
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/086214 Al
13 June 2013 (13.06.2013) W P O P C T

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
H04L 12/703 (2013.01) H04L 12/851 (201 3.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

PCT/US20 12/068278 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

6 December 2012 (06.12.2012) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

(25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

(26) Publication Language: English ZM, ZW.

(30) Priority Data: (84) Designated States (unless otherwise indicated, for every

61/567,410 6 December 201 1 (06. 12.201 1) US kind of regional protection available): ARIPO (BW, GH,

13/706,770 6 December 2012 (06. 12.2012) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(71) Applicant: SEVEN NETWORKS, INC. [US/US]; 2100 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Seaport Boulevard, Suite 100, Redwood City, CA 94063 EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(72) Inventor: LUNA, Michael; 519 Curie Drive, San Jose, CA

ML, MR, NE, SN, TD, TG).
95 123 (US).

Published:
(74) Agents: FU, Yenyun et al; Perkins Coie LLP, P.O. Box

1208, Seattle, WA 981 11-1208 (US). — with international search report (Art. 21(3))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(54) Title: A SYSTEM OF REDUNDANTLY CLUSTERED MACHINES TO PROVIDE FAILOVER MECHANISMS FOR MO
BILE TRAFFIC MANAGEMENT AND NETWORK RESOURCE CONSERVATION

FIG. lA-1

00
©

(57) Abstract: Systems of redundantly clustered machines to provide failover mechanisms for mobile traffic management and net -
work resource conservation are disclosed. One embodiment includes a system of redundantly clustered machines to provide failover

o mechanisms for mobile traffic management and network resource conservation including, a first set of redundantly clustered ma
chines coupled to a second set of redundantly clustered machines via a common repository node where each of the first and second
set of redundantly clustered machines function independently to provide mobile traffic management or network resource conserva -
tion services. The first and second set of redundantly clustered machines can be physically located in different data centers or in the
same data center.

A SYSTEM OF REDUNDANTLY CLUSTERED MACHINES TO PROVIDE

FAILOVER MECHANISMS FOR MOBILE TRAFFIC MANAGEMENT AND

NETWORK RESOURCE CONSERVATION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Patent Application No. 13/706,770

entitled "A SYSTEM OF REDUNDANTLY CLUSTERED MACHINES TO PROVIDE

FAILOVER MECHANISMS FOR MOBILE TRAFFIC MANAGEMENT AND

NETWORK RESOURCE CONSERVATION" (Attorney Docket No. 76443-8145 .US01),

which was filed December 6, 2012, which claims benefit of U.S. Provisional Patent

Application No. 61/567,410 entitled "CLIENT SIDE AND SERVER FAILOVER

MECHANISMS IN A DISTRIBUTED MOBILE TRAFFIC MANAGEMENT SYSTEM,"

(Attorney Docket No. 76443-8145 .US00), which was filed on December 6, 201 1, the

contents of which are all incorporated by reference herein.

[0002] This application is related to U.S. Patent Application No. 13/706,860 entitled "A

MOBILE DEVICE AND METHOD TO UTILIZE THE FAILOVER MECHANISMS FOR

FAULT TOLERANCE PROVIDED FOR MOBILE TRAFFIC MANAGEMENT AND

NETWORK/DEVICE RESOURCE CONSERVATION," (Attorney Docket No. 76443-

8145.US02), which was filed December 6, 2012, the contents of which are all incorporated

by reference herein.

BACKGROUND

[0003] Mobile digital and media devices such as cameras, recorders on mobile phones

and social media have changed Smartphone use drastically. As a result, during high network

use times, there is now increased fear that mobile networks will fail, leaving users without the

ability to even make a simple voice call. In particular, wireless traffic is predicted to more

than double during events such as sporting events or elections, with broadcast media sports

officials and personnel and the millions of users ail trying to access the wireless network.

While various precautions can be taken in an attempt to prepare, such as WiFi network

overlays, new h spots and constant network performance testing, signaling challenges of

today's smart phone driven services will persist and evolve even as wireless networks

transition to LTE.

[0004] LTE offers some hope of signaling reduction with radio optimization and

changes in mobility management that should reduce signaling. For example, LTE has several

differences that will drive more signaling potentially at a rapid pace. Key among these

includes changes that enable richer services including IP multimedia subsystem support that

will drive new types of business apps and services. These new services are possible on LTE

due to the combination of faster network speeds and Smartphone computing power;

however, they also will lead to more signaling and as such, LTE networks are not a panacea

for signaling issues.

[0005] Part of that consideration should be traffic optimization, which can ameliorate

signaling that comes from applications and from the network and optimizing traffic for

resource conservation. However, traffic optimization components or processes should not be

introduced as a bottleneck or single point of failure in wireless networks in the event of

equipment failure, site failure, or capacity handling issues.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. lA-1 illustrates an example diagram of a fault tolerant architecture for the

server side components of a distributed proxy and cache system for mobile traffic

management and network resource conservation.

[0007] FIG. 1A-2 illustrates a diagram of the example components in the fault tolerant

architecture on the server side of the distributed proxy and cache system for mobile traffic

management and network resource conservation.

[0008] FIG. IB illustrates an example diagram of a system where a host server

facilitates management of traffic, content caching, and/or resource conservation between

mobile devices (e.g., wireless devices), an application server or content provider, or other

servers such as an ad server, promotional content server, or an e-coupon server in a wireless

network (or broadband network) for resource conservation. The host server can employ a

fault tolerant architecture as illustrated in the example of FIG. lA-1.

[0009] FIG. 1C illustrates an example diagram of a proxy and cache system distributed

between the host server and device which facilitates network traffic management between a

device, an application server or content provider, or other servers such as an ad server,

promotional content server, or an e-coupon server for resource conservation and content

caching. The host server can employ a fault tolerant architecture as illustrated in the example

of FIG. lA-1.

[0010] FIG. 2A depicts a block diagram illustrating an example of client-side

components in a distributed proxy and cache system residing on a mobile device (e.g.,

wireless device) that manages traffic in a wireless network (or broadband network) for

resource conservation, content caching, and/or traffic management. The client-side proxy (or

local proxy) can further categorize mobile traffic and/or implement delivery policies based on

application behavior, content priority, user activity, and/or user expectations.

[0011] FIG. 2B depicts a block diagram illustrating a further example of components in

the cache system shown in the example of FIG. 2A which is capable of caching and adapting

caching strategies for mobile application behavior and/or network conditions. Components

capable of detecting long poll requests and managing caching of long polls are also

illustrated.

[0012] FIG. 2C depicts a block diagram illustrating additional components in the

application behavior detector and the caching policy manager in the cache system shown in

the example of FIG. 2A which is further capable of detecting cache defeat and perform

caching of content addressed by identifiers intended to defeat cache.

[0013] FIG. 2D depicts a block diagram illustrating examples of additional components

in the local cache shown in the example of FIG. 2A which is further capable of performing

mobile traffic categorization and policy implementation based on application behavior and/or

user activity.

[0014] FIG. 3A depicts a block diagram illustrating an example of server-side

components in a distributed proxy and cache system that manages traffic in a wireless

network (or broadband network) for resource conservation, content caching, and/or traffic

management. The server-side proxy (or proxy server) can further categorize mobile traffic

and/or implement delivery policies based on application behavior, content priority, user

activity, and/or user expectations.

[0015] FIG. 3B depicts a block diagram illustrating a further example of components in

the caching policy manager in the cache system shown in the example of FIG. 3A which is

capable of caching and adapting caching strategies for mobile application behavior and/or

network conditions. Components capable of detecting long poll requests and managing

caching of long polls are also illustrated.

[0016] FIG. 3C depicts a block diagram illustrating another example of components in

the proxy system shown in the example of FIG. 3A which is further capable of managing and

detecting cache defeating mechanisms and monitoring content sources.

[0017] FIG. 3D depicts a block diagram illustrating examples of additional components

in proxy server shown in the example of FIG. 3A which is further capable of performing

mobile traffic categorization and policy implementation based on application behavior and/or

traffic priority.

[0018] FIG. 4A depicts a block diagram illustrating another example of client-side

components in a distributed proxy and cache system, further including a client-side failover

handling engine, residing on a mobile device (e.g., wireless device).

[0019] FIG. 4B depicts a block diagram illustrating additional components in the client-

side failover handling engine shown in the example of FIG. 4A.

[0020] FIG. 5A depicts a block diagram illustrating an example of server-side

components in a distributed proxy and cache system, further including a server-side failover

handling engine.

[0021] FIG. 5B depicts a block diagram illustrating additional components in the server-

side failover handling engine shown in the example of FIG. 5A.

[0022] FIG. 6A depicts a flow diagram illustrating an example process for distributed

content caching between a mobile device (e.g., any wireless device) and remote proxy and

the distributed management of content caching.

[0023] FIG. 6B depicts a timing diagram showing how data requests from a mobile

device (e.g., any wireless device) to an application server/content provider in a wireless

network (or broadband network) can be coordinated by a distributed proxy system in a

manner such that network and battery resources are conserved through using content caching

and monitoring performed by the distributed proxy system.

[0024] FIG. 7 depicts a table showing examples of different traffic or application

category types which can be used in implementing network access and content delivery

policies.

[0025] FIG. 8 depicts a table showing examples of different content category types

which can be used in implementing network access and content delivery policies.

[0026] FIG. 9 depicts an interaction diagram showing how polls having data requests

from a mobile device (e.g., any wireless device)to an application server/content provider over

a wireless network (or broadband network) can be can be cached on the local proxy and

managed by the distributed caching system.

[0027] FIG. 10 depicts an interaction diagram showing how polls for content from an

application server/content provider which employs cache-defeating mechanisms in identifiers

(e.g., identifiers intended to defeat caching) over a wireless network (or broadband network)

can be detected and locally cached.

[0028] FIG. 11 depicts a flow chart illustrating an example process for collecting

information about a request and the associated response to identify cacheability and caching

the response.

[0029] FIG. 12 depicts a flow chart illustrating an example process showing decision

flows to determine whether a response to a request can be cached.

[0030] FIG. 13 depicts a flow chart illustrating an example process for determining

potential for cacheability based on request periodicity and/or response repeatability.

[0031] FIG. 14 depicts a flow chart illustrating an example process for dynamically

adjusting caching parameters for a given request or client.

[0032] FIG. 15 depicts a flow chart illustrating example processes for application and/or

traffic (data) categorization while factoring in user activity and expectations for

implementation of network access and content delivery policies.

[0033] FIG. 16A depicts a flow chart illustrating example processes for handling traffic

which is to be suppressed at least temporarily determined from application/traffic

categorization.

[0034] FIG. 16B depicts a flow chart illustrating an example process for selection of a

network configuration for use in sending traffic based on application and/or traffic (data)

categorization.

[0035] FIG. 16C depicts a flow chart illustrating an example process for implementing

network access and content delivery policies based on application and/or traffic (data)

categorization.

[0036] FIG. 17 depicts a flow chart illustrating an example process for network

selection based on mobile user activity or user expectations.

[0037] FIG. 18 depicts a data timing diagram showing an example of detection of

periodic request which may be suitable for caching.

[0038] FIG. 19 depicts a data timing diagram showing an example of detection of

change in request intervals and updating of server polling rate in response thereto.

[0039] FIG. 20 depicts a data timing diagram showing an example of serving

foreground requests with cached entries.

[0040] FIG. 21 depicts a data timing diagram showing an example of the possible effect

of cache invalidation that occurs after outdated content has been served once again to a

requesting application.

[0041] FIG. 22 depicts a data timing diagram showing cache management and response

taking into account the time-to-live (TTL) set for cache entries.

[0042] FIG. 23 depicts a flow chart illustrating an example processes for providing fault

tolerance in mobile traffic management services.

[0043] FIG. 24 depicts a flow chart illustrating example processes for a mobile device to

utilize fault tolerance failover provided by a mobile traffic management service.

[0044] FIG. 25 depicts a flow chart illustrating an example process for determining

whether to initiate a failover process.

[0045] FIG. 26 depicts a flow chart illustrating an example process for reconfiguring

DNS routing rules in a client-side failover event.

[0046] FIG. 27 shows a diagrammatic representation of a machine in the example form

of a computer system within which a set of instructions, for causing the machine to perform

any one or more of the methodologies discussed herein, may be executed.

DETAILED DESCRIPTION

[0047] The following description and drawings are illustrative and are not to be

construed as limiting. Numerous specific details are described to provide a thorough

understanding of the disclosure. However, in certain instances, well-known or conventional

details are not described in order to avoid obscuring the description. References to "one

embodiment" or "an embodiment" in the present disclosure can be, but not necessarily are,

references to the same embodiment and such references mean at least one of the

embodiments.

[0048] Reference in this specification to "one embodiment" or "an embodiment" means

that a particular feature, structure, or characteristic described in connection with the

embodiment is included in at least one embodiment of the disclosure. The appearances of the

phrase "in one embodiment" in various places in the specification are not necessarily all

referring to the same embodiment, nor are separate or alternative embodiments mutually

exclusive of other embodiments. Moreover, various features are described which may be

exhibited by some embodiments and not by others. Similarly, various requirements are

described which may be requirements for some embodiments but not other embodiments.

[0049] The terms used in this specification generally have their ordinary meanings in the

art, within the context of the disclosure, and in the specific context where each term is used.

Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the

specification, to provide additional guidance to the practitioner regarding the description of

the disclosure. For convenience, certain terms may be highlighted, for example using italics

and/or quotation marks. The use of highlighting has no influence on the scope and meaning

of a term; the scope and meaning of a term is the same, in the same context, whether or not it

is highlighted. It will be appreciated that same thing can be said in more than one way.

[0050] Consequently, alternative language and synonyms may be used for any one or

more of the terms discussed herein, nor is any special significance to be placed upon whether

or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A

recital of one or more synonyms does not exclude the use of other synonyms. The use of

examples anywhere in this specification, including examples of any terms discussed herein, is

illustrative only, and is not intended to further limit the scope and meaning of the disclosure

or of any exemplified term. Likewise, the disclosure is not limited to various embodiments

given in this specification.

[0051] Without intent to limit the scope of the disclosure, examples of instruments,

apparatus, methods and their related results according to the embodiments of the present

disclosure are given below. Note that titles or subtitles may be used in the examples for

convenience of a reader, which in no way should limit the scope of the disclosure. Unless

otherwise defined, all technical and scientific terms used herein have the same meaning as

commonly understood by one of ordinary skill in the art to which this disclosure pertains. In

the case of conflict, the present document, including definitions, will control.

[0052] Embodiments of the present disclosure include systems of redundantly clustered

machines to provide failover mechanisms for mobile traffic management and network

resource conservation.

[0053] There are multiple factors that contribute to the proliferation of data: the end-

user, mobile devices, wireless devices, mobile applications, and the network. As mobile

devices evolve, so do the various elements associated with them-availability, applications,

user behavior, location thus changing the way the network interacts with the device and the

application.

[0054] The disclosed technology provides a comprehensive and end-to-end solution that

is able to address each element for operators and devices manufacturers to support both the

shift in mobile or wireless devices and the surge in data by leveraging the premise that mobile

content has a definable or relevant "freshness" value. The "freshness" of mobile content can

be determined, either with certainty, or with some heuristics having a tolerance within which

the user experience is enhanced, or not negatively impacted, or negatively impacted but is

either not perceptible to the user or within a tolerable threshold level.

[0055] The disclosed innovation transparently determines such "freshness" by

monitoring, analyzing, and applying rules (which may be heuristically determined) the

transactions (requests/responses) between applications (e.g., mobile applications) and the

peers (corresponding server or other clients). Moreover, the technology is further able to

effectively cache content which may be marked by its originating/host server as being "non

cacheable" and identify some "freshness" value which can then be used in implementing

application-specific caching. In general, the "freshness" value has an approximate minimum

value which is typically determined using the update interval (e.g., interval with which

requests are sent) between the application and its corresponding server/host.

[0056] One embodiment of the disclosed technology includes a system that optimizes

multiple aspects of the connection with wired and wireless networks and devices through a

comprehensive view of device and application activity including: loading, current

application needs on a device, controlling the type of access (push vs. pull or hybrid),

location, concentration of users in a single area, time of day, how often the user interacts with

the application, content or device, and using this information to shape traffic to a cooperative

client/server or simultaneously mobile devices without a cooperative client. Because the

disclosed server is not tied to any specific network provider it has visibility into the network

performance across all service providers. This enables optimizations to be applied to devices

regardless of the operator or service provider, thereby enhancing the user experience and

managing network utilization while roaming. Bandwidth has been considered a major issue

in wireless networks today. More and more research has been done related to the need for

additional bandwidth to solve access problems. Many of the performance enhancing

solutions and next generation standards, such as those commonly referred to as 3.5G, LTE,

4G, and WiMAX, are focused on providing increased bandwidth. Although partially

addressed by the standards, a key problem that remains is lack of bandwidth on the signaling

channel more so than the data channel and the standard does not address battery life very

well.

[0057] Embodiments of the disclosed technology includes, for example, alignment of

requests from multiple applications to minimize the need for several polling requests;

leverage specific content types to determine how to proxy/manage a connection/content; and

applying specific heuristics associated with device, user behavioral patterns (how often they

interact with the device/application) and/or network parameters.

[0058] Embodiments of the present technology can further include, moving recurring

HTTP polls performed by various widgets, RSS readers, etc., to remote network node (e.g.,

Network Operation Center (NOC)), thus considerably lowering device battery/power

consumption, radio channel signaling and bandwidth usage. Additionally, the offloading can

be performed transparently so that existing applications do not need to be changed.

[0059] In some embodiments, this can be implemented using a local proxy on the mobile

device (e.g., any wireless device) which automatically detects recurring requests for the same

content (RSS feed, Widget data set) that matches a specific rule (e.g., happens every 15

minutes). The local proxy can automatically cache the content on the mobile device while

delegating the polling to the server (e.g., a proxy server operated as an element of a

communications network). The server can then notify the mobile/client proxy if the content

changes, and if content has not changed (or not changed sufficiently, or in an identified

manner or amount) the mobile proxy provides the latest version in its cache to the user

(without need to utilize the radio at all). This way the mobile or wireless device (e.g., a

mobile phone, smart phone, M2M module/MODEM, or any other wireless devices, etc.) does

not need to open (e.g., thus powering on the radio) or use a data connection if the request is

for content that is monitored and that has been not flagged as new/changed.

[0060] The logic for automatically adding content sources/application servers (e.g.,

including URLs/content) to be monitored can also check for various factors like how often

the content is the same, how often the same request is made (is there a fixed

interval/pattern?), which application is requesting the data, etc. Similar rules to decide

between using the cache and request the data from the original source may also be

implemented and executed by the local proxy and/or server.

[0061] For example, when the request comes at an unscheduled/unexpected time (user

initiated check), or after every (n) consecutive times the response has been provided from the

cache, etc., or if the application is running in the background vs. in a more interactive mode

of the foreground. As more and more mobile applications or wireless enabled applications

base their features on resources available in the network, this becomes increasingly

important. In addition, the disclosed technology allows elimination of unnecessary chatter

from the network, benefiting the operators trying to optimize the wireless spectrum usage.

Traffic Categorization and Policy

[0062] In some embodiments, the disclosed proxy system is able to establish policies for

choosing traffic (data, content, messages, updates, etc.) to cache and/or shape. Additionally,

by combining information from observing the application making the network requests,

getting explicit information from the application, or knowing the network destination the

application is reaching, the disclosed technology can determine or infer what category the

transmitted traffic belongs to.

[0063] For example, in one embodiment, mobile or wireless traffic can be categorized

as: (al) interactive traffic or (a2) background traffic. The difference is that in (al) a user is

actively waiting for a response, while in (2) a user is not expecting a response. This

categorization can be used in conjunction with or in lieu of a second type of categorization of

traffic: (bl) immediate, (b2) low priority, (b3) immediate if the requesting application is in

the foreground and active.

[0064] For example, a new update, message or email may be in the (bl) category to be

delivered immediately, but it still is (a2) background traffic — a user is not actively waiting

for it. A similar categorization applies to instant messages when they come outside of an

active chat session. During an active chat session a user is expecting a response faster. Such

user expectations are determined or inferred and factored into when optimizing network use

and device resources in performing traffic categorization and policy implementation.

[0065] Some examples of the applications of the described categorization scheme,

include the following: (al) interactive traffic can be categorized as (bl) immediate — but

(a2) background traffic may also be (b2) or (b3). An example of a low priority transfer is

email or message maintenance transaction such as deleting email or other messages or

marking email as read at the mail or application server. Such a transfer can typically occur at

the earlier of (a) timer exceeding a timeout value (for example, 2 minutes), and (b) data being

sent for other purposes.

[0066] An example of (b3) is IM presence updates, stock ticker updates, weather

updates, status updates, news feeds. When the UI of the application is in the foreground

and/or active (for example, as indicated by the backlight of the device/phone being lit or as

determined or inferred from the status of other sensors), updates can be considered immediate

whenever server has something to push to the device. When the application is not in the

foreground or not active, such updates can be suppressed until the application comes to

foreground and is active.

[0067] With some embodiments, networks can be selected or optimized simultaneously

for (al) interactive traffic and (a2) background traffic.

[0068] In some embodiments, as the wireless device or mobile device proxy (separately

or in conjunction with the server proxy) is able to categorize the traffic as (for example) (al)

interactive traffic or (a2) background traffic, it can apply different policies to different types

of traffic. This means that it can internally operate differently for (al) and (a2) traffic (for

example, by allowing interactive traffic to go through to the network in whole or in part, and

apply stricter traffic control to background traffic; or the device side only allows a request to

activate the radio if it has received information from the server that the content at the host has

been updated, etc.).

[0069] When the request does require access over the wireless network, the disclosed

technology can request the radio layer to apply different network configurations to different

traffic. Depending on the type of traffic and network this may be achieved by different

means:

[0070] (1) Using 3G/4G for (al) and 2G/2.5G for (a2);

[0071] (2) Explicitly specifying network configuration for different data sets (e.g. in

terms of use of FACH (forward access channel) vs. DCH (dedicated channel), or otherwise

requesting lower/more network efficient data rates for background traffic); or

[0072] (3) Utilizing different network access points for different data sets (access points

which would be configured to use network resources differently similar to (1) and (2) above).

[0073] Additionally, 3GPP Fast Dormancy calls for improvements so that applications,

operating systems or the mobile device would have awareness of the traffic type to be more

efficient in the future. Embodiments of the disclosed system, having the knowledge of the

traffic category and being able to utilize Fast Dormancy appropriately may solve the problem

identified in Fast Dormancy. This way the mobile or broadband network does not need to be

configured with a compromised configuration that adversely impacts both battery

consumption and network signaling resources.

Polling schedule

[0074] Detecting (or determining) a polling schedule allows the proxy server (server-

side of the distributed cache system) to be as close as possible with its polls to the application

polls. Many applications employ scheduled interval polling (e.g., every 4 hours or every 30

seconds, at another time interval). The client side proxy can detect automatic polls based on

time measurements and create a automatic polling profile for an application. As an example,

the local proxy attempts to detect the time interval between requests and after 2, 3, 4, or more

polls, determines an automatic rate if the time intervals are all within 1 second (or another

measure of relative closeness) of each other. If not, the client may collect data from a greater

number of polling events (e.g., 10-12 polls) and apply a statistical analysis to determine,

compute, or estimate a value for the average interval that is used. The polling profile is

delivered to the server where it is used. If it is a frequent manual request, the locally proxy

can substitute it with a default interval for this application taken from a profile for non-

critical applications.

[0075] In some embodiments, the local proxy (e.g., device side proxy) may keep

monitoring the application/client polls and update the polling interval. If it changes by more

than 30% (or another predetermined/dynamic/conditional value) from the current value, it is

communicated to the proxy server (e.g., server-side proxy). This approach can be referred to

as the scenario of "lost interest." In some instances, the local proxy can recognize requests

made outside of this schedule, consider them "manual," and treat them accordingly.

Application classes/Modes of caching

[0076] In some embodiments, applications can be organized into three groups or modes

of caching. Each mobile client/application can be categorized to be treated as one of these

modes, or treated using multiple modes, depending on one or more conditions.

[0077] A) Fully cached — local proxy updates (e.g., sends application requests directly

over the network to be serviced by the application server/content host) only when the proxy

server tells the local proxy to update. In this mode, the local proxy can ignore manual

requests and the proxy server uses the detected automatic profile (e.g., sports score applets,

Facebook, every 10, 15, 30, or more polls) to poll the application server/content provider.

[0078] B) Partially cached — the local proxy uses the local or internal cache for

automatic requests (e.g., application automatic refreshes), other scheduled requests but passes

through some manual requests (e.g., email download, Ebay or some Facebook requests); and

[0079] C) Never cached (e.g., real-time stock ticker, sports scores/statuses; however, in

some instances, 15 minutes delayed quotes can be safely placed on 30 seconds schedules —

B or even A).

[0080] The actual application or caching mode classification can be determined based on

the rate of content change and critical character of data. Unclassified applications by default

can be set as class C.

Backlight and active applications

[0081] In some embodiments, the local proxy starts by detecting the device backlight

status. Requests made with the screen light ff can be allowed to use the local cache if a

request with identical signature is registered with the proxy server, which is polling the

original host server/content server(s) to which the requests are directed. If the screen light is

n ' , further detection can be made to determine whether it is a background application or for

other indicators that local cache entries can or cannot be used to satisfy the request. When

identified, the requests for which local entries can be used may be processed identically to the

screen light off situation. Foreground requests can use the aforementioned application

classification to assess when cached data is safe to use to process requests.

[0082] FIG. lA-1 illustrates an example diagram of a fault tolerant architecture for the

server side components 100 of a distributed proxy and cache system for mobile traffic

management and network resource conservation.

[0083] FIG. lA-1 depicts an example of the layout of two different arms 160a and 160b

of an example of a fault tolerant architecture of the host server 100 and a connection via a

data repository 130. Note that while two arms 160a and 160b are illustrated, the host side

(e.g., proxy server of the host server 100) can include multiple additional arms. In general,

each arm can include server side components, each component can be included in singularity

or in a clustered stack (e.g., including but not limited to notification server 141a/b, relay

server 142a/b, policy management server 143a/b, traffic harmonizer 144a/b, and/or polling

server 145a/b). The components together form a traffic management and optimization service

provided by the host side (server-side) of the distributed system.

[0084] For example, the first arm of servers 160a can perform mobile traffic

management or network resource conservation services independently or in conjunction with

the second arm 160b of servers to perform mobile traffic management or network resources

conservation services. The first and second arms 160a and 160b can include the same types of

servers or different. In one embodiment, the first and second arms of servers are physically

located in different data centers. The first and second arms of servers can also be physically

located in a same data center. The data repository 130 couples the first arm 160a and the

second arm 160b and any additional arms of servers.

[0085] In general, one arm of servers includes one or more of, a notification server 141a,

a relay server 142a, a policy management server 143a, a traffic harmonizer server 144a,

and/or a polling server 145a. Examples of additional components which may be included in

the arm of servers 160a are further illustrated in FIG. 3A-FIG. 3D, and FIG. 5A-FIG. 5B.

Note that each server or component can be included in the arm 160a in redundancy. For

example, the notification server 141a can be included in the first arm of servers 160a in

singularity or in redundancy as illustrated; similarly, the relay server 142a, the policy

management server 143a, the traffic harmonizer server 144a, and the polling server 145a, and

any additional components can be include in singularity of in redundancy as illustrated in the

example of FIG. lA-1. Details of the arm of servers 160a is further illustrated in FIG. 1A-2.

The use of this architecture for failover is further described with reference to the example of

FIG. 5B.

[0086] FIG. 1A-2 illustrates a diagram of the example components in the fault tolerant

architecture 160 on the server side of the distributed proxy and cache system for mobile

traffic management and network resource conservation.

[0087] The server side of the distributed system can include, for example a relay server

142, which interacts with a traffic harmonizer 144, a polling server 145 and/or a policy

management server 143. Each of the various components can communicate with the client

side proxy, or other third party (e.g., application server/service provider 110) and/or a

reporting and usage analytics system. Each or any component on the server side may be

implemented with redundancy as illustrated in the example of FIG. lA-1. The relay server

142 can further include a notification server 141 and/or a user database and communicate

with the client-side proxy (e.g., the local proxy 175 on a mobile device 150 as illustrated in

FIG. IB-FIG. 1C).

[0088] In embodiments of the present disclosure, the components in the server side arm

160 are included in a set of redundantly clustered machines coupled to one other set of

redundantly clustered machines via a common repository node. Each of the first and second

set of redundantly clustered machines can function independently to provide mobile traffic

management or network resource conservation services. In general, subscription information

for a mobile device serviced by the first set of redundantly clustered machines can be

accessible by the second set of redundantly clustered machines via the common repository

node.

