area may be modu 
lated based upon information available, for instance, with 
more patches being applied to a region of image 10 wherein 
an object 40 is thought to exist. Many schemes or strategies 
can be utilized to define patches 60 for analysis, and the 
disclosure is not intended to be limited to the specific embodi 
ments described herein. 

0046. Once a patch 60 has been identified for analysis, 
processing module 120 processes the patch by application of 
a filter to extract features from the patch. Additionally, pro 
cessing module 120 may perform analysis of the location of 
the patch in context to the location of the vehicle. Filters 
utilized may take many forms. Filtering algorithms utilized to 
extract features often search the available visual information 
for characteristic patterns in the data, defining features by line 
orientation, line location, color, corner characteristics, other 
visual attributes, and learned attributes. Learned attributes 
may be learned by machine learning algorithms within the 
vehicle, but are most frequently programmed offline and may 
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be developed experimentally, empirically, predictively, 
through modeling or other techniques adequate to accurately 
train distinguishing attributes. 
0047 Once features in patch 60 have been extracted, the 
patch is classified on the basis of the features to determine the 
likelihood that the patch is a clear path. Likelihood analysis is 
a process known in the art by which a likelihood value or a 
confidence is developed that a particular condition exists. 
Applied to the present disclosure, classification includes like 
lihood analysis to determine whether the patch represents a 
clear path or if ground 20 in this patch is limited by an object 
40. Classification is performed in an exemplary embodiment 
by application of classifiers or algorithms trained with a data 
base of exemplary road conditions and interactions with 
detected objects. These classifiers allow processing module 
120 to develop a fractional clear path likelihood value for 
patch 60, quantifying a confidence between Zero and one that 
the features identified within the patch do not indicate a 
limiting object 40 which would inhibit free travel of vehicle 
100. A threshold confidence can be set, defining the clear path 
likelihood required to define the patch as a clear path, for 
instance by the following logic: 

Confidence=ClearPathLikelihood.(i) 

If Confidence-0.5, then patch-clearpath (1) 

In this particular exemplary embodiment, a confidence of 
50% or 0.5 is selected as the threshold confidence. This num 
ber can be developed experimentally, empirically, predic 
tively, through modeling or other techniques adequate to 
accurately evaluate patches for clear path characteristics. 
0048. The likelihood analysis, as mentioned above, may 
be performed in one exemplary embodiment by application of 
trained classifiers to features extracted from a patch. One 
method analyzes the features a-priori using a training set of 
images. In this training stage, distinguishing features are 
selected from a raw feature set, the distinguishing features 
being defined by methods known in the art, such as Haar 
wavelet, Gabor wavelet, and Leung-and-Malik filter bank. In 
addition, 2D image location information based on each fea 
ture's minimal classification errors, calculated as the sum of 
false acceptance rate (FAR) and false rejection rate (FRR), 
may be utilized by tuning a single threshold as illustrated in 
FIG. 5. This classification error can be described through the 
following expression: 

ClassificationError(i)=FAR+FRR, (2) 

Information from the trained classifiers is used to classify or 
weight the feature as indicating a clear path or not clear path, 
the particular classification depending upon the strength of 
comparisons to the trained data. Classification of the feature, 
if the feature is the only feature within the patch, may be 
directly applied to the patch. Classification of a patch with 
multiple features identified may take many forms, including 
the patch being defined by the included feature most indica 
tive of the patch being not clear or the patch being defined by 
a weighted sum of all of the features included therein. 
0049. The above method can be utilized to examine an 
individual image 10 and estimate a clear path 50 based upon 
visual information contained within image 10. This method 
may be repeated at some interval as the vehicle travels down 
the road to take new information into account and extend the 
formulated clear path to some range in front of the vehicle's 
new position. Selection of the interval must update image 10 
with enough frequency to accurately supply vehicle 100 with 
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a clear path in which to drive. However, the interval can also 
be selected to Some minimum value to adequately control the 
vehicle but also not to unduly burden the computational load 
placed upon processing module 120. 
0050 Clear path detection can be accomplished through a 
single image 10 as described above. However, processing 
speed and accuracy can be improved with the addition of a 
second image taken in close time proximity to the original 
image. Such as sequential images from a streaming video clip. 
A second image allows direct comparison to the first and 
provides for updated information regarding progression of 
the vehicle and movement of detected objects. Also, the 
change of perspective of camera 110 allows for different 
analysis of features from the first image: a feature that may 
not have shown up clearly or was indistinct in the first image 
may display at a different camera angle, stand out more dis 
tinctly, or may have moved since the first image, allowing the 
classification algorithm an additional opportunity to define 
the feature. 
0051 Processing of a second image in relation to the origi 
nal image 10 can be performed by calculating an image dif 
ference. If the image difference of a point of interest, such as 
a feature identified by radar, is not zero, then the point can be 
identified as embodying new information. Points where the 
image difference does equal Zero can be eliminated from 
analysis and computation resources may be conserved. Meth 
ods to determine image difference include absolute image 
intensity difference and vehicle-motion compensated image 
difference. 
0.052 Determining an image difference by calculating an 
absolute image intensity difference can be used to gather 
information between two images. One method of absolute 
image intensity difference includes determining equivalent 
image characteristics between the original image and the 
second image in order to compensate for movement in the 
vehicle between the images, overlaying the images, and not 
ing any significant change in intensity between the images. A 
comparison between the images indicating a change in image 
intensity in a certain area contains new information. Areas or 
patches displaying no change in intensity can be de-empha 
sized in analysis, whereas areas displaying clear changes in 
intensity can be focused upon, utilizing aforementioned 
methods to analyze patches on either or both captured images. 
0053 FIGS. 6A, 6B, and 6C illustrate an exemplary deter 
mination of an image difference by calculating an absolute 
image intensity difference in accordance with the disclosure. 
FIG. 6A depicts an original image. FIG. 6B depicts a second 
image with changes from the original image. In particular the 
depicted circular shape has shifted to the left. A comparison 
of the two images as illustrated in FIG. 6C, an output repre 
senting the result of an absolute image intensity difference 
comparison, identifies one region having gotten darker from 
the first image to the second image and another region having 
gotten lighter from the first image to the second image. Such 
a method can be described as differencing. Analysis of the 
comparison yields information that some change as a result of 
movement or change of perspective is likely available in that 
region of the images. In this way, absolute image intensity 
difference can be used to analyze a pair of sequential images 
to identify a potentially not clear path. 
0054 Likewise, determining an image difference by cal 
culating a vehicle-motion compensated image difference can 
be used to gather information between two images. Many 
methods to calculate a vehicle-motion compensated image 
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difference are known. One exemplary method of vehicle 
motion compensated image difference includes analyzing a 
potential object as both a stationary portion of a clearpath and 
a detected object at the same time. Likelihood analysis is 
performed on features identified corresponding to the poten 
tial object from both classifications at the same time, and the 
classifications may be compared, for example, through the 
following logic: 

Confidence(i)=ClearPathLikelihood (i)-DetectedOb 
jectLikelihood (i) 

If Confidence-0, then patch=clearpath (3) 

