wO 2016/186811 A 1[I I N0V 00O OO

(43) International Publication Date
24 November 2016 (24.11.2016)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2016/186811 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6N 3/02 (2006.01) GO6F 15/80 (2006.01)
GO6N 3/063 (2006.01)

International Application Number:
PCT/US2016/029968

International Filing Date:
29 April 2016 (29.04.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/164,902 21 May 2015 (21.05.2015) US
14/844,738 3 September 2015 (03.09.2015) US

Applicant: GOOGLE INC. [US/US]; 1600 Amphitheatre
Parkway, Mountain View, California 94043 (US).

Inventors: ROSS, Jonathan; 1600 Amphitheatre Park-

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

way, Minneapolis, Minnesota 55440-1022 (US). PHELPS, Declarations under Rule 4.17:

Andrew Everett; 1600 Amphitheatre Parkway, Min-
neapolis, Minnesota 55440-1022 (US).

Agents: HSIEH, I-Wei et al.; Fish & Richardson P.C.,
P.O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Designated States (unless otherwise indicated, for every Published:

kind of national protection available). AE, AG, AL, AM,

with international search report (Art. 21(3))

(54) Title: COMPUTING CONVOLUTIONS USING A NEURAL NETWORK PROCESSOR

Kernel A Kemel B Kernel C Kemel‘D
3x3x10 3x3x10 3x3x10 3x3x10

Voo e

Cell ‘

[}7+ CI.. F. CI.. H CI.. l

o et R e e
I
[EEE} e ca ’_. el H col | ees o ‘ :

T

Accumu
lator

Accumu
lator

Accumu
lator

Accumu
lator

~
(=]
(=]
L
-

(57) Abstract: Methods, systems, and apparatus,
including computer programs encoded on computer
storage media, for computing a layer output for a
convolutional neural network layer, the method
comprising: receiving the layer input, the layer in-
put comprising a plurality of activation inputs, the
plurality of activation inputs represented as a multi-
dimensional matrix comprising a plurality of depth
levels, each depth level being a respective matrix of
distinct activation inputs from the plurality of activ-
ation inputs; sending each respective kernel matrix
structure to a distinct cell along a first dimension of
the systolic array; for each depth level, sending the
respective matrix of distinct activation inputs to a
distinct cell along a second dimension of the systol-
ic array; causing the systolic array to generate an ac-
cumulated output from the respective matrices sent
to the cells; and generating the layer output from
the accumulated output.

704

FIG. 7

WO 2016/186811 PCT/US2016/029968

COMPUTING CONVOLUTIONS USING A NEURAL NETWORK PROCESSOR

BACKGROUND

This specification relates to computing neural network inferences in hardware.

Neural networks are machine learning models that employ one or more layers of
models to generate an output, e.g., a classification, for a received input. Some neural
networks include one or more hidden layers in addition to an output layer. The output of
each hidden layer is used as input to the next layer in the network, i.e., the next hidden
layer or the output layer of the network. Each layer of the network generates an output
from a received input in accordance with current values of a respective set of parameters.

Some neural networks include one or more convolutional neural network layers.
Each convolutional neural network layer has an associated set of kernels. Each kernel
includes values established by a neural network model created by a user. In some
implementations, kernels identify particular image contours, shapes, or colors. Kernels
can be represented as a matrix structure of weight inputs. Each convolutional layer can
also process a set of activation inputs. The set of activation inputs can also be represented
as a matrix structure.

Some existing systems perform computations for a given convolutional layer in
software. For example, the software can apply each kemel for the layer to the set of
activation inputs. That is, for each kernel, the software can overlay the kemnel, which can
be represented multi-dimensionally, over a first portion of activation inputs, which can be
represented multi-dimensionally. The software can then compute a dot product from the
overlapped elements. The dot product can correspond to a single activation input, e.g., an
activation input element that has an upper-left position in the overlapped multi-
dimensional space. For example, using a sliding window, the software then can shift the
kernel to overlay a second portion of activation inputs and calculate another dot product
corresponding to another activation input. The software can repeatedly perform this
process until each activation input has a corresponding dot product. In some
implementations, the dot products are input to an activation function, which generates
activation values. The activation values can be combined, e.g., pooled, before being sent
1o a subsequent layer of the neural network.

One way of computing convolution calculations requires numerous matrix

multiplications in a large dimensional space. A processor can compute matrix

WO 2016/186811 PCT/US2016/029968

multiplications through a brute force method. For example, although compute-intensive
and time-intensive, the processor can repeatedly calculate individual sums and products
for convolution calculations. The degree to which the processor parallelizes calculations

1s limited due to 1ts architecture.

SUMMARY

In general, this specification describes a special-purpose hardware circuit that
computes neural network inferences.

In general, one innovative aspect of the subject matter described in this
specification can be embodied in methods that include the actions of computing a layer
output for a convolutional neural network layer from a layer input using a two-
dimensional systolic array, the convolutional neural network layer having a plurality of
kernels, each kernel having a respective matrix structure of weights, the method
comprising: receiving the layer input, the layer input comprising a plurality of activation
inputs, the plurality of activation inputs represented as a multi-dimensional matrix
comprising a plurality of depth levels, each depth level being a respective matrix of
distinct activation inputs from the plurality of activation inputs; sending each respective
kernel matrix structure to a distinct cell along a first dimension of the systolic array; for
each depth level, sending the respective matrix of distinct activation inputs to a distinct
cell along a second dimension of the systolic array; causing the systolic array to generate
an accumulated output from the respective matrices sent to the cells; and generating the
layer output from the accumulated output.

Implementations can include one or more of the following features. The first
dimension of the systolic array corresponds to columns of the systolic array, and where
the second dimension of the systolic array corresponds to rows of the systolic array.
Determining that a count of the plurality of activation inputs is less than a size of the
second dimension of the systolic array; sending one or more duplicate matrices of distinct
activation inputs to unused cells along the second dimension of the systolic array.
Determining that a count of the plurality of kernels is less than a size of the first
dimension of the systolic array; sending one or more duplicate kernel matrix structures to
unused cells along the first dimension of the systolic array. A stride parameter for the
convolutional neural network is greater than one, the method further comprising:
remapping, for each kernel structure, weights in the respective matrix to cause the matrix

to have an increased number of depth levels. Generating the layer output from the

WO 2016/186811 PCT/US2016/029968

accumulated output comprises normalizing and pooling the accumulated output to
generate the layer output. Sending each respective kernel matrix structure to a distinct cell
along a first dimension of the systolic array comprises: at a given clock cycle, storing a
first element in the kerel matrix structure in a first cell of the systolic array; and at a
subsequent clock cycle, shifting the first element in the first cell to a second cell that is
adjacent to the first cell and storing a second element in the kernel matrix structure in the
first cell. The systolic array comprises a plurality of cells, where the plurality of weight
inputs is shifted through a first plurality of cells along a first dimension of the systolic
array, and where the plurality of activation inputs is shifted through a second plurality of
cells along a second dimension of the systolic array. Each cell in the plurality of cells
comprises: a weight register configured to store a weight input; an activation register
configured to store an activation input and configured to send the activation input to
another activation register in a first adjacent cell along the second dimension; a sum-in
register configured to store a previously summed value; multiplication circuitry coupled
to the weight register and the activation register, where the multiplication circuitry is
configured to output a product of the weight input and the activation input; and
summation circuitry coupled to the multiplication circuitry and the sum-in register, where
the summation circuitry is configured to output a sum of the product and the previously
summed value, and where the summation circuitry is configured to send the sum to
another sum-in register in a second adjacent cell along the first dimension.

