
(19) United States
US 20080222 111A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0222 111 A1
Hoang et al. (43) Pub. Date: Sep. 11, 2008

(54) DATABASE SYSTEM WITH DYNAMIC Related U.S. Application Data
DATABASE CACHING

(60) Provisional application No. 61/026,090, filed on Feb.
(75) Inventors: Chi Kim Hoang, Palo Alto, CA 4, 2008, provisional application No. 60/905,751, filed

(US); Chih-Ping Wang, Palo Alto, on Mar. 7, 2007.

See title Los Publication Classification
Neimat, Redwood Shores, CA (51) Int. Cl.
(US); Susan Sokeng Cheung, G06F 7/06 (2006.01)
Redwood Shores, CA (US) (52) U.S. Cl. 707/3; 707/E17.014

Correspondence Address: (57) ABSTRACT
Stolowitz Ford Cowger LLP -
621 SW Morrison St, Suite 600 A fully transactional mid-tier database system services data
Portland, OR 97205 (US) base transactions. A cache manager dynamically loads data

base entries from a fully transactional backend-tier database
(73) Assignee: Oracle International Corporation, system into the mid-tier database system according to the

Redwood Shores, CA (US) received database transactions. Time based aging or usage
based aging can be assigned to selected tables in the mid-tier

(21) Appl. No.: 12/030,113 database system. Database entries contained in the selected
tables are then automatically removed according to assigned

(22) Filed: Feb. 12, 2008 aging constraints.

CACHE OAABASE
- MANAGER - - - - - -

| SQL
—- J - STATEMENTS

-1 119

150 - / FR
SCR 119A

SAEMENTS -
ABED 1198

PRIMARY
KEY

118 - TABLE 128B

PRIMARY

TABLE 1328
TABLE 130B --- ----- - - -----

D3NTRYi
3 ERY#2

DBENTRY #3 204,

PK=1 -- - --- - ------ SS m '

K TABLE O FK- B ENRY #4 4 --------

--19A - MMWW 'S W '

127 ----1 Y-119A - g3

Patent Application Publication Sep. 11, 2008 Sheet 1 of 8 US 2008/0222 111 A1

102B
CENT -- / 1043 -- N

CENT 114B
BRARIES P Y-102A

13 SERVER
Y- PROCESS

112A- - I - t
y s

appucations
118
- A -
TRANSACTIONS

- 122 - 124
Y r !--- m

150 - TRANSACTION
A- M E LOGS

\- - CACHE E -128B CHECKPONT
MANAGER v.

|----------------- Y-130B 132B FILES
y Y- : \

- Y-126
SECON DARY DAABASE SYSTEM

127 (APPLICATION-TIER)

FG. 1

US 2008/0222 111 A1 Sep. 11, 2008 Sheet 2 of 8 Patent Application Publication

Patent Application Publication Sep. 11, 2008 Sheet 3 of 8 US 2008/0222 111 A1

- 250

RECEIVE/MONITOR
: TRANSACTION

252

IDENTIFY DATABASE
ENTRIES ASSOCATED
WITH TRANSACTION

256 - - 254

SERVICE TRANSACTIONLYES E. USING SECONDARY
DATABASE ACCESSED OR REFERENCE BY

THE TRANSACTION?

SEND QUERIES TO PRIMARY
DATABASE FOR MISSING
DATABASE ENTRIES

- 260

UPLOAD ACCESSED DATABASE
ENTRIES FROM PRIMARY

DATABASE INTO SECONDARY
DATABASE

- 262

COMMIT UPLOADED DAABASE
ENTRIES

FIG. 3

Patent Application Publication Sep. 11, 2008 Sheet 5 of 8 US 2008/0222 111 A1

350

-> RECEIVE TRANSACTION

- 354 352
- rraorrow ?.

SERVICE TRANSACTION DOES SECONDARY DATABASE
USING SECONDARYYES CONTAIN ORDERS FOR

DAABASE CUSTOMERS WITH ID:100

-- -Mommam

SELECT ROWS FROM OFRDER TABLE
N PRIMARY DATABASE

(SELECT * FROM ORDERS WHERE
CUSTOMER ID=100)

--mirre-ren-irror-ramma-amirer-mee-wu-we-a-worm

- 358

SELECT ROWS FROM CUSTOMER TABLE IN
PRIMARY DATABASE

(SELECT * FROM CUSTOMER WHERE ID=100)

