
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
EP

2
94

8
86

5
B

1
EP002948865B1

(11) EP 2 948 865 B1
(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
05.01.2022 Bulletin 2022/01

(21) Application number: 14742801.5

(22) Date of filing: 22.01.2014

(51) Int Cl.:
G06F 15/177 (2006.01) H04L 12/24 (2006.01)

G06F 9/50 (2006.01) G06F 9/455 (2018.01)

(86) International application number:
PCT/US2014/012422

(87) International publication number:
WO 2014/116619 (31.07.2014 Gazette 2014/31)

(54) INSTANCE HOST CONFIGURATION

INSTANZ-HOST-KONFIGURATION

CONFIGURATION D’HÔTE D’INSTANCE

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 22.01.2013 US 201313747176
22.01.2013 US 201313747190

(43) Date of publication of application:
02.12.2015 Bulletin 2015/49

(60) Divisional application:
21210187.7

(73) Proprietor: Amazon Technologies, Inc.
Reno, NV 89507 (US)

(72) Inventors:
• KOWALSKI, Marcin Piotr

Seattle
Washington 98109-5210 (US)

• PATERSON-JONES, Roland
Seattle
Washington 98109-5210 (US)

• GREENFIELD, James Alfred Gordon
Seattle
Washington 98109-5210 (US)

(74) Representative: D Young & Co LLP
120 Holborn
London EC1N 2DY (GB)

(56) References cited:
US-A1- 2010 251 242 US-A1- 2010 251 339
US-A1- 2011 022 812 US-A1- 2012 278 815

• None

EP 2 948 865 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

[0001] Many companies and other organizations op-
erate computer networks that interconnect numerous
computing systems to support their operations, such as
with the computing systems being co-located (e.g., as
part of a local network) or instead located in multiple dis-
tinct geographical locations (e.g., connected via one or
more private or public intermediate networks). For exam-
ple, data centers housing significant numbers of inter-
connected computing systems have become common-
place, such as private data centers that are operated by
and on behalf of a single organization, and public data
centers that are operated by entities as businesses to
provide computing resources to customers. Some public
data center operators provide network access, power,
and secure installation facilities for hardware owned by
various customers, while other public data center oper-
ators provide "full service" facilities that also include hard-
ware resources made available for use by their custom-
ers. However, as the scale and scope of typical data cent-
ers has increased, the tasks of provisioning, administer-
ing, and managing the physical computing resources
have become increasingly complicated.
[0002] The advent of virtualization technologies for
commodity hardware has provided benefits with respect
to managing large-scale computing resources for many
customers with diverse needs, allowing various comput-
ing resources to be efficiently and securely shared by
multiple customers. For example, virtualization technol-
ogies may allow a single physical computing machine to
be shared among multiple users by providing each user
with one or more virtual machines hosted by the single
physical computing machine, with each such virtual ma-
chine being a software simulation acting as a distinct log-
ical computing system that provides users with the illu-
sion that they are the sole operators and administrators
of a given hardware computing resource, while also pro-
viding application isolation and security among the vari-
ous virtual machines. Furthermore, some virtualization
technologies are capable of providing virtual resources
that span two or more physical resources, such as a sin-
gle virtual machine with multiple virtual processors that
spans multiple distinct physical computing systems.
[0003] As the functionality and features supported by
providers of virtualized compute, storage and networking
resources grows, and as the fleet of hardware platforms
that are used by large-scale providers grows, the task of
implementing administrative control operations such as
configuration changes on the platforms can itself become
resource intensive. The overhead of control and config-
uration operations may in some cases even start impact-
ing the responsiveness of the virtualized resources as
perceived by the users. US 2010/0251242 discloses
managing the creation, provisioning and management of
data stores and instances using a separate control envi-

ronment.

BRIEF DESCRIPTION OF DRAWINGS

[0004]

FIG. 1 illustrates an example system environment,
according to at least some embodiments.
FIG. 2 illustrates example components of control
servers configured for remote configuration of in-
stance host platforms, according to at least some
embodiments.
FIG. 3 illustrates example components of instance
host platforms, according to at least some embodi-
ments.
FIG. 4 illustrates example interactions between cli-
ents, control servers, and instance host platforms,
according to at least some embodiments.
FIG. 5 illustrates an example of command flow start-
ing from a workflow manager node at a control serv-
er, according to at least some embodiments.
FIG. 6 illustrates example operations associated
with registration of an instance host platform, accord-
ing to at least some embodiments.
FIG. 7 illustrates example operations associated
with launching a resource instance, according to at
least some embodiments.
FIG. 8 illustrates example elements of command re-
quests issued to an instance host from a control serv-
er, according to at least some embodiments.
FIG. 9 is a flow diagram illustrating aspects of the
operations of control servers operable to perform re-
mote configuration of instance hosts, according to
at least some embodiments.
FIG. 10 is a flow diagram illustrating aspects of op-
erations related to remote event notification at a con-
trol server, according to at least some embodiments.
FIG. 11 is a flow diagram illustrating aspects of op-
erations related to determining control server pool
size, according to at least some embodiments.
FIG. 12 is a flow diagram illustrating aspects of the
operation of a control server configured to manage
remote configuration of third party platforms, accord-
ing to at least some embodiments.
FIG. 13 illustrates examples of compute resource
instance definitions supported by a provider network
and by a third party, according to at least some em-
bodiments.
FIG. 14 is a flow diagram illustrating aspects of op-
erations performed by control servers of a provider
network in response to platform approval requests
for third party platforms, according to at least some
embodiments.
FIG. 15 illustrates an example of a programmatic
user interface that may be implemented to enable
clients to select resource instances from a plurality
of providers, including including instances instanti-
ated on third party platforms that are controlled by

1 2

EP 2 948 865 B1

3

5

10

15

20

25

30

35

40

45

50

55

control server components of a provider network.
FIG. 16 is a block diagram illustrating an example
computing device that may be used in at least some
embodiments.

[0005] While embodiments are described herein by
way of example for several embodiments and illustrative
drawings, those skilled in the art will recognize that em-
bodiments are not limited to the embodiments or draw-
ings described. The headings used herein are for organ-
izational purposes only and are not meant to be used to
limit the scope of the description or the claims. As used
throughout this application, the word "may" is used in a
permissive sense (i.e., meaning having the potential to),
rather than the mandatory sense (i.e., meaning must).
Similarly, the words "include," "including," and "includes"
mean including, but not limited to.

DETAILED DESCRIPTION

[0006] The invention is defined by the independent
claims. The dependent claims define preferred embodi-
ments. Various embodiments of methods and apparatus
for low overhead resource instance host configuration
are described. Networks set up by an entity such as a
company or a public sector organization to provide one
or more multi-tenant services (such as various types of
cloud-based computing or storage) accessible via the
Internet and/or other networks to a distributed set of cli-
ents may be termed provider networks in this document.
The term "multi-tenant" may be used herein to refer to a
service that is designed to implement application and/or
data virtualization in such a manner that different client
entities are provided respective customizable, isolated
views of the service, such that one client to whom portions
of the service functionality are being provided using a
given set of underlying resources may not be aware that
the set of resources is also being used for other clients.
A provider network may support single-tenant services
(such as for private cloud implementations) in some em-
bodiments, either in addition to, or instead of, multi-tenant
services. Such a provider network may include numerous
data centers hosting various resource pools, such as col-
lections of physical and/or virtualized computer servers,
storage devices, networking equipment and the like,
needed to implement, configure and distribute the infra-
structure and services offered by the provider. A subset
of the resources of the provider network may in some
embodiments be offered for reservation by (and alloca-
tion to) clients in units called "instances," such as virtual
or physical compute instances, storage instances, or net-
work resource instances. A virtual compute instance
may, for example, comprise one or more servers with a
specified computational capacity (which may be speci-
fied by indicating the type and number of CPUs, the main
memory size, storage device number and size, and so
on) and a specified software stack (e.g., a particular ver-
sion of an operating system, which may in turn run on

top of a hypervisor). Resource instances of various kinds,
including virtual compute instances, storage resource in-
stances or network resource instances, may be instanti-
ated on systems termed "instance host platforms" or "in-
stance hosts" herein. In some embodiments, an instance
host platform capable of instantiating N different virtual
compute instances of a particular type may, for example,
comprise a hardware server with a selected set of rela-
tively low-level software components initially installed,
such as virtualization software and/or operating system
software typically utilizing a small fraction of the hardware
server’s compute capabilities. As more virtual compute
instances are launched, a larger portion of the server’s
compute capabilities may get used, e.g., for client appli-
cations running on the different virtual compute instanc-
es. A number of different types of computing devices may
be used singly or in combination to implement the re-
sources of the provider network in different embodi-
ments, including general purpose or special purpose
computer servers, storage devices, network devices and
the like. As described below, a subset of the provider
network resources may be dedicated for control and con-
figuration purposes (e.g., for launching, monitoring and
terminating resource instances on instance hosts in re-
sponse to client requests) in some embodiments. Such
dedicated control resources may be termed "control
plane resources", "control plane servers", or "control
servers" herein. In at least some embodiments, in addi-
tion to being used to configure resource instances on
instance hosts within the provider network, at least some
control servers of a given provider network may also be
able to remotely configure instances hosted at remote
platforms external to the provider network, e.g., in third
party data centers or facilities, or at point-of-presence
locations or similar facilities, as described below in further
detail.
[0007] According to one embodiment, control software
for managing instances may be implemented in such a
way as to minimize the administrative overhead imposed
on the instance hosts. Much of the configuration-related
processing may be offloaded from the instance hosts in
such an embodiment, so that high-level decisions and
metadata manipulation may be implemented at the con-
trol servers, while only simple low-level (and typically
idempotent and stateless) configuration-related com-
mands may have to be executed at the instance hosts
themselves. Details about instance states and instance
type definitions may not be required to be understood at
the instance hosts in such embodiments. For example,
in one such embodiment, a layered control software ar-
chitecture may be employed at the control servers, in
which an instance state manager responds to a client’s
instance configuration request by invoking a workflow
manager component. The workflow manager may trans-
late a higher-level configuration decision (reached by the
instance state manager in response to the client’s in-
stance configuration request), in the context of an in-
stance configuration definition provided by a configura-

3 4

EP 2 948 865 B1

4

5

10

15

20

25

30

35

40

45

50

55

tion definer component of the control software, into one
or more lower-level workflow operations specific to that
configuration definition. The workflow manager may in
turn transmit the workflow operations to a command com-
municator component of the control software at the con-
trol server. The command communicator may securely
submit one or more low-level commands (such as oper-
ating system commands or virtualization software com-
mands), corresponding to a given workflow operation, to
a particular instance host over a network, in accordance
with a command protocol.
[0008] At the instance host, a command receiver (such
as a simple web server) may respond to a given com-
mand from the communicator by instantiating a remote
command executor (RCE). An RCE, which may comprise
a single thread of execution (or a software process)
spawned by the command receiver on demand, may at
least in some embodiments only remain active long
enough to issue one or more operations, typically direct-
ed to a virtualization software component on the instance
host or to an operating system component at the instance
host. The RCE may exit or terminate after the operations
have been initiated in such embodiments. The command
receiver may provide, to the command communicator,
return codes, standard output or error output generated
by the RCE’s operations. These results may be interpret-
ed at the control server to determine the success or failure
of the requested commands, and a response to the cli-
ent’s instance configuration request may be formulated
accordingly in some embodiments. Thus, the instance
configuration overhead at the instance hosts may be lim-
ited largely to the instantiation of the RCEs and the op-
erations requested by the RCEs in such embodiments,
thereby retaining the vast majority of the instance host
resources for the use of the client-requested resource
instances themselves. In some implementations, the en-
capsulation of configuration responsibilities at different
layers of control server software may be efficient enough
to allow hundreds or thousands of instance hosts to be
remotely configured from a single control server or a few
control servers.
[0009] In at least some embodiments, instantiating an
RCE may comprise instantiating at least one thread of
execution in accordance with the Common Gateway In-
terface (CGI), e.g., by a web server. An efficient and well-
known protocol such as HTTPS (a secure version of HT-
TP, the HyperText Transfer Protocol) may be used for
command transmissions to instance hosts, and/or to re-
ceive results from instance hosts in some implementa-
tions. The commands themselves may be formatted in
an industry-standard format or notation such as some
variant of JSON (JavaScript Object Notation) or XML (Ex-
tended Markup Language) in some embodiments. In oth-
er embodiments, private or proprietary protocols and/or
formats may be used. The command protocol used may
support a plurality of command types, of which at least
a subset are designed to be idempotent - e.g., if a par-
ticular idempotent command "cmd1" with a given set of

parameters is issued more than once, the second issu-
ance and any later issuances of the command may have
no negative effects.
[0010] In some embodiments the provider network
may be organized into a plurality of geographical regions,
and each region may include one or more availability
containers, which may be termed "availability zones"
herein. An availability container in turn may comprise one
or more distinct locations or data centers, engineered in
such a way that the resources in a given availability con-
tainer are insulated from failures in other availability con-
tainers. That is, a failure in one availability container may
not be expected to result in a failure in any other availa-
bility container; thus, the availability profile of a resource
instance or control server is intended to be independent
of the availability profile of resource instances or control
servers in a different availability container. Clients may
be able to protect their applications from failures at a
single location by launching multiple application instanc-
es in respective availability containers. At the same time,
in some implementations, inexpensive and low latency
network connectivity may be provided between resource
instances that reside within the same geographical re-
gion (and network transmissions between resources of
the same availability container may be even faster).
Some clients may wish to specify the locations at which
their resources are reserved and/or instantiated, e.g., at
either the region level, the availability container level, or
a data center level, to maintain a desired degree of control
of exactly where various components of their applications
are run. Other clients may be less interested in the exact
location where their resources are reserved or instanti-
ated, as long as the resources meet the client require-
ments, e.g., for performance, high availability, supported
software levels, and so on. Control servers located in one
availability container (or data center) may be able to re-
motely configure resource instances at instance hosts in
other availability containers (or other data centers) in
some embodiments - that is, a particular availability con-
tainer or data center may not need to have local control
servers to manage the local resource instances.
[0011] In at least some embodiments, a control server
may be configured to receive notifications when certain
types of events (such as unanticipated shutdowns, or
errors at various subcomponents) occur at the resource
instances being managed from the control server. In one
such embodiment, the control server may utilize a pre-
existing event monitor that is provided with the virtuali-
zation software (e.g., the hypervisor) in use (or by an
operating system in use) at the instance host platform.
A lightweight event dispatcher, instantiated at the in-
stance host on behalf of the control server, may subscribe
to the event monitor in one implementation. When the
event monitor informs the event dispatcher than an event
has occurred, and the event dispatcher determines that
a notification to the control server is appropriate for the
event, the event dispatcher may transmit a correspond-
ing notification to the control server (e.g., to the command