Particular embodiments of the subject matter described in this specification can be
implemented so as to realize one or more of the following advantages. A neural network
processor in hardware can process inferences for neural networks having convolutional
layers more efficiently. In particular, the processor can flatten convolutions, which
enables computations of multiple convolution calculations with fewer clock cycles.
Flattening can be a reshaping of a convolution into one or more matrix multiplies.
Convolution flattening also processes a stride parameter of a neural network without
requiring additional hardware. Also, the neural network processor manages convolution
flattening using control signals, and the processor shifts the control signals through
components of the neural network processor, which removes a need to wire the control
signals individually to each component. The processor can replicate weight inputs,
activation inputs, or both, for use in a convolution calculation, which decreases time spent
accessing the inputs from memory and increases a number of convolution calculations

performed in parallel, thereby processing layers more efficiently.

WO 2016/186811 PCT/US2016/029968

The details of one or more embodiments of the subject matter of this specification
are set forth in the accompanying drawings and the description below. Other features,
aspects, and advantages of the subject matter will become apparent from the description,

the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example neural network having multiple layers.

FIG. 2 is a flow diagram of an example method for performing a computation for
a given layer of a neural network.

FIG. 3 shows an example neural network processing system.

FIG. 4 shows an example architecture including a matrix computation unit.

FIG. 5 shows an example architecture of a cell inside a systolic array.

FIG. 6 shows an example matrix structure having spatial dimensions and a feature
dimension.

FIG. 7 shows an example illustration of how a kernel matrix structure is sent to a
systolic array.

FIG. 8 shows an example illustration of weight inputs inside cells after three clock
cycles.

FIG. 9 is a flow diagram of an example method for computing a layer output for a
convolutional neural network layer.

Like reference numbers and designations in the various drawings indicate like

elements.

DETAILED DESCRIPTION

A neural network having multiple layers can be used to compute inferences. For
example, given an input, the neural network can compute an inference for the input. The
neural network computes this inference by processing the input through each of the layers
of the neural network. In particular, the layers of the neural network are arranged in a
sequence, each with a respective set of weights. Each layer receives an input and
processes the input in accordance with the set of weights for the layer to generate an
output.

Therefore, in order to compute an inference from a received input, the neural
network receives the input and processes it through each of the neural network layers in

the sequence to generate the inference, with the output from one neural network layer

WO 2016/186811 PCT/US2016/029968

being provided as input to the next neural network layer. Data inputs to a neural network
layer, e.g., either the input to the neural network or the outputs of the layer below the
layer in the sequence, can be referred to as activation inputs to the layer. Activation
inputs can be represented as a matrix structure of activation values. This matrix structure
is described further below in reference to FIG. 6.

In some implementations, the layers of the neural network are arranged in a
directed graph. That is, any particular layer can receive multiple inputs, multiple outputs,
or both. The layers of the neural network can also be arranged such that an output of a
layer can be sent back as an input to a previous layer. In some implementations, at least
one of the layers of the neural network is a convolutional layer.

FIG. 1 shows an example neural network 100 having multiple layers. Each layer
can process an input of a particular size and generate an output of another size. By way of
illustration, Layer 1 can process a 170 x 170 x 3 image and output a 28 x 28 x 96 matrix
of activation values. The 28 x 28 x 96 matrix of activation values is processed by Layers
2-6, and the output of Layer 6 can be used to generate an inference of the neural network.
Layers 1-3 can be convolutional layers. These matrices will be described further below in
reference to FIG. 6.

As described above, a convolutional neural network layer can have an associated
set of kernels. Each kemel includes a set of weight inputs, which when applied to
activation inputs of the layer, can cause activation values to be generated, which can be
used to generate an output for the layer. In some implementations, applying weight
inputs to activation inputs includes performing a dot product of each weight input with a
portion of activation inputs.

Computing activation values, e.g., the 28 x 28 x 96 matrix of activation values, for
a convolutional layer is described further below in reference to FIG. 7.

FIG. 2 is a flow diagram of an example process 200 for performing a computation
for a given layer of a neural network using a special-purpose hardware circuit. For
convenience, the method 200 will be described with respect to a system having one or
more circuits that performs the method 200. The process 200 can be performed for each
layer of the neural network in order to compute an inference from a received input.

The system receives sets of weight inputs (step 202) and sets of activation inputs
(step 204) for the given layer. The sets of weight inputs and the sets of activation inputs

can be received from dynamic memory and a unified buffer, respectively, of the special-

WO 2016/186811 PCT/US2016/029968

purpose hardware circuit. In some implementations, both the sets of weight inputs and
the sets of activation inputs can be received from the unified buffer.

The system generates accumulated values from the weight inputs and the
activation inputs using a matrix multiplication unit of the special-purpose hardware
circuit (step 206). In some implementations, the accumulated values are dot products of
the sets of weight inputs and the sets of activation inputs. That is, for one set of weights,
the system can multiply each weight input with each activation input and sum the
products together to form an accumulated value. The system can then compute dot
products of other set of weights with other sets of activation inputs. This will be
described further below in reference to FIG. 7.

The system can generate a layer output from the accumulation values (step 208)
using a vector computation unit of the special-purpose hardware circuit. In some
implementations, the vector computation unit applies an activation function to the
accumulated values. The output of the layer can be stored in the unified buffer for use as
an input to a subsequent layer in the neural network or can be used to determine the
inference. The system finishes processing the neural network when a received input has
been processed through each layer of the neural network to generate the inference for the
received input.

FIG. 3 shows an example special-purpose integrated circuit 300 for performing
neural network computations. The system 300 includes a host interface 302. The host
interface 302 can receive instructions that include parameters for a neural network
computation. The parameters can include at least one or more of the following: how
many layers should be processed, corresponding sets of weight inputs for each layer of
the layer, an initial set of activation inputs, i.e., the input to the neural network from
which the inference is to be computed, corresponding input and output sizes of each layer,
a stride value for the neural network computation, and a type of layer to be processed,
e.g., a convolutional layer or a fully connected layer.

The host interface 302 can send the instructions to a sequencer 306, which
converts the instructions into low level control signals that control the circuit to perform
the neural network computations. In some implementations, the control signals regulate
dataflow in the circuit, e.g., how the sets of weight inputs and the sets of activation inputs
flow through the circuit. The sequencer 306 can send the control signals to a unified

buffer 308, a matrix computation unit 312, and a vector computation unit 314.