INSERT ROWS INTO
SECONDARY DATABASE

F.G. 5

Patent Application Publication Sep. 11, 2008 Sheet 6 of 8 US 2008/0222111A1

150
- 400D -- 400A - 400C too / 400A / 400B f A - 404 ----------------

TABLEA. T HUTh1 Y- LUT#1 AC#1 --
TABLE C HU i2 LUT#2 AC#2 CACHE COUNTER

mmu CLOCK
USAGE BASED AGNG MANAGER ru

402 -402A - 402B - 402C v ?
W 1. --- t ---

Y TABLED LIFETIME cT#1 -->
TME BASED AGNG ---

w

TABLE A
416 ||USAGE BASED AGING TABLE C ABE)
NLDB ENTRY #1 LU-2 USAGE BASED AGNG TMEBASE) AGNG

DB ENTRY #2 LU=8 DBENTRY #1 LU-2 DBENTRY." 420
DBENTRY #3 LU=5 DB ENTRY F2 LU-8 DB ENTRY #2 /
- I - DB ENTRY #3 L-1

408 DB ENTRY i3 e5 - -
TABLE B DB ENTRY #4 LU=2 \

Y 414
NOAGING DB ENTRY #5 LU=11

DB ENTRY, i.1 --
DB ENTRY #6 LU=15

DB ENTRY i2 -
" DB ENTRY #7 U-7 122

DB ENTRY i3 !-----------

S 412 L

SECONDARY DATABASE

v
TABLE A ABEC TABLED

DBENTRY #1 DBENTRY #1 DBENTRY #3
/ DB ENTRY #3 | -

416 - DB ENTRY #4 420

/
4.18 -

F.G. 6

Patent Application Publication Sep. 11, 2008 Sheet 7 of 8 US 2008/0222 111 A1

450 ww-u--

s RECEIVE TABLE AGNG
CONSTRANTS

r w awala N

452 USAGE BASED OR TWE TIMEBASED N
- BASED AGNG?

/

USAGE BASED

454 IDENTIFY USAGE BASED AGNG
TABLES, LOW USAGE

s- THRESHOLD, HIGH USAGE
THRESOLD AND AGING CYCLE

------------Mum

w

NO 456
X--- AGNG CYCLE REACHED' /

460- M
RESET AGING NO HGH USAGE THRESHOLD 458

CYCLE PERCENTAGE REACHED

YES

REMOVE OLDEST DATABASE ENTRY
462 FROM TABLE. IF DATABASE ENTRY
N PART OF CACHE GROUP, REMOVE

--- ENTRE CACHE GROUP

y

464 OW USAGE NO
N THRESOLD PERCENTAGE
- REACHED

YES

FG, 7

Patent Application Publication Sep. 11, 2008 Sheet 8 of 8 US 2008/0222 111 A1

FG, 7

IDENTIFY TIME BASED AGING | 480
TABLES, LIFETIME VALUES, | -

AND CYCLE TVE
arr-rrrrrrrrrrrrrrrrrrrrrra—

CYCE TIME REACHED 482

DENTFY ROWS HAT HAVE
EXCEEDED ABE LIFEME

REMOVE DENTIFIED ROWS. F
: ROW PART OF A CACHE 486
: GROUP THEN REMOVE AL

RELATED CHILDREN. -

F.G. 8

US 2008/0222 111 A1

DATABASE SYSTEM WITH DYNAMIC
DATABASE CACHING

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority to provisional appli
cation Ser. No. 60/905,751 filed on Mar. 7, 2007, entitled
MAIN-MEMORY DATABASES and also claims priority to
provisional application Ser. No. 61/026,090 filed on Feb. 4,
2008, entitled DATABASE SYSTEM WITH DYNAMIC
DATABASE CACHING AND DATABASE SYSTEM
WITH ACTIVE AND STANDBY NODES and are both
incorporated by reference in their entirety.
0002 This application is also related to the following
application filed simultaneously herewith and is incorporated
by reference in its entirety.
0003 U.S. patent application Ser. No. 12/030,094
entitled: DATABASE SYSTEM WITH ACTIVE AND
STANDBY NODES filed on Feb. 12, 2008.

TECHNICAL FIELD

0004. The present disclosure relates generally to database
systems.

BACKGROUND

0005. A disk-based Relational Database Management
System (RDBMS) uses disk storage to store and access large
amounts of data. Much of the work performed by a conven
tional, disk-optimized RDBMS assumes that data primarily
resides on disk. Optimization algorithms, buffer pool man
agement, and indexed retrieval techniques are designed based
on this fundamental assumption. One problem with disk Stor
age is that access to the data is relatively slow.
0006 Even when an RDBMS is configured to hold data in
main memory, performance is still hobbled by assumptions of
disk-based data residency. These assumptions cannot be eas
ily reversed due to hard-coded processing logic, indexing
schemes, and data access mechanisms.
0007 In-memory resident relational database systems are
deployed in the application-tier and operate in physical
memory using standard Sequential Query Language (SQL)
interfaces. By managing data in memory and optimizing data
structures and access algorithms, in-memory database sys
tems can provide improved responsiveness and throughput
compared even to fully cached disk-based RDBMS. For
example, the in-memory database can be designed with the
knowledge that data resides in main memory and can take
more direct routes to data, reducing the length of the code path
and simplifying algorithms and structure.
0008. When the assumption of disk-residency is removed,
complexity is dramatically reduced. The number of machine
instructions drop, buffer pool management disappears, extra
data copies are not needed, and index pages shrink. The
database design becomes simple and more compact, and data
requests are executed faster. However, in-memory database
systems currently can only operate on a relatively small static
portion of the data contained in a disk-based database system.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 FIG. 1 is a schematic block diagram showing a
database system that provides dynamic database caching.

Sep. 11, 2008

0010 FIG. 2 is a schematic block diagram showing in
more detailhow a cache manager caches database entries in a
secondary/application-tier database system.
0011 FIG. 3 is a flow diagram explaining operations per
formed by the cache manager in FIG. 2.
0012 FIG. 4 is a schematic block diagram showing how
the cache manager operates with cache groups.
0013 FIG. 5 is a flow diagram describing in more detail
how dynamic database caching operates with cache groups.
0014 FIG. 6 is a schematic block diagram showing how
dynamic database caching selectively ages out database
entries.
0015 FIG. 7 is a flow diagram describing usage based
aging in more detail.
0016 FIG. 8 is a flow diagram describing time based aging
in more detail.

