
USOO7.024542B2

(12) United States Patent (10) Patent No.: US 7.024542 B2
Savransky et al. (45) Date of Patent: Apr. 4, 2006

(54) SYSTEM AND METHOD OF REDUCING THE 5,721,855 A * 2/1998 Hinton et al. T12/218
NUMBER OF COPES FROM ALIAS 5,835,748 A * 11/1998 Orenstein et al. 712,217
REGISTERS TO REAL REGISTERS IN THE 6,604, 190 B1 8/2003 Tran 71.2/2O7
COMMITMENT OF INSTRUCTIONS OTHER PUBLICATIONS

(75) Inventors: Guillermo Savransky, Haifa (IL); Antonio Gonzales, et al. “Virtual-Physical Registers',
Ronny Ronen, Haifa (IL); Antonio HPCA-4, Feb. 1998.
Gonzalez, Barcelona (ES) C. Molina, et al., “Reducing Memory Traffic Via Redundant

Store Instructions'. In Proceedings of the international
(73) Assignee: Intel Corporation, Santa Clara, CA Conference on High Performance Computing and Network

(US) ing, Apr. 1999.
Kevin M. Lepak, et al. “On the Value Locality of Store

(*) Notice: Subject to any disclaimer, the term of this Instructions”. In Proceedings of the 27th Annual
patent is extended or adjusted under 35 International Symposium on Computer Architecture, Jun.
U.S.C. 154(b) by 510 days. 2OOO.

(21) Appl. No.: 10/183,096 * cited by examiner
1-1. Primary Examiner Henry W. H. Tsai

(22) Filed: Jun. 26, 2002 (74) Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor &
(65) Prior Publication Data Zafman LLP

US 2003/O126411 A1 Jul. 3, 2003 (57) ABSTRACT

Related U.S. Application Data A processor System and method that reduces the number of
(63) Continuation-in-part of application No. 10/039,113, register value copying made from alias registers to corre

filed on Jan. 2, 2002, now Pat. No. 6,910,121. sponding real (architectural) registers. One method entails
not performing an alias register to real register copying if the

(51) Int. Cl. incoming instruction does not designate a real register.
G06F 9/38 (2006.01) Another method entails delaying alias register to real reg

(52) U.S. Cl. ... 712/218; 71.2/23 ister copying until the corresponding reorder buffer (ROB)
(58) Field of Classification Search 712/218, entry is actually written to. Yet another method entails not

71.2/23, 216, 217 performing an alias register to real register copying if the
See application file for complete search history. ROB entry is the same as the existing ROB entry. And, still

(56) References Cited another method entails further delaying or stalling the allo

U.S. PATENT DOCUMENTS

5,524.224. A 6, 1996 Denman et al. T12/219

200

213
206

PREFFTCH
LOGIC

INSTRUCTION
CACHF

MAIN
MEMORY

BRANCH
PREDICTION

LOGIC

SYSTEM
BUS INSTRUCTION

DECODING
LOGIC

pREFETCH
BUFFER

204

cation of an ROB entry.

24 Claims, 9 Drawing Sheets

218

REAL REGISTER
FILE(RRF)

INSTRUCTION
SELECTION

LOGIC

AMODIFIED
ALLOCATOR

MODIFIED
RAT/ROB

RETIREMENT
LOGICUNIT

DATA
COMMITMENT
TABLE (DCT)

EXECUTOW
LOGICUNIT

U.S. Patent Apr. 4, 2006 Sheet 2 of 9 US 7.024542 B2

REORDER BUFFER(ROB) 115
r MI AS ENTRY EXEC. MEMORY A.

INDEX ADDRESS INSTRUCTION REGISTRs

START-OF
BUFFER

END-OF
BUFFER

FIG, 1B
(Prior Art)