WO 2016/186811 PCT/US2016/029968

In some implementations, the sequencer 306 also sends control signals to a direct
memory access engine 304 and dynamic memory 310. In some implementations, the
sequencer 306 is a processor that generates clock signals. The sequencer 306 can use
timing of the clock signals to, at appropriate times, send the control signals to each
component of the circuit 300. In some other implementations, the host interface 302
passes in a clock signal from an external processor.

The host interface 302 can send the sets of weight inputs and the initial set of
activation inputs to the direct memory access engine 304. The direct memory access
engine 304 can store the sets of activation inputs at the unified buffer 308. In some
implementations, the direct memory access stores the sets of weights to dynamic memory
310, which can be a memory unit. In some implementations, the dynamic memory is
located off of the circuit.

The unified buffer 308 is a memory buffer. It can be used to store the set of
activation inputs from the direct memory access engine 304 and outputs of the vector
computation unit 314. The direct memory access engine 304 can also read the outputs of
the vector computation unit 314 from the unified buffer 308.

The dynamic memory 310 and the unified buffer 308 can send the sets of weight
inputs and the sets of activation inputs, respectively, to the matrix computation unit 312.
In some implementations, the matrix computation unit 312 is a two-dimensional systolic
array. The matrix computation unit 312 can also be a one-dimensional systolic array or
other circuitry that can perform mathematical operations, e.g., multiplication and
addition. In some implementations, the matrix computation unit 312 is a general purpose
matrix processor. The matrix computation unit 312 will be described in more detail
below with reference to FIG. 4 and FIG. 5.

The matrix computation unit 312 can process the weight inputs and the activation
inputs and provide a vector of outputs to the vector computation unit 314. In some
implementations, the matrix computation unit sends the vector of outputs to the unified
buffer 308, which sends the vector of outputs to the vector computation unit 314. The
vector computation unit can process the vector of outputs and store a vector of processed
outputs to the unified buffer 308. For example, the vector computation unit 314 can
apply a non-linear function to outputs of the matrix computation unit, e.g., a vector of
accumulated values, to generate activation values. In some implementations, the vector

computation unit 314 generates normalized values, pooled values, or both. The vector of

WO 2016/186811 PCT/US2016/029968

processed outputs can be used as activation inputs to the matrix computation unit 312,
e.g., for use in a subsequent layer in the neural network.

FIG. 4 shows an example architecture 400 including a matrix computation unit.
The matrix computation unit is a two-dimensional systolic array 406. The array 406
includes multiple cells 404. In some implementations, a first dimension 420 of the
systolic array 406 corresponds to columns of cells and a second dimension 422 of the
systolic array 406 corresponds to rows of cells. The systolic array can have more rows
than columns, more columns than rows, or an equal number of columns and rows.

In the illustrated example, value loaders 402 send activation inputs to rows of the
array 406 and a weight fetcher interface 408 sends weight inputs to columns of the array
406. In some other implementations, however, activation inputs are transferred to the
columns and weight inputs are transferred to the rows of the array 406.

The value loaders 402 can receive the activation inputs from a unified buffer, e.g.,
the unified buffer 308 of FIG. 3. Each value loader can send a corresponding activation
input to a distinct left-most cell of the array 406. The left-most cell can be a cell along a
left-most column of the array 406. For example, value loader 412 can send an activation
input to cell 414. The value loader can also send the activation input to an adjacent value
loader, and the activation input can be used at another left-most cell of the array 406.
This allows activation inputs to be shifted for use in another particular cell of the array
406.

The weight fetcher interface 408 can receive the weight input from a memory unit,
e.g., the dynamic memory 310 of FIG. 3. The weight fetcher interface 408 can send a
corresponding weight input to a distinct top-most cell of the array 406. The top-most cell
can be a cell along a top-most row of the array 406. For example, the weight fetcher
interface 408 can send weight inputs to cells 414 and 416.

In some implementations, a host interface, e.g., the host interface 302 of FIG. 3,
shifts activation inputs throughout the array 406 along one dimension, e.g., to the right,
while shifting weight inputs throughout the array 406 along another dimension, e.g., to
the bottom. For example, over one clock cycle, the activation input at cell 414 can shift
to an activation register in cell 416, which is to the right of cell 414. Similarly, the weight
input at cell 416 can shift to a weight register at cell 418, which is below cell 414.

On each clock cycle, each cell can process a given weight input and a given

activation input to generate an accumulated output. The accumulated output can also be

WO 2016/186811 PCT/US2016/029968

passed to an adjacent cell along the same dimension as the given weight input. An
individual cell is described further below with reference FIG. 5.

The accumulated output can be passed along the same column as the weight input,
e.g., towards the bottom of the column in the array 406. In some implementations, at the
bottom of each column, the array 406 can include accumulator units 410 that store and
accumulate each accumulated output from each column when performing calculations
with layers having more weight inputs than columns or layers having more activation
inputs than rows. In some implementations, each accumulator unit stores multiple
parallel accumulations. The accumulator units 410 can accumulate each accumulated
output to generate a final accumulated value. The final accumulated value can be
transferred to a vector computation unit, e.g., the vector computation unit 214 of FIG. 2.
In some other implementations, the accumulator units 410 passes the accumulated values
to the vector computation unit without performing any accumulations when processing
layers with fewer weight inputs than columns or layers having fewer activating inputs
than rows.

FIG. 5 shows an example architecture 500 of a cell inside a systolic array, e.g., the
systolic array 406 of FIG. 4.

The cell can include an activation register 506 that stores an activation input. The
activation register can receive the activation input from a left adjacent cell, i.e., an
adjacent cell located to the left of the given cell, or from a unified buffer, depending on
the position of the cell within the systolic array. The cell can include a weight register
502 that stores a weight input. The weight input can be transferred from a top adjacent
cell or from a weight fetcher interface, depending on the position of the cell within the
systolic array. The cell can also include a sum in register 504. The sum in register 504
can store an accumulated value from the top adjacent cell. Multiplication circuitry 508
can be used to multiply the weight input from the weight register 502 with the activation
input from the activation register 506. The multiplication circuitry 508 can output the
product to summation circuitry 510.

The summation circuitry can sum the product and the accumulated value from the
sum in register 504 to generate a new accumulated value. The summation circuitry 510
can then send the new accumulated value to another sum in register located in a bottom
adjacent cell. The new accumulated value can be used as an operand for a summation in

the bottom adjacent cell.

WO 2016/186811 PCT/US2016/029968

In some implementations, instead of using sum in register 504, the cell uses a sum
out register. That is, the sum out register can store an output of the summation circuitry
510 and can pass the output to an adjacent cell. The cell can also shift the weight input
and the activation input to adjacent cells for processing. For example, the weight register
502 can send the weight input to another weight register in the bottom adjacent cell. The
activation register 506 can send the activation input to another activation register in the
right adjacent cell. Both the weight input and the activation input can therefore be reused
by other cells in the array at a subsequent clock cycle.

In some implementations, the cell also includes a control register. The control
register can store a control signal that determines whether the cell should shift either the
weight input or the activation input to adjacent cells. In some implementations, shifting
the weight input or the activation input takes one or more clock cycles. The control
signal can also determine whether the activation input or weight inputs are transferred to
the multiplication circuitry 508, or can determine whether the multiplication circuitry 508
operates on the activation and weight inputs. The control signal can also be passed to one
or more adjacent cells, e.g., using a wire.