INTRODUCTION

0017. A fully transactional mid-tier database system ser
vices database transactions. A cache manager dynamically
loads database entries from a fully transactional backend-tier
database system into the mid-tier database system according
to the received database transactions. Time based aging or
usage based aging can be assigned to selected tables in the
mid-tier database system. Database entries contained in the
selected tables are then automatically removed according to
assigned aging constraints.

DETAILED DESCRIPTION

0018 FIG. 1 is a schematic representation of a multi-tiered
database system. A primary database system 140 can be any
conventional fully-relational database system, Such as a disk
based Relational Database Management System (RDBMS).
The primary database system 140 typically uses disk storage
to store and access large amounts of data that in one example
includes multiple different tables 144. The primary database
system 140 is alternatively referred to as a backend database
system or a backend-tier database system.
0019. A secondary database system 122 typically operates
on a server 100 that is remote from primary database system
140 and includes a storage manager that stores and manages
different tables 127 that contain different database entries.
The secondary database 122 in one example is an in-memory
fully-relational database that is deployed in an application tier
and operates in physical memory of the server 100. The
secondary database system 122 is alternatively referred to as
an application-tier database system oran in-memory database
system.
0020 Applications 112A and 112B are initiated by clients
102A and 102B, respectively, via a local or wide area network
110. The network 110 is alternatively referred to as the Inter
net. The applications 112 can be any software program that
accesses or references database entries in a database. For
example, the applications 112 could be software programs
used for booking airline reservations, ordering products over
the Internet, managing financial transactions for banks or
investment institutions, or tracking telephone call usage. Of
course these are just a few examples of the essentially limit
less number of data management applications that may be
used with the database systems shown in FIG. 1.
0021 Connections from the clients 102 can either be
direct connections or client/server connections. Direct con
nections refer to Sequential Query Language (SQL) libraries

US 2008/0222 111 A1

and routines that implement a direct driver. The application
112A can create a direct driver connection when it runs on the
same server 100 that operates the secondary database system
122. In a direct driver connection, the direct driver directly
loads the secondary database 122 into the application's heap
space or a shared memory segment. The application 112A
then uses the direct driver to access a memory image of the
secondary database 122. Because no inter-process communi
cation is required, a direct driver connection provides fast
performance.
0022. The client/server connection accommodates con
nections from the remote client 102B to secondary database
100 over network 110. Applications 112B on the client 102B
issue calls to local client driver libraries 114B that commu
nicate with a server/child process 113 on the server 100
containing secondary database 122. The server/child process
113, in turn, issues native requests to the direct driver pro
vided by the server libraries for accessing the secondary
database 122. If a client 102 and server 100 reside on separate
nodes in a network, then communication is provided using
sockets and Transmission Control Protocol/Internet Protocol
(TCP/IP) communications.
0023 The secondary database 122 maintains durability
through a combination of transaction logs 124 and periodic
refreshes of a disk-resident version of the secondary database
122. The transaction logs 124 are written to disk asynchro
nously or synchronous with the completion of transactions
118 and are controlled by the applications 112 at the transac
tion level. The transaction logs 124 can be used to recover a
transaction 118 if the application 112 or database 122 fails,
undo transactions 118 that are rolled back, replicate changes
to other databases, replicate changes in the secondary data
base 122 to the primary database 140, or enable applications
112 to detect changes to database entries.
0024 Checkpoint files 126 are used to keep a snapshot of
the secondary database 122. In the event of a system failure,
the checkpoint files 126 are used to restore the secondary
database 122 to a last transactionally consistent state. A
checkpoint operation scans the secondary database 122 for
blocks that have changed since the last checkpoint and
updates the checkpoint files 126 with the changes and
removes any transaction log files 124 that are no longer
needed.
0025. The applications 112 create and manage the tables
127 that may exist only in secondary database 122. The appli
cations 112, through cache manager 150, can also cache
frequently used Subsets of database entries from the primary
database 140. The tables 127 managed exclusively by the
secondary database 122 and the tables 127 cached from pri
mary database 140 may all coexist in the same secondary
database 122, and are all persistent and recoverable.
0026 Queries and updates to the tables 127 are performed
by the applications 112 through standard SQL. Applications
112 running on other different mid-tier servers may cache
different or overlapping Subsets of the data in primary data
base 140.
0027. The cache manager 150 can cache entire tables or
table fragments from the primary database 140 to the second
ary database 122 operating on server 100. The table fragments
are described through an extended SQL syntax and are cached
into corresponding tables. For example, tables 128A, 130A,
and 132A from primary database 140 are cached into corre
sponding tables 128B, 130B, and 132B in the secondary
database 122. The cached tables 128B, 130B, or 132B may

