I*I Innovation, Sciences et Innovation, Science and CA 3153691 C 2024/06/11

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 3 1 53 69 1
12y BREVET CANADIEN
CANADIAN PATENT
13 C
(86) Date de dépo6t PCT/PCT Filing Date: 2020/08/07 (51) ClLInt./Int.Cl. GO6F 16/26(2019.01),
(87) Date publication PCT/PCT Publication Date: 2021/03/18 GO6F 16/22(2019.01)
" . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2024/06/11 EUBANK, CHRISTIAN, US:
(85) Entrée phase nationale/National Entry: 2022/03/07 TALBOT, JUSTIN, US
(86) N° demande PCT/PCT Application No.: US 2020/045461 | (73) Propriétaire/Owner:
(87) N° publication PCT/PCT Publication No.; 2021/050182 TABLEAU SOFTWARE, LLC, US
(30) Priorité/Priority: 2019/09/13 (US16/570,969) (74) Agent: FASKEN MARTINEAU DUMOULIN LLP

(54) Titre : UTILISATION D'UNE AGREGATION DE MESURES APPROPRIEES POUR GENERER DES
VISUALISATIONS DE DONNEES D'ENSEMBLES DE DONNEES MULTI-FAITS

(54) Title: UTILIZING APPROPRIATE MEASURE AGGREGATION FOR GENERATING DATA VISUALIZATIONS OF
MULTI-FACT DATASETS

Data Visuzlization User Inteface 102 L 104

Visual Specification:
identifies the Data Sources;
identifies the date fields assigned to
visual variables

108 110

roup the data fields in the Visual
Object Modal for Specliication into one or more data field
the Data Sources sets according to the Object Model of

the Data Sources
112 108
Query the Data Query the Data

Sources for the Data Sources for the
first data field set Source(s) second data field set

a0,

£ 550,
2 e Id

g

£ sauy 2z
£ s10.000

(57) Abrégé/Abstract:

A computer receives a visual specification, which specifies a data source, visual variables, and data fields from the data source.
Each visual variable is associated with either data fields (e.g., dimension and/or measures) or filters. The computer obtains a data
model encoding the data source as a tree of related logical tables. Each logical table includes logical fields, each of which
corresponds to either a data field or a calculation that spans logical tables. The computer generates a dimension subquery for the
dimensions and the filters. The computer also generates, for each measure, an aggregated measure sub query grouped by the
dimensions. The computer forms a final query by joining the dimension sub query to each of the aggregated measure subqueries.
The computer subsequently executes the final query and displays a data visualization according to the results of the final query.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

wo 2021/050182 A1 |0 0000 KA 0

CA 03153691 2022-03-07

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
18 March 2021 (18.03.2021)

(10) International Publication Number

WO 2021/050182 Al

WIPO I PCT

1)

@n

22)

@5
(26)
30)

(71)

(72)

(74)

@81)

International Patent Classification:
GO6F 16/242 (2019.01) GO6F 16/26 (2019.01)

International Application Number:
PCT/US2020/045401

International Filing Date:
07 August 2020 (07.08.2020)

Filing Language: English
Publication Language: English
Priority Data:

16/570,969 13 September 2019 (13.09.2019) US

Applicant: TABLEAU SOFTWARE, INC. [US/US];
1621 N. 34th Street, Seattle, WA 98103 (US).

Inventors: EUBANK, Christian; 1621 N. 34th Street,
Seattle, WA 98103 (US). TALBOT, Justin; 1621 N. 34th
Street, Seattle, WA 98103 (US).

Agent: SANKER, David, V. etal.; Morgan Lewis & Bock-
ius LLP, 1400 Page Mill Road, Palo Alto, CA 94304 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,

84

KP, KR, KW,KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: UTILIZING APPROPRIATE MEASURE AGGREGATION FOR GENERATING DATA VISUALIZATIONS OF
MULTI-FACT DATASETS

(57) Abstract: A computer receives a visual specification, which specifies a data

Data Visualization User Interface 102

Visual Specification:
identifies the Data Sources;
identifies the data fields assigned to
visual variables

108

Object Model for
the Data Sources

Group the data fields in the Visual
Specification into one or more data field
sets according to the Object Madel of

the Data Sources

112~ 106
[
Query the Data Query the Data
Sources for the Data Sources for the
first data field set Sourcets) second data field set
Data Visualization 121~
Data Visualization 122
b of Teat Date 53000
o0 524 077 5 y
o = fezatpaa | |08, L ssaeo 7
2 e % 543,000
E son £ {
3 s @ 533000
£] Eoo ||
§ 520 £
‘o] £ s [
120 « -
“,\,\,\,\%le EADAEA PR,
CRCNNE 5,7 %0 %, % w0 180 270 280
S, R
Figure 1

source, visual variables, and data fields from the data source. Each visual vari-
able is associated with either data fields (e.g., dimension and/or measures) or
filters. The computer obtains a data model encoding the data source as a tree of
related logical tables. Each logical table includes logical fields, each of which
corresponds to either a data field or a calculation that spans logical tables. The
computer generates a dimension subquery for the dimensions and the filters. The
computer also generates, for each measure, an aggregated measure sub query
grouped by the dimensions. The computer forms a final query by joining the di-
mension sub query to each of the aggregated measure subqueries. The computer
subsequently executes the final query and displays a data visualization according
to the results of the final query.

061127-5153-WO

Utilizing Appropriate Measure Aggregation for Generating Data
Visualizations of Multi-fact Datasets

TECHNICAL FIELD

[0001] The disclosed implementations relate generally to data visualization and more

specifically to interactive visual analysis of a data set using an object model of the data set.

BACKGROUND

[0002] Data visualization applications enable a user to understand a data set visually,
including distribution, trends, outliers, and other factors that are important to making business
decisions. Some data elements are computed based on data from the selected data set. For
example, data visualizations frequently use sums to aggregate data. Some data visualization
applications enable a user to specify a “Level of Detail” (LOD), which can be used for the
aggregate calculations. However, specifying a single Level of Detail for a data visualization

is insufficient to build certain calculations.

[0003] Some data visualization applications provide a user interface that enables users
to build visualizations from a data source by selecting data fields and placing them into specific
user interface regions to indirectly define a data visualization. See, for example, U.S. Patent
Application Serial No. 10/453,834, filed June 2, 2003, entitled “Computer Systems and
Methods for the Query and Visualization of Multidimensional Databases,” now U.S. Patent
No. 7,089,266. However, when there are complex data sources and/or multiple data sources,
it may be unclear what type of data visualization to generate (if any) based on a user’s

selections.

[0004] In addition, some systems construct queries that yield data visualizations that
are not what a user expects. In some cases, some rows of data are omitted (e.g., when there is
no corresponding data in one of the fact tables). In some cases, numeric aggregated fields
produce totals that are overstated because the same data value is being counted multiple times.
These problems can be particularly problematic because an end user may not be aware of the

problem and/or not know what is causing the problem.

Date Regue/Date Received 2023-07-20

CA 03153691 2022-03~07

WO 2021/050182 PCT/US2020/045461
SUMMARY

[0005] Generating a data visualization that combines data from multiple tables can be
challenging, especially when there are multiple fact tables. In some cases, it can help to
construct an object model of the data before generating data visualizations. In some instances,
one person is a particular expert on the data, and that person creates the object model. By
storing the relationships in an object model, a data visualization application can leverage that

information to assist all users who access the data, even if they are not experts.

[0006] An object is a collection of named attributes. An object often corresponds to a
real-world object, event, or concept, such as a Store. The attributes are descriptions of the
object that are conceptually at a 1:1 relationship with the object. Thus, a Store object may have
a single [Manager Name] or [Employee Count] associated with it. At a physical level, an object

is often stored as a row in a relational table, or as an object in JSON.

[0007] A class is a collection of objects that share the same attributes. It must be
analytically meaningful to compare objects within a class and to aggregate over them. At a

physical level, a class is often stored as a relational table, or as an array of objects in JSON.

[0008] An object model is a set of classes and a set of many-to-one relationships
between them. Classes that are related by 1-to-1 relationships are conceptually treated as a
single class, even if they are meaningfully distinct to a user. In addition, classes that are related
by 1-to-1 relationships may be presented as distinct classes in the data visualization user
interface. = Many-to-many relationships are conceptually split into two many-to-one

relationships by adding an associative table capturing the relationship.

[0009] Once an object model is constructed, a data visualization application can assist
a user in various ways. In some implementations, based on data fields already selected and
placed onto shelves in the user interface, the data visualization application can recommend
additional fields or limit what actions can be taken to prevent unusable combinations. In some
implementations, the data visualization application allows a user considerable freedom in
selecting fields, and uses the object model to build one or more data visualizations according

to what the user has selected.

[0010] In accordance with some implementations, a method generates data
visualizations. The method is performed at a computer having one or more processors and
memory. The memory stores one or more programs configured for execution by the one or

more processors. The computer receives a visual specification, which specifies a data source,
2

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
a plurality of visual variables, and a plurality of data fields from the data source. Each of the
visual variables is associated with either (i) a respective one or more of the data fields or (ii)
one or more filters, and each of the data fields is identified as either a dimension or a measure.
The computer obtains a data model (or object model) encoding the data source as a tree of
logical tables. Each logical table has its own physical representation and includes a respective
one or more logical fields. Each logical field corresponds to either a data field or a calculation
that spans one or more logical tables. Each edge of the tree connects two logical tables that are
related. The computer generates a dimension subquery based on logical tables that supply the
data fields for the dimensions and the filters. The computer also generates, for each measure,
based on the logical tables that supply the data fields for the respective measure and the filters,
an aggregated measure subquery grouped by the dimensions. The computer forms a final query
by joining, using the dimensions, the dimension subquery to each of the aggregated measure
subqueries. The computer subsequently executes the final query against the data source to
retrieve tuples that comprise distinct ordered combinations of data values for the data fields.
The computer then builds and displays a data visualization according to the data fields in the

tuples and according to the visual variables to which each of the data fields is associated.

[0011] In some implementations, the computer generates each aggregated measure
subquery by performing a sequence of operations. The computer computes a measure sub-tree
of the tree of logical tables. The measure sub-tree is a minimum sub-tree required to supply
the data fields for a respective measure. The computer also computes a dimension-filter sub-
tree of the tree of logical tables. The dimension-filter sub-tree is a minimum sub-tree required
to supply all of the physical inputs for the dimensions and the filters. When the dimension-
filter sub-tree does not share any logical table with the measure sub-tree, the computer adds a
neighboring logical table from the measure sub-tree to the dimension-filter sub-tree. The
computer compiles the measure sub-tree to obtain a measure join tree and compiles the
dimension-filter sub-tree to obtain a dimension-filter join tree. The computer layers
calculations and filters over the measure join tree and the dimension-filter join tree to obtain
an updated measure sub-tree and an updated dimension-filter sub-tree, respectively. The
computer de-duplicates the updated dimension-filter sub-tree by applying a group-by operation
that uses the dimensions and linking fields, which include (1) keys from relationships between
the logical tables and (ii) data fields of calculations shared with the measure sub-tree, to obtain

a de-duplicated dimension-filter sub-tree. The computer combines the de-duplicated

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
dimension-filter sub-tree with the updated measure sub-tree to obtain the aggregated measure

subquery.

[0012] In some implementations, the computer compiles the measure sub-tree by inner

joining logical tables in the measure sub-tree to obtain the measure join tree.

[0013] In some implementations, the computer computes the dimension-filter sub-tree
by performing a sequence of operations. The computer inner joins logical tables in the
dimension-filter sub-tree that are shared with the measure sub-tree, and left-joins (also referred
to as left outer joins) logical tables in the dimension-filter sub-tree that are not shared with the

measure sub-tree, to obtain the dimension-filter join tree.