In some implementations, weights are pre-shifted into a weight path register 512.
The weight path register 512 can receive the weight input, e.g., from a top adjacent cell,
and transfer the weight input to the weight register 502 based on the control signal. The
weight register 502 can statically store the weight input such that as activation inputs are
transferred to the cell, e.g., through the activation register 506, over multiple clock cycles,
the weight input remains within the cell and is not transferred to an adjacent cell.
Therefore, the weight input can be applied to multiple activation inputs, e.g., using the
multiplication circuitry 508, and respective accumulated values can be transferred to an
adjacent cell.

As described above, for a given neural network layer, the systolic array performs
the operations for the layer using two-dimensional matrix multiplication.

In order to effectively perform convolution calculations using the systolic array,
the neural network processor parallelizes matrix multiplications having large dimensional
spaces, which are generally required for convolution calculations. In particular, the
neural network processor can “flatten” matrices. By way of illustration, the neural
network process can flatten a set of activation inputs. For example, the set of activation
inputs can be represented as a 3D matrix. The 3D matrix can be visualized as a stack of

2D matrices. Each 2D matrix can then be sent to a row of the systolic array. Kernels can

10

WO 2016/186811 PCT/US2016/029968

then be sent to columns of the systolic array, and the systolic array can then use the
kernels to perform numerous calculations on each 2D matrix at once, thereby
parallelizing a convolution computation. This will be described further below in
reference to FIGS. 6-8.

FIG. 6 shows an example matrix structure 600 having spatial dimensions and a
feature dimension. The matrix structure 600 can represent either a set of activation inputs
or a set of weight inputs. A matrix structure for a set of activation inputs will be referred
to in this specification as an activation matrix structure, and a matrix structure for a set of
weight inputs will be referred to in this specification as a kernel matrix structure. The
matrix structure 600 has three dimensions: two spatial dimensions and one feature
dimension.

In some implementations, the spatial dimensions correspond to a space or position
of a set of activation inputs. For example, if the neural network is processing an image,
which has two dimensions, the matrix structures can have two spatial dimensions, which
correspond to spatial coordinates, i.e., XY coordinates, of the image.

The feature dimension corresponds to features from an activation input. Each
feature dimension can have depth levels; for example, the matrix structure 600 has depth
levels 602, 604, and 606. By way of illustration, if matrix structure 600 represents a 3 x 3
X 3 image sent as a set of activation inputs to a first layer, the X and Y dimensions of the
image (3 x 3) can be the spatial dimensions, and the Z dimension (3) can be the feature
dimension corresponding to R, G, and B values. That is, depth level 602 can correspond
to a feature of nine ‘1” activation inputs, e.g., red values, depth level 604 can correspond
to a feature of nine ‘2 activation inputs, e.g., green values, and depth level 606 can
correspond to a feature of nine *3” activation inputs, e.g., blue values.

Although only three depth levels for the feature dimension are illustrated in the
example of FIG. 6, a given feature dimension can have a large number, e.g., hundreds, of
feature dimensions. Similarly, although only one feature dimension is illustrated, a given
matrix structure can have multiple feature dimensions.

In order to perform the computation for the convolutional layer, using the matrix
structure 600, the system has to convert the convolutional computation to a two-
dimensional matrix multiplication.

FIG. 7 shows an example illustration of how a matrix structure 600 of FIG. 6 is
processed by a systolic array 706 at a given convolutional layer. The matrix structure 600

can be a set of activation inputs. Generally, the neural network processor can send the

11

WO 2016/186811 PCT/US2016/029968

activation inputs, e.g., elements within matrix structure 600, and weight inputs, e.g.,
Kernels A-D 710, to rows and columns of the array, respectively. The activation and
weight inputs can be shifted to the right and to the bottom, respectively, of the systolic
array and must reach a particular position, e.g., a particular register at a particular cell.
Once the inputs are determined to be in place, e.g., via control signals, the processor can
perform calculations using the inputs stored within the cells to generate the given layer's
output.

The neural network processor “flattens” the matrix structure 600 before sending
portions of the structure 600 to rows of the systolic array, as described above. That is, the
neural network processor can split up the depth layers 702 of the matrix structure 600,
e.g., depth layers 602, 604, and 606 of FIG. 6, and send each depth layer to a distinct cell.
In some implementations, each depth layer is sent to a cell on a different row of the
systolic array 706. For example, the processor can send the activation inputs from a first
depth layer, e.g., a matrix of nine '1' activation inputs, to a left-most cell at a first row of
the systolic array 706, a second depth layer, e.g., a matrix of nine '2' activation inputs, to a
left-most cell at a second row, a third depth layer, e.g., a matrix of nine '3' activation
inputs, to a left-most cell at a third row, and so on.

The given layer can have multiple kernels, e.g., Kernels A-D 710. Kernels A-D
710 can have matrix structures of dimension 3 x 3 x 10. The processor can send each
kernel matrix structure to a cell at a distinct column of the systolic array 706. For
example, Kemel A can be sent to a top cell in a first column, Kernel B can be sentto a
top cell in a second column, and so on.

When a matrix structure is sent to a cell, a first element of the matrix can be stored
in the cell during one clock cycle. On the next clock cycle, a next element can be stored
in the cell. The first element stored can be shifted to an adjacent cell, as described above
in reference to FIG. 5. The shifting of inputs can continue until all elements of the matrix
structure are stored in the systolic array 706. Both activation inputs and weight inputs can
be shifted throughout each cell after one or more clock cycles. Shifting of the inputs
within the systolic array will be described further below in reference to FIG. 8.

In some implementations, the systolic array 706 has a large number of rows and a
large number of columns, e.g., 256 rows and 256 columns. If a given layer of the neural
network has fewer sets of weight inputs than columns in the systolic array 706, the
processor can replicate one or more matrix structures for the sets of weight kernels and

send the replicated matrix structures to unused columns of the array 706. If the given

12

WO 2016/186811 PCT/US2016/029968

layer has fewer sets of activation inputs than columns in the array, the processor can
replicate one or more matrix structures for the sets of activation inputs and send the
replicated matrix structures to unused rows of the array 706. By replicating sets of
activation inputs or sets of weight inputs, or both, the processor can perform multiple
convolution calculations in parallel.

In some implementations, the processor sends a first portion of the matrix
structure to a row or column and a second portion of the matrix structure to another row
or column. The second portion can overlap with a part of the first portion and be offset
by one in an X or Y direction. For example, for a kernel matrix structure having a size of
5x 5, the processor can send a first 2 x 2 portion to a particular column of the systolic
array 706. The processor can send a second 2 x 2 portion to another column. The second
portion can be the first portion but shifted by one in the X direction, e.g., to the right. The
processor can send the second portion to an unused column of the array. The processor
can continue to send portions of the matrix structure to unused columns of the array, and
the processor can perform convolution calculations on each portion.