Sep. 11, 2008

comprise the entire corresponding tables 128A, 130A, or
132B from primary database 140 of may only include
selected database entries from the primary database tables
128A, 130A, or 132B. The database entries can be any record,
tuple, column, row or other data item that typically exists in a
fully transactional database system.
0028. The secondary database 122 dynamically caches
performance-critical subsets of the primary database 140,
enabling both reads and updates, and automatically manages
data consistency between the cached secondary database 122
and the primary database 140. The applications 112 read and
update the cached tables 127 using standard SQL, and the
cache manager 150 automatically propagates updates from
the primary database 140 to the secondary database 122 and
Vice versa.
0029. Thus, the cached secondary database 122 offers
applications 112 the full generality and functionality of a
fully-relational database, the transparent maintenance of
cache consistency with the primary database 140, and the
real-time performance of an application-tier in-memory data
base system.
0030 FIG. 2 shows the operations performed by the cache
manager 150 in more detail. The cache manager 150 dynami
cally varies what subset of tables 127 are cached from the
primary database system 140 into the secondary database
system 122 according to the transactions 118 received from
the applications 112 in FIG. 1.
0031. The cache manager 150 first determines what trans
actions 118 can be serviced by the secondary database 122.
For example, the cache manager 150 determines if the refer
enced tables 200A and referenced primary keys 200B in SQL
statement 200 reside in secondary database 122. If the refer
enced database entries reside in the secondary database 122,
the transaction 118 is serviced by the secondary database 122.
0032. When the database entries referenced by the trans
action 118 do not reside in the secondary database 122, the
cache manager 150 may query the primary database 140 for
the missing database entries. For example, table identifier
119A and primary key identifier 119B reference a database
entry 204 in a table 130B having a primary key value PK=1.
Since the database entry 204 is not currently located in the
secondary database 122, the cache manager 150 queries the
primary database 140. The referenced database entry 204 in
primary database 140 is then inserted into table 130B in the
secondary database 122. The transaction 118 may then be
serviced by the secondary database 122 using the uploaded
database entry 204.
0033 FIG. 3 explains some of the operations performed
by the cache manager 150 in more detail. Referring both to
FIGS. 2 and 3, in operation 250 the cache manager 150
receives or monitors the database transactions 118 directed to
secondary database 122. In operation 252, the cache manager
150 may identify the database entries associated with the
database transaction. For example, the cache manager 150
obtains the table identifiers and keys referenced by the trans
action 118. The cache manager 150 in operation 254 searches
the secondary database 122 for the referenced database
entries.
0034. If the secondary database 122 contains the refer
enced database entries in operation 254, the transaction is
serviced by the secondary database in operation 256. Other
wise, the cache manager 150 sends one or more queries to the
primary database 140 that reference the database entries that
are not contained in the secondary database 122.

US 2008/0222 111 A1

0035. In some embodiments, the secondary database 122
may contain some, but not all, of the database entries refer
enced by the transaction 118. In this situation, the cache
manager 150 may send queries referencing only the missing
database entries. In other embodiments, when only some of
the database entries referenced by the transaction 118 are
currently located in the secondary database 122, the cache
manager 150 may query the primary database 140 for all of
the database entries referenced by the transaction 118.
0036. The database entries accessed in the primary data
base 140 are then uploaded into the secondary database 122 in
operation 260. For example, the cache manager 150 may
generate additional SQL statements that cause the primary
database entries to be inserted into the secondary database
122. Any required commitment is performed on the uploaded
database entries 204 in operation 262. The transaction 118 is
then serviced by the secondary database in operation 256.

Cache Groups

0037 FIG. 4 shows how dynamic database caching is used
in conjunction with cache groups. A cache instance or cache
group is a collection of related records that are uniquely
identifiable, and is used to model a complex object. For
example, a cache group 314 may be a group of rows that
correspond to a set of frequently used tables that are related to
each other through foreign key constraints.
0038 Cache instances/cache groups can be used when
both loading data from primary database 140 into the second
ary database 122 and via Versa and when database entries are
aged out of the secondary database 122. The cache group 314
may be configured to contain entire tables or configured to
contain only subsets of table rows and/or table columns.
0039. The following SQL syntax is one example of how
the cache group 314 is created that includes different database
entries from both CUSTOMER table 302 and ORDER table
304.

create cache group cache customer from
customer(pk1 int not null primary key),
orders(pk2 int not null primary key,
fk2 int, foreign key (fk2) references customer(pk1));

0040. In this example, each customer in the CUSTOMER
table 302 has a primary key on its ID. One customer may have
many orders in the ORDER table 304, where each order has
a foreign key (fk2) that references a CUSTOMER(ID). Con
figuring cache group 314 causes the cache manager 150 to
treat all of the order information and associated customer
information associated with the transaction as a single cache
instance. For example, a transaction may only reference one
of the database entries associated with cache group 314. If the
referenced database entry is not contained in secondary data
base 122, the cache manager 150 uploads all of the database
entries associated with the cache instance from the primary
database 140 at the same time.

0041. In this example, CUSTOMER table 302 is consid
ered a root table and ORDERS table 304 is considered a child
table. Database entries can be uploaded or flushed based on
the root table 302. For example, all child rows for a root table
currently located in the secondary database 122 can also be
presumed to be currently located in the secondary database

Sep. 11, 2008

122. This prevents the cache manager 150 from having to
determine if all of the foreign keys for a cache group exist in
the secondary database 122.
0042. Referring to FIGS. 4 and 5, the cache manager 150
receives a transaction 306 in operation 350. The transaction
306 selects all of the orders for a customer having an ID=100.
This transaction 306 may be implemented using the follow
ing SQL statement 307.