In this exemplary comparison, if confidence(i) is greater than 
Zero, then the patch containing the feature is classified as a 
clearpath. If confidence(i) equals or is less than Zero, then the 
patch containing the feature is classified as not a clear path or 
limited. However, different values may be selected for the 
confidence level to classify the patch as a clear path. For 
example, testing may show that false positives are more likely 
than false negatives, so some factor or offset can be intro 
duced. 
0055 FIG. 7 illustrates one method to classify a feature as 
a portion of a clear path and as a detected object at the same 
time as described above in accordance with the disclosure. 
Image 10 includes object 40, trapezoidal projection 70, and 
rectangular projection80. This method utilizes an assumption 
projecting object 40 as a flat object on the ground within 
projection 70 to test the classification of the feature as a 
portion of a clear path. The method also utilized an assump 
tion projecting object 40 as a vertical object within rectangu 
lar projection 80 to test the classification of the feature as a 
detected object. FIG. 8 illustrates comparisons made in data 
collected between the two images to evaluate the nature of 
object 40 in accordance with the disclosure. Camera 110 at 
time t observes and captures data from object 40 in the form 
of a first image. If object 40 is an actual detected object, the 
profile observed by camera 110 of object 40 at time t will 
correspond to point 90A. If object 40 is a flat object in the 
same plane as ground 20, then the profile observed by camera 
110 of object 40 at time t will correspond to point 90B. 
Between times t and t, camera 110 travels some distance. A 
second image is captured at time t2, and information regard 
ing object 40 can be tested by applying an algorithm looking 
at visible attributes of the object in the second image in 
comparisonto the first image. If object 40 is an actual detected 
object, extending upward from ground 20, then the profile of 
object 40 at time t will be observed at point 90C. If object 40 
is a flat object in the same plane as ground 20, then the profile 
of object 40 at time t2 will be observed at point 90B. The 
comparison derived through vehicle-motion compensated 
image difference can directly assign a confidence by applica 
tion of classifiers based on the observations of points 90, or 
the comparison may simply point to the area displaying 
change as a point of interest. Testing of the object against both 
classifications, as a flat object and as an actual detected object, 
allows either the area including object 40 to be identified for 
further analysis through analysis of a patch as described 
above or direct development of a clear path likelihood and a 
detected object likelihood for comparison, for example as in 
logic expression (3) above. 
0056 Information available from analysis of the second 
image can additionally be improved by integration of infor 
mation regarding movement of the vehicle. Such as speed and 
yaw-rate. Information regarding vehicle motion is available 
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from a number of sources, including the vehicle speedometer, 
vehicle dynamic sensors or wheel speed sensors, anti-lock 
braking mechanisms, and GPS location systems. Algorithms 
may utilize this vehicle movement information, for example, 
in conjunction with the projections described in FIGS. 7 and 
8 to project angles which should exist in a feature laying flat 
on the ground in the second image based upon data from the 
first image and the measured movement of the vehicle 
between the images. 
0057 The number of images utilized for comparison need 
not be limited to two. Multiple image analysis can be per 
formed at multiple iterations, with an object being tracked 
and compared over a number of cycles. As mentioned above, 
computational efficiency can be gained by utilizing image 
difference analysis to identify points of interest and eliminat 
ing areas with Zero difference from Subsequent analyses. 
Such efficiencies can be used in multiple iterations, for 
example, saying that only points of interest identified 
between a first and second image will be analyzed in the third 
and fourth images taken. At some point, a fresh set of images 
will need to be compared to ensure that none of the areas 
showing Zero difference have had any change, for example a 
moving object impinging upon a previously clear path. The 
utilization of image difference analyses and of focused analy 
ses, eliminating areas identified with Zero change, will vary 
from application to application and may vary between differ 
ent operating conditions, such as vehicle speed or perceived 
operating environment. The particular utilization of image 
difference analyses and of focused analyses can take many 
different embodiments, and the disclosure is not intended to 
be limited to the specific embodiments described herein. 
0058 FIG.9 illustrates an exemplary process 200 wherein 
input from a camera is analyzed to determine a clear path 
likelihood in accordance with the disclosure. Camera input in 
the form of an image is generated at Step 202. At step 204, a 
patch is selected for analysis from the image. Step 206 rep 
resents a filter or set offilters available to process the patch. At 
step 208, feature extraction is performed upon the selected 
patch through application of filters available from step 206 
and application of other algorithms. Step 210 includes a clas 
sifier training process. As mentioned above, classifiers or 
logic used in developing likelihood values are initially trained 
offline. Training may optionally be continued in the vehicle 
based upon fuzzy logic, neural networks, or other learning 
mechanisms known in the art. These trained classifiers are 
utilized in step 212 to perform a likelihood analysis upon the 
features extracted in step 208, and a likelihood value for the 
patch is developed. This likelihood value expresses a confi 
dence that the selected patch is clear. At step 214, the likeli 
hood value developed in step 212 is compared to a threshold 
likelihood value. If the likelihood value is greater than the 
threshold value, then at step 218 the patch is identified as a 
clear path. If the likelihood value is not greater than the 
threshold value, then the patch is identified as a not clearpath. 
As described above, process 200 may be repeated or reiter 
ated in a number of ways, with the same image being analyzed 
repeatedly with the selection and analysis of different 
patches, and an identified patch can be tracked and analyzed 
for change over a number of sequential images. 
0059. As mentioned above, processing module 120 may 
include algorithms and mechanisms to actuate autonomous 
driving control by means known in the art and not described 
herein, or processing module 120 may simply provide infor 
mation to a separate autonomous driving system. Reactions to 
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perceived objects can vary, and include but are not limited to 
steering changes, throttle changes, braking responses, and 
warning and relinquishing control of the vehicle to the opera 
tOr. 

0060. The above method, utilizing analysis of patches, is 
one method to establish a clear path of travel for a vehicle. 
Two additional, related processing schemes are disclosed, 
employing similar methods to analyze pixels instead of 
patches. A first processing scheme utilizing texture-rich 
methods to analyze images to identify a clear path is dis 
closed. FIG. 10 shows a first processing scheme 101 for 
detecting a clearpath, described hereinas comprising discrete 
elements. Such illustration is for ease of description and it 
should be recognized that the functions performed by these 
elements may be combined in one or more devices, e.g., 
implemented in Software, hardware, and/or application-spe 
cific integrated circuitry. 
0061 Processing scheme 101 is an exemplary method to 
apply texture-rich image analysis of a field-of-view in front of 
the host vehicle and begins with step 103, wherein images of 
the field-of-view in front of the vehicle are generated. At step 
106, the monitored images are examined for interest points, 
for example, examining pixel color intensity as described 
hereinabove and comparing the pixel or a group of pixels with 
Surrounding pixels. Through methods known in the art, inter 
est points can be identified and utilized to accomplish meth 
ods described herein. At step 109, sequential images of the 
field-of-view in front of the vehicle are compared when the 
vehicle is in motion, and interest points from each image are 
matched to corresponding points in sequential images which 
correspond to the same points in the field-of-view, where 
possible. Matching includes locating corresponding points 
through template matching or comparing interest points on 
the sequential images, taking into account movement of the 
host vehicle, and making a best estimate whether two points 
represent the same object or feature visible in the field-of 
view. While interest points can be matched, not all matched 
corresponding point pairs represent high quality correspond 
ing point pairs that allow the identification of their three 
dimensional positions in the field-of-view for classifications 
as a clear path for the vehicle to travel through. At step 112, a 
filter is applied to the matched corresponding point pairs in 
order to identify high quality corresponding point pairs that 
can be utilized for three-dimensional position identification 
with high confidence. At step 115, the high quality corre 
sponding point pairs are analyzed to determine three-dimen 
sional positions of objects represented by the corresponding 
point pairs. It will be appreciated that corresponding points at 
different heights as compared to ground level will move dif 
ferently between sequential images. Analyzing movement of 
the interest points can yield estimated three dimensional 
coordinates of the interest points. At step 118, the determined 
object positions are utilized to map object positions in front of 
the host vehicle. At step 121, the map is utilized to determine 
a clear path in front of the host vehicle. 
0062 FIG. 11 shows an exemplary current image (k) 500 
including an exemplary set of interest points 501 identified on 
the current image (k), each interest point 501 corresponding 
to a pixel. The processing module 120 preferably identifies 
interest points 501 on each image generated including the 
current image (k) 500 and a previous image (k-1). An interest 
point 501 is an identifiable pixel on animage and is associated 
with a set of visual information, i.e., rich-texture features, and 
is associated with objects located in the field-of-view. The 
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exemplary field-of-view or view depicted in FIG. 11 includes 
a road surface 510, sections in the road surface 515, curbs 520 
and 521, lane markers 522, intersecting lane 526, and build 
ings 524 and 525. Candidate interest points 501 are identified 
in the view by interest point extraction programming from 
which a set of interest points 501 may be selected. The interest 
point extraction programming is executed on the images by 
one of several known methods, e.g., a scale-invariant feature 
transform (SIFT), methods employing corner detection or 
other shape detection, or a Sobel filter. The interest point 
extraction programming is preferably executed in the pro 
cessing module 120, but may be combined in one or more 
devices, e.g., implemented in Software, hardware, and/or 
application-specific integrated circuitry. The interest point 
extraction programming locates candidate interest points 501 
in each image corresponding to predetermined identifiable 
rich-texture features, e.g., pixels indicating an edge, pixels 
indicating a transition in the visual data, wherein potentially 
significant features can be identified in the view. In the exem 
plary view of FIG. 11, of the many identified interest points 
501 identified, one point, 501A, is identified at a corner 
formed at a section 505 in curb 520. 