[0089] Subscription information can include an identifier for the mobile device (e.g., in

the form of an endpoint address), services/mobile applications installed on the mobile device,

user specific information/preferences for a user of the mobile device, encryption keys used

for communication with the mobile device, user behavior, application pattern, mobile device

information, etc. The first set of redundantly clustered machines located in a given location is

in general, able to service a mobile device until the mobile device roams to another location

serviced by the second set of redundantly clustered machines.

[0090] In some instances, in the case of a failover, the first set of redundantly clustered

machines located in a given location is able to service a mobile device unless a failover or a

capacity issue occurs at the given location. The mobile device can then be transferred to be

serviced by the second set of redundantly clustered machines at a different location and the

subscription information for the mobile device can be loaded on the second set of redundantly

clustered machines from the common repository node. Using the subscription information for

the mobile device, the second set of machines can poll the associated hosts for subscriptions

of the mobile device originally serviced by the one component to satisfy requests at the

mobile device.

[0091] FIG. IB illustrates an example diagram of a system where a host server 100

facilitates management of traffic, content caching, and/or resource conservation between

mobile devices (e.g., wireless devices 150), and an application server or content provider 110,

or other servers such as an ad server 120A, promotional content server 120B, or an e-coupon

server 120C in a wireless network (or broadband network) for resource conservation. The

host server can further monitor mobile application activities for malicious traffic on a mobile

device and/or automatically generate and/or distribute policy information regarding malicious

traffic in a wireless network.

[0092] The client devices 150 can be any system and/or device, and/or any combination

of devices/systems that is able to establish a connection, including wired, wireless, cellular

connections with another device, a server and/or other systems such as host server 100 and/or

application server/content provider 110. Client devices 150 will typically include a display

and/or other output functionalities to present information and data exchanged between among

the devices 150 and/or the host server 100 and/or application server/content provider 110.

The application server/content provider 110 can by any server including third party servers or

service/content providers further including advertisement, promotional content, publication,

or electronic coupon servers or services. Similarly, separate advertisement servers 120A,

promotional content servers 120B, and/or e-Coupon servers 120C as application servers or

content providers are illustrated by way of example.

[0093] For example, the client devices 150 can include mobile, hand held or portable

devices, wireless devices, or non-portable devices and can be any of, but not limited to, a

server desktop, a desktop computer, a computer cluster, or portable devices, including a

notebook, a laptop computer, a handheld computer, a palmtop computer, a mobile phone, a

cell phone, a smart phone, a PDA, a Blackberry device, a Palm device, a handheld tablet

(e.g., an iPad or any other tablet), a hand held console, a hand held gaming device or console,

any Super Phone such as the iPhone, and/or any other portable, mobile, hand held devices, or

fixed wireless interface such as a M2M device, etc. In one embodiment, the client devices

150, host server 100, and application server 110 are coupled via a network 106 and/or a

network 108. In some embodiments, the devices 150 and host server 100 may be directly

connected to one another.

[0094] The input mechanism on client devices 150 can include touch screen keypad

(including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a

mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis

accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor,

proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass,

tilt sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.

[0095] Signals received or detected indicating user activity at client devices 150 through

one or more of the above input mechanism, or others, can be used in the disclosed technology

in acquiring context awareness at the client device 150. Context awareness at client devices

150 generally includes, by way of example but not limitation, client device 150 operation or

state acknowledgement, management, user activity/behavior/interaction awareness, detection,

sensing, tracking, trending, and/or application (e.g., mobile applications) type, behavior,

activity, operating state, etc.

[0096] Context awareness in the present disclosure also includes knowledge and

detection of network side contextual data and can include network information such as

network capacity, bandwidth, traffic, type of network/connectivity, and/or any other

operational state data. Network side contextual data can be received from and/or queried

from network service providers (e.g., cell provider 112 and/or Internet service providers) of

the network 106 and/or network 108 (e.g., by the host server and/or devices 150). In addition

to application context awareness as determined from the client 150 side, the application

context awareness may also be received from or obtained/queried from the respective

application/service providers 110 (by the host 100 and/or client devices 150).

[0097] The host server 100 can use, for example, contextual information obtained for

client devices 150, networks 106/108, applications (e.g., mobile applications), application

server/provider 110, or any combination of the above, to manage the traffic in the system to

satisfy data needs of the client devices 150 (e.g., to satisfy application or any other request

including HTTP request). In one embodiment, the traffic is managed by the host server 100

to satisfy data requests made in response to explicit or non-explicit user 103 requests and/or

device/application maintenance tasks. The traffic can be managed such that network

consumption, for example, use of the cellular network is conserved for effective and efficient

bandwidth utilization. In addition, the host server 100 can manage and coordinate such

traffic in the system such that use of device 150 side resources (e.g., including but not limited

to battery power consumption, radio use, processor/memory use) are optimized with a general

philosophy for resource conservation while still optimizing performance and user experience.

[0098] For example, in context of battery conservation, the device 150 can observe user

activity (for example, by observing user keystrokes, backlight status, or other signals via one

or more input mechanisms, etc.) and alters device 150 behaviors. The device 150 can also

request the host server 100 to alter the behavior for network resource consumption based on

user activity or behavior.

[0099] In one embodiment, the traffic management for resource conservation is

performed using a distributed system between the host server 100 and client device 150. The

distributed system can include proxy server and cache components on the server side 100 and

on the device/client side , for example, as shown by the server cache 135 on the server 100

side and the local cache 185 on the client 150 side.

[00100] Functions and techniques disclosed for context aware traffic management for

resource conservation in networks (e.g., network 106 and/or 108) and devices 150, reside in a

distributed proxy and cache system. The proxy and cache system can be distributed between,

and reside on, a given client device 150 in part or in whole and/or host server 100 in part or in

whole. The distributed proxy and cache system are illustrated with further reference to the

example diagram shown in FIG. 1C. Functions and techniques performed by the proxy and

cache components in the client device 150, the host server 100, and the related components

therein are described, respectively, in detail with further reference to the examples of FIG. 2-

3 .

[00101] In one embodiment, client devices 150 communicate with the host server 100

and/or the application server 110 over network 106, which can be a cellular network and/or a

broadband network. To facilitate overall traffic management between devices 150 and

various application servers/content providers 110 to implement network (bandwidth

utilization) and device resource (e.g., battery consumption), the host server 100 can

communicate with the application server/providers 110 over the network 108, which can

include the Internet (e.g., a broadband network).

[00102] In general, the networks 106 and/or 108, over which the client devices 150, the

host server 100, and/or application server 110 communicate, may be a cellular network, a

broadband network, a telephonic network, an open network, such as the Internet, or a private

network, such as an intranet and/or the extranet, or any combination thereof. For example,

the Internet can provide file transfer, remote log in, email, news, RSS, cloud-based services,

instant messaging, visual voicemail, push mail, VoIP, and other services through any known

or convenient protocol, such as, but is not limited to the TCP/IP protocol, UDP, HTTP, DNS,

FTP, UPnP, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.

[00103] The networks 106 and/or 108 can be any collection of distinct networks operating

wholly or partially in conjunction to provide connectivity to the client devices 150 and the

host server 100 and may appear as one or more networks to the serviced systems and devices.

In one embodiment, communications to and from the client devices 150 can be achieved by,

an open network, such as the Internet, or a private network, broadband network, such as an

intranet and/or the extranet. In one embodiment, communications can be achieved by a

secure communications protocol, such as secure sockets layer (SSL), or transport layer

security (TLS).

[00104] In addition, communications can be achieved via one or more networks, such as,

but are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local

Area Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a

Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area

network (WWAN), or any broadband network, and further enabled with technologies such as,

by way of example, Global System for Mobile Communications (GSM), Personal

Communications Service (PCS), Bluetooth, WiFi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G,

IMT-Advanced, pre-4G, LTE Advanced, mobile WiMax, WiMax 2, WirelessMAN-

Advanced networks, enhanced data rates for GSM evolution (EDGE), General packet radio

service (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA, UMTS-TDD,

lxRTT, EV-DO, messaging protocols such as, TCP/IP, SMS, MMS, extensible messaging

and presence protocol (XMPP), real time messaging protocol (RTMP), instant messaging and

presence protocol (IMPP), instant messaging, USSD, IRC, or any other wireless data

networks, broadband networks, or messaging protocols.

[00105] FIG. 1C illustrates an example diagram of a proxy and cache system distributed

between the host server 100 and device 150 which facilitates network traffic management

between the device 150 and an application server or content provider 110, or other servers

such as an ad server 120A, promotional content server 120B, or an e-coupon server 120C for

resource conservation and content caching. The proxy system distributed among the host

server 100 and the device 150 can further monitor mobile application activities for malicious

traffic on a mobile device and/or automatically generate and/or distribute policy information

regarding malicious traffic in a wireless network.

[00106] The distributed proxy and cache system can include, for example, the proxy

server 125 (e.g., remote proxy) and the server cache, 135 components on the server side. The

server- side proxy 125 and cache 135 can, as illustrated, reside internal to the host server 100.

In addition, the proxy server 125 and cache 135 on the server-side can be partially or wholly

external to the host server 100 and in communication via one or more of the networks 106

and 108. For example, the proxy server 125 may be external to the host server and the server

cache 135 may be maintained at the host server 100. Alternatively, the proxy server 125 may

be within the host server 100 while the server cache is external to the host server 100. In

addition, each of the proxy server 125 and the cache 135 may be partially internal to the host

server 100 and partially external to the host server 100. The application server/content

provider 110 can by any server including third party servers or service/content providers

further including advertisement, promotional content, publication, or electronic coupon

servers or services. Similarly, separate advertisement servers 120A, promotional content

servers 120B, and/or e-Coupon servers 120C as application servers or content providers are

illustrated by way of example.

[00107] The distributed system can also, include, in one embodiment, client-side

components, including by way of example but not limitation, a local proxy 175 (e.g., a

mobile client on a mobile device) and/or a local cache 185, which can, as illustrated, reside

internal to the device 150 (e.g., a mobile device).

[00108] In addition, the client-side proxy 175 and local cache 185 can be partially or

wholly external to the device 150 and in communication via one or more of the networks 106

and 108. For example, the local proxy 175 may be external to the device 150 and the local

cache 185 may be maintained at the device 150. Alternatively, the local proxy 175 may be

within the device 150 while the local cache 185 is external to the device 150. In addition,

each of the proxy 175 and the cache 185 may be partially internal to the host server 100 and

partially external to the host server 100.

[00109] In one embodiment, the distributed system can include an optional caching proxy

server 199. The caching proxy server 199 can be a component which is operated by the

application server/content provider 110, the host server 100, or a network service provider

112, and or any combination of the above to facilitate network traffic management for

network and device resource conservation. Proxy server 199 can be used, for example, for

caching content to be provided to the device 150, for example, from one or more of, the

application server/provider 110, host server 100, and/or a network service provider 112.

Content caching can also be entirely or partially performed by the remote proxy 125 to satisfy

application requests or other data requests at the device 150.

[00110] In context aware traffic management and optimization for resource conservation

in a network (e.g., cellular or other wireless networks), characteristics of user

activity/behavior and/or application behavior at a mobile device (e.g., any wireless device)

150 can be tracked by the local proxy 175 and communicated, over the network 106 to the

proxy server 125 component in the host server 100, for example, as connection metadata.

The proxy server 125 which in turn is coupled to the application server/provider 110 provides

content and data to satisfy requests made at the device 150.

[00111] In addition, the local proxy 175 can identify and retrieve mobile device

properties, including one or more of, battery level, network that the device is registered on,

radio state, or whether the mobile device is being used (e.g., interacted with by a user). In

some instances, the local proxy 175 can delay, expedite (prefetch), and/or modify data prior

to transmission to the proxy server 125, when appropriate, as will be further detailed with

references to the description associated with the examples of FIG. 2-3.

[00112] The local database 185 can be included in the local proxy 175 or coupled to the

local proxy 175 and can be queried for a locally stored response to the data request prior to

the data request being forwarded on to the proxy server 125. Locally cached responses can

be used by the local proxy 175 to satisfy certain application requests of the mobile device

150, by retrieving cached content stored in the cache storage 185, when the cached content is

still valid.

[00113] Similarly, the proxy server 125 of the host server 100 can also delay, expedite, or

modify data from the local proxy prior to transmission to the content sources (e.g., the

application server/content provider 110). In addition, the proxy server 125 uses device

properties and connection metadata to generate rules for satisfying request of applications on

the mobile device 150. The proxy server 125 can gather real time traffic information about

requests of applications for later use in optimizing similar connections with the mobile device

150 or other mobile devices.

[00114] In general, the local proxy 175 and the proxy server 125 are transparent to the

multiple applications executing on the mobile device. The local proxy 175 is generally

transparent to the operating system or platform of the mobile device and may or may not be

specific to device manufacturers. In some instances, the local proxy 175 is optionally

customizable in part or in whole to be device specific. In some embodiments, the local proxy

175 may be bundled into a wireless model, a firewall, and/or a router.

[00115] In one embodiment, the host server 100 can in some instances, utilize the store

and forward functions of a short message service center (SMSC) 112, such as that provided

by the network service provider, in communicating with the device 150 in achieving network

traffic management. Note that 112 can also utilize any other type of alternative channel

including USSD or other network control mechanisms. As will be further described with

reference to the example of FIG. 3, the host server 100 can forward content or HTTP

responses to the SMSC 112 such that it is automatically forwarded to the device 150 if

available, and for subsequent forwarding if the device 150 is not currently available.

[00116] In general, the disclosed distributed proxy and cache system allows optimization

of network usage, for example, by serving requests from the local cache 185, the local proxy

175 reduces the number of requests that need to be satisfied over the network 106. Further,

the local proxy 175 and the proxy server 125 may filter irrelevant data from the

communicated data. In addition, the local proxy 175 and the proxy server 125 can also

accumulate low priority data and send it in batches to avoid the protocol overhead of sending

individual data fragments. The local proxy 175 and the proxy server 125 can also compress

or transcode the traffic, reducing the amount of data sent over the network 106 and/or 108.

The signaling traffic in the network 106 and/or 108 can be reduced, as the networks are now

used less often and the network traffic can be synchronized among individual applications.

[00117] With respect to the battery life of the mobile device 150, by serving application

or content requests from the local cache 185, the local proxy 175 can reduce the number of

times the radio module is powered up. The local proxy 175 and the proxy server 125 can

work in conjunction to accumulate low priority data and send it in batches to reduce the

number of times and/or amount of time when the radio is powered up. The local proxy 175

can synchronize the network use by performing the batched data transfer for all connections

simultaneously.

[00118] FIG. 2A depicts a block diagram illustrating an example of client-side

components in a distributed proxy and cache system residing on a mobile device (e.g.,

wireless device) 250 that manages traffic in a wireless network (or broadband network) for

resource conservation, content caching, and/or traffic management. The client-side proxy (or

local proxy 275) can further categorize mobile traffic and/or implement delivery policies

based on application behavior, content priority, user activity, and/or user expectations.

[00119] The device 250, which can be a portable or mobile device (e.g., any wireless

device), such as a portable phone, generally includes, for example, a network interface 208 an

operating system 204, a context API 206, and mobile applications which may be proxy-

unaware 210 or proxy-aware 220. Note that the device 250 is specifically illustrated in the

example of FIG. 2 as a mobile device, such is not a limitation and that device 250 may be

any wireless, broadband, portable/mobile or non-portable device able to receive, transmit

signals to satisfy data requests over a network including wired or wireless networks (e.g.,

WiFi, cellular, Bluetooth, LAN, WAN, etc.).

[00120] The network interface 208 can be a networking module that enables the device

250 to mediate data in a network with an entity that is external to the host server 250, through

any known and/or convenient communications protocol supported by the host and the

external entity. The network interface 208 can include one or more of a network adaptor

card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for

various generations of mobile communication standards including but not limited to 2G, 3G,

3.5G, 4G, LTE, etc.,), Bluetooth, or whether or not the connection is via a router, an access

point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a

bridge, a bridge router, a hub, a digital media receiver, and/or a repeater.

[00121] Device 250 can further include, client-side components of the distributed proxy

and cache system which can include, a local proxy 275 (e.g., a mobile client of a mobile

device) and a cache 285. In one embodiment, the local proxy 275 includes a user activity

module 215, a proxy API 225, a request/transaction manager 235, a caching policy manager

245 having an application protocol module 248, a traffic shaping engine 255, and/or a

connection manager 265. The traffic shaping engine 255 may further include an alignment

module 256 and/or a batching module 257, the connection manager 265 may further include a

radio controller 266. The request/transaction manager 235 can further include an application

behavior detector 236 and/or a prioritization engine 241, the application behavior detector

236 may further include a pattern detector 237 and/or and application profile generator 239.

Additional or less components/modules/engines can be included in the local proxy 275 and

each illustrated component.

[00122] As used herein, a "module," "a manager," a "handler," a "detector," an

"interface," a "controller," a "normalizer," a "generator," an "invalidator," or an "engine"

includes a general purpose, dedicated or shared processor and, typically, firmware or

software modules that are executed by the processor. Depending upon implementation-

specific or other considerations, the module, manager, handler, detector, interface, controller,

normalizer, generator, invalidator, or engine can be centralized or its functionality distributed.

The module, manager, handler, detector, interface, controller, normalizer, generator,

invalidator, or engine can include general or special purpose hardware, firmware, or software

embodied in a computer-readable (storage) medium for execution by the processor.

[00123] As used herein, a computer-readable medium or computer-readable storage

medium is intended to include all mediums that are statutory (e.g., in the United States, under

35 U.S.C. 101), and to specifically exclude all mediums that are non-statutory in nature to the

extent that the exclusion is necessary for a claim that includes the computer-readable

(storage) medium to be valid. Known statutory computer-readable mediums include

hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name

a few), but may or may not be limited to hardware.

[00124] In one embodiment, a portion of the distributed proxy and cache system for

network traffic management resides in or is in communication with device 250, including

local proxy 275 (mobile client) and/or cache 285. The local proxy 275 can provide an

interface on the device 250 for users to access device applications and services including

email, IM, voice mail, visual voicemail, feeds, Internet, games, productivity tools, or other

applications, etc.

[00125] The proxy 275 is generally application independent and can be used by

applications (e.g., both proxy-aware and proxy-unaware applications 210 and 220 and other

mobile applications) to open TCP connections to a remote server (e.g., the server 100 in the

examples of FIG. 1B-1C and/or server proxy 125/325 shown in the examples of FIG. IB and

FIG. 3A). In some instances, the local proxy 275 includes a proxy API 225 which can be

optionally used to interface with proxy-aware applications 220 (or applications (e.g., mobile

applications) on a mobile device (e.g., any wireless device)).

[00126] The applications 210 and 220 can generally include any user application,

widgets, software, HTTP-based application, web browsers, video or other multimedia

streaming or downloading application, video games, social network applications, email

clients, RSS management applications, application stores, document management

applications, productivity enhancement applications, etc. The applications can be provided

with the device OS, by the device manufacturer, by the network service provider,

downloaded by the user, or provided by others.

[00127] One embodiment of the local proxy 275 includes or is coupled to a context API

206, as shown. The context API 206 may be a part of the operating system 204 or device

platform or independent of the operating system 204, as illustrated. The operating system

204 can include any operating system including but not limited to, any previous, current,

and/or future versions/releases of, Windows Mobile, iOS, Android, Symbian, Palm OS, Brew

MP, Java 2 Micro Edition (J2ME), Blackberry, etc.

[00128] The context API 206 may be a plug-in to the operating system 204 or a particular

client/application on the device 250. The context API 206 can detect signals indicative of

user or device activity, for example, sensing motion, gesture, device location, changes in

device location, device backlight, keystrokes, clicks,, activated touch screen, mouse click or

detection of other pointer devices. The context API 206 can be coupled to input devices or

sensors on the device 250 to identify these signals. Such signals can generally include input

received in response to explicit user input at an input device/mechanism at the device 250

and/or collected from ambient signals/contextual cues detected at or in the vicinity of the

device 250 (e.g., light, motion, piezoelectric, etc.).

[00129] In one embodiment, the user activity module 215 interacts with the context API

206 to identify, determine, infer, detect, compute, predict, and/or anticipate, characteristics of

user activity on the device 250. Various inputs collected by the context API 206 can be

aggregated by the user activity module 215 to generate a profile for characteristics of user

activity. Such a profile can be generated by the user activity module 215 with various

temporal characteristics. For instance, user activity profile can be generated in real-time for a

given instant to provide a view of what the user is doing or not doing at a given time (e.g.,

defined by a time window, in the last minute, in the last 30 seconds, etc.), a user activity

profile can also be generated for a 'session' defined by an application or web page that

describes the characteristics of user behavior with respect to a specific task they are engaged

in on the device 250, or for a specific time period (e.g., for the last 2 hours, for the last 5

hours).

[00130] Additionally, characteristic profiles can be generated by the user activity module

215 to depict a historical trend for user activity and behavior (e.g., 1 week, 1 mo., 2 mo.,

etc.). Such historical profiles can also be used to deduce trends of user behavior, for

example, access frequency at different times of day, trends for certain days of the week

(weekends or week days), user activity trends based on location data (e.g., IP address, GPS,

or cell tower coordinate data) or changes in location data (e.g., user activity based on user

location, or user activity based on whether the user is on the go, or traveling outside a home

region, etc.) to obtain user activity characteristics.

[00131] In one embodiment, user activity module 215 can detect and track user activity

with respect to applications, documents, files, windows, icons, and folders on the device 250.

For example, the user activity module 215 can detect when an application or window (e.g., a

web browser or any other type of application) has been exited, closed, minimized,

maximized, opened, moved into the foreground, or into the background, multimedia content

playback, etc.

[00132] In one embodiment, characteristics of the user activity on the device 250 can be

used to locally adjust behavior of the device (e.g., mobile device or any wireless device) to

optimize its resource consumption such as battery/power consumption and more generally,

consumption of other device resources including memory, storage, and processing power. In

one embodiment, the use of a radio on a device can be adjusted based on characteristics of

user behavior (e.g., by the radio controller 266 of the connection manager 265) coupled to the

user activity module 215. For example, the radio controller 266 can turn the radio on or off,

based on characteristics of the user activity on the device 250. In addition, the radio

controller 266 can adjust the power mode of the radio (e.g., to be in a higher power mode or

lower power mode) depending on characteristics of user activity.

[00133] In one embodiment, characteristics of the user activity on device 250 can also be

used to cause another device (e.g., other computers, a mobile device, a wireless device, or a

non-portable device) or server (e.g., host server 100 and 300 in the examples of FIG. 1B-C

and FIG. 3A) which can communicate (e.g., via a cellular or other network) with the device

250 to modify its communication frequency with the device 250. The local proxy 275 can

use the characteristics information of user behavior determined by the user activity module

215 to instruct the remote device as to how to modulate its communication frequency (e.g.,

decreasing communication frequency, such as data push frequency if the user is idle,

requesting that the remote device notify the device 250 if new data, changed, data, or data of

a certain level of importance becomes available, etc.).

[00134] In one embodiment, the user activity module 215 can, in response to determining

that user activity characteristics indicate that a user is active after a period of inactivity,

request that a remote device (e.g., server host server 100 and 300 in the examples of FIG.

1B-C and FIG. 3A) send the data that was buffered as a result of the previously decreased

communication frequency.

[00135] In addition, or in alternative, the local proxy 275 can communicate the

characteristics of user activity at the device 250 to the remote device (e.g., host server 100

and 300 in the examples of FIG. 1B-C and FIG. 3A) and the remote device determines how

to alter its own communication frequency with the device 250 for network resource

conservation and conservation of device 250 resources..

[00136] One embodiment of the local proxy 275 further includes a request/transaction

manager 235, which can detect, identify, intercept, process, manage, data requests initiated on

the device 250, for example, by applications 210 and/or 220, and/or directly/indirectly by a

user request. The request/transaction manager 235 can determine how and when to process a

given request or transaction, or a set of requests/transactions, based on transaction

characteristics.

[00137] The request/transaction manager 235 can prioritize requests or transactions made

by applications and/or users at the device 250, for example by the prioritization engine 241.

Importance or priority of requests/transactions can be determined by the request/transaction

manager 235 by applying a rule set, for example, according to time sensitivity of the

transaction, time sensitivity of the content in the transaction, time criticality of the

transaction, time criticality of the data transmitted in the transaction, and/or time criticality or

importance of an application making the request.

[00138] In addition, transaction characteristics can also depend on whether the transaction

was a result of user-interaction or other user-initiated action on the device (e.g., user

interaction with a application (e.g., a mobile application)). In general, a time critical

transaction can include a transaction resulting from a user-initiated data transfer, and can be

prioritized as such. Transaction characteristics can also depend on the amount of data that

will be transferred or is anticipated to be transferred as a result of the requested transaction.

For example, the connection manager 265, can adjust the radio mode (e.g., high power or low

power mode via the radio controller 266) based on the amount of data that will need to be

transferred.

[00139] In addition, the radio controller 266/connection manager 265 can adjust the radio

power mode (high or low) based on time criticality/sensitivity of the transaction. The radio

controller 266 can trigger the use of high power radio mode when a time-critical transaction

(e.g., a transaction resulting from a user-initiated data transfer, an application running in the

foreground, any other event meeting a certain criteria) is initiated or detected.

[00140] In general, the priorities can be set by default, for example, based on device

platform, device manufacturer, operating system, etc. Priorities can alternatively or in

additionally be set by the particular application; for example, the Facebook application (e.g.,

a mobile application) can set its own priorities for various transactions (e.g., a status update

can be of higher priority than an add friend request or a poke request, a message send request

can be of higher priority than a message delete request, for example), an email client or IM

chat client may have its own configurations for priority. The prioritization engine 241 may

include set of rules for assigning priority.

[00141] The prioritization engine 241 can also track network provider limitations or

specifications on application or transaction priority in determining an overall priority status

for a request/transaction. Furthermore, priority can in part or in whole be determined by user

preferences, either explicit or implicit. A user, can in general, set priorities at different tiers,

such as, specific priorities for sessions, or types, or applications (e.g., a browsing session, a

gaming session, versus an IM chat session, the user may set a gaming session to always have

higher priority than an IM chat session, which may have higher priority than web-browsing

session). A user can set application-specific priorities, (e.g., a user may set Facebook-related

transactions to have a higher priority than Linkedln-related transactions), for specific

transaction types (e.g., for all send message requests across all applications to have higher

priority than message delete requests, for all calendar-related events to have a high priority,

etc.), and/or for specific folders.

[00142] The prioritization engine 241 can track and resolve conflicts in priorities set by

different entities. For example, manual settings specified by the user may take precedence

over device OS settings, network provider parameters/limitations (e.g., set in default for a

network service area, geographic locale, set for a specific time of day, or set based on

service/fee type) may limit any user-specified settings and/or application-set priorities. In

some instances, a manual synchronization request received from a user can override some,

most, or all priority settings in that the requested synchronization is performed when

requested, regardless of the individually assigned priority or an overall priority ranking for

the requested action.

[00143] Priority can be specified and tracked internally in any known and/or convenient

manner, including but not limited to, a binary representation, a multi-valued representation, a

graded representation and all are considered to be within the scope of the disclosed

technology.

Change Priority Change Priority
(initiated on device) (initiated on server)

Send email High Receive email High

Delete email Low Edit email Often not possible to sync
(Low if possible)

(Un)read email Low

Move message Low New email in deleted items Low

Read more High

Download High Delete an email Low
attachment

(Un)Read an email Low

New Calendar event High Move messages Low

Edit/change Calendar event High Any calendar change High

Any contact change High

Add a contact High Wipe/lock device High

Edit a contact High Settings change High

Search contacts High Any folder change High

Change a setting Connector restart High (if no changes nothing is
sent)

Manual send/receive

IM status change Medium Social Network Status Updates Medium

Auction outbid or change High Sever Weather Alerts High
notification

Weather Updates Low News Updates Low

Table I

[00144] Table I above shows, for illustration purposes, some examples of transactions

with examples of assigned priorities in a binary representation scheme. Additional

assignments are possible for additional types of events, requests, transactions, and as

previously described, priority assignments can be made at more or less granular levels, e.g.,

at the session level or at the application level, etc.