0043 select * from orders with a customer ID=100
0044) The cache manager 150 in operation 352 determines
if the secondary database 122 contains any database entries in
the ORDERS table 304 with the customer ID=100. If so, the
SQL statement 307 is serviced by the secondary database 122
in operation 354 by returning the requested database entries.
0045. When the secondary database 122 does not contain
orders with customer ID=100, the cache manager 150 sends
the following query 308 to the primary database 140 in opera
tion 356 selecting the database entries from the ORDER table
with customer ID=100.

0046 select * from orders with a customer ID=100
0047. However, the cache manager 150 also determines
that the referenced database entries are part of the cache group
314. The cache manager 150 identifies the cache group via the
foreign keys assigned to orders in table 304. Accordingly, the
cache manager 150 in operation 358 sends the following
second query 310 that selects all of the rows from the CUS
TOMER table in the primary database 140 that have an
ID=100.

0048 select * from customer where ID=100
0049. The different database entries accessed in the pri
mary database with queries 308 and 310 are referred to as
cache instance 320. It should be understood that the two
different queries 308 and 310 select more database entries
320A-320C from the primary database 150 than what was
actually referenced by the transaction 306. Thus, in one
embodiment, all of the database entries associated with a
same cache instance are loaded into the secondary database at
the same time.
0050. The cache manager 150 also sends insert commands
312 to the primary database 140 in operation360 which cause
the rows 320A-320C associated with cacheinstance 320 to be
inserted into the secondary database in operation 360. The
transaction 306 is then serviced by the secondary database in
operation 354.

Aging

0051 FIG. 6 shows how different aging parameters are
used to automatically remove database entries from the sec
ondary database 122. Assigning differentaging parameters to
different database tables allows the secondary database 122 to
dynamically cache more relevant user content. For example,
an airlines reservation system may use the secondary data
base 122 for caching a Subset of customer flight reservations
and caching a Subset of airline flight schedules.
0.052 The customer flight reservation tables may be more
effectively cached based on usage. For instance, it may be
advantageous to maintain customer information in the sec
ondary database 122 for customers who frequently or most
recently book airline reservations. This allows faster database
response to user reservation queries and further may reduce
the amount of traffic between the secondary database 122 and
primary database 140. This is referred to generally as “usage
based aging.”

US 2008/0222 111 A1

0053 Other types of data may be more “time based.” For
example, airline flight schedules may be highly queried for
some period of time. However, after the airline flightarrives at
a destination, that flight information is much less likely to be
queried again by users. Accordingly, it may be advantageous
to remove this type of “time-based data from the secondary
database 122 after a specified time period. The cache manager
150 can be programmed to selectively associate different
tables in secondary database 122 with these different usage
based and time based aging constraints.

Usage Based Aging

0054 The following SQL, statements may be used for
configuring tables A and C in FIG. 6 as usage based aging
tables.

CREATE TABLE A (C1 INT, C2 INT);
ALTER table AADD AGING LRU:
TT AgingLRUConfig (LowlJsageThreshold,
Highl sageThreshold. AgingCycle)

CREATE TABLE C (C1 INT, C2 INT);
ALTER table CADD AGING LRU:
TT AgingLRUConfig (LowlJsageThreshold,
Highl JsageThreshold. AgingCycle)

0055. A listing 400 identifies in column 400A the tables in
secondary database 122 that are configured with usage based
aging constraints. In this example, the Least Recently Used
(LRU) database entries in tables A and C are periodically
removed according the amount of available space in the sec
ondary database 122.
0056 High Usage Threshold (HUT) values 400B identify
a percentage of used memory space in the secondary database
122 that trigger the cache manager 150 to remove least
recently used database entries. Low Usage Threshold (LUT)
values 400C can also be assigned to the tables A and B and
identify a second lower percentage of used memory space in
the secondary database 122. When the HUT value 400B is
reached, the cache manager 150 removes least recently used
database entries until the storage space in secondary database
122 reaches the LUT value 400C.

0057 Aging Cycle (AC) values 400D in listing 400 indi
cates how often the cache manager 150 evaluates the least
recently used database entries in tables A and C. For example,
a counter or clock 404 is monitored by cache manager 150.
The cache manager 150 periodically checks the amount of
used memory space in the secondary database 122 after
counter/clock 404 indicates the expiration of each aging cycle
400D. If the amount of used memory space reaches HUT
400B, the cache manager 150 removes the least recently used
database entries from the associated tables A and/or C.

0058 Last Used (LU) tags 408 and 412 indicate when the
database entries in tables A and C were respectively last used.
The LU tags 408 and 412 may use the value provided by
counter? clock 404 at the time the associated database item
was last accessed or referenced. The LU tags 408 and 412 can
then be updated with a current time from counter/clock 404
whenever the associated database entries in tables A or Care

Sep. 11, 2008

accessed or referenced again by another transaction or when
the database entries are uploaded again from the primary
database 140.

Time Based Aging
0059 Selected tables in the secondary database 122 can
also be assigned time based aging constraints. For example,
the following SQL statement configures time based aging
constraints for table D.