0063. After identifying candidate interest points 501, the 
interest point extraction programming may filter the candi 
date interest points by removing redundant candidate interest 
points, i.e., candidate interest points corresponding to a same 
feature. For example, the interest point extraction program 
ming may filter multiple candidate interest points corre 
sponding to an edge, resulting in less candidate interest points 
corresponding to the edge. The remaining set of candidate 
interest points are the interest points for the image. In one 
embodiment, filtering redundant candidate interest points is 
executed for computational efficiency. 
0064. Once the interest points 501 in a current image (k) 
500 are identified, the processing module 120 matches the set 
of interest points from the current image (k) with a set of 
points identified from the previous image (k-1) to determine 
a set of matched point pairs, corresponding to step 109 in 
process 101. 
0065. A first method to determine a set of matched point 
pairs includes using correspondence matching programming 
to match interest points from a current image (k) and a pre 
vious image (k-1). The processing module 120 matches the 
set of interest points from the current image (k) with a set of 
interest points identified in the previous image (k-1) to deter 
mine a set of matched interest point pairs. FIG. 12 shows an 
exemplary current image (k) captured Subsequent to the 
image depicted in FIG. 11. The exemplary current image (k) 
530 represents an image captured sequentially to the image 
depicted in FIG. 11, wherein the perspective of the viewer has 
progressed slightly along the viewed road between the 
images. In this exemplary situation, image 500 of FIG. 11, 
although a current image (k) at the time it was captured, now 
can act as a previous image (k-1) to current image (k) 530. 
The exemplary view depicted in FIG. 12 includes road sur 
face 510, sections in the road surface 515, curbs 520 and 521, 
lane markers 522, and buildings 524 and 525, as depicted in 
FIG. 11, with slightly different perspectives of every feature 
in the view. In the exemplary view of FIG. 12, many identified 
interest points 531 are identified according to methods 
described above, and one point, 531A, is identified at a corner 
formed at a section 505 in curb 520. It will be noted that 
interest points 531 identified in image 530 are not necessarily 
directly corresponding to interest points 501 identified in 
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image 500. Points 531 identified in image 530 are processed 
and filtered as described in association with points 501, as 
described in association with FIG. 11. Preferably, several 
interest points 531 from the set of interest points from the 
current image (k) 530 are matched with an interest point 501 
from the set of interest points identified from the previous 
image (k-1) 500 to determine a plurality of matched point 
pairs. Each interest point comprising a matched point pair is 
expected to correspond to a same feature associated with an 
object in the view. To determine the set of matched point 
pairs, the set of interest points 531 from the current image (k) 
are compared to the set of interest points 501 identified from 
the previous image (k-1) by one of several known correspon 
dence matching programming, e.g., a scale-invariant feature 
transform (SIFT) feature matching programming and optical 
flow programming. The correspondence matching program 
ming is preferably executed in the processing module 120, but 
may be combined in one or more devices, e.g., implemented 
in Software, hardware, and/or application-specific integrated 
circuitry. The resulting matched point pairs correspond to a 
same feature located on both the current image (k) and the 
previous image (k-1) wherein the same feature is associated 
with a same object in the view. 
0.066. A second method to determine a set of matched 
point pairs includes using template matching programming to 
match interest points from the current image (k) and the 
previous image (k-1). In one embodiment templates are gen 
erated using a predetermined pixel region neighboring an 
interest point. An exemplary region 535 is depicted in asso 
ciation with interest point 531A in FIG. 12. The template 
matching may be determined using one of multiple methods, 
including one of several known template matching program 
ming methods to find the corresponding points of interest in 
the previous image, e.g., Lucas-Kanade or Horn-Schunck. 
Preferably, the templates neighboring an interest point in a 
current image and compared with templates neighboring an 
interest point in a previous image. When the template match 
ing programming determines that the templates match, the 
interest points are included in the set of matched point pairs. 
The resulting matched point pairs correspond to a same fea 
ture located on both the current image (k) and the previous 
image (k-1) wherein the same feature is associated with a 
same object in the view. 
0067 FIGS. 13A and 13B show an exemplary matched 
point pair, the matched point pair comprising interest point 
531A from the current image (k) 530 and a second interest 
point 501A from the previous image (k-1) 500, and an exem 
plary pixel region Surrounding the points. According to the 
method described above, pixel region 535 around interest 
point 531A is depicted in FIG. 13A. As described above, 
interest point 531A is a point identified at a corner of section 
505 betweenportions of curb 520. Pixel region 535is selected 
around point 531A and preferably includes discernable fea 
tures, textures, or patterns that can be used to positively iden 
tify the region. FIG. 13B similarly depicts interest point 501A 
and a pixel region 540 around the interest point. Because of 
the change in perspective between image 500 and image 530, 
it is possible that pixel region 535 and pixel region 540 can 
include Some differences, but applying methods described 
above, a comparison of the pixel regions and identifying 
features therein can be utilized as one method to confirm with 
some confidence that interest points 531A and 501A repre 
sent the same feature within the view captured in images 500 
and 530 and may be treated as a matched pair. 
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0068. After the matched point pairs are determined, the 
processing module 120, by applying filters removing low 
quality matched corresponding point pairs indicative of 
poorly matched or mismatched pairs, selects high quality, 
preferential matched point pairs from the set of matched point 
pairs, as described in exemplary step 112 above. Preferential 
matched point pairs may be selected based upon quality con 
trol criteria. In one embodiment, matched point pairs are 
analyzed and identified as preferential matched point pairs 
after satisfying each criterion. 
0069. A first criterion is met when a distance between 
points of a matched point pair is less than a threshold. The 
distance is determined based upon the location of the points as 
if they were located on a same two-dimensional image coor 
dinates. The threshold may be predetermined and location 
dependent or dynamic based upon speed of the vehicle. A 
second criterion is met when both points of a matched point 
pair are a predetermined threshold distance from an image 
boundary. Due to the perspective of the camera to objects at 
the edges of the image boundary and vehicle motion, points 
too close to the edge either cannot locate a corresponding 
point, which may be located outside of the perspective of the 
camera or can create distorted estimates of object locations. 
Additionally, under normal vehicle operation in a forward 
direction, the probability of a vehicle needing information 
regarding a clear path toward the extremes of the view is 
small. A third criterion is met when a difference in color 
between a predetermined area neighboring each point of a 
matched point pair is less than a threshold difference in color. 
Utilizing the exemplary pixel regions defined in FIG. 13, a 
difference in color between the pixel regions 535 and 540 can 
be used to increase confidence in the matched pair. Each pixel 
within each of the regions can be assigned a number value 
based upon its corresponding color. The assigned number 
may be based upon a bit value determined while capturing the 
image or may be based upon an indexed color referencing a 
predetermined palette. The processing module 120 calculates 
absolute differences between the assigned number values 
within the first area 501 and the second area 502 pixel-by 
pixel, and sums the differences, which is the difference in 
color. The difference is compared with the threshold differ 
ence. If the difference is less than the threshold difference the 
third criterion is met. The threshold difference in color can be 
selected by any method sufficient to calibrate accurate road 
presence or clear path estimation. Different threshold differ 
ences in color can be utilized based upon lighting levels 
exterior to the vehicle, weather, speed of the vehicle, or any 
other factors that affect accurate estimation of clear path 
presence based upon differences in color. By judging whether 
the areas around the interest points are similar, a judgment can 
be made regarding whether the same area including the fea 
ture represented by the interest points is being analyzed in 
both images. 
(0070. It will be appreciated that the three criteria described 
above are exemplary criteria useful to judge matched pairs, 
but some portion of these criteria or additional unnamed, 
similar criteria can be utilized to judge validity of matched 
pairs. Selection of criteria to judge matched pairs can addi 
tionally be made based upon conditions such as light level 
present outside the vehicle, weather, speed of the vehicle, and 
any other factor affecting an ability to judge matched pairs or 
an urgency to quickly and accurately define a clear path. 
0071. After selecting the preferential matched point pairs, 
the processing module 120 determines positions of a plurality 
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of points associated with features of objects in the view with 
respect to the vehicle 100, as described in exemplary step 115 
above. FIG. 14 graphically illustrates use of an exemplary 
current image, an exemplary previous image, and operation 
of a host vehicle to determine the position of a viewed feature. 
Object position in a horizontal frame of reference and a height 
of the object as compared to a ground level can be determined 
based upon the preferential set of matched point pairs within 
sequential images 317 and 327 (the matched pair demon 
strated in this figure through points 1 and 2), a distance (d) the 
vehicle 100 traveled from a first position 310 to a second 
position 320, and vehicle yaw (0). The processing module 
120 executes one of several known triangulation methods to 
determine the position of the point with respect to the vehicle 
100 and a height of the point. In FIG. 14, a field-of-view 315 
from 310 including an image k-1 317 is depicted, and a 
field-of-view 325 from 320 including an image k 327 is 
depicted. Distance d is depicted describing a distance that an 
observer has traveled between points 310 and 320. Lines 
longitudinally oriented to fields of view 315 and 325 are 
represented by lines 312 and 322, respectively. An angular 
change in orientation or yaw (0) is depicted describing an 
angle between lines 312 and 322. Distance d can be deter 
mined an exemplary vehicle by tracking speed of the vehicle 
through a sample time between the time at 310 and the time at 
320. Similarly, 0 can be determined by tracking a yaw rate of 
the vehicle through the sample time. Object being viewed 305 
is depicted, and lines 318 and 328 are depicted describing 
lines of view from points 310 and 320 to object 305, respec 
tively. Points 1 and 2 are depicted upon images 317 and 327 
where lines 318 and 328 intersect images 317 and 327, 
respectively. Distance (a) can be defined describing a location 
of point 1 upon image 317, and distance (b) can be defined 
describing a location of point 2 upon image 327. It will be 
appreciated that FIG.14 represents an overhead view wherein 
a position of object 305 can be defined in a horizontal plane, 
and similar computations in a side view of the same objects 
can be utilized to define a vertical position of object 305 with 
relation a known ground level for the observer. By applying 
well known methods of triangulation, positional data such as 
distances a and b from sequential images and vehicular data 
Such as vehicle speed, vehicle yaw rate, and sample time can 
be utilized to locate a position of a viewed object in relation to 
the vehicle and determine relative motion of the object in 
relation to the vehicle. These methods of triangulation can 
yield a position of the object in a horizontal plane and a height 
of the object in relation to a ground level. 
0072. Once the position and height are determined, the 
processing module 120 may plot the points on an overhead 
map, as described in exemplary step 118 above. FIG. 15 
graphically illustrates an exemplary overhead map describing 
Vertical positions of interest points at X and y coordinates in 
front of the host vehicle. Position <0, 0) on the x axis and y 
axis corresponds to the second position320 of the vehicle 100 
described hereinabove, or the current position of vehicle 100. 
Preferably, object height is classified into predetermined cat 
egories. For example, objects with minimal height, e.g., 
below a predetermined threshold, may be classified as 
ground, objects exceeding ground height but less than a sec 
ond predetermined threshold may be classified into a second 
category which is close to and preferably less than a vehicle 
height, and objects greater than the second predetermined 
threshold may be classified into a third category. As FIG. 15 
shows, objects with minimal height are classified as ground 
(Ground), objects exceeding ground height but less than a 2 
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meter threshold are classified into the second category (Less 
than 2 m), and objects greater than the 2 meter threshold are 
classified into the third category (Greater than 2 m). 
0073. After plotting the objects on the map, the processing 
module 120 detects a clear path based upon features plotted in 
the map, as described in exemplary step 121 above. The term 
“clear path as used herein is to be given its ordinary and 
customary meaning to a person of ordinary skill in the art (and 
it is not to be limited to a special or customized meaning), and 
refers without limitation to a path free of objects exceeding a 
threshold, e.g., a path free of objects classified in the above 
mentioned second and third categories. Features of objects 
that are classified in predetermined categories, e.g., the sec 
ond and third category described hereinabove are identified 
by the processing module 120 as not-clear areas, i.e., not 
desirable for vehicle travel. Preferably, a predetermined area 
neighboring each object classified in the predetermined cat 
egories is identified by the processing module 120 as not 
clear area. The processing module 120 may determine that a 
clear path is present on the map using one of multiple meth 
ods. A first method for determining a clear path comprises 
comparing an anticipated path with the map including the 
not-clear areas. If the anticipated path does not intersect any 
not-clear areas then the processing module 120 determines 
that the anticipated path is a clear path. However, if the antici 
pated path intersects a not-clear area then the processing 
module 120 determines that a clear path is not present. A 
second method for determining a clear path comprises using 
the not-clear areas in the map to determine a clear path. Any 
path not intersecting the not-clear areas may be used as a clear 
path. 
0074 The above method utilizes sequential images to 
establish a map of object positions and vertical heights in 
front of the vehicle, such that a clear path can be defined. It 
will be appreciated that in any two given images, a particular 
object might not be classified as including two high quality 
interest points sufficient to be mapped in that particular analy 
sis. However, the above analysis occurs multiple times per 
second of vehicle travel. As the vehicle travels forward 
through the clear path, different perspectives upon an object 
will begained and a large number of images will be analyzed. 
Travel over a path and analysis of the multiple iterative 
images through that path build a confidence through the 
analyses that no object contradicting the clear path exists in 
the identified clear path. 
0075 FIG. 16 shows a second processing scheme for 
detecting a clear path. Whereas the first processing scheme 
described herein utilizes texture rich methods, analyzing pix 
elated features that describe distinct interest points based 
upon a contextual view within the image, the second dis 
closed processing scheme can be described as an exemplary 
texture-less method of image analysis, filtering from an 
image non-conforming regions of the image as not belonging 
to a planar, consistent road Surface. By filtering from an image 
non-conforming regions, a clear Surface can be identified 
from the remaining image as a potential clear path for the 
vehicle to travel. Process 250 is illustrated in FIG. 16, and 
described herein as comprising discrete elements. Such illus 
tration is for ease of description and it should be recognized 
that the functions performed by these elements may be com 
bined in one or more devices, e.g., implemented in Software, 
hardware, and/or application-specific integrated circuitry. 
For example, the process 250 may be executed as one or more 
algorithms in the processing module 120. The process 250 for 
detecting a clearpath comprises creating a plurality offiltered 
images and fusing the filtered images together to determine a 
clear path. 
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0076 Exemplary process 250 is disclosed, including steps 
to employ an exemplary texture-less method of clear path 
detection. Process 250 begins at step 253, wherein images are 
generated. Steps 256, 259,262, and 265 describe alternate 
exemplary methods to filteran image to identify a location of 
a clear path including a road Surface. It will be appreciated 
that each of the methods processes the image in one way to 
help identify the clear path. A process could be employed 
with some portion of the four exemplary methods or a process 
could be employed to include unnamed but similar methods 
to process the image. Any method can be employed that filters 
within an image a clear Surface upon which a road Surface can 
be estimated from other portions of the image that do not 
indicate a potential road surface. Step 256 applies an exem 
plary method to filter an area below a horizon or vanishing 
point, including a road Surface that can be driven upon, from 
an area above the horizon or vanishing point, including sky 
and other vertical features that cannot be part of a road sur 
face. Step 259 applies a filter based upon variance in pixel 
intensity, based upon a premise that a road Surface will 
include a large Surface with a visual intensity very common 
across the surface. Step 262 applies a filter based upon dif 
ferencing sequential images, allowing analysis of changes 
between the images. Step 265 applies a filter based upon 
identifying pixels representing edges or transitions in the 
visual data. Applying the various methods in parallel, the 
results can be the fused into a single map of the image in step 
268 and analyzed for visual data indicative of a clear path of 
travel in step 271. 
0077. A first filtered image is created using a vanishing 
point, as is described in exemplary step 256 above. The term 
“vanishing point’ as used herein is a broad term, and is to be 
given its ordinary and customary meaning to one ordinarily 
skilled in the art, and refers to an infinite far point on the 
horizon that is intersected by multiple parallel lines on the 
ground in the view. Identifying a road Surface creating a clear 
path on which to drive is necessarily below the vanishing 
point or horizon line. Filtering images to only analyze an area 
below the horizon line helps to clarify the pixels being ana 
lyzed to identify a road surface from irrelevant pixels. As one 
skilled in the art appreciates, there are many known methods 
for determining a vanishing point and corresponding horizon 
line. One known method comprises determining the Vanish 
ing point based upon a point where the lane markers on the 
left and right of a host vehicle intersect each other. The hori 
Zonline is determined based upon the Vanishing point. The 
first filtered image consists of pixels on the current image 
below the horizon line. 