[0014] In some implementations, the computer combines the de-duplicated dimension-
filter sub-tree with the updated measure sub-tree by performing a sequence of operations. The
computer determines if the de-duplicated dimension-filter sub-tree contains a filter. When the
de-duplicated dimension-filter sub-tree contains a filter, the computer inner-joins the updated
measure-sub-tree with the de-duplicated dimension-filter sub-tree. When the de-duplicated
dimension-filter sub-tree does not contain a filter, the computer left outer-joins the updated

measure-sub-tree with the de-duplicated dimension-filter sub-tree.

[0015] In some implementations, the computer determines if the keys indicate a many-
to-one relationship or a one-to-one relationship between a first logical table and a second
logical table. When the keys indicate a many-to-one relationship between the first logical table
and the second logical table, the computer includes the first table and the second table in the
measure sub-tree, thereby avoiding the group-by in the de-duplication operation for the first

logical table and the second logical table.

[0016] In some implementations, when the dimension-filter sub-tree joins against the
measure sub-tree exclusively along many-to-one and one-to-one links, the computer replaces
tables shared by the measure sub-tree and the dimension-filter sub-tree with the de-duplicated

dimension-filter sub-tree.

[0017] In some implementations, the computer generates the dimension subquery by
inner-joining a first one or more logical tables in the tree of logical tables. Each logical table

of the first one or more logical tables supplies the data fields for a dimension and/or a filter.

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
[0018] In some implementations, the computer forms the final query by joining the
dimensions subquery and the aggregated measure subqueries on the dimensions using outer

joins, and applying a COALESCE after each outer join.

[0019] In some implementations, when the visualization has no dimensions, the
computer performs a full join between the aggregated measure subqueries to form the final
query.

[0020] In accordance with some implementations, a system for generating data
visualizations includes one or more processors, memory, and one or more programs stored in
the memory. The programs are configured for execution by the one or more processors. The

programs include instructions for performing any of the methods described herein.

[0021] In accordance with some implementations, a non-transitory computer readable
storage medium stores one or more programs configured for execution by a computer system
having one or more processors and memory. The one or more programs include instructions

for performing any of the methods described herein.

[0022] Thus methods, systems, and graphical user interfaces are provided for

interactive visual analysis of a data set.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] For a better understanding of the aforementioned implementations of the
invention as well as additional implementations, reference should be made to the Description
of Implementations below, in conjunction with the following drawings in which like reference

numerals refer to corresponding parts throughout the figures.

[0024] Figure 1 illustrates conceptually a process of building a data visualization in

accordance with some implementations.

[0025] Figure 2 is a block diagram of a computing device according to some

implementations.

[0026] Figure 3 is a block diagram of a data visualization server according to some

implementations.

[0027] Figure 4 provides an example data visualization user interface according to

some implementations.

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

[0028] Figure 5A illustrates an example data model (or object model), in accordance

with some implementations.

[0029] Figure 5B illustrates a data visualization, in accordance with some
implementations.
[0030] Figure 5C illustrates a data visualization, in accordance with some
implementations.
[0031] Figure 6A illustrates an example data model or object model, in accordance with

some implementations.

[0032] Figure 6B illustrates a data visualization, in accordance with some
implementations.
[0033] Figure 7 illustrates an example query, in accordance with some
implementations.
[0034] Figure 8A illustrates a data visualization, in accordance with some
implementations.
[0035] Figure 8B illustrates an example query, in accordance with some
implementations.
[0036] Figure 9A illustrates a data visualization, in accordance with some
implementations.
[0037] Figure 9B illustrates an example query, in accordance with some
implementations.
[0038] Figures 10A and 10B illustrates example queries, in accordance with some
implementations.
[0039] Figure 11A illustrates a data visualization, in accordance with some
implementations.
[0040] Figure 11B illustrates an example query, in accordance with some
implementations.
[0041] Figures 11C-11F illustrate data visualizations, in accordance with some
implementations.

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

[0042] Figure 12A illustrates a data visualization, in accordance with some
implementations.
[0043] Figure 12B-12D illustrates example queries, in accordance with some
implementations.
[0044] Figures 13A-13D provide a flowchart of a method for generating data

visualizations using an object model, in accordance with some implementations.
[0045] Like reference numerals refer to corresponding parts throughout the drawings.

[0046] Reference will now be made in detail to implementations, examples of which
are illustrated in the accompanying drawings. In the following detailed description, numerous
specific details are set forth in order to provide a thorough understanding of the present
invention. However, it will be apparent to one of ordinary skill in the art that the present

invention may be practiced without these specific details.

DESCRIPTION OF IMPLEMENTATIONS

[0047] Some implementations of an interactive data visualization application use a data
visualization user interface 102 to build a visual specification 104, as shown in Figure 1. The
visual specification identifies one or more data source 106, which may be stored locally (e.g.,
on the same device that is displaying the user interface 102) or may be stored externally (e.g.,
on a database server or in the cloud). The visual specification 104 also includes visual
variables. The visual variables specify characteristics of the desired data visualization
indirectly according to selected data fields from the data sources 106. In particular, a user
assigns zero or more data fields to each of the visual variables, and the values of the data fields

determine the data visualization that will be displayed.

[0048] In most instances, not all of the visual variables are used. In some instances,
some of the visual variables have two or more assigned data fields. In this scenario, the order
of the assigned data fields for the visual variable (e.g., the order in which the data fields were
assigned to the visual variable by the user) typically affects how the data visualization is

generated and displayed.

[0049] Some implementations use an object model 108 (sometimes called a data
model) to build the appropriate data visualizations. In some instances, an object model applies
to one data source (e.g., one SQL database or one spreadsheet file), but an object model may

encompass two or more data sources. Typically, unrelated data sources have distinct object
7

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
models. In some instances, the object model closely mimics the data model of the physical
data sources (e.g., classes in the object model corresponding to tables in a SQL database).
However, in some cases the object model is more normalized (or less normalized) than the
physical data sources. An object model groups together attributes (e.g., data fields) that have
a one-to-one relationship with each other to form classes, and identifies many-to-one
relationships among the classes. In the illustrations below, the many-to-one relationships are
illustrated with arrows, with the “many” side of each relationship vertically lower than the
“one” side of the relationship. The object model also identifies each of the data fields
(attributes) as either a dimension or a measure. In the following, the letter “D” (or “d”) is used
to represent a dimension, whereas the latter “M” (or “m”) is used to represent a measure. When
an object model 108 is constructed, it can facilitate building data visualizations based on the
data fields a user selects. Because a single object model can be used by an unlimited number
of other people, building the object model for a data source is commonly delegated to a person

who is a relative expert on the data source,

[0050] As a user adds data fields to the visual specification (e.g., indirectly by using
the graphical user interface to place data fields onto shelves), the data visualization application
222 (or web application 322) groups (110) together the user-selected data fields according to
the object model 108. Such groups are called data field sets. In many cases, all of the user-
selected data fields are in a single data field set. In some instances, there are two or more data
field sets. Each measure m is in exactly one data field set, but each dimension d may be in

more than one data field set.

[0051] The data visualization application 222 (or web application 322) queries (112)
the data sources 106 for the first data field set, and then generates a first data visualization 122
corresponding to the retrieved data. The first data visualization 122 is constructed according
to the visual variables 282 in the visual specification 104 that have assigned data fields 284
from the first data field set. When there is only one data field set, all of the information in the
visual specification 104 is used to build the first data visualization 122. When there are two or
more data field sets, the first data visualization 122 is based on a first visual sub-specification
consisting of all information relevant to the first data field set. For example, suppose the
original visual specification 104 includes a filter that uses a data field f. If the field fis included
in the first data field set, the filter is part of the first visual sub-specification, and thus used to

generate the first data visualization 122.

WO 2021/050182 PCT/US2020/045461
[0052] When there is a second (or subsequent) data field set, the data visualization
application 222 (or web application 322) queries (114) the data sources 106 for the second (or
subsequent) data field set, and then generates the second (or subsequent) data visualization 124
corresponding to the retrieved data. This data visualization 124 is constructed according to the
visual variables 282 in the visual specification 104 that have assigned data fields 284 from the

second (or subsequent) data field set.

[0053] Figure 2 is a block diagram illustrating a computing device 200 that can execute
the data visualization application 222 or the data visualization web application 322 to display
a data visualization 122. In some implementations, the computing device displays a graphical
user interface 102 for the data visualization application 222. Computing devices 200 include
desktop computers, laptop computers, tablet computers, and other computing devices with a
display and a processor capable of running a data visualization application 222. A computing
device 200 typically includes one or more processing units/cores (CPUs) 202 for executing
modules, programs, and/or instructions stored in the memory 214 and thereby performing
processing operations; one or more network or other communications interfaces 204; memory
214; and one or more communication buses 212 for interconnecting these components. The
communication buses 212 may include circuitry that interconnects and controls
communications between system components. A computing device 200 includes a user
interface 206 comprising a display 208 and one or more input devices or mechanisms 210. In
some implementations, the input device/mechanism includes a keyboard; in some
implementations, the input device/mechanism includes a “soft” keyboard, which is displayed
as needed on the display 208, enabling a user to “press keys” that appear on the display 208.
In some implementations, the display 208 and input device / mechanism 210 comprise a touch
screen display (also called a touch sensitive display). In some implementations, the display is
an integrated part of the computing device 200. In some implementations, the display is a

separate display device.

[0054] In some implementations, the memory 214 includes high-speed random-access
memory, such as DRAM, SRAM, DDR RAM or other random-access solid-state memory
devices. In some implementations, the memory 214 includes non-volatile memory, such as
one or more magnetic disk storage devices, optical disk storage devices, flash memory devices,
or other non-volatile solid-state storage devices. In some implementations, the memory 214
includes one or more storage devices remotely located from the CPUs 202. The memory 214,

or alternatively the non-volatile memory devices within the memory 214, comprises a non-
9

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

transitory computer-readable storage medium. In some implementations, the memory 214, or

the computer-readable storage medium of the memory 214, stores the following programs,

modules, and data structures, or a subset thereof:

an operating system 216, which includes procedures for handling various basic system

services and for performing hardware dependent tasks;

a communication module 218, which is used for connecting the computing device 200
to other computers and devices via the one or more communication network interfaces
204 (wired or wireless) and one or more communication networks, such as the
Internet, other wide area networks, local area networks, metropolitan area networks,

and so on;

a web browser 220 (or other client application), which enables a user to communicate

over a network with remote computers or devices;

a data visualization application 222, which provides a graphical user interface 102 for
a user to construct visual graphics (e.g., an individual data visualization or a
dashboard with a plurality of related data visualizations). In some implementations,
the data visualization application 222 executes as a standalone application (e.g., a
desktop application). In some implementations, the data visualization application 222

executes within the web browser 220 (e.g., as a web application 322);

a graphical user interface 102, which enables a user to build a data visualization by

specifying elements visually, as illustrated in Figure 4 below;

in some implementations, the user interface 102 includes a plurality of shelf regions
250, which are used to specify characteristics of a desired data visualization. In some
implementations, the shelf regions 250 include a columns shelf 230 and a rows shelf
232, which are used to specify the arrangement of data in the desired data
visualization. In general, fields that are placed on the columns shelf 230 are used to
define the columns in the data visualization (e.g., the x~-coordinates of visual marks).
Similarly, the fields placed on the rows shelf 232 define the rows in the data
visualization (e.g., the y-coordinates of the visual marks). In some implementations,
the shelf regions 250 include a filters shelf 262, which enables a user to limit the data
viewed according to a selected data field (e.g., limit the data to rows for which a
certain field has a specific value or has values in a specific range). In some

implementations, the shelf regions 250 include a marks shelf 264, which is used to
10

WO 2021/050182 T PCT/US2020/045461
specify various encodings of data marks. In some implementations, the marks shelf
264 includes a color encoding icon 270 (to specify colors of data marks based on a
data field), a size encoding icon 272 (to specify the size of data marks based on a data
field), a text encoding icon (to specify labels associated with data marks), and a view
level detail icon 228 (to specify or modify the level of detail for the data

visualization);