ZZZ

US 7.024542 B2

(100) 57971

ZIZ

U.S. Patent

S/79 WEIS?S

U.S. Patent Apr. 4, 2006 Sheet 4 of 9 US 7.024542 B2

FIG, 2B MODIFIED REORDER BUFFER 215
ALIAS

REGISTERS

START-OF
BUFFER

E/WD-OF
BUFFER

F.IG, 2 C REAL COMMITTED ROBEWTRY
/ALUE LOCATION IWDEX

FTE

U.S. Patent Apr. 4, 2006 Sheet 5 of 9 US 7.024542 B2

300

INSTRUCTION RETIRES 302

FIG, 3 4/
304

WRITES
TO REAL MO END
REGISTER

p

YES

307
306

WO COPYDATA
TO RRF

IS
REGISTER
A DCT

REGISTER
2

YES

SET THE "VALID DATA" 308
BIT OF THE ROBEWTRY

READEWTRY IN DCT
TABLEUSIWGARCH,

310

REG, IWROBENTRY,

312

THE "REGISTER
IWRRF"FLAG

SET
2

3.14 RESET THE "VALID DATA" BIT OF THE
ROBEWTRYPOINTED BY THE DCTTABLE

316 WRITE THE ROBENTRY INDEX IN THE TABLE
RESET THE "REGISTERIWRRF"FLAG,

END

YES

U.S. Patent Apr. 4, 2006 Sheet 6 of 9 US 7.024542 B2

400

402 INSTRUCTION
ALLOCATED GETS
ROE ENTRYn

404
ROB

E/WTRY
A BAD

"VALID DATA"
BIT ON

2

406
COPYDATA TORRF

RESET THE "VALID DATA"
BIT OF THE ROBENTRY

SET THE "REGISTER IN RRF"
FLAG IN THE DCT TABLE ROW
OF THEARCH. REGISTER

WRITE NEWINSTRUCTION
IWTO ROBENTRYn

408

410

412

FIG 4

U.S. Patent Apr. 4, 2006 Sheet 7 of 9 US 7.024542 B2

FIG, 5 to
WEWINSTRUCTIONALLOCATEDGE/S ROBEWTRYn

502

504 DOES
NEW

INSTRUCTION
DESIGNATEA REAL

REGISTER
2

YES

AERFORMSTEPS 404 THRU410
(SEE FIGURE 4)

WRITE NEWINSTRUCTION INTO ROBEWTRYn
INCLUDING NEWALIAS REGISTER INFO,

510

WRITE NEWINSTRUCTION
IWTO ROBEWTRYn WHILE

WOTAFFECTING PRIORALIAS
REGISTER INROBENTRYn

506

508

FIG. 6 600
602 WEWIWSTRUCTIO/WALLOCATED

GETS ROBE/WTRYn

WRITE NEWINSTRUCTION
INFOROBENTRYn

WEWINSTRUCTION IS EXECUTEDAWD
A/WALIAS REGISTER WALUE IS GENERATED

AERFORMSTEPS 404 THRU 412
(SEE FIGURE 4)

604

606

608

U.S. Patent Apr. 4, 2006 Sheet 8 of 9 US 7.024542 B2

700
FIG, 7 zo WEWINSTRUCTIONALLOCATED

GETS ROBEWTRYn

704 WRITE NEWINSTRUCTION
IWTO ROBEWTRYn

WEWINSTRUCTION IS EXECUTED
AWD AWALIAS REGISTER VALUE IS GE/NERATED

708

706

ROB
ENTRYn

HAD "VALID
DATA". BIT

OW
2

709

THE REAL
REGISTER SAME
ASIWROBr,

710
ISWEW

ALIAS THE SAME
ASOLDALIAS/ALUE

IWROBf
2

AERFORMSTFPS406 THROUGH 412
(SEE FIGURE 4)

COPYNEWALIAS VALUE INTO ROBEWTRYn

YES

U.S. Patent Apr. 4, 2006 Sheet 9 of 9 US 7.024542 B2

800

ROBEWTRYn
BECOMESAVAILABLE
FOR MEWINSTRUCTION

802

DELAY THE ALLOCATION
OF ROBENTRYn TO THE
WEWINSTRUCTIONA
SPECIFIED PERIOD

804

PERFORMSTEPS
404 THROUGH 412
(SEE FIGURE 4)

806

FIG. 8

US 7.024542 B2
1.

SYSTEMAND METHOD OF REDUCING THE
NUMBER OF COPES FROM ALIAS

REGISTERS TO REAL REGISTERS IN THE
COMMITMENT OF INSTRUCTIONS

CROSS REFERENCE TO RELATED
APPLICATION

The present patent application is a CIP of prior application
Ser. No. 10/039,113, filed Jan. 2, 2002 now U.S. Pat. No.
6,970,121.

FIELD

This invention relates generally to processors, and in
particular, a system and method of reducing the number of
copies from alias registers to real registers in the commit
ment of instructions.

BACKGROUND

Developments in processors, such as microprocessors,
microcontrollers, etc., are always on-going. The reason
being is that there is a large demand for microprocessors to
process instructions faster to reduce the execution time of a
program, and more efficiently to reduce their overall power
consumption. Techniques such as out-of-order processing,
where instructions are executed not in the order provided by
the program, have improved the performance of current
processors. Even though the performance of processors have
improved over the recent years, there are still some room for
further improvement in the performance as illustrated in the
following example.

FIG. 1A illustrates a block diagram of a prior art processor
system 100. In general, the processor system 100 retrieves
program instructions initially stored in a main memory 102
by way of a system bus 104, and performs the execution of
the program instructions. The processor System 100 consists
of an instruction-retrieval front end including an instruction
cache 108, a prefetch buffer 110, and a prefetch logic 106.
The processor system 100 further consists of a pre-process
ing stage including an instruction decoding logic 112 and a
branch prediction logic 113. Finally, the processor system
100 consists of an execution processing stage including an
allocator 114, a register alias table/reorder buffer (RAT/
ROB) 115, a real (architectural) register file (RRF) 116, an
instruction selection logic 118, an execution logic unit 120,
and a retirement logic unit 122.

In operation, the instruction-retrieval front end of the
processor system 100 functions to place instructions in the
pipeline for execution. Specifically, the prefetch logic peri
odically issues requests for instructions from the main
memory 102 by way of the system bus 104. In response to
these requests, instruction data is transferred to the instruc
tion cache 108. The prefetch logic 106 also causes sequential
instruction data of a certain size (e.g. 16 bytes of instruction
data at a time) to transfer from the instruction cache 108 to
the prefetch buffer 110. The prefetch buffer 110 stores a
certain amount of sequential instruction data (e.g. 32 bytes).
When the prefetch buffer 110 has some empty slots, a signal
is sent to the prefetch logic 106 instructing it to transfer
another set of instructions from the instruction cache 108 to
the prefetch buffer 110 (e.g. 16-bytes at a time).