In some implementations, the processor tracks which portions have been sent to
which columns the systolic array 706. For example, for each portion sent to a row or
column, the processor can store a row or column address and an offset to a read address
of the portion of the matrix structure in a unified buffer.

FIG. 8 shows an example illustration 800 of weight inputs inside cells of an
example 3 x 3 systolic array after three clock cycles. Each cell can store a weight input
and an activation input, as described above in reference to FIG. 5. Weight inputs can be
sent to cells at distinct columns of the systolic array for convolution calculations, as
described above in reference to FIG. 7. By way of illustration, the system sends a first
kernel matrix structure having weight inputs of 1, 2, and 4 to a first column of the systolic
array. The system sends a second kemel structure having weight inputs of 3, 5, and 7 to a
second column. The system sends a third kernel structure having weights 6, 8, and 10 to
a third column. After every clock cycle, weight inputs can be shifted in one dimension,
e.g., from top to bottom, while activation inputs can be shifted (not illustrated) in another
dimension, e.g., from left to right.

Weight inputs can be stored within cells in a staggered manner. That is, a state of
the systolic array after a first clock cycle 802 shows a 'l' inside a top-left cell. The '1'
represents the weight input of '1' stored in the cell. At the next clock cycle 804, the '1' is

shifted to a cell under the top-left cell, and another weight input from the kernel, '2', is

13

WO 2016/186811 PCT/US2016/029968

stored in the top-left cell as well as a weight input of '3' at a top-most cell at a second
column.

On a third clock cycle, 806, each weight is shifted again. In the first column, a
bottom-most cell stores the '1' weight input, the '2' weight input is stored where the '1"
weight input was stored on the previous cycle, and a '4' weight input is stored in the top-
left most cell. Similarly, in the second column, the '3' is shifted down and a '5' weight
input is stored in the top-middle cell. In the third column, a '6' weight input is stored in
the top-right most cell.

In some implementations, a control signal for the weight inputs that determines
whether the weight inputs should be shifted is also shifted along with the weight inputs.

Activation inputs can be shifted in a similar fashion in the other dimension, e.g.,
from left to right.

Once the activation inputs and the weight inputs are in place, the processor can
perform a convolution calculation, e.g., by using the multiplication and summation
circuitries within the cells, to generate a set of accumulated values to be used in a vector
computation unit.

Although the system has been described with weight inputs being sent to columns
of the array and activation inputs being sent to rows of the array, in some
implementations, the weight inputs are sent to rows of the array and the activation inputs
are sent to columns of the array.

In some implementations, a neural network model has a stride parameter greater
than one. The processor can perform computations with the stride parameter by
converting matrix structures of activation input and weight inputs to respective permuted
matrix structures having a larger feature dimension and smaller spatial dimensions.

In some implementations, when processing images, the processor permutes, i.e.,
remaps, the activation matrix structure to have the following size: CEIL (X / X stride) x
CEIL (Y /Y _stride) x (Sizeof(RGB) * X_stride * Y _stride), where X and Y are the size
of the matrix structure dimensions, X_stride and Y _stride are the stride parameters, and
Sizeof(RGB) is three. The kernel matrix structure can also be permuted using the same
formula. For example, if the stride parameter is 2 x 2, the activation matrix structure is
originally 170 x 170 x 3 and the kernel matrix structure is 7 x 7 x 3, the permuted
activation matrix structure can be 85 x 85 x 12 and the permuted kernel matrix structure

canbe4x4x12.

14

WO 2016/186811 PCT/US2016/029968

The coordinates of the activation and kernel matrix structures can be mapped to
permuted coordinates using the following formula: [CEIL (X/2), CEIL (Y/2),Z + 3 * (X
% 2)+6*(Y %2)], where X, Y, and Z represent a coordinate in the respective matrix
structure. Other formulas can include [CEIL (X/2), CEIL (Y/2),Z+3* (Y % 2)+ 6 *
(X %2)] or [CEIL (X/2), CEIL (Y/2),2* Z+ (X% 2)+ 6 * (Y % 2) |.

FIG. 9 is a flow diagram of an example method for computing a layer output for a
convolutional neural network layer. For convenience, the method 900 will be described
with respect to a system having one or more circuits that performs the method 900, e.g.,
the circuit 300 of FIG. 3. The process 900 can be performed for each convolutional layer
of the neural network in order to compute an inference from a received input.

As described above, a convolutional neural network layer can have a set of
kernels, and each kernel can be represented as a matrix structure of weights.

The system can receive a layer input, e.g., data from an image, (step 902). The
layer input can be represented as a multi-dimensional matrix having multiple depth levels,
as described above in matrix structure 600 of FIG. 6.

The system can send each kermel matrix structure to a distinct cell along a first
dimension of a systolic array within the system (step 904). In some implementations,
cells along the first dimension are cells located along columns of the array. For example,
a given kernel matrix structure can be converted to a vector of elements, and each element
can be shifted through a column of the systolic array as described above in reference to
FIG. 8.

The system can, for each depth level, send the respective matrix of distinct
activation inputs to a distinct cell along a second dimension of the systolic array (step
906). This is described above in reference to FIG. 7. In some implementations, the
distinct cells along the second dimension are cells located along rows of the array.
Activation inputs at a particular depth level can be converted into a vector of elements,
and each element can be shifted through a row of the systolic array as described above in
reference to FIG. 8.

The system can cause the systolic array to generate an accumulated output from
the respective matrices sent to the cells (step 908), as described above in reference to FIG.
4.

The system can generate the layer output from the accumulated output (step 910),

as described above in reference to FIGS. 3-4.

15

WO 2016/186811 PCT/US2016/029968

Embodiments of the subject matter and the functional operations described in this
specification can be implemented in digital electronic circuitry, in tangibly-embodied
computer software or firmware, in computer hardware, including the structures disclosed
in this specification and their structural equivalents, or in combinations of one or more of
them. Embodiments of the subject matter described in this specification can be
implemented as one or more computer programs, i.e., one or more modules of computer
program instructions encoded on a tangible non transitory program carrier for execution
by, or to control the operation of, data processing apparatus. Alternatively or in addition,
the program instructions can be encoded on an artificially generated propagated signal,
e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to
encode information for transmission to suitable receiver apparatus for execution by a data
processing apparatus. The computer storage medium can be a machine-readable storage
device, a machine-readable storage substrate, a random or serial access memory device,
or a combination of one or more of them.

The term “data processing apparatus™ encompasses all kinds of apparatus, devices,
and machines for processing data, including by way of example a programmable
processor, a computer, or multiple processors or computers. The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit). The apparatus can also include, in addition
to hardware, code that creates an execution environment for the computer program in
question, e.g., code that constitutes processor firmware, a protocol stack, a database
management system, an operating system, or a combination of one or more of them.

A computer program (which may also be referred to or described as a program,
software, a software application, a module, a software module, a script, or code) can be
written in any form of programming language, including compiled or interpreted
languages, or declarative or procedural languages, and it can be deployed in any form,
including as a standalone program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A computer program may, but need not,
correspond to a file in a file system. A program can be stored in a portion of a file that
holds other programs or data, e.g., one or more scripts stored in a markup language
document, in a single file dedicated to the program in question, or in multiple coordinated
files, e.g., files that store one or more modules, sub programs, or portions of code. A

computer program can be deployed to be executed on one computer or on multiple

16

WO 2016/186811 PCT/US2016/029968

computers that are located at one site or distributed across multiple sites and
interconnected by a communication network.