5 6

EP 2 948 865 B1

5

5

10

15

20

25

30

35

40

45

50

55

communicator or to the workflow manager). An indication
of the event may be passed up the control software stack,
e.g., from the command communicator to the workflow
manager and on to the instance state manager, which
may update instance state metadata as needed, based
on the type of event. In some embodiments, the instance
state manager may initiate recovery operations if the
event was an unanticipated shutdown or other failure.
Recovery operations may follow a similar flow as other
configuration operations in some embodiments - e.g.,
they may be initiated by the instance state manager,
translated into successively lower-level commands via
the workflow manager and the command communicator,
and transmitted to the command receiver at the instance
host for execution via RCEs.
[0012] One of the design goals for the layered control
software architecture may be to ensure that recovery
from certain types of large scale failure events can be
accomplished within an acceptable timeframe. For ex-
ample, even though data centers and availability zones
may be implemented with various levels of redundancy
at critical components to reduce data-center-wide or
availability-zone-wide failures, it may be very hard to pre-
vent such large scale failures with a 100% guarantee.
Since many of the clients of the provider network may
rely upon its resource instances for mission-critical func-
tions, a reasonably quick recovery from such rare failure
events may be desired. Accordingly, in at least some
embodiments, the resources dedicated to control servers
may be determined based on target recovery times for
large scale failures. A rate at which instance recovery
configuration operations may be required in the event of
a large-scale failure may be estimated. A parameterized
model may be generated that includes, for example, rep-
resentations of the sizes of the failures to be managed
(e.g., the number of simultaneous or near-simultaneous
failures for which contingency plans are to be drawn up)
as well as the potential mapping of those instances to
different data centers, the sequences of recovery related
configuration operations that would need to be performed
to fully re-instantiate the instances, and the number of
such operations that a recovery server with a certain level
of compute and network capability may be able to or-
chestrate per unit time. Using various parameters of the
model, including the required recovery operations rate
to meet a recovery time target, the number of control
servers of a particular capability level may be determined,
and a pool of control servers of the appropriate type may
be established. In some cases, the number of control
servers needed to respond to large scale failure events
may exceed the number of control servers required for
normal operating conditions, in which case the provider
network operator may weigh the consequences of not
having enough control servers to handle the large scale
failures, versus the cost of maintaining the extra control
servers, before determining the number of control serv-
ers to be deployed.
[0013] In at least some embodiments, several or all of

the components of the control servers, such as the work-
flow manager and the command communicator, may be
implemented as nodes of a cluster whose size can be
increased dynamically as needed. For example, there
may be W workflow manager nodes and C command
communicator nodes instantiated at a given point in time,
and the number of nodes for each component may be
increased or decreased as desired. A given hardware
device may be used for one or more nodes of a given
type of control server component in some implementa-
tions - e.g., it may be possible to allocate S control servers
to host W workflow manager nodes and C command
communicator nodes, where S <= (W+C).
[0014] As noted above, a given instance host platform
may be capable of supporting multiple resource instanc-
es in some embodiments. Flexible mappings between
the resource instances on a given instance host and the
control servers that manage them may be implemented
in some such embodiments - e.g., one resource instance
RI-X on a host HI may be managed by a control server
CS1, while another resource instance RI-Y on H1 may
be managed by a different control server CS2. In at least
some embodiments, a concurrency control mechanism
may be implemented to prevent conflicting operations
(e.g., two different commands to create a software stor-
age device such as a file system with the same name or
with conflicting names) from being attempted. For exam-
ple, the number of concurrent configuration operations
on a given instance host platform may be limited using
locks in one implementation. A lock manager may be
implemented in some embodiments, from which an ex-
clusive lock (or a shared lock with restrictions on the
number of sharers and/or the types of instance host op-
erations allowed while holding the shared lock) has to be
obtained prior to performing configuration operations on
a given instance host.
[0015] In at least some embodiments, the modular ap-
proach used for resource instance configuration de-
scribed above may also be used for other types of oper-
ations such as metrics collection or log record collection.
For example, instead of pushing performance informa-
tion (such as CPU utilization, memory usage or network
usage measurements) from the instance host to the con-
trol server, a pull model may be implemented in which a
control server metrics collector component may issue a
"get-metrics" command to the instance host using the
above-described command communicator. An RCE or a
similar short-lived thread or process may be instantiated
to collect the information using hypervisor or operating
system tools at the instance host, and the results may
be sent back to the metrics collector.
[0016] When a client issues an instance launch request
to a control server, the specific instance host that is used
for the requested instance may be selected based on
any of several criteria in different embodiments. In some
cases, the instance host may be selected based at least
partly on identification information of the client - e.g., the
client’s Internet Protocol address or physical address

7 8

EP 2 948 865 B1

6

5

10

15

20

25

30

35

40

45

50

55

may be used to select a data center geographically close
to the client’s premises. If the client requests a particular
type of resource instance that is only available in some
locations, or is more easily available at some data centers
than others due to supply or demand variations between
data centers, the instance host may be selected based
on availability of the requested resource. Pricing policies
(e.g., whether the client has expressed a preference for
a certain price level that can best be supported using a
certain set of instance hosts), as well as current perform-
ance conditions and trends within the provider network
may be used to select specific instance hosts in some
embodiments.
[0017] In some embodiments, the provider network’s
control software architecture may support the instantia-
tion of resource instances using equipment at remote
locations, e.g., at data centers or other facilities external
to the provider network, or at access points between the
provider network and other networks. For example, a
third party provider may wish to capitalize on underused
hardware at a data center by deploying the hardware for
resource instances that are to be managed using control
servers of the provider network. In another example,
hosts at one or more Internet point-of-presence (POP)
locations associated with the provider network may be
utilized for remote instances using control servers in
some embodiments. In some such POP locations, at
least some of the hosts may be configured to support a
service (such as content distribution) of the provider net-
work, and such hosts may in some cases use a stripped-
down version of the software stack typically installed on
most of the instance hosts used for instantiating resource
instances within the provider network. Such stripped-
down hosts may be used to instantiate resource instanc-
es by control servers. The term "remote platform" may
be used herein to refer to platforms that are either entirely
owned/managed by third parties and are located outside
the provider network, or to platforms located at POPs or
similar entities that are at the boundary between the pro-
vider network and other service providers such as tele-
communication providers. Similarly, the term "remote lo-
cation" may be used to refer to the facilities at which such
remote platforms are incorporated. A given control server
may be able to manage third party platforms, as well as,
or instead of, the provider network’s own instance hosts
in some embodiments. The provider network operator
may be willing to support such scenarios as it may in-
crease the overall pool of resources that are accessible
by clients, and also may lead to a better geographical
distribution, enhanced system-wide risk management,
and increases in revenue. In one such embodiment, a
third party vendor (or a POP location operator) may sub-
mit a platform approval (e.g., via a programmatic inter-
face supported by a control server component) request
indicating candidate platforms located at remote facili-
ties, that can be used for hosting virtualized resources in
a manner similar to the way the provider network’s own
instance hosts are used. In response, a control server

component responsible for verifying platform capabilities
may perform one or more tests on the candidate plat-
forms. Such tests, which may be termed "capability de-
termination operations" herein, may include a variety of
different components, including installed software stack
checks, performance tests, checks to verify that the re-
mote command executor (RCE) mechanism can be used
successfully on the third party platform, and so on. If a
particular candidate platform passes the tests, it may be
designated as an "approved" platform on which resource
instances can be configured by the provider network’s
control servers. (Similar capability testing may be per-
formed on the provider network’s own hardware plat-
forms in some embodiments, prior to their use for instanc-
es.)
[0018] After a candidate remote (e.g., third party or
POP) platform is approved, it may be included in a pool
of available instance hosts, from which it may be selected
to response to a client’s instance configuration request.
A similar layered control software approach may be used
to configure the approved instance host platform as is
used for the provider network’s own instance hosts - e.g.,
an instance state manager, a workflow manager, and a
command communicator at the control server end may
cooperate to invoke a remote command executor (RCE)
to perform local configuration operations on the third par-
ty platform. As in the case of communications between
control servers and the provider network’s internal in-
stance hosts, secure networking protocols may be used
in at least some implementations. A tunneling protocol
may be used by the command communicator in some
implementations, or a proxy may be used to relay com-
munications between the control servers and the in-
stance host platforms. In at least some embodiments tun-
neling or other similar techniques may be used to allow
the control servers to communicate with third party plat-
forms that are typically protected from external traffic by
network security barriers such as firewalls.
[0019] In at least some embodiments, the provider net-
work may support a set of resource instance types using
its instance hosts - e.g., "small", "medium" and
large" instances may be supported for virtualized com-
pute resources, with respective definitions of the capa-
bilities and features supported by each type. Third party
platforms may also support these same types of instance
sin some cases, thereby allowing a fairly seamless inte-
gration of the third party platforms into the provider net-
work’s infrastructure. In some embodiments, a third party
may be allowed to define its own instance types - e.g.,
because the underlying hardware or software is not fully
compatible with the provider network’s defined instance
types, or because the third party wishes to differentiate
their offerings from the instance types offered by the pro-
vider network, or for some other reason. The provider
network may implement client-facing interfaces (e.g.,
web sites or application programming interfaces (APIs))
that indicate all the different instance types that clients
may obtain in such embodiments - e.g., the interface may

9 10

EP 2 948 865 B1

7

5

10

15

20

25

30

35

40

45

50

55

indicate the provider network’s instance types, as well
as the additional instance types supported by various
third party partners using the control servers of the pro-
vider network. In some embodiments, the platform ap-
proval request or some additional communication from
the third party to the provider network may include an
indication of the instance types that the third party wishes
to support. In one embodiment, the third party provider
may provide testing suggestions (or actual tests) to check
the capabilities of the candidate platforms in accordance
with the supported instance type definitions.
[0020] The flexible control plane architecture de-
scribed above, which may be capable of accommodating
platforms located at various data centers outside the pro-
vider network, may also provide opportunities for clients
to deploy their own underutilized hardware platforms, or
take advantage of the control plane architecture even for
well-utilized client-side platforms, in some embodiments.
For example, in one embodiment, just as third parties
may get their platforms approved for instance hosting, a
client of the provider network may get platforms that are
resident within the client’s network or data center ap-
proved. Once a client’s platform has been approved for
instance deployment, control servers within the provider
network may be used to configure instances on the plat-
form.

Example system environment

[0021] FIG. 1 illustrates an example system environ-
ment, according to at least some embodiments. As
shown, the system may include a provider network 102
comprising a number of control server pools 120 (such
as pools 120A, 120B and 120C) and instance host pools
110 (such as pools 110A, 110B and 110C). A control
server pool 120 may comprise a plurality of hardware
and/or software control servers configured to perform
configuration operations on instance hosts remotely,
e.g., via commands submitted to the instance hosts of
instance pools 110 in response to instance configuration
requests 170 received by the control servers from clients
150 (such as client 150A or 150B). The majority of the
configuration-related processing, such as processing re-
lated to the determination of which types of resource in-
stances are to be implemented on a given instance host,
instance state information, and configuration defini-
tions/layouts to be used to instantiate instances, may be
performed on the control servers, e.g., using various
components described in more detail below with respect
to FIG. 2. Control servers of pools 120 may transmit se-
quences of relatively low-level (e.g., hypervisor-level or
operating system level commands) for execution at the
instance hosts of pools 110, where typically short-lived
remote command executors (RCEs) may be instantiated
to execute a requested command or command se-
quence, provide the return values and then exit or termi-
nate. In some embodiments, the commands may be for-
matted according to a command protocol that supports

at least some idempotent operations, so that even if either
the command request is somehow lost or ignored, or the
return values are lost or ignored, a command may typi-
cally be re-issued without negative consequences.
[0022] Each instance host pool 110A may comprise a
number of instance host platforms that can each accom-
modate one or more resource instances of various types,
such as virtualized compute servers, virtualized storage
resources and/or virtualized network resources in the de-
picted embodiment. The number of instance hosts in-
cluded within a given pool may be determined based on
various factors such as the infrastructure constraints
(e.g., space, bandwidth, or power limits at the provider
network’s data centers), or the demand for various types
of resource instances. In some embodiments where dif-
ferent instance types (e.g., "large" vs. "small" virtual com-
pute instances) are supported, and/or different pricing
policies are supported (such as long-term reservations
versus on-demand versus "spot" pricing), some instance
host pools may be dedicated to providing instances of a
particular instance type, or instances priced according to
a particular pricing policy. The specific instance host on
which a particular client 150’s instance is to be launched
may be selected based on various factors such as locality
(e.g. physical proximity to the client’s premises or net-
work, or to other instance hosts being used by the client),
the instance type requested by the client, the pricing pol-
icy requested by the client, or the current or anticipated
resource usage trends within the provider network (e.g.,
an instance host that has had a lower level of CPU or
network utilization over a recent time period may be pre-
ferred to an instance host that has been very busy).
[0023] As shown, the instance host pools 110 and con-
trol server pools 120 of the provider network may be dis-
tributed among various availability containers 105 in the
depicted embodiment - e.g., availability container 105A
comprises instance host pools 110A an control server
pools 120A, availability container 105B comprises in-
stance host pools 110B and control server pools 120B,
availability container 105C comprises instance host
pools 110C, while availability container 105D comprises
control server pools 120C. Each availability container
105 may be engineered so as to have an availability pro-
file or failure profile independent of the profiles of other
containers, so that failures (such as power outages) ex-
perienced in one availability container 105 may not be
expected to be correlated with failures within other avail-
ability containers. The double-edged arrows 160, such
as 160A, 160B, and 160C, indicate interactions related
to configuration commands (sent from control servers at
pools 120) and configuration command results (sent from
instance hosts at pools 110) in the depicted embodiment.
As shown by arrow 160C, control servers in a given avail-
ability container (such as 105B) may manage configura-
tion of instance hosts in a different availability container
(such as 105C), as well as within their own availability
container. Some availability containers (e.g., 105A and
105B) may comprise instance host pools as well as con-