« visual specifications 104, which are used to define characteristics of a desired data
visualization. In some implementations, a visual specification 104 is built using the
user interface 102. A visual specification includes identified data sources 280 (i.e.,
specifies what the data sources are), which provide enough information to find the
data sources 106 (e.g., a data source name or network full path name). A visual
specification 104 also includes visual variables 282, and the assigned data fields 284
for each of the visual variables. In some implementations, a visual specification has
visual variables corresponding to each of the shelf regions 250. In some
implementations, the visual variables include other information as well, such as
context information about the computing device 200, user preference information, or
other data visualization features that are not implemented as shelf regions (e.g.,

analytic features);

e one or more object models 108, which identify the structure of the data sources 106.
In an object model, the data fields (attributes) are organized into classes, where the
attributes in each class have a one-to-one correspondence with each other. The object
model also includes many-to-one relationships between the classes. In some
instances, an object model maps each table within a database to a class, with many-to-
one relationships between classes corresponding to foreign key relationships between
the tables. In some instances, the data model of an underlying source does not cleanly
map to an object model in this simple way, so the object model includes information
that specifies how to transform the raw data into appropriate class objects. In some
instances, the raw data source is a simple file (e.g., a spreadsheet), which is

transformed into multiple classes;

a data visualization generator 290, which generates and displays data visualizations
according to visual specifications. In accordance with some implementations, the

data visualization generator 290 uses an object model 108 to generate queries 294

11

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
(e.g., dimension subqueries, aggregated measure subqueries, and/or final queries)
and/or optimize queries using query optimizers 292. The details of the query
generation and optimization techniques are described below in reference to Figures

5A-11, according to some implementations.

e visualization parameters 236, which contain information used by the data
visualization application 222 other than the information provided by the visual

specifications 104 and the data sources 106; and

e zero or more databases or data sources 106 (e.g., a first data source 106-1), which are
used by the data visualization application 222. In some implementations, the data
sources can be stored as spreadsheet files, CSV files, XML files, flat files, JSON files,

tables in a relational database, cloud databases, or statistical databases.

[0055] Each of the above identified executable modules, applications, or set of
procedures may be stored in one or more of the previously mentioned memory devices, and
corresponds to a set of instructions for performing a function described above. The above
identified modules or programs (i.e., sets of instructions) need not be implemented as separate
software programs, procedures, or modules, and thus various subsets of these modules may be
combined or otherwise re-arranged in various implementations. In some implementations, the
memory 214 stores a subset of the modules and data structures identified above. In some
implementations, the memory 214 stores additional modules or data structures not described

above.

[0056] Although Figure 2 shows a computing device 200, Figure 2 is intended more as
functional description of the various features that may be present rather than as a structural
schematic of the implementations described herein. In practice, and as recognized by those of
ordinary skill in the art, items shown separately could be combined and some items could be

separated.

[0057] Figure 3 is a block diagram of a data visualization server 300 in accordance with
some implementations. A data visualization server 300 may host one or more databases 328
or may provide various executable applications or modules. A server 300 typically includes
one or more processing units/cores (CPUs) 302, one or more network interfaces 304, memory
314, and one or more communication buses 312 for interconnecting these components. In some
implementations, the server 300 includes a user interface 306, which includes a display 308
and one or more input devices 310, such as a keyboard and a mouse. In some implementations,

12

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
the communication buses 312 includes circuitry (sometimes called a chipset) that interconnects

and controls communications between system components.

[0058] In some implementations, the memory 314 includes high-speed random-access
memory, such as DRAM, SRAM, DDR RAM, or other random-access solid-state memory
devices, and may include non-volatile memory, such as one or more magnetic disk storage
devices, optical disk storage devices, flash memory devices, or other non-volatile solid-state
storage devices. In some implementations, the memory 314 includes one or more storage
devices remotely located from the CPU(s) 302. The memory 314, or alternatively the non-
volatile memory devices within the memory 314, comprises a non-transitory computer-

readable storage medium.

[0059] In some implementations, the memory 314, or the computer-readable storage
medium of the memory 314, stores the following programs, modules, and data structures, or a
subset thereof:

e an operating system 316, which includes procedures for handling various basic system

services and for performing hardware dependent tasks;

e anetwork communication module 318, which is used for connecting the server 300 to
other computers via the one or more communication network interfaces 304 (wired or
wireless) and one or more communication networks, such as the Internet, other wide

area networks, local area networks, metropolitan area networks, and so on;

e aweb server 320 (such as an HTTP server), which receives web requests from users

and responds by providing responsive web pages or other resources;

e a data visualization web application 322, which may be downloaded and executed by
a web browser 220 on a user’s computing device 200. In general, a data visualization
web application 322 has the same functionality as a desktop data visualization
application 222, but provides the flexibility of access from any device at any location
with network connectivity, and does not require installation and maintenance. In
some implementations, the data visualization web application 322 includes various
software modules to perform certain tasks. In some implementations, the web
application 322 includes a user interface module 324, which provides the user
interface for all aspects of the web application 322. In some implementations, the
user interface module 324 specifies shelf regions 250, as described above for a
computing device 200;

13

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

[0060]

the data visualization web application also stores visual specifications 104 as a user
selects characteristics of the desired data visualization. Visual specifications 104, and

the data they store, are described above for a computing device 200;
one or more object models 108, as described above for a computing device 200;

a data visualization generator 290, which generates and displays data visualizations
according to user-selected data sources and data fields, as well as one or more object
models 108, which describe the data sources 106. The operation of the data

visualization generator is described above with respect to a computing device 200;

in some implementations, the web application 322 includes a data retrieval module
326, which builds and executes queries to retrieve data from one or more data sources
106. The data sources 106 may be stored locally on the server 300 or stored in an
external database 328. In some implementations, data from two or more data sources
may be blended. In some implementations, the data retrieval module 326 uses a
visual specification 104 to build the queries, as described above for the computing

device 200 in Figure 2;

in some implementations, the memory stores visualization parameters 236, as

described above fore the computing device 200; and

one or more databases 328, which store data used or created by the data visualization
web application 322 or data visualization application 222. The databases 328 may
store data sources 106, which provide the data used in the generated data
visualizations. Each data source 106 includes one or more data fields 330. In some
implementations, the database 328 stores user preferences. In some implementations,
the database 328 includes a data visualization history log 334. In some
implementations, the history log 334 tracks each time the data visualization renders a

data visualization.

The databases 328 may store data in many different formats, and commonly

includes many distinct tables, each with a plurality of data fields 330. Some data sources

comprise a single table. The data fields 330 include both raw fields from the data source (e.g.,

a column from a database table or a column from a spreadsheet) as well as derived data fields,

which may be computed or constructed from one or more other fields. For example, derived

data fields include computing a month or quarter from a date field, computing a span of time

between two date fields, computing cumulative totals for a quantitative field, computing

14

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
percent growth, and so on. In some instances, derived data fields are accessed by stored
procedures or views in the database. In some implementations, the definitions of derived data
fields 330 are stored separately from the data source 106. In some implementations, the
database 328 stores a set of user preferences for each user. The user preferences may be used
when the data visualization web application 322 (or application 222) makes recommendations
about how to view a set of data fields 330. In some implementations, the database 328 stores
a data visualization history log 334, which stores information about each data visualization
generated. In some implementations, the database 328 stores other information, including other
information used by the data visualization application 222 or data visualization web application
322. The databases 328 may be separate from the data visualization server 300, or may be

included with the data visualization server (or both).

[0061] In some implementations, the data visualization history log 334 stores the visual
specifications 104 selected by users, which may include a user identifier, a timestamp of when
the data visualization was created, a list of the data fields used in the data visualization, the
type of the data visualization (sometimes referred to as a “view type” or a “chart type”), data
encodings (e.g., color and size of marks), the data relationships selected, and what connectors
are used. In some implementations, one or more thumbnail images of each data visualization
are also stored. Some implementations store additional information about created data
visualizations, such as the name and location of the data source, the number of rows from the
data source that were included in the data visualization, version of the data visualization

software, and so on.

[0062] Each of the above identified executable modules, applications, or sets of
procedures may be stored in one or more of the previously mentioned memory devices, and
corresponds to a set of instructions for performing a function described above. The above
identified modules or programs (i.e., sets of instructions) need not be implemented as separate
software programs, procedures, or modules, and thus various subsets of these modules may be
combined or otherwise re-arranged in various implementations. In some implementations, the
memory 314 stores a subset of the modules and data structures identified above. In some
implementations, the memory 314 stores additional modules or data structures not described

above.

[0063] Although Figure 3 shows a data visualization server 300, Figure 3 is intended

more as a functional description of the various features that may be present rather than as a

15

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
structural schematic of the implementations described herein. In practice, and as recognized
by those of ordinary skill in the art, items shown separately could be combined and some items
could be separated. In addition, some of the programs, functions, procedures, or data shown
above with respect to a server 300 may be stored or executed on a computing device 200. In
some implementations, the functionality and/or data may be allocated between a computing
device 200 and one or more servers 300. Furthermore, one of skill in the art recognizes that
Figure 3 need not represent a single physical device. In some implementations, the server
functionality is allocated across multiple physical devices that comprise a server system. As
used herein, references to a “server” or “data visualization server” include various groups,
collections, or arrays of servers that provide the described functionality, and the physical
servers need not be physically collocated (e.g., the individual physical devices could be spread

throughout the United States or throughout the world).

[0064] Figure 4 shows a data visualization user interface 102 in accordance with some
implementations. The user interface 102 includes a schema information region 410, which is
also referred to as a data pane. The schema information region 410 provides named data
elements (e.g., field names) that may be selected and used to build a data visualization. In
some implementations, the list of field names is separated into a group of dimensions and a
group of measures (typically numeric quantities). Some implementations also include a list of
parameters. The graphical user interface 102 alsoincludes a data visualization region 412. The
data visualization region 412 includes a plurality of shelf regions 250, such as a columns shelf
region 230 and a rows shelf region 232. These are also referred to as the column shelf 230 and
the row shelf 232. In addition, this user interface 102 includes a filters shelf 262, which may

include one or more filters 424.

[0065] As illustrated here, the data visualization region 412 also has a large space for
displaying a visual graphic. Because no data elements have been selected yet in this

illustration, the space initially has no visual graphic.

[0066] A user selects one or more data sources 106 (which may be stored on the
computing device 200 or stored remotely), selects data fields from the data source(s), and uses
the selected fields to define a visual graphic. The data visualization application 222 (or web
application 322) displays the generated graphic 122 in the data visualization region 412. In

some implementations, the information the user provides is stored as a visual specification 104.

16

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
[0067] In some implementations, the data visualization region 412 includes a marks
shelf 264. The marks shelf 264 allows a user to specify various encodings 426 of data marks.
In some implementations, the marks shelf includes a color encoding icon 270, a size encoding
icon 272, a text encoding icon 274, and/or a view level detail icon 228, which can be used to

specify or modify the level of detail for the data visualization.

[0068] In some implementations, data visualization platforms enable users to build
visualizations through drag and drop actions using a single logical table, even when the data
comes from multiple physical tables. The logical table can be constructed by physical
modeling, which can include pivots, joins, and unions. Tables combined through physical
modeling represent logical tables themselves. In some data visualization platforms, such as
Tableau, a query generation model automatically maps user actions to underlying queries of

data from the physical tables.

[0069] In some implementations, an analyst creates an object model, an example of
which is shown in Figure 5A, which has six logical tables. For the example in Figure 5A, each
table has its own measure granularity, which is better modeled as a logical table, regardless of
the actual physical storage of the data. The example object model includes a Line Items table
502 that has a join 514 to an Orders table 504 and another join 516 to a Products table 506.
The example also shows the Orders table 504 having a join 518 to an Addresses table 508 and
another join 520 to a Customers table 510. The Addresses table 508 has a join 522 to a States
table 512.