0078. The processing module 120 creates a second filtered 
image based upon pixel color intensity of the plurality of 
pixels comprising the current image (k), as is described in 
exemplary step 259 above. FIG. 17 shows an exemplary sec 
ond filtered image based upon pixel color intensity. The sec 
ond filtered image comprises pixels selected from the plural 
ity of pixels. A number of methods to filter pixels are 
envisioned. The processing module 120 compares each color 
intensity value of a pixel with an associated color distribution 
mean e.g., a red, green, and blue color distribution mean. The 
color distribution means are an average color intensity distri 
bution for an associated color intensity associated with pixels 
previously identified in clear paths. The color distribution 
means may additionally be based upon historically gathered 
color distribution means of clear path pixels of the associated 
colors. A pixel is selected for the second filtered image when 
each color intensity value of the pixel is less than a color 
intensity threshold from the associated color distribution 
mean. When one color intensity value of the pixel is greater 
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than a color intensity threshold from the associated color 
distribution mean, the pixel is excluded from the second 
filtered image. The color distribution mean for the associated 
color intensity is an average color intensity value distributed 
in the image. The color distribution means are initially pre 
determined. In one embodiment, the processing module 120 
adapts the color distribution mean for each associated color 
intensity based upon the color intensity distributions in a 
predetermined number of images. 
0079. As described hereinabove, each pixel comprises a 
plurality of color intensity values. Preferably, the color inten 
sity value is compared with the associating color distribution 
mean. For example, for a pixel created using the RGB color 
model, a first bit set associated with a red color intensity is 
compared with the color distribution mean associated with 
the red color intensity, the bit set associated with the green 
color intensity is compared with the color distribution mean 
associated with the green color intensity, and the bit set asso 
ciated with the blue color intensity is compared with the color 
distribution mean associated with the blue color intensity. If 
the difference between each color intensity comprising the 
pixel and the associated color distribution mean is less than a 
color intensity threshold, then the pixel is used for the second 
filtered image. 
0080. Using the RGB color model, each pixel comprises a 