11 12

EP 2 948 865 B1

8

5

10

15

20

25

30

35

40

45

50

55

trol server pools, others (e.g., 105D) may not include in-
stance host pools, and some (e.g., 105C) may not include
control server pools in various embodiments. A given cli-
ent may submit instance configuration requests to vari-
ous control servers in some embodiments - e.g., client
150B may submit requests 170B to control servers of
pool 120B as well as pool 120C. A given instance host
pool 110 may be managed from one or more control serv-
er pools in the depicted embodiment, as in the case of
instance host pool 110C, which is managed by control
servers of pools 120B and 120C.
[0024] FIG. 1 also illustrates the support for configura-
tion of third party platforms external to the provider net-
work 102. In the depicted embodiment, control servers
at pool 120A of the provider network may remotely control
configuration of resource instances at approved instance
host candidate platforms 135A of a third party network
125A, while control servers at pool 120B or 120C may
be capable of configuring instances at approved instance
host candidate platforms 135B of third party network
125B. A given control server may be capable of managing
third party platforms as well as the provider network’s
own instance hosts, in the depicted embodiment. Third
party providers such as the operators of networks 125A
or 125B may submit platform approval requests to control
server components within the provider network 102 in
some embodiments, indicating the candidate platforms
they wish to have approved for instance hosting. Capa-
bility determination tests may be initiated at the candidate
platforms from the control servers, e.g., to determine
whether the candidate platforms can support the RCE
functionality needed for configuring instances, whether
the platforms can support desired performance, availa-
bility, reliability levels, and/or whether the platforms can
support desired software stacks. Once a platform is ap-
proved, it may be included in an instance host pool (e.g.,
in a special third party instance host pool or in one of the
instance host pools already set up within the provider
network), and treated in a manner similar to any other
instance host of the provider network. In some embodi-
ments, third party network operators may be able to de-
fine their own instance types, different from instance
types natively supported by the provider network; in other
embodiments, a third party provider may be required to
support the same types of instances that the provider
network supports. As noted earlier, platforms at point-of-
presence locations (not shown in FIG. 1), e.g., with
stripped-down versions of the provider network’s typical
internal instance hosts software stack, may be used to
host resource instances in some embodiments, in a man-
ner similar to the way the candidate platforms 135 are
used.
[0025] As a result of implementing a modular control
architecture, in which much of the configuration-related
work is done by components executed at dedicated con-
trol servers rather than at instance hosts, configuration-
related overhead may be minimized at the instance hosts
themselves in the depicted embodiment. For example,

only lightweight, stateless components may be required
to support instance configuration at the instance hosts,
such as a minimal web server configured to receive low-
level commands via HTTPS from the control server and
instantiate typically short-lived CGI processes to execute
the commands, or an event listener capable of notifying
the control server when certain types of rare events occur
at the instance hosts. Each control server may be able
to perform operations for a large number of instance
hosts in some embodiments. The number of dedicated
control servers that are established in a given pool 120
may be selected based on various factors in different
embodiments, such as the rate at which recovery con-
figuration operations may have to be performed in order
to respond to a large-scale outage. Client instance con-
figuration requests (and response to the requests) are
indicated by arrows 170 in FIG. 1 (e.g., arrows 170A be-
tween client 150A and pool 120A, 170B between client
150B and pool 120B, or 170C between client 150B and
pool 120C). Any of a variety of techniques may be used
to select the particular control server or servers of a pool
120 that are to respond to a given client request - e.g., a
control server may be chosen using a load balancing
mechanism, or based on client affinity (e.g., requests
from the same client IP address may be dealt with by the
same control server), or at random. Additional details re-
garding the functionality of various control server com-
ponents, and interactions between clients, control serv-
ers and instance host platforms, are provided below.

Control server and instance host components

[0026] FIG. 2 illustrates example components of con-
trol servers configured for remote configuration of in-
stance host platforms, according to at least some em-
bodiments. The mapping between the illustrated compo-
nents, and hardware/software servers on which the com-
ponents are implemented, may vary over time and in dif-
ferent embodiments. For example, in some implementa-
tions, it may be possible to instantiate each of the illus-
trated components on a single computing device, while
in other embodiments, one or more computing devices
may be used for instances or nodes of a particular com-
ponent (e.g., multiple workflow manager nodes may be
instantiated, with one or more workflow manager nodes
incorporated at a given computing device).
[0027] A client and third party interaction manager
component 235 may be responsible for receiving incom-
ing client requests 201 and/or third party requests 202,
such as instance launch or configuration requests, or ap-
proval requests for third party or client-owned platforms
in the depicted embodiment. Is some embodiments, one
or more programmatic interfaces (such as web pages,
web sites, APIs, graphical user interfaces or command-
line tools) may be implemented to support the client in-
teractions and/or third party interactions. Instance state
manager 210 may be responsible for orchestrating con-
figuration operations in response to client or third-party

13 14

EP 2 948 865 B1

9

5

10

15

20

25

30

35

40

45

50

55

requests, for responding to outages or unexpected in-
stance shutdowns, and/or for registering new instance
hosts in the depicted embodiment. For example, in re-
sponse to an instance launch request from a client, the
instance state and recovery manager 210 may identify
(with the help of capacity manager 205) exactly which
instance host is to be used for the launch, and may then
issue a launch command to the workflow manager 225,
to be translated into lower-level commands for eventual
execution at the selected instance host.
[0028] Capacity manager 205 may be configured in
the depicted embodiment to ensure that instance host
pools 110 are adequately sized for the expected demand,
and/or to move resources between pools if needed. Ca-
pability tester 215 may be configured to run tests (such
as performance tests, software stack confirmations, and
the like) to help with the decision to approve third party
candidate platforms and/or to verify that instance hosts
within the provider network are adequately provisioned.
Metering/billing manager 230 may be configured to de-
termine, based for example on metrics such as network
request counts, measured traffic, I/O counts, CPU utili-
zation and the like, how much a given client is to be
charged for using a particular resource instance over a
billing period, in accordance with the particular pricing
plan in effect for the client.
[0029] Configuration definer 220 may be responsible
in the depicted embodiment for generating, for a partic-
ular instance type to be launched, details of a specific
configuration layout (e.g., names of various file systems
and software devices to be set up, parameter values for
various tunable settings, and the like) to be implemented
at a particular instance host. Workflow manager 225 may
be responsible for receiving the high-level command is-
sued by the instance state manager 210, and configura-
tion layout details from the configuration definer 220, and
translating the command into a workflow that includes
one or more lower-level commands. Workflow manager
225 may then hand off the workflow commands to the
command communicator 240, which may transmit the
corresponding command sequence 281 (e.g., formatted
in JSON or XML) to a selected instance host (e.g., via
HTTPS) for execution via RCEs. In some embodiments,
a locking service 275 may be used by the workflow man-
ager 225 (or by other components illustrated in FIG. 2)
to ensure that an instance host configuration does not
get corrupted due to conflicting or overlapping modifica-
tion requests - e.g., an exclusive lock on an instance host
may be required before a configuration change of a par-
ticular type is allowed. The locking service 275 may not
be a component of the control servers in some embodi-
ments, e.g., a pre-existing locking service used for other
purposes in the provider network may be used. A control
server may also include an event listener 245 in some
embodiments, configured to receive notifications when
certain types of events (such as unexpected shutdowns,
hardware or software errors or failures that may affect
resource instances) occur at instance hosts. The event

listener 245 may transmit the information about events
to the instance state manager in some embodiments,
which may interpret them appropriately to determine, for
example, whether instance state information needs to be
updated. In at least some embodiments, command com-
municator 240 may also submit low level commands to
the instance hosts to collect performance or other metrics
from the instance hosts, e.g., on behalf of metering man-
ager 230; in such embodiments, the set of commands
issued by the command communicator may include non-
modifying commands for metrics collection, as well as
modifying commands to implement configuration chang-
es.
[0030] It is noted that while instance state manager
210, as indicated by its name, may be aware of the state
of various resource instances, lower-level components
such as workflow manager 225, command communica-
tor 240, and/or event listener 245 may be stateless, at
least in the sense that knowledge of, or details about,
instance state may not be needed by such lower-level
components to perform their functions in the depicted
embodiment. By restricting information about instance
states to a limited set of components, the implementation
of stateless components such as the workflow manager
and the command communicator may be substantially
simplified in such embodiments. It is also noted that while
the double arrows of FIG. 2 indicate examples of some
of the types of interactions that may occur between the
various control server components illustrated, additional
types of interactions may also be supported between the
components in at least some embodiments - e.g., any
one of the components may be able to communicate with
any other component in some embodiments.
[0031] FIG. 3 illustrates example components of in-
stance host platforms (which may include platforms
owned by the provider network operator, as well as third
party platforms), according to at least some embodi-
ments. As shown, the instance host platform may include
a command receiver component 305, such as a web serv-
er, configured to receive the sequence of commands
generated by the command communicator 240 of the
control server. The instance host may also include a hy-
pervisor 317 providing the virtualization functionality on
top of the bare hardware of the host. The hypervisor 317
may organize the resources of the instance host platform
into a plurality of domains in the depicted embodiment,
with one domain (which may be called domain zero) be-
ing used for administration, and the other domains being
used for resource instances. An instance of an operating
system 315 may be set up in domain zero. In response
to each received command, or to a sequence of com-
mands, the command receiver 305 may instantiate a re-
mote command executor (RCE) 330, such as 330A or
330B. The RCE 330 may then issue a request for an
operation, e.g., an operation directed to the hypervisor
317 or to the domain-zero operating system 315. In some
embodiments RCE 330s may be considered, or imple-
mented as, components of the domain-zero operating

15 16

EP 2 948 865 B1

10

5

10

15

20

25

30

35

40

45

50

55

system 315 or the hypervisor 317. After issuing its oper-
ation request(s), and receiving the results (including for
example return codes, error output or standard output),
a given RCE may terminate or exit in the illustrated em-
bodiment. The RCE may exit or terminate of its own ac-
cord in some implementations, while in other implemen-
tations an RCE may be terminated by the command re-
ceiver 305 (e.g., using a "kill" signal or some other mech-
anism). In other embodiments, RCEs may remain in ex-
istence for longer time periods than needed just to initiate
a given operation - e.g., a pool of RCEs may be main-
tained. In at least one implementation, each RCE may
represent a CGI process or thread of execution. In some
embodiments, an RCE may start a long-running opera-
tion and exit, and the results of the long-running operation
(which may continue after the RCE exits) may be ob-
tained asynchronously by the command receiver.
[0032] The operations initiated by the RCEs may (if the
operations succeed) eventually result in the implemen-
tation of the configuration commands from the workflow
manager 225, resulting for example in the instantiation
of (or configuration modifications of) various virtualized
resource instances 345, such as compute resources
350A or 350B, storage resources 360A or 360B, or net-
work resources 370A or 370B. The RCEs and the com-
mand receiver may also be stateless with respect to in-
stance state, in the sense that they may be unaware of
what state a particular instance is in at a given time, in
the depicted embodiment. In some embodiments where
the instance host is organized into domains by the hy-
pervisor, each virtual resource instance may correspond
to a respective domain. The instance host may also com-
prise an event dispatcher 310 in the depicted embodi-
ment. The event dispatcher may subscribe to one or more
event monitors (e.g., monitors implemented within the
hypervisor 317 or the domain-zero operating system
315). The event monitor(s) may notify the event dispatch-
er if and when certain types of events occur at the in-
stance host, and the event dispatcher may notify the
event listener 245 at a control server about the events,
either directly or via the command receiver in various
embodiments.