The processes and logic flows described in this specification can be performed by
one or more programmable computers executing one or more computer programs to
perform functions by operating on input data and generating output. The processes and
logic flows can also be performed by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC
(application specific integrated circuit).

Computers suitable for the execution of a computer program include, by way of
example, can be based on general or special purpose microprocessors or both, or any
other kind of central processing unit. Generally, a central processing unit will receive
instructions and data from a read only memory or a random access memory or both. The
essential elements of a computer are a central processing unit for performing or executing
instructions and one or more memory devices for storing instructions and data.

Generally, a computer will also include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic,
magneto optical disks, or optical disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device, e.g., a mobile telephone, a
personal digital assistant (PDA), a mobile audio or video player, a game console, a Global
Positioning System (GPS) receiver, or a portable storage device, e.g., a universal serial
bus (USB) flash drive, to name just a few.

Computer readable media suitable for storing computer program instructions and
data include all forms of nonvolatile memory, media and memory devices, including by
way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash
memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can
be supplemented by, or incorporated in, special purpose logic circuitry.

To send for interaction with a user, embodiments of the subject matter described
in this specification can be implemented on a computer having a display device, e.g., a
CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying
information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball,
by which the user can send input to the computer. Other kinds of devices can be used to
send for interaction with a user as well; for example, feedback provided to the user can be

any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile

17

WO 2016/186811 PCT/US2016/029968

feedback; and input from the user can be received in any form, including acoustic,
speech, or tactile input. In addition, a computer can interact with a user by sending
documents to and receiving documents from a device that is used by the user; for
example, by sending web pages to a web browser on a user’s client device in response to
requests received from the web browser.

Embodiments of the subject matter described in this specification can be
implemented in a computing system that includes a back end component, e.g., as a data
server, or that includes a middleware component, e.g., an application server, or that
includes a front end component, e.g., a client computer having a graphical user interface
or a Web browser through which a user can interact with an implementation of the subject
matter described in this specification, or any combination of one or more such back end,
middleware, or front end components. The components of the system can be
interconnected by any form or medium of digital data communication, e.g., a
communication network. Examples of communication networks include a local area
network (“LAN”) and a wide area network (“WAN™), e.g., the Internet.

The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a communication
network. The relationship of client and server arises by virtue of computer programs
running on the respective computers and having a client-server relationship to each other.

While this specification contains many specific implementation details, these
should not be construed as limitations on the scope of any invention or of what may be
claimed, but rather as descriptions of features that may be specific to particular
embodiments of particular inventions. Certain features that are described in this
specification in the context of separate embodiments can also be implemented in
combination in a single embodiment. Conversely, various features that are described in
the context of a single embodiment can also be implemented in multiple embodiments
separately or in any suitable subcombination. Moreover, although features may be
described above as acting in certain combinations and even initially claimed as such, one
or more features from a claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed to a subcombination or
variation of a subcombination.

Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be performed in the particular

order shown or in sequential order, or that all illustrated operations be performed, to

18

WO 2016/186811 PCT/US2016/029968

achieve desirable results. In certain circumstances, multitasking and parallel processing
may be advantageous. Moreover, the separation of various system modules and
components in the embodiments described above should not be understood as requiring
such separation in all embodiments, and it should be understood that the described
program components and systems can generally be integrated together in a single
software product or packaged into multiple software products.

Particular embodiments of the subject matter have been described. Other
embodiments are within the scope of the following claims. For example, the actions
recited in the claims can be performed in a different order and still achieve desirable
results. As one example, the processes depicted in the accompanying figures do not
necessarily require the particular order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel processing may be

advantageous.

19

WO 2016/186811 PCT/US2016/029968

CLAIMS

1. A method for computing a layer output for a convolutional neural network layer
from a layer input using a two-dimensional systolic array, the convolutional neural
network layer having a plurality of kernels, each kernel having a respective matrix
structure of weights, the method comprising:

receiving the layer input, the layer input comprising a plurality of activation
inputs, the plurality of activation inputs represented as a multi-dimensional matrix
comprising a plurality of depth levels, each depth level being a respective matrix of
distinct activation inputs from the plurality of activation inputs;

sending each respective kernel matrix structure to a distinct cell along a first
dimension of the systolic array;

for each depth level, sending the respective matrix of distinct activation inputs to a
distinct cell along a second dimension of the systolic array;

causing the systolic array to generate an accumulated output from the respective
matrices sent to the cells; and

generating the layer output from the accumulated output.

2. The method of claim 1, where the first dimension of the systolic array corresponds
to columns of the systolic array, and where the second dimension of the systolic array

corresponds to rows of the systolic array.

3. The method of claim 1 or 2, further comprising:

determining that a count of the plurality of depth levels is less than a size of the
second dimension of the systolic array;

sending one or more duplicate matrices of distinct activation inputs to unused cells

along the second dimension of the systolic array.

4. The method of any preceding claim, further comprising:

determining that a count of the plurality of kernels is less than a size of the first
dimension of the systolic array;

sending one or more duplicate kernel matrix structures to unused cells along the

first dimension of the systolic array.

5. The method of any preceding claim, where a stride parameter for the

convolutional neural network is greater than one, the method further comprising:

20

WO 2016/186811 PCT/US2016/029968

remapping, for each kernel structure, weights in the respective matrix to cause the

matrix to have an increased number of depth levels.

6. The method of any preceding claim, where generating the layer output from the
accumulated output comprises normalizing and pooling the accumulated output to

generate the layer output.

7. The method of any preceding claim, where sending each respective kernel matrix
structure to a distinct cell along a first dimension of the systolic array comprises:

at a given clock cycle, storing a first element in the kernel matrix structure in a
first cell of the systolic array; and

at a subsequent clock cycle, shifting the first element in the first cell to a second
cell that is adjacent to the first cell and storing a second element in the kernel matrix

structure in the first cell.

8. The method of any of claims 1 to 6, where the systolic array comprises a plurality
of cells, where the plurality of weight inputs is shifted through a first plurality of cells
along a first dimension of the systolic array, and where the plurality of activation inputs is

shifted through a second plurality of cells along a second dimension of the systolic array.

9. The method of claim 8, where each cell in the plurality of cells comprises:

a weight register configured to store a weight input;

an activation register configured to store an activation input and configured to
send the activation input to another activation register in a first adjacent cell along the
second dimension;

a sum-in register configured to store a previously summed value;

multiplication circuitry coupled to the weight register and the activation register,
where the multiplication circuitry is configured to output a product of the weight input
and the activation input; and

summation circuitry coupled to the multiplication circuitry and the sum-in
register, where the summation circuitry is configured to output a sum of the product and
the previously summed value, and where the summation circuitry is configured to send

the sum to another sum-in register in a second adjacent cell along the first dimension.