The pre-processing stage of the processor System 100
generally entails preparing the instruction data for Subse
quent processing by the execution stage. Specifically, the
instruction decoding logic 112 receives the 32 bytes of

10

15

25

30

35

40

45

50

55

60

65

2
instruction data from the prefetch buffer 110 and identifies
the actual instructions within the instruction data by marking
boundaries between instructions. If the processor system
100 processes Sub-instructions such as micro-ops (i.e. fixed
length RISC instructions), then the instruction decoding
logic 112 translates the identified instructions into micro
ops. If the instruction received is a branch, the address from
which the instruction was accessed is sent to the branch
prediction logic unit 113 to predict where the program will
branch to. The branch prediction logic 113, based on its
prediction determination, instructs the prefetch logic 106 to
sequentially transfer the corresponding instructions to the
prefetch buffer 110.
The execution stage of the processor system 100 generally

entails queing, scheduling, executing, and retiring the
instructions. The allocator 114 sequentially adds new
instructions into the end of the reorder buffer (ROB) 115.
The register alias table (RAT) portion of the RAT/ROB 115
assigns alias registers to function as real registers 116 for
instructions that use source operands. The register alias table
(RAT) keeps track of which real register 116 does an alias
register corresponds.
As shown in FIG. 1B, each reorder buffer (ROB) entry

includes a first field to indicate whether the corresponding
instruction has been executed, a second field to store the
memory address of the instruction to branch to if the
corresponding instruction is a branch, a third field to store
the corresponding instruction, and a fourth field to identify
the corresponding alias registers holding the source oper
ands for the corresponding instruction. The reorder buffer
(ROB) 115 is a cyclic buffer having a start-of-buffer pointer
that points to the first entry of the reorder buffer (ROB) 115,
Such as entry four (4) as shown, and an end-of-buffer pointer
that points to the last buffer entry, such as entry 36 as shown.
Thus, the entry pointed to by the start-of-buffer pointer
contains the oldest instruction in the reorder buffer (ROB)
115 and the entry pointed to by the end-of-buffer pointer
contains to the youngest instruction in the reorder buffer
(ROB) 115.
The instruction selection logic 118 selects and queues the

instructions to be executed. The instructions can be selected
out-of order. The criteria used by the instruction selection
logic 118 to select an instruction is whether all prior con
ditions have been met for the instruction to execute. The
execution logic unit 120 executes the instructions in the
order selected by the instruction selection logic 118. After
the instruction has been successfully executed, the retire
ment logic unit 122 sets the executed flag in the reorder
buffer (ROB) 115. If and when the executed instruction
becomes the oldest instruction in the reorder buffer (ROB)
115, the instruction is committed, and the retirement unit
122 causes the copying of the register result of the executed
instruction from the corresponding alias register to the
designated real register 116.

It is this copying that results in some inefficiencies in the
processor System 100. The copying is expensive in terms of
power consumption since it includes reading and writing
operations. Reducing the number of copies from alias reg
isters to the real register file (RRF) could result in lower
power consumption, extended battery life and a less Sophis
ticated cooling system for the processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates a block diagram of a prior art processor
system;

US 7.024542 B2
3

FIG. 1B illustrates a block diagram of a prior art reorder
buffer as part of the prior art processor system;

FIG. 2A illustrates a block diagram of an exemplary
processor System in accordance with an embodiment of the
invention;

FIG. 2B illustrates a table diagram of an exemplary
modified reorder buffer (ROB) in accordance with an
embodiment of the invention;

FIG. 2C illustrates a table diagram of an exemplary data
commitment table (DCT) in accordance with an embodi
ment of the invention;

FIG. 3 illustrates a flow diagram of an exemplary retire
ment routine in accordance with an embodiment of the
invention;

FIG. 4 illustrates a flow diagram of an exemplary ROB
entry allocating routine in accordance with an embodiment
of the invention;

FIG. 5 illustrates a flow diagram of an exemplary method
of reducing the number of ROB to RRF copies in accordance
with an embodiment of the invention;

FIG. 6 illustrates a flow diagram of an exemplary method
of reducing the number of ROB to RRF copies in accordance
with an embodiment of the invention;

FIG. 7 illustrates a flow diagram of an exemplary method
of reducing the number of ROB to RRF copies in accordance
with an embodiment of the invention; and

FIG. 8 illustrates a flow diagram of an exemplary method
of reducing the number of ROB to RRF copies in accordance
with an embodiment of the invention.

DETAILED DESCRIPTION

FIG. 2A illustrates a block diagram of an exemplary
processor system 200 in accordance with an embodiment of
the invention. In general, the processor system 200 retrieves
program instructions initially stored in a main memory 202
by way of a system bus 204, and performs the execution of
the program instructions. The processor system 200 com
prises an instruction-retrieval front end including an instruc
tion cache 208, a prefetch buffer 210, and a prefetch logic
206. The processor system 200 further comprises a pre
processing stage including an instruction decoding logic 212
and a branch prediction logic 213. The processor system 200
also comprises an execution processing stage including a
modified allocator 214, a modified register alias table/
reorder buffer (RAT/ROB) 215, a data commitment table
216, a real register file (RRF) 217, an instruction selection
logic 218, an execution logic unit 220, and a retirement logic
unit 222. The instruction-retrieval front end and the pre
processing stage of the processor System 200 performs the
instruction fetching and prediction the same as described
with reference to the prior art processor system 100.