Example request/response flows

[0033] FIG. 4 illustrates example interactions between
clients, control servers, and instance host platforms, ac-
cording to at least some embodiments. As shown, a client
150 may submit an instance configuration request 440,
such as a request to launch or terminate an instance, to
a control server 410 in the depicted embodiment. The
client request may be transmitted via a programmatic
interface such as a web page or an API implemented by
an interaction manager component 235 of a control serv-
er 410 in some embodiments. A number of components
of the control server layer (such as the instance state
manager 210, the workflow manager 225 and/or the com-
mand communicator 240) may cooperate to translate the

instance configuration request into a sequence of low-
level commands 450 that are transmitted to the instance
host platform 301.
[0034] The low-level command may be translated into
RCE operations in the depicted embodiment at the in-
stance host platform 301. As shown, an RCE may be
instantiated (element 461 of FIG. 4), e.g., by spawning
a new process or thread, the RCE may issue or perform
one or more operations (element 462), and then exit or
terminate (element 463). The results 470 of the com-
mands may be sent back to the control server 410. Based
on the results 470, an instance configuration response
480 may be sent back to the requesting client 150. Com-
mand sequence 450 and/or results 470 may be transmit-
ted using any appropriate secure networking protocol,
such as HTTPS, in various embodiments. The com-
mands and results may be formatted in accordance with
a variant of JSON or XML in some embodiments. The
command protocol used may support at least some idem-
potent operations in various embodiments. In some em-
bodiments, the command protocol may support a variety
of other command types and functions including perform-
ance metrics collections, log record collection and the
like - e.g., in order to determine billing amounts for a client
that owns one or more resource instances at the instance
host platform 301, low-level commands may be issued
by the control server 410 to determine how many oper-
ations of various kinds the client issued to the instances,
or how much network traffic the client incurred at the in-
stance host platform. In some implementations, a mech-
anism other than RCEs may be used for certain types of
control server-requested operations such as metrics or
log record collection, while in other implementations RC-
Es may be used for both configuration modification and
metrics/log collection.
[0035] FIG. 5 illustrates an example of command flow
starting from a workflow manager node at a control serv-
er, according to at least some embodiments. The illus-
trated example deals with the creation of a software RAID
(redundant array of independent disks) device at an in-
stance host, which may represent part of the configura-
tion required to set up a new virtual compute instance.
The example is provided here to illustrate, using a con-
crete example, the level of command detail at which dif-
ferent components of the control server and the instance
host may operate in one embodiment; many other types
of configuration operations, unrelated to RAID devices,
may be implemented using commands of similar granu-
larity in various embodiments. Elapsed time increases
from the top to the bottom of FIG. 5.
[0036] The workflow manager 225 may receive a high-
level request to set up a root file system for a compute
instance (element 502 of FIG. 5) in the depicted embod-
iment, e.g., from instance state manager 210 in response
to a client’s request for a new compute instance. The
workflow manager 225 may submit, to the command con-
troller 240, a command "block.raid1.create" directed to
a block device subsystem (element 507), requesting cre-

17 18

EP 2 948 865 B1

11

5

10

15

20

25

30

35

40

45

50

55

ation of a RAID1 device with specified parameter values
(e.g., for software device names such as "md2", "sda3"
and the like). The workflow manager 225 may have de-
termined the parameter values based at least in part on
a configuration definition or layout obtained from the con-
figuration definer 220 for the new instance to be created.
[0037] In response to the "block.raid1.create" com-
mand, the command communicator 240 may submit an
"RCE.exec" command to the instance host’s command
receiver 305 (element 512). The command receiver 305
may in turn instantiate an RCE process or thread that
executes the requested operation, in this case an invo-
cation of an "mdadm" (multiple device administration)
command at the domain-zero operating system layer (el-
ement 515). The RCE process or thread may obtain the
return value or exit code from the invocation (the "$?"
value in element 518), the standard output from the in-
voked operation (the "$1" value in element 518), and the
standard error from the invoked operation (the "$2" value
in element 518). These results may be transmitted by the
command receiver back to the command communicator
240 (element 521). The command controller 240 may in
turn translate the results into a return value (e.g., "true",
indicating success in this example) for "block.raid1.cre-
ate" command it had received, and transmit the return
value back up to the workflow manager 225 (element
524). The workflow manager 225 may similarly determine
a return value for the "setup-instance-root-fs" command
it had received, and provide this return value (also "true"
in this example) to the instance state manager (element
527). It is noted that the various components whose in-
teractions are illustrated in FIG. 5 may not be aware of
instance state information, which may be maintained by
the instance state manager; instead, each of the depicted
layers may simply perform lower level operations as
needed, the accumulated results of which may contribute
to a change in instance state (e.g., to a launch, a recon-
figuration, or a termination of an instance).
[0038] In some embodiments, when a new instance
host platform is added to a data center of the provider
network, a decision may have to made regarding the spe-
cific types and numbers of resource instances that are
eventually to be deployed on the host. The new instance
host may be said to "register" for hosting instances in
such embodiments, and a result of the registration may
include a determination of a number of "instance slots"
(logical representations of potential instances that could
be launched on the host) of one or more instance types.
FIG. 6 illustrates example operations associated with
registration of an instance host platform, according to at
least some embodiments. As in the case of FIG. 5,
elapsed time increases from the top to the bottom of FIG.
6. As shown in element 602, the instance host may trans-
mit a registration request (or a registration request may
be transmitted on behalf of the instance host) to an in-
stance state manager 210. In some embodiments, a reg-
istration manager separate from the instance state man-
ager may be used to orchestrate the registration process.

The instance state manager 210 may, in response to the
registration request, transmit an instance slot setup re-
quest to the capacity manager 205, as indicated by ele-
ment 607. The instance slot setup request may represent
the equivalent of a request to answer the question "how
many instance slots, and of what instance type(s), should
instance host X support?" The capacity manager 205
may respond to the instance slot setup request, at least
in part, by submitting a hardware capability request to
the configuration definer 220, as indicated in element
612. In at least some embodiments, information about
the hardware capabilities of the computing devices that
have been acquired by the provider network as instance
hosts may be available in an inventory database. In some
implementations, a few "standard" types of hardware de-
vices such as rack-based servers from one or more pre-
ferred vendors may be used for instance hosts in the
provider network, so there may not be a need for per-
formance testing at the time of registration - i.e., the in-
ventory may contain enough information to determine
the capabilities of the instance host. The configuration
definer may perform an inventory lookup (element 615)
to retrieve the hardware details of the instance host (el-
ement 618).
[0039] Based on the hardware details, the configura-
tion definer may formulate a set of feasible instance con-
figurations (element 621) for the instance host - e.g., the
configuration definer may determine that the instance
host may be able to host M "large" compute instances,
N "medium" compute instances, or "P" small compute
instances, based on the definitions of "large", "medium"
and "small" instance types that are in use in the provider
network. The list of feasible configurations may be pro-
vided to the capacity manager 205. The capacity man-
ager may then select one of the feasible configurations
for the instance host, based on various factors such as
the current and anticipated supply and demand for vari-
ous types of instances. In some embodiments the capac-
ity manager 205 may also take into account pricing pol-
icies and/or current resource utilization levels at the data
center or availability container in which the new instance
host is situated. The capacity manager 205 may then
transmit a selected instance slot definition (e.g., "N large
instance slots") to the instance state manager (element
624), which may store the slot definition in a metadata
database. The instance state manager 210 may provide
a registration acknowledgement (element 627) to the in-
stance host in some embodiments, which may indicate
to the instance host that it is ready for instance configu-
ration (element 631). In other embodiments, the process
of determining the number and type of instances for which
a particular instance host is to be utilized may differ from
that shown in FIG. 6.
[0040] FIG. 7 illustrates example operations associat-
ed with launching a resource instance, according to at
least some embodiments. Elapsed time increases from
the top to the bottom of FIG. 7. An instance state manager
210 may receive a request from a client 150 to launch a

19 20

EP 2 948 865 B1

12

5

10

15

20

25

30

35

40

45

50

55

resource instance of a specified instance type (such as
a "small", "medium" or "large" compute instance) in the
depicted embodiment. The instance state manager 210
may send a request to the capacity manager 205 (as
shown in element 702 of FIG. 7), indicating the instance
type required. The capacity manager 205 may determine,
based at least in part on a database of instance host
pools 110, a specific instance host 301 and a specific IP
address to be used for the instance to be launched, and
provide at least the IP address to the instance state man-
ager (element 707). The instance state manager 210 may
then submit a request for specific configuration parame-
ters and layout information to the configuration definer
(element 711), indicating the instance type and the IP
address. In the illustrated embodiment, the configuration
definer may provide the requested configuration param-
eters, including a specific slot number at the instance
host, back to the instance state manager (element 714).
The instance state manager may then issue a launch
command to the workflow manager 225 (element 721),
indicating the instance type, the IP address and the slot
number. The workflow manager 225 may the initiate a
sequence of commands (element 721) to the command
communicator 240, which in turn may submit a sequence
of commands to the instance host for execution using
one or more RCEs (element 724).

HTTPS command requests and responses

[0041] In at least some embodiments, as noted earlier,
communications between the control servers and the in-
stance hosts may be implemented using a secure proto-
col such as HTTPS. FIG. 8 illustrates example elements
of command requests issued to an instance host from a
control server, according to at least some embodiments.
The HTTPS requests and responses formats used may
comprise a plurality of headers and body elements, of
which only a few examples are provided in FIG. 8. As
shown in element 802, a request header used for a com-
mand sent to the instance host’s command receiver from
a control server’s command communicator may include
a digest or hash value 820 determined from the body of
the request, so that the integrity of the request body can
be verified at the instance host. The request header may
specify the HTTP "PUT" verb or request method, as
shown in element 821, with a resource name that in-
cludes a "CHANGE-ID", a "UUID", and a "subsystemID".
The CHANGE-ID may represent the specific client re-
quest that led to the command being issued; the
CHANGE-ID corresponding to a given client request may
be assigned for example by the client interaction man-
ager 235 in some embodiments, and may be passed as
a parameter in the command and response flows be-
tween the different components of the control server such
as those shown in FIG. 4, FIG. 5, or FIG. 7. A universally
unique identifier or UUID may be generated for the spe-
cific command request in the depicted embodiment, e.g.,
the command communicator 240 may generate a distinct

UUID for each command request it sends to the instance
host. The subsystem identifier may indicate the specific
subsystem at the domain-zero operating system or hy-
pervisor layer that is to be used to perform the requested
operation in the depicted embodiment. In at least some
embodiments, log records may be generated when a
command request is sent, received, or when the corre-
sponding operation is executed at the instance host, and
the log records may include some or all of the CHANGE-
ID, the UUID, and the subsystem ID, allowing for easier
debugging or correlation analysis.
[0042] The body 806 of the HTTPS request may in-
clude a sequence of commands in accordance with a
defined command protocol, specified using a JSON-like
syntax in the depicted example of FIG. 8. In some em-
bodiments, the command protocol may allow the speci-
fication of file contents within the request body 806, where
the file contents may serve as parameters of some or all
of the commands. For example, in FIG. 8, the contents
(e.g., in URL-encoded hexadecimal form) of two files with
labels @FILE1 and @FILE2 may be included in the re-
quest body. As show, the keyword "commands" may in-
dicate the sequence of commands included in the re-
quest. Three commands - "cmd1", "cmd2" and "cmd3"
are shown in the sequence, "cmd1" has two file param-
eters FILE1 and FILE2, whose respective contents are
indicated by @FILE1 and @FILE2. "cmd2" does not have
any file parameters, while "cmd3" has a single file pa-
rameter FILE2. According to the command protocol in
use, when an operation corresponding to "cmd1" is ex-
ecuted at the instance host via an RCE, the contents of
@FILE1 and @FILE2 would be provided as parameters
for the operation in the depicted embodiment. Similarly,
when an RCE performs an operation corresponding to
"cmd3", the contents of @FILE2 would be provided as a
parameter. The specification of files in the request body
in the manner shown in FIG. 8 may represent a conven-
ience function in the depicted embodiment; other ap-
proaches, such as separate messages containing the file
contents, may be used in other embodiments. In some
embodiments, the command protocol may require that
the commands be executed at the instance host in the
order in which they appear in the request body; in other
embodiments, such an ordering may be not be required.
In one implementation, a maximum limit may be imposed
on the number of commands that can be transmitted in
a single request. In other implementations, no limit on
the number of commands may be imposed. The UUID
of the request header may be included in the body, as
shown in FIG. 8, in some embodiments. Different formats
than the JSON-like format shown in FIG. 8, such as XML,
may be used to indicate the command sequence in other
embodiments.
[0043] In some embodiments, the reply to the com-
mand request may include separate clauses or elements
for each of the commands of the sequence. The response
clause for the first command in the command sequence
of request body 806 ("cmd1 -F FILE1 FILE2") is shown

21 22

EP 2 948 865 B1

13

5

10

15

20

25

30

35

40

45

50

55

in response body 810 for one embodiment. The "com-
mand-number" value ("1" in the depicted example) indi-
cates that the clause is for the first command of the se-
quence. The standard output produced by the execution
of the first command is indicated in the "stdout" field. The
standard error output is indicated in the "stderr" field. The
exit-code of the command (e.g., a value returned by the
operating system or hypervisor component used) is in-
dicated in the "exit-code" field. In addition, the response
clause contains metrics for the wall-clock time (the
elapsed time taken to complete the command on the in-
stance host), as well as system and user CPU times in-
dicating resource usage taken for the command at the
instance host, expressed in units such as microseconds
or milliseconds. Other formats than those shown in FIG.
8 may be used for commands and/or for command re-
sponses in various embodiments.

Methods for remote configuration of instance hosts

[0044] FIG. 9 is a flow diagram illustrating aspects of
the operations of control servers operable to perform re-
mote configuration of instance hosts, according to at least
some embodiments. As shown in elements 901 and 902,
a set of computing devices may be designated to serve
as instance hosts of a provider network, and a set of
control servers may be designated to manage remote
configuration of the instance hosts. Various types of mul-
ti-tenant, network accessible services may be provided
using resource instances implemented on the instance
hosts (and configured with the help of the control servers)
in different embodiments, including infrastructure-related
services such as virtualized compute services, storage
services, or networking-related services, as well as high-
er-level multi-tenant applications such as relational or
non-relational databases, content management services
and the like.
[0045] An instance configuration request directed to
one or more of the multi-tenant services, such as a re-
quest to launch a new virtualized compute server, or to
terminate an existing virtualized server, may be received
in the depicted embodiment (element 907), e.g., at a
front-end load balancer or at a front-end control server
component such as a client interaction manager 235. De-
pending on the nature of the configuration request and
the implementation of the control server components
(e.g., whether components of the control server function-
ality are distributed across multiple control servers, are
implemented as multi-node clusters, or are all incorpo-
rated within a single monolithic control server), choices
may have to be made as to which specific control servers
are to be involved in responding to the client’s request,
and as to which specific instance host(s) are to be in-
volved. If a client wishes to activate or launch a new com-
pute instance in the depicted embodiment, for example,
a particular instance host may be selected (element 910)
based on such factors as the utilization level of various
instance hosts at a data center or availability container

near the source from which the client’s request was re-
ceived, the pricing model the client has signed up for,
locality of an available instance host relative to other in-
stance hosts being used for the client, or based on explicit
location preferences indicated by the client. Similarly,
control server(s) may be selected (element 910) for the
client’s request based on various factors in different em-
bodiment such as utilization levels of various control serv-
ers of the set determined in element 902 or locality (e.g.,
either proximity to the client or to the chosen instance
host).
[0046] A number of different control server compo-
nents, such as an instance state manager 210, a work-
flow manager 225, a configuration definer 220, and a
command communicator 240, may cooperate to re-
sponse to the client’s request in the depicted embodi-
ment. In some embodiments, e.g., in order to prevent
conflicting mutations of the selected instance host’s con-
figuration state or metadata, a lock may optionally be
acquired on the selected instance host (element 913) by
one of the control server components, or some other con-
currency control mechanism may be used. Different lock-
ing granularities may be employed in different embodi-
ments and for different types of configuration changes -
e.g., only a subset of the metadata associated with a
given instance host may be locked in some embodi-
ments, while in other embodiments metadata for a group
of instance hosts may be locked as a unit. A command
sequence derived from the configuration request may
eventually be transmitted to a selected instance host from
a selected control server component (element 914). In
some embodiments, standard protocols or formats such
as HTTPS and JSON or XML may be used for the com-
mand sequence.
[0047] At the selected instance host, one or more low-
level, stateless, lightweight remote command executors
(RCEs) may be instantiated, e.g., in the form of CGI proc-
esses or threads, to implement the operations indicated
in the command sequence in the depicted embodiment
(element 916). Depending on the implementation, either
separate RCE threads/processes may be implemented
for each command in a sequence, or a single RCE may
be responsible for implementing several commands. The
RCEs may exit or terminate after issuing or initiating the
operations in at least some embodiments. Results of the
RCE operations (e.g., return values or exit codes of op-
erating-system or hypervisor-level commands, standard
output and/or standard error) may be provided back to
the control server components that issued to command
requests (element 919) in the depicted embodiment. In
some implementations, the RCEs may exit on their own
accord, while in other implementations the RCEs may be
explicitly terminated (e.g., by sending "kill" signals) after
their results have been received. In at least some em-
bodiments, based on the collected RCE results, a higher-
level result (e.g., a success result or a failure result) of
the client’s configuration request may be determined (el-
ement 921). If a lock had been acquired to prevent con-