first, second, and third color intensity value. A first color 
intensity is a red intensity, a second color intensity is a green 
intensity, and a third colorintensity is blue intensity. The pixel 
for the second filtered image is selected from the plurality of 
pixels comprising the current image (k) when the difference 
between ared intensity of the pixel and ared color distribution 
mean is less than a red intensity threshold, and the difference 
between a green intensity of the pixel and a green color 
distribution mean is less than agreen intensity threshold, and 
the difference between a blue intensity of the pixel and a blue 
color distribution mean is less than a blue intensity threshold. 
The following equation expresses this process using the RGB 
color model: 

|R-Ralsthreshold and G-G|<threshold and 
|B-B|<threshold (4) 

wherein 
0081 R is a red color 
I0082 G is a green color, 
0083 B is a blue color, 
I0084 R is a color distribution mean for the red color, 
I0085 G is a color distribution mean for the green color, 
I0086) B is a color distribution mean for the blue color, 
I0087 threshold is a red intensity threshold, 
I0088 threshold is a green intensity threshold, and 
I0089 threshold is a blue intensity threshold. 
0090. One skilled in the art will appreciate that Equation 4 
above may be configured to be used with multiple other color 
models including the CMYK, YUV. and LAB color models. 
0091. The processing module 120 creates a third filtered 
image using the current image (k) and the previous image 
(k-1) by differencing the images, as is described in exem 
plary step 262 above. In an exemplary process to create a 
differenced image, a third filtered image is created as an 
image difference of the current image (k) and the previous 
image (k-1) and comprises a pixel by pixel comparison rep 
resenting the difference between the current image (k) and the 
previous image (k-1). Such a process is described above in 
association with FIGS. 6A-6C. A first method for determin 
ing the third filtered image comprises determining a differ 
ence between individual pixels on a current image (k) and 
corresponding individual pixels on the previous image (k-1). 
The difference may be determined by subtracting color inten 
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sity values associated with a pixel from corresponding color 
intensity values to determine a colorintensity difference, e.g., 
subtracting the red color intensity value of a first pixel on the 
current image (k) from the red color intensity value of a first 
pixel on the previous image (k-1). The resulting color inten 
sity difference comprises the pixel value and corresponds to 
the difference between the pixel on the current image (k) and 
the previous image (k-1). Each pixel value may be stored in 
an array corresponding to the third filtered image. In one 
embodiment, an absolute value of the difference is deter 
mined and stored in the array. The resulting array comprises 
values representing the difference between the two images 
and comprises the image difference. After determining the 
array, the processing module 120 removes values represent 
ing pixels that changed less than the predetermined threshold. 
The resulting values can, in one embodiment, be replaced 
with a predetermined value, e.g., one, to represent on a result 
ing image a clear map of identified differences between the 
two utilized images. 
0092. A second exemplary method for determining the 
third filtered image is based upon differencing images is 
described. A determination can be made by comparing the 
current image (k) and a motion adjusted previous image 
(k-1), and differences between these images can be used to 
map objects not fitting a particular model used to generate the 
motion adjusted image. One exemplary model to generate the 
motion adjusted image includes utilizing triangulation meth 
ods, such as the methods describing in association with FIG. 
14, information regarding the motion of the vehicle, and an 
assumption that all detected points are at ground level to 
predict motion of objects in the previous image (k-1). By 
using an assumption that all objects in the image are at ground 
level, predictions of motion of the objects in the resulting 
image are consistent with the previous image existing as an 
entirely flat image existing at ground level. Comparison of 
this resulting motion adjusted previous image (k-1) with the 
actual current image (k), including perspective changes upon 
objects not at ground level, allows for identification of all 
objects or features in the viewed images that are not on the 
ground level. By Subtracting pixels in the compared images, 
for example according to the first exemplary process for 
determining the third filtered image described above, pixels 
representing objects not on the ground level can be identified 
by the non-zero values or values exceeding a determinative 
threshold. In this way, the processing module 120 can deter 
mine the third filtered image as described hereinabove using 
the current image (k) and the motion adjusted previous image 
instead of the previous image (k-1). 
0093. The processing module 120 creates a fourth filtered 
image based upon color intensity values of the plurality of 
pixels comprising the current image (k), as described in 
exemplary step 265 above. FIG. 18 shows a fourth filtered 
image utilizing an edge recognition method. The fourth fil 
tered image comprises edges of the current image (k). To 
create the fourth filtered image, the processing module 120 
extracts pixels from the image based upon color intensity 
values that correspond to edges using one of several known 
edge detection filters, e.g., a Sobel filter. The edge detection 
filter is preferably executed in the processing module 120, but 
may be combined in one or more devices, e.g., implemented 
in Software, hardware, and/or application-specific integrated 
circuitry. In one embodiment, each pixel is analyzed using a 
Sobel operator. The Sobel operator computes a gradient vec 
tor of color intensity at each pixel resulting in a direction of 
the largest possible increase from light to dark and the rate of 
change in that direction. Points corresponding to a rate of 
change exceeding a threshold and corresponding to gradient 
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vectors at nearby pixels indicate edges and are included in the 
fourth filtered image. Those pixels may be replaced with a 
predetermined pixel color, e.g., black. 
0094. After creating the plurality of filtered images, the 
processing module 120 fuses the filtered images together to 
determine pixel locations corresponding to a clear path, as 
described in exemplary step 268. The fused filtered image 
comprises an image containing pixels contained in all of the 
plurality of filtered images, i.e., only pixels contained at a 
particular pixel location in each of the plurality of filtered 
images are included in the fused filtered image. Fusing the 
filtered images together comprises determining pixel loca 
tions included on each of the plurality offiltered images. Each 
pixel location is compared with corresponding pixel locations 
on each of the filtered images. When each of the plurality of 
filtered images contains a pixel at a corresponding pixel loca 
tion, that pixel is included on a fused clear path map repre 
senting a clear Surface on the road. The fused clear path is 
used to detect a clear path for the vehicle 100. Pixels on the 
fused clear path map correspond to desirable driving loca 
tions in the view. Locations on the fused clear path map 
without pixels correspond to undesirable driving locations in 
the view. 