[0070] Suppose a user creates the visualization 530 shown in Figure SB. In this case,
Sales 524 is a measure from the Line Items table 502 and Population 526 is a measure from the
States table 512. While it is possible to derive the correct result for Sales, the data visualization
has overstated measure values for Population. For this example, the population is indicated as
billions of people 528 for some states. The reason for this duplication is that the data
visualization framework queried all the tables joined together. The granularity of this join tree
is that of Line Items 502. In other words, each row represents a line item and will contain a
column containing the population of the state in which the line item occurred. Thus,
SUM(Population) will yield the state’s population multiplied by the number of line items for
that state. This problem occurs because the six conceptually logical tables were treated as a

single logical table.

17

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
[0071] One solution to fix the measure duplication is to use Level of Detail
calculations. For instance, the calculation {Fixed [State (States)]: MIN([Population])} can be
rewritten to get Population aggregated to its native granularity. Figure 5C illustrates a data
visualization 540 after using the Level of Detail calculations 532, in accordance with some
implementations. As shown, the population is correctly displayed in millions 536 (instead of
in billions as incorrectly displayed in Figure 5B). A key downside to this approach, however,
is that it requires the analyst to become aware of the duplication as well as understand the
semantics of these calculations. In addition, the default axis label 534 is a complex pression
rather than “Population.” Disclosed implementations provide an alternative solution that is

performed by the data visualization application automatically.

[0072] To overcome at least some of these problems, some implementations include a
method for mapping drag and drop actions to more granular logical models. Instead of a single
logical table, some implementations operate over a tree of logical tables where each node is a

logical table (with its own physical representation), and each edge is a link between two tables.

[0073] Some implementations handle situations where primary keys for one or more
logical tables are unknown or cannot be ascertained (without more complex analysis). In other
words, the primary keys for the logical tables are missing. Primary keys are a powerful tool

for recovering a table’s granularity.

[0074] Some implementations handle multiple relationship cardinalities between
logical tables. Relationships may be many-to-one, one-to-one, or many-to-many. Some
implementations treat unknown relationship types as many-to-many. Some implementations
use relationship information to recover primary keys. For instance, the fields in the “one” side

of a relation contain the primary key.

[0075] In the following description, logical fields refer to either data fields that arise
from underlying representations inside logical tables (e.g., fields from the physical database

tables backing a logical table), or calculations with inputs that span logical tables.

[0076] Figure 6A illustrates a object model as a logical tree, according to some
implementations. As indicated by the numerals, the tables correspond to the tables in the
example shown in Figure SA. Each logical table has a many-to-one relationship with its

neighbor on the right. Sometimes, the relationships have unknown cardinalities.

[0077] Some implementations map user actions to visualizations with proper measure

aggregation. Some implementations leverage the logical tree structure to generate a
18

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
visualization (an example of which is shown in Figure 6B) with measures aggregated at their
native granularities. Thus, for the example described above in reference to Figure 5A, an

analyst can obtain the proper Population values without having to add new calculations.

[0078] Some implementations calculate full domain values. To illustrate, suppose the
full set of states is contained within the States table 512. For the visualization in Figure 6B,
not all states may have had sales. As a result, if all the tables are joined together using an inner
join, a visualization framework can drop states without sales (e.g., Alaska and Hawaii). One
solution is to use a partial or full outer join to keep all the states. Some implementations
generate a visualization that contains the full domain by first querying the logical tables that

are necessary to compute the dimension values.

[0079] Some implementations ensure measure values are represented or preserved even
as new dimensions are added. For instance, due to a missing or malformed foreign key, a sale
may not have a state. If the tables were inner joined together, the sales values would get
dropped. Some implementations avoid this problem by querying the tables needed to get the
full measure values and using left joins to ensure that missing dimensions do not cause
measures to get dropped. For the example above, Sales without states are encoded by the

“Null” state.

[0080] Some implementations query fewer tables than would be necessary with
solutions that do not use the tree of logical tables. For the example above, alternate frameworks
would have queried a join tree of all six tables shown in Figure 6A. With the techniques
disclosed herein, a data visualization framework can recognize that only the Line Items table
502, the Orders table 504, the Addresses table 508, and the States tables 512 have to be queried,
since these are the logical tables that contain the dimension and measure values or are along

the join paths for these tables.

[0081] Some implementations leverage or incorporate primary key and cardinality
information when such information is available, although the techniques yield correct results
even in the worst case (e.g., when all the links or relationships between the logical tables are
many-to-many, or when there are no known primary keys for the logical tables). Some

implementations incorporate such information to generate simpler queries.

[0082] Some implementations map a description of a visualization to a high-level query
representation that includes dimensions, measures, and filters. Traditional implementations
assume a single logical table while converting this representation into a lower-level query

19

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
representation. The techniques described herein, on the other hand, generate queries that
encode the semantics of a tree of logical tables. Some implementations generate a subquery
that contains the dimensions and a subquery for each aggregated measure (grouped by the
dimensions). Some implementations join these subqueries together on the dimensions, as

further described below.

Generating Subqueries

[0083] To generate a dimension subquery, some implementations join all the logical
tables that contain a dimension field, or join these tables together, and group by the set
dimensions. When generating the measure subquery, some implementations generate a flat
table at the granularity of the measure that contains the measure’s input fields (in the case of a
logical measure) and the dimensions. Some implementations apply the aggregate with a group
by on the dimensions. In the following discussions, a non-logical field (i.e., a non-calculated

field) is sometimes called a physical field, and logical tables are sometimes called tables.

[0084] For each measure, some implementations generate the flat table at the measure’s
granularity using an algorithm. The algorithm includes collecting the physical input fields for
the dimensions, the measure, and the filters. The algorithm also includes computing a
minimum sub-tree (called the physical sub-tree) needed for all the physical input fields. The
algorithm further includes computing another minimum subtree (called the measure-sub-tree)

needed to supply all the physical inputs for the measure.

[0085] The algorithm further includes partitioning the sub-tree into sub-tree
components. The trees emanating from the measure subtree are called the dimension-filter
subtrees. At this point, the measure and dimension-filter subtrees are disjoint. It is possible
that logical fields or filters will span into or across the measure subtree. In that case, the
algorithm includes creating a dimension-measure subtree that merges one or more dimension-
filter subtrees with the minimum set of tables (e.g., neighboring tables) from the measure

subtree.

[0086] The algorithm also includes assigning the logical fields and filters to the
subtrees that contains all their inputs. The algorithm further includes layering the logical fields
and filters on top of the join tree consisting of all the tables in the subtree joined together. Some
implementations inner join tables that are in the measure subtree and left outer join the other

tables along the paths emanating from the measure tables.

20

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
[0087] Some implementations de-duplicate each dimension (and, if applicable, the
dimension/measure) subtree on the dimensions and using linking fields. The structure of the
de-duplication step is a “Group By” on a set of fields and a MAX on the rest of the fields.
Some implementations use a set of linking fields that include (i) physical fields (sometimes
called physical input fields or data fields) from the measure tables needed to compute logical
dimension fields and filters, and (i1) relationship fields that link this subtree against the measure
subtree. Some implementations left outer join all the subtrees, starting from the measure
subtree, together. If a dimension subtree has a filter, then some implementations add a constant
calculation to the dimension subtree and add a filter on top of the join to determine that this

calculation is not null.

[0088] The following example illustrates an application of the algorithm described
above, according to some implementations. For the visualization example discussed above in
reference to Figures SA-5C and 6A-6B, the pre-aggregate sub-query for States and Population
is simply the States table 512. The query for State and Sales is shown in Figure 7, in accordance
with some implementations. The physical subtree consists of the Line Items table 502 (for the
measure), the States table 512 (for the dimension), as well as the Orders table 504, and the
Addresses table 508, since these tables are needed for supplying the physical input fields. For
this example, the measure subtree is Line Items and there is a single dimension subtree that
contains the other three tables. Some implementations group (704) the dimension subtree by
the dimension (States) and the key (indicated as ‘PK’ for primary key) from the spanning
relationship between the Line Items table 502 and the dimension subtree. In this case, the
dimension subtree joins (702) via the link between the Line Items table 502 and the Orders
table 504. Some implementations join the measure and dimension subtrees via this link. The
joins 702, 706, and 708 are left outer joins, emanating from the measure subtree, to ensure that

rows in the Line Items table with missing states are not lost.

[0089] Referring next to Figures 8A and 8B, suppose a user created a calculation that
spanned logical tables, such as [Full City Name] = [City Name] + “, “ + [State Name], where
[City Name] comes from the Addresses table 508 and [State Name] came from the States table
512. Figure 8A illustrates a data visualization 800 in this scenario, in accordance with some
implementations. The query for the visualization is shown in Figure 8B, in accordance with
some implementations. The physical join tree includes the States table 512 (for the measure

and dimension) and the Addresses table 508 (for the dimension).

21

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
[0090] For this example, the measure subtree is States, and the dimension subtree
includes a logical dimension field 804 that spans the Addresses table 508 and the States table
512. Thus, this example shown an instance of a dimension-measure subtree. Some
implementations join (802) this subtree to the measure subtree using the relationships between
the measure tables and rest of the tables in the dimension-measure subtree. Some
implementations de-duplicate (806) the dimension-measure subtree using the dimension (Full
City Name), the joining relationship (State foreign key (FK)), as well as the physical input of
the dimension that falls in the measure part of the dimension-measure subtree (State Name).
Subsequently, some implementations join (808) using the key from the relationship and the

physical input field.

[0091] Referring next to Figures 9A and 9B, suppose a user wants to create a
visualization 900 of sum of Sales, by Ship Mode, filtered to the “Technology” category. Some
implementations generate the query shown in Figure 9B. The physical join tree is the Line
Items table 502 (for the measure), the Orders table 504 (for the dimension), and the Products
table 506 (for the filter). The measure subtree is the Line Items table 502. In this case, there
are two disjoint dimension subqueries: Orders (for the dimension) and Products (for the filter
906). Some implementations left outer join (902) the measure subquery (sometimes called the
measure subtree) and a de-duplicated Ship Mode dimension subquery 904 on the keys from the
relationship. Next, some implementations left join (912) this result with the de-duplicated
dimension subquery 908. Some implementations add a sentinel calculation (e.g., the sentinel
910) on top of filters (e.g., the filters 906 and 914). Some implementations add a filter to only
keep rows for which the sentinel value is non-null to ensure that the filter is respected, given
the left outer joins. Some implementations swap the order in which the dimension and

dimension-measure subgraphs are joined while obtaining the same results.

[0092] Figures 10A and 10B illustrate examples of optimized queries, in accordance
with some implementations. Some implementations generate optimized queries when

information about relationship cardinalities and/or primary keys is available.

[0093] In some implementations, when computing the measure subtree component, the
system pulls in tables that can be reached via chains of many-to-one or one-to-one links. To
illustrate, for the States and Line Items subquery described above in reference to Figure 7, some
implementations leverage the fact that all the links are many-to-one to expand the measure

subtree to include all the tables. This query, illustrated in Figure 10A, is simpler than before.

22

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
In particular, unlike the query in Figure 7, the query shown in Figure 10A does not have any
“Group-By” operations (e.g., the operation 704). Some implementations perform this
optimization without knowing all the cardinalities of the edges. For example, the optimization
requires only knowing that the three relationships between the tables 502, 504, 508, and 512,
are many-to-one, but it does not require knowing any information about the rest of the tree (the
object model shown in the Figure SA). Even with partial information, some implementations
generate optimized queries. For example, if it were known that the Line Items — Orders link
was many-to-one, some implementations perform partial optimization by including the Line
Items and Orders tables in the measure subtree, and the Addresses table joined to the States

tables in the measure subtree.

[0094] In some implementations, if the dimension/measure subtree joins against the
measure subtree exclusively along many-to-one and one-to-one links, then when computing
the measure subtree, the set of tables shared by the measure and dimension/measure subtree is
replaced with the de-duplicated dimension/measure subtree. To illustrate, for the query in the
example described above in reference to Figure 8B, if it is known that the relationship between
Addresses and States is many-to-one, some implementations simplify the query as shown in
Figure 10B. This optimization is based on the fact that the dimension-measure subtree links to

the measure subtree exclusively via many-to-one links (in this case Addresses-States).