23 24

EP 2 948 865 B1

14

5

10

15

20

25

30

35

40

45

50

55

flicting configuration changes in operations correspond-
ing to element 913, it may be released. In some embod-
iments, an indication or notification of the result may be
provided to the requesting client.
[0048] As noted earlier, in some embodiments, a con-
trol server component may be configured to receive no-
tifications from instance hosts when certain types of
events (e.g., events that occur asynchronously with re-
spect to control server commands, such as unexpected
process or component failures/shutdowns) occur at the
instance hosts. FIG. 10 is a flow diagram illustrating as-
pects of operations related to remote event notification
at a control server, according to at least some embodi-
ments. As shown in element 1001, a particular control
server or servers may be selected to keep track of various
asynchronous events at a given instance host. In some
embodiments, the same control server that is responsible
for submitting command sequences to the given instance
host may be used, while in other embodiments a different
control server may be selected for event notification. An
event listener 245 may be instantiated on the selected
control server (element 1004). The event listener 245
may subscribe to, or register with, an event dispatcher
310 at the given instance host, to receive event notifica-
tions from the instance host. In some embodiments, the
event dispatcher may be configured to obtain indications
when events of interest occur at the instance host, e.g.,
from a virtualization software layer event monitor (or an
operating system layer event monitor) that is installed on
the instance host. The notifications to the event listener
at the control server may be provided using a secure
networking protocol such as HTTPS in some embodi-
ments, and a specific port designated for event notifica-
tions may be selected in such embodiments.
[0049] When an event such as an unexpected shut-
down or failure occurs, the event dispatcher 310 may
transmit a notification using the appropriate format and
protocol to the event listener 245 in the depicted embod-
iment. After the event listener receives the notification
(element 1007), depending for example on the nature of
the event, one or more other control server components,
such as an instance state manager 210 or a recovery
manager, may be notified (element 1010). State informa-
tion about the resource instance(s) affected by the event
may be modified, e.g., within the state metadata main-
tained on the affected instances by the state manager
210 (element 1013). The event listener 245 itself may be
unaware of instance state, and may simply be responsi-
ble for receiving event notifications from one or more in-
stance host(s) and passing the event notifications on to
the appropriate higher-level control server components
in the depicted embodiment. Thus, the modular mature
of the control server design may isolate event notification
reception (the responsibility of the event listener) from
higher-level state management decisions in the embod-
iment shown in FIG. 10. In at least some embodiments,
recovery operations on the affected instance host may
be initiated by the instance state manager 210 or a sep-

arate recovery manager component of the control server
for certain types of events. In one embodiment, clients
that own resource instances on the affected instance
hosts where the events occurred may be notified.
[0050] In some embodiments, one or more pools 120
of control servers and/or other resources dedicated to
remote management of resource instances (including re-
covery operations that may be required to restore in-
stance state after failure events) at instance hosts may
be set up. The number of control servers included in such
pools may vary in different implementations, e.g., based
on current operating conditions, and may be determined
based on a number of factors. FIG. 11 is a flow diagram
illustrating aspects of operations related to determining
control server pool size, according to at least some em-
bodiments. Control server pool size may be determined
based at least in part on recovery requirements associ-
ated with large-scale failure events (such as power fail-
ures at the data center level, or availability container level,
which affect large numbers of resource instances) in the
embodiment depicted in FIG. 11. As shown in element
1101, metrics may be gathered on large-scale outages,
such as the frequency of the outages, the range of the
number of running resource instances affected, how long
various recovery operations take, customer feedback as
a function of recovery time, and so on. Based on such
metrics, certain target goals for the scale of outage events
that should be planned for, and the target recovery times
for the instances, may be developed.
[0051] As indicated in element 1104, a model (such as
a simulation model or an analytical model based on equa-
tions) may be generated to determine the rates of various
types of recovery operations that may be needed in the
event of an occurrence of a large-scale outage of the
targeted size. Such recovery operations may for example
include checking and rebuilding file systems, copying vir-
tual machine images or instance snapshots from a re-
pository to an instance host, and similar operations at
various levels of the control software stack. In one im-
plementation, for example, the model may indicate that
in order to complete instance recovery for a failure of
100,000 virtual compute instances within X minutes, the
required rate of recovery operations of type R1 is 50,000
per minutes, and the required rate of recovery operations
of type R2 is 10,000 per minute. In some embodiments,
tests may be run to determine a rate at which various
types of recovery operations can be completed by vari-
ous sizes of control servers (element 1107). Having thus
estimated the required rates of various types of recovery
operations and the capacity of different types of control
servers to perform such operations using the model and
the test results, the number of control servers of one or
more capacity levels to be commissioned for the control
server pool(s) may be determined (element 1111). In
some embodiments the model may be used for more
detailed recommendations, such as the placement of
control servers at various data centers or within different
availability containers to optimize recovery operation

25 26

EP 2 948 865 B1

15

5

10

15

20

25

30

35

40

45

50

55

times. Similar models may also be used in some embod-
iments to determine the number of control servers that
may be needed for standard operating conditions (e.g.,
in the absence of outages). In such an embodiment, if
the number of required control servers of a particular ca-
pacity level under normal operating conditions is estimat-
ed to be N1, and the number of required control servers
of that capacity level under large-scale failures of a tar-
geted size is estimated to be N2, the operator of the pro-
vider network may choose a pool size set to the larger
of Nl and N2, so that both types of operational conditions
can be managed successfully.

Third party resource instances

[0052] At least in some embodiments, a control server
of a provider network (or a distributed collection of control
servers collectively) may be capable of managing remote
configuration of third party platforms external to the pro-
vider network, as illustrated in FIG. 1 for some embodi-
ments. FIG. 12 is a flow diagram illustrating aspects of
the operation of such a control server, according to some
embodiments. As shown in element 1201 of FIG. 12, an
instance configuration request directed to a multi-tenant
network-accessible service may be received at a control
server capable of managing both third party instance host
platforms, as well as instance hosts internal to the pro-
vider network. Depending on the nature of the request,
the control server may determine a specific instance host
platform at which configuration operations corresponding
to the request should be performed (element 1204). If
the selected platform is a third party platform (as detected
in element 1207), a control server component may issue
a low-level command sequence to the third party platform
(element 1210) and collect the results, e.g., using tech-
niques similar to those described earlier regarding the
functionality of the workflow manager and the command
communicator. If the selected platform is a provider net-
work platform (as also detected in element 1207), low-
level commands may be issued to the provider network
platform (element 1213) and the results may be collected.
In either case, one or more control server component(s)
may analyze the collected results of the low-level com-
mand sequence to determine a higher-level result of the
instance configuration request, and at least in some em-
bodiments and for certain types of requests, a response
may be provided to the client that submitted the request
(element 1216). As noted earlier, the types of function-
ality illustrated with respect to third-party platforms in FIG.
12 may also or instead be supported with respect to plat-
forms at point-of-presence locations and similar remote
platforms in at least some embodiments.
[0053] In some embodiments, a provider network 102
may support one or more default "instance families" rep-
resenting groups of resource capacity units. Some in-
stance families may be intended for general use, i.e., for
clients that run commonly-used applications; other in-
stance families may be supported for specialized use,

such as for high-memory applications, high-CPU appli-
cations, clustered applications, parallel applications or
the like. In some embodiments where third parties (e.g.,
entities other than the provider network operator) are al-
lowed to register their instance hosts for remote instance
configuration from control servers of the provider net-
work, at least some of the third parties may define their
own default instance families. In at least one embodi-
ment, clients may specify variations from the default in-
stance types defined by the provider network and/or the
third parties, as described below in further detail. FIG. 13
illustrates examples of respective compute resource in-
stance definitions that may be supported by a provider
network and by a third party, according to at least some
embodiments. One example of a "standard" instance
family 1302 that may be supported using instance hosts
belonging to a provider network 102 is shown, together
with another example instance family 1340 defined by a
third party for the third party’s instance hosts. Compute
resource instance types may differ from one another in
various characteristics, such as compute capacity, mem-
ory capacity, storage capacity, networking capacity, op-
erating system version or address sizes (e.g., 32-bit vs.
64-bit addresses), and the like. In FIG. 13, instance types
are shown as having differing compute capacity (ex-
pressed in units called "C"), memory capacity (expressed
in units called "M"), and storage capacity (expressed in
units called "S"); other differences between instance
types are not shown for clarity. More than one instance
family may be defined in some embodiments, either with-
in the provider network, or within a given third party net-
work - for example, a special "high-memory" instance
family may be supported for memory intensive applica-
tions. In one embodiment, a given provider network or a
given third party may define or support only one kind of
instance.
[0054] In some embodiments, the different instance
types of a given instance family may be implemented
using a small set of different hardware server types (e.g.,
even a single server type may suffice for all the instance
types of a given family in some cases). For example, in
the illustrated embodiment, the various instance types
(small, medium, large and extra large) of the standard
instance family 1302 may be implementable within the
provider network 102 using a single server type "SI" with
32 processing cores, 64 gigabytes of available main
memory and 1600 gigabytes of available disk storage.
The relative compute capacities of the four instance types
of standard instance family 1302 are in the ratio 1:2:4:8.
If an extra large instance 1316 is allowed to use all 32
cores of an S1 server, a large instance 1314 may be
allowed to use up to 16 cores, a medium instance 1312
may use up to 8 cores, and a small instance 1210 may
use up to 4 cores. Similarly, if an extra-large instance
1316 is allowed to use all 64 gigabytes of main memory,
the maximum memory usable by instance types large,
medium and small may be set to 32 gigabytes, 16 giga-
bytes, and 8 gigabytes respectively. Storage capacity

27 28

EP 2 948 865 B1

16

5

10

15

20

25

30

35

40

45

50

55

limits for the different instance types may be set in the
same ratio: all 1600 gigabytes for extra large instances,
800 gigabytes for large instances, 400 gigabytes for me-
dium instances and 200 gigabytes for small instances.
[0055] The limitations on processor core usage, mem-
ory usage, storage usage, as well a other limitations such
as networking limits and the like may be controlled using
settings or parameters of hypervisors or other low-level
software used to implement the different instance types
in some embodiments. Thus, by changing virtualization
settings on a given S1 server with the help of the control
server components described earlier, it may be possible
to set up eight small instances, four medium instances,
two large instances, one extra-large instance, or various
combinations of small, medium and large instances (e.g.,
one large instance, one medium instance and two small
instances) in at least some embodiments. The fact that
the capacity of each larger instance type in the standard
family can potentially be divided up to form integral num-
bers of smaller instances may be helpful in flexible con-
figuration of instance hosts from control server compo-
nents. Although a single server type S1 is mentioned
above, in some embodiments the various capacity levels
of a given instance family may be implemented using
several different server types, and there is no require-
ment that the number of cores or other resources used
for the different capacity levels of an instance family be
integral multiples of each other.
[0056] In some embodiments, a third party that wishes
to utilize the control server functionality of a provider net-
work for the remote configuration of third party platforms
may be required to use the same hardware platforms or
vendors for their instance host platforms that are use for
the provider network’s instance hosts. At least some third
party operators may, however, use different types of
hardware for their candidate instance host platforms in
at least some embodiments, and as a result, their in-
stance types may differ in various types of capacity (e.g.,
compute, memory, or storage capacity) in such embod-
iments from the instance types native to the provider net-
work. In the example of FIG. 13, the third-party instance
family 1340 includes a "baseline" instance type and a
"big" instance type. The capacity ratios for the different
types of instances defined by a given third party may be
provided to the provider network operator in at least some
embodiments, e.g., as part of a business agreement be-
tween the provider network operator and the third party.
For example, in FIG. 13 the ratio between the compute
capacities of the "baseline" and "big" third party instance
types is shown as x:y, the ratio between the memory
capacities of the third party instance types is shown as
p:q, and the ratio between the storage capacities is
shown as f:g.
[0057] In embodiments where the provider network im-
plements client-facing interfaces supporting the third par-
ty instance family 1340, e.g., by providing a shared in-
stance reservation interface and/or shared configuration
APIs, clients may need to be informed regarding the rel-

ative capacities of the third party instances and the in-
stances of the provider network itself. In the depicted
embodiment, for example, a capability tester component
215 of the provider network’s control servers may be re-
sponsible for determining the capacity of various third
party instance types relative to the instance types of
"standard" instance family 1302. The capability tester
may, for example, transmit a set of tests 1390 to specific
third party instance host platforms on which "baseline"
or "big" instances have been launched, and use the re-
sults 1392 of the tests to determine the ratio of the ca-
pacity of the third party instance types to the provider
network’s standard instance types, as well as to verify
that the ratios (e.g., x:y, p:q, f:g) of the capacities of the
third party instance types are correct. In addition, the ca-
pability tester 215 may also be responsible in some em-
bodiments for validating new instance host candidate
platforms that the third party wishes to add to its fleet of
instance hosts to be controlled remotely from control
server components of the provider network. In addition
to performance and capacity testing, other types of tests
may also be conducted by the capability tester on the
third party platforms in some embodiments, including for
example tests to ensure that desired software has been
installed, that RCEs of the appropriate kind can be suc-
cessfully invoked by the control servers as needed to
implement configuration operations, and so on.
[0058] In at least some embodiments in which the pro-
vider network and/or the third party network defines a set
of default supported instance types, further flexibility re-
garding the properties of the resource instances that can
be obtained by clients may be supported by allowing cli-
ents to indicate variations from the supported instance
types’ properties. For example, a set of default virtualized
instance types may be supported in one embodiment,
where each instance type has an associated set of prop-
erties or capabilities. One particular default instance type
DIT1 may be characterized by a CPU performance prop-
erty CP, a disk storage property DP, a network throughput
property NP, a network latency property NLP, and an
installed software property SP. A client may indicate, e.g.,
in an instance configuration request, that they wish to
launch a resource instance whose properties are gener-
ally similar to the properties defined for DIT1, but with a
different network latency property NLP2, or a different
set of installed software SP2, or with some other property
variation. If the control server components determine that
the requested property variation can be supported, a set
of commands to configure a resource instance in accord-
ance with the client’s request (e.g., including commands
to implement the property variation) may be issued using
the kinds of techniques described above. The decoupling
of the control server components described herein may
allow such variations to be handled much more easily
than in environments where more hard-wired approach-
es to instance configuration are used.
[0059] In some embodiments, the flexibility allowed by
the kinds of control server architecture shown in FIG. 4