(0095 Process 250, described in FIG. 16, applies various 
methods to images in parallel to identify features in a view 
relevant to defining a clear path. However, it will be appreci 
ated that these methods need not be performed in parallel, but 
rather the methods can be used to process images sequentially 
in steps to identify features in a view relevant to defining a 
clear path. An exemplary process 600 for the second process 
ing scheme is depicted in FIG. 19. Process 600 initiates by 
generating a sequence of images at step 603. Each image is 
delivered in parallel to two steps, and the results from the two 
steps arefused and made available for Subsequent steps in the 
process. The parallel steps include step 606, wherein a first 
filtered image according to filtering pixels by the Vanishing 
point method described above in order to filter from process 
ing the portions of the images that cannot represent a road 
surface, and step 609, wherein a second filtered image by 
filtering pixels according to intensity, as described above, is 
utilized to filter from processing portions of the images 
describing features inconsistent with a road surface. A fused 
image of the first filtered image and the second filtered image 
is created in step 612, the fused image including only a 
portion of the image below the vanishing point and including 
pixels with intensity consistent with a road Surface. Sequen 
tial fused images are used, in step 615, to create a third filtered 
image using one of the differencing methods described above. 
In step 618, the third filtered image is utilized to create a 
fourth filtered image using the edge extraction methods 
described above. The results of process 600 can then be 
analyzed for visual data indicative of a clear path of travel. 
(0096 Processes 250 and 600 illustrate two exemplary 
arrangements in which filtering methods can be utilized in 
combination to process a sequence of images to identify a 
clear path. However, it will be appreciated that such combi 
nations can take many forms, steps can applied in different 
orders, and fewer or additional filters can be used in different 
combinations. Additionally, filters can be utilized selectively 
or configurations of processes can be utilized selectively, for 
example, with different combinations being utilized in the 
daytime and others being utilized in the night. For example, 
Some combinations can continue to analyze road Surfaces 
illuminated by headlights whereas other methods might not 
be useful without an entirely illuminated view. In another 
example, different combinations can be utilized when rain or 
Snow is present on the road. For example, some methods and 
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analysis methods might continue to be useful with a light 
coating of Snow, for example, identifying tire paths in the 
Snow as potential clear paths, whereas other methods might 
not be useful where a white covering hides most identifiable 
features. In another example, different combinations can be 
utilized when additional information is made available, for 
example, with infrared, radar, or GPS data augmenting or 
facilitating filtering of the images based upon the additional 
information. A number of combinations of filtering methods 
are envisioned, and the disclosure is not intended to be limited 
to the particular embodiments described herein. 
0097. As described above, a first processing scheme, 
employing texture-rich methods, and a second processing 
scheme, employing texture-less methods, are described, each 
scheme enabling identification of road features useful to 
describe a clear path in the view of the vehicle. However, it 
will be appreciated that a single analysis based upon either 
scheme can yield ambiguous results, for example, wherein 
particular lighting conditions, shadows from another vehicle, 
heat caused distortion of the road surface, or other similar 
issues can cause portions of a road Surface to be misidentified 
as not conforming to the rest of the road Surface. One method 
to resolve ambiguous results is accomplished by analyzing 
iterative images as the vehicle travels along the road. It will be 
appreciated that as a vehicle travels along a road, hundreds of 
images taken in quick Succession can be analyzed of a par 
ticular section of road. As the vehicle travels forward, differ 
ent lighting and exposure of the road Surface as a result of 
different viewing perspectives will be observed. Travel over a 
path and analysis of the multiple iterative images through that 
path can build confidence through the analyses that the par 
ticular portion of the road Surface is correctly estimated as a 
clear path. 
0098. Another method to resolve ambiguous results of 
either scheme is to utilize both schemes and fuse the results, 
utilizing the combination of the two schemes to increase 
confidence of identification of a clear path. Each of the 
schemes has advantages over the other scheme in different 
aspects of clear path detection. For example, the exemplary 
texture rich method excels at detecting objects distinctly 
standing up from the ground level with rich textures. This 
method positively identifies objects detectable at different 
heights and yields a map of areas that a vehicle should not 
travel lest the objects collide with the vehicle. In another 
example, the exemplary texture-less method excels at identi 
fying a region wherein pixels identify a commonly appearing 
surface. This method positively identifies a region wherein a 
road surface is likely to exist and maps the boundaries of this 
Surface. 