[00145] As shown by way of example in the above table, in general, lower priority

requests/transactions can include, updating message status as being read, unread, deleting of

messages, deletion of contacts; higher priority requests/transactions, can in some instances

include, status updates, new IM chat message, new email, calendar event

update/cancellation/deletion, an event in a mobile gaming session, or other entertainment

related events, a purchase confirmation through a web purchase or online, request to load

additional or download content, contact book related events, a transaction to change a device

setting, location-aware or location-based events/transactions, or any other

events/request/transactions initiated by a user or where the user is known to be, expected to

be, or suspected to be waiting for a response, etc.

[00146] Inbox pruning events (e.g., email, or any other types of messages), are generally

considered low priority and absent other impending events, generally will not trigger use of

the radio on the device 250. Specifically, pruning events to remove old email or other

content can be 'piggy backed' with other communications if the radio is not otherwise on, at

the time of a scheduled pruning event. For example, if the user has preferences set to 'keep

messages for 7 days old,' then instead of powering on the device radio to initiate a message

delete from the device 250 the moment that the message has exceeded 7 days old, the

message is deleted when the radio is powered on next. If the radio is already on, then pruning

may occur as regularly scheduled.

[00147] The request/transaction manager 235, can use the priorities for requests (e.g., by

the prioritization engine 241) to manage outgoing traffic from the device 250 for resource

optimization (e.g., to utilize the device radio more efficiently for battery conservation). For

example, transactions/requests below a certain priority ranking may not trigger use of the

radio on the device 250 if the radio is not already switched on, as controlled by the

connection manager 265. In contrast, the radio controller 266 can turn on the radio such a

request can be sent when a request for a transaction is detected to be over a certain priority

level.

[00148] In one embodiment, priority assignments (such as that determined by the local

proxy 275 or another device/entity) can be used cause a remote device to modify its

communication with the frequency with the mobile device or wireless device. For example,

the remote device can be configured to send notifications to the device 250 when data of

higher importance is available to be sent to the mobile device or wireless device.

[00149] In one embodiment, transaction priority can be used in conjunction with

characteristics of user activity in shaping or managing traffic, for example, by the traffic

shaping engine 255. For example, the traffic shaping engine 255 can, in response to detecting

that a user is dormant or inactive, wait to send low priority transactions from the device 250,

for a period of time. In addition, the traffic shaping engine 255 can allow multiple low

priority transactions to accumulate for batch transferring from the device 250 (e.g., via the

batching module 257).In one embodiment, the priorities can be set, configured, or readjusted

by a user. For example, content depicted in Table I in the same or similar form can be

accessible in a user interface on the device 250 and for example, used by the user to adjust or

view the priorities.

[00150] The batching module 257 can initiate batch transfer based on certain criteria. For

example, batch transfer (e.g., of multiple occurrences of events, some of which occurred at

different instances in time) may occur after a certain number of low priority events have been

detected, or after an amount of time elapsed after the first of the low priority event was

initiated. In addition, the batching module 257 can initiate batch transfer of the cumulated

low priority events when a higher priority event is initiated or detected at the device 250.

Batch transfer can otherwise be initiated when radio use is triggered for another reason (e.g.,

to receive data from a remote device such as host server 100 or 300). In one embodiment, an

impending pruning event (pruning of an inbox), or any other low priority events, can be

executed when a batch transfer occurs.

[00151] In general, the batching capability can be disabled or enabled at the

event/transaction level, application level, or session level, based on any one or combination

of the following: user configuration, device limitations/settings, manufacturer specification,

network provider parameters/limitations, platform-specific limitations/settings, device OS

settings, etc. In one embodiment, batch transfer can be initiated when an

application/window/file is closed out, exited, or moved into the background; users can

optionally be prompted before initiating a batch transfer; users can also manually trigger

batch transfers.

[00152] In one embodiment, the local proxy 275 locally adjusts radio use on the device

250 by caching data in the cache 285. When requests or transactions from the device 250 can

be satisfied by content stored in the cache 285, the radio controller 266 need not activate the

radio to send the request to a remote entity (e.g., the host server 100, 300, as shown in FIG.

IB and FIG. 3A or a content provider/application server such as the server/provider 110

shown in the examples of FIG. IB and FIG. 1C). As such, the local proxy 275 can use the

local cache 285 and the cache policy manager 245 to locally store data for satisfying data

requests to eliminate or reduce the use of the device radio for conservation of network

resources and device battery consumption.

[00153] In leveraging the local cache, once the request/transaction manager 225 intercepts

a data request by an application on the device 250, the local repository 285 can be queried to

determine if there is any locally stored response, and also determine whether the response is

valid. When a valid response is available in the local cache 285, the response can be

provided to the application on the device 250 without the device 250 needing to access the

cellular network or wireless broadband network.

[00154] If a valid response is not available, the local proxy 275 can query a remote proxy

(e.g., the server proxy 325 of FIG. 3A) to determine whether a remotely stored response is

valid. If so, the remotely stored response (e.g., which may be stored on the server cache 135

or optional caching server 199 shown in the example of FIG. 1C) can be provided to the

mobile device, possibly without the mobile device 250 needing to access the cellular

network, thus relieving consumption of network resources.

[00155] If a valid cache response is not available, or if cache responses are unavailable

for the intercepted data request, the local proxy 275, for example, the caching policy manager

245, can send the data request to a remote proxy (e.g., server proxy 325 of FIG. 3A) which

forwards the data request to a content source (e.g., application server/content provider 110 of

FIG. IB) and a response from the content source can be provided through the remote proxy,

as will be further described in the description associated with the example host server 300 of

FIG. 3A. The cache policy manager 245 can manage or process requests that use a variety of

protocols, including but not limited to HTTP, HTTPS, IMAP, POP, SMTP, XMPP, and/or

ActiveSync. The caching policy manager 245 can locally store responses for data requests in

the local database 285 as cache entries, for subsequent use in satisfying same or similar data

requests.

[00156] The caching policy manager 245 can request that the remote proxy monitor

responses for the data request and the remote proxy can notify the device 250 when an

unexpected response to the data request is detected. In such an event, the cache policy

manager 245 can erase or replace the locally stored response(s) on the device 250 when

notified of the unexpected response (e.g., new data, changed data, additional data, etc.) to the

data request. In one embodiment, the caching policy manager 245 is able to detect or identify

the protocol used for a specific request, including but not limited to HTTP, HTTPS, IMAP,

POP, SMTP, XMPP, and/or ActiveSync. In one embodiment, application specific handlers

(e.g., via the application protocol module 246 of the caching policy manager 245) on the local

proxy 275 allows for optimization of any protocol that can be port mapped to a handler in the

distributed proxy (e.g., port mapped on the proxy server 325 in the example of FIG. 3A).

[00157] In one embodiment, the local proxy 275 notifies the remote proxy such that the

remote proxy can monitor responses received for the data request from the content source for

changed results prior to returning the result to the device 250, for example, when the data

request to the content source has yielded same results to be returned to the mobile device. In

general, the local proxy 275 can simulate application server responses for applications on the

device 250, using locally cached content. This can prevent utilization of the cellular network

for transactions where new/changed data is not available, thus freeing up network resources

and preventing network congestion.

[00158] In one embodiment, the local proxy 275 includes an application behavior detector

236 to track, detect, observe, monitor, applications (e.g., proxy-aware and/or unaware

applications 210 and 220) accessed or installed on the device 250. Application behaviors, or

patterns in detected behaviors (e.g., via the pattern detector 237) of one or more applications

accessed on the device 250 can be used by the local proxy 275 to optimize traffic in a

wireless network needed to satisfy the data needs of these applications.

[00159] For example, based on detected behavior of multiple applications, the traffic

shaping engine 255 can align content requests made by at least some of the applications over

the network (wireless network) (e.g., via the alignment module 256). The alignment module

256 can delay or expedite some earlier received requests to achieve alignment. When

requests are aligned, the traffic shaping engine 255 can utilize the connection manager to poll

over the network to satisfy application data requests. Content requests for multiple

applications can be aligned based on behavior patterns or rules/settings including, for

example, content types requested by the multiple applications (audio, video, text, etc.), device

(e.g., mobile or wireless device) parameters, and/or network parameters/traffic conditions,

network service provider constraints/specifications, etc.

[00160] In one embodiment, the pattern detector 237 can detect recurrences in application

requests made by the multiple applications, for example, by tracking patterns in application

behavior. A tracked pattern can include, detecting that certain applications, as a background

process, poll an application server regularly, at certain times of day, on certain days of the

week, periodically in a predictable fashion, with a certain frequency, with a certain frequency

in response to a certain type of event, in response to a certain type user query, frequency that

requested content is the same, frequency with which a same request is made, interval between

requests, applications making a request, or any combination of the above, for example.

[00161] Such recurrences can be used by traffic shaping engine 255 to offload polling of

content from a content source (e.g., from an application server/content provider 110 of FIG.

1A) that would result from the application requests that would be performed at the mobile

device or wireless device 250 to be performed instead, by a proxy server (e.g., proxy server

125 of FIG. 1C or proxy server 325 of FIG. 3A) remote from the device 250. Traffic

shaping engine 255 can decide to offload the polling when the recurrences match a rule. For

example, there are multiple occurrences or requests for the same resource that have exactly

the same content, or returned value, or based on detection of repeatable time periods between

requests and responses such as a resource that is requested at specific times during the day.

The offloading of the polling can decrease the amount of bandwidth consumption needed by

the mobile device 250 to establish a wireless (cellular or other wireless broadband)

connection with the content source for repetitive content polls.

[00162] As a result of the offloading of the polling, locally cached content stored in the

local cache 285 can be provided to satisfy data requests at the device 250, when content

change is not detected in the polling of the content sources. As such, when data has not

changed, application data needs can be satisfied without needing to enable radio use or

occupying cellular bandwidth in a wireless network. When data has changed and/or new data

has been received, the remote entity to which polling is offloaded, can notify the device 250.

The remote entity may be the host server 300 as shown in the example of FIG. 3A.

[00163] In one embodiment, the local proxy 275 can mitigate the need/use of periodic

keep-alive messages (heartbeat messages) to maintain TCP/IP connections, which can

consume significant amounts of power thus having detrimental impacts on mobile device

battery life. The connection manager 265 in the local proxy (e.g., the heartbeat manager 267)

can detect, identify, and intercept any or all heartbeat (keep-alive) messages being sent from

applications.

[00164] The heartbeat manager 267 can prevent any or all of these heartbeat messages

from being sent over the cellular, or other network, and instead rely on the server component

of the distributed proxy system (e.g., shown in FIG. 1C) to generate and send the heartbeat

messages to maintain a connection with the backend (e.g., application server/provider 110 in

the example of FIG. 1A).

[00165] The local proxy 275 generally represents any one or a portion of the functions

described for the individual managers, modules, and/or engines. The local proxy 275 and

device 250 can include additional or less components; more or less functions can be included,

in whole or in part, without deviating from the novel art of the disclosure.

[00166] FIG. 2B depicts a block diagram illustrating a further example of components in

the cache system shown in the example of FIG. 2A which is capable of caching and adapting

caching strategies for mobile application behavior and/or network conditions.

[00167] In one embodiment, the caching policy manager 245 includes a metadata

generator 203, a cache look-up engine 205, a cache appropriateness decision engine 246, a

poll schedule generator 247, an application protocol module 248, a cache or connect selection

engine 249 and/or a local cache invalidator 244. The cache appropriateness decision engine

246 can further include a timing predictor 246a,a content predictor 246b, a request analyzer

246c, and/or a response analyzer 246d, and the cache or connect selection engine 249

includes a response scheduler 249a. The metadata generator 203 and/or the cache look-up

engine 205 are coupled to the cache 285 (or local cache) for modification or addition to cache

entries or querying thereof.

[00168] The cache look-up engine 205 may further include an ID or URI filter 205a, the

local cache invalidator 244 may further include a TTL manager 244a, and the poll schedule

generator 247 may further include a schedule update engine 247a and/or a time adjustment

engine 247b. One embodiment of caching policy manager 245 includes an application cache

policy repository 243. In one embodiment, the application behavior detector 236 includes a

pattern detector 237, a poll interval detector 238, an application profile generator 239, and/or

a priority engine 241 . The poll interval detector 238 may further include a long poll detector

238a having a response/request tracking engine 238b. The poll interval detector 238 may

further include a long poll hunting detector 238c. The application profile generator 239 can

further include a response delay interval tracker 239a.

[00169] The pattern detector 237, application profile generator 239, and the priority

engine 241 were also described in association with the description of the pattern detector

shown in the example of FIG. 2 . One embodiment further includes an application profile

repository 242 which can be used by the local proxy 275 to store information or metadata

regarding application profiles (e.g., behavior, patterns, type of HTTP requests, etc.)

[00170] The cache appropriateness decision engine 246 can detect, assess, or determine

whether content from a content source (e.g., application server/content provider 110 in the

example of FIG. IB) with which a mobile device 250 interacts and has content that may be

suitable for caching. For example, the decision engine 246 can use information about a

request and/or a response received for the request initiated at the mobile device 250 to

determine cacheability, potential cacheability, or non-cacheability. In some instances, the

decision engine 246 can initially verify whether a request is directed to a blacklisted

destination or whether the request itself originates from a blacklisted client or application. If

so, additional processing and analysis may not be performed by the decision engine 246 and

the request may be allowed to be sent over the air to the server to satisfy the request. The

black listed destinations or applications/clients (e.g., mobile applications) can be maintained

locally in the local proxy (e.g., in the application profile repository 242) or remotely (e.g., in

the proxy server 325 or another entity).

[00171] In one embodiment, the decision engine 246, for example, via the request

analyzer 246c, collects information about an application or client request generated at the

mobile device 250. The request information can include request characteristics information

including, for example, request method. For example, the request method can indicate the

type of HTTP request generated by the mobile application or client. In one embodiment,

response to a request can be identified as cacheable or potentially cacheable if the request

method is a GET request or POST request. Other types of requests (e.g., OPTIONS, HEAD,

PUT, DELETE, TRACE, or CONNECT) may or may not be cached. In general, HTTP

requests with uncacheable request methods will not be cached.

[00172] Request characteristics information can further include information regarding

request size, for example. Responses to requests (e.g., HTTP requests) with body size

exceeding a certain size will not be cached. For example, cacheability can be determined if

the information about the request indicates that a request body size of the request does not

exceed a certain size. In some instances, the maximum cacheable request body size can be

set to 8092 bytes. In other instances, different values may be used, dependent on network

capacity or network operator specific settings, for example.

[00173] In some instances, content from a given application server/content provider (e.g.,

the server/content provider 110 of FIG. 1C) is determined to be suitable for caching based on

a set of criteria, for example, criteria specifying time criticality of the content that is being

requested from the content source. In one embodiment, the local proxy (e.g., the local proxy

175 or 275 of FIG. 1C and FIG. 2A) applies a selection criteria to store the content from the

host server which is requested by an application as cached elements in a local cache on the

mobile device to satisfy subsequent requests made by the application.

[00174] The cache appropriateness decision engine 246, further based on detected

patterns of requests sent from the mobile device 250 (e.g., by a mobile application or other

types of clients on the device 250) and/or patterns of received responses, can detect

predictability in requests and/or responses. For example, the request characteristics

information collected by the decision engine 246, (e.g., the request analyzer 246c) can further

include periodicity information between a request and other requests generated by a same

client on the mobile device or other requests directed to the same host (e.g., with similar or

same identifier parameters).

[00175] Periodicity can be detected, by the decision engine 246 or the request analyzer

246c, when the request and the other requests generated by the same client occur at a fixed

rate or nearly fixed rate, or at a dynamic rate with some identifiable or partially or wholly

reproducible changing pattern. If the requests are made with some identifiable pattern (e.g.,

regular intervals, intervals having a detectable pattern, or trend (e.g., increasing, decreasing,

constant, etc.) the timing predictor 246a can determine that the requests made by a given

application on a device is predictable and identify it to be potentially appropriate for caching,

at least from a timing standpoint.

[00176] An identifiable pattern or trend can generally include any application or client

behavior which may be simulated either locally, for example, on the local proxy 275 on the

mobile device 250 or simulated remotely, for example, by the proxy server 325 on the host

300, or a combination of local and remote simulation to emulate application behavior.

[00177] In one embodiment, the decision engine 246, for example, via the response

analyzer 246d, can collect information about a response to an application or client request

generated at the mobile device 250. The response is typically received from a server or the

host of the application (e.g., mobile application) or client which sent the request at the mobile

device 250. In some instances, the mobile client or application can be the mobile version of

an application (e.g., social networking, search, travel management, voicemail, contact

manager, email) or a web site accessed via a web browser or via a desktop client.

[00178] For example, response characteristics information can include an indication of

whether transfer encoding or chunked transfer encoding is used in sending the response. In

some instances, responses to HTTP requests with transfer encoding or chunked transfer

encoding are not cached, and therefore are also removed from further analysis. The rationale

here is that chunked responses are usually large and non-optimal for caching, since the

processing of these transactions may likely slow down the overall performance. Therefore, in

one embodiment, cacheability or potential for cacheability can be determined when transfer

encoding is not used in sending the response.

[00179] In addition, the response characteristics information can include an associated

status code of the response which can be identified by the response analyzer 246d. In some

instances, HTTP responses with uncacheable status codes are typically not cached. The

response analyzer 246d can extract the status code from the response and determine whether

it matches a status code which is cacheable or uncacheable. Some cacheable status codes

include by way of example: 200-OK, 301 -Redirect, 302-Found, 303-See other, 304 - Not

Modified, 307Temporary Redirect, or 500 - Internal server error. Some uncacheable status

codes can include, for example, 403 - Forbidden or 404 - Not found.

[00180] In one embodiment, cacheability or potential for cacheability can be determined

if the information about the response does not indicate an uncacheable status code or

indicates a cacheable status code. If the response analyzer 246d detects an uncacheable status

code associated with a given response, the specific transaction (request/response pair) may be

eliminated from further processing and determined to be uncacheable on a temporary basis, a

semi-permanent, or a permanent basis. If the status code indicates cacheability, the

transaction (e.g., request and/or response pair) may be subject to further processing and

analysis to confirm cacheability, as shown in the example flow charts of FIG. 9-10.

[00181] Response characteristics information can also include response size information.

In general, responses can be cached locally at the mobile device 250 if the responses do not

exceed a certain size. In some instances, the default maximum cached response size is set to

115 KB. In other instances, the max cacheable response size may be different and/or

dynamically adjusted based on operating conditions, network conditions, network capacity,

user preferences, network operator requirements, or other application-specific, user specific,

and/or device-specific reasons. In one embodiment, the response analyzer 246d can identify

the size of the response, and cacheability or potential for cacheability can be determined if a

given threshold or max value is not exceeded by the response size.

[00182] Furthermore, response characteristics information can include response body

information for the response to the request and other response to other requests generated by

a same client on the mobile device, or directed to a same content host or application server.

The response body information for the response and the other responses can be compared, for

example, by the response analyzer 246d, to prevent the caching of dynamic content (or

responses with content that changes frequently and cannot be efficiently served with cache

entries, such as financial data, stock quotes, news feeds, real-time sporting event activities,

etc.), such as content that would no longer be relevant or up-to-date if served from cached

entries.

[00183] The cache appropriateness decision engine 246 (e.g., the content predictor 246b)

can definitively identify repeatability or identify indications of repeatability, potential

repeatability, or predictability in responses received from a content source (e.g., the content

host/application server 110 shown in the example of FIG. 1C). Repeatability can be detected

by, for example, tracking at least two responses received from the content source and

determines if the two responses are the same. For example, cacheability can be determined,

by the response analyzer 246d, if the response body information for the response and the

other responses sent by the same mobile client or directed to the same host/server are same or

substantially the same. The two responses may or may not be responses sent in response to

consecutive requests. In one embodiment, hash values of the responses received for requests

from a given application are used to determine repeatability of content (with or without

heuristics) for the application in general and/or for the specific request. Additional same

responses may be required for some applications or under certain circumstances.

[00184] Repeatability in received content need not be 100% ascertained. For example,

responses can be determined to be repeatable if a certain number or a certain percentage of

responses are the same, or similar. The certain number or certain percentage of same/similar

responses can be tracked over a select period of time, set by default or set based on the

application generating the requests (e.g., whether the application is highly dynamic with

constant updates or less dynamic with infrequent updates). Any indicated predictability or

repeatability, or possible repeatability, can be utilized by the distributed system in caching

content to be provided to a requesting application or client on the mobile device 250.

[00185] In one embodiment, for a long poll type request, the local proxy 175 can begin to

cache responses on a third request when the response delay times for the first two responses

are the same, substantially the same, or detected to be increasing in intervals. In general, the

received responses for the first two responses should be the same, and upon verifying that the

third response received for the third request is the same (e.g., if R0 = R l = R2), the third

response can be locally cached on the mobile device. Less or more same responses may be

required to begin caching, depending on the type of application, type of data, type of content,

user preferences, or carrier/network operator specifications.

[00186] Increasing response delays with same responses for long polls can indicate a

hunting period (e.g., a period in which the application/client on the mobile device is seeking

the longest time between a request and response that a given network will allow), as detected

by the long poll hunting detector 238c of the application behavior detector 236.

[00187] An example can be described below using TO, Tl, T2, where T indicates the

delay time between when a request is sent and when a response (e.g., the response header) is

detected/received for consecutive requests:

T O = ResponseO(t) - RequestO(t) = 180 s . (+/- tolerance)

T l = Responsel(t) - Requestl(t) = 240 s . (+/- tolerance)

T2 = Response2(t) - Request2(t) = 500 s . (+/- tolerance)

[00188] In the example timing sequence shown above, T O < Tl < T2, this may indicate a

hunting pattern for a long poll when network timeout has not yet been reached or exceeded.

Furthermore, if the responses R0, Rl, and R2 received for the three requests are the same, R2

can be cached. In this example, R2 is cached during the long poll hunting period without

waiting for the long poll to settle, thus expediting response caching (e.g., this is optional

accelerated caching behavior which can be implemented for all or select applications).

[00189] As such, the local proxy 275 can specify information that can be extracted from

the timing sequence shown above (e.g., polling schedule, polling interval, polling type) to the

proxy server and begin caching and to request the proxy server to begin polling and

monitoring the source (e.g., using any of TO, Tl, T2 as polling intervals but typically T2, or

the largest detected interval without timing out, and for which responses from the source is

received will be sent to the proxy server 325 of FIG. 3A for use in polling the content source

(e.g., application server/service provider 310)).

[00190] However, if the time intervals are detected to be getting shorter, the application

(e.g., mobile application)/client may still be hunting for a time interval for which a response

can be reliably received from the content source (e.g., application/server server/provider 110

or 310), and as such caching typically should not begin until the request/response intervals

indicate the same time interval or an increasing time interval, for example, for a long poll

type request.

[00191] An example of handling a detected decreasing delay can be described below

using TO, Tl, T2, T3, and T4 where T indicates the delay time between when a request is sent

and when a response (e.g., the response header) is detected/received for consecutive requests:

T O = ResponseO(t) - RequestO(t) = 160 s . (+/- tolerance)

T l = Responsel(t) - Requestl(t) = 240 s . (+/- tolerance)

T2 = Response2(t) - Request2(t) = 500 s . (+/- tolerance)

T3 = Time out at 700 s . (+/- tolerance)

T4 = Response4(t) - Request4(t) = 600 (+/- tolerance)

[00192] If a pattern for response delays Tl < T2 < T3 > T4 is detected, as shown in the

above timing sequence (e.g., detected by the long poll hunting detector 238c of the

application behavior detector 236), it can be determined that T3 likely exceeded the network

time out during a long poll hunting period. In Request 3, a response likely was not received

since the connection was terminated by the network, application, server, or other reason

before a response was sent or available. On Request 4 (after T4), if a response (e.g.,

Response 4) is detected or received, the local proxy 275 can then use the response for caching

(if the content repeatability condition is met). The local proxy can also use T4 as the poll

interval in the polling schedule set for the proxy server to monitor/poll the content source.

[00193] Note that the above description shows that caching can begin while long polls are

in hunting mode in the event of detecting increasing response delays, as long as responses are

received and not timed out for a given request. This can be referred to as the optional

accelerated caching during long poll hunting. Caching can also begin after the hunting mode

(e.g., after the poll requests have settled to a constant or near constant delay value) has

completed. Note that hunting may or may not occur for long polls and when hunting occurs;

the proxy 275 can generally detect this and determine whether to begin to cache during the

hunting period (increasing intervals with same responses) or wait until the hunt settles to a

stable value.

[00194] In one embodiment, the timing predictor 246a of the cache appropriateness

decision engine 246 can track timing of responses received from outgoing requests from an

application (e.g., mobile application) or client to detect any identifiable patterns which can be

partially wholly reproducible, such that locally cached responses can be provided to the

requesting client on the mobile device 250 in a manner that simulates content source (e.g.,

application server/content provider 110 or 310) behavior. For example, the manner in which

(e.g., from a timing standpoint) responses or content would be delivered to the requesting

application/client on the device 250. This ensures preservation of user experience when

responses to application or mobile client requests are served from a local and/or remote cache

instead of being retrieved/received directly from the content source (e.g., application, content

provider 110 or 310).

[00195] In one embodiment, the decision engine 246 or the timing predictor 246a

determines the timing characteristics a given application (e.g., mobile application) or client

from, for example, the request/response tracking engine 238b and/or the application profile

generator 239 (e.g., the response delay interval tracker 239a). Using the timing

characteristics, the timing predictor 246a determines whether the content received in response

to the requests are suitable or are potentially suitable for caching. For example, poll request

intervals between two consecutive requests from a given application can be used to determine

whether request intervals are repeatable (e.g., constant, near constant, increasing with a

pattern, decreasing with a pattern, etc.) and can be predicted and thus reproduced at least

some of the times either exactly or approximated within a tolerance level.

[00196] In some instances, the timing characteristics of a given request type for a specific

application, for multiple requests of an application, or for multiple applications can be stored

in the application profile repository 242. The application profile repository 242 can generally

store any type of information or metadata regarding application request/response

characteristics including timing patterns, timing repeatability, content repeatability, etc.

[00197] The application profile repository 242 can also store metadata indicating the type

of request used by a given application (e.g., long polls, long-held HTTP requests, HTTP

streaming, push, COMET push, etc.) Application profiles indicating request type by

applications can be used when subsequent same/similar requests are detected, or when

requests are detected from an application which has already been categorized. In this

manner, timing characteristics for the given request type or for requests of a specific

application which has been tracked and/or analyzed, need not be reanalyzed.

[00198] Application profiles can be associated with a time-to-live (e.g., or a default

expiration time). The use of an expiration time for application profiles, or for various aspects

of an application or request's profile can be used on a case by case basis. The time-to-live or

actual expiration time of application profile entries can be set to a default value or determined

individually, or a combination thereof. Application profiles can also be specific to wireless

networks, physical networks, network operators, or specific carriers.

[00199] One embodiment includes an application blacklist manager 201 . The application

blacklist manager 201 can be coupled to the application cache policy repository 243 and can

be partially or wholly internal to local proxy or the caching policy manager 245. Similarly,

the blacklist manager 201 can be partially or wholly internal to local proxy or the application

behavior detector 236. The blacklist manager 201 can aggregate, track, update, manage,

adjust, or dynamically monitor a list of destinations of servers/host that are 'blacklisted,' or

identified as not cached, on a permanent or temporary basis. The blacklist of destinations,

when identified in a request, can potentially be used to allow the request to be sent over the

(cellular) network for servicing. Additional processing on the request may not be performed

since it is detected to be directed to a blacklisted destination.

[00200] Blacklisted destinations can be identified in the application cache policy

repository 243 by address identifiers including specific URIs or patterns of identifiers

including URI patterns. In general, blacklisted destinations can be set by or modified for any

reason by any party including the user (owner/user of mobile device 250), operating

system/mobile platform of device 250, the destination itself, network operator (of cellular

network), Internet service provider, other third parties, or according to a list of destinations

for applications known to be uncacheable/not suited for caching. Some entries in the

blacklisted destinations may include destinations aggregated based on the analysis or

processing performed by the local proxy (e.g., cache appropriateness decision engine 246).

[00201] For example, applications or mobile clients on the mobile device for which

responses have been identified as non-suitable for caching can be added to the blacklist.

Their corresponding hosts/servers may be added in addition to or in lieu of an identification

of the requesting application/client on the mobile device 250. Some or all of such clients

identified by the proxy system can be added to the blacklist. For example, for all application

clients or applications that are temporarily identified as not being suitable for caching, only

those with certain detected characteristics (based on timing, periodicity, frequency of

response content change, content predictability, size, etc.) can be blacklisted.

[00202] The blacklisted entries may include a list of requesting applications or requesting

clients on the mobile device (rather than destinations) such that, when a request is detected

from a given application or given client, it may be sent through the network for a response,

since responses for blacklisted clients/applications are in most circumstances not cached.