29 30

EP 2 948 865 B1

17

5

10

15

20

25

30

35

40

45

50

55

may allow clients to define their own instance types,
whose properties may differ substantially from the default
instance types supported by the provider network and/or
by third party providers. In such embodiments, a client
C1 may submit, e.g., via a programmatic interface and/or
using an instance definition language or protocol defined
by the provider network, a definition of their preferred
instance type that details various performance and other
capabilities. Various control server components (such as
capability tester 215) may determine which, if any, of the
instance host platforms (either platforms internal to the
provider network, third party platforms, or both) are ca-
pable of supporting the client-defined instance types, and
those instance host platforms may be used for that cli-
ent’s instance configuration requests. In some embodi-
ments, fully dynamic instance definition may be support-
ed, in which a client may define customized properties
or characteristics for any of their instances as desired.
[0060] FIG. 14 is a flow diagram illustrating aspects of
operations performed by control servers of a provider
network to configure resource instances of a third party
network to provide network-accessible services, accord-
ing to at least some embodiments. As shown in element
1401 of FIG. 14, a third party platform approval request
may be received via a programmatic interface (such as
an API or a web page) by a control server front-end com-
ponent, such as an interaction manager 235. The ap-
proval request may include various types of information
about the candidate platform for which approval is de-
sired, such as the network address or coordinates of the
platform, credentials usable to log in to the platform as
an administrator using the network address, instance
type information about the kinds of instances to be sup-
ported on the platform to provide one or more multi-tenant
services, and/or test information indicating types of tests
that may be run to validate that the platform is capable
of supporting resource instances it claims to support. (It
is noted that at least in some embodiments, a single ap-
proval request may indicate multiple candidate platforms,
in which case the types of testing and other operations
described herein for a single platform may be repeated
for each of the candidate platforms indicated.) In re-
sponse to the approval request, a control server compo-
nent such as capability tester 215 may initiate one or
more capability determination operations on the candi-
date platform (element 1404), such as installed software
stack verification, performance tests, reliability tests,
checks to verify that RCEs can be launched via remote
commands (including, for example, whether a web server
or other command receiver on the candidate platform
can be configured to launch CGI-based processes or
threads), and the like. In embodiments where an instance
type to be supported on the candidate platform is indi-
cated, the capability tester 215 may verify whether the
indicated instance types, or the indicated number of in-
stances of the instance types, can be instantiated on the
candidate platform. Test definitions for instance types to
be supported, or pointers to such test definitions may be

included in the approval requests in some embodiments.
The types of instances to be supported may include in-
stance types or families defined by the provider network,
defined by the third party, or defined by both the third
party and the provider network in various embodiments.
[0061] If the results indicate that the candidate platform
capabilities are acceptable (as determined in element
1407), the platform may be designated as approved (el-
ement 1413), e.g., for inclusion in a pool of platforms on
which resource instance configuration is to be performed
remotely using control servers of the provider network.
If any additional configuration changes on the platform
are required to support remote commands (such as web
server configuration changes need to launch CGI proc-
esses using the appropriate binaries or libraries), such
changes may be made in the depicted embodiment, for
example using the administrator credentials provided in
the approval request. If the candidate platform’s capabil-
ities are found unacceptable, the approval request may
be rejected (element 1410).
[0062] When a client’s instance configuration request
is subsequently received at a control server (e.g., via the
interaction manager 235), a control server component
(e.g., the instance state manager 210) may make a de-
termination as to whether an instance host of the provider
network is to be used to respond to the request, or wheth-
er an approved third party platform is to be used, as also
described above with respect to FIG. 12. In at least some
embodiments, clients may be enabled to indicate their
preferences as to the source (e.g., the provider network,
or a particular third party network) on whose platforms
their instances are to be launched, as described below
with reference to FIG. 15. In other embodiments, the in-
stance state manager may determine to choose an ap-
proved third party instance host even if the client does
not explicitly indicate a preference for a third party pro-
vider, based on any of various factors such as the prox-
imity of the third party platform to the client’s network, or
the current or anticipated utilization level of the third party
platform relative to that of other instance hosts. A deter-
mination may accordingly be made to use a particular
approved third party platform (element 1416) to perform
the configuration requested by the client.
[0063] In at least some embodiments in which control
server components are distributed across multiple serv-
ers, the specific control servers at which the lower-level
control server components (e.g., the workflow manager,
the command communicator, and the event listener) to
be used for remote configuration of the selected third
party instance host platform may be selected (element
1419). A command sequence may be sent from the ap-
propriate control server to the selected approved third
party instance host for implementation via one or more
RCEs (element 1422), in a manner analogous to the way
command sequences are sent to instance hosts of the
provider network itself, as described previously in the
context of FIG. 4, 5, 7, 8 and 9. For example, the HTTPS
protocol may be used for the command sequence, and

31 32

EP 2 948 865 B1

18

5

10

15

20

25

30

35

40

45

50

55

the commands themselves may be formatted in accord-
ance with JSON, XML, or a variant of JSON or XML in
different embodiments. In one embodiment, concurrency
control for configuration changes on third party instance
host platforms may be implemented, e.g., using a lock
manager of the provider network a lock manager imple-
mented by the third party operator, or a combination of
lock managers of the provider network and the third party.
In such an embodiment, prior to issuing the command
sequence to the third party platform, one or more locks
may be obtained from the appropriate lock manager(s),
in a manner similar to that described above for locking
instance hosts of the provider network, and the lock(s)
may be released after the operations are initiated or com-
pleted. At the third party platform, a command receiver
such as a web server may instantiate RCEs (e.g., using
CGI) as needed to perform the requested operation or
operations in some embodiments, and the RCEs may
terminate or exit after the operations are initiated. The
results of the RCE operations, such as exit codes or re-
turn codes, standard output and/or standard error, may
be provided back to the control server, and a response
to the client’s request may be provided based on the col-
lected RCE results (element 1425). Thus, third party pro-
viders may be able to take advantage of the existing in-
stance configuration control infrastructure built by the
provider network operator, while continuing to own and
manage the infrastructure of their third party data centers.
In many cases, it may become possible for third parties
to dramatically increase the utilization of, and monetize,
their excess or underused hardware platforms. As noted
previously, a client network may also comprise underu-
tilized hardware platforms, and clients of the provider net-
work may also be enabled to use the provider network’s
control servers to better utilize such platforms in some
embodiments. For example, a client may be able to
launch resource instances on the client’s own hardware
platforms with the help of the control server components
of FIG. 2 running on provider network equipment in such
an embodiment. Similarly, in at least one embodiment,
an entity operating or managing a point-of-presence
(POP) location may use the provider network’s control
servers to configure hosts for resource instance hosting.
[0064] In at least one embodiment, capability tests of
the kind described above may be repeated for third party
platforms over time, for example to periodically extend
the approval of such platforms. In one such embodiment,
a schedule of capability test iterations to be re-executed
on one or more third party platforms to renew approval
may be determined. Iterations of the capability tests may
then be initiated in accordance with the schedule, and a
determination as to whether the approval is to be re-
newed may be based at least in part on the results of the
iterations.
[0065] As mentioned earlier, in some embodiments cli-
ents may be provided the opportunity to programmatical-
ly indicate their preferences for the providers whose in-
stance hosts are to be used for the client’s resource in-

stances. FIG. 15 illustrates an example of a programmat-
ic user interface that may be implemented to enable cli-
ents to select resource instances from a plurality of pro-
viders, including instances instantiated on third party plat-
forms that are controlled by control server components
of a provider network. The illustrated user interface com-
prises a web page 1500 with a message area 1503 and
several form fields in the depicted embodiment. As indi-
cated in the message area 1503, clients are requested
to provide some preliminary preferences regarding their
instance needs using web page 1500, and a submission
of the form fields would result in a list of specific instance
host options form which the client may select one or more
for the desired instances.
[0066] Using field 1507, clients may indicate the type
of resource(s) (e.g., compute versus storage versus net-
work) they wish to acquire, e.g., via drop-down list of
choices with compute resources being the default re-
source type. Field 1509 may be used to specify a pre-
ferred resource vendor; if the client wishes not to specify
a particular vendor, the default choice of "cheapest avail-
able" vendor may be used. Using field 1511, the client
may indicate a preferred availability container, or leave
the default option of the geographically nearest availa-
bility container set. Field 1512 enables the client to
choose from among various instance types that are avail-
able, some of which may be implemented by the provider
network using its own instance hosts, while others may
be implemented using instance hosts owned by third par-
ties. The client may click on various links included within
element 1512 to find out more details about the instance
types of each family, the available pricing policies, and/or
additional information. The client may specify the number
of resource instances needed using form field 1513, and
the duration for which the instances are needed using
element 1515 in the depicted embodiment. The client’s
preferences may be submitted using the "Submit!" button
1519.
[0067] It is noted that different preference information
may be solicited from the client in other embodiments
than is shown in FIG. 15, and that programmatic inter-
faces other than web pages (e.g., APIs, command-line
tools, or graphical user interfaces) may be used to obtain
the client’s preferences in some embodiments. It is also
noted that in some embodiments, some of the operations
illustrated in the flow diagrams described above, such as
those of FIG. 9, 10, 11, 12 and 14, may be performed in
a different order than shown in the figures, and that in
other embodiments, some of the operations may be per-
formed in parallel instead of sequentially. In various em-
bodiments, some of the operations shown in the flow di-
agrams may be omitted.

Use cases

[0068] The techniques described above, of efficient,
modular resource instance remote configuration control,
may be beneficial in various types of environment in

33 34

EP 2 948 865 B1

19

5

10

15

20

25

30

35

40

45

50

55

which large numbers of platforms are to be used for host-
ing virtualized resources. They may be particularly useful
in environments where the alternative approach of using
on-platform configuration software required to support
the various multi-tenant services on offer to clients may
impose a substantial overhead. Such on-platform con-
figuration software may reduce the proportion of compute
cycles, memory and/or storage that should ideally be
dedicated to customer-requested, revenue-generating
resource instances instead.

Illustrative computer system

[0069] In at least some embodiments, a server that im-
plements a portion or all of one or more of the technolo-
gies described herein, including the techniques to imple-
ment the functionality of the various control server com-
ponents and/or the instance hosts, may include a gen-
eral-purpose computer system that includes or is config-
ured to access one or more computer-accessible media.
FIG. 16 illustrates such a general-purpose computing de-
vice 3000. In the illustrated embodiment, computing de-
vice 3000 includes one or more processors 3010 coupled
to a system memory 3020 via an input/output (I/O) inter-
face 3030. Computing device 3000 further includes a net-
work interface 3040 coupled to I/O interface 3030.
[0070] In various embodiments, computing device
3000 may be a uniprocessor system including one proc-
essor 3010, or a multiprocessor system including several
processors 3010 (e.g., two, four, eight, or another suita-
ble number). Processors 3010 may be any suitable proc-
essors capable of executing instructions. For example,
in various embodiments, processors 3010 may be gen-
eral-purpose or embedded processors implementing any
of a variety of instruction set architectures (ISAs), such
as the x86, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of
processors 3010 may commonly, but not necessarily, im-
plement the same ISA.
[0071] System memory 3020 may be configured to
store instructions and data accessible by processor(s)
3010. In various embodiments, system memory 3020
may be implemented using any suitable memory tech-
nology, such as static random access memory (SRAM),
synchronous dynamic RAM (SDRAM), nonvola-
tile/Flash-type memory, or any other type of memory. In
the illustrated embodiment, program instructions and da-
ta implementing one or more desired functions, such as
those methods, techniques, and data described above,
are shown stored within system memory 3020 as code
3025 and data 3026.
[0072] In one embodiment, I/O interface 3030 may be
configured to coordinate I/O traffic between processor
3010, system memory 3020, and any peripheral devices
in the device, including network interface 3040 or other
peripheral interfaces. In some embodiments, I/O inter-
face 3030 may perform any necessary protocol, timing
or other data transformations to convert data signals from

one component (e.g., system memory 3020) into a format
suitable for use by another component (e.g., processor
3010). In some embodiments, I/O interface 3030 may
include support for devices attached through various
types of peripheral buses, such as a variant of the Pe-
ripheral Component Interconnect (PCI) bus standard or
the Universal Serial Bus (USB) standard, for example.
In some embodiments, the function of I/O interface 3030
may be split into two or more separate components, such
as a north bridge and a south bridge, for example. Also,
in some embodiments some or all of the functionality of
I/O interface 3030, such as an interface to system mem-
ory 3020, may be incorporated directly into processor
3010.
[0073] Network interface 3040 may be configured to
allow data to be exchanged between computing device
3000 and other devices 3060 attached to a network or
networks 3050, such as other computer systems or de-
vices as illustrated in FIG. 1 through FIG. 15, for example.
In various embodiments, network interface 3040 may
support communication via any suitable wired or wireless
general data networks, such as types of Ethernet net-
work, for example. Additionally, network interface 3040
may support communication via telecommunications/te-
lephony networks such as analog voice networks or dig-
ital fiber communications networks, via storage area net-
works such as Fibre Channel SANs, or via any other suit-
able type of network and/or protocol.
[0074] In some embodiments, system memory 3020
may be one embodiment of a computer-accessible me-
dium configured to store program instructions and data
as described above for FIG. 1 through FIG. 15 for imple-
menting embodiments of the corresponding methods
and apparatus. However, in other embodiments, pro-
gram instructions and/or data may be received, sent or
stored upon different types of computer-accessible me-
dia. Generally speaking, a computer-accessible medium
may include non-transitory storage media or memory me-
dia such as magnetic or optical media, e.g., disk or
DVD/CD coupled to computing device 3000 via I/O inter-
face 3030. A non-transitory computer-accessible storage
medium may also include any volatile or non-volatile me-
dia such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc, that may be included in some
embodiments of computing device 3000 as system mem-
ory 3020 or another type of memory. Further, a computer-
accessible medium may include transmission media or
signals such as electrical, electromagnetic, or digital sig-
nals, conveyed via a communication medium such as a
network and/or a wireless link, such as may be imple-
mented via network interface 3040. Portions or all of mul-
tiple computing devices such as that illustrated in FIG.
15 may be used to implement the described functionality
in various embodiments; for example, software compo-
nents running on a variety of different devices and servers
may collaborate to provide the functionality. In some em-
bodiments, portions of the described functionality may
be implemented using storage devices, network devices,