10. A system for computing a layer output for a convolutional neural network layer

from a layer input using a two-dimensional systolic array, the convolutional neural

21

WO 2016/186811 PCT/US2016/029968

network layer having a plurality of kernels, each kernel having a respective matrix
structure of weights, the system comprising:

one or more computers; and

computer-readable medium coupled to the one or more computers and having
instructions stored thereon, which, when executed by the one or more computers, cause
the one or more computers to perform operations comprising;

receiving the layer input, the layer input comprising a plurality of activation
inputs, the plurality of activation inputs represented as a multi-dimensional matrix
comprising a plurality of depth levels, each depth level being a respective matrix of
distinct activation inputs from the plurality of activation inputs;

sending each respective kernel matrix structure to a distinct cell along a first
dimension of the systolic array;

for each depth level, sending the respective matrix of distinct activation inputs to a
distinct cell along a second dimension of the systolic array;

causing the systolic array to generate an accumulated output from the respective
matrices sent to the cells; and

generating the layer output from the accumulated output.

11. The system of claim 10, where the first dimension of the systolic array
corresponds to columns of the systolic array, and where the second dimension of the

systolic array corresponds to rows of the systolic array.

12. The system of claim 10 or 11, further comprising:

determining that a count of the plurality of depth levels is less than a size of the
second dimension of the systolic array;

sending one or more duplicate matrices of distinct activation inputs to unused cells

along the second dimension of the systolic array.

13. The system of any of claims 10 to 12, further comprising:

determining that a count of the plurality of kernels is less than a size of the first
dimension of the systolic array;

sending one or more duplicate kernel matrix structures to unused cells along the

first dimension of the systolic array.

22

WO 2016/186811 PCT/US2016/029968

14, The system of any of claims 10 to 13, where a stride parameter for the
convolutional neural network is greater than one, the method further comprising:
remapping, for each kernel structure, weights in the respective matrix to cause the

matrix to have an increased number of depth levels.

15. The system of any of claims 10 to 14, where generating the layer output from the
accumulated output comprises normalizing and pooling the accumulated output to

generate the layer output.

16. The system of any of claims 10 to 15, where sending each respective kernel
matrix structure to a distinct cell along a first dimension of the systolic array comprises:
at a given clock cycle, storing a first element in the kernel matrix structure in a
first cell of the systolic array; and
at a subsequent clock cycle, shifting the first element in the first cell to a second
cell that is adjacent to the first cell and storing a second element in the kernel matrix

structure in the first cell.

17. The system of any of claims 10 to 15, where the systolic array comprises a
plurality of cells, where the plurality of weight inputs is shifted through a first plurality of
cells along a first dimension of the systolic array, and where the plurality of activation
inputs is shifted through a second plurality of cells along a second dimension of the

systolic array.

18. The system of claim 17, where each cell in the plurality of cells comprises:

a weight register configured to store a weight input;

an activation register configured to store an activation input and configured to
send the activation input to another activation register in a first adjacent cell along the
second dimension;

a sum-in register configured to store a previously summed value;

multiplication circuitry coupled to the weight register and the activation register,
where the multiplication circuitry is configured to output a product of the weight input
and the activation input; and

summation circuitry coupled to the multiplication circuitry and the sum-in

register, where the summation circuitry is configured to output a sum of the product and

23

WO 2016/186811 PCT/US2016/029968

the previously summed value, and where the summation circuitry is configured to send

the sum to another sum-in register in a second adjacent cell along the first dimension.

19. A computer-readable medium having instructions stored thereon, which, when
executed by one or more computers, cause the one or more computers to perform
operations for computing a layer output for a convolutional neural network layer from a
layer input using a two-dimensional systolic array, the convolutional neural network layer
having a plurality of kemels, each kernel having a respective matrix structure of weights,
the operations comprising:

receiving the layer input, the layer input comprising a plurality of activation
inputs, the plurality of activation inputs represented as a multi-dimensional matrix
comprising a plurality of depth levels, each depth level being a respective matrix of
distinct activation inputs from the plurality of activation inputs;

sending each respective kernel matrix structure to a distinct cell along a first
dimension of the systolic array;

for each depth level, sending the respective matrix of distinct activation inputs to a
distinct cell along a second dimension of the systolic array;

causing the systolic array to generate an accumulated output from the respective
matrices sent to the cells; and

generating the layer output from the accumulated output.

20. The computer-readable medium of claim 19, where the first dimension of the
systolic array corresponds to columns of the systolic array, and where the second

dimension of the systolic array corresponds to rows of the systolic array.

21. The computer-readable medium of claim 19 or 20, further comprising:
determining that a count of the plurality of depth levels is less than a size of the
second dimension of the systolic array;
sending one or more duplicate matrices of distinct activation inputs to unused cells

along the second dimension of the systolic array.

22, The computer-readable medium of any of claims 19 to 21, further comprising:
determining that a count of the plurality of kernels is less than a size of the first

dimension of the systolic array;

24

WO 2016/186811 PCT/US2016/029968

sending one or more duplicate kernel matrix structures to unused cells along the

first dimension of the systolic array.

23. The computer-readable medium of any of claims 19 to 22, where a stride
parameter for the convolutional neural network is greater than one, the method further
comprising:

remapping, for each kernel structure, weights in the respective matrix to cause the

matrix to have an increased number of depth levels.

24, The computer-readable medium of any of claims 19 to 23, where generating the
layer output from the accumulated output comprises normalizing and pooling the

accumulated output to generate the layer output.

25. The computer-readable medium of any of claims 19 to 24, where sending each
respective kernel matrix structure to a distinct cell along a first dimension of the systolic
array comprises:

at a given clock cycle, storing a first element in the kernel matrix structure in a
first cell of the systolic array; and

at a subsequent clock cycle, shifting the first element in the first cell to a second
cell that is adjacent to the first cell and storing a second element in the kernel matrix

structure in the first cell.

26. The computer-readable medium of any of claims 19 to 24, where the systolic array
comprises a plurality of cells, where the plurality of weight inputs is shifted through a
first plurality of cells along a first dimension of the systolic array, and where the plurality
of activation inputs is shifted through a second plurality of cells along a second dimension

of the systolic array.

27. The computer-readable medium of claim 26, where each cell in the plurality of
cells comprises:

a weight register configured to store a weight input;

an activation register configured to store an activation input and configured to
send the activation input to another activation register in a first adjacent cell along the
second dimension;

a sum-in register configured to store a previously summed value;

multiplication circuitry coupled to the weight register and the activation register,

25

WO 2016/186811 PCT/US2016/029968

where the multiplication circuitry is configured to output a product of the weight input
and the activation input; and

summation circuitry coupled to the multiplication circuitry and the sum-in
register, where the summation circuitry is configured to output a sum of the product and
the previously summed value, and where the summation circuitry is configured to send

the sum to another sum-in register in a second adjacent cell along the first dimension.

26

PCT/US2016/029968

WO 2016/186811

1/9

<+ -

g JahkeT G JokeT

7 Jake

| Ol

¢ Jahe

9G¢CX/X.