[00203] A given application profile may also be treated or processed differently (e.g.,

different behavior of the local proxy 275 and the remote proxy 325) depending on the mobile

account associated with a mobile device from which the application is being accessed. For

example, a higher paying account, or a premier account may allow more frequent access of

the wireless network or higher bandwidth allowance thus affecting the caching policies

implemented between the local proxy 275 and proxy server 325 with an emphasis on better

performance compared to conservation of resources. A given application profile may also be

treated or processed differently under different wireless network conditions (e.g., based on

congestion or network outage, etc.).

[00204] Note that cache appropriateness can be determined, tracked, and managed for

multiple clients or applications on the mobile device 250. Cache appropriateness can also be

determined for different requests or request types initiated by a given client or application on

the mobile device 250. The caching policy manager 245, along with the timing predictor

246a and/or the content predictor 246b which heuristically determines or estimates

predictability or potential predictability, can track, manage and store cacheability information

for various application or various requests for a given application. Cacheability information

may also include conditions (e.g., an application can be cached at certain times of the day, or

certain days of the week, or certain requests of a given application can be cached, or all

requests with a given destination address can be cached) under which caching is appropriate

which can be determined and/or tracked by the cache appropriateness decision engine 246

and stored and/or updated when appropriate in the application cache policy repository 243

coupled to the cache appropriateness decision engine 246.

[00205] The information in the application cache policy repository 243 regarding

cacheability of requests, applications, and/or associated conditions can be used later on when

same requests are detected. In this manner, the decision engine 246 and/or the timing and

content predictors 246a/b need not track and reanalyze request/response timing and content

characteristics to make an assessment regarding cacheability. In addition, the cacheability

information can in some instances be shared with local proxies of other mobile devices by

way of direct communication or via the host server (e.g., proxy server 325 of host server

300).

[00206] For example, cacheability information detected by the local proxy 275 on various

mobile devices can be sent to a remote host server or a proxy server 325 on the host server

(e.g., host server 300 or proxy server 325 shown in the example of FIG. 3A, host 100 and

proxy server 125 in the example of FIG. 1B-C). The remote host or proxy server can then

distribute the information regarding application-specific, request-specific cacheability

information and/or any associated conditions to various mobile devices or their local proxies

in a wireless network or across multiple wireless networks (same service provider or multiple

wireless service providers) for their use.

[00207] In general, the selection criteria for caching can further include, by way of

example but not limitation, the state of the mobile device indicating whether the mobile

device is active or inactive, network conditions, and/or radio coverage statistics. The cache

appropriateness decision engine 246 can in any one or any combination of the criteria, and in

any order, identifying sources for which caching may be suitable.

[00208] Once application servers/content providers having identified or detected content

that is potentially suitable for local caching on the mobile device 250, the cache policy

manager 245 can proceed to cache the associated content received from the identified sources

by storing content received from the content source as cache elements in a local cache (e.g.,

local cache 185 or 285 shown in the examples of FIG. 1B1C and FIG. 2A, respectively) on

the mobile device 250.

[00209] The response can be stored in the cache 285 (e.g., also referred as the local

cache) as a cache entry. In addition to the response to a request, the cached entry can include

response metadata having additional information regarding caching of the response. The

metadata may be generated by the metadata generator 203 and can include, for example,

timing data such as the access time of the cache entry or creation time of the cache entry.

Metadata can include additional information, such as any information suited for use in

determining whether the response stored as the cached entry is used to satisfy the subsequent

response. For example, metadata information can further include, request timing history (e.g.,

including request time, request start time, request end time), hash of the request and/or

response, time intervals or changes in time intervals, etc.

[00210] The cache entry is typically stored in the cache 285 in association with a time-to-

live (TTL), which for example may be assigned or determined by the TTL manager 244a of

the cache invalidator 244. The time-to-live of a cache entry is the amount of time the entry is

persisted in the cache 285 regardless of whether the response is still valid or relevant for a

given request or client/application on the mobile device 250. For example, if the time-to-live

of a given cache entry is set to 12 hours, the cache entry is purged, removed, or otherwise

indicated as having exceeded the time-to-live, even if the response body contained in the

cache entry is still current and applicable for the associated request.

[00211] A default time-to-live can be automatically used for all entries unless otherwise

specified (e.g., by the TTL manager 244a), or each cache entry can be created with its

individual TTL (e.g., determined by the TTL manager 244a based on various dynamic or

static criteria). Note that each entry can have a single time-to-live associated with both the

response data and any associated metadata. In some instances, the associated metadata may

have a different time-to-live (e.g., a longer time-to-live) than the response data.

[00212] The content source having content for caching can, in addition or in alternate, be

identified to a proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG.

1B1C and FIG. 3A, respectively) remote from and in wireless communication with the

mobile device 250 such that the proxy server can monitor the content source (e.g., application

server/content provider 110) for new or changed data. Similarly, the local proxy (e.g., the

local proxy 175 or 275 of FIG. 1B1C and FIG. 2A, respectively) can identify to the proxy

server that content received from a specific application server/content provider is being stored

as cached elements in the local cache 285.

[00213] Once content has been locally cached, the cache policy manager 245, upon

receiving future polling requests to contact the application server/content host (e.g., 110 or

310), can retrieve the cached elements from the local cache to respond to the polling request

made at the mobile device 250 such that a radio of the mobile device is not activated to

service the polling request. For example, the cache look-up engine 205 can query the cache

285 to identify the response to be served to a response. The response can be served from the

cache in response to identifying a matching cache entry and also using any metadata stored

with the response in the cache entry. The cache entries can be queried by the cache look-up

engine using a URI of the request or another type of identifier (e.g., via the ID or URI filter

205a). The cache-lookup engine 205 can further use the metadata (e.g., extract any timing

information or other relevant information) stored with the matching cache entry to determine

whether response is still suited for use in being served to a current request.

[00214] Note that the cache-look-up can be performed by the engine 205 using one or

more of various multiple strategies. In one embodiment, multiple cook-up strategies can be

executed sequentially on each entry store din the cache 285, until at least one strategy

identifies a matching cache entry. The strategy employed to performing cache look-up can

include a strict matching criteria or a matching criteria which allows for non-matching

parameters.

[00215] For example, the look-up engine 205 can perform a strict matching strategy

which searches for an exact match between an identifier (e.g., a URI for a host or resource)

referenced in a present request for which the proxy is attempting to identify a cache entry and

an identifier stored with the cache entries. In the case where identifiers include URIs or

URLs, the matching algorithm for strict matching will search for a cache entry where all the

parameters in the URLs match. For example:

Example 1.

1. Cache contains entry for http://test.com/products/
2 . Request is being made to URI http://test.com/products/

Strict strategy will find a match, since both URIs are same.

Example 2 .

1. Cache contains entry for http://test.com/products/?query=all
2 . Request is being made to URI http://test.com/products/?query=sub

[00216] Under the strict strategy outlined above, a match will not be found since the URIs

differ in the query parameter.

[00217] In another example strategy, the look-up engine 205 looks for a cache entry with

an identifier that partially matches the identifier references in a present request for which the

proxy is attempting to identify a matching cache entry. For example, the look-up engine 205

may look for a cache entry with an identifier which differs from the request identifier by a

query parameter value. In utilizing this strategy, the look-up engine 205 can collect

information collected for multiple previous requests (e.g., a list of arbitrary parameters in an

identifier) to be later checked with the detected arbitrary parameter in the current request.

For example, in the case where cache entries are stored with URI or URL identifiers, the

look-up engine searches for a cache entry with a URI differing by a query parameter. If

found, the engine 205 can examine the cache entry for information collected during previous

requests (e.g. a list of arbitrary parameters) and checked whether the arbitrary parameter

detected in or extracted from the current URI/URL belongs to the arbitrary parameters list.

Example 1.

1. Cache contains entry for http://test.com/products/?query=all, where query is
marked as arbitrary.

2 . Request is being made to URI http://text.com/products/?query=sub

Match will be found, since query parameter is marked as arbitrary.

Example 2 .

1. Cache contains entry for http://test.com/products/?query=all, where query is
marked as arbitrary.

2 . Request is being made to URI http://test.com/products/?query=sub&sort=asc

Match will not be found, since current request contains sort parameter which is not marked as
arbitrary in the cache entry.

[00218] Additional strategies for detecting cache hit may be employed. These strategies

can be implemented singly or in any combination thereof. A cache-hit can be determined

when any one of these strategies determines a match. A cache miss may be indicated when

the look-up engine 205 determines that the requested data cannot be served from the cache

285, for any reason. For example, a cache miss may be determined when no cache entries are

identified for any or all utilized look-up strategies.

[00219] Cache miss may also be determined when a matching cache entry exists but

determined to be invalid or irrelevant for the current request. For example, the look-up

engine 205 may further analyze metadata (e.g., which may include timing data of the cache

entry) associated with the matching cache entry to determine whether it is still suitable for

use in responding to the present request.

[00220] When the look-up engine 205 has identified a cache hit (e.g., an event indicating

that the requested data can be served from the cache), the stored response in the matching

cache entry can be served from the cache to satisfy the request of an application/client.

[00221] By servicing requests using cache entries stored in cache 285, network bandwidth

and other resources need not be used to request/receive poll responses which may have not

changed from a response that has already been received at the mobile device 250. Such

servicing and fulfilling application (e.g., mobile application) requests locally via cache entries

in the local cache 285 allows for more efficient resource and mobile network traffic

utilization and management since the request need not be sent over the wireless network

further consuming bandwidth. In general, the cache 285 can be persisted between power

on/off of the mobile device 250, and persisted across application/client refreshes and restarts.

[00222] For example, the local proxy 275, upon receipt of an outgoing request from its

mobile device 250 or from an application or other type of client on the mobile device 250,

can intercept the request and determine whether a cached response is available in the local

cache 285 of the mobile device 250. If so, the outgoing request is responded to by the local

proxy 275 using the cached response on the cache of the mobile device. As such, the

outgoing request can be filled or satisfied without a need to send the outgoing request over

the wireless network, thus conserving network resources and battery consumption.

[00223] In one embodiment, the responding to the requesting application/client on the

device 250 is timed to correspond to a manner in which the content server would have

responded to the outgoing request over a persistent connection (e.g., over the persistent

connection, or long-held HTTP connection, long poll type connection, that would have been

established absent interception by the local proxy). The timing of the response can be

emulated or simulated by the local proxy 275 to preserve application behavior such that end

user experience is not affected, or minimally affected by serving stored content from the local

cache 285 rather than fresh content received from the intended content source (e.g., content

host/application server 110 of FIG. IB-FIG. 1C). The timing can be replicated exactly or

estimated within a tolerance parameter, which may go unnoticed by the user or treated

similarly by the application so as to not cause operation issues.

[00224] For example, the outgoing request can be a request for a persistent connection

intended for the content server (e.g., application server/content provider of examples of FIG.

1B-1C). In a persistent connection (e.g., long poll, COMET-style push or any other push

simulation in asynchronous HTTP requests, long-held HTTP request, HTTP streaming, or

others) with a content source (server), the connection is held for some time after a request is

sent. The connection can typically be persisted between the mobile device and the server

until content is available at the server to be sent to the mobile device. Thus, there typically

can be some delay in time between when a long poll request is sent and when a response is

received from the content source. If a response is not provided by the content source for a

certain amount of time, the connection may also terminate due to network reasons (e.g.,

socket closure) if a response is not sent.

[00225] Thus, to emulate a response from a content server sent over a persistent

connection (e.g., a long poll style connection), the manner of response of the content server

can be simulated by allowing a time interval to elapse before responding to the outgoing

request with the cached response. The length of the time interval can be determined on a

request by request basis or on an application by application (client by client basis), for

example.

[00226] In one embodiment, the time interval is determined based on request

characteristics (e.g., timing characteristics) of an application on the mobile device from

which the outgoing request originates. For example, poll request intervals (e.g., which can be

tracked, detected, and determined by the long poll detector 238a of the poll interval detector

238) can be used to determine the time interval to wait before responding to a request with a

local cache entry and managed by the response scheduler 249a.

[00227] One embodiment of the cache policy manager 245 includes a poll schedule

generator 247 which can generate a polling schedule for one or more applications on the

mobile device 250. The polling schedule can specify a polling interval that can be employed

by an entity which is physically distinct and/or separate from the mobile device 250 in

monitoring the content source for one or more applications (such that cached responses can

be verified periodically by polling a host server (host server 110 or 310) to which the request

is directed) on behalf of the mobile device. One example of such an external entity which

can monitor the content at the source for the mobile device 250 is a proxy server (e.g., proxy

server 125 or 325 shown in the examples of FIG. 1B-1C and FIG. 3A-C).

[00228] The polling schedule (e.g., including a rate/frequency of polling) can be

determined, for example, based on the interval between the polling requests directed to the

content source from the mobile device. The polling schedule or rate of polling may be

determined at the mobile device 250 (by the local proxy). In one embodiment, the poll

interval detector 238 of the application behavior detector 236 can monitor polling requests

directed to a content source from the mobile device 250 in order to determine an interval

between the polling requests made from any or all application (e.g., mobile application).

[00229] For example, the poll interval detector 238 can track requests and responses for

applications or clients on the device 250. In one embodiment, consecutive requests are

tracked prior to detection of an outgoing request initiated from the application (e.g., mobile

application) on the mobile device 250 by the same mobile client or application (e.g., mobile

application). The polling rate can be determined using request information collected for the

request for which the response is cached. In one embodiment, the rate is determined from

averages of time intervals between previous requests generated by the same client which

generated the request. For example, a first interval may be computed between the current

request and a previous request, and a second interval can be computed between the two

previous requests. The polling rate can be set from the average of the first interval and the

second interval and sent to the proxy server in setting up the caching strategy.

[00230] Alternate intervals may be computed in generating an average; for example,

multiple previous requests in addition to two previous requests may be used, and more than

two intervals may be used in computing an average. In general, in computing intervals, a

given request need not have resulted in a response to be received from the host server/content

source in order to use it for interval computation. In other words, the timing characteristics of

a given request may be used in interval computation, as long as the request has been detected,

even if the request failed in sending, or if the response retrieval failed.

[00231] One embodiment of the poll schedule generator 247 includes a schedule update

engine 247a and/or a time adjustment engine 247b. The schedule update engine 247a can

determine a need to update a rate or polling interval with which a given application

server/content host from a previously set value, based on a detected interval change in the

actual requests generated from a client or application (e.g., mobile application) on the mobile

device 250.

[00232] For example, a request for which a monitoring rate was determined may now be

sent from the application (e.g., mobile application) or client at a different request interval.

The scheduled update engine 247a can determine the updated polling interval of the actual

requests and generate a new rate, different from the previously set rate to poll the host at on

behalf of the mobile device 250. The updated polling rate can be communicated to the

remote proxy (proxy server 325) over the cellular network for the remote proxy to monitor

the given host. In some instances, the updated polling rate may be determined at the remote

proxy or remote entity which monitors the host.

[00233] In one embodiment, the time adjustment engine 247b can further optimize the

poll schedule generated to monitor the application server/content source (110 or 310). For

example, the time adjustment engine 247b can optionally specify a time to start polling to the

proxy server. For example, in addition to setting the polling interval at which the proxy server

is to monitor the application, server/content host can also specify the time at which an actual

request was generated at the mobile client/application.

[00234] However, in some cases, due to inherent transmission delay or added network

delays or other types of latencies, the remote proxy server receives the poll setup from the

local proxy with some delay (e.g., a few minutes, or a few seconds). This has the effect of

detecting response change at the source after a request is generated by the mobile

client/application causing the invalidate of the cached response to occur after it has once

again been served to the application after the response is no longer current or valid.

[00235] To resolve this non-optimal result of serving the out-dated content once again

before invalidating it, the time adjustment engine 247b can specify the time (tO) at which

polling should begin in addition to the rate, where the specified initial time t O can be

specified to the proxy server 325 as a time that is less than the actual time when the request

was generated by the mobile app/client. This way, the server polls the resource slightly

before the generation of an actual request by the mobile client such that any content change

can be detected prior to an actual application request. This prevents invalid or irrelevant out

dated content/response from being served once again before fresh content is served.

[00236] In one embodiment, an outgoing request from a mobile device 250 is detected to

be for a persistent connection (e.g., a long poll, COMET style push, and long-held (HTTP)

request) based on timing characteristics of prior requests from the same application or client

on the mobile device 250. For example, requests and/or corresponding responses can be

tracked by the request/response tracking engine 238b of the long poll detector 238a of the

poll interval detector 238.

[00237] The timing characteristics of the consecutive requests can be determined to set up

a polling schedule for the application or client. The polling schedule can be used to monitor

the content source (content source/application server) for content changes such that cached

content stored on the local cache in the mobile device 250 can be appropriately managed

(e.g., updated or discarded). In one embodiment, the timing characteristics can include, for

example, a response delay time ('D') and/or an idle time ('IT').

[00238] In one embodiment, the response/request tracking engine 238b can track requests

and responses to determine, compute, and/or estimate, the timing diagrams for applicant or

client requests.

[00239] For example, the response/request tracking engine 238b detects a first request

(Request 0) initiated by a client on the mobile device and a second request (Request 1)

initiated by the client on the mobile device after a response is received at the mobile device

responsive to the first request. The second request is one that is subsequent to the first

request.

[00240] In one embodiment, the response/request tracking engine 238b can track requests

and responses to determine, compute, and/or estimate the timing diagrams for applicant or

client requests. The response/request tracking engine 238b can detect a first request initiated

by a client on the mobile device and a second request initiated by the client on the mobile

device after a response is received at the mobile device responsive to the first request. The

second request is one that is subsequent to the first request.

[00241] The response/request tracking engine 238b further determines relative timings

between the first, second requests, and the response received in response to the first request.

In general, the relative timings can be used by the long poll detector 238a to determine

whether requests generated by the application are long poll requests.

[00242] Note that in general, the first and second requests that are used by the

response/request tracking engine 238b in computing the relative timings are selected for use

after a long poll hunting period has settled or in the event when long poll hunting does not

occur. Timing characteristics that are typical of a long poll hunting period can be, for

example, detected by the long poll hunting detector 238c. In other words, the requests

tracked by the response/request tracking engine 238b and used for determining whether a

given request is a long poll occurs after the long poll has settled .

[00243] In one embodiment, the long poll hunting detector 238c can identify or detect

hunting mode, by identifying increasing request intervals (e.g., increasing delays). The long

poll hunting detector 238a can also detect hunting mode by detecting increasing request

intervals, followed by a request with no response (e.g., connection timed out), or by detecting

increasing request intervals followed by a decrease in the interval. In addition, the long poll

hunting detector 238c can apply a filter value or a threshold value to request-response time

delay value (e.g., an absolute value) above which the detected delay can be considered to be a

long poll request-response delay. The filter value can be any suitable value characteristic of

long polls and/or network conditions (e.g., 2 s, 5s, 10s, 15 s, 20s., etc.) and can be used as a

filter or threshold value.

[00244] The response delay time ('D') refers to the start time to receive a response after a

request has been sent and the idle refers to time to send a subsequent request after the

response has been received. In one embodiment, the outgoing request is detected to be for a

persistent connection based on a comparison (e.g., performed by the tracking engine 238b) of

the response delay time relative ('D') or average of ('D') (e.g., any average over any period of

time) to the idle time ('IT'), for example, by the long poll detector 238a. The number of

averages used can be fixed, dynamically adjusted, or changed over a longer period of time.

For example, the requests initiated by the client are determined to be long poll requests if the

response delay time interval is greater than the idle time interval (D >IT or D»IT). In one

embodiment, the tracking engine 238b of the long poll detector computes, determines, or

estimates the response delay time interval as the amount of time elapsed between time of the

first request and initial detection or full receipt of the response.

[00245] In one embodiment, a request is detected to be for a persistent connection when

the idle time ('IT') is short since persistent connections, established in response to long poll

requests or long poll HTTP requests for example, can also be characterized in detecting

immediate or near-immediate issuance of a subsequent request after receipt of a response to a

previous request (e.g., IT ~0). As such, the idle time ('IT') can also be used to detect such

immediate or near-immediate re-request to identify long poll requests. The absolute or

relative timings determined by the tracking engine 238b are used to determine whether the

second request is immediately or near-immediately re-requested after the response to the first

request is received. For example, a request may be categorized as a long poll request if D +

RT + IT ~ D + RT since IT is small for this to hold true. IT may be determined to be small if

it is less than a threshold value. Note that the threshold value could be fixed or calculated

over a limited time period (a session, a day, a month, etc.), or calculated over a longer time

period (e.g., several months or the life of the analysis). For example, for every request, the

average IT can be determined, and the threshold can be determined using this average IT

(e.g., the average IT less a certain percentage may be used as the threshold). This can allow

the threshold to automatically adapt over time to network conditions and changes in server

capability, resource availability or server response. A fixed threshold can take upon any value

including by way of example but not limitation (e.g., 1 s . 2 s . 3 s etc.).

[00246] In one embodiment, the long poll detector 238a can compare the relative timings

(e.g., determined by the tracker engine 238b) to request-response timing characteristics for

other applications to determine whether the requests of the application are long poll requests.

For example, the requests initiated by a client or application can be determined to be long

poll requests if the response delay interval time ('D') or the average response delay interval

time (e.g., averaged over x number of requests or any number of delay interval times

averaged over x amount of time) is greater than a threshold value.

[00247] The threshold value can be determined using response delay interval times for

requests generated by other clients, for example by the request/response tracking engine 238b

and/or by the application profile generator 239 (e.g., the response delay interval tracker

239a). The other clients may reside on the same mobile device and the threshold value is

determined locally by components on the mobile device. The threshold value can be

determined for all requests over all resources server over all networks, for example. The

threshold value can be set to a specific constant value (e.g., 30 seconds, for example) to be

used for all requests, or any request which does not have an applicable threshold value (e.g.,

long poll is detected if D > 30 seconds).

[00248] In some instances, the other clients reside on different mobile devices and the

threshold can be determined by a proxy server (e.g., proxy server 325 of the host 300 shown

in the example of FIG. 3A-B) which is external to the mobile device and able to

communicate over a wireless network with the multiple different mobile devices, as will be

further described with reference to FIG. 3B.

[00249] In one embodiment, the cache policy manager 245 sends the polling schedule to

the proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B-1C and

FIG. 3A) and can be used by the proxy server in monitoring the content source, for example,

for changed or new content (updated response different from the cached response associated

with a request or application). A polling schedule sent to the proxy can include multiple

timing parameters including but not limited to interval (time from request 1 to request 2) or a

time out interval (time to wait for response, used in long polls, for example). Referring to the

timing diagram of a request/response timing sequence timing intervals 'RT, 'D', 'R , and/or

'IT', or some statistical manipulation of the above values (e.g., average, standard deviation,

etc.) may all or in part be sent to the proxy server.

[00250] For example, in the case when the local proxy 275 detects a long poll, the various

timing intervals in a request/response timing sequence (e.g., 'D', 'RT', and/or 'IT') can be

sent to the proxy server 325 for use in polling the content source (e.g., application

server/content host 110). The local proxy 275 can also identify to the proxy server 325 that a

given application or request to be monitored is a long poll request (e.g., instructing the proxy

server to set a 'long poll flag', for example). In addition, the proxy server uses the various

timing intervals to determine when to send keep-alive indications on behalf of mobile

devices.

[00251] The local cache invalidator 244 of the caching policy manager 245 can invalidate

cache elements in the local cache (e.g., cache 185 or 285) when new or changed data (e.g.,

updated response) is detected from the application server/content source for a given request.

The cached response can be determined to be invalid for the outgoing request based on a

notification received from the proxy server (e.g., proxy 325 or the host server 300). The

source which provides responses to requests of the mobile client can be monitored to

determine relevancy of the cached response stored in the cache of the mobile device 250 for

the request. For example, the cache invalidator 244 can further remove/delete the cached

response from the cache of the mobile device when the cached response is no longer valid for

a given request or a given application.

[00252] In one embodiment, the cached response is removed from the cache after it is

provided once again to an application which generated the outgoing request after determining

that the cached response is no longer valid. The cached response can be provided again

without waiting for the time interval or provided again after waiting for a time interval (e.g.,

the time interval determined to be specific to emulate the response delay in a long poll). In

one embodiment, the time interval is the response delay 'D' or an average value of the

response delay 'D' over two or more values.

[00253] The new or changed data can be, for example, detected by the proxy server (e.g.,

proxy server 125 or 325 shown in the examples of FIG. 1B-1C and FIG. 3A). When a cache

entry for a given request/poll has been invalidated, the use of the radio on the mobile device

250 can be enabled (e.g., by the local proxy 275or the cache policy manager 245) to satisfy

the subsequent polling requests, as further described with reference to the interaction diagram

of FIG. 9-10.

[00254] One embodiment of the cache policy manager 245 includes a cache or connect

selection engine 249 which can decide whether to use a locally cached entry to satisfy a

poll/content request generated at the mobile device 250 by an application or widget. For

example, the local proxy 275 or the cache policy manger 245 can intercept a polling request,

made by an application (e.g., mobile application) on the mobile device, to contact the

application server/content provider. The selection engine 249 can determine whether the

content received for the intercepted request has been locally stored as cache elements for

deciding whether the radio of the mobile device needs to be activated to satisfy the request

made by the application (e.g., mobile application) and also determine whether the cached

response is still valid for the outgoing request prior to responding to the outgoing request

using the cached response.

[00255] In one embodiment, the local proxy 275, in response to determining that relevant

cached content exists and is still valid, can retrieve the cached elements from the local cache

to provide a response to the application (e.g., mobile application) which made the polling

request such that a radio of the mobile device is not activated to provide the response to the

application (e.g., mobile application). In general, the local proxy 275 continues to provide

the cached response each time the outgoing request is received until the updated response

different from the cached response is detected.

[00256] When it is determined that the cached response is no longer valid, a new request

for a given request is transmitted over the wireless network for an updated response. The

request can be transmitted to the application server/content provider (e.g., server/host 110) or

the proxy server on the host server (e.g., proxy 325 on the host 300) for a new and updated

response. In one embodiment the cached response can be provided again as a response to the

outgoing request if a new response is not received within the time interval, prior to removal

of the cached response from the cache on the mobile device.

[00257] FIG. 2C depicts a block diagram illustrating another example of components in

the application behavior detector 236 and the caching policy manager 245 in the local proxy

275 on the client-side of the distributed proxy system shown in the example of FIG. 2A . The

illustrated application behavior detector 236 and the caching policy manager 245 can, for

example, enable the local proxy 275 to detect cache defeat and perform caching of content

addressed by identifiers intended to defeat cache.

[00258] In one embodiment, the caching policy manager 245 includes a cache defeat

resolution engine 221, an identifier formalizer 2 11, a cache appropriateness decision engine

246, a poll schedule generator 247, an application protocol module 248, a cache or connect

selection engine 249 having a cache query module 229, and/or a local cache invalidator 244.

The cache defeat resolution engine 221 can further include a pattern extraction module 222

and/or a cache defeat parameter detector 223. The cache defeat parameter detector 223 can

further include a random parameter detector 224 and/or a time/date parameter detector 226.

One embodiment further includes an application cache policy repository 243 coupled to the

decision engine 246.

[00259] In one embodiment, the application behavior detector 236 includes a pattern

detector 237, a poll interval detector 238, an application profile generator 239, and/or a

priority engine 241 . The pattern detector 237 can further include a cache defeat parameter

detector 223 having also, for example, a random parameter detector 233 and/or a time/date

parameter detector 234. One embodiment further includes an application profile repository

242 coupled to the application profile generator 239. The application profile generator 239,

and the priority engine 241 have been described in association with the description of the

application behavior detector 236 in the example of FIG. 2A .

[00260] The cache defeat resolution engine 221 can detect, identify, track, manage, and/or

monitor content or content sources (e.g., servers or hosts) which employ identifiers and/or are

addressed by identifiers (e.g., resource identifiers such as URLs and/or URIs) with one or

more mechanisms that defeat cache or are intended to defeat cache. The cache defeat

resolution engine 221 can, for example, detect from a given data request generated by an

application or client that the identifier defeats or potentially defeats cache, where the data

request otherwise addresses content or responses from a host or server (e.g., application

server/content host 110 or 310) that is cacheable.

[00261] In one embodiment, the cache defeat resolution engine 221 detects or identifies

cache defeat mechanisms used by content sources (e.g., application server/content host 110 or

310) using the identifier of a data request detected at the mobile device 250. The cache

defeat resolution engine 221 can detect or identify a parameter in the identifier which can

indicate that cache defeat mechanism is used. For example, a format, syntax, or pattern of the

parameter can be used to identify cache defeat (e.g., a pattern, format, or syntax as

determined or extracted by the pattern extraction module 222).