Combining Subqueries

[0095] Given a dimension subtree and a subtree for each aggregated measure, some
implementations combine these queries to form a final query using outer joins. Some
implementations join on the dimensions in the visualization and, after each join, apply a
COALESCE on the left and right instances of each dimension. Figure 11A illustrates a data
visualization 1100 that displays sums of Population and Sales (described above), grouped by
Region and Category. Some implementations combine the subqueries to form a final query
1102, as shown in Figure 11B, for the visualization shown in Figure 11A. In some
implementations, each subquery (e.g., the subqueries 1104 and 1106) has a different domain.
Figure 11C illustrates a data visualization 1120 for the dimension subquery (for the example
in Figure 11B), in accordance with some implementations. Figure 11D illustrates a data
visualization 1130 for the subquery for Sum of Sales (with the dimensions), according to some
implementations. Figure 11E illustrates a data visualization 1140 for the subquery for Sum of

Population (with the dimensions), according to some implementations.

23

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
[0096] In some implementations, outer joins ensure that all combinations of the
dimensions that appear in at least one subquery are represented. The coalesces ensure that after
a join, that all non-null values for each dimension are represented. For instance, (Region,
Category) = (Central, Null) only appears on the right side of the outer join when joining in the
Population subquery against the rest of the query. If the left side version of the dimensions is
chosen, this would result in the erroneous result ((Null, Null). Similarly, if the right side
version of the dimensions is chosen, then that would result in (Null, Furniture) from the Sum

of Sales subquery.

[0097] Some implementations perform full joins between the measure subqueries for
visualizations without dimensions (e.g., for the visualization 1150 shown in Figure 11F

corresponding to sums of Sales and Population).

[0098] Some implementations generate visualizations based on the object model for
complex queries. To illustrate, suppose a user created a calculation that spanned logical tables
such as [Tax Adjusted Sales] = [Sales] * [Sales Tax Rate]. Here, [Sales] comes from the Line
Items table 502 and [Sales Tax Rate] comes from the States table 512. Suppose the query also
includes a filter predicate calculation of [Segment] = 'Home Office’ AND [Region] = 'East’,
where [Segment] from the Customers table 510 and [Region] comes from the Addresses table
508. Now, further suppose that the user wants to create the visualization SUM([Tax Adjusted
Sales]) grouped by Category, where the filter predicate is true. Figure 12A illustrates a data
visualization 1200 generated using the techniques described herein, according to some

implementations.

[0099] Assuming the relationship cardinalities are unknown, some implementations
generate a final query 1202 shown in Figure 12B to compute the measure at its native
granularity. For this example, the physical join tree includes the Line Items table 502, the
Orders table 504, the Addresses table 508, and the States table 512 (for the measure), the
Products table 506 (for a dimension) and the Customers table 510 (which we need for the filter).
The measure is a logical field that spans the Line Items, Orders, Addresses and States tables.
The measure subtree comprises these tables inner joined together. Some implementations also

layer on the definition for [Tax Adjusted Sales].

[00100] Some implementations start with two dimension subtrees: Products and
Customers. Since the filter on the predicate spans from Customers across to Addresses, some

implementations generate a dimension-measure subtree of Orders, Addresses and Customers.

24

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
For the subtree corresponding to Category, some implementations group Products by Category
and the linking key (Product PK) and left join this to the measure subtree. For the dimension-
measure subtree, some implementations inner join the tables from the measure subtree together
and the left join Customers. Some implementations add the filter predicate logical field and
apply the filter. The filter predicate is a calculation with a physical input in the measure subtree
[Region]. Therefore, some implementations de-duplicate this subtree on the relationship fields
from the Customer-Orders link (since that is the link at which the dimension-only objects links
to the measure objects) as well as [Region]. Some implementations join the dimension-

measure subtree against the rest of the query using these fields as well.

[00101] Some implementations simplify the query described above in reference to
Figure 12B. If it is known that the Orders-Customers link is many-to-one, some
implementations simplify the query by eliminating the need of the dimension-subquery
(because it is known that Customers can be safely joined to the measure subtree without
impacting the granularity, as described above in reference to Figure 10A). Figure 12C
illustrates an example of the optimized query 1204, according to some implementations.
Similarly, if it is known that the Line Items-Products link is many-to-one, some
implementations apply similar logic to reduce or simplify the query even further as shown by

the optimized query 1206 in Figure 12D.

[00102] Figures 13A-13D provide a flowchart of a method 1300 for generating (1302)
data visualizations using an object model according to the techniques described above, in
accordance with some implementations. The method 1300 is performed (1304) at a computing
device 200 having one or more processors and memory. The memory stores (1306) one or

more programs configured for execution by the one or more processors.

[00103] The computer receives (1308) a visual specification 104, which specifies one or
more data sources 106, a plurality of visual variables 282, and a plurality of data fields 284
from the one or more data sources 106. Each of the visual variables 282 is associated with
either (1) a respective one or more of the data fields 284 or (ii) one or more filters, and each of
the data fields 284 is identified as either a dimension or a measure. In some implementations,
the visual specification 104 includes one or more additional visual variables that are not
associated with any data fields 330 from the one or more data sources 106. In some
implementations, each of the visual variables 282 is one of: rows attribute, columns attribute,

filter attribute, color encoding, size encoding, shape encoding, or label encoding.

25

WO 2021/050182 T PCT/US2020/045461
[00104] The computer obtains (1310) a data model encoding the data source as a tree of
logical tables. Each logical table has its own physical representation and includes a respective
one or more logical fields. Each logical field corresponds to either a data field or a calculation
that spans one or more logical tables. Each edge of the tree connects two logical tables that are
related. The computer generates (1312) a dimension subquery based on logical tables that
supply the data fields for the dimensions and the filters. In some implementations, the
computer generates the dimension subquery by inner-joining (1314) a first one or more logical
tables in the tree of logical tables, wherein each logical table of the first one or more logical

tables supplies the data fields for a dimension or a filter.

[00105] The computer also generates (1316), for each measure, based on the logical
tables that supply the data fields for the respective measure and the filters, an aggregated

measure subquery grouped by the dimensions.

[00106] Referring next to Figure 13B, the computer forms (1318) a final query by
joining, using the dimensions, the dimension subquery to each of the aggregated measure
subqueries. In some implementations, the computer forms the final query by joining (1320)
the dimensions subquery and the aggregated measure subqueries on the dimensions using outer
joins, and applying a COALESCE after each outer join. In some implementations, when the
visualization has no dimensions, the computer performs (1322) a full join between the
aggregated measure subqueries to form the final query. Some implementations use a special
table (called Table Dee in some Tableau products) with an empty schema and a single row to
represent visualizations without dimensions, and determine if a given visualization has no
dimensions by checking if a base table in the dimensions subquery is the special table. Some
implementations also use the special table for constant values. For example, SUM(1) is
evaluated to the value 1 projected on top of the special table. Since the special table has one
row, SUM(1) evaluates to the value 1. In some implementations, if none of a logical field’s

inputs belong to any table, the field is evaluated using the special table.

[00107] The computer subsequently executes (1324) the final query against the data
source to retrieve tuples that comprise distinct ordered combinations of data values for the data
fields. The computer then builds and displays (1326) a data visualization (e.g., in the graphical
user interface 102 for the computing device 200) according to the data fields in the tuples and

according to the visual variables to which each of the data fields is associated.

26

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
[00108] Referring next to Figure 13C, in some implementations, the computer generates
each aggregated measure subquery by performing a sequence of operations. The computer
computes (1328) a measure sub-tree of the tree of logical tables. The measure sub-tree is a
minimum sub-tree required to supply the data fields for a respective measure. In some
implementations, the computer compiles (1330) the measure sub-tree by inner joining logical
tables in the measure sub-tree to obtain the measure join tree. Using an inner-join helps ensure
that the order of joins does not matter, thereby providing consistent semantics when computing
granularity. Inner joins provide native-level granularity for measures. There will be multiple
tables in the measure sub-tree only if it is a calculation. Most of the time, though, the measure
sub-tree includes a single table. When a calculated field spans multiple tables, the field’s native
granularity is its inputs joined together. The computer also computes (1332) a dimension-filter
sub-tree from the tree of logical tables. The dimension-filter sub-tree is a minimum sub-tree
required to supply all the physical inputs for the dimensions and the filters. (For a non-
calculated dimension field, the physical input is the dimension field itself. For a calculated
dimension, the physical inputs are all the data fields needed to calculate the dimension.) In
some implementations, the computer computes the dimension-filter sub-tree by inner joining
(1334) logical tables in the dimension-filter sub-tree that are shared with the measure sub-tree,
and left-joining logical tables in the dimension-filter sub-tree that are not shared with the
measure sub-tree, to obtain the dimension-filter join tree. Suppose there is a calculated measure
that spans multiple tables in a many-to-one relationship. There needs to be separate instances
of that calculation for every distinct combination of rows that can be combined. The inner-join

produces that set of rows.

[00109] When the dimension-filter sub-tree does not share any logical table with the
measure sub-tree, the computer adds (1336) a neighboring logical table from the measure sub-
tree to the dimension-filter sub-tree. The computer compiles (1338) the measure sub-tree to
obtain a measure join tree and compiles the dimension-filter sub-tree to obtain a dimension-
filter join tree. Referring next to Figure 13D, the computer layers (1340) calculations and
filters over the measure join tree and the dimension-filter join tree to obtain an updated measure
sub-tree and an updated dimension-filter sub-tree, respectively. The computer de-duplicates
(1342) the updated dimension-filter sub-tree by applying a Group-By operation (GB) that uses
the dimensions and linking fields that include (i) keys from relationships (e.g., the primary key
is equal to the foreign key) between the logical tables and (i1) data fields of calculations shared

with the measure sub-tree, to obtain a de-duplicated dimension-filter sub-tree. Suppose there

27

CA 03153691 2022-03-07
WO 2021/050182 PCT/US2020/045461
is a dimension that is a calculation. Suppose further that the calculation has physical input
fields (sometimes called data fields) that are in the measure part of the dimension-filter sub-
tree. Those fields are also linking fields. The Group-By operation finds unique set of
dimensions. Some implementations use the linking fields to join back. In some instances,
when there are calculations that share fields with the measure sub-tree, some implementations
recover the unique rows that the measure came from. In such instances, the joins acts like

quasi-packing together primary keys for the measure sub-tree.

[00110] The computer subsequently combines (1344) the de-duplicated dimension-filter

sub-tree with the updated measure sub-tree to obtain the aggregated measure subquery.

[00111] In situations when there are primary keys, some implementations do not use a
dimension-filter sub-tree. In such cases, some implementations combine primary keys of all

the tables of the measure sub-tree.

[00112] In some implementations, the computer combines the de-duplicated dimension-
filter sub-tree with the updated measure sub-tree by performing a sequence of operations. The
computer determines if the de-duplicated dimension-filter sub-tree contains a filter. When the
de-duplicated dimension-filter sub-tree contains a filter, the computer (1346) inner-joins the
updated measure-sub-tree with the de-duplicated dimension-filter sub-tree. When the de-
duplicated dimension-filter sub-tree does not contain a filter, the computer left outer-joins

(1348) the updated measure-sub-tree with the de-duplicated dimension-filter sub-tree.

[00113] In some implementations, the computer determines if the keys indicate a many-
to-one relationship or a one-to-one relationship between a first logical table and a second
logical table. When the keys indicate many-to-one relationship between the first logical table
and the second logical table, the computer includes (1350) the first table and the second table
in the measure sub-tree, thereby avoiding the Group-By in the de-duplication operation for the

first logical table and the second logical table.