-
96Xy LxXyl

-
9GcxXy Xyl

-
9GCxXyr Xyl

Z Jake

-
96X8CX8¢

O
O
—

| JoAe

-
€X0LLX0LL

WO 2016/186811 PCT/US2016/029968
2/9

Receive sets of
weight inputs
202

'

Receive sets of
activation inputs
204

'

Generate
accumulated values
from the weight and

activation inputs
206

'

Generate an output
from the accumulated
values
208

N
o
o

FIG. 2

PCT/US2016/029968

WO 2016/186811

3/9

¢ 9ld

90¢

Jaousnbag

14%%
nn
uonendwos Jojap

Zle
uun uoneindwon Xuep

FAN
8oBlBIU| 1SOH

Jayng psiiun

80¢

4

¥0¢
auIbug sseooy

Aows\ 10841Q

ole
Aowa olweuiq

O
™)

PCT/US2016/029968

WO 2016/186811

4/9

140) 2

¥ Old

JapeoT anjep

JapeoT anjep

4

JapeoT anjep

4

JapeoT anjep

oLy
Jole| J01e| Jole| Joje|
nwnooy nWINooYy nwnooy nwiNooYy

1®0 LN 1®D 1®0 1®0

® [] [[

[] [] [] []

[[] [] []
1®0 LN 1?0 4—— |90 1®0
1®0 LA 1?0 <4—— 90 1®0
1®0 LN 1?0 4—— |90 1®0

A A o0v A A

12{0) 4

soeULIU| Jay1e 4 ubBIapA

o
<

— ¢0v

PCT/US2016/029968

WO 2016/186811

5/9

-— 7~ ™\

G 9ld

olLs
AInoJin uonewwng

¥0S
J91s169y U] WNS

1/

80§
Aynon uoneosidiyniy

A

90¢9
1815160y UONBAIDY

20s
1915160y yblapn

Z1s
Ja)sibay yied wbiapn

O
(=
LO|

PCT/US2016/029968

WO 2016/186811

6/9

9 9OId

O
O
©

PCT/US2016/029968

WO 2016/186811

719

L 9Old
Joie| Joie| Joie| Jole|
NWINooY NWINooY NWINooY NWINOoY
|E10) oo 10 4—— 18D <4—— |[I8D
. . . .
|E10) oo 1?0 44— 8D <—— 8D
| ! ! !
|E10) L 10 4—— 18D <4—— |[I8D
|E10) oo 1?0 44— 8D <—— 8D
I b oo} !
_ _ _ _
0L XgEXg 0oL XgXg 0L XgEXg 0L XEXg
d |susey D |suley = NEIE)Y v |auley]

0L

NNN
NNN
NNN

[€€€]
€ece
| €C€€

[2CC]
ccc
| cCC

b i v
b i v
b i v

— ¢0L

(@]
O
M~

WO 2016/186811 PCT/US2016/029968
8/9

Clock Cycle 1 Clock Cycle 2
802 804

HRHEHEER RN
A R N

Fi»¢_>¢ _>¢_>1_>¢
AT T
HEONH
oo
T
S

(09}
o
o

FIG. 8

WO 2016/186811 PCT/US2016/029968
9/9

Receive the layer input
902

'

Send each kernel matrix structure to
a distinct cell along a first dimension
904

'

For each depth level, send the
respective matrix of distinct
activation inputs to a distinct cell
along a second dimension
906

'

Cause the systolic array to generate
an accumulated output
908

'

Generate the layer output from the
accumulated output
910

FIG. 9

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/029968

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6N3/02 GO6N3/063
ADD.

GO6F15/80

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6N GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

17 April 1991 (1991-04-17)
abstract

page 2, line 4 - Tine 31
page
page
page
page
page
page
figur

()]
(S)]
1

line
line 54
1ine 18
line 36

-

line 56
line 24
line 42

-

-

D OONNOYE=WN

s 1,3,4A,10

X EP 0 422 348 A2 (HNC INC [US])

, line 21 - page 4, line 33
page 5, line 31

line 32 - page 9, line 3

1-27

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

25 August 2016

Date of mailing of the international search report

01/09/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Fantini, Federico

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/029968
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2014/180989 Al (KRIZHEVSKY ALEXANDER 1-27
[CA] ET AL) 26 June 2014 (2014-06-26)
abstract
paragraph [0002] - paragraph [0003]
paragraph [0009] - paragraph [0010]
paragraph [0022] - paragraph [0032]
paragraph [0039]
figures 1,2,4
X KUNG S: "VLSI Array processors", 1-27
IEEE ASSP MAGAZINE, IEEE, US,
vol. 2, no. 3, 1 July 1985 (1985-07-01),
pages 4-22, XP011370547,
ISSN: 0740-7467, DOI:
10.1109/MASSP.1985.1163741
paragraph [02.2]
paragraph [03.1]
paragraph [03.4]
paragraph [05.2] - paragraph [05.3]
figure 2.4
figure 3.1
figure 5.1
X US 20117029471 Al (CHAKRADHAR SRIMAT [US] 1-27
ET AL) 3 February 2011 (2011-02-03)
abstract
paragraph [0005] - paragraph [0010]
paragraph [0012]
paragraph [0025]
paragraph [0030] - paragraph [0036]
paragraph [0038] - paragraph [0039]
paragraph [0043] - paragraph [0044]
paragraph [0053] - paragraph [0054]
paragraph [0056]
paragraph [0059]
paragraph [0064] - paragraph [0066]
paragraph [0071]
figures 1,4
A US 8 924 455 B1 (BARMAN KAUSHIK [IN] ET 1-27
AL) 30 December 2014 (2014-12-30)
abstract
column 1, line 12 - line 24
column 2, line 65 - column 5, line 15
column 6, line 46 - Tine 59
column 7, line 11 - Tine 25
column 8, line 42 - Tine 61
figures 13,15
_/ -

Form PCT/ISA/210 (col

ntinuation of second sheet) (April 2005)

page 2 of 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/029968

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A Alex Krizhevsky ET AL: "ImageNet
classification with deep convolutional
neural networks",

The 26th annual conference on Neural
Information Processing Systems (NIPS'25):
3-8 December 2012,

6 December 2012 (2012-12-06), XP55113686,
Retrieved from the Internet:
URL:http://books.nips.cc/papers/files/nips
25/NIPS2012 0534.pdf

[retrieved on 2014-04-11]

abstract

page 1 - page 2, paragraph 1

page 2, paragraph 3 - page 5, paragraph 4
figure 2

1-27

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 3 of 3

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/029968
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0422348 A2 17-04-1991 EP 0422348 A2 17-04-1991
JP HO3131965 A 05-06-1991
US 5138695 A 11-08-1992
US 5471627 A 28-11-1995
US 2014180989 Al 26-06-2014 AU 2013370514 Al 16-07-2015
W 201439926 A 16-10-2014
US 2014180989 Al 26-06-2014
US 2015339571 Al 26-11-2015
WO 2014105865 Al 03-07-2014
US 2011029471 Al 03-02-2011 NONE
US 8924455 Bl 30-12-2014 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report
	Page 40 - wo-search-report