0099. The first scheme and the second scheme can be 
fused in a number of ways. An image with identified points 
and determined heights identified with texture-rich methods 
can be overlaid with a filtered image generated by texture-less 
methods, and agreement of the two methods can be used to 
define a clear path through the overlaid image. In an alterna 
tive method to fuse the two schemes, the data from each of the 
two schemes can be used to project information upon a pro 
grammed overhead map of an area in front of the vehicle, and 
this overhead map including data gained from analysis of the 
two schemes can include building confidence indications for 
regions of the map. In an alternative method to fuse the two 
schemes, one scheme can be utilized as a primary or dominant 
scheme, and the second scheme can be utilized or activated to 
analyze regions in the view identified as ambiguous or 
unclear. In any method to fuse the two schemes, strengths of 
one processing scheme can be used to reduce weaknesses of 
the other processing scheme. If both schemes concur that the 
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path is clear, then the processing module employing the 
schemes may determine with increased confidence that the 
path is desirable for the vehicle to traverse. A number of 
methods to fuse the identified schemes are envisioned, and the 
disclosure is not intended to be limited to the particular 
embodiments described herein. Additionally, either scheme 
or both schemes can be combined with the method employed 
above utilizing analysis of patches. 
0100. One skilled in the art will recognize that lighting 
normalization may be applied to the captured image data. 
Normalization is a process which changes the range of pixel 
intensity values. The purpose of the normalization is to bring 
the image into a range that is more Suitable for machine 
process to improve the reliability. For example, each pixel 
value is normalized to be a Zero mean and unit variance to 
enhance the image contrast, specifically in a low lighting 
environment or when contrast is poor due to glare. 
0101 The filters and algorithms described hereinabove 
may take many forms. Filtering algorithms utilized to extract 
features often search the available visual information for 
characteristic patterns in the data, defining features by line 
orientation, line location, color, corner characteristics, other 
visual attributes, and learned attributes. Attributes may be 
developed experimentally, empirically, predictively, through 
modeling or other techniques adequate to accurately train 
distinguishing attributes. Learned attributes may be learned 
by machine learning algorithms or fuzzy logic within the 
vehicle adapting over time. Additionally, learned attributes or 
learned landmarks can be gathered from repetitive travel of a 
vehicle over a route and utilized in clear path identification. 
0102 FIG. 20 schematically shows an embodiment of a 
vehicle system 100' including a three-dimensional (3D) 
imaging light detection and ranging (LIDAR) optical sensing 
device system 111, an optional camera 110 and an optional 
radar system 130, and a processing module 120". The three 
dimensional (3D) imaging light detection and ranging (LI 
DAR) optical sensing device system 111 is preferably 
mounted on a top location of the vehicle 100' to generate 
LIDAR images corresponding to 360° of rotation about the 
vehicle 100'. The 3D imaging LIDAR system 111 emits laser 
pulses and monitors elapsed time between transmission of 
each pulse and detection of a reflected signal to determine a 
range or distance, referred to as a phase-sensitive measure 
ment. The emitted pulses are oriented with reference to an 
orthogonal 3D reference grid 113 having a locus 113A fixed 
on the vehicle 100' and described in terms of an X-axis, a 
Y-axis, and a Z-axis that are preferably associated with the 
vehicle 100'. Preferably, the X-axis is associated with a direc 
tion of travel of the vehicle 100', the Y-axis is orthogonal to the 
direction of travel of the vehicle 100' when travelling on a 
horizontal Surface, and the Z-axis is an elevation axis that is 
orthogonal to the X and Y axes. The 3D imaging LIDAR 
system 111 generates an array of data that is descriptive of a 
target area surrounding the vehicle 100' that preferably 
includes a ground plane for the vehicle 100' and vertical 
projections therefrom. The 3D imaging LIDAR system 111 
transmits a datastream containing the array of data to the 
processing module 120' at a rate of 3 Mbits/sec. The datas 
tream comprises a three-dimensional point cloud, comprising 
a three-dimensional scan of a target area Surrounding the 
vehicle 100', an example of which is depicted with reference 
to FIG. 21. The three-dimensional point cloud is preferably an 
array of 3D datapoints generated by the 3D imaging LIDAR 
system 111 and projecting outwardly from with a single loca 
tion of the vehicle 100', and thus associated with a single 
location of the locus 113A during vehicle operation. 
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(0103 FIG. 22 schematically shows a flowchart 230 for 
sampling and processing the datastream generated by the 3D 
imaging LIDAR system 111 comprising the three-dimen 
sional point cloud, preferably executed in the processing 
module 120' as algorithmic code. Overall, the flowchart 230 
depicts processing of the datastream generated by the 3D 
imaging LIDAR system 111 to identify a ground model com 
prising a data-based construct associated with a ground plane 
on which the vehicle 100' is travelling. 
0104. The ground model is used to identify obstacles that 
can be in the form of Vertical projections from the ground 
plane, as shown with reference to data depicted in FIGS. 25 
and 26. Obstacles can be associated with a potential path of 
travel for the vehicle 100', adjacent to the potential path of 
travel for the vehicle 100', and other locations. A clear path of 
travel for the vehicle 100' is identified, comprising a path of 
travel for the vehicle 100' that avoids the identified obstacles 
projecting from the identified ground plane. 
0105. In operation, the three-dimensional point cloud gen 
erated by the 3D imaging LIDAR system 111 is ongoingly 
monitored (231). The 3D reference grid 113 having locus 
113A is oriented relative to the vehicle 100'. As such, when 
the vehicle 100' is on a level surface, the 3D reference grid 113 
corresponds to a Surface grid having X and y axes that are 
level, and when the vehicle 100' is on a tilted surface, the 3D 
reference grid 113 does not correspond to a surface grid 
having x and y axes that are level. Thus, as the vehicle 100' 
approaches an inclined surface, e.g., a hill, a portion of the 
three-dimensional point cloud includes a portion of a ground 
model that has zero tilt, and portion of a ground model that has 
an incline. Furthermore, during ongoing vehicle travel, ori 
entation of the 3D imaging LIDAR system 111 and the data 
contained in the datastream is affected by vehicle yaw, pitch, 
and roll associated with vehicle maneuvering, e.g., cornering 
and braking, and road conditions including potholes and other 
irregular Surface features. 
0106 Signal processing includes refining the three-di 
mensional point cloud by identifying and eliminating 
datapoints from the three-dimensional point cloud that are 
distal from the locus 113A of the vehicle 100', including any 
datapoint that has a large Z-axis component or a Y-axis com 
ponent that is a distance greater than a predetermined thresh 
old associated with vehicle speed and other factors that elimi 
nate the datapoint from being in a potential path of travel for 
the vehicle 100'. This analysis takes into account the portion 
of the ground model that has Zero tilt, and any portion of the 
ground model having an incline to refine the three-dimen 
sional point cloud (232). Ground points are contained in the 
refined three-dimensional point cloud (233). 
0107 A sample dataset M is selected from the refined 
three-dimensional point cloud. The sample dataset M is a 
Subset of the three-dimensional point cloud and contains a 
plurality of datapoints m randomly selected using known 
sampling techniques (234). 
0108. The sample dataset M is subjected to principal com 
ponent analysis (PCA) techniques to identify a direction d 
having a minimum variation (235). 
0109 The principal component analysis (PCA) tech 
niques are applied to the datapoints massociated with the 
sample dataset M, which results in a dataset M(d). Dataset 
M(d) includes the datapoints m projecting in the d direction, 
with each of the datapoints includes represented as m(d). The 
principal component analysis (PCA) techniques include cal 
culating least-square error terms that further result in calcu 
lating a standard deviation of the m(d) datapoints associated 
with the dataset M(d), represented as Std M(d) (236). 
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0110. The standard deviation Std M(d) is compared to a 
predetermined threshold (quit tolerance value), which is a 
calibratable fixed value indicative of a ground model associ 
ated with the ground plane (237). 
0111. When the standard deviation Std M(d) is less than 
the predetermined threshold (quit tolerance value), the 
sample dataset M(d) is output to the ground model, which is 
the data-based construct associated with the ground plane on 
which the vehicle 100' is travelling. The ground model is 
stored in the processing module 120' as an estimate of the 
ground plane (245). 
0112. When the standard deviation Std M(d) is greater 
than the predetermined threshold (quit tolerance value), each 
individual datapoint mcd) of the dataset M(d) is evaluated 
(239). Evaluating each individual datapoint mGd) of the 
dataset M(d) includes comparing the absolute value of each of 
the individual datapoints projected in the d direction m(d) 
with the predetermined threshold (quit tolerance value), and 
with a moving threshold (240). When the absolute value of 
the datapoint projected in the d direction m(d) exceeds either 
one of the predetermined threshold (quit tolerance value) 
and the moving threshold, the datapoint m(d) is eliminated 
from the M(d) dataset (241). Otherwise, the datapoint m(d) is 
identified as a potential ground point and retained in the M(d) 
dataset (242). The process is repeated for each individual 
datapoint mcd) of the dataset M(d) (243). The dataset M(d) is 
refined by eliminating those datapoints m(d) that exceed 
either one of the predetermined threshold (quit tolerance 
value) and the moving threshold (244). 
0113. In the embodiment shown, the process iteratively 
executes to evaluate the dataset Musing the updated refined 
point cloud for a predetermined quantity of iterations, in order 
to refine the dataset M(d) which is eventually output to the 
ground model (245). The moving threshold against which the 
datapoints m(d) are compared is recalculated during each 
iteration in which the dataset M is evaluated. The dataset 
M(d) is preferably evaluated and refined multiple times, as 
indicated by the iteration loop and an associated iteration 
count (238). 
0114. In one embodiment, the moving threshold can be 
determined as a linear or other function of the standard devia 
tion Std M(d), with the moving threshold decreasing with 
increased iterations for the dataset M(d). This is performed 
when the processing speed is sufficient to allow multiple 
iterations to refine the ground model using the present dataset 
M(d). Multiple iterations of analyzing the dataset M(d) 
allows a more refined definition of the ground model, includ 
ing accounting for Surface roughness of a road. Road Surface 
roughness includes accommodating randomly occurring fea 
tures on the road Surface including Snow, and various and 
varying road Surfaces including dirt, gravel, grass, asphalt and 
COncrete. 