[00114] In some implementations, when the dimension-filter sub-tree joins against the
measure sub-tree exclusively along many-to-one and one-to-one links, the computer replaces
(1352) tables shared by the measure sub-tree and the dimension-filter sub-tree with the de-

duplicated dimension-filter sub-tree.

[00115] The terminology used in the description of the invention herein is for the
purpose of describing particular implementations only and is not intended to be limiting of the

invention. As used in the description of the invention and the appended claims, the singular
28

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

Er N1

forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context
clearly indicates otherwise. It will also be understood that the term “and/or” as used herein
refers to and encompasses any and all possible combinations of one or more of the associated
listed items. It will be further understood that the terms “comprises” and/or “comprising,”
when used in this specification, specify the presence of stated features, steps, operations,
elements, and/or components, but do not preclude the presence or addition of one or more other

features, steps, operations, elements, components, and/or groups thereof.

[00116] The foregoing description, for purpose of explanation, has been described with
reference to specific implementations. However, the illustrative discussions above are not
intended to be exhaustive or to limit the invention to the precise forms disclosed. Many
modifications and variations are possible in view of the above teachings. The implementations
were chosen and described in order to best explain the principles of the invention and its
practical applications, to thereby enable others skilled in the art to best utilize the invention and
various implementations with various modifications as are suited to the particular use

contemplated.

29

What is claimed is:

1. A method of generating data visualizations, comprising:

at a computer having a display, one or more processors and memory storing one or
more programs configured for execution by the one or more processors:

receiving a visual specification, which specifies a data source, a plurality of visual
variables, and a plurality of data fields from the data source, wherein each of the visual
variables is associated with either (i) a respective one or more of the data fields or (ii) one or
more filters, and each of the data ficlds is identified as cither a dimension or a measure;

retrieving a stored data model encoding the data source as a tree of logical tables, each
logical table having its own physical representation and including a respective one or more
logical fields, each logical field corresponding to either a data field or a calculation that spans
one or more logical tables, wherein each edge of the tree connects two logical tables that are
related;

generating a dimension subquery based on logical tables that supply the data fields for
the dimensions and the filters;

generating, for each measure, based on the logical tables that supply the data fields for
the respective measure and the filters, an aggregated measure subquery grouped by the
dimensions;

forming a final query by joining, using the dimensions, the dimension subquery to
each of the aggregated measure subqueries;

executing the final query against the data source to retrieve tuples that comprise
distinct ordered combinations of data values for the data fields; and

building and displaying a data visualization according to the data fields in the tuples

and according to the visual variables to which each of the data fields is associated.

2. The method of claim 1, wherein generating each aggregated measure subquery
comprises:
computing a measure sub-tree of the tree of logical tables, wherein the measure sub-
tree is a minimum sub-tree required to supply the data fields for a respective measure;
computing a dimension-filter sub-tree of the tree of logical tables, wherein the
dimension-filter sub-tree is a minimum sub-tree required to supply all the physical inputs for

the dimensions and the filters;

30

Date Regue/Date Received 2023-07-20

in accordance with a determination that the dimension-filter sub-tree does not share
any logical table with the measure sub-tree, adding a neighboring logical table from the
measure sub-tree to the dimension-filter sub-tree;

compiling the measure sub-tree to obtain a measure join tree and compiling the
dimension-filter sub-tree to obtain a dimension-filter join tree;

layering calculations and filters over the measure join tree and the dimension-filter
join tree to obtain an updated measure sub-tree and an updated dimension-filter sub-tree,
respectively;

de-duplicating the updated dimension-filter sub-tree by applying a group-by operation
that uses the dimensions and linking fields that include (i) keys from relationships between
the logical tables and (ii) data fields of calculations shared with the measure sub-tree, to
obtain a de-duplicated dimension-filter sub-tree; and

combining the de-duplicated dimension-filter sub-tree with the updated measure sub-

{ree to obtain the aggregated measure subquery.

3. The method of claim 2, wherein compiling the measure sub-tree comprises inner

joining logical tables in the measure sub-tree to obtain the measure join tree.

4. The method of claim 2, wherein computing the dimension-filter sub-tree comprises
iner joining logical tables in the dimension-filter sub-tree that are shared with the measure
sub-tree, and left-joining logical tables in the dimension-filter sub-tree that are not shared

with the measure sub-tree, to obtain the dimension-filter join tree.

5. The method of claim 2, wherein combining the de-duplicated dimension-filter sub-

tree with the updated measure sub-tree comprises:

in accordance with a determination that the de-duplicated dimension-filter sub-tree
contains one or more filters, inner-joining the updated measure-sub-tree with the de-
duplicated dimension-filter sub-tree; and

in accordance with a determination that the de-duplicated dimension-filter sub-tree
contains no filters, left outer-joining the updated measure-sub-tree with the de-duplicated

dimension-filter sub-tree.

6. The method of claim 2, further comprising:

31

Date Regue/Date Received 2023-07-20

determining if the keys indicate a many-to-one relationship or a one-to-one
relationship between a first logical table and a second logical table; and

in accordance with a determination that the keys indicate many-to-one relationship
between the first logical table and the second logical table, including the first logical table
and the second logical table in the measure sub-tree, thereby avoiding the group-by in the de-
duplication for the first logical table and the second logical table.

7. The method of claim 2, further comprising:

in accordance with a determination that the dimension-filter sub-tree joins against the
measure sub-tree exclusively along many-to-one and one-to-one links, replacing tables shared
by the measure sub-tree and the dimension-filter sub-tree with the de-duplicated dimension-

filter sub-tree.

8. The method of claim 1, wherein generating the dimension subquery comprises inner-
joining a first one or more logical tables in the tree of logical tables, wherein each logical
table of the first one or more logical tables supplies the data fields for the dimensions or the

filters.

9. The method of claim 1, wherein forming the final query comprises joining the
dimensions subquery and the aggregated measure subqueries on the dimensions using outer

joins, and applying a COALESCE each outer join.

10. The method of claim 1, wherein forming the final query comprises, in accordance
with a determination that the visualization has no dimensions, performing a full outer join

between the aggregated measure subqueries.

11. A computer system for generating data visualizations, comprising:

one or more processors; and

memory;

wherein the memory stores one or more programs configured for execution by the one
or more processors, and the one or more programs comprising instructions for:

receiving a visual specification, which specifies a data source, a plurality of visual
variables, and a plurality of data fields from the data source, wherein each of the visual
variables is associated with either (i) a respective one or more of the data fields or (ii) one or

more filters, and each of the data ficlds is identified as either a dimension or a measure;

32

Date Regue/Date Received 2023-07-20

retrieving a stored data model encoding the data source as a tree of logical tables, each
logical table having its own physical representation and including a respective one or more
logical fields, each logical field corresponding to either a data field or a calculation that spans
one or more logical tables, wherein each edge of the tree connects two logical tables that are
related;

generating a dimension subquery based on logical tables that supply the data fields for
the dimensions and the filters;

generating, for each measure, based on the logical tables that supply the data fields for
the respective measure and the filters, an aggregated measure subquery grouped by the
dimensions;

forming a final query by joining, using the dimensions, the dimension subquery to
each of the aggregated measure subqueries;

executing the final query against the data source to retrieve tuples that comprise
distinct ordered combinations of data values for the data fields; and

building and displaying a data visualization according to the data fields in the tuples

and according to the visual variables to which each of the data fields is associated.

12. The computer system of claim 11, wherein generating each aggregated measure
subquery comprises:

computing a measure sub-tree of the tree of logical tables, wherein the measure sub-
tree is a minimum sub-tree required to supply the data fields for a respective measure;

computing a dimension-filter sub-tree of the tree of logical tables, wherein the
dimension-filter sub-tree is a minimum sub-tree required to supply all the physical inputs for
the dimensions and the filters;

in accordance with a determination that the dimension-filter sub-tree does not share
any logical table with the measure sub-tree, adding a neighboring logical table from the
measure sub-tree to the dimension-filter sub-tree;

compiling the measure sub-tree to obtain a measure join tree and compiling the
dimension-filter sub-tree to obtain a dimension-filter join tree;

layering calculations and filters over the measure join tree and the dimension-filter
join tree to obtain an updated measure sub-tree and an updated dimension-filter sub-tree,
respectively;

de-duplicating the updated dimension-filter sub-tree by applying a group-by operation

that uses the dimensions and linking fields that include (i) keys from relationships between
33

Date Regue/Date Received 2023-07-20

the logical tables and (ii) the physical input fields of the calculations shared with the measure
sub-tree, to obtain a de-duplicated dimension-filter sub-tree; and
combining the de-duplicated dimension-filter sub-tree with the updated measure sub-

tree to obtain the aggregated measure subquery.

13. The computer system of claim 12, wherein compiling the measure sub-tree comprises

inner joining logical tables in the measure sub-tree to obtain the measure join tree.

14. The computer system of claim 12, wherein compiling the dimension-filter sub-tree
comprises inner joining logical tables in the dimension-filter sub-tree that are shared with the
measure sub-tree, and left-joining logical tables in the dimension-filter sub-tree that are not

shared with the measure sub-tree, to obtain the dimension-filter join tree.

15. The computer system of claim 12, wherein combining the de-duplicated dimension-

filter sub-tree with the updated measure sub-treec comprises:

in accordance with a determination that the de-duplicated dimension-filter sub-tree
contains one or more filters, inner-joining the updated measure-sub-tree with the de-
duplicated dimension-filter sub-tree; and

in accordance with a determination that the de-duplicated dimension-filter sub-tree
contains no filters, left outer-joining the updated measure-sub-tree with the de-duplicated

dimension-filter sub-tree.

16. The computer system of claim 12, wherein the one or more programs further comprise
instructions for:

determining if the keys indicate a many-to-one relationship or a one-to-one
relationship between a first logical table and a second logical table; and

in accordance with a determination that the keys indicate many-to-one relationship
between the first logical table and the second logical table, including the first logical table
and the second logical table in the measure sub-tree, thereby avoiding the group-by in the de-
duplication for the first logical table and the second logical table.

17. The computer system of claim 12, wherein the one or more programs further comprise

instructions for;

34

Date Regue/Date Received 2023-07-20

in accordance with a determination that the dimension-filter sub-tree joins against the
measure sub-tree exclusively along many-to-one and one-to-one links, replacing tables shared
by the measure sub-tree and the dimension-filter sub-tree with the de-duplicated dimension-

filter sub-tree.

18. The computer system of claim 11, wherein generating the dimension subquery
comprises inner-joining a first one or more logical tables in the tree of logical tables, wherein
each logical table of the first one or more logical tables supplies the data fields for the

dimensions or the filters.

19. The computer system of claim 11, wherein forming the final query comprises joining
the dimensions subquery and the aggregated measure subqueries on the dimensions using

outer joins, and applying a COALESCE after each outer join.

20. A non-transitory computer readable storage medium storing one or more programs
configured for execution by a computer system having a display, one or more processors, and
memory, the one or more programs comprising instructions for:

receiving a visual specification, which specifies a data source, a plurality of visual
variables, and a plurality of data fields from the data source, wherein each of the visual
variables is associated with either (i) a respective one or more of the data fields or (ii) one or
more filters, and each of the data fields is identified as either a dimension or a measure;

retrieving a stored data model encoding the data source as a tree of logical tables, each
logical table having its own physical representation and including a respective one or more
logical fields, each logical field corresponding to either a data field or a calculation that spans
one or more logical tables, wherein each edge of the tree connects two logical tables that are
related;

generating a dimension subquery based on logical tables that supply the data fields for
the dimensions and the filters;

generating, for each measure, based on the logical tables that supply the data fields for
the respective measure and the filters, an aggregated measure subquery grouped by the
dimensions;

forming a final query by joining, using the dimensions, the dimension subquery to
each of the aggregated measure subqueries;

executing the final query against the data source to retricve tuples that comprise

distinct ordered combinations of data values for the data fields; and
35

Date Regue/Date Received 2023-07-20

building and displaying a data visualization according to the data fields in the tuples

and according to the visual variables to which each of the data fields is associated.