[00262] The pattern extraction module 222 can parse an identifier into multiple

parameters or components and perform a matching algorithm on each parameter to identify

any of which match one or more predetermined formats (e.g., a date and/or time format). For

example, the results of the matching or the parsed out parameters from an identifier can be

used (e.g., by the cache defeat parameter detector 223) to identify cache defeating parameters

which can include one or more changing parameters.

[00263] The cache defeat parameter detector 223, in one embodiment can detect random

parameters (e.g., by the random parameter detector 224) and/or time and/or date parameters

which are typically used for cache defeat. The cache defeat parameter detector 223 can

detect random parameters and/or time/dates using commonly employed formats for these

parameters and performing pattern matching algorithms and tests.

[00264] In addition to detecting patterns, formats, and/or syntaxes, the cache defeat

parameter detector 223 further determines or confirms whether a given parameter is defeating

cache and whether the addressed content can be cached by the distributed caching system.

The cache defeat parameter detector 223 can detect this by analyzing responses received for

the identifiers utilized by a given data request. In general, a changing parameter in the

identifier is identified to indicate cache defeat when responses corresponding to multiple data

requests are the same even when the multiple data requests uses identifiers with the changing

parameter being different for each of the multiple data requests. For example, the

request/response pairs illustrate that the responses received are the same, even though the

resource identifier includes a parameter that changes with each request.

[00265] For example, at least two same responses may be required to identify the

changing parameter as indicating cache defeat. In some instances, at least three same

responses may be required. The requirement for the number of same responses needed to

determine that a given parameter with a varying value between requests is cache defeating

may be application specific, context dependent, and/or user dependent/user specified, or a

combination of the above. Such a requirement may also be static or dynamically adjusted by

the distributed cache system to meet certain performance thresholds and/or either

explicit/implicit feedback regarding user experience (e.g., whether the user or application is

receiving relevant/fresh content responsive to requests). More of the same responses may be

required to confirm cache defeat, or for the system to treat a given parameter as intended for

cache defeat if an application begins to malfunction due to response caching and/or if the user

expresses dissatisfaction (explicit user feedback) or the system detects user frustration

(implicit user cues).

[00266] The cache appropriateness decision engine 246 can detect, assess, or determine

whether content from a content source (e.g., application server/content provider 110 in the

example of FIG. 1C) with which a mobile device 250 interacts, has content that may be

suitable for caching. In some instances, content from a given application server/content

provider (e.g., the server/provider 110 of FIG. 1C) is determined to be suitable for caching

based on a set of criteria (for example, criteria specifying time criticality of the content that is

being requested from the content source). In one embodiment, the local proxy (e.g., the local

proxy 175 or 275 of FIG. 1B-1C and FIG. 2A) applies a selection criteria to store the content

from the host server which is requested by an application as cached elements in a local cache

on the mobile device to satisfy subsequent requests made by the application.

[00267] The selection criteria can also include, by way of example, but not limitation,

state of the mobile device indicating whether the mobile device is active or inactive, network

conditions, and/or radio coverage statistics. The cache appropriateness decision engine 246

can any one or any combination of the criteria, and in any order, in identifying sources for

which caching may be suitable.

[00268] Once application servers/content providers having identified or detected content

that is potentially suitable for local caching on the mobile device 250, the cache policy

manager 245 can proceed to cache the associated content received from the identified sources

by storing content received from the content source as cache elements in a local cache (e.g.,

local cache 185 or 285 shown in the examples of FIG. 1B-1C and FIG. 2A, respectively) on

the mobile device 250. The content source can also be identified to a proxy server (e.g.,

proxy server 125 or 325 shown in the examples of FIG. 1B-1C and FIG. 3A, respectively)

remote from and in wireless communication with the mobile device 250 such that the proxy

server can monitor the content source (e.g., application server/content provider 110) for new

or changed data. Similarly, the local proxy (e.g., the local proxy 175 or 275 of FIG. 1B-1C

and FIG. 2A, respectively) can identify to the proxy server that content received from a

specific application server/content provider is being stored as cached elements in the local

cache.

[00269] In one embodiment, cache elements are stored in the local cache 285 as being

associated with a normalized version of an identifier for an identifier employing one or more

parameters intended to defeat cache. The identifier can be normalized by the identifier

normalizer module 2 11 and the normalization process can include, by way of example, one or

more of: converting the URI scheme and host to lower-case, capitalizing letters in percent-

encoded escape sequences, removing a default port, and removing duplicate slashes.

[00270] In another embodiment, the identifier is normalized by removing the parameter

for cache defeat and/or replacing the parameter with a static value which can be used to

address or be associated with the cached response received responsive to a request utilizing

the identifier by the normalizer 2 11 or the cache defeat parameter handler 212. For example,

the cached elements stored in the local cache 285 (shown in FIG. 2A) can be identified using

the normalized version of the identifier or a hash value of the normalized version of the

identifier. The hash value of an identifier or of the normalized identifier may be generated by

the hash engine 213.

[00271] Once content has been locally cached, the cache policy manager 245 can, upon

receiving future polling requests to contact the content server, retrieve the cached elements

from the local cache to respond to the polling request made at the mobile device 250 such

that a radio of the mobile device is not activated to service the polling request. Such

servicing and fulfilling application (e.g., mobile application) requests locally via local cache

entries allow for more efficient resource and mobile network traffic utilization and

management since network bandwidth and other resources need not be used to

request/receive poll responses which may have not changed from a response that has already

been received at the mobile device 250.

[00272] One embodiment of the cache policy manager 245 includes a poll schedule

generator 247 which can generate a polling schedule for one or more applications on the

mobile device 250. The polling schedule can specify a polling interval that can be employed

by the proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B-1C and

FIG. 3A) in monitoring the content source for one or more applications. The polling

schedule can be determined, for example, based on the interval between the polling requests

directed to the content source from the mobile device. In one embodiment, the poll interval

detector 238 of the application behavior detector can monitor polling requests directed to a

content source from the mobile device 250 in order to determine an interval between the

polling requests made from any or all application (e.g., mobile application).

[00273] In one embodiment, the cache policy manager 245 sends the polling schedule is

sent to the proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B-1C

and FIG. 3A) and can be used by the proxy server in monitoring the content source, for

example, for changed or new content. The local cache invalidator 244 of the caching policy

manager 245 can invalidate cache elements in the local cache (e.g., cache 185 or 285) when

new or changed data is detected from the application server/content source for a given

request. The new or changed data can be, for example, detected by the proxy server. When a

cache entry for a given request/poll has been invalidated and/or removed (e.g., deleted from

cache) after invalidation, the use of the radio on the mobile device 250 can be enabled (e.g.,

by the local proxy or the cache policy manager 245) to satisfy the subsequent polling

requests, as further described with reference to the interaction diagram of FIG. 4B.

[00274] In another embodiment, the proxy server (e.g., proxy server 125 or 325 shown in

the examples of FIG. 1B-1C 1C and FIG. 3A) uses a modified version of a resource

identifier used in a data request to monitor a given content source (the application

server/content host 110 of FIG. 1B-1C to which the data request is addressed) for new or

changed data. For example, in the instance where the content source or identifier is detected

to employ cache defeat mechanisms, a modified (e.g., normalized) identifier can be used

instead to poll the content source. The modified or normalized version of the identifier can

be communicated to the proxy server by the caching policy manager 245, or more

specifically the cache defeat parameter handler 212 of the identifier normalizer 2 11.

[00275] The modified identifier used by the proxy server to poll the content source on

behalf of the mobile device/application (e.g., mobile application) may or may not be the same

as the normalized identifier. For example, the normalized identifier may be the original

identifier with the changing cache defeating parameter removed whereas the modified

identifier uses a substitute parameter in place of the parameter that is used to defeat cache

(e.g., the changing parameter replaced with a static value or other predetermined value known

to the local proxy and/or proxy server). The modified parameter can be determined by the

local proxy 275 and communicated to the proxy server. The modified parameter may also be

generated by the proxy server (e.g., by the identifier modifier module 353 shown in the

example of FIG. 3C).

[00276] One embodiment of the cache policy manager 245 includes a cache or connect

selection engine 249 which can decide whether to use a locally cached entry to satisfy a

poll/content request generated at the mobile device 250 by an application or widget. For

example, the local proxy 275 or the cache policy manger 245 can intercept a polling request

made by an application (e.g., mobile application) on the mobile device, to contact the

application server/content provider. The selection engine 249 can determine whether the

content received for the intercepted request has been locally stored as cache elements for

deciding whether the a radio of the mobile device needs to be activated to satisfy the request

made by the application (e.g., mobile application). In one embodiment, the local proxy 275,

in response to determining that relevant cached content exists and is still valid, can retrieve

the cached elements from the local cache to provide a response to the application (e.g.,

mobile application) which made the polling request such that a radio of the mobile device is

not activated to provide the response to the application (e.g., mobile application).

[00277] In one embodiment, the cached elements stored in the local cache 285 (shown in

FIG. 2A) can be identified using a normalized version of the identifier or a hash value of the

normalized version of the identifier, for example, using the cache query module 229. Cached

elements can be stored with normalized identifiers which have cache defeating parameters

removed or otherwise replaced such that the relevant cached elements can be identified and

retrieved in the future to satisfy other requests employing the same type of cache defeat. For

example, when an identifier utilized in a subsequent request is determined to be utilizing the

same cache defeating parameter, the normalized version of this identifier can be generated

and used to identify a cached response stored in the mobile device cache to satisfy the data

request. The hash value of an identifier or of the normalized identifier may be generated by

the hash engine 213 of the identifier normalizer 2 11.

[00278] FIG. 2D depicts a block diagram illustrating examples of additional components

in the local proxy 275 shown in the example of FIG. 2 which is further capable of

performing mobile traffic categorization and policy implementation based on application

behavior and/or user activity.

[00279] In this embodiment of the local proxy 275, the user activity module 215 further

includes one or more of, a user activity tracker 215a, a user activity prediction engine 215b,

and/or a user expectation manager 215c. The application behavior detect 236 can further

include a prioritization engine 241a, a time criticality detection engine 241b, an application

state categorizer 241c, and/or an application traffic categorizer 24 Id. The local proxy 275 can

further include a backlight detector 219 and/or a network configuration selection engine 251.

The network configuration selection engine 25 1 can further include, one or more of, a

wireless generation standard selector 251a, a data rate specifier 251b, an access channel

selection engine 251c, and/or an access point selector.

[00280] In one embodiment, the application behavior detector 236 is able to detect,

determined, identify, or infer, the activity state of an application on the mobile device 250 to

which traffic has originated from or is directed to, for example, via the application state

categorizer 241c and/or the traffic categorizer 24 Id. The activity state can be determined by

whether the application is in a foreground or background state on the mobile device (via the

application state categorizer 241c) since the traffic for a foreground application vs. a

background application may be handled differently.

[00281] In one embodiment, the activity state can be determined, detected, identified, or

inferred with a level of certainty of heuristics, based on the backlight status of the mobile

device 250 (e.g., by the backlight detector 219) or other software agents or hardware sensors

on the mobile device, including but not limited to, resistive sensors, capacitive sensors,

ambient light sensors, motion sensors, touch sensors, etc. In general, if the backlight is on, the

traffic can be treated as being or determined to be generated from an application that is active

or in the foreground, or the traffic is interactive. In addition, if the backlight is on, the traffic

can be treated as being or determined to be traffic from user interaction or user activity, or

traffic containing data that the user is expecting within some time frame.

[00282] In one embodiment, the activity state is determined based on whether the traffic

is interactive traffic or maintenance traffic. Interactive traffic can include transactions from

responses and requests generated directly from user activity/interaction with an application

and can include content or data that a user is waiting or expecting to receive. Maintenance

traffic may be used to support the functionality of an application which is not directly

detected by a user. Maintenance traffic can also include actions or transactions that may take

place in response to a user action, but the user is not actively waiting for or expecting a

response.

[00283] For example, a mail or message delete action at a mobile device 250 generates a

request to delete the corresponding mail or message at the server, but the user typically is not

waiting for a response. Thus, such a request may be categorized as maintenance traffic, or

traffic having a lower priority (e.g., by the prioritization engine 241a) and/or is not time-

critical (e.g., by the time criticality detection engine 214b).

[00284] Contrastingly, a mail 'read' or message 'read' request initiated by a user a the

mobile device 250, can be categorized as 'interactive traffic' since the user generally is

waiting to access content or data when they request to read a message or mail. Similarly, such

a request can be categorized as having higher priority (e.g., by the prioritization engine 241a)

and/or as being time critical/time sensitive (e.g., by the time criticality detection engine

241b).

[00285] The time criticality detection engine 241b can generally determine, identify, infer

the time sensitivity of data contained in traffic sent from the mobile device 250 or to the

mobile device from a host server (e.g., host 300) or application server (e.g., app

server/content source 110). For example, time sensitive data can include, status updates, stock

information updates, IM presence information, email messages or other messages, actions

generated from mobile gaming applications, webpage requests, location updates, etc. Data

that is not time sensitive or time critical, by nature of the content or request, can include

requests to delete messages, mark-as-read or edited actions, application-specific actions such

as a add-friend or delete-friend request, certain types of messages, or other information which

does not frequently changing by nature, etc. In some instances when the data is not time

critical, the timing with which to allow the traffic to pass through is set based on when

additional data needs to be sent from the mobile device 250. For example, traffic shaping

engine 255 can align the traffic with one or more subsequent transactions to be sent together

in a single power-on event of the mobile device radio (e.g., using the alignment module 256

and/or the batching module 257). The alignment module 256 can also align polling requests

occurring close in time directed to the same host server, since these request are likely to be

responded to with the same data.

[00286] In the alternate or in combination, the activity state can be determined from

assessing, determining, evaluating, inferring, identifying user activity at the mobile device

250 (e.g., via the user activity module 215). For example, user activity can be directly

detected and tracked using the user activity tracker 215a. The traffic resulting therefrom can

then be categorized appropriately for subsequent processing to determine the policy for

handling. Furthermore, user activity can be predicted or anticipated by the user activity

prediction engine 215b. By predicting user activity or anticipating user activity, the traffic

thus occurring after the prediction can be treated as resulting from user activity and

categorized appropriately to determine the transmission policy.

[00287] In addition, the user activity module 215 can also manage user expectations (e.g.,

via the user expectation manager 215c and/or in conjunction with the activity tracker 215

and/or the prediction engine 215b) to ensure that traffic is categorized appropriately such that

user expectations are generally met. For example, a user-initiated action should be analyzed

(e.g., by the expectation manager 215) to determine or infer whether the user would be

waiting for a response. If so, such traffic should be handled under a policy such that the user

does not experience an unpleasant delay in receiving such a response or action.

[00288] In one embodiment, an advanced generation wireless standard network is

selected for use in sending traffic between a mobile device and a host server in the wireless

network based on the activity state of the application on the mobile device for which traffic is

originated from or directed to. An advanced technology standards such as the 3G, 3.5G, 3G+,

4G, or LTE network can be selected for handling traffic generated as a result of user

interaction, user activity, or traffic containing data that the user is expecting or waiting for.

Advanced generation wireless standard network can also be selected for to transmit data

contained in traffic directed to the mobile device which responds to foreground activities.

[00289] In categorizing traffic and defining a transmission policy for mobile traffic, a

network configuration can be selected for use (e.g., by the network configuration selection

engine 25 1) on the mobile device 250 in sending traffic between the mobile device and a

proxy server (325) and/or an application server (e.g., app server/host 110). The network

configuration that is selected can be determined based on information gathered by the

application behavior module 236 regarding application activity state (e.g., background or

foreground traffic), application traffic category (e.g., interactive or maintenance traffic), any

priorities of the data/content, time sensitivity/criticality.

[00290] The network configuration selection engine 25 10 can select or specify one or

more of, a generation standard (e.g., via wireless generation standard selector 251a), a data

rate (e.g., via data rate specifier 251b), an access channel (e.g., access channel selection

engine 251c), and/or an access point (e.g., via the access point selector 25 Id), in any

combination.

[00291] For example, a more advanced generation (e.g., 3G, LTE, or 4G or later) can be

selected or specified for traffic when the activity state is in interaction with a user or in a

foreground on the mobile device. Contrastingly, an older generation standard (e.g., 2G, 2.5G,

or 3G or older) can be specified for traffic when one or more of the following is detected, the

application is not interacting with the user, the application is running in the background on

the mobile device, or the data contained in the traffic is not time critical, or is otherwise

determined to have lower priority.

[00292] Similarly, a network configuration with a slower data rate can be specified for

traffic when one or more of the following is detected, the application is not interacting with

the user, the application is running in the background on the mobile device, or the data

contained in the traffic is not time critical. The access channel (e.g., Forward access channel

or dedicated channel) can be specified.

[00293] FIG. 3A depicts a block diagram illustrating an example of server-side

components in a distributed proxy and cache system residing on a host server 300 that

manages traffic in a wireless network for resource conservation. The server-side proxy (or

proxy server 325) can further categorize mobile traffic and/or implement delivery policies

based on application behavior, content priority, user activity, and/or user expectations.

[00294] The host server 300 generally includes, for example, a network interface 308

and/or one or more repositories 312, 314, and 316. Note that server 300 may be any

portable/mobile or non-portable device, server, cluster of computers and/or other types of

processing units (e.g., any number of a machine shown in the example of FIG. 16) able to

receive or transmit signals to satisfy data requests over a network including any wired or

wireless networks (e.g., WiFi, cellular, Bluetooth, etc.).

[00295] The network interface 308 can include networking module(s) or devices(s) that

enable the server 300 to mediate data in a network with an entity that is external to the host

server 300, through any known and/or convenient communications protocol supported by the

host and the external entity. Specifically, the network interface 308 allows the server 300 to

communicate with multiple devices including mobile phone devices 350 and/or one or more

application servers/content providers 310.

[00296] The host server 300 can store information about connections (e.g., network

characteristics, conditions, types of connections, etc.) with devices in the connection

metadata repository 312. Additionally, any information about third party application or

content providers can also be stored in the repository 312. The host server 300 can store

information about devices (e.g., hardware capability, properties, device settings, device

language, network capability, manufacturer, device model, OS, OS version, etc.) in the

device information repository 314. Additionally, the host server 300 can store information

about network providers and the various network service areas in the network service

provider repository 316.

[00297] The communication enabled by network interface 308 allows for simultaneous

connections (e.g., including cellular connections) with devices 350 and/or connections (e.g.,

including wired/wireless, HTTP, Internet connections, LAN, WiFi, etc.) with content

servers/providers 310 to manage the traffic between devices 350 and content providers 310,

for optimizing network resource utilization and/or to conserver power (battery) consumption

on the serviced devices 350. The host server 300 can communicate with mobile devices 350

serviced by different network service providers and/or in the same/different network service

areas. The host server 300 can operate and is compatible with devices 350 with varying types

or levels of mobile capabilities, including by way of example but not limitation, 1G, 2G, 2G

transitional (2.5G, 2.75G), 3G (IMT-2000), 3G transitional (3.5G, 3.75G, 3.9G), 4G (IMT-

advanced), etc.

[00298] In general, the network interface 308 can include one or more of a network

adaptor card, a wireless network interface card (e.g., SMS interface, WiFi interface,

interfaces for various generations of mobile communication standards including but not

limited to 1G, 2G, 3G, 3.5G, 4G type networks such as LTE, WiMAX, etc.), Bluetooth,

WiFi, or any other network whether or not connected via a router, an access point, a wireless

router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, a bridge

router, a hub, a digital media receiver, and/or a repeater.

[00299] The host server 300 can further include server-side components of the distributed

proxy and cache system which can include a proxy server 325 and a server cache 335. In one

embodiment, the proxy server 325 can include an HTTP access engine 345, a caching policy

manager 355, a proxy controller 365, a traffic shaping engine 375, a new data detector 347

and/or a connection manager 395.

[00300] The HTTP access engine 345 may further include a heartbeat manager 398; the

proxy controller 365 may further include a data invalidator module 368; the traffic shaping

engine 375 may further include a control protocol 376 and a batching module 377.

Additional or less components/modules/engines can be included in the proxy server 325 and

each illustrated component.

[00301] As used herein, a "module," a "manager," a "handler," a "detector," an

"interface," a "controller," a "normalizer," a "generator," an "invalidator," or an "engine"

includes a general purpose, dedicated or shared processor and, typically, firmware or

software modules that are executed by the processor. Depending upon implementation-

specific or other considerations, the module, manager, handler, detector, interface, controller,

normalizer, generator, invalidator, or engine can be centralized or its functionality distributed.

The module, manager, handler, detector, interface, controller, normalizer, generator,

invalidator, or engine can include general or special purpose hardware, firmware, or software

embodied in a computer-readable (storage) medium for execution by the processor. As used

herein, a computer-readable medium or computer-readable storage medium is intended to

include all mediums that are statutory (e.g., in the United States, under 35 U.S.C. 101), and to

specifically exclude all mediums that are non-statutory in nature to the extent that the

exclusion is necessary for a claim that includes the computer-readable (storage) medium to be

valid. Known statutory computer-readable mediums include hardware (e.g., registers,

random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may

not be limited to hardware.

[00302] In the example of a device (e.g., mobile device 350) making an application or

content request to an application server or content provider 310, the request may be

intercepted and routed to the proxy server 325 which is coupled to the device 350 and the

application server/content provider 310. Specifically, the proxy server is able to

communicate with the local proxy (e.g., proxy 175 and 275 of the examples of FIG. 1 and

FIG. 2 respectively) of the mobile device 350, the local proxy forwards the data request to

the proxy server 325 in some instances for further processing and, if needed, for transmission

to the application server/content server 310 for a response to the data request.

[00303] In such a configuration, the host 300, or the proxy server 325 in the host server

300 can utilize intelligent information provided by the local proxy in adjusting its

communication with the device in such a manner that optimizes use of network and device

resources. For example, the proxy server 325 can identify characteristics of user activity on

the device 350 to modify its communication frequency. The characteristics of user activity

can be determined by, for example, the activity/behavior awareness module 366 in the proxy

controller 365 via information collected by the local proxy on the device 350.

[00304] In one embodiment, communication frequency can be controlled by the

connection manager 395 of the proxy server 325, for example, to adjust push frequency of

content or updates to the device 350. For instance, push frequency can be decreased by the

connection manager 395 when characteristics of the user activity indicate that the user is

inactive. In one embodiment, when the characteristics of the user activity indicate that the

user is subsequently active after a period of inactivity, the connection manager 395 can adjust

the communication frequency with the device 350 to send data that was buffered as a result of

decreased communication frequency to the device 350.

[00305] In addition, the proxy server 325 includes priority awareness of various requests,

transactions, sessions, applications, and/or specific events. Such awareness can be

determined by the local proxy on the device 350 and provided to the proxy server 325. The

priority awareness module 367 of the proxy server 325 can generally assess the priority (e.g.,

including time-criticality, time-sensitivity, etc.) of various events or applications;

additionally, the priority awareness module 367 can track priorities determined by local

proxies of devices 350.

[00306] In one embodiment, through priority awareness, the connection manager 395 can

further modify communication frequency (e.g., use or radio as controlled by the radio

controller 396) of the server 300 with the devices 350. For example, the server 300 can

notify the device 350, thus requesting use of the radio if it is not already in use when data or

updates of an importance/priority level which meets a criteria becomes available to be sent.

[00307] In one embodiment, the proxy server 325 can detect multiple occurrences of

events (e.g., transactions, content, data received from server/provider 310) and allow the

events to accumulate for batch transfer to device 350. Batch transfer can be cumulated and

transfer of events can be delayed based on priority awareness and/or user activity/application

behavior awareness as tracked by modules 367 and/or 366. For example, batch transfer of

multiple events (of a lower priority) to the device 350 can be initiated by the batching module

377 when an event of a higher priority (meeting a threshold or criteria) is detected at the

server 300. In addition, batch transfer from the server 300 can be triggered when the server

receives data from the device 350, indicating that the device radio is already in use and is thus

on. In one embodiment, the proxy server 325 can order the each messages/packets in a batch

for transmission based on event/transaction priority such that higher priority content can be

sent first in case connection is lost or the battery dies, etc.

[00308] In one embodiment, the server 300 caches data (e.g., as managed by the caching

policy manager 355) such that communication frequency over a network (e.g., cellular

network) with the device 350 can be modified (e.g., decreased). The data can be cached, for

example, in the server cache 335 for subsequent retrieval or batch sending to the device 350

to potentially decrease the need to turn on the device 350 radio. The server cache 335 can be

partially or wholly internal to the host server 300, although in the example of FIG. 3A it is

shown as being external to the host 300. In some instances, the server cache 335 may be the

same as and/or integrated in part or in whole with another cache managed by another entity

(e.g., the optional caching proxy server 199 shown in the example of FIG. 1C), such as being

managed by an application server/content provider 310, a network service provider, or

another third party.

[00309] In one embodiment, content caching is performed locally on the device 350 with

the assistance of host server 300. For example, proxy server 325 in the host server 300 can

query the application server/provider 310 with requests and monitor changes in responses.

When changed or new responses are detected (e.g., by the new data detector 347), the proxy

server 325 can notify the mobile device 350 such that the local proxy on the device 350 can

make the decision to invalidate (e.g., indicated as out-dated) the relevant cache entries stored

as any responses in its local cache. Alternatively, the data invalidator module 368 can

automatically instruct the local proxy of the device 350 to invalidate certain cached data,

based on received responses from the application server/provider 310. The cached data is

marked as invalid, and can get replaced or deleted when new content is received from the

content server 310.

[00310] Note that data change can be detected by the detector 347 in one or more ways.

For example, the server/provider 310 can notify the host server 300 upon a change. The

change can also be detected at the host server 300 in response to a direct poll of the source

server/provider 310. In some instances, the proxy server 325 can in addition, pre-load the

local cache on the device 350 with the new/updated data. This can be performed when the

host server 300 detects that the radio on the mobile device is already in use, or when the

server 300 has additional content/data to be sent to the device 350.

[00311] One or more the above mechanisms can be implemented simultaneously or

adjusted/configured based on application (e.g., different policies for different

servers/providers 310). In some instances, the source provider/server 310 may notify the host

300 for certain types of events (e.g., events meeting a priority threshold level). In addition,

the provider/server 310 may be configured to notify the host 300 at specific time intervals,

regardless of event priority.

[00312] In one embodiment, the proxy server 325 of the host 300 can monitor/track

responses received for the data request from the content source for changed results prior to

returning the result to the mobile device, such monitoring may be suitable when data request

to the content source has yielded same results to be returned to the mobile device, thus

preventing network/power consumption from being used when no new changes are made to a

particular requested. The local proxy of the device 350 can instruct the proxy server 325 to

perform such monitoring or the proxy server 325 can automatically initiate such a process

upon receiving a certain number of the same responses (e.g., or a number of the same

responses in a period of time) for a particular request.

[00313] In one embodiment, the server 300, through the activity/behavior awareness

module 366, is able to identify or detect user activity at a device that is separate from the

mobile device 350. For example, the module 366 may detect that a user's message inbox

(e.g., email or types of inbox) is being accessed. This can indicate that the user is interacting

with his/her application using a device other than the mobile device 350 and may not need

frequent updates, if at all.

[00314] The server 300, in this instance, can thus decrease the frequency with which new

or updated content is sent to the mobile device 350, or eliminate all communication for as

long as the user is detected to be using another device for access. Such frequency decrease

may be application specific (e.g., for the application with which the user is interacting with

on another device), or it may be a general frequency decrease (E.g., since the user is detected

to be interacting with one server or one application via another device, he/she could also use

it to access other services.) to the mobile device 350.

[00315] In one embodiment, the host server 300 is able to poll content sources 310 on

behalf of devices 350 to conserve power or battery consumption on devices 350. For

example, certain applications on the mobile device 350 can poll its respective server 310 in a

predictable recurring fashion. Such recurrence or other types of application behaviors can be

tracked by the activity/behavior module 366 in the proxy controller 365. The host server 300

can thus poll content sources 310 for applications on the mobile device 350 that would

otherwise be performed by the device 350 through a wireless (e.g., including cellular

connectivity). The host server can poll the sources 310 for new or changed data by way of

the HTTP access engine 345 to establish HTTP connection or by way of radio controller 396

to connect to the source 310 over the cellular network. When new or changed data is

detected, the new data detector 347 can notify the device 350 that such data is available

and/or provide the new/changed data to the device 350.