0060 CREATE TABLED (Timestamp C1, Timestamp
c2, c3 INT) AGING USE c1 LIFETIME
{MINUTESIHOURSDAYS CYCLE
{MINUTESIHOURSDAYS

0061 The time based aging SQL statement causes table D
to be listed in column 402A of time based aging listing 402. A
lifetime value 402B in listing 402 designates how long data
base entries in table D should reside in the secondary database
122. A cycle time value 402C defines a time period for the
cache manager 150 to periodically evaluate the database
entries in table D. If different cycle times 402C are defined for
different tables, then the cache manager 150 may wake up
based on an a single cycle time value for all of the tables, or
may wake up according to the cycle times for each individual
table.
0062. The time based aging SQL statement above also
configures a column in table D with timestamp values 414.
The timestamp values 414 could be a date and time value from
counter/clock 404 or could alternatively be a counter value
from counter/clock 404 that is continuously incremented
until reaching a reset value. In one embodiment, the times
tamp values 414 are set to the value of counter/clock 404
when the associated database entries are first loaded into the
secondary database 122.
0063 Referring both to FIGS. 6 and 7, in operation 450 the
tables in the secondary database 122 are configured with
different usage based aging constraints and time based aging
constraints as described above. In operation 452, the cache
manager 150 identifies the different usage based aging tables
and time based aging tables as defined in listings 400 and 402.
In operation 454, the differentaging parameters in listing 400
are identified for the usage based tables. For example, the
cache manager 150 in operation 454 identifies the high usage
thresholds 400B, low usage thresholds 400C and the aging
cycles 400D for tables A and C.
0064. In operation 456 the cache manager 150 waits for
one of the aging cycles to be reached for one of the tables A or
C. For example, the cache manager 150 determines when the
counter/clock 404 reaches the aging cycle 400D for one of the
tables A or C. When an aging cycle is reached in operation
456, the cache manager 150 determines the amount of
memory space currently being used in the secondary database
122. If the high usage threshold value 400A is reached for
either table A or table C in operation 458, the least recently
used database entries for that table are removed in operation
462.
0065 For example, the high usage threshold value 400B
for table A may be set to 75% and the high usage threshold
value 400B for table C may be set to 85%. If storage in the
secondary database 122 is 80% full when the counter/clock
404 reaches a next aging cycle time 400D, the least recently
used database entry in table A is removed in operation 462.
The LU tag value LU-2 indicates that database entry 416 is
the least recently used entry in table A and is accordingly
removed from the secondary database 122 in operation 462.

US 2008/0222 111 A1

0066. In operation 464, the cache manager 150 determines
the amount of used storage space after the database entry 416
is removed in operation 462. If the percentage of used
memory space does not drop below the low usage threshold
value 400C for table A in operation 464, the next least
recently used database entry is removed from table A in
operation 462. Database entries are removed from tables A
until the amount of utilized space in the secondary database
drops below the low usage threshold value in operation 464.
A nextaging cycle is started for table A in operation 460 and
the cache manager 150 waits for the expiration of the next
aging cycle 400D in operation 456 before conducting the next
usage based purge in operation 458.
0067. If the aging cycles 400D for tables A and C are
different, then a same aging cycle value 400D may be used. If
the HUT values 400B for both table A and table C are reached
at the next common aging cycle, then database entries may be
removed from both table A and table C in a round robin
fashion. Alternatively, different LRU aging sessions may be
separately conducted for tables A and C and LRU database
entries for each table removed independently according to
their associated HUT values 400B, LUT values 400C and
aging cycles 400D.
0068 For example, at the next aging cycle for table C,
memory utilization in secondary database 122 may exceed
the 85% high usage threshold value 400B assigned to table C.
Accordingly, least recently used database entries are removed
from table C in operation 462 until the database storage
reaches the low usage threshold value 400C fortable C. In this
example, the cache manager 150 removes the least recently
used database entries 418 (DB entries #1, #3, and #4) from
table C in order to reach the low usage threshold value 400C
associated with table C.
0069. Higher priority data in a particular table may be
assigned larger high usage threshold values 400B and/or
larger low usage threshold values 400C. In addition, the aging
cycles 400D for high priority data may be set to longer time
periods. These larger threshold values 400B, 400C, and 400D
cause the cache manager 150 to remove the least recently
used database items for those tables less frequently. Thus, the
usage based aging parameters 400 allow automatic custom
ized removal of different types of selectable data from the
secondary database 122.
0070 FIG. 8 explains in more detail how the cache man
ager 150 conducts time based aging. Referring to FIGS. 6 and
8, any tables having time based aging constraints are identi
fied in operation 480. In this example, table D is assigned a
lifetime value 402B and an associated cycle time value 402C
in listing 402. The cache manager 150 uses the counter/timer
404 in operation 482 to determine when a next cycle time
402C is reached. Any rows in table D that have timestamps
414 exceeding the lifetime value 402B are identified in opera
tion 484 and removed in operation 486.
(0071. For example, the lifetime value 402B for table D
may be set to a particular counter value of say LIFETIME=20.
When the cycle time 402C is reached in operation 482, the
value for counter/clock 404 is compared with the timestamp
values 414 in table D. The difference between the value of
counter/clock 404 and the timestamp values 414 are deter
mined in operation 484. In this example, the counter 404 may
have a current value of 28. The difference between the current
value of counter 404 (28) and the timestamp value for data
base entry 420 in table D (TS=7) is greater than the lifetime
value 402B (LIFETIME=20). Accordingly, the database

Sep. 11, 2008

entry 420 is removed from table Dinoperation 486. Any other
database entries in table D with expired lifetimes are also
removed in operation 486.
0072 Similar to usage based aging, different tables can be
assigned different lifetime values 402B and cycle times 402C.
Higher priority data may be assigned larger lifetime values
402B and/or may be evaluated less frequently by assigning
larger cycle time values 402C.
0073 Tables associated with even higher priority data
might not be assigned any aging constraints. For example,
table B in FIG. 6 is not assigned any aging constraints.
Accordingly, the database entries in table B remain in the
secondary database 122 until replaced by updates from the
primary database 140.