35 36

EP 2 948 865 B1

20

5

10

15

20

25

30

35

40

45

50

55

or special-purpose computer systems, in addition to or
instead of being implemented using general-purpose
computer systems. The term "computing device", as
used herein, refers to at least all these types of devices,
and is not limited to these types of devices.

Conclusion

[0075] Various embodiments may further include re-
ceiving, sending or storing instructions and/or data im-
plemented in accordance with the foregoing description
upon a computer-accessible medium. Generally speak-
ing, a computer-accessible medium may include storage
media or memory media such as magnetic or optical me-
dia, e.g., disk or DVD/CD-ROM, volatile or non-volatile
media such as RAM (e.g. SDRAM, DDR, RDRAM,
SRAM, etc.), ROM, etc, as well as transmission media
or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as
network and/or a wireless link.
[0076] The various methods as illustrated in the Fig-
ures and described herein represent exemplary embod-
iments of methods. The methods may be implemented
in software, hardware, or a combination thereof. The or-
der of method may be changed, and various elements
may be added, reordered, combined, omitted, modified,
etc.
[0077] Various modifications and changes may be
made as would be obvious to a person skilled in the art
having the benefit of this disclosure. It is intended to em-
brace all such modifications and changes and, accord-
ingly, the above description to be regarded in an illustra-
tive rather than a restrictive sense.

Claims

1. A system, comprising:

a plurality of instance hosts (110A, 110B, 110C)
configurable to implement resource instances
of a network-accessible service; and
one or more control servers (120A, 120B, 120C)
configured to manage configuration of resource
instances at the plurality of instance hosts;
wherein a selected control server of the one or
more control servers is configured to transmit,
in response to an instance configuration request
(170A) from a client (150A), a sequence of one
or more commands (160A) to a selected in-
stance host of the plurality of instance hosts;
wherein the selected control server of the one
or more control servers is selected in the prox-
imity of the selected instance host;
wherein the selected instance host of the plural-
ity of instance hosts is selected based on at least
one of an identification information of the client,
a resource instance type indicated in the in-

stance configuration request, an availability of
the resource instance type at the instance host,
a location of the instance host, a utilization level
of individual ones of the plurality of instance
hosts, and an explicit location preference indi-
cated by the client;
wherein the selected instance host is configured
to, in response to receiving the sequence of one
or more commands, instantiate a remote com-
mand executor;
wherein the remote command executor is con-
figured to initiate one or more configuration op-
erations corresponding to the sequence of one
or more commands; and
wherein the selected control server is configured
to provide a response to the instance configu-
ration request, based at least in part on results
of the one or more configuration operations, to
the client.

2. The system as recited in claim 1, wherein the select-
ed instance host is further configured to:

receive the sequence of one or more commands
at a web server; and
wherein the web server is configured to instan-
tiate the remote command executor in accord-
ance with the Common Gateway Interface (CGI)
standard.

3. The system as recited in claim 1 or claim 2, wherein
the selected instance host comprises an event dis-
patcher configured to:

subscribe to an event monitor implemented at
the selected instance host; and
transmit, via a secure networking protocol, to a
particular control server of the one or more con-
trol servers, a notification of an occurrence of an
event indicated by the event monitor at the se-
lected instance host.

4. The system as recited in claim 3, wherein the par-
ticular control server is further configured to:
update, based at least in part on the notification, state
information for a resource instance.

5. The system as recited in any one of the preceding
claims, wherein the one or more control servers com-
prise a plurality of control servers of a control server
pool, wherein a size of the control server pool is de-
termined based at least in part on an estimated rate
at which instance recovery configuration operations
are to be performed to recover, in the event of a
particular type of failure, resource instances imple-
mented at the plurality of instance hosts.

6. The system as recited in any one of the preceding

37 38

EP 2 948 865 B1

21

5

10

15

20

25

30

35

40

45

50

55

claims, wherein the selected instance host is located
within a first data center of a first availability container
of a provider network, and wherein the selected con-
trol server is located within a different data center
within a second availability container of the provider
network, wherein the first availability container has
a differ availability profile than the second availability
container.

7. The system as recited in any one of the preceding
claims, wherein prior to transmitting the sequence
of one or more commands, the selected control serv-
er is configured to obtain a lock on the selected in-
stance host.

8. The system as recited in any one of the preceding
claims, wherein the sequence of one or more com-
mands is transmitted in accordance with a command
protocol supporting a plurality of command types,
wherein at least a subset of command types of the
plurality of command types comprise idempotent
commands.

9. The system as recited in claim 8, wherein a particular
control server of the one or more control servers is
further configured to:
collect one or more performance metrics from the
selected instance host using a particular command
type of the plurality of command types.

10. The system as recited in claim 6, wherein the select-
ed instance host is chosen from the plurality of in-
stance hosts based at least in part on one or more
of: (a) one or more performance metrics associated
with the plurality of instance hosts, or (b) one or more
pricing policies.

11. A method, comprising: in response to an instance
configuration request (170A) from a client (907),
wherein the

instance configuration request is directed to a
particular service of one or more network-acces-
sible services,
transmitting (914), by a selected control server
to a selected instance host of a plurality of in-
stance hosts (110A, 110B, 110C), one or more
commands, wherein the selected control server
is one of one or more control servers (120A,
120B, 120C) configured to manage configura-
tion of resource instances at the plurality of in-
stance hosts, wherein the plurality of instance
hosts are configurable to implement resource
instances of the one or more network-accessible
services
wherein the selected control server of the one
or more control servers is selected in the prox-
imity of the selected instance host;

wherein the selected instance host of the plural-
ity of instance hosts is selected based on at least
one of an identification information of the client,
a resource instance type indicated in the in-
stance configuration request, an availability of
the resource instance type at the instance host,
a location of the instance host, a utilization level
of individual ones of the plurality of instance
hosts, and an explicit location preference indi-
cated by the client;
receiving (919), from the selected instance host,
results of one or more configuration operations
initiated at the selected instance host by a re-
mote command executor instantiated at the se-
lected instance host in response to the one or
more commands; and
providing (921) a response to the instance con-
figuration request, based at least in part on re-
sults of the one or more configuration opera-
tions, to the client.

12. The method of claim 11, wherein the control server
comprises one or more of: (a) a workflow manager
configured to determine the one or more commands
to be transmitted, (b) a communication module con-
figured to transmit the one or more commands to the
selected instance host, and (c) an event listener con-
figured to receive asynchronous event notifications
from the selected instance host.

13. The method of claim 11 or claim 12, wherein prior to
transmitting the one or more commands, the control
server is configured to obtain a lock on the selected
instance host.

14. The method of any one of claims 11-13, further com-
prising:
collecting one or more performance metrics from the
selected instance host using a particular command
type of a plurality of command types.

15. The method of any one of claims 11-14, wherein the
one or more commands is transmitted via a variant
of the HyperText Transfer Protocol.

Patentansprüche

1. System, das Folgendes umfasst:

eine Vielzahl von Instanzhosts (110A, 110B,
110C), die zum Implementieren von Ressour-
ceninstanzen eines netzwerkzugänglichen
Dienstes auslegbar sind; und
einen oder mehrere Steuerserver (120A, 120B,
120C), die dazu ausgelegt sind, eine Auslegung
von Ressourceninstanzen an der Vielzahl von
Instanzhosts zu verwalten;

39 40

EP 2 948 865 B1

22

5

10

15

20

25

30

35

40

45

50

55

wobei ein ausgewählter Steuerserver des einen
oder der mehreren Steuerserver dazu ausgelegt
ist, in Reaktion auf eine Instanzauslegungsan-
forderung (170A) von einem Client (150A) eine
Sequenz von einem oder mehreren Befehlen
(160A) zu einem ausgewählten Instanzhost der
Vielzahl von Instanzhosts zu übertragen;
wobei der ausgewählte Steuerserver des einen
oder der mehreren Steuerserver in der Nähe des
ausgewählten Instanzhosts ausgewählt wird;
wobei der ausgewählte Instanzhost der Vielzahl
von Instanzhosts auf Basis von mindestens ei-
nem von Identifikationsinformationen des Cli-
ents, einem Ressourceninstanztyp, der in der
Instanzauslegungsanforderung angezeigt wird,
einer Verfügbarkeit des Ressourceninstanztyps
am Instanzhost,
einem Standort des Instanzhosts, einem Aus-
lastungspegel von einzelnen der Vielzahl von
Instanzhosts und einer expliziten Standortprä-
ferenz, die vom Client angezeigt wird, ausge-
wählt wird;
wobei der ausgewählte Instanzhost dazu aus-
gelegt ist, in Reaktion auf das Empfangen der
Sequenz von einem oder
mehreren Befehlen einen entfernten Befehls-
ausführer zu instanziieren;
wobei der entfernte Befehlsausführer dazu aus-
gelegt ist,
eine oder mehrere Auslegungsoperationen zu
initiieren,
die der Sequenz von einem oder mehreren Be-
fehlen entsprechen; und
wobei der ausgewählte Steuerserver dazu aus-
gelegt ist,
mindestens teilweise auf Basis von Ergebnissen
der einen oder der mehreren Auslegungsope-
rationen, dem Client eine Antwort auf die Instan-
zauslegungsanforderung bereitzustellen.

2. System gemäß Anspruch 1, wobei der ausgewählte
Instanzhost ferner zu Folgendem ausgelegt ist:

Empfangen der Sequenz von einem oder meh-
reren Befehlen an einem Webserver und
wobei der Webserver dazu ausgelegt ist, den
entfernten Befehlsausführer gemäß dem Stan-
dard Common Gateway Interface (CGI) zu in-
stanziieren.

3. System gemäß Anspruch 1 oder Anspruch 2, wobei
der ausgewählte Instanzhost einen Ereignisverteiler
umfasst, der zu Folgendem ausgelegt ist:

Abonnieren eines Ereignisüberwachers, der am
ausgewählten Instanzhost implementiert wird;
und
Übertragen einer Benachrichtigung eines Vor-

kommens eines Ereignisses, das vom Ereignis-
überwacher am ausgewählten Instanzhost an-
gezeigt wird, via ein sicheres Vernetzungspro-
tokoll zu einem speziellen Steuerserver des ei-
nen oder der mehreren Steuerserver.

4. System gemäß Anspruch 3, wobei der spezielle
Steuerserver ferner zu Folgendem ausgelegt ist:
Aktualisieren von Statusinformationen für eine Res-
sourceninstanz mindestens teilweise auf Basis der
Benachrichtigung.

5. System gemäß einem der vorhergehenden Ansprü-
che, wobei der eine oder die mehreren Steuerserver
eine Vielzahl von Steuerservern eines Steuerserver-
pools umfassen, wobei eine Größe des Steuerser-
verpools mindestens teilweise auf Basis einer ge-
schätzten Rate, mit der Auslegungsoperationen zur
Instanzwiederherstellung durchzuführen sind, um
im Fall eines speziellen Fehlertyps Ressourcenin-
stanzen, die an der Vielzahl von Instanzhosts imp-
lementiert werden, wiederherzustellen, bestimmt
wird.

6. System gemäß einem der vorhergehenden Ansprü-
che, wobei sich der ausgewählte Instanzhost in ei-
nem ersten Datenzentrum eines ersten Verfügbar-
keitscontainers eines Anbieternetzwerks befindet
und wobei sich der ausgewählte Steuerserver in ei-
nem anderen Datenzentrum in einem zweiten Ver-
fügbarkeitscontainer des Anbieternetzwerks befin-
det, wobei der erste Verfügbarkeitscontainer ein un-
terschiedliches Verfügbarkeitsprofil als der zweite
Verfügbarkeitscontainer aufweist.

7. System gemäß einem der vorhergehenden Ansprü-
che, wobei der ausgewählte Steuerserver dazu aus-
gelegt ist, vor dem Übertragen der Sequenz von ei-
nem oder mehreren Befehlen eine Verriegelung am
ausgewählten Instanzhost zu erhalten.

8. System gemäß einem der vorhergehenden Ansprü-
che, wobei die Sequenz von einem oder mehreren
Befehlen gemäß einem Befehlsprotokoll, das von ei-
ner Vielzahl von Befehlstypen unterstützt wird, über-
tragen wird, wobei mindestens ein Untersatz von Be-
fehlstypen der Vielzahl von Befehlstypen idempo-
tente Befehle umfassen.