[00316] In one embodiment, the connection manager 395 determines that the mobile

device 350 is unavailable (e.g., the radio is turned off) and utilizes SMS to transmit content to

the device 350, for instance, via the SMSC shown in the example of FIG. 1C. SMS is used

to transmit invalidation messages, batches of invalidation messages, or even content in the

case where the content is small enough to fit into just a few (usually one or two) SMS

messages. This avoids the need to access the radio channel to send overhead information.

The host server 300 can use SMS for certain transactions or responses having a priority level

above a threshold or otherwise meeting a criteria. The server 300 can also utilize SMS as an

out-of-band trigger to maintain or wake-up an IP connection as an alternative to maintaining

an always-on IP connection.

[00317] In one embodiment, the connection manager 395 in the proxy server 325 (e.g.,

the heartbeat manager 398) can generate and/or transmit heartbeat messages on behalf of

connected devices 350 to maintain a backend connection with a provider 310 for applications

running on devices 350.

[00318] For example, in the distributed proxy system, local cache on the device 350 can

prevent any or all heartbeat messages needed to maintain TCP/IP connections required for

applications from being sent over the cellular, or other, network and instead rely on the proxy

server 325 on the host server 300 to generate and/or send the heartbeat messages to maintain

a connection with the backend (e.g., application server/provider 110 in the example of FIG.

1A). The proxy server can generate the keep-alive (heartbeat) messages independent of the

operations of the local proxy on the mobile device.

[00319] The repositories 312, 314, and/or 316 can additionally store software, descriptive

data, images, system information, drivers, and/or any other data item utilized by other

components of the host server 300 and/or any other servers for operation. The repositories

may be managed by a database management system (DBMS), for example, which may be but

is not limited to Oracle, DB2, Microsoft Access, Microsoft SQL Server, PostgreSQL,

MySQL, FileMaker, etc.

[00320] The repositories can be implemented via object-oriented technology and/or via

text files and can be managed by a distributed database management system, an object-

oriented database management system (OODBMS) (e.g., ConceptBase, FastDB Main

Memory Database Management System, JDOInstruments, ObjectDB, etc.), an object-

relational database management system (ORDBMS) (e.g., Informix, OpenLink Virtuoso,

VMDS, etc.), a file system, and/or any other convenient or known database management

package.

[00321] FIG. 3B depicts a block diagram illustrating a further example of components in

the caching policy manager 355 in the cache system shown in the example of FIG. 3A which

is capable of caching and adapting caching strategies for application (e.g., mobile

application) behavior and/or network conditions.

[00322] The caching policy manager 355, in one embodiment, can further include a

metadata generator 303, a cache look-up engine 305, an application protocol module 356, a

content source monitoring engine 357 having a poll schedule manager 358, a response

analyzer 361, and/or an updated or new content detector 359. In one embodiment, the poll

schedule manager 358 further includes a host timing simulator 358a, a long poll request

detector/manager 358b, a schedule update engine 358c, and/or a time adjustment engine

358d. The metadata generator 303 and/or the cache look-up engine 305 can be coupled to the

cache 335 (or, server cache) for modification or addition to cache entries or querying thereof.

[00323] In one embodiment, the proxy server (e.g., the proxy server 125 or 325 of the

examples of FIG. 1B-1C and FIG. 3A) can monitor a content source for new or changed data

via the monitoring engine 357. The proxy server, as shown, is an entity external to the

mobile device 250 of FIG. 2A-B. The content source (e.g., application server/content

provider 110 of FIG. 1B-1C) can be one that has been identified to the proxy server (e.g., by

the local proxy) as having content that is being locally cached on a mobile device (e.g.,

mobile device 150 or 250). The content source can be monitored, for example, by the

monitoring engine 357 at a frequency that is based on polling frequency of the content source

at the mobile device. The poll schedule can be generated, for example, by the local proxy

and sent to the proxy server. The poll frequency can be tracked and/or managed by the poll

schedule manager 358.

[00324] For example, the proxy server can poll the host (e.g., content provider/application

server) on behalf of the mobile device and simulate the polling behavior of the client to the

host via the host timing simulator 358a. The polling behavior can be simulated to include

characteristics of a long poll request-response sequences experienced in a persistent

connection with the host (e.g., by the long poll request detector/manager 358b). Note that

once a polling interval/behavior is set, the local proxy 275 on the device-side and/or the

proxy server 325 on the server-side can verify whether application and application

server/content host behavior match or can be represented by this predicted pattern. In

general, the local proxy and/or the proxy server can detect deviations and, when appropriate,

re-evaluate and compute, determine, or estimate another polling interval.

[00325] In one embodiment, the caching policy manager 355 on the server-side of the

distribute proxy can, in conjunction with or independent of the proxy server 275 on the

mobile device, identify or detect long poll requests. For example, the caching policy

manager 355 can determine a threshold value to be used in comparison with a response delay

interval time in a request-response sequence for an application request to identify or detect

long poll requests, possible long poll requests (e.g., requests for a persistent connection with a

host with which the client communicates including, but not limited to, a long-held HTTP

request, a persistent connection enabling COMET style push, request for HTTP streaming,

etc.), or other requests which can otherwise be treated as a long poll request.

[00326] For example, the threshold value can be determined by the proxy 325 using

response delay interval times for requests generated by clients/applications across mobile

devices which may be serviced by multiple different cellular or wireless networks. Since the

proxy 325 resides on host 300 is able to communicate with multiple mobile devices via

multiple networks, the caching policy manager 355 has access to application/client

information at a global level which can be used in setting threshold values to categorize and

detect long polls.

[00327] By tracking response delay interval times across applications across devices over

different or same networks, the caching policy manager 355 can set one or more threshold

values to be used in comparison with response delay interval times for long poll detection.

Threshold values set by the proxy server 325 can be static or dynamic, and can be associated

with conditions and/or a time-to-live (an expiration time/date in relative or absolute terms).

[00328] In addition, the caching policy manager 355 of the proxy 325 can further

determine the threshold value, in whole or in part, based on network delays of a given

wireless network, networks serviced by a given carrier (service provider), or multiple

wireless networks. The proxy 325 can also determine the threshold value for identification of

long poll requests based on delays of one or more application server/content provider (e.g.,

110) to which application (e.g., mobile application) or mobile client requests are directed.

[00329] The proxy server can detect new or changed data at a monitored content source

and transmits a message to the mobile device notifying it of such a change such that the

mobile device (or the local proxy on the mobile device) can take appropriate action (e.g., to

invalidate the cache elements in the local cache). In some instances, the proxy server (e.g.,

the caching policy manager 355) upon detecting new or changed data can also store the new

or changed data in its cache (e.g., the server cache 135 or 335 of the examples of FIG. 1C

and FIG. 3A, respectively). The new/updated data stored in the server cache 335 can be used

in some instances to satisfy content requests at the mobile device; for example, it can be used

after the proxy server has notified the mobile device of the new/changed content and that the

locally cached content has been invalidated.

[00330] The metadata generator 303, similar to the metadata generator 203 shown in the

example of FIG. 2B, can generate metadata for responses cached for requests at the mobile

device 250. The metadata generator 303 can generate metadata for cache entries stored in the

server cache 335. Similarly, the cache look-up engine 305 can include the same or similar

functions are those described for the cache look-up engine 205 shown in the example of FIG.

2B.

[00331] The response analyzer 361 can perform any or all of the functionalities related to

analyzing responses received for requests generated at the mobile device 250 in the same or

similar fashion to the response analyzer 246d of the local proxy shown in the example of

FIG. 2B. Since the proxy server 325 is able to receive responses from the application

server/content source 310 directed to the mobile device 250, the proxy server 325 (e.g., the

response analyzer 361) can perform similar response analysis steps to determine cacheability,

as described for the response analyzer of the local proxy. The responses can be analyzed in

addition to or in lieu of the analysis that can be performed at the local proxy 275 on the

mobile device 250.

[00332] Furthermore, the schedule update engine 358c can update the polling interval of a

given application server/content host based on application request interval changes of the

application at the mobile device 250 as described for the schedule update engine in the local

proxy 275. The time adjustment engine 358d can set an initial time at which polls of the

application server/content host is to begin to prevent the serving of out of date content once

again before serving fresh content as described for the schedule update engine in the local

proxy 275. Both the schedule updating and the time adjustment algorithms can be performed

in conjunction with or in lieu of the similar processes performed at the local proxy 275 on the

mobile device 250.

[00333] FIG. 3C depicts a block diagram illustrating another example of components in

the caching policy manager 355 in the proxy server 375 on the server-side of the distributed

proxy system shown in the example of FIG. 3A which is capable of managing and detecting

cache defeating mechanisms and monitoring content sources.

[00334] The caching policy manager 355, in one embodiment, can further include a cache

defeating source manager 352, a content source monitoring engine 357 having a poll schedule

manager 358, and/or an updated or new content detector 359. The cache defeating source

manager 352 can further include an identifier modifier module 353 and/or an identifier

pattern tracking module 354.

[00335] In one embodiment, the proxy server (e.g., the proxy server 125 or 325 of the

examples of FIG. 1B-1C and FIG. 3A) can monitor a content source for new or changed data

via the monitoring engine 357. The content source (e.g., application server/content provider

110 of FIG. 1B-1C or 310 of FIG. 3A) can be one that has been identified to the proxy

server (e.g., by the local proxy) as having content that is being locally cached on a mobile

device (e.g., mobile device 150 or 250). The content source 310 can be monitored, for

example, by the monitoring engine 357 at a frequency that is based on polling frequency of

the content source at the mobile device. The poll schedule can be generated, for example, by

the local proxy and sent to the proxy server 325. The poll frequency can be tracked and/or

managed by the poll schedule manager 358.

[00336] In one embodiment, the proxy server 325 uses a normalized identifier or

modified identifier in polling the content source 310 to detect new or changed data

(responses). The normalized identifier or modified identifier can also be used by the proxy

server 325 in storing responses on the server cache 335. In general, the normalized or

modified identifiers can be used when cache defeat mechanisms are employed for cacheable

content. Cache defeat mechanisms can be in the form of a changing parameter in an

identifier such as a URI or URL and can include a changing time/data parameter, a randomly

varying parameter, or other types parameters.

[00337] The normalized identifier or modified identifier removes or otherwise replaces

the changing parameter for association with subsequent requests and identification of

associated responses and can also be used to poll the content source. In one embodiment, the

modified identifier is generated by the cache defeating source manager 352 (e.g., the

identifier modifier module 353) of the caching policy manager 355 on the proxy server 325

(server-side component of the distributed proxy system). The modified identifier can utilize a

substitute parameter (which is generally static over a period of time) in place of the changing

parameter that is used to defeat cache.

[00338] The cache defeating source manager 352 optionally includes the identifier pattern

tracking module 354 to track, store, and monitor the various modifications of an identifier or

identifiers that address content for one or more content sources (e.g., application

server/content host 110 or 310) to continuously verify that the modified identifiers and/or

normalized identifiers used by the proxy server 325 to poll the content sources work as

predicted or intended (e.g., receive the same responses or responses that are otherwise still

relevant compared to the original, unmodified identifier).

[00339] In the event that the pattern tracking module 354 detects a modification or

normalization of an identifier that causes erratic or unpredictable behavior (e.g., unexpected

responses to be sent) on the content source, the tracking module 354 can log the modification

and instruct the cache defeating source manager 352 to generate another

modification/normalization, or notify the local proxy (e.g., local proxy 275) to generate

another modification/normalization for use in polling the content source. In the alternative or

in parallel, the requests from the given mobile application/client on the mobile device (e.g.,

mobile device 250) can temporarily be sent across the network to the content source for direct

responses to be provided to the mobile device and/or until a modification of an identifier

which works can be generated.

[00340] In one embodiment, responses are stored as server cache elements in the server

cache when new or changed data is detected for a response that is already stored on a local

cache (e.g., cache 285) of the mobile device (e.g., mobile device 250). Therefore, the mobile

device or local proxy 275 can connect to the proxy server 325 to retrieve the new or changed

data for a response to a request which was previously cached locally in the local cache 285

(now invalid, out-dated, or otherwise determined to be irrelevant).

[00341] The proxy server 325 can detect new or changed data at a monitored application

server/content host 310 and transmits a message to the mobile device notifying it of such a

change such that the mobile device (or the local proxy on the mobile device) can take

appropriate action (e.g., to invalidate the cache elements in the local cache). In some

instances, the proxy server (e.g., the caching policy manager 355), upon detecting new or

changed data, can also store the new or changed data in its cache (e.g., the server cache 135

or 335 of the examples of FIG. 1C and FIG. 3A, respectively). The updated/new data stored

in the server cache can be used, in some instances, to satisfy content requests at the mobile

device; for example, it can be used after the proxy server has notified the mobile device of the

new/changed content and that the locally cached content has been invalidated.

[00342] FIG. 3D depicts a block diagram illustrating examples of additional components

in proxy server 325 shown in the example of FIG. 3A which is further capable of performing

mobile traffic categorization and policy implementation based on application behavior and/or

traffic priority.

[00343] In one embodiment of the proxy server 325, the traffic shaping engine 375 is

further coupled to a traffic analyzer 336 for categorizing mobile traffic for policy definition

and implementation for mobile traffic and transactions directed to one or more mobile

devices (e.g., mobile device 250 of FIG. 2A-2D) or to an application server/content host

(e.g., 110 of FIG. 1B-1C). In general, the proxy server 325 is remote from the mobile devices

and remote from the host server, as shown in the examples of FIG. 1B-1C. The proxy server

325 or the host server 300 can monitor the traffic for multiple mobile devices and is capable

of categorizing traffic and devising traffic policies for different mobile devices.

[00344] In addition, the proxy server 325 or host server 300 can operate with multiple

carriers or network operators and can implement carrier-specific policies relating to

categorization of traffic and implementation of traffic policies for the various categories. For

example, the traffic analyzer 336 of the proxy server 325 or host server 300 can include one

or more of, a prioritization engine 341a, a time criticality detection engine 341b, an

application state categorizer 341c, and/or an application traffic categorizer 34 Id.

[00345] Each of these engines or modules can track different criterion for what is

considered priority, time critical, background/foreground, or interactive/maintenance based

on different wireless carriers. Different criterion may also exist for different mobile device

types (e.g., device model, manufacturer, operating system, etc.). In some instances, the user

of the mobile devices can adjust the settings or criterion regarding traffic category and the

proxy server 325 is able to track and implement these user adjusted/configured settings.

[00346] In one embodiment, the traffic analyzer 336 is able to detect, determined,

identify, or infer, the activity state of an application on one or more mobile devices (e.g.,

mobile device 150 or 250) which traffic has originated from or is directed to, for example, via

the application state categorizer 341c and/or the traffic categorizer 34 Id. The activity state

can be determined based on whether the application is in a foreground or background state on

one or more of the mobile devices (via the application state categorizer 341c) since the traffic

for a foreground application vs. a background application may be handled differently to

optimize network use.

[00347] In the alternate or in combination, the activity state of an application can be

determined by the wirelessly connected mobile devices (e.g., via the application behavior

detectors in the local proxies) and communicated to the proxy server 325. For example, the

activity state can be determined, detected, identified, or inferred with a level of certainty of

heuristics, based on the backlight status at mobile devices (e.g., by a backlight detector) or

other software agents or hardware sensors on the mobile device, including but not limited to,

resistive sensors, capacitive sensors, ambient light sensors, motion sensors, touch sensors,

etc. In general, if the backlight is on, the traffic can be treated as being or determined to be

generated from an application that is active or in the foreground, or the traffic is interactive.

In addition, if the backlight is on, the traffic can be treated as being or determined to be traffic

from user interaction or user activity, or traffic containing data that the user is expecting

within some time frame.

[00348] The activity state can be determined from assessing, determining, evaluating,

inferring, identifying user activity at the mobile device 250 (e.g., via the user activity module

215) and communicated to the proxy server 325. In one embodiment, the activity state is

determined based on whether the traffic is interactive traffic or maintenance traffic.

Interactive traffic can include transactions from responses and requests generated directly

from user activity/interaction with an application and can include content or data that a user is

waiting or expecting to receive. Maintenance traffic may be used to support the functionality

of an application which is not directly detected by a user. Maintenance traffic can also

include actions or transactions that may take place in response to a user action, but the user is

not actively waiting for or expecting a response.

[00349] The time criticality detection engine 341b can generally determine, identify, infer

the time sensitivity of data contained in traffic sent from the mobile device 250 or to the

mobile device from the host server 300 or proxy server 325, or the application server (e.g.,

app server/content source 110). For example, time sensitive data can include, status updates,

stock information updates, IM presence information, email messages or other messages,

actions generated from mobile gaming applications, webpage requests, location updates, etc.

[00350] Data that is not time sensitive or time critical, by nature of the content or request,

can include requests to delete messages, mark-as-read or edited actions, application-specific

actions such as a add-friend or delete-friend request, certain types of messages, or other

information which does not frequently changing by nature, etc. In some instances when the

data is not time critical, the timing with which to allow the traffic to be sent to a mobile

device is based on when there is additional data that needs to the sent to the same mobile

device. For example, traffic shaping engine 375 can align the traffic with one or more

subsequent transactions to be sent together in a single power-on event of the mobile device

radio (e.g., using the alignment module 378 and/or the batching module 377). The alignment

module 378 can also align polling requests occurring close in time directed to the same host

server, since these request are likely to be responded to with the same data.

[00351] In general, whether new or changed data is sent from a host server to a mobile

device can be determined based on whether an application on the mobile device to which the

new or changed data is relevant, is running in a foreground (e.g., by the application state

categorizer 341c), or the priority or time criticality of the new or changed data. The proxy

server 325 can send the new or changed data to the mobile device if the application is in the

foreground on the mobile device, or if the application is in the foreground and in an active

state interacting with a user on the mobile device, and/or whether a user is waiting for a

response that would be provided in the new or changed data. The proxy server 325 (or traffic

shaping engine 375) can send the new or changed data that is of a high priority or is time

critical.

[00352] Similarly, the proxy server 325 (or the traffic shaping engine 375) can

suppressing the sending of the new or changed data if the application is in the background on

the mobile device. The proxy server 325 can also suppress the sending of the new or changed

data if the user is not waiting for the response provided in the new or changed data; wherein

the suppressing is performed by a proxy server coupled to the host server and able to

wirelessly connect to the mobile device.

[00353] In general, if data, including new or change data is of a low priority or is not time

critical, the proxy server can waiting to transfer the data until after a time period, or until

there is additional data to be sent (e.g. via the alignment module 378 and/or the batching

module 377).

[00354] FIG. 4A depicts a block diagram illustrating another example of client-side

components in a distributed proxy and cache system, further including a client-side failover

handling engine 401, residing on a mobile device (e.g., wireless device). FIG. 4B depicts a

block diagram illustrating additional components in the client-side failover handling engine

401 shown in the example of FIG. 4A. The client-side failover handling engine 401 can

include, for example, a network status detector 402, a DNS reconfiguration engine, a

watchdog proxy failover manger 404, and/or a DNS routing rule generator. Additional or less

modules maybe included. The client-side failover handling engine 401 and/or its internal

components can perform following procedures in combination or independently:

[00355] Retry Operation

[00356] When the local proxy (proxy 275) needs to go over the air to serve a request, it

connects to the server-side proxy components running on the host (e.g., host server 300

and/or proxy server 325 shown in the example of FIG. 5A) specified for that particular

request and user ID. If the connection attempt fails, the local proxy (e.g., local proxy 275) can

re-try the connection until it has attempted to connect a predefined number of times. In

general, the local proxy will wait a predefined number of milliseconds between attempts.

[00357] Network Status Check

[00358] If the retry attempts fail, local proxy 275 or the failover handling engine 401 can

use a connectivity manager (e.g., Android connectivity managers or other connectivity

managers native to or not native to a mobile platform or operating system) to check the status

of the active network connection (e.g., by the network status detector 402) to determine

whether the proxy server (e.g., proxy 325) on the server side (e.g., host server 300) is

reachable.

[00359] In one embodiment, the status of the active network connection is determined by

a mobile operating system of the mobile device. If it is unreachable (e.g. active network is not

in 'connected' state) no failover action may be taken. If the proxy server (e.g., server side

proxy 325) reachable, but the proxy server 325 is not responding, the engine 401 can initiate

a process proxy failover process.

[00360] Watchdog Proxy Failover Mechanism

[00361] The watchdog proxy failover manager 404 can take the following steps to initiate

failover handling:

[00362] - De-configure the current DNS routing rules (e.g., via the DNS reconfiguration

engine 403)

[00363] - Restore original DNS system properties (e.g., via the DNS reconfiguration

engine 403)

[00364] - Start a timer task to execute a proxy failover duration check (default 3600

seconds) to exit proxy failover.

[00365] In one embodiment, the watch dog failover manager 404 can monitor client side

local proxy availability and can disables local proxy (e.g., 275) in device in case it detects a

problem. The watch dog failover manager 404 can determine if the client side proxy process

is up and running normally. The client-side failover handling engine 401 can also monitor

valid DNS values to be used in case of a failure by reading, for example, Android OS DNS1

and DNS2 properties (original DNS setup), which can be set by the client side proxy on every

failover.

[00366] If the watchdog process detects a problem with the client side proxy process, it

can flush (e.g., reset, and restore) the device's routing rules and sets DNS properties to the

values it read from the operating system, for example, DNS1 and DNS2 property values.

After flushing and restoring, the watchdog execution can be terminated.

[00367] Exiting Proxy Failover

[00368] The proxy failover process can end when the timer task expires or when local

proxy 275 receives a message or from the host server 300 or the relay server. The local proxy

275 or the failover handling engine 401 takes the following steps when exiting proxy

failover:

[00369] - Cancel existing proxy failover timer task

[00370] - Reconfigure system routing rules (e.g., by the DNS routing rule generator 405)

specific to the remote proxy 375 for facilitation of the management of device resources

[00371] FIG. 5A depicts a block diagram illustrating an example of server-side

components in a distributed proxy and cache system, further including a server-side failover

handling engine 501. FIG. 5B depicts a block diagram illustrating additional components in

the server-side failover handling engine 501 shown in the example of FIG. 5A.

[00372] The network type and connection type manager module 501 can include, for

example, a data center selection engine 502 having an arm selection engine 503, a proximity

detector 504, a failure detector 505, an encryption key and protocol negotiator 506, and/or a

redirection engine 507. Additional or less modules maybe included.

[00373] The network type and connection type manager module 501 and/or its internal

components can perform following procedures in combination or independently:

[00374] The server side proxy (proxy 325) can be implemented in a fault tolerant and

redundant cluster architecture (e.g., as shown in the example of FIG. lA-1) designed to

ensure continuous operation of the disclosed traffic management and caching system in the

event of equipment or site failure, or capacity issues. FIG. 1A-Idepicts an example of the

layout of two different arms of an example of a fault tolerant architecture and the connection

via a common data storage or repository. In general, each arm comprises of a clustered stack

of the server components that together form a functional traffic management and optimization

service provided by the distributed system.

[00375] Note that the different arms can be located in different data centers, or they can

be located in the same data center. Under general circumstances (that is, no roaming, no data

center failures), mobile devices remain sticky to a single arm. The local proxy (e.g., proxy

175 or 275(in a mobile device (e.g., 150 or 250) can be serviced by the same arm it initially

connects to until it either roams to the vicinity of another data center. It is also possible that a

mobile device can be transferred to another data center when the local data center is having

capacity issues and needs to (temporarily) offload data to other less conveniently located data

centers. The mechanism for redirecting the client to a different data center can be handled on

the network level.

[00376] As mentioned above, there are a number of situations when it is necessary for a

mobile device (e.g., device 150 or 250) to move from one arm to another. When a device

migrates from the old data center to the new data center, the service needs to continue

seamlessly. Examples of the sequence of events in the migration process can be as follows:

[00377] Mobile device or local proxy connects before server has detected arm

failure:

[00378] - Mobile device or local proxy connects to the new arm (e.g., arm 160b of the

example of FIG. lA-1). The new arm can be selected by the data center selection engine 502

and/or the arm selection engine 503.

[00379] - New arm 160b either doesn't recognize the endpoint address and/or the

encryption keys are invalid

[00380] - The mobile device or local proxy renegotiates a new address and new

encryption keys on the fly (e.g., facilitated on the server side by the encryption key and

protocol negotiator 506)

[00381] - Once the endpoint record for the mobile device is created, the current arm pulls

up a list of subscriptions for this device (by MSISDN) from data repository or data storage

[00382] - For each subscription, the new arm checks whether the owner arm is still alive:

If the owner arm is still alive, that arm will continue to serve the subscription; If the owner

arm is down, the new owner arm will take over the subscription.

[00383] Server Detects Arm Failure Before Mobile Device or Local Proxy Connects

[00384] In this case, the sequence of events can be as follows:

[00385] Arms learn that one of them is no longer operational (e.g., by the failure detector

505)

[00386] - Each arm loads the subscriptions belonging to the downed arm from data

storage and partitions itself a chunk of those resources. This assignment/reassignment of

mobile devices to available arms can be based on resource availability, data center

location/proximity (e.g., by the proximity detector 504).

[00387] - After each arm has divvied up a piece of work for itself, it starts polling for

those subscriptions (e.g., via the redirection engine 507)

[00388] - Invalidations can be sent over SMS in clear text so that client side proxy can

receive and understand the incoming traffic even if it has already re-negotiated the endpoint

record with another arm and has yet to set up a new encryption key with the newly assigned

arm.

[00389] In one embodiment, the manager 501 enables operators to specify, configure

and/or reconfigure traffic optimization settings/parameters within, across or using the

operator's network. The proxy server 325 can in general, maintain and/or enforce different

sets of policies regarding mobile traffic optimization set by different and multiple operators.

[00390] FIG. 6A depicts another flow diagram illustrating an example process for

distributed content caching between a mobile device and a proxy server and the distributed

management of content caching.

[00391] As shown in the distributed system interaction diagram in the example of FIG. 4,

the disclosed technology is a distributed caching model with various aspects of caching tasks

split between the client-side/mobile device side (e.g., mobile device 450 in the example of

FIG. 4) and the server side (e.g., server side 470 including the host server 485 and/or the

optional caching proxy 475).

[00392] In general the device-side responsibilities can include deciding whether a

response to a particular request can be and/or should be cached. The device-side of the proxy

can make this decision based on information (e.g., timing characteristics, detected pattern,

detected pattern with heuristics, indication of predictability or repeatability) collected

from/during both request and response and cache it (e.g., storing it in a local cache on the

mobile device). The device side can also notify the server-side in the distributed cache

system of the local cache event and notify it monitor the content source (e.g., application

server/content provider 110 of FIG. 1B-C).

[00393] The device side can further instruct the server side of the distributed proxy to

periodically validate the cache response (e.g., by way of polling, or sending polling requests

to the content source). The device side can further decide whether a response to a particular

cache request should be returned from the local cache (e.g., whether a cache hit is detected).

The decision can be made by the device side (e.g., the local proxy on the device) using

information collected from/during request and/or responses received from the content source.

[00394] In general, the server-side responsibilities can include validating cached

responses for relevancy (e.g., determine whether a cached response is still valid or relevant to

its associated request). The server- side can send the mobile device an invalidation request to

notify the device side when a cached response is detected to be no longer valid or no longer

relevant (e.g., the server invalidates a given content source). The device side then can

remove the response from the local cache.

[00395] The diagram of FIG. 6A illustrates caching logic processes performed for each

detected or intercepted request (e.g., HTTP request) detected at a mobile device (e.g., client-

side of the distributed proxy). In step 602, the client-side of the proxy (e.g., local proxy 275

shown in FIG. 2A-B or mobile device 450 of FIG. 4) receives a request (from an application

(e.g., mobile application) or mobile client). In step 604, URL is normalized and in step 606

the client-side checks to determine if the request is cacheable. If the request is determined to

be not cacheable in step 612, the request is sent to the source (application server/content

provider) in step 608 and the response is received 610 and delivered to the requesting

application 622, similar to a request-response sequence without interception by the client side

proxy.

[00396] If the request is determined to be cacheable, in step 612, the client-side looks up

the cache to determine whether a cache entry exists for the current request. If so, in step 624,

the client-side can determine whether the entry is valid and if so, the client side can check the

request to see if includes a validator (e.g., a modified header or an entity tag) in step 615. For

example, the concept of validation is eluded to in section 13.3 of RFC 2616 which describes

in possible types of headers (e.g., eTAG, Modified Since, must revlaidate, pragma

no cache) and forms a validating response 632 if so to be delivered to the requesting

application in step 622. If the request does not include a validator as determined by step 615,

a response is formed from the local cache in step 630 and delivered to the requesting

application in step 622. This validation step can be used for content that would otherwise

normally be considered un-cacheable.