It is in the execution processing stage where the method
of reducing the number of copies from alias registers to real
registers in the commitment of instructions is implemented.
In general, the method entails determining whether to copy
the register value generated by executing an instruction from
the alias register to the real register at the time the reorder
buffer entry associated with the alias register is needed for
a new instruction. If before the reorder buffer is needed for
a new instruction, an interim instruction resulted in a new
register value for the real register, then the original register
value would be invalid at the time the reorder buffer entry is
needed for the new instruction. Thus, there would not be a
need to copy the original register value to the real register.

5

15

25

30

35

40

45

50

55

60

65

4
The reduction in copying can make the processor System
consume less power and execute instructions faster and
more efficiently.
More specifically, the execution stage of the processor

system 200 generally entails queing, scheduling, executing,
and retiring the instructions. The modified allocator 214
performs several functions. The allocator 214 first checks
whether a candidate ROB entry for a new instruction has
valid register data. If it does, the allocator 214 causes a
copying of the register data from the alias register to the
corresponding real register. Second, the allocator 214
updates the data commitment table so that it indicates that
the register data is now in the real register. Third, the
allocator 214 deasserts the valid data bit in the candidate
ROB entry. Finally, the allocator 214 causes the copying of
the new instruction information into the candidate ROB
entry.
The register alias table (RAT) portion of the modified

RAT/ROB 215 assigns alias registers to function as real
registers 217 for instructions that use source operands. The
register alias table (RAT) keeps track of which real register
217 does an alias register corresponds.

FIG. 2B illustrates a table diagram of an exemplary
modified reorder buffer (ROB) 215 in accordance with an
embodiment of the invention. Each reorder buffer (ROB)
includes: a first field to indicate whether the corresponding
alias register holds valid data, a second field to indicate
whether the corresponding instruction has been executed, a
third field to store the memory address of the instruction to
branch to if the corresponding instruction is a branch, a
fourth field to store the corresponding instruction, and a fifth
field to identify the corresponding alias registers holding the
Source operands for the corresponding instruction. The reor
der buffer (ROB) 215 is a cyclic buffer having a start-of
buffer pointer that points to the first entry of the reorder
buffer (ROB) 215, such as entry four (4) as shown, and an
end-of-buffer pointer to point to the last entry of the reorder
buffer (ROB) 215, such as entry 34 as shown. Thus, the entry
pointed by the start-of-buffer pointer is the oldest instruction
in the reorder buffer (ROB) 215 and the entry pointed to by
the end-of-buffer pointer is the youngest instruction in the
reorder buffer (ROB) 215.

Referring back to FIG. 2A, the instruction selection logic
218 selects and queues the instructions to be executed. The
instructions can be selected out-of order. The criteria used by
the instruction selection logic 218 to select an instruction is
whether all conditions for executing the instruction have
been met. The execution logic unit 220 executes the instruc
tions in the order selected by the instruction selection logic
218. After the instruction has been successfully executed,
the retirement logic unit 222 assists in the retirement of
instructions in accordance with a new method in accordance
with the invention, as is discussed below with reference to
FIG. 3. A data commitment table 216 will be used to keep
track of the location of committed register data as discussed
below with reference to FIGS. 3–4.

FIG. 2C illustrates a table diagram of an exemplary data
commitment table 216 in accordance with an embodiment of
the invention. The data commitment table 216 provides
information as to the location of the register values for the
corresponding real registers, i.e. whether a register value is
in the real register file 217 or in an alias register identified
in the ROB 215. Each data commitment table entry includes
a first field to identify the real register, a second field to
indicate whether the register value is in the corresponding
real register (e.g. a Boolean field, a flag, etc.), and a third
field to indicate the ROB entry index identifying the alias

US 7.024542 B2
5

register storing the register value if the second field indicates
that the register value is not in the real register.

FIG. 3 illustrates a flow diagram of an exemplary retire
ment routine 300 in accordance with an embodiment of the
invention. The steps of the retirement routine are taken after
a successful execution of an instruction. In step 302, the
retirement logic unit 222 sets the executed flag in ROB entry
corresponding to the instruction. In step 304, the retirement
logic unit 222 determines whether there is a destination real
register 217 for the instruction. If there is no destination real
register 217 for the instruction, the retirement routine 300
ends. If, on the other hand, there is a destination real register
217 for the instruction, in step 306 the retirement logic unit
222 determines whether the real register 217 is designated to
undergo the retirement routine 300 in accordance with the
invention (i.e., whether the register is one listed in the data
commitment table 216).