Cache Group Aging

(0074) Referring back to both operation 462 in FIG. 7 and
operation 486 in FIG. 8, database entries associated with the
same cache group may be removed according to usage based
ortime based aging constraints. Referring also back to FIG. 4.
the CUSTOMER table 302 may both be assigned usage based
aging constraints. The high usage threshold may be reached
for CUSTOMER table 302 and the database entry PK1=100
in the CUSTOMER table 302 may be the least recently used.
Accordingly, the entire cache instance 320 may be removed in
operation 462 in FIG. 7. For example, the root database entry
PK1=100 is removed from the CUSTOMER table 302 and
the child database entries PK2=14 and PK2=20 with refer
encing foreign keys are removed from the ORDERS table
304.

0075. In another example, usage based aging may be
assigned to the child ORDERS table 304 in FIG. 4. When
storage in secondary database 122 reaches the high usage
threshold value for ORDERS table 304, database entry
PK1=14 may be the least recently used.
0076. In one embodiment, all of the root and child data
base entries for the same cache instance 320 are removed
from the secondary database in operation 462 in FIG. 7. In
another embodiment, cache groups are only aged based on the
database entries in the root table 302. For example, since
database entry PK2=14 is located in child table 304 and not
located in root table 302, no usage based aging is performed.
0077. For time based aging, database entries associated
with the same cache group may also be controlled by the root
table. For example, timestamps may only be applied to the
database entries in the root CUSTOMER table 302 in FIG. 4.
Whenever one of the database entries in CUSTOMER table
302 resides in the secondary database 122 beyond a specified
lifetime value, all of the database entries associated with that
cache instance are removed at the same time.

(0078 For example in FIG. 4, database entry PK1=100
may reside in the secondary database 122 beyond a lifetime
value assigned to CUSTOMER table 302. Accordingly, both
database entry PK1=100 in CUSTOMER table 302 and the
other database entries PK2=14 and PK2=20 in ORDERS
table 304 associated with the same cache instance 320 are
removed by the cache manager 150.
007.9 The system described above can use dedicated pro
cessor Systems, micro controllers, programmable logic
devices, or microprocessors that perform some or all of the
operations. Some of the operations described above may be
implemented in Software and other operations may be imple
mented in hardware.

US 2008/0222 111 A1

0080 For the sake of convenience, the operations are
described as various interconnected functional blocks or dis
tinct Software modules. This is not necessary, however, and
there may be cases where these functional blocks or modules
are equivalently aggregated into a single logic device, pro
gram or operation with unclear boundaries. In any event, the
functional blocks and software modules or features of the
flexible interface can be implemented by themselves, or in
combination with other operations in either hardware or soft
Wa.

0081
the invention in a preferred embodiment thereof, it should be
apparent that the invention may be modified in arrangement
and detail without departing from Such principles. Claim is
made to all modifications and variation coming within the
spirit and scope of the following claims.

1. A method, comprising:
operating a fully transactional mid-tier database;
receiving one or more database transactions at the mid-tier

database; and
dynamically loading database entries from a fully transac

tional backend-tier database into the mid-tier database
according to the received database transactions.

2. The method according to claim 1 further comprising
operating the mid-tier database as an in-memory database.

3. The method according to claim 1 further comprising:
identifying database entries associated with the database

transactions;
servicing the database transactions with the mid-tier data

base when the identified database entries are contained
in the mid-tier database; and

querying database entries in the backend-tier database
when the identified database entries are not contained in
the mid-tier database.

4. The method according to claim 3 further comprising:
uploading the queried database entries into the mid-tier

database; and
servicing the database transactions with the mid-tier data

base using at least some of the uploaded database entries
from the backend-tier database.

5. The method according to claim 1 further comprising:
identifying tables and primary keys referenced by the data

base transactions;
searching the mid-tier database for the identified tables and

primary keys;
servicing the database transactions with the mid-tier data

base when the identified tables and primary keys are
located in the mid-tier database; and

accessing the backend-tier database when the identified
tables and primary keys are not located in the mid-tier
database.

6. The method according to claim 1 further comprising:
associating database entries from different tables with a

same cache group:
identifying a database transaction that references one or
more database entries associated with the cache group;

uploading the entire cache group from the backend-tier
database into the mid-tier database when the referenced
database entries are not contained in the mid-tier data
base.

7. The method according to claim 6 further comprising:
identifying a first database entry in a first table:
identifying a primary key associated with the first database

entry in the first table;

Having described and illustrated the principles of

Sep. 11, 2008

identifying a second database entry in a second table hav
ing a foreign key referencing the primary key in the first
table; and

associating both the first database entry in the first table and
the second database entry in the second table with the
same cache group.