[00397] If, instead, in step 624, the cache entry is found but determined to be no longer

valid or invalid, the client side of the proxy sends the request 616 to the content source

(application server/content host) and receives a response directly fro the source in step 618.

Similarly, if in step 612, a cache entry was not found during the look up, the request is also

sent in step 616. Once the response is received, the client side checks the response to

determine if it is cacheable in step 626. If so, the response is cached in step 620. The client

then sends another poll in step 614 and then delivers the response to the requesting

application in step 622.

[00398] FIG. 6B depicts a diagram showing how data requests from a mobile device 450

to an application server/content provider 495 in a wireless network can be coordinated by a

distributed proxy system 460 in a manner such that network and battery resources are

conserved through using content caching and monitoring performed by the distributed proxy

system 460.

[00399] In satisfying application or client requests on a mobile device 450 without the

distributed proxy system 460, the mobile device 450, or the software widget executing on the

device 450, performs a data request 452 (e.g., an HTTP GET, POST, or other request)

directly to the application server 495 and receives a response 404 directly from the

server/provider 495. If the data has been updated, the widget 455 on the mobile device 450

can refreshes itself to reflect the update and waits for small period of time and initiates

another data request to the server/provider 495.

[00400] In one embodiment, the requesting client or software widget 455 on the device

450 can utilize the distributed proxy system 460 in handling the data request made to

server/provider 495. In general, the distributed proxy system 460 can include a local proxy

465 (which is typically considered a client-side component of the system 460 and can reside

on the mobile device 450), a caching proxy 475 (considered a server-side component 470 of

the system 460 and can reside on the host server 485 or be wholly or partially external to the

host server 485), and a host server 485. The local proxy 465 can be connected to the caching

proxy 475 and host server 485 via any network or combination of networks.

[00401] When the distributed proxy system 460 is used for data/application requests, the

widget 455 can perform the data request 456 via the local proxy 465. The local proxy 465,

can intercept the requests made by device applications, and can identify the connection type

of the request (e.g., an HTTP get request or other types of requests). The local proxy 465 can

then query the local cache for any previous information about the request (e.g., to determine

whether a locally stored response is available and/or still valid). If a locally stored response

is not available or if there is an invalid response stored, the local proxy 465 can update or

store information about the request, the time it was made, and any additional data, in the local

cache. The information can be updated for use in potentially satisfying subsequent requests.

[00402] The local proxy 465 can then send the request to the host server 485 and the host

server 485 can perform the request 456 and returns the results in response 458. The local

proxy 465 can store the result and, in addition, information about the result and returns the

result to the requesting widget 455.

[00403] In one embodiment, if the same request has occurred multiple times (within a

certain time period) and it has often yielded same results, the local proxy 465 can notify 460

the server 485 that the request should be monitored (e.g., steps 462 and 464) for result

changes prior to returning a result to the local proxy 465 or requesting widget 455.

[00404] In one embodiment, if a request is marked for monitoring, the local proxy 465

can now store the results into the local cache. Now, when the data request 466, for which a

locally response is available, is made by the widget 455 and intercepted at the local proxy

465, the local proxy 465 can return the response 468 from the local cache without needing to

establish a connection communication over the wireless network.

[00405] In addition, the server proxy performs the requests marked for monitoring 470 to

determine whether the response 472 for the given request has changed. In general, the host

server 485 can perform this monitoring independently of the widget 455 or local proxy 465

operations. Whenever an unexpected response 472 is received for a request, the server 485

can notify the local proxy 465 that the response has changed (e.g., the invalidate notification

in step 474) and that the locally stored response on the client should be erased or replaced

with a new response.

[00406] In this case, a subsequent data request 476 by the widget 455 from the device 450

results in the data being returned from host server 485 (e.g., via the caching proxy 475), and

in step 478, the request is satisfied from the caching proxy 475. Thus, through utilizing the

distributed proxy system 460, the wireless (cellular) network is intelligently used when the

content/data for the widget or software application 455 on the mobile device 450 has actually

changed. As such, the traffic needed to check for the changes to application data is not

performed over the wireless (cellular) network. This reduces the amount of generated

network traffic and shortens the total time and the number of times the radio module is

powered up on the mobile device 450, thus reducing battery consumption and, in addition,

frees up network bandwidth.

[00407] FIG. 7 depicts a table 700 showing examples of different traffic or application

category types which can be used in implementing network access and content delivery

policies. For example, traffic/application categories can include interactive or background,

whether a user is waiting for the response, foreground/background application, and whether

the backlight is on or off.

[00408] FIG. 8 depicts a table 800 showing examples of different content category types

which can be used in implementing network access and content delivery policies. For

example, content category types can include content of high or low priority, and time critical

or non-time critical content/data.

[00409] FIG. 9 depicts an interaction diagram showing how application (e.g., mobile

application) 955 polls having data requests from a mobile device to an application

server/content provider 995 over a wireless network can be can be cached on the local proxy

965 and managed by the distributed caching system (including local proxy 965 and the host

server 985 (having server cache 935 or caching proxy server 975)).

[00410] In one example, when the mobile application/widget 955 polls an application

server/provider 932, the poll can locally be intercepted 934 on the mobile device by local

proxy 965. The local proxy 965 can detect that the cached content is available for the polled

content in the request and can thus retrieve a response from the local cache to satisfy the

intercepted poll 936 without requiring use of wireless network bandwidth or other wireless

network resources. The mobile application/widget 955 can subsequently receive a response

to the poll from a cache entry 938.

[00411] In another example, the mobile application widget 955 polls the application

server/provider 940. The poll is intercepted 942 by the local proxy 965 and detects that cache

content is unavailable in the local cache and decides to set up the polled source for caching

944. To satisfy the request, the poll is forwarded to the content source 946. The application

server/provider 995 receives the poll request from the application and provides a response to

satisfy the current request 948. In 950, the application (e.g., mobile application)/widget 955

receives the response from the application server/provider to satisfy the request.

[00412] In conjunction, in order to set up content caching, the local proxy 965 tracks the

polling frequency of the application and can set up a polling schedule to be sent to the host

server 952. The local proxy sends the cache set up to the host server 954. The host server

985 can use the cache set up which includes, for example, an identification of the application

server/provider to be polled and optionally a polling schedule 956. The host server 985 can

now poll the application server/provider 995 to monitor responses to the request 958 on

behalf of the mobile device. The application server receives the poll from the host server and

responds 960. The host server 985 determines that the same response has been received and

polls the application server 995 according to the specified polling schedule 962. The

application server/content provider 995 receives the poll and responds accordingly 964.

[00413] The host server 985 detects changed or new responses and notifies the local

proxy 965. The host server 985 can additional store the changed or new response in the

server cache or caching proxy 968. The local proxy 965 receives notification from the host

server 985 that new or changed data is now available and can invalidate the affected cache

entries 970. The next time the application (e.g., mobile application)/widget 955 generates the

same request for the same server/content provider 972, the local proxy determines that no

valid cache entry is available and instead retrieves a response from the server cache 974, for

example, through an HTTP connection. The host server 985 receives the request for the new

response and sends the response back 976 to the local proxy 965. The request is thus

satisfied from the server cache or caching proxy 978 without the need for the mobile device

to utilize its radio or to consume mobile network bandwidth thus conserving network

resources.

[00414] Alternatively, when the application (e.g., mobile application) generates the same

request in step 980, the local proxy 965, in response to determining that no valid cache entry

is available, forwards the poll to the application server/provider in step 982 over the mobile

network. The application server/provider 995 receives the poll and sends the response back

to the mobile device in step 984 over the mobile network. The request is thus satisfied from

the server/provider using the mobile network in step 986.

[00415] FIG. 10 depicts an interaction diagram showing how application 1055 polls for

content from an application server/content provider 1095 which employs cache-defeating

mechanisms in content identifiers (e.g., identifiers intended to defeat caching) over a wireless

network can still be detected and locally cached.

[00416] In one example, when the application (e.g., mobile application)/widget 1055

polls an application server/provider in step 1032, the poll can locally be intercepted in step

1034 on the mobile device by local proxy 1065. In step 1034, the local proxy 1065 on the

mobile device may also determine (with some level of certainty and heuristics) that a cache

defeating mechanism is employed or may be employed by the server provider.

[00417] The local proxy 1065 can detect that the cached content is available for the polled

content in the request and can thus retrieve a response from the local cache to satisfy the

intercepted poll 1036 without requiring use of wireless network bandwidth or other wireless

network resources. The application (e.g., mobile application)/widget 1055 can subsequently

receive a response to the poll from a cache entry in step 1038 (e.g., a locally stored cache

entry on the mobile device).

[00418] In another example, the application (e.g., mobile application) widget 1055 polls

the application server/provider 1095 in step 1040. The poll is intercepted in step 1042 by the

local proxy 1065 which determines that a cache defeat mechanism is employed by the

server/provider 1095. The local proxy 1065 also detects that cached content is unavailable in

the local cache for this request and decides to setup the polled content source for caching in

step 1044. The local proxy 1065 can then extract a pattern (e.g., a format or syntax) of an

identifier of the request and track the polling frequency of the application to setup a polling

schedule of the host server 1085 in step 1046.

[00419] To satisfy the request, the poll request is forwarded to the content provider 1095

in step 1048. The application server/provider 1095 receives the poll request from the

application and provides a response to satisfy the current request in step 1050. In step 1052,

the application (e.g., mobile application)/widget 1055 receives the response from the

application server/provider 1095 to satisfy the request.

[00420] In conjunction, in order to setup content caching, the local proxy 1065 caches the

response and stores a normalized version of the identifier (or a hash value of the normalized

identifier) in association with the received response for future identification and retrieval in

step 1054. The local proxy sends the cache setup to the host server 1085 in step 1056. The

cache setup includes, for example, the identifier and/or a normalized version of the identifier.

In some instances, a modified identifier, different from the normalized identifier, is sent to

the host server 1085.

[00421] The host server 1085 can use the cache setup, which includes, for example, an

identification of the application server/provider to be polled and optionally a polling schedule

in step 1058. The host server 1085 can now poll the application server/provider 1095 to

monitor responses to the request in step 1060 on behalf of the mobile device. The application

server 1095 receives the poll from the host server 1085 responds in step 1062. The host

server 1085 determines that the same response has been received and polls the application

server 1095, for example, according to the specified polling schedule and using the

normalized or modified identifier in step 1064. The application server/content provider 1095

receives the poll and responds accordingly in step 1066.

[00422] This time, the host server 1085 detects changed or new responses and notifies the

local proxy 1065 in step 1068. The host server 1085 can additionally store the changed or

new response in the server cache 1035 or caching proxy 1075 in step 1070. The local proxy

1065 receives notification from the host server 1085 that new or changed data is now

available and can invalidate the affected cache entries in step 1072. The next time the

application (e.g., mobile application)/widget generates the same request for the same

server/content provider 1095 in step 1074, the local proxy 1065 determines that no valid

cache entry is available and instead retrieves a response from the server cache in step 1076,

for example, through an HTTP connection. The host server 1085 receives the request for the

new response and sends the response back to the local proxy 1065 in step 1078. The request

is thus satisfied from the server cache or caching proxy in step 1080 without the need for the

mobile device to utilize its radio or to consume mobile network bandwidth thus conserving

network resources.

[00423] Alternatively, when the application (e.g., mobile application) 1055 generates the

same request, the local proxy 1065, in response to determining that no valid cache entry is

available in step 1084, forwards the poll to the application server provider 1095 in step 1082

over the mobile network. The application server/provider 1095 receives the poll and sends

the response back to the mobile device in step 1086 over the mobile network. The request is

thus satisfied from the server/provider using the mobile network 1086 in step 1088.

[00424] FIG. 11 depicts a flow chart illustrating an example process for collecting

information about a request and the associated response to identify cacheability and caching

the response.

[00425] In process 1102, information about a request and information about the response

received for the request is collected. In processes 1104 and 1106, information about the

request initiated at the mobile device and information about the response received for the

request are used in aggregate or independently to determine cacheability at step 1108. The

details of the steps for using request and response information for assessing cacheability are

illustrated at flow A as further described in the example of FIG. 12.

[00426] In step 1108, if based on flow A it is determined that the response is not

cacheable, then the response is not cached in step 1110, and the flow can optionally restart at

1102 to collect information about a request or response to again assess cacheability.

[00427] In step 1108, if it is determined from flow A that the response is cacheable, then

in 1112 the response can be stored in the cache as a cache entry including metadata having

additional information regarding caching of the response. The cached entry, in addition to

the response, includes metadata having additional information regarding caching of the

response. The metadata can include timing data including, for example, access time of the

cache entry or creation time of the cache entry.

[00428] After the response is stored in the cache, a parallel process can occur to

determine whether the response stored in the cache needs to be updated in process 1120. If

so, the response stored in the cache of the mobile device is invalided or removed from the

cache of the mobile device, in process 1122. For example, relevance or validity of the

response can be verified periodically by polling a host server to which the request is directed

on behalf of the mobile device. The host server can be polled at a rate determined at the

mobile device using request information collected for the request for which the response is

cached. The rate is determined from averages of time intervals between previous requests

generated by the same client which generated the request.

[00429] The verifying can be performed by an entity that is physically distinct from the

mobile device. In one embodiment, the entity is a proxy server coupled to the mobile device

and able to communicate wirelessly with the mobile device and the proxy server polls a host

server to which the request is directed at the rate determined at the mobile device based on

timing intervals between previous requests generated by the same client which generated the

request.

[00430] In process 1114, a subsequent request for the same client or application is

detected. In process 1116, cache look-up in the local cache is performed to identify the cache

entry to be used in responding to the subsequent request. In one embodiment, the metadata is

used to determine whether the response stored as the cached entry is used to satisfy the

subsequent response. In process 1118, the response can be served from the cache to satisfy a

subsequent request. The response can be served in response to identifying a matching cache

entry for the subsequent request determined at least in part using the metadata.

[00431] FIG. 12 depicts a flow chart illustrating an example process for a decision flow

to determine whether a response to a request can be cached.

[00432] Process 1202 determines if the request is directed to a blacklisted destination. If

so, the response is not cached, in step 1285. If a blacklisted destination is detected, or if the

request itself is associated with a blacklisted application, the remainder of the analysis shown

in the figure may not be performed. The process can continue to steps 1204 and 1206 if the

request and its destination are not blacklisted.

[00433] In process 1204, request characteristics information associated with the request is

analyzed. In analyzing the request, in process 1208, the request method is identified and in

step 1214, it is determined whether the response can be cached based on the request method.

If an uncacheable request is detected, the request is not cached and the process may terminate

at process 1285. If the request method is determined to be cacheable, or not uncacheable,

then the response can be identified as cacheable or potentially cacheable (e.g., cacheable but

subject to the other tests and analysis shown in the figure) at step 1295.

[00434] In process 1210, the size of the request is determined. In process 1216, it is

determined whether the request size exceeds a cacheable size. If so, the response is not

cached and the analysis may terminate here at process 1285. If the request size does not

exceed a cacheable size in step 1216, then the response can be identified as cacheable or

potentially cacheable (e.g., cacheable but subject to the other tests and analysis shown in the

figure) at step 1295.

[00435] In step 1212, the periodicity information between the request and other requests

generated by the same client is determined. In step 1218, it is determined whether periodicity

has been identified. If not, the response is not cached and the analysis may terminate here at

process 1285. If so, then the response can be identified as cacheable or potentially cacheable

(e.g., cacheable but subject to the other tests and analysis shown in the figure) at step 1295.

[00436] In process 1206, the request characteristics information associated with the

response received for the request is analyzed.

[00437] In process 1220, the status code is identified and determined whether the status

code indicates a cacheable response status code in process 1228. If an uncacheable status

code is detected, the request is not cached and the process may terminate at process 1285. If

the response status code indicates cacheability, or not uncacheable, then the response can be

identified as cacheable or potentially cacheable (e.g., cacheable but subject to the other tests

and analysis shown in the figure) at step 1295.

[00438] In process 1222, the size of the response is determined. In process 1230, it is

determined whether the response size exceeds a cacheable size. If so, the response is not

cached and the analysis may terminate here at process 1285. If the response size does not

exceed a cacheable size in step 1230, then the response can be identified as cacheable or

potentially cacheable (e.g., cacheable but subject to the other tests and analysis shown in the

figure) at step 1295.

[00439] In process 1224, the response body is analyzed. In process 1232, it is determined

whether the response contains dynamic content or highly dynamic content. Dynamic content

includes data that changes with a high frequency and/or has a short time to live or short time

of relevance due to the inherence nature of the data (e.g., stock quotes, sports scores of fast

pace sporting events, etc.). If so, the response is not cached and the analysis may terminate

here at process 1285. If not, then the response can be identified as cacheable or potentially

cacheable (e.g., cacheable but subject to the other tests and analysis shown in the figure) at

step 1295.

[00440] Process 1226 determines whether transfer encoding or chunked transfer encoding

is used in the response. If so, the response is not cached and the analysis may terminate here

at process 1285. If not, then the response can be identified as cacheable or potentially

cacheable (e.g., cacheable but subject to the other tests and analysis shown in the figure) at

step 1295.

[00441] Not all of the tests described above need to be performed to determined whether

a response is cached. Additional tests not shown may also be performed. Note that any of

the tests 1208, 1210, 1212, 1220, 1222, 1224, and 1226 can be performed, singly or in any

combination to determine cacheability. In some instances, all of the above tests are

performed. In some instances, all tests performed (any number of the above tests that are

actually performed) need to confirm cacheability for the response to be determined to be

cacheable. In other words, in some cases, if any one of the above tests indicate non-

cacheability, the response is not cached, regardless of the results of the other tests. In other

cases, different criteria can be used to determine which tests or how many tests need to pass

for the system to decide to cache a given response, based on the combination of request

characteristics and response characteristics.

[00442] FIG. 13 depicts a flow chart illustrating an example process for determining

potential for cacheability based on request periodicity and/or response repeatability.

[00443] In process 1302, requests generated by the client are tracked to detect periodicity

of the requests. In process 1306, it is determined whether there are predictable patterns in the

timing of the requests. If so, the response content may be cached in process 1395. If not, in

process 1308 it is determined whether the request intervals fall within a tolerance level. If so,

the response content may be cached in process 1395. If not, the response is not cached in

process 1385.

[00444] In process 1304, responses received for requests generated by the client are

tracked to detect repeatability in content of the responses. In process 1310, hash values of

response bodies of the responses received for the client are examined and in process 13 12 the

status codes associated with the responses are examined. In process 1314, it is determined

whether there is similarity in the content of at least two of the responses using hash values

and/or the status codes. If so, the response may be cached in process 1395. If not, the

response is not cached in 1385.

[00445] FIG. 14 depicts a flow chart illustrating an example process for dynamically

adjusting caching parameters for a given request or client.

[00446] In process 1402, requests generated by a client or directed to a host are tracked at

the mobile device to detect periodicity of the requests. Process 1404 determines if the request

intervals between the two or more requests are the same or approximately the same. In

process 1406, it is determined that the request intervals between the two or more requests fall

within the tolerance level.

[00447] Based on the results of steps 1404 and 1406, the response for the requests for

which periodicity is detected is received in process 1408.

[00448] In process 1412, a response is cached as a cache entry in a cache of the mobile

device. In process 1414, the host is monitored at a rate to verify relevance or validity of the

cache entry, and simultaneously, in process 1416, the response can be served from the cache

to satisfy a subsequent request.

[00449] In process 1410, a rate to monitor a host is determined from the request interval,

using, for example, the results of processes 1404 and/or 1406. In process 1420, the rate at

which the given host is monitored is set to verify relevance or validity of the cache entry for

the requests. In process 1422, a change in request intervals for requests generated by the

client is detected. In process 1424, a different rate is computed based on the change in

request intervals. The rate at which the given host is monitored to verify relevance or validity

of the cache entry for the requests is updated in step 1420.

[00450] FIG. 15 depicts a flow chart illustrating example processes for application and/or

traffic (data) categorization while factoring in user activity and expectations for

implementation of network access and content delivery policies.

[00451] In process 1502, a system or server detects that new or changed data is available

to be sent to a mobile device. The data, new, changed, or updated, can include one or more

of, IM presence updates, stock ticker updates, weather updates, mail, text messages, news

feeds, friend feeds, blog entries, articles, documents, any multimedia content (e.g., images,

audio, photographs, video, etc.), or any others that can be sent over HTTP or wireless

broadband networks, either to be consumed by a user or for use in maintaining operation of

an end device or application.

[00452] In process 1504, the application to which the new or changed data is directed is

identified. In process 1506, the application is categorized based on the application. In process

1508, the priority or time criticality of the new or changed data is determined. In process

1510, the data is categorized. Based on the information determined from the application

and/or priority/time-sensitivity of the relevant data, any or all of a series of evaluations can be

performed to categorize the traffic and/or to formulate a policy for delivery and/or powering

on the mobile device radio.

[00453] For example, using the identified application information, in process 15 12, it is

determined whether the application is in an active state interacting with a user on a mobile

device. In process 1514, it is determined if the application is running in the foreground on the

mobile device.

[00454] If the answer is 'Yes' to any number of the test of processes 15 12 or 15 14, the

system or server can then determine that the new or changed data is to be sent to the mobile

device in step 1526, and sent without delay. Alternatively, the process can continue at flow

'C where the timing, along with other transmission parameters such as network

configuration, can be selected, as further illustrated in the example of FIG. 31. If the answer

is 'No' to the tests of 15 12 or 15 14, the other test can be performed in any order. As long as

one of the tests 1512 or 1514 is 'Yes,' then the system or server having the data can proceed

to step 1526 and/or flow 'C

[00455] If the answer is 'No' to the tests 1512 and 1514 based on the application or

application characteristics, then the process can proceed to step 1524, where the sending of

the new or changed data is suppressed, at least on a temporary basis. The process can

continue in flow 'A' for example steps for further determining the timing of when to send the

data to optimize network use and/or device power consumption, as further described in the

example of flow chart in FIG. 29.

[00456] Similarly, in process 15 16, it is determined whether the application is running in

the background. If so, the process can proceed to step 1524 where the sending of the new or

changed data is suppressed. However, even if the application is in the background state, any

of the remaining tests can be performed. For example, even if an application is in the

background state, new or changed data may still be sent if of a high priority or is time critical.

[00457] Using the priority or time sensitivity information, in process 1518, it is

determined whether the data is of high priority 1518. In process 1520, it is determined

whether the data is time critical. In process 1522, it is determined whether a user is waiting

for a response that would be provided in the available data.

[00458] If the answer is 'Yes' to any number of the test of processes 1518, 1520, or 1522,

the system or server can then determine that the new or changed data is to be sent to the

mobile device in step 1526, and sent without delay. Alternatively, the process can continue at

flow 'C where the timing, along with other transmission parameters such as a network

configuration, can be selected, as further illustrated in the example of FIG. 31. If the answer

is 'No' to any of these tests, the other test can be performed in any order. As long as one of

the tests 1518, 1520, or 1522 is 'Yes,' then the system or server having the data can proceed

to step 1526 and/or flow 'C

[00459] If the answer is 'No' to one or more of the tests 1518, 1520, or 1522, then the

process can proceed to step 1524, where the sending of the new or changed data is

suppressed, at least on a temporary basis. The process can continue in flow 'A' for example

steps for further determining the timing of when to send the data to optimize network use

and/or device power consumption. The process can continue to step 1524 with or without the

other tests being performed if one of the tests yields a 'No' response.

[00460] The determined application category in step 1504 can be used in lieu of or in

conjunction with the determined data categories in step 1510. For example, the new or

changed data that is of a high priority or is time critical can be sent at step 1526 even if the

application in the foreground state but not actively interacting with the user on the mobile

device or if the application is not in the foreground, or in the background.

[00461] Similarly, even if the user is not waiting for a response which would be provided

in the new or change data (in step 1522), the data can be sent to the mobile device 1526 if the

application is in the foreground, or if the data is of high priority or contains time critical

content.

[00462] In general, the suppression can be performed at the content source (e.g.,

originating server/content host of the new or changed data), or at a proxy server. For

example, the proxy server may be remote from the recipient mobile device (e.g., able to

wirelessly connect to the receiving mobile device). The proxy server may also be remote

from the originating server/content host. Specifically, the logic and intelligence in

determining whether the data is to be sent or suppressed can exist on the same server or be

the same entity as the originator of the data to be sent or partially or wholly remote from it

(e.g., the proxy is able to communicate with the content originating server).

[00463] In one embodiment, the waiting to transfer the data is managed by a local proxy

on the mobile device which is able to wirelessly communicate with a recipient server (e.g.,

the host server for the mobile application or client). The local proxy on the mobile device can

control the radio use on the mobile device for transfer of the data when the time period has

elapsed, or when additional data to be sent is detected.

[00464] FIG. 16A depicts a flow chart illustrating example processes for handling traffic

which is to be suppressed at least temporarily determined from application/traffic

categorization.

[00465] For example, in process 1602, a time period is elapsed before the new or change

data is transmitted in step 1606. This can be performed if the data is of low priority or is not

time critical, or otherwise determined to be suppressed for sending (e.g., as determined in the

flow chart of FIG. 15). The time period can be set by the application, the user, a third party,

and/or take upon a default value. The time period may also be adapted over time for specific

types of applications or real-time network operating conditions. If the new or changed data to

be sent is originating from a mobile device, the waiting to transfer of the data until a time

period has elapsed can be managed by a local proxy on the mobile device, which can

communicate with the host server. The local proxy can also enable or allow the use radio use

on the mobile device for transfer of the data when the time period has elapsed.

[00466] In some instances, the new or changed data is transmitted in 1606 when there is

additional data to be sent, in process 1604. If the new or changed data to be sent is

originating from a mobile device, the waiting to transfer of the data until there is additional

data to be sent, can be managed by a local proxy on the mobile device, which can

communicate with the host server. The local proxy can also enable or allow the use radio use

on the mobile device for transfer of the data when there is additional data to be sent, such that

device resources can be conserved. Note that the additional data may originate from the same

mobile application/client or a different application/client. The additional data may include

content of higher priority or is time critical. The additional data may also be of same or lower

priority. In some instances, a certain number of non priority, or non time-sensitive events

may trigger a send event.

[00467] If the new or changed data to be sent is originating from a server (proxy server or

host server of the content), the waiting to transfer of the data until a time period has elapsed

or waiting for additional data to be sent, can be managed by the proxy server which can

wirelessly communicate with the mobile device. In general, the proxy server waits until

additional data is available for the same mobile device before sending the data together in a

single transaction to minimize the number of power-ons of device battery and to optimize

network use.

[00468] FIG. 16B depicts a flow chart illustrating an example process for selection of a

network configuration for use in sending traffic based on application and/or traffic (data)

categorization.

[00469] In process 1608, an activity state of an application on the mobile device is

detected for which traffic is directed to or originated from is detected. In parallel or in lieu of

activity state, a time criticality of data contained in the traffic to be sent between the mobile

device and the host server can be determined, in process 1610. The activity state can be

determined in part or in while, by whether the application is in a foreground or background

state on the mobile device. The activity state can also be determined by whether a user is

interacting with the application.

[00470] Using activity state and/or data characteristics, when it has determined from that

the data is to be sent to the mobile device in step 1612 of FIG. 15, the process can continue to

step 3006 for network configuration selection.

[00471] For example, in process 1614, a generation of wireless standard is selected. The

generation of wireless standard which can be selected includes 2G or 2.5G, 3G, 3.5G, 3G+,

3GPP, LTE, or 4G, or any other future generations. For example, slower or older generation

of wireless standards can be specified for less critical transactions or traffic containing less

critical data. For example, older standards such as 2G, 2.5G, or 3G can be selected for

routing traffic when one or more of the following is detected, the application is not

interacting with the user, the application is running in the background on the mobile device,

or the data contained in the traffic is not time critical. Newer generations such as can be

specified for higher priority traffic or transactions. For example, newer generations such as

3G, LTE, or 4G can be specified for traffic when the activity state is in interaction with a user

or in a foreground on the mobile device.

[00472] In process 1616, the access channel type can be selected. For example, forward

access channel (FACH) or the dedicated channel (DCH) can be specified. In process 1618, a

network configuration is selected based on data rate or data rate capabilities. For example, a

network configuration with a slower data rate can be specified for traffic when one or more of

the following is detected, the application is not interacting with the user, the application is

running in the background on the mobile device, or the data contained in the traffic is not

time critical

[00473] In process 1620, a network configuration is selected by specifying access points.

Any or all of the steps 1614, 1616, 1618, and 1620 can be performed or in any combination

in specifying network configurations.