Not all the real registers of the processor system 300 need
to undergo the new retirement routine in accordance with the
invention. It may be desirable to not include some real
registers in the new retirement scheme. In Such a case, at the
time of retirement, the value generated by the executed
instruction is copied to the corresponding register. For
example, in the X86 processor, the segment and control
registers can be excluded. There is only a small possibility
that the segment and control registers are updated within the
same instruction window (the size of the ROB). Thus, there
is little to be gained, since almost every write to these
registers will be copied to the real registers when a new
instruction is to occupy the corresponding ROB entry. Also,
not including all the real registers in the new retirement
routine 300 reduces the size of the data commitment table,
and reduces the overall power consumption. In addition,
instruction that writes a value into partial registers may also
be excluded from the new retirement routine 300.

Accordingly, if in step 306 the retirement logic unit 222
determines that the real register to be written to is exempt
from the new retirement routine 300, then in step 307 the
retirement logic unit 222 causes the copying of the resulting
data from the alias register to the real register. Otherwise, in
step 308, the retirement logic unit 222 causes the setting of
the valid data bit in the ROB entry pertaining to that
instruction. In step 310, the retirement logic unit 222 reads
the committed value location field of the data commitment
table 216 corresponding to the real register to determine if
the previous register value is in the real register or in an alias
register. If the retirement logic unit 222 determines that the
previous register value is in an alias register, in step 314 the
retirement logic unit 222 causes a deasserting of the valid
data bit of the ROB entry pointed to by the data commitment
table 216. Then in step 316 the retirement logic unit 222
causes the writing of the ROB entry index of the instant
instruction to the ROB entry index field of the data com
mitment table 216 corresponding to the real register asso
ciated with the new data, and modifies the committed data
location field to indicate that the register value is in an alias
register pointed to by the corresponding ROB entry index
field. If, on the other hand, in step 312 the retirement logic
unit 222 determines that the previous register value is in the
RRF 216, the retirement logic unit 222 just performs the
function specified in step 316 as previously discussed.
The new retirement routine 300 saves an alias register

to-real register copying step (relative to the prior art retire
ment routine) each time the retirement routine 300 performs
step 314. This situation occurs when the same real register
is written to (actually written to its alias in the ROB) by two
or more instructions within the same instruction window

10

15

25

30

35

40

45

50

55

60

65

6
(the size of the ROB) and the entry corresponding to the
oldest instruction is not reclaimed before the younger
instructions retires. This is substantially different than the
prior art retirement routine that makes an alias register-to
real register copy each time an instruction retires. Whereas
the new retirement routine 300, avoids some of these copies,
and in theory, can eliminate essentially 100 percent of the
register writes if the code reuses results extensively, e.g. a
long series of “inc eax; inc eax; inc eax. Accordingly,
the reduction in real register copying has the beneficial
results of lower power consumption, extended battery life
and a less Sophisticated cooling system for the processor,
among other benefits.

FIG. 4 illustrates a flow diagram of an exemplary ROB
entry allocating routine 400 in accordance with an embodi
ment of the invention. Basically, the allocator 214 first
checks to see if the candidate ROB entry for a new instruc
tion has valid data. As previously discussed, an ROB entry
can have valid data if within a period of the cyclic ROB, the
real register corresponding to the candidate ROB entry was
not written to more than once by retired instructions. In this
case, before the allocator 214 can use the candidate ROB
entry, it has to cause a copying of the alias register of the
ROB entry to the corresponding real register 217. Once this
has occurred, the allocator 214 can use the candidate ROB
entry for the new instruction.

Specifically, in step 402 the allocator 214 locates the next
ROB entry n for a new instruction. In step 404, the allocator
214 reads the valid data field of the next ROB entry n to
determine whether the corresponding alias register contains
valid data. If not, the allocator 214 proceeds to step 412 to
add the new instruction into the next ROB entry n. If,
however, the valid data field indicates that the next ROB
entry n has valid data, in step 406 the allocator 214 causes
the content in the alias register of the next ROB entry n to
be copied into the corresponding real register 217. In step
408, the allocator 214 deasserts the valid data bit in the next
ROB entry n since the new instruction has not been
executed, and therefore the next ROB entry n has yet to have
valid data. Then in step 410 the allocator 214 modifies the
“committed value location' field of the data commitment
table 216 to indicate that the register value for the corre
sponding real register of the instruction to be overwritten is
now in the real register 217. Finally, in step 412 the allocator
214 causes the new instruction to be added into the next
ROB entry n.

In the case that there has been a branch misprediction, or
other control flow altering event, like an exception, all the
non-committed registers younger than the branch in the
ROB 215 are invalid. In the prior art processor system the
processor waits until the faulting instruction retires and then,
all non-committed register are discarded by setting the
renamer table entry of each register to point to the corre
sponding entry of the RRF. However, according to the new
processor system 200, some of the committed data will
reside in the ROB 215. According to the processor system
200 of the invention, this can be dealt with in two manners.
The first option is to copy the committed data in the ROB
215 to the RRF 217 in the time the pipeline fills up again.
The second option is to make the pointers in the renamer to
point to the ROB entry that the data commitment table
indicates. For example, if an instruction that writes to the
EAX register is committed from the ROB entry index 31, the
data commitment table entry corresponding to the EAX will
contain the number 31 in the corresponding ROB entry
index field. After a branch misprediction, the renamer will
now point to the last value or the EAX to ROB entry 31. An

US 7.024542 B2
7

instruction that has as a source the register EAX, will get its
source renamed to ROB entry 31, so it will get the correct
data.