36

Date Regue/Date Received 2023-07-20

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

File Data Worksheet Dashboard Analysis Map Format Server Window Help F 1
€->E B[@O P AFP | @ [foma ~u| 27| s Show Nie

Data S |[Fages [& Columrs]|
abcd.db.local.lan [ERows]

Analytics

Dimensions =P v || Cillers]

Abc Account TopParent Name] q’:m' Date (group) :No P Drop field here
Akc Account Type

Ahc Account Type Customer Marks
Ahc Account Type Partner P..

Drop
Abc AccountPartner D field here| OroP field here

A;C Agreement Type

ABCD ProductKey Ao
Abc Channel Manager ID & 6 123
Abe Channel Manager Name [Color J{_Size J|_Text

3 Customer Acquired Date
Customer Assets Id [Details Tooltip

& Date Closed
Date Maintenance End
Date Maintenance Start

Measures

Activated Trials
Capacity Count
Itern Amount List

Item Amount Net Com...
Item Amount Total

Item Amount Unit

lterm Quantity

Opportunity Amount

Opportunity Amount Net
Opportunity Training Re...
Partner_Referral_Comm...
ProServ Hours Delivered
Requested Trials

Write Off Amount

Parameters
ConversionRate

| Sheett || sheet2]| 2] 2]

Data Visualization User Interface 102 /104

Visual Specification:
identifies the Data Sources;
identifies the data fields assigned to
visual variables

108~ 110

Y
Group the data fields in the Visual
Object Model for | Specification into one or more data field
the Data Sources sets according to the Object Model of
the Data Sources

106 v 14

Query the Data
Sources for the
second data field set

112~ ‘

Query the Data
Sources for the
first data field set

Data
Source(s)

Data Visualization 124\

Data Visualization 122\
- Week of Test Date - $60,000 //
834 g>3 |
800 177 ol S s |28, 8 sso00 / /
785 41 5

8 700 — 2 / pd
8 599 S $40,000
£ 600 £ I v
T 500 & $30,000 /
7) B
2 ao0o0 g
: £ $20,000 4
g 300 < 4&
o [

200 $10,000

100 / —

$0 14
T e oo o T e e e T,
R I M NENC A RN NS 0 90 180 270 360
0 S0, 0, S0, "%,"%, 0, <0, "%, %, <0, <0, DAYS
v v v v b4 v v Fig u re 1
1/27

SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182

Memory 214 \

PCT/US2020/045461

216
Operating System -~ 018
Computing Device 200 Communication Module - 290
\ Web Browser -
Data Visualization Application f12§22
Graphical User Interface f250
Shelf Regions - 230
Columns Shelf f232
Rows Shelf o
Filters Shelf 262
Marks Shelf 226;46
202 Color Encoding Icon f272
N Size Encoding Icon -
CPU(s) Text Encoding lcon f;;g
View Level Detail lcon |~
212 ~ .
206 104
\ Visual Specification(s) .
i 280
US Identified Data Sources -
=PEY ™\-208 282
: Visual Variables =
Input Device / [™L210 o84
Mechanism Assigned Data Fields =
204 . 108
\ - Object Model(s) g
Communication 290
interface(s) Data Visualization Generator -
292
Query Optimizer(s) -
Queries 294
. - 236
Flgure 2 Visualization Parameters =
106
Database / Data Sources -
| ~106-1

Data Source 1

2127

SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461
Memory 314— 316
Operating System -~ 318
Communication Module L~ 320
Web Server =2
Data Visualization Web Application 322
User Interface Module IZZE:C‘)
Shelf Regions - 230
Columns Shelf f232
Data Visualization Rows Shelf 262
Marks Shelf L~ 70
Color Encoding Icon -
Size Encoding Icon fgi
302 Text Encoding Icon 2
N . - | 228
View Level Detail Icon
CPU(s) :
312 104
\ Visual Specification(s) =
280
306 : J Identified Data Sources -
T leme i) Visual Variables f282
I User interface I | 284
| " Display Assigned Data Fields
I - = ‘::I:p:y:{\:’ 308 :
| | Input Devices —~L 31p -
108
Le=——====_ Object Model(s) -
290
Data Visualization Generator -
292
304 ~ Query Optimizer(s) -
Communication Queries | —294
interface(s) <
~ 326
Data Retrieval Module "
- 236
Visualization Parameters -
Figure 3 Database 328
106
Data Source(s) -
Data Fields 330
| — 334

Data Visualization History Log

3/27

SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

PCT/US2020/045461

WO 2021/050182

A4

¥ 24nbi14

[@)[a][2eeus __ Healg _

0l¢ 82C F

2)BYHUOISIOAUCD) #

sigjaWeled

junoulyy JO SJIM #

sjel] pajsenbay #
paJaAlla SINoH Alegold #
WD T [elr)ay Jouped #
oy Buiuea] Agunpoddo #
JoN Junowy Apunpoddo #
jJunowy Apunpoddo #
Amueny wey #

aun junowy Wway #

1B)OL JNOWY Wa)| #

“TW0D) 19N nowy W) #
IS unowy Way #

Junon Ayoeded #

S[eUL P3JeARDY #

SaInNseay

sBuipooug uoleziiensi ejeq 9T~

si8}|l4 uchezilensiA eleq ey —

CLC—
alay pjay doig

o

1)

oL ozl

€zl
aqy

¥ N
10]09

o @ |

ljeLojny oqy |

’ —
»

syepn

o_msy_f
/ doig
~

1oy ploy doxg | e

“"dON:

(ano1b) a1eq teuL)f[=

Je)s sourusulely sjed B
pu3 aoueuauiel Aled B
paso[) e)eq ¥
p| SlssY 18W0)SNY 90y
ajeq painboy 1awpoisnd Y
auwlepN J1abeuepy |ouuey) o0y
dl Jabeuely [puueyD 20Y
faypnpoid aoay #
adA | Juswaalby o0y
al WalEdIuno20y agy
d Jouped adA| Wnoddy 94y
Jpul0)snD adA| No2aYy 2dY
adA] junoooy 2ay
aweN juaseddo] Junoooy 20V

S1a|i4

T

suoIsuswIq

[smoy H|

A

_ suwnjo) !_

/

sopfjeuy | eled

ue|'1e00] qp poge @

sabed

a
4

ejeq

— N MoYyg

|87 | [ruoN] M|y« 0 W £H|-C B -OF M QA >

/7
yA—i

dioq Mmopuipy Janreg jeunod depy sisAjeuy PJEOGUSEQ J9OUSHMOM Bled alld

[[

[

£100gd - nes|qe] @

Z8C 0€Z

AT

X_z01 soepa|

V]34

JasM uanezijensip eleq

4/27
SUBSTITUTE SHEET (RULE 26)

WO 2021/050182

502~

Lineltems

514

CA 03153691 2022-03-07

504~

&

Orders

Products

516

506~

Figure 5A

Data Visualization 530\ 524

/

518

520

526
/

PCT/US2020/045461

522

508 ~512
Addresses States
~510
Customers

L L
M columns -|(SUM(Sales)) (SUM(Population))

2= Rows

| (State(States))

Sheet 1

State(States)

Alabama
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District of columbia
Florida
Georgia

Idaho

Illinois

Indiana

lowa

Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada

New Hampshire
New Jersey
New Mexico
New york
North Carolina
North Dakota
Ohio
Cklahoma
Cregon
Pennsylvania
Rhode Island
South Carolina
South Dakota

oK

el

I g 1] U“ 0= 0

-]

|_|=

UI_I

100K 200K 300K 400K 0B 10B 20B 30B 40B 50B 60B/70B 808

Sales

J

Population

Figure 5B

5/27
SUBSTITUTE SHEET (RULE 26)

|
528

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

Data Visualization 540\ 524 532
/

rd L
B coumns [(CSUMGSales)) (C SUM(Fixed[State(...

./

£= Rows | CState(States) D)

Sheet 1
State(States)

Alabama
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District Of Columbia
Florida
Georgia

|daho

Illinois

Indiana

lowa

Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada

New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania]

Rhode Island
South Carolina !

0K 100K 200K 300K 400K OM 5M 10M 15M 20M 25M 30M 35M40M

sal {FIXED [State(States)]:
ales MAX([Population])}

_’-v\/

534

R

U

oTO0

1

”“ 1| U i “"'UIJUU -0 |_|H |_|H U=

536

=TT

Figure 5C

6/27
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

504~ Addresses States
502~ Orders < 508 512

Lineltems <506\ Customers
Products \-510

Figure 6A

. Columns SUM(Sales) SUM(Papulation)

&= Rows | (state(states))

Sheet 1
State(States)

Null
Alabama [
Alaska
Arizona [J
Arkansas [J
California
Colorado [
Connecticut I
Delaware [
District Of Columbia
Florida —1]
1]
1]
|
1]

Georgia
Hawaii
Idaho
[llinois
Indiana
lowa
Kansas
Kentucky

Louisianaq '=|| (2 Nulls]

I I I
0K 100K 200K 300K 400K OM 5M 10M 15M 20M 25M 30M 35M 40M

Sales Population

—]

Figure 6B

7127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

Orelay FY

504

Figure 7

8/27
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

PCT/US2020/045461

WO 2021/050182

V8 ainbig

WNO¥ INee INO9E WPEC INece oS

Wec WN9Z WN¥e WNee

NoZ W8l

9L

vl

nel

ol

ne

We INO

[Bwedgely ‘uingny

Aaslap maN ‘AU onuepy

e1B1095 ‘BluElY

eibi0oo ‘suayly

BUIIOJBD YLION ‘B|A8YSY

C—_——_—] opelojoD ‘epeay

elubip ‘uorbuly

sexa] ‘ua)bulpy

stouly|| ‘s)yBIaH uolbuly

UISUCOSIAA ‘UCia|ddy
elosauuly ‘Aojen oiddy

elulojlied ‘As|jeA ajddy

epuold ‘eddody

BlUWIOMED ‘Yd0nUY

ueBIyoIN “Jogly uuy

spesnyoessepy JoAopuy

BlUIOy[RD ‘WidyBUY

sexa] ‘ojjuewy

eluen|Asuuad ‘eu0oY

eluenASUUad UMOUS| Y

sexa] ‘us|y

elubaIA ‘elUpuEXaly

H 09IX3|N MON ‘onbuanbnqy

0IyO ‘uonlY

SEX9 | '‘sud|qy

_ B10YBJ UINOS ‘Usapiagy

aweN Al [Ind
| 199US

(eweN A In4) | smoy §E

C

(uoneindod)NNS) f& suwniod [

uoneziensia eyed 008 A

9/27
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

Siaty PN = Stats FK
i 808

806

512 J 508 J

Figure 8B

10/27
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

PCT/US2020/045461

WO 2021/050182

V6 24nBi4

dnjool | pejeqg
& °g°
sajeg |egen | 8ZIS || AnojoD
A00G 2087 AQ9F MO¥Y MOTY MOO0F X08€ MOSE MOPE MOCE MOOE M08C M09Z MO¥C MOCC M00C M08L MO9L MObL X0ZL XM00L 08 09 X0y M0 M0 H Q 00
I I N I [N I A (N NN N AN N [N NN NN N NN NN N o0
SSe| Jepue
_ —————— 19 PIEPUEIS ff onewolny _.__
| SSE|D puCoag :
KeQ sweg S)HJeN
[sse|o isiid
apoW diys
|¢Bojouyoa Ai0Bere))
Z 198Us
sJa)l4
(epopduys) | smoy I |
((s91eS)INNS) suwnjod I [|a sabed

uoneziensia eyed 006 A

11127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461
914
Fitter: !
{Ssntinel]
is not null 912

906

Filter: v
[Categoryl =
" Tochnology”