9. System gemäß Anspruch 8, wobei ein spezieller
Steuerserver des einen oder der mehreren Steuer-
server ferner zu Folgendem ausgelegt ist:
Sammeln von einer oder mehreren Leistungsmetri-
ken unter Verwendung eines speziellen Befehlstyps
der Vielzahl von Befehlstypen vom ausgewählten In-
stanzhost.

10. System gemäß Anspruch 6, wobei der ausgewählte

41 42

EP 2 948 865 B1

23

5

10

15

20

25

30

35

40

45

50

55

Instanzhost mindestens teilweise auf Basis von ei-
nem oder mehrerem von Folgendem aus der Viel-
zahl von Instanzhosts gewählt wird: (a) einer oder
mehreren Leistungsmetriken, die mit der Vielzahl
von Instanzhosts verknüpft sind, oder (b) Preisfest-
setzungsrichtlinien.

11. Verfahren, das Folgendes umfasst:

in Reaktion auf eine Instanzauslegungsanforde-
rung (170A) von einem Client (907), wobei die
Instanzauslegungsanforderung an einen spezi-
ellen Dienst von einem oder mehreren netz-
werkzugänglichen Diensten gerichtet ist,
Übertragen (914) von einem oder mehreren Be-
fehlen durch einen ausgewählten Steuerserver
zu einem ausgewählten Instanzhost einer Viel-
zahl von Instanzhosts (110A, 110B, 110C), wo-
bei der ausgewählte Steuerserver einer von ei-
nem oder mehreren Steuerservern (120A,
120B, 120C), ist, die dazu ausgelegt sind, eine
Auslegung von Ressourceninstanzen an der
Vielzahl von Instanzhosts zu verwalten, wobei
die Vielzahl von Instanzhosts zum Implementie-
ren von Ressourceninstanzen des einen oder
der mehreren netzwerkzugänglichen Dienste
auslegbar sind,
wobei der ausgewählte Steuerserver des einen
oder der mehreren Steuerserver in der Nähe des
ausgewählten Instanzhosts ausgewählt wird;
wobei der ausgewählte Instanzhost der Vielzahl
von Instanzhosts auf Basis von mindestens ei-
nem von Identifikationsinformationen des Cli-
ents, einem Ressourceninstanztyp, der in der
Instanzauslegungsanforderung angezeigt wird,
einer Verfügbarkeit des Ressourceninstanztyps
am Instanzhost,
einem Standort des Instanzhosts, einem Aus-
lastungspegel von einzelnen der Vielzahl von
Instanzhosts und einer expliziten Standortprä-
ferenz, die vom Client angezeigt wird, ausge-
wählt wird;
Empfangen (919) von Ergebnissen von einer
oder mehreren Auslegungsoperationen, die am
ausgewählten Instanzhost von einem entfern-
ten Befehlsausführer initiiert wurden,
der am ausgewählten Instanzhost in Reaktion
auf den einen oder die mehreren Befehle instan-
ziiert wurde, vom ausgewählten Instanzhost und
Bereitstellen (921) einer Antwort auf die Instan-
zauslegungsanforderung mindestens teilweise
auf Basis von Ergebnissen der einen oder der
mehreren Auslegungsoperationen für den Cli-
ent.

12. Verfahren nach Anspruch 11, wobei der Steuerser-
ver eines oder mehreres von Folgendem umfasst:
(a) einen Arbeitsablaufverwalter, der dazu ausgelegt

ist, den einen oder die mehreren Befehle, die zu
übertragen sind, zu bestimmen, (b) ein Kommunika-
tionsmodul, das dazu ausgelegt ist, den einen oder
die mehreren Befehle zum ausgewählten Instanz-
host zu übertragen, und (c) einen Ereignisüberprü-
fer, der dazu ausgelegt ist, asynchrone Ereignisbe-
nachrichtigungen vom ausgewählten Instanzhost zu
empfangen.

13. Verfahren nach Anspruch 11 oder Anspruch 12, wo-
bei der Steuerserver dazu ausgelegt ist, vor dem
Übertragen des einen oder der mehreren Befehle
eine Verriegelung auf dem ausgewählten Instanz-
host zu erhalten.

14. Verfahren nach einem der Ansprüche 11-13, das fer-
ner Folgendes umfasst:
Sammeln von einer oder mehreren Leistungsmetri-
ken unter Verwendung eines speziellen Befehlstyps
einer Vielzahl von Befehlstypen vom ausgewählten
Instanzhost.

15. Verfahren nach einem der Ansprüche 11-14, wobei
der eine oder die mehreren Befehle via eine Variante
des Hypertexttransferprotokolls übertragen wird.

Revendications

1. Système comprenant :

une pluralité d’hôtes d’instances (110A, 110B,
110C) configurables pour implémenter des ins-
tances de ressources d’un service accessible
par réseau ; et
un ou plusieurs serveurs de commande (120A,
120B, 120C) configurés pour gérer la configu-
ration des instances de ressources au niveau
de la pluralité d’hôtes d’instances ;
dans lequel un serveur de commande sélection-
né des un ou plusieurs serveurs de commande
est configuré pour transmettre, en réponse à
une demande de configuration d’instance
(170A) d’un client (150A), une séquence d’une
ou plusieurs commandes (160A) à un hôte d’ins-
tance sélectionné de la pluralité d’hôtes
d’instances ;
dans lequel le serveur de commande sélection-
né des un ou plusieurs serveurs de commande
est sélectionné à proximité de l’hôte d’instance
sélectionné ;
dans lequel l’hôte d’instance sélectionné de la
pluralité d’hôtes d’instances est sélectionné en
fonction au moins d’informations d’identification
du client, et/ou d’un type d’instance de ressour-
ce indiqué dans la demande de configuration
d’instance, et/ou d’une disponibilité du type
d’instance de ressource au niveau de l’hôte

43 44

EP 2 948 865 B1

24

5

10

15

20

25

30

35

40

45

50

55

d’instance, et/ou d’un emplacement de l’hôte
d’instance, et/ou d’un niveau d’utilisation de l’hô-
te d’instance individuel de la pluralité d’hôtes
d’instances, et/ou d’une préférence d’emplace-
ment explicite indiquée par le client ;
dans lequel l’hôte d’instance sélectionné est
configuré pour, en réponse à la réception de la
séquence d’une ou plusieurs commandes, ins-
tancier un exécuteur de commande distant ;
dans lequel l’exécuteur de commande distant
est configuré pour lancer une ou plusieurs opé-
rations de configuration correspondant à la sé-
quence d’une ou plusieurs commandes ; et
dans lequel le serveur de commande sélection-
né est configuré pour fournir une réponse à la
demande de configuration d’instance, en fonc-
tion au moins en partie de résultats des une ou
plusieurs opérations de configuration, au client.

2. Système selon la revendication l, dans lequel l’hôte
d’instance sélectionné est en outre configuré pour :

recevoir la séquence d’une ou plusieurs com-
mandes au niveau d’un serveur Web ; et
dans lequel le serveur Web est configuré pour
instancier l’exécuteur de commande distant
conformément à la norme CGI (Common Ga-
teway Interface).

3. Système selon la revendication 1 ou la revendication
2, dans lequel l’hôte d’instance sélectionné com-
prend un répartiteur d’événements configuré pour :

s’abonner à un contrôleur d’événements implé-
menté sur l’hôte d’instance sélectionné ; et
transmettre, par l’intermédiaire d’un protocole
d’exploitation en réseau sécurisé, à un serveur
de commande particulier des un ou plusieurs
serveurs de commande, une notification d’oc-
currence d’un événement indiqué par le contrô-
leur d’événements sur l’hôte d’instance sélec-
tionné.

4. Système selon la revendication 3, dans lequel le ser-
veur de commande particulier est en outre configuré
pour :
mettre à jour, en fonction au moins en partie de la
notification, des informations d’état pour une instan-
ce de ressource.

5. Système selon l’une quelconque des revendications
précédentes, dans lequel les un ou plusieurs ser-
veurs de commande comprennent une pluralité de
serveurs de commande d’un pool de serveurs de
commande, une taille du pool de serveurs de com-
mande étant déterminée en fonction au moins en
partie d’une vitesse estimée à laquelle des opéra-
tions de configuration de récupération d’instances

doivent être réalisées pour récupérer, en cas de dé-
faillance d’un type particulier, des instances de res-
sources implémentées au niveau de la pluralité d’hô-
tes d’instance.

6. Système selon l’une quelconque des revendications
précédentes, dans lequel l’hôte d’instance sélection-
né est situé dans un premier centre de données d’un
premier conteneur de disponibilité d’un réseau de
fournisseur, et dans lequel le serveur de commande
sélectionné est situé dans un centre de données dif-
férent dans un second conteneur de disponibilité du
réseau de fournisseur, le premier conteneur de dis-
ponibilité ayant un profil de disponibilité différent de
celui du second conteneur de disponibilité.

7. Système selon l’une quelconque des revendications
précédentes, dans lequel avant de transmettre la sé-
quence d’une ou plusieurs commandes, le serveur
de commande sélectionné est configuré pour obtenir
un verrou sur l’hôte d’instance sélectionné.

8. Système selon l’une quelconque des revendications
précédentes, dans lequel la séquence d’une ou plu-
sieurs commandes est transmise conformément à
un protocole de commande prenant en charge une
pluralité de types de commandes, au moins un sous-
ensemble de types de commandes de la pluralité de
types de commandes comprenant des commandes
idempotentes.

9. Système selon la revendication 8, dans lequel un
serveur de commande particulier des un ou plusieurs
serveurs de commande est en outre configuré pour :
collecter une ou plusieurs métriques de performance
auprès de l’hôte d’instance sélectionné à l’aide d’un
type de commande particulier de la pluralité de types
de commandes.

10. Système selon la revendication 6, dans lequel l’hôte
d’instance sélectionné est sélectionné parmi la plu-
ralité d’hôtes d’instances en fonction au moins en
partie d’une ou plusieurs : (a) d’une ou plusieurs mé-
triques de performance associées à la pluralité d’hô-
tes d’instances, ou (b) d’une ou plusieurs politiques
de tarification.

11. Procédé, comprenant :

en réponse à une demande de configuration
d’instance (170A) émise par un client (907), la
demande de configuration d’instance étant
adressée à un service particulier d’un ou plu-
sieurs services accessibles par réseau,
la transmission (914), par un serveur de com-
mande sélectionné à un hôte d’instance sélec-
tionné d’une pluralité d’hôtes d’instance (110A,
110B, 110C), d’une ou plusieurs commandes,

45 46

EP 2 948 865 B1

25

5

10

15

20

25

30

35

40

45

50

55

le serveur de commande sélectionné étant l’un
d’un ou plusieurs serveurs de commande
(120A, 120B, 120C) configurés pour gérer la
configuration d’instances de ressources au ni-
veau de la pluralité d’hôtes d’instances, la plu-
ralité d’hôtes d’instances étant configurable
pour implémenter des instances de ressources
des un ou plusieurs services accessibles par ré-
seau
dans lequel le serveur de commande sélection-
né des un ou plusieurs serveurs de commande
est sélectionné à proximité de l’hôte d’instance
sélectionné ;
dans lequel l’hôte d’instance sélectionné de la
pluralité d’hôtes d’instances est sélectionné en
fonction au moins d’informations d’identification
du client, et/ou d’un type d’instance de ressour-
ce indiqué dans la demande de configuration
d’instance, et/ou d’une disponibilité du type
d’instance de ressource au niveau de l’hôte
d’instance, et/ou d’un emplacement de l’hôte
d’instance, et/ou d’un niveau d’utilisation de l’hô-
te d’instance individuel de la pluralité d’hôtes
d’instance, et/ou d’une préférence d’emplace-
ment explicite indiquée par le client ;
la réception (919), à partir de l’hôte d’instance
sélectionné, de résultats d’une ou plusieurs opé-
rations de configuration initiées au niveau de
l’hôte d’instance sélectionné par un exécuteur
de commande distant instancié au niveau de
l’hôte d’instance sélectionné en réponse aux
une ou plusieurs commandes ; et
la fourniture (921) au client d’une réponse à la
demande de configuration d’instance, en fonc-
tion au moins en partie de résultats des une ou
plusieurs opérations de configuration.

12. Procédé selon la revendication 1l, dans lequel le ser-
veur de commande comprend un ou plusieurs : a)
d’un gestionnaire de flux de travail configuré pour
déterminer les une ou plusieurs commandes à trans-
mettre, b) d’un module de communication configuré
pour transmettre les une ou plusieurs commandes
à l’hôte d’instance sélectionné, et c) d’un auditeur
d’événements configuré pour recevoir des notifica-
tions d’événements asynchrones à partir de l’hôte
d’instance sélectionné.

13. Procédé selon revendication 11 ou la revendication
12, dans lequel, avant de transmettre les une ou plu-
sieurs commandes, le serveur de commande est
configuré pour obtenir un verrou sur l’hôte d’instance
sélectionné.

14. Procédé selon l’une quelconque des revendications
11 à 13, comprenant en outre :
la collecte d’une ou plusieurs métriques de perfor-
mance auprès de l’hôte d’instance sélectionné à

l’aide d’un type de commande particulier d’une plu-
ralité de types de commandes.

15. Procédé selon l’une quelconque des revendications
11 à 14, dans lequel les une ou plusieurs comman-
des sont transmises par l’intermédiaire d’une varian-
te du protocole de transfert hypertexte.

47 48

EP 2 948 865 B1

26

EP 2 948 865 B1

27

EP 2 948 865 B1

28

EP 2 948 865 B1

29

EP 2 948 865 B1

30

EP 2 948 865 B1

31

EP 2 948 865 B1

32

EP 2 948 865 B1

33

EP 2 948 865 B1

34

EP 2 948 865 B1

35

EP 2 948 865 B1

36

EP 2 948 865 B1

37

EP 2 948 865 B1

38

EP 2 948 865 B1

39

EP 2 948 865 B1

40

EP 2 948 865 B1

41

EP 2 948 865 B1

42

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 20100251242 A [0003]

	bibliography
	description
	claims
	drawings
	cited references