In the case that the processor system 200 uses micro-ops,
temporary registers are used to keep intra-instruction infor
mation. The values of these registers are invalid outside the
instruction micro-sequence and have no meaning to any
micro-instruction that belongs to an instruction different to
the one that generated the value. This fact can be used to
improve power saving in the processor system 200. Specifi
cally, any time that the last micro-ops of an instruction is
retired, the “valid bit in all the ROB entries corresponding
to temporary registers can be reset. These values are not
relevant anymore so there is no need to copy them to the
RRF.

In addition to delaying the determination whether to
perform a copy of the alias register to the real register until
the time the ROB entry is needed for a new instruction, there
are still other methods to reduce the number of copies from
alias registers to real registers. In Summary, these additional
methods include (1) not copying alias register to real register
if the new instruction has no real register destination (e.g. a
store, jump or compare operations); (2) delaying the deter
mination of whether to perform a copy of the alias register
to the real register until the ROB entry is written to by a
newer instruction (i.e., after the execution of the newer
instruction); (3) not copying the alias register to the real
register if the new value for the alias register is the same as
the existing value in the alias register, and (4) delaying the
allocation of alias registers in the ROB entry to incoming
instructions to further reduce alias register to real register
copying.

FIG. 5 illustrates a flow diagram of an exemplary method
500 of reducing the number of ROB to RRF copies in
accordance with an embodiment of the invention. In Sum
mary, the method 500 entails not copying the alias register
to the real register if the new instruction has no real register
destination (e.g. a store, jump or compare operations). In
step 502 of the method 500, the allocator 214 allocates an
ROB entry n for a new incoming instruction. In step 504, the
allocator 214 determines whether the new incoming instruc
tion designates a real register. If the new incoming instruc
tion does not designate a real register (such is the case if the
new incoming instruction is a store, jump or compare
operation), then the allocator 214 performs step 510 of
writing the new incoming instruction into ROB entry n. The
allocator 214 leaves the alias register associated with the
prior instruction stored in the ROB entry n in the ROB entry
in along with the new instruction information. If, on the other
hand, in step 504 the allocator 214 determines that the new
incoming instruction designates a real register, the allocator
performs steps 404 through 412 as previously discussed. In
step 508, the allocator 244 writes the new instruction infor
mation including the new alias register information into
ROB entry n.

This method 500 has the potential of further reducing the
number of copies made from alias registers to real registers.
In the prior method 400, the determination as to whether the
new instruction designates a real register is not made.
Accordingly, if there is valid data in the candidate ROB
entry n, according to the prior method 400, an alias register
to real register copy is performed regardless of whether the
new instruction designates a real register. According to the
new method 500, if the new incoming instruction does not
designate a real register value, an alias register to real
register copy is not performed, regardless of whether the
candidate ROB entry n has valid data. This extends the life

10

15

25

30

35

40

45

50

55

60

65

8
of the alias register value longer, which increases the chance
that the alias register value will become obsolete by the
generation of a new corresponding register value by a future
instruction. As a result, the copying of the alias register value
in candidate ROB entry n to the real register is avoided.

FIG. 6 illustrates a flow diagram of another exemplary
method 600 of reducing the number of ROB to RRF copies
in accordance with an embodiment of the invention. In
summary, the method 600 entails delaying the determination
of whether to perform a copy of the alias register to the real
register until the ROB entry is written to by a newer
instruction. In step 602 of the method 600, the allocator 214
allocates an ROB entry n for a new incoming instruction
(i.e., after the execution of the new instruction). In step 604,
the allocator 214 writes the new incoming instruction into
the ROB entry n, without causing a copying of the alias
register in the ROB entry n to the real register. In step 606,
the new instruction is then executed and an alias register
value is generated. Then, in step 608 the retirement unit 222
performs steps 404 through 412 as previously discussed.

This method 600 has the potential of further reducing the
number of copies made from alias registers to real registers.
In the prior method 400, the determination of whether to
copy the alias register to the real register is made at the time
the candidate ROB entry n is allocated for the new incoming
instruction. According to the new method 600, the determi
nation of whether to copy the alias register to the real
register is made at the time the new register value generated
by the executed new instruction is to be written into the ROB
entry n. This occurs later in time then in the method 400
since the new incoming instruction has to be written into the
candidate ROB entry n, moved up the pipeline for execution,
and executed before the ROB to RRF copying determination
is made. This extends the life of the alias register value
longer, which increases the chance that the alias register
value will become obsolete by the generation of a new
corresponding register value by a future instruction. As a
result, the copying of the alias register value in candidate
ROB entry n to the real register is avoided.

FIG. 7 illustrates a flow diagram of an exemplary method
700 of reducing the number of ROB to RRF copies in
accordance with an embodiment of the invention. In Sum
mary, the method 700 entails not copying the alias register
to the real register if the new value for the alias register is
the same as the existing value in the alias register. In step
702 of the method 700, the allocator 214 allocates an ROB
entry n for a new incoming instruction. In step 704, the
allocator 214 causes the copying of the new incoming
instruction into the ROB entry n, without causing a copying
of the alias register in the ROB entry in to the real register.
In step 706, the new instruction is executed by the execution
unit 220 resulting in a new alias register value. In step 708,
the retirement logic unit 222 determines whether there is
valid data in the ROB entry n. If there is no valid data in the
in the ROB entry n, in step 714 the retirement logic unit 222
causes the copying of the new register value into ROB entry
l.