0115 FIG. 23 schematically shows flowchart 230', 
wherein the process 230 described with reference to FIG. 22 
is repeated during each iteration with an updated dataset M. 
The sampled portion of the datastream, i.e., each dataset M, is 
Subjected to principal component analysis (PCA) to identify 
a minimum variation direction d (235). 
0116 Principal component analysis is an analytical 
method for processing data that includes using an orthogonal 
linear transformation to transform data, e.g., the dataset M, to 
a new coordinate system wherein the greatest variance by any 
projection of data lies on a first coordinate or principal com 
ponent, the second greatest variance by any projection of data 
lies on a second coordinate or principal component, and the 
least variance by any projection of data lies on a third coor 
dinate or principal component for three-dimensional 
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datapoints. The first, second, and third coordinates for a mul 
tivariate system having three dimensional datapoints are 
referred to as eigenvectors, with the projections of the indi 
vidual datapoints m that are so associated referred to as pro 
jection coefficients. The coordinate system resulting from 
principal component analysis identifies the first and second 
eigenvectors corresponding to the greatest variance by pro 
jection of the data lying on the first coordinate or principal 
component and the second greatest variance by projection of 
the data lying on the second coordinate or principal compo 
nent. The first and second eigenvectors can be used to define 
the ground model described herein. 
0117 The third eigenvector is defined as that element hav 
ing the least variance by the projection of data lying on a third 
coordinate or principal component. The third eigenvector is 
that portion of each datapoint that is projected in the d direc 
tion as described herein. Thus, each datapoint has a projection 
coefficient corresponding to the third eigenvector that is rep 
resented as m(d). Thus, given a set of datapoints defined in a 
Euclidean space, each datapoint defined in terms of coordi 
nates associated with the X, Y, and Z axes, the principal 
component of interest is that which corresponds to the third, 
least eigenvalue having a line that passes through a mean 
value and minimizes a Sum-squared error for those points. 
Thus when there is a three-dimensional dataset, the trans 
formed dataset can become a transformed three-dimensional 
dataset. The principal component analysis permits transfor 
mation of the dataset M to eigenvectors. Each datapointm has 
projection coefficients corresponding to the first, second, and 
third eigenvectors, including the projection coefficient m(d) 
projecting in the third coordinate or the principal component 
system. The principal component analysis permits transfor 
mation of each datapointm having a location defined in the X. 
Y. and Z axes to include a transformed datapoint having the 
projection coefficient m(d), wherein the projection coeffi 
cient mGd) for with each datapoint is associated with the 
coordinate or principal component having the least variance 
by any projection of data. 
0118. In processing the datastream generated by the 3D 
imaging LIDAR system 111 comprising the three-dimen 
sional point cloud, there is a need to identify the ground plane 
to distinguish between ground points that make up the ground 
plane and obstacles to identify a clear path of travel, in order 
to construct the ground model using the sampled datapoints in 
the datastream. Characteristics of the ground plane include 
that it is a Substantially flat surface in a large area, and a 
Substantial portion of the datapoints in the three-dimensional 
point cloud will be associated with the ground plane. Thus, 
the application of principal component analysis allows the 
ground plane to be identified by associating specific ones of 
the datapoints m(d) with the ground plane, and identifying 
specific other ones of the datapoints m(d) that are not in the 
ground plane as obstacles. 
0119 FIG. 24 schematically shows a flowchart for identi 
fying a clear path of travel using the datastream generated by 
the 3D imaging LIDAR system 111. This includes identifying 
the ground model (230), the process of which is described 
with reference to one of FIGS. 22 and 23. Individual 
datapoints m(d) in the d direction of the original randomly 
sampled dataset M (at 234) are compared to the ground model 
(246). The process includes analyzing and classifying indi 
vidual datapoints m(d) to determine variances that can be 
associated with localized surface roughness and Smoothness, 
including Subjecting the individual datapoints m(d) of the 
dataset M to the aforementioned texture-rich analysis pro 
cesses. This process allows for distinguishing between 
obstacles and uneven features of the surface of the ground 
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model. Thus specific datapoints m(d) can be identified as one 
of a Surface feature in the ground model and an obstacle. An 
individual datapoint m(d) is considered an obstacle when its 
magnitude exceeds a predetermined threshold that preferably 
differs from the moving threshold, taking into account the 
variances that are associated with localized Surface rough 
ness. Obstacles can be detected thereby (247). Once any 
obstacles are identified, a clear path of vehicle travel can be 
identified, comprising that which avoids the identified 
obstacles. 
I0120 In an embodiment using the camera 110 in conjunc 
tion with the 3D imaging LIDAR system 111, obstacles can 
be identified using information from the 3D imaging LIDAR 
system 111 and the camera 110, and a clear path of vehicle 
travel can be identified, comprising that which avoids the 
obstacles identified by both systems. 
I0121 FIG. 25 graphically shows the three-dimensional 
point cloud wherein specific ones of the datapoints m(d) are 
classified as part of the ground plane, and specific other ones 
of the datapoints m(d) are classified as obstacles. 
0.122 FIG. 26 graphically shows the three-dimensional 
point cloud wherein the datapoints m(d) have been classified 
as part of the ground plane or as an obstacle, and further 
refined to include as obstacles only those data points that 
presently obstruct the travel path of the vehicle, indicating 
presence of a clear path of travel. 
I0123. The disclosure has described certain preferred 
embodiments and modifications thereto. Further modifica 
tions and alterations may occur to others upon reading and 
understanding the specification. Therefore, it is intended that 
the disclosure not be limited to the particular embodiment(s) 
disclosed as the best mode contemplated for carrying out this 
disclosure, but that the disclosure will include all embodi 
ments falling within the scope of the appended claims. 

1. Method for detecting a clear path of travel for a vehicle, 
comprising 

generating a datastream corresponding to a three-dimen 
sional scan of a target area Surrounding the vehicle from 
a vehicle LIDAR system; 

estimating a ground plane for a present vehicle location 
using the datastream corresponding to the three-dimen 
sional scan of the target area Surrounding the vehicle: 
and 

comparing the datastream corresponding to the three-di 
mensional scan of the target area Surrounding the vehicle 
with the estimated ground plane to detect a clear path of 
vehicle travel. 

2. The method of claim 1, wherein estimating the ground 
plane for the present vehicle location comprises executing a 
principal component analysis on the datastream correspond 
ing to the three-dimensional scan of the target area Surround 
ing the vehicle. 

3. The method of claim 2, wherein executing the principal 
component analysis on the datastream comprises executing 
the principal component analysis on a dataset sampled from 
the datastream corresponding to the three-dimensional scan 
of the target area Surrounding the vehicle. 

4. The method of claim3, wherein the principal component 
analysis on the sampled dataset is iteratively executed. 

5. The method of claim 4, comprising comparing the 
sampled dataset with the estimated ground plane to detect the 
clear path of vehicle travel. 

6. The method of claim 3: 
wherein executing the principal component analysis on the 

sampled dataset comprises transforming the sampled 
dataset into first, second, and third eigenvectors, the 
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third eigenvector having a least variance associated 
therewith compared to the first and second eigenvectors; 

wherein estimating the ground plane comprises estimating 
the ground plane to correspond to datapoints from the 
transformed sampled dataset having projection coeffi 
cients corresponding to the third eigenvector that are less 
than a threshold value; and 

further comprising identifying obstacles comprising 
datapoints of the transformed sampled dataset having 
projection coefficients corresponding to the third eigen 
vector that exceed a second threshold value. 

7. The method of claim 1, further comprising: 
generating data from a vehicle camera imaging system; 

and 
wherein comparing the datastream further comprises com 

paring the datastream corresponding to the three-dimen 
sional scan of the target area Surrounding the vehicle 
with the data generated by the vehicle camera imaging 
system to detect the clear path of vehicle travel. 

8. Method for detecting a clear path of travel for a vehicle, 
comprising: 

generating a datastream corresponding to a scan of a target 
area Surrounding the vehicle from a three-dimensional 
vehicle LIDAR system; 

estimating a ground plane for a present vehicle location 
using the datastream corresponding to the scan of the 
target area Surrounding the vehicle; and 

detecting a clear path of vehicle travel by comparing the 
datastream corresponding to the scan of the target area 
Surrounding the vehicle with the estimated ground 
plane. 

9. The method of claim 8, wherein estimating the ground 
plane for the present vehicle location comprises executing a 
principal component analysis on the datastream correspond 
ing to the three-dimensional scan of the target area Surround 
ing the vehicle. 

10. The method of claim 9, wherein executing the principal 
component analysis on the datastream comprises executing 
the principal component analysis on a dataset sampled from 
the datastream corresponding to the scan of the target area 
Surrounding the vehicle. 

11. The method of claim 10, wherein the principal compo 
nent analysis on the sampled dataset is iteratively executed. 

12. The method of claim 11, comprising comparing the 
sampled dataset with the estimated ground plane to detect the 
clear path of vehicle travel. 

13. The method of claim 10, further comprising: 
wherein executing the principal component analysis on the 

sampled dataset comprises transforming the sampled 
dataset into first, second, and third eigenvectors, the 
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third eigenvector having a least variance associated 
therewith compared to the first and second eigenvectors; 

wherein estimating the ground plane comprises estimating 
the ground plane to correspond to datapoints from the 
transformed sampled dataset having projection coeffi 
cients corresponding to the third eigenvector that are less 
than a threshold value; and 

further comprising identifying obstacles comprising 
datapoints of the transformed sampled dataset having 
projection coefficients corresponding to the third eigen 
vector that exceed a second threshold value. 

14. The method of claim 8, further comprising: 
generating data from a vehicle camera imaging system; 

and 
wherein comparing the datastream further comprises com 

paring the datastream corresponding to the scan of the 
target area Surrounding the vehicle with the data gener 
ated by the vehicle camera imaging system to detect the 
clear path of vehicle travel. 

15. Method for detecting a clear path of travel for a vehicle 
equipped with a LIDAR system configured to generate a 
datastream corresponding to a three-dimensional scan of a 
target area Surrounding the vehicle, comprising: 

executing a principal component analysis on the datas 
tream corresponding to the three-dimensional scan of 
the target area Surrounding the vehicle; 

estimating a ground plane for a present vehicle location 
using the principal component analysis; 

identifying obstacles using the principal component analy 
sis and the estimated ground plane for the present 
vehicle location; and 

detecting a clear path of vehicle travel associated with the 
estimated ground plane and the identified obstacles. 

16. The method of claim 15: 
wherein executing a principal component analysis on the 

datastream comprises executing the principal compo 
nent analysis on a sampled dataset of the datastream, 
including transforming the sampled dataset into first, 
second, and third eigenvectors, the third eigenvector 
having a least variance associated therewith compared to 
the first and second eigenvectors; and 

further comprising 
associating the estimated ground plane with datapoints 

from the transformed dataset having projection coef 
ficients corresponding to the third eigenvector that are 
less than a threshold value; and 

identifying obstacles comprising datapoints of the trans 
formed sampled dataset having projection coeffi 
cients corresponding to the third eigenvector that 
exceed a second threshold value. 
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