8. A method, comprising:
operating a database system;
assigning aging parameters to selected tables in the data

base system; and
removing database items from the selected tables in the

database system according to the assigned aging param
eters.

9. The method according to claim 8 further comprising:
associating time based aging with the selected tables in the

database system; and
removing the database items from the selected tables

according to how long the database items have resided in
the database system.

10. The method according to claim 8 further comprising:
associating usage based aging with the selected tables in

the database system; and
removing the database items from the selected tables

according to how recently the database items have been
used in the database system.

11. The method according to claim 10 further comprising:
assigning a high usage threshold value, a low usage thresh

old value, and an aging cycle to the selected tables in the
database system;

identifying an amount of available space in the database
system for each aging cycle;

removing at least some of the least recently used database
items from the selected tables when an amount of stor
age space in the database system reaches the high usage
threshold value; and

removing least recently used database items from the
Selected tables until the amount of storage space in the
database system reaches the low usage threshold value.

12. The method according to claim 8 further comprising:
configuring different time based aging tables and usage

based aging tables in the database system;
removing at least some of the database items from the time

based aging tables that have resided in the database
system beyond a configured time period;

removing at Some of the least recently used database items
from the usage based aging tables when storage in the
database system reaches a configured usage threshold;
and

skipping removal of database items from non-time based
and non-usage based tables in the database system.

13. The method according to claim 8 further comprising:
associating some of the database items from different

Selected tables with a same cache group;
assigning an aging parameter to a root table of the cache

group; and
removing the database items from both the root table and

one or more child tables associated with the cache group
according to the aging parameter assigned to the root
table.

14. Computer readable media containing instructions that
when executed by a computer, comprise:

operating a fully-transactional secondary database;
receiving database transactions directed to the secondary

database;

US 2008/0222 111 A1

searching the secondary database for data items referenced
by the transactions;

servicing the database transactions with the secondary
database when the secondary database contains the ref
erenced data items;

querying a fully-transactional primary database when the
referenced data items are not contained in the secondary
database; and

updating the secondary database with at least some of the
data items queried in the primary database.

15. The computer readable media according to claim 14
further comprising instructions that when executed result in:

assigning aging parameters to selectable data items in the
secondary database; and

automatically removing data items from the secondary
database according to the assigned aging parameters.

16. The computer readable media according to claim 14
further comprising instructions that when executed result in:

assigning either a time based aging parameter or a least
recently used aging parameter to programmably select
able tables in the secondary database; and

removing the data items according to the time based aging
parameter or least recently used aging parameter
assigned to the tables containing the data items.

17. The computer readable media according to claim 14
further comprising instructions that when executed result in:

configuring time based aging tables and usage based aging
tables in the secondary database;

removing at least some of the data items from the time
based aging tables that have resided in the secondary
database beyond a configured time period; and

removing at Some of the least recently used data items from
the usage based aging tables when storage in the sec
ondary database reaches a configured usage threshold
value.

18. The computer readable media according to claim 14
further comprising instructions that when executed result in:

associating at least some of the data items from different
tables with a same cache group;

identifying transactions referencing one or more of the data
items from the cache group;

uploading the entire cache group from the primary data
base into the secondary database when any of the refer
enced data items are not contained in the secondary
database.

19. The computer readable media according to claim 18
further comprising instructions that when executed result in:

assigning an aging parameter to a root table for the cache
group; and

removing all of the data items associated with the cache
group according to the aging parameter assigned to the
root table.

Sep. 11, 2008

20. A database management system, comprising:
an application-tier database system receiving requests

from database applications; and
a cache manager configured to maintain at least a Sub-set of

database entries from a backend-tier database system in
the application-tier database system, the cache manager
dynamically varying what database entries are loaded
from the backend-tier database system into the applica
tion-tier database system according to the requests from
the database applications.

21. The database management system according to claim
20 wherein the cache manager is further configured to:

monitor the different requests received by the application
tier database system;

identify what database entries are referenced by the
requests;

service the requests with the application-tier database sys
tem when the referenced database entries are contained
in the application-tier database system;

temporarily stall the requests when the referenced database
entries are not contained in the application-tier database
system;

query the backend-tier database system for the referenced
database entries;

load the database entries queried from the backend data
base system into the application-tier database system;
and

service the requests using at least Some of the database
entries loaded into the application-tier database system
from the backend-tier database system.

22. The database management system according to claim
20 wherein the cache manager is further configured to:

identify cache groups that include both a root table with
one or more database entries having primary keys and
one or more child tables having one or more database
entries having foreign keys referencing the primary keys
in the root table; and

dynamically removing the identified cache groups from the
application-tier database system or dynamically loading
the identified cache groups from the backend-tier data
base system into the application-tier database system.

23. The database management system according to claim
20 wherein usage based aging is assigned to selected tables in
the application-tier database system and the cache manager
removes database entries contained in the selected tables
according to how recently the database entries have been used
in the application-tier database system.

24. The database management system according to claim
20 wherein time-based aging is assigned to selected tables in
the application-tier database system and the cache manager
removes database entries contained in the selected tables
according to how long the database entries have resided in the
application-tier database system.

c c c c c