If, in step 708, the retirement logic unit 222 determines
that there is valid data in the ROB entry n, in step 709 the
retirement logic unit 222 determines whether the real reg
ister destination of the executed instruction is the same as
specified in ROB entry n. If in step 709 the retirement logic
unit 222 determined that the real register designation is not
the same as that specified in ROB enter n, the retirement
logic unit 222 proceeds to step 712. Otherwise, the retire
ment logic unit 222 proceeds to step 710. In step 710 the
retirement logic unit 222 determines whether the new alias

US 7.024542 B2

value is the same as the existing alias value in the ROB entry
n. If, in step 710, the retirement logic unit 222 determines
that the new alias value is the same as alias value in the ROB
entry n, then the method ends for that instruction, and no
alias-to-alias copying is needed. If, in step 710, the retire
ment logic unit 222 determines that the new alias value is not
the same as alias value in the ROB entry n, then the
retirement unit 222 performs steps 404 through 412 as
previously discussed. After steps 404 through 412 are per
formed, in step 714 the retirement logic unit 222 causes the
copying of the new alias value into ROB entry n.
The method 700 has the potential of further reducing the

number of copies made from the alias registers to real
registers. In the prior method 400, the determination of
whether to copy the alias register to the real register is made
at the time the candidate ROB entry n is allocated for the
new incoming instruction. According to the new method
700, the determination of whether to copy the alias register
to the real register is made at the time the new alias value
generated by the executed new instruction is to be written
into the ROB entry n, and only if the new alias value is
different than the existing alias value in the ROB entry n.
This occurs later in time than in the method 400 since the
new incoming instruction has to be written into the candi
date ROB entry n, moved up the pipeline for execution, and
executed before the ROB to RRF copying determination is
made. This extends the life of the alias register value longer,
which increases the chance that the alias register value will
become obsolete by the generation of a new corresponding
register value by a future instruction. As a result, the copying
of the alias register value in candidate ROB entry n to the
real register is avoided.

FIG. 8 illustrates a flow diagram of another exemplary
method 800 of reducing the number of ROB to RRF copies
in accordance with an embodiment of the invention. In
summary, the method 800 entails delaying the allocation of
alias registers in the ROB entry to incoming instructions to
further reduce alias register to real register copying. In step
802, the ROB entry n becomes available for a new instruc
tion. In step 804, the allocator 214 delays the allocation of
the ROB entry n to the new incoming instruction by a
specified time period. Such specified time period may be
based on many parameters, such as, for example, a specified
number of instructions being executed or retired. In step
806, the allocator 714 performs steps 404 through 412 as
previously discussed.
The method 800 has the potential of further reducing the

number of copies made form the alias register to real
register. In the prior method 400, the determination of
whether to copy the alias register to the real register is made
at the time the candidate ROB entry n is allocated for the
new incoming instruction. According to the new method
800, the determination of whether to copy the alias register
to the real register is made at a specified time period after the
candidate ROB entry n becomes available for a new incom
ing instruction. The specified delay extends the life of the
alias register value longer, which increases the chance that
the alias register value will become obsolete by the genera
tion of a new corresponding register value by a future
instruction. As a result, the copying of the alias register value
in candidate ROB entry n to the real register is avoided.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the embodiments of the inven

10

15

25

30

35

40

45

50

55

60

65

10
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense.

It is claimed:
1. A method comprising:
providing a reorder buffer comprising a plurality of

entries associated respectively with a plurality of
instructions;

allocating one of said reorder buffer entries for an incom
ing instruction, wherein said allocated reorder buffer
entry includes an alias register associated wit a prior
instruction;

determining whether said incoming instruction designates
a real register;

determining whether said alias register contains valid
data;

if said alias register contains the valid data, determining
whether said alias register has the same value as a new
alias register allocated to said reorder buffer entry; and

copying the content of said alias register to said real
register if said alias register contains valid data.

2. The method of claim 1, further comprising:
modifying said allocated reorder buffer entry to include

said incoming instruction with said alias register asso
ciated with said prior instruction if it is determined that
said incoming instruction does not designate said real
register.

3. The method of claim 1, wherein determining whether
said alias register contains valid data comprises reading an
asserted valid data field associated with said reorder buffer
entry.

4. The method of claim 3, further comprising deasserting
the valid data field if the content of said alias register is
copied to said real register.

5. The method of claim 4, further comprising:
modifying a data commitment table to indicate that said

real register value is in the real register if the content of
said alias register is copied to said real register.