502 /
504 /

506
Figure 9B

12127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

[

502 504

Figure 10A

512—/

508

Figure 10B

13127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

PCT/US2020/045461

WO 2021/050182

Vil 2inbi4

sajes
062 Y002 01
| |

MO0}
|

04
|

0

W06 W08 WNOL M09

uonendod
WOS WOP WOE WWOZ WOL INO
| | | | | |

ABojouyoa |

s9(ddng 2010

ainjuing 1Sap
m _ ABojouyos |

sajddng 2010

a2Jnjuing

yinog

— L

Abojouyoa |

saljddng 2010

_ ainjuing Jse3
m _ KBojouyods |

$91|ddng 20110

2JNHuUINS

] [INN [EJUSD

Abojouyoa |
$9(/ddng 80410
2JMiuing
[INN__ 1IN

Aiobajen uoibay
| 193/YS

C

Aioberes) uoibey)| SMoY =i

((selesS)NNS) ((uoneindod)NNS

uoneziensia eyeago| |

suwnjoD il

14127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

/- Final query 1102

1106

1104

Figure 11B

15127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461
1120
il Columns |
=Rows |(Region) (Category D)
U

Region Category

Central Furniture Abc
Office Supplies Abc
Technology Abc

East Furniture Abc
Office Supplies Abc
Technology Abc

South Furniture Abc
Office Supplies Abc
Technology Abc

West Furniture Abc
Office Supplies Abc
Technology Abc

SUBSTITUTE SHEET (RULE 26)

Figure 11C

16/27

CA 03153691 2022-03-07

PCT/US2020/045461

WO 2021/050182

dll @inbi4

2092
l

e
l

sojes

1144 002 081 09} Nov) N02) 00} 08 09 h 4 02 0
| | l | l l l l l l l l

ABojouyos |

saljddng soo

ainyuing 1s9p

Abojouyoa |

a1jddng a0

_ ainjuing ynog

Abojouyos |

591ddng 20110

ainjuin{ jseg

Abojouyos |

5a1/ddng 82110

aJnjiuin4 [equan

[Kbojouyoa |
[Conddng aao
[] amnuuwing NN

A10691e9 uoibay
| 199US
C fioBoren) (uolbey)| SMOYEE

((seles)uns)|suwniod

uoneziensin eyeq g | | -7

17127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

PCT/US2020/045461

WO 2021/050182

311 2Inbi4

uoneziensia eyeqa O | | -7

uonejndod
NO6 S8 WO0B WSL WNOL WSO W09 WSS WOS WSk WOP WSE WO WSZ WOZ WSL WO WS WO
| | | | _ | | | | | | _ _ | | | | | |
[Abojouyos |
_ 5a11ddng salio
[alnjuing 1sop\
[ABojouyos |
[5a1|ddng 20110
[alnjiuing
[[INN Yinos
[Rbojouyos |
[59l/ddns sol0
[ainjuingd jseq|
[Abojouyoa |
[a1|ddng sa110)
| aJinyuin 4
[INN [eAUSD
L] INN_IINN||
Kio6ajes uoibay||
| 1o9/YS
C fioberen) (uoibay (& SMOYE:
(uopeindod)NS)|suwniod Jil

18127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

PCT/US2020/045461

WO 2021/050182

411 2anbi4

uoneindod

WO0E Wose nooe Wos)
I I I I

ool
I

oS
I

sajeg

MOl MO0cZ Y0001 Y0081 X003, X0D¥h M0OZ M0O0L X008 3009 M00r M002 MO

€ 1o9US

SMOY St

(uoneindod) NS) ((seleS)NNS)

uoneziensia eyeq 0G| | -

suwnjoD il

19/27
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

PCT/US2020/045461

WO 2021/050182

vZl ainbi4

dniool | jejeqg
& °g°
[2eqe [eziS|1nojo)
O [|o|
sojeq paisnipy xel a oljewolny ____
MGO M09 MGG MOS MG MOF MSE MOE MST MOZ MSE MOL MG MO syHen
_ __ _ _ _ _ _ _ _ _ _ _ _ ABojouyos
_ saliddng 82130
[alnjuing
Aiobajen (enu| :sjeoipaid s8)d)
H198US SJojI
(Aobee)) | SMOY =i
S pajsnipy xe])NNS suwniod Il (& sabed

uoneziensia eyea 00Z L -

20727
SUBSTITUTE SHEET (RULE 26)

WO 2021/050182

CA 03153691 2022-03-07

Final Query 1202\

Filter: [Sentinel]
Is hot Null

PCT/US2020/045461

Region = Region

Customer FK = Customer PK

[Sentinel] = 1

|
GB: Customer

Product FK PK, Region
[Tax Adjusted " GB: Category |
Sales] Definition Product PK Product PK Filter:
P 506 [Predlcatle] = Trug
—E P4 E—l Product
912 rocues [Predicate]
States Definition
> | ~508 T 510
502 Addresses TN
\ f504 » Customers
Line Items Orders (_504 f508
Orders Addresses

Figure 12B

21727

SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

Optimized Query 1204\
Product FK = Product PK

%

Filter: GB: Category,
[Predicate] = True| | Prod uctgPIEy

506

[Tax Adjusted Products
Sales] Definition

[Predicate]
Definition

Customers

z 512
States

~ ~508
Addresses

502~ 504
Line Items Orders

Figure 12C

22127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

Optimized Query 1206\

Filter:
[Predicate] = True

[Tax Adjusted
Sales] Definition

[Predicate]
Definition

~506
Products

510
Customers

512
States

’- ~508
Addresses
502~ ‘ 504
Line ltems Orders
Figure 12D

23127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461
1300w
1302~ _ A method generates data visualizations.
1304 —] | The method is performed at a computer having a display, one or more
processors, and memory.
1806 —1_] | The memory stores one or more programs configured for
execution by the one or more processors.
v
1308~

Receive a visual specification, which specifies a data source, a plurality of

visual variables, and a plurality of data fields from the data source. Each

of the visual variables is associated with either (i) a respective one or more

of the data fields or (ii) one or more filters, and each of the data fields is
identified as either a dimension or a measure.

y
1310~ Obtain a data model encoding the data source as a tree of logical tables,
each logical table having its own physical representation and including a
respective one or more logical fields. Each logical field corresponds to
either a data field or a calculation that spans one or more logical tables.
Each edge of the tree connects two logical tables that are related.

\ 4
1312 | Generate a dimension subquery based on logical tables that supply the
data fields for the dimensions and the filters.
|| Inner-join a first one or more logical tables in the tree of logical tables.
| Each logical table of the first one or more logical tables supplies the

I data fields for a dimension or a filter.

1314 —|

\ 4
1316 | Generate, for each measure, based on the logical tables that supply the
data fields for the respective measure and the filters, an aggregated

measure subquery grouped by the dimensions.

—
! \
B

Figure 13A

24727
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

1318~ Form a final query by joining, using the dimensions, the dimension

subquery to each of the aggregated measure subqueries.
1320— | V- T T T T]
] Join the dimensions subquery and the aggregated measure |
| subqueries on the dimensions using outer joins, and apply a |
| COALESCE after each outer join. |

1322 —|
1 When the visualization has no dimensions, perform a full join

I
between the aggregated measure subgueries. :

1324~
Execute the final query against the data source to retrieve tuples that

comprise distinct ordered combinations of data values for the data fields.

Y

Build and display a data visualization according to the data fields in the
1326~ _ | tuples and according to the visual variables to which each of the data fields
is associated.

Figure 13B

25127
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

®

1828~ Compute a measure sub-tree of the tree of logical tables. The measure

sub-tree is a minimum sub-tree required to supply the data fields for a

respective measure.
""" -"-"""”"¥">”"¥>”"¥""”"=”""=""=”"="=""=”""”"”"—""”"—""”"= 1
1330 —{ Inner join logical tables in the measure sub-tree to obtain the |
: measure join tree. :
\ 4
1332 Compute a dimension-filter sub-tree of the tree of logical tables. The

1334_1

dimension-filter sub-tree is a minimum sub-tree required to supply all of the
physical inputs for the dimensions and the filters.
Inner join logical tables in the dimension-filter sub-tree that are |
shared with the measure sub-tree, and left-join logical tables in the
| dimension-filter sub-tree that are not shared with the measure sub-
| tree, to obtain the dimension-filter join tree. |

1336

When the dimension-filter sub-tree does not share any logical table with
the measure sub-tree, add a neighboring logical table from the measure
sub-tree to the dimension-filter sub-tree.

Y

1338 |

Compile the measure sub-tree to obtain a measure join tree and compile
the dimension-filter sub-tree to obtain a dimension-filter join tree.

Figure 13C

26/27
SUBSTITUTE SHEET (RULE 26)

CA 03153691 2022-03-07

WO 2021/050182 PCT/US2020/045461

1340~

Layer calculations and filters over the measure join tree and the
dimensicn-filter join tree to obtain an updated measure sub-tree and an
updated dimension-filter sub-tree, respectively.

A 4

1342—__

De-duplicate the updated dimension-filter sub-tree by applying a group-by
operation that uses the dimensions and linking fields that include (i) keys
from relationships between the logical tables and (ii) data fields of
calculations shared with the measure sub-tree, to obtain a de-duplicated
dimension-filter sub-tree.

1344

Combine the de-duplicated dimension-filter sub-tree with the updated
measure sub-tree to obtain the aggregated measure subquery.

[1
1346*¥r When the de-duplicated dimension-filter sub-tree contains afilter,

1348

| inner-join the updated measure-sub-tree with the de-duplicated |
| dimension-filter sub-tree. |

When the de-duplicated dimension-filter sub-tree does not contain a
| filter, left outer-join the updated measure-sub-tree with the de- |
| duplicated dimension-filter sub-tree. |

1350 When the keys indicate a
many-to-one relationship
between the first logical table
and the second logical table,
include the first table and the

I
: 1352 When the dimension-filter
I
I
second table in the measure :
I
I
I
I
I
I

|

|

|

| sub-tree joins against the

| measure sub-tree exclusively
| along many-to-one and one-to-
| one links, replace tables shared
|

|

|

I

I

I

sub-tree, thereby avoiding the
group-by in the de-duplication
operation for the first logical
table and the second logical
table.

by the measure sub-tree and
the dimension-filter sub-tree
with the de-duplicated
dimension-filter sub-tree.

Figure 13D

27127
SUBSTITUTE SHEET (RULE 26)

: |: s

I oo ela e

[
A =

2o
"‘nmnmwmuswma coor || oe || ron
o feuted B

gywnmmn || W

ST g | |

Data Visualization User Interface 102~ 1 104

Visual Specification:
Identifles the Data Sourc
identifies the deta fe\ue aselgneu 0
visual varigbles

108~

roup the data fields in the Visual

Object Modal for Specfiication Into one or more data field

the Data Sources sets according to the Objec(Model of
the Dais Souirce:

112

Query the Data
Sourcss for the
first data field act

Data Visualization 122
i« of Toat

900 ”

am g

700
g o0 58 E 40, l
§ B0 2 $50,000 5]

an0 E

200
i o]

100 —

%%ﬁ%%?%,%%%fj w o

v %

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - CLAIMS
	Page 37 - CLAIMS
	Page 38 - CLAIMS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS
	Page 43 - DRAWINGS
	Page 44 - DRAWINGS
	Page 45 - DRAWINGS
	Page 46 - DRAWINGS
	Page 47 - DRAWINGS
	Page 48 - DRAWINGS
	Page 49 - DRAWINGS
	Page 50 - DRAWINGS
	Page 51 - DRAWINGS
	Page 52 - DRAWINGS
	Page 53 - DRAWINGS
	Page 54 - DRAWINGS
	Page 55 - DRAWINGS
	Page 56 - DRAWINGS
	Page 57 - DRAWINGS
	Page 58 - DRAWINGS
	Page 59 - DRAWINGS
	Page 60 - DRAWINGS
	Page 61 - DRAWINGS
	Page 62 - DRAWINGS
	Page 63 - DRAWINGS
	Page 64 - DRAWINGS
	Page 65 - DRAWINGS
	Page 66 - REPRESENTATIVE_DRAWING