6. A processor System comprising:
a reorder buffer comprising a plurality of entries associ

ated respectively with a plurality of instructions;
an allocator to:

allocate one of said reorder buffer entries for an incom
ing instruction, said allocated reorder buffer entry
includes an alias register associated with a prior
instruction,

determine whether said incoming instruction desig
nates a real register, and

modify said allocated reorder buffer entry to include
said incoming instruction with said alias register
associated with said prior instruction if it is deter
mined that said incoming instruction does not des
ignate said real register; and

a retirement unit to determine whether to cause the
copying of said alias register to said real register after
execution of said incoming instruction by (i) determin
ing whether said alias register contains valid data, (ii)
determining whether said alias register stores a value
identical to a value associated with a new alias register
allocated to said reorder buffer entry, and (iii) copying
content of said alias register to said real register if said
alias register does not have the same value as the new
alias register allocated to said reorder buffer entry.

7. The processor system of claim 6, wherein the allocator
determines whether said alias register contains valid data
and copies the content of said alias register to said real
register if said alias register contains valid data.

US 7.024542 B2
11

8. The processor system of claim 7, wherein the allocator
determines whether said alias register contains valid data by
reading an asserted valid data field associated with said
reorder buffer entry.

9. The processor system of claim 8, wherein the allocator
deasserts the valid data field if the content of said alias
register is copied to said real register.

10. The processor system of claim 9, wherein the allocator
causes a modification of a data commitment table to indicate
that said real register value is in the real register if the
content of said alias register is copied to said real register.

11. A method comprising:
providing a reorder buffer comprising a plurality of

entries associated respectively with a plurality of
instructions;

allocating one of said reorder buffer entries for an incom
ing instruction, wherein said allocated reorder butter
entry includes an alias register associated with a prior
instruction;

modifying said allocated reorder buffer entry to include
said incoming instruction;

executing said incoming instruction which generates an
alias register value; and

determining whether to copy said alias register to a real
register after the execution of said incoming instruc
tion, comprising (i) determining whether said alias
register contains valid data, (ii) if said alias register
contains valid data, determining whether said alias
register has a same value as a new alias register
allocated to said reorder buffer entry, and (iii) copying
content of said alias register to said real register if said
alias register does not have the same value as said new
alias register allocated to said reorder buffer entry.

12. The method of claim 11, wherein determining whether
to copy said alias register to said real register comprises:

determining whether said alias register contains valid
data; and

copying the content of said alias register to said real
register if said alias register contains valid data.

13. The method of claim 12, wherein determining whether
said alias register contains valid data comprises reading an
asserted valid data field associated with said reorder buffer
entry.

14. The method of claim 13, further comprising deassert
ing the valid data field if the content of said alias register is
copied to said real register.

15. The method of claim 14, further comprising:
modifying a data commitment table to indicate that said

real register value is in the real register if the content of
said alias register is copied to said real register.

16. A processor system comprising:
a reorder buffer comprising a plurality of entries associ

ated respectively with a plurality of instructions:
an allocator to (i) allocate one of said reorder buffer

entries for an incoming instruction, said allocated reor
der buffer entry includes an alias register associated
with a prior instruction, and (ii) modify said allocated
reorder buffer entry to include said incoming instruc
tion;

5

10

15

25

30

35

40

45

50

55

12
an execution unit to execute said incoming instruction

which generates a real register value; and
a retirement unit to determine whether to cause the

copying of said alias register to a real register after the
execution of said incoming instruction by (i) determin
ing whether said alias register contains valid data, (ii)
if said alias register contains valid data, determining
whether said alias register has a same value as a new
alias register allocated to the reorder buffer entry, and
(iii) copying content of said alias register to said real
register if said alias register does not have the same
value as the new alias register allocated to the reorder
buffer entry.

17. The processor system of claim 16, wherein said
retirement unit determines whether to copy said alias reg
ister to said real register by:

determining whether said alias register contains valid
data; and

copying the content of said alias register to said real
register if said alias register contains valid data.

18. The processor system of claim 17, wherein said
retirement unit determines whether said alias register con
tains valid data by reading an asserted valid data field
associated with said reorder buffer entry.

19. The processor system of claim 18, wherein said
retirement unit deasserts the valid data field if the content of
said alias register is copied to said real register.

20. The processor system of claim 19, wherein said
retirement unit causes the modifying of a data commitment
table to indicate that said real register value is in the real
register if the content of said alias register is copied to said
real register.

21. A retirement unit, coupled to a reorder buffer including
a plurality of reorder buffer entries associated with a plu
rality of instructions, to determine whether to cause copying
of an alias register to a real register after execution of an
incoming instruction, comprising:
means for determining whether said alias register contains

valid data;
means for determining whether said alias register has a

same value as a new alias register allocated to a first
reorder buffer entry of the plurality of reorder buffer
entries if said alias register contains the valid data; and

means for copying content of said alias register to said
real register if said alias register does not have the same
value as the new alias register allocated to the first
reorder buffer entry.

22. The retirement unit of claim 21 being implemented
within a system that comprises an allocator coupled to the
reorder buffer.

23. The retirement unit of claim of claim 22 being
implemented within the system that comprises an execution
unit coupled to the reorder buffer.

24. The retirement unit of claim 21 being implemented
within an executing processing stage of a processor System.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7.024542 B2 Page 1 of 1
APPLICATIONNO. : 10/183096
DATED : April 4, 2006
INVENTOR(S) : Savransky et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

In column 10, at line 10, delete wit and insert --with--.

Signed and Sealed this

Eighteenth Day of July, 2006

WDJ
JON. W. DUDAS

Director of the United States Patent and Trademark Office