[00474] FIG. 16C depicts a flow chart illustrating an example process for implementing

network access and content delivery policies based on application and/or traffic (data)

categorization.

[00475] In process 1634, an activity state of an application on a mobile device to which

traffic is originated from or directed to is detected. For example, the activity state can be

determined by whether the application is in a foreground or background state on the mobile

device. The activity state can also be determined by whether a user is expecting data

contained in the traffic directed to the mobile device.

[00476] In process 1636, a time criticality of data contained in the traffic to be sent

between the mobile device and the host server is detected. For example, when the data is not

time critical, the timing with which to allow the traffic to pass through can be set based on

when additional data needs to be sent. Therefore, the traffic can be batched with the other

data so as to conserve network and/or device resources.

[00477] The application state and/or data characteristics can be used for application

categorization and/or data categorization to determine whether the traffic resulting therefrom

is to be sent to the mobile device or suppressed at least on a temporary basis before sending,

as illustrated in the flow chart shown in the example of FIG. 15.

[00478] Continuing at flow C after a determination has been made to send the traffic, the

parameters relating to how and when the traffic is to be sent can be determined. For example,

in process 1638, a timing with which to allow the traffic to pass through, is determined based

on the activity state or the time criticality.

[00479] In process 1640, radio use on the mobile device is controlled based on the timing

with which the traffic is allowed to pass through. For example, for traffic initiated from the

mobile device, a local proxy can residing on the mobile device can control whether the radio

is to be turned on for a transaction, and if so, when it is to be turned on, based on transaction

characteristics determined from application state, or data priority/time-sensitivity.

[00480] In process 1642, a network configuration in the wireless network is selected for

use in passing traffic to and/or from the mobile device. For example, a higher capacity or data

rate network (e.g., 3G, 3G+, 3.5G, LTE, or 4G networks) can be selected for passing through

traffic when the application is active or when the data contained in the traffic is time critical

or is otherwise of a higher priority/importance.

[00481] FIG. 17 depicts a flow chart illustrating an example process for network

selection based on mobile user activity or user expectations.

[00482] In process 1702, the backlight status of a mobile device is detected. The backlight

status can be used to determine or infer information regarding user activity and/or user

expectations. For example, in process 1704, user interaction with an application on a mobile

device is detected and/or in process 1706, it is determined that a user is expecting data

contained in traffic directed to the mobile device, if the backlight is on.

[00483] The user interaction 1704 and/or user expectation 1706 can be determined or

inferred via other direct or indirect cues. For example, device motion sensor, ambient light,

data activity, detection of radio activity and patterns, call processing, etc. can be used alone

or in combination to make an assessment regarding user activity, interaction, or expectations.

[00484] In process 1708, an activity state of an application on the mobile device for

which traffic is originated from or directed to, is determined. In one embodiment, the activity

state of the application is determined by user interaction with the application on the mobile

device and/or by whether a user is expecting data contained in the traffic directed to the

mobile device.

[00485] In process 1710, 3G, 4G, or LTE network is selected for use in sending traffic

between a mobile device and a host server in the wireless network. Other network

configurations or technologies can be selected as well, including but not limited to 2.5G

GSM/GPRS networks, EDGE/EGPRS, 3.5G, 3G+, turbo 3G, HSDPA, etc. For example, a

higher bandwidth or higher capacity network can be selected when user interaction is

detected with an application requesting to access the network. Similarly, if it can be

determined or inferred with some certainty that the user may be expecting data contained in

traffic requesting network access, a higher capacity or higher data rate network may be

selected as well.

[00486] The activity state can also be determined by whether data contained in the traffic

directed to the mobile device responds to foreground activities in the application. For

applications which are in the foreground, a higher capacity (e.g., 3.5G, 4G, or LTE) network

may be selected for use in carrying out the transaction.

[00487] The activity state can be determined via device parameters such as the backlight

status of the mobile device or any other software or hardware based device sensors including

but not limited to, resistive sensors, capacitive sensors, light detectors, motion sensors,

proximity sensors, touch screen sensors, etc. The network configuration which is selected for

use can be further based on a time criticality and/or priority of data contained in the traffic to

be sent between the mobile device and the host server.

[00488] FIG. 18 depicts a data timing diagram 1800 showing an example of detection of

periodic request which may be suitable for caching.

[00489] In the example shown, a first request from a client/application on a mobile device

is detected at time 1:00 (tl). At this time, a cache entry may be created in step 1802. At time

2:00 (t2), the second request is detected from the same client/application, and the cache entry

that was created can now be updated with the detected interval of 1 hour between time t2 and

t l at step 1804. The third request from the same client is now detected at time t3 = 3:00, and

it can now be determined that a periodic request is detected in step 1806. The local proxy can

now cache the response and send a start poll request specifying the interval (e.g., 1 hour in

this case) to the proxy server.

[00490] The timing diagram further illustrates the timing window between 2:54 and 3:06,

which indicates the boundaries of a window within which periodicity would be determined if

the third request is received within this time frame 1810. The timing window 1808 between

2:54 and 3:06 corresponds to 20% of the previous interval and is the example tolerance

shown. Other tolerances may be used, and can be determined dynamically or on a case by

case (application by application) basis.

[00491] FIG. 19 depicts a data timing diagram 1900 showing an example of detection of

change in request intervals and updating of server polling rate in response thereto.

[00492] At step 1902, the proxy determines that a periodic request is detected, the local

proxy caches the response and sets the polling request to the proxy server, and the interval is

set to 1 hour at the 3rd request, for example. At time t4=3:55, the request is detected 55

minutes later, rather than 1 hour. The interval of 55 minutes still fits in to the window 1904

given a tolerance of 20%. However, at step 1906, the 5th request is received at time t5 =

4:50, which no longer fits within the tolerance window set determined from the interval

between the 1st and second, and second and third requests of 1 hour. The local proxy now

retrieves the resource or response from the proxy server, and refreshes the local cache (e.g.,

cache entry not used to serve the 5th request). The local proxy also resends a start poll

request to the proxy server with an updated interval (e.g., 55 minutes in the example) and the

window defined by the tolerance, set by example to 20%, now becomes 11 minutes, rather

than 12 minutes.

[00493] Note that in general, the local proxy notifies the proxy server with an updated

polling interval when an interval changes is detected and/or when a new rate has been

determined. This is performed, however, typically only for background application requests

or automatic/programmatic refreshes (e.g., requests with no user interaction involved). In

general, if the user is interacting with the application in the foreground and causing out of

period requests to be detected, the rate of polling or polling interval specified to the proxy

server is typically not update, as illustrated in FIG. 20. FIG. 20 depicts a data timing

diagram 2000 showing an example of serving foreground requests with cached entries.

[00494] For example, between the times of t = 3:00 and 3:30, the local proxy detects 1st

and 2nd foreground requests at t = 3:10 and t = 3:20. These foreground requests are outside

of the periodicity detected for background application or automatic application requests. The

response data retrieved for the foreground request can be cached and updated, however, the

request interval for foreground requests are not sent to the server in process 2008.

[00495] As shown, the next periodic request detected from the application (e.g., a

background request, programmatic/automatic refresh) at t=4:00, the response is served from

the cache, as is the request at t=5:00.

[00496] FIG. 21 depicts a data timing diagram 2100 showing an example of a non-

optimal effect of cache invalidation occurring after outdated content has been served once

again to a requesting application.

[00497] Since the interval of proxy server polls is set to approximately the same interval

at which the application (e.g., mobile application) is sending requests, it is likely the case that

the proxy server typically detects changed content (e.g., at t=5:02) after the cached entry

(now outdated) has already been served for a request (e.g., to the 5th request at t=5:00). In

the example shown, the resource updates or changes at t=4:20 and the previous server poll

which occurs at t = 4:02 was not able to capture this change until the next poll at 5:02 and

sends a cache invalidation to the local proxy at 2 110. Therefore, the local cache does not

invalidate the cache at some time after the 5th request at time t=5:00 has already been served

with the old content. The fresh content is now not provided to the requesting application

until the 6th request at t = 6:00, 1 period later at process 2106.

[00498] To optimize caching performance and to resolve this issue, the local proxy can

adjust time setup by specifying an initial time of request, in addition to the polling interval to

the proxy server. The initial time of request here is set to some time before (e.g., a few

minutes) the request actually occurred such that the proxy server polls occur slightly before

actual future application requests. This way, the proxy can pick up any changes in responses

in time to be served to the subsequent application request.

[00499] FIG. 22 depicts a data timing diagram 2200 showing cache management and

response taking into account the time-to-live (TTL) set for cache entries.

[00500] In one embodiment, cached response data in the local cache specifies the amount

of time cache entries can be stored in the local cache until it is deleted or removed.

[00501] The time when a response data in a given cache entry is to be removed can be

determined using the formula: <response data cache time> + <TTL>, as shown at t = 3:00,

the response data is automatically removed after the TTL has elapsed due to the caching at

step 2212 (e.g., in this example, 24 hours after the caching at step 2212). In general the time

to live (TTL) applies to the entire cache entry (e.g., including both the response data and any

metadata, which includes information regarding periodicity and information used to compute

periodicity). In one embodiment, the cached response data TTL is set to 24 hours by default

or some other value (e.g., 6 hours, 12 hours, 48 hours, etc.). The TTL may also be

dynamically adjustable or reconfigured by the admin/user and/or different on a case-by-case,

device, application, network provider, network conditions, operator, and/or user-specific

basis.

[00502] FIG. 23 depicts a flow chart illustrating an example processes for providing fault

tolerance in mobile traffic management services.

[00503] In process 2302, one component of multiple components for providing mobile

traffic management services is detected to be non-operational, at capacity or near capacity.

The one component can be detected to be non-operational by the mobile device which it

services and/or by another component of the multiple components.

[00504] In process 2304, mobile devices serviced by the one component are identified. In

process 2306, subscription information for the mobile devices serviced by the one component

is retrieved by a remaining set of the multiple components exclusive of the one component,

from a storage component coupled to the one and the multiple components.

[00505] In one embodiment, the mobile devices originally serviced by the one

component, are allocated among the remaining set of the multiple components for servicing.

The remaining set of the multiple components can service the newly allocated mobile devices

using the subscription information retrieved or obtained from the storage component. For

example, one of the remaining set of the multiple components can poll the associated hosts

for subscriptions of its allocated subset of the mobile devices originally serviced by the one

component, using the subscription information.

[00506] In general, the subscription information is used by the system to optimize mobile

traffic and conserve device/network resources and can include information related to services

that a mobile device is subscribed to, user information, user behavior information, device

information, information regarding mobile applications on the mobile device, etc.The traffic

optimization techniques includes traffic management strategies described in detail with

respect to at least FIG. 2A, FIG. 2B, FIG. 3A, FIG. 3B, FIG. 3C, FIG. 3D, and FIG. 6-

FIG. 22.

[00507] The optimization strategies described in accordance with the innovation include

by way of example, not limitation, batching requests originated from the mobile device,

categorization based on foreground or background traffic, prioritization of the traffic based

on time criticality, alignment or delay of polling requests from the mobile device, monitoring

of application behavior on the mobile device, and/or optimizing the traffic based on user

behavior at the mobile device. The optimization strategies can further include content caching

at the mobile device and/or at a remote proxy server (e.g., the proxy server of FIG. 5A) to

decrease future traffic requests from network access. Such caching strategies are described in

detail at least with respect to FIG. 18-FIG. 22.

[00508] In one embodiment, when a mobile device fails over to be serviced by a new

component because the original component is non-operational or at/near capacity,

invalidations of cache entries on the mobile device can be sent to the mobile device originally

serviced by the one component, from one of the remaining set of the multiple components in

clear text (rather than encrypted form) such that the mobile device can interpret and

understand the invalidation request even if it has yet to negotiate a new encryption key with

the other component. In one embodiment, the invalidations are sent via SMS.

[00509] The traffic optimization and/or management, and can be performed by the local

proxy and/or a proxy server coupled to the local proxy remote from the mobile device as

described in correspondence with the description of at least FIG. 2A, FIG. 2B, FIG. 3A,

FIG. 3B, FIG. 3C, FIG. 3D, and FIG. 6-FIG. 22.

[00510] FIG. 24 depicts a flow chart illustrating example processes for a mobile device to

utilize fault tolerance failover provided by a mobile traffic management service.

[00511] In process 2402, a mobile device detects that connection to one component (e.g.,

component 160a) of multiple components for providing mobile traffic management services

(e.g., system 100 of FIG. lA-1) cannot be established. The detection can be performed by an

operating system (e.g., mobile operating system such as Android, iOS, Windows Mobile,

etc.) of the mobile device. The detection can also be performed by a local proxy on the

mobile device that is not a native component of an operating system of the mobile device. In

one embodiment, the local proxy is also a component in performing traffic optimization

and/or management as described in correspondence with the description of at least FIG. 2A,

FIG. 2B, FIG. 3A, FIG. 3B, FIG. 3C, FIG. 3D, and FIG. 6-FIG. 22.

[00512] In process 2404, the mobile device connects to another component (e.g.,

component 160b) of the multiple components. In process 2406, a new encryption key is

negotiated with the other component for secure communication with the other component. In

addition, the other component can assign a new and unique identifier to the mobile device

upon establishing the new connection due to fail over from anther component, which may

have been down or otherwise in-operational.

[00513] In process 2408, subscription information for the mobile devices serviced by the

one component is retrieved by a remaining set of the multiple components exclusive of the

one component, since the component servicing the mobile devices will generally already

have access to the respective subscription information. The other component can poll on

behalf of the mobile device using subscription information for the mobile device retrieved

from a repository. In one embodiment, the repository (e.g., the repository 130 of FIG. lA-1)

couples each of the multiple components for providing mobile traffic management services

such that information regarding different mobile devices, different mobile networks, different

users, and/or different mobile operator networks can easily be shared among the redundant

system components. In process 2410, content received as a result of polling by the other

component of the multiple components is received at the mobile device.

[00514] FIG. 25 depicts a flow chart illustrating an example process for determining

whether to initiate a failover process for fault tolerance of a mobile traffic management

service.

[00515] In process 2502, a failed attempt to connect to a proxy server is detected. The

failed attempt can be detected, for example, by a local proxy on a mobile device remotely

coupled to the proxy server and the failed attempt can be a failed attempt to connect to the

proxy server by the mobile device.

[00516] In process 2504, it is determined if the proxy server is reachable using a status of

an active network connection at the mobile device. In one embodiment, the proxy server is

determined to be reachable or unreachable by a mobile device which attempts to connect to

the proxy server, using a status of an active network connection at the mobile device. In some

instances, the status of the active network connection can be determined by a mobile

operating system of the mobile device.

[00517] In process 2506, if the proxy server is reachable, a failover process by

reconfiguring DNS routing rules in process 2508. The process continues at flow 'A' in FIG.

26 for the example steps in configuring DNS routing rules. The processes can include, for

example, de-configuring the DNS routing rules, restoring original DNS properties using DNS

values determined from, for example, a native operating system of the mobile device If,

however, the proxy server is not reachable, the failover process is not initiated in step 25 10.

The traffic management service can be provided by the proxy server and leveraged by the

client/mobile device can include background and foreground traffic management on the

mobile device, and/or mobile device resource management and network resource

management. The proxy server can further facilitate conservation WIFI network resources, or

resources of other types of networks.

[00518] FIG. 26 depicts a flow chart illustrating an example process for reconfiguring

DNS routing rules in a client-side failover event.

[00519] In process 2602, valid DNS values to be used in case of a failure are identified. In

process 2604, failure to connect to a remote proxy at the mobile device is detected. The

failover process is initiated after a number of connection attempt failures with the remote

proxy or after a single failure event. Each of the number of connection attempts can be

separated by a predetermined or adjustable time interval on the order of, for example,

nanoseconds, milliseconds, etc. The number of connection attempt failures to trigger the

failover process at the client side can be predetermined, configurable or reconfigurable, for

example, based on the mobile platform/operating system, user settings, device manufacturer

settings, mobile operator settings, or network conditions, for example. In one embodiment,

the remote proxy facilitates management of device resources for the mobile device.

[00520] The failover process can be initiated by, for example, in process 2606, de-

configuring the current DNS routing rules used with the remote proxy. In process 2608,

original DNS system properties are restored using the valid DNS values. In one embodiment,

the valid DNS values are, for example, determined from a native operating system of the

mobile device. For example, the valid DNS values can include Android DNS1 and DNS2

properties. After restoration, in process 2614, the client can exit the fail over process, for

example, under one or more of two conditions: after timer expiration 2610 and/or

successfully connecting to the remote proxy in 2612. In process 2616, the DNS routing rules

specific to the remote proxy for facilitation of the management of device resources is

reconfigured.

[00521] FIG. 27 shows a diagrammatic representation of a machine in the example form

of a computer system within which a set of instructions, for causing the machine to perform

any one or more of the methodologies discussed herein, may be executed.

[00522] In alternative embodiments, the machine operates as a standalone device or may

be connected (e.g., networked) to other machines. In a networked deployment, the machine

may operate in the capacity of a server or a client machine in a client-server network

environment, or as a peer machine in a peer-to-peer (or distributed) network environment.

[00523] The machine may be a server computer, a client computer, a personal computer

(PC), a user device, a tablet PC, a laptop computer, a set-top box (STB), a personal digital

assistant (PDA), a cellular telephone, an iPhone, an iPad, a Blackberry, a processor, a

telephone, a web appliance, a network router, switch or bridge, a console, a hand-held

console, a (hand-held) gaming device, a music player, any portable, mobile, hand-held

device, or any machine capable of executing a set of instructions (sequential or otherwise)

that specify actions to be taken by that machine.

[00524] While the machine-readable medium or machine-readable storage medium is

shown in an exemplary embodiment to be a single medium, the term "machine-readable

medium" and "machine-readable storage medium" should be taken to include a single

medium or multiple media (e.g., a centralized or distributed database and/or associated

caches and servers) that store the one or more sets of instructions. The term "machine-

readable medium" and "machine-readable storage medium" shall also be taken to include any

medium that is capable of storing, encoding or carrying a set of instructions for execution by

the machine and that cause the machine to perform any one or more of the methodologies of

the presently disclosed technique and innovation.

[00525] In general, the routines executed to implement the embodiments of the disclosure

may be implemented as part of an operating system or a specific application, component,

program, object, module or sequence of instructions referred to as "computer programs." The

computer programs typically comprise one or more instructions set at various times in

various memory and storage devices in a computer that, when read and executed by one or

more processing units or processors in a computer, cause the computer to perform operations

to execute elements involving the various aspects of the disclosure.

[00526] Moreover, while embodiments have been described in the context of fully

functioning computers and computer systems, those skilled in the art will appreciate that the

various embodiments are capable of being distributed as a program product in a variety of

forms, and that the disclosure applies equally regardless of the particular type of machine or

computer-readable media used to actually effect the distribution.

[00527] Further examples of machine -readable storage media, machine-readable media,

or computer-readable (storage) media include but are not limited to recordable type media

such as volatile and non-volatile memory devices, floppy and other removable disks, hard

disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital

Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and

analog communication links.

[00528] Unless the context clearly requires otherwise, throughout the description and the

claims, the words "comprise," "comprising," and the like are to be construed in an inclusive

sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of

"including, but not limited to." As used herein, the terms "connected," "coupled," or any

variant thereof, means any connection or coupling, either direct or indirect, between two or

more elements; the coupling of connection between the elements can be physical, logical, or a

combination thereof. Additionally, the words "herein," "above," "below," and words of

similar import, when used in this application, shall refer to this application as a whole and not

to any particular portions of this application. Where the context permits, words in the above

Detailed Description using the singular or plural number may also include the plural or

singular number respectively. The word "or," in reference to a list of two or more items,

covers all of the following interpretations of the word: any of the items in the list, all of the

items in the list, and any combination of the items in the list.

[00529] The above detailed description of embodiments of the disclosure is not intended

to be exhaustive or to limit the teachings to the precise form disclosed above. While specific

embodiments of, and examples for, the disclosure are described above for illustrative

purposes, various equivalent modifications are possible within the scope of the disclosure, as

those skilled in the relevant art will recognize. For example, while processes or blocks are

presented in a given order, alternative embodiments may perform routines having steps, or

employ systems having blocks, in a different order, and some processes or blocks may be

deleted, moved, added, subdivided, combined, and/or modified to provide alternative or sub

combinations. Each of these processes or blocks may be implemented in a variety of

different ways. Also, while processes or blocks are at times shown as being performed in

series, these processes or blocks may instead be performed in parallel, or may be performed

at different times. Further any specific numbers noted herein are only examples: alternative

implementations may employ differing values or ranges.

[00530] The teachings of the disclosure provided herein can be applied to other systems,

not necessarily the system described above. The elements and acts of the various

embodiments described above can be combined to provide further embodiments.

[00531] Any patents and applications and other references noted above, including any

that may be listed in accompanying filing papers, are incorporated herein by reference.

Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and

concepts of the various references described above to provide yet further embodiments of the

disclosure.

[00532] These and other changes can be made to the disclosure in light of the above

Detailed Description. While the above description describes certain embodiments of the

disclosure, and describes the best mode contemplated, no matter how detailed the above

appears in text, the teachings can be practiced in many ways. Details of the system may vary

considerably in its implementation details, while still being encompassed by the subject

matter disclosed herein. As noted above, particular terminology used when describing certain

features or aspects of the disclosure should not be taken to imply that the terminology is

being redefined herein to be restricted to any specific characteristics, features, or aspects of

the disclosure with which that terminology is associated. In general, the terms used in the

following claims should not be construed to limit the disclosure to the specific embodiments

disclosed in the specification, unless the above Detailed Description section explicitly defines

such terms. Accordingly, the actual scope of the disclosure encompasses not only the

disclosed embodiments, but also all equivalent ways of practicing or implementing the

disclosure under the claims.

[00533] While certain aspects of the disclosure are presented below in certain claim

forms, the inventors contemplate the various aspects of the disclosure in any number of claim

forms. For example, while only one aspect of the disclosure is recited as a means-plus-

function claim under 35 U.S.C. § 112, 6 , other aspects may likewise be embodied as a

means-plus-function claim, or in other forms, such as being embodied in a computer-readable

medium. (Any claims intended to be treated under 35 U.S.C. §112, 6 will begin with the

words "means for.") Accordingly, the applicant reserves the right to add additional claims

after filing the application to pursue such additional claim forms for other aspects of the

disclosure.

Claims

What is claimed is:

1. A system for mobile traffic management and network resource conservation with fault

tolerance mechanisms, the system, comprising:

a first arm of servers to perform mobile traffic management or network

resource conservation services;

a second arm of servers to perform mobile traffic management or network

resources conservation services;

a storage component to which the first arm of servers and the second arm of

servers are coupled.

2 . The system of claim 1, wherein, the first and second arms of servers are physically

located in different data centers.

3 . The system of claim 1, wherein, the first and second arms of servers are physically

located in a same data center.

4 . The system of claim 1, further comprising additional arms of servers coupled to the

storage component.

5 . The system of claim 1, wherein, the first arm of servers includes, one or more of, a

notification server, a relay server, a policy management server, a traffic harmonizer

server.

6 . The system of claim 5, wherein, the first arm of servers further includes, a polling

server.

7 . The system of claim 1, wherein, the first arm of servers includes, a polling server and

a traffic harmonizer server.

8. The system of claim 5, wherein, the notification server is included in the first arm of

servers in redundancy; wherein, the relay server is included in the first arm of servers

in redundancy.

9 . The system of claim 5, wherein, the policy management server is included in the first

arm of servers in redundancy; wherein, the traffic harmonizer server is included in the

first arm of servers in redundancy.

10. The system of claim 6, wherein, the polling server is included in the first arm of

servers in redundancy.

11. A system of redundant clustered machines to provide failover mechanisms for mobile

traffic management or network resource conservation services, the system,

comprising:

a first set of redundantly clustered machines coupled to a second set of

redundantly clustered machines via a common repository node;

wherein, each of the first and second set of redundantly clustered machines

function independently to provide mobile traffic management or network resource

conservation services.

12. The system of claim 11, wherein, subscription information for a mobile device

serviced by the first set of redundantly clustered machines is accessible by the second

set of redundantly clustered machines via the common repository node.

13. The system of claim 11, wherein, the first set of redundantly clustered machines

located in a given location is able to service a mobile device until the mobile device

roams to another location serviced by the second set of redundantly clustered

machines.

14. The system of claim 11, wherein, the first set of redundantly clustered machines

located in a given location is able to service a mobile device unless a failover occurs

at the given location.

15. The system of claim 11, wherein, the first set of redundantly clustered machines

located in a given location is able to service a mobile device; wherein, given capacity

issues at the given location, the mobile device is transferred to be serviced by the

second set of redundantly clustered machines at a different location; wherein,

subscription information for the mobile device is loaded on the second set of

redundantly clustered machines from the common repository node.

16. The system of claim 11, wherein,

the first set of redundantly clustered machines includes, one or more of:

a notification component; wherein, the notification component includes

multiple notification servers; and

a relay component; wherein, the notification relay includes multiple relay

servers.

17. The system of claim 11, wherein, a first set of redundantly clustered machines

includes, a policy management component; wherein, the policy management

component includes multiple policy management servers.

18. The system of claim 11, wherein, the first set of redundantly clustered machines

includes, one or more of:

a traffic harmonizer component; wherein, the traffic harmonizer component

includes multiple traffic harmonizer servers;

a polling component; wherein, the polling component includes multiple

polling servers.

19. A method for providing fault tolerance in mobile traffic management services, the

method comprising:

detecting that one component of multiple components for providing mobile

traffic management services is non-operational, at capacity or near capacity;

identifying mobile devices serviced by the one component;

retrieving, by a remaining set of the multiple components exclusive of the one

component, subscription information for the mobile devices serviced by the one

component, from a storage component coupled to the one and the multiple

components.

20. The method of claim 19, further comprising, allocating the mobile devices originally

serviced by the one component, among the remaining set of the multiple components

for servicing, using the subscription information.

2 1. The method of claim 20, wherein, one of the remaining set of the multiple

components polls associated hosts for subscriptions of its allocated subset of the

mobile devices originally serviced by the one component, using the subscription

information.

22. The method of claim 21, wherein, invalidations of cache entries on the mobile device

are sent to the allocated subset of the mobile device originally serviced by the one

component, from one of the remaining set of the multiple components in clear text;

wherein, the cache entries were stored on the mobile device for mobile traffic

management.

23. The method of claim 22 wherein, the invalidations are sent via SMS in clear text.

24. The method of claim 19, wherein, the one component is detected to be non-

operational by the mobile device which it services.

25. The method of claim 19, wherein, the one component is detected to be non-

operational by others of the multiple components.

26. A method for utilizing fault tolerance failover provided by a mobile traffic

management service, the method comprising:

in response to detecting, by a mobile device, that connection to one component

of multiple components for providing mobile traffic management services cannot be

established;

connecting to another component of the multiple components;

negotiating a new encryption key with the other component for secure

communication with the other component;

wherein, the mobile device is assigned a unique identifier by the other

component;

receiving, at the mobile device, content received as a result of polling by the

other component of the multiple components.

retrieving, by a remaining set of the multiple components exclusive of the one

component, subscription information for the mobile devices serviced by the one

component, from a storage component coupled to the one and the multiple

components.

27. The method of claim 26, wherein, the detection is performed by an operating system

of the mobile device.

28. The method of claim 26, wherein, the detection is performed by a local proxy on the

mobile device that is not a native component of an operating system of the mobile

device.

29. The method of claim 26, wherein, the other component polls on behalf of the mobile

device using subscription information for the mobile device retrieved from a

repository coupling each of the multiple components for providing mobile traffic

management services.

A system for providing fault tolerance in mobile traffic management services, the

system, comprising:

means for, detecting that one component of multiple components for providing

mobile traffic management services is non-operational, at capacity or near capacity;

means for, identifying a mobile device serviced by the one component;

means for, retrieving, subscription information for the mobile device serviced

by the one component, from a repository coupled to the one component and the

multiple components;

means for, re-assigning the mobile device originally serviced by the one

component, to another one of the multiple components, for servicing;

means for, polling associated hosts for subscriptions of the mobile device

originally serviced by the one component, using the subscription information, to

satisfy requests at the mobile device.

INTERNATIONAL SEARCH REPORT International application No.

PCT/US2012/068278
A. CLASSIFICATION OF SUBJECT MATTER

H04L 12/703(2013.01)i, H04L 12/851(2013.01)1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04L 12/703; G06F 15/173; H04J 3/14; G06F 17/30; H04M 3/42

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & keywords: mobile traffic management, failover, redundant, subscription information, retrieve, encryption

key, negotiate, mobile device, reassign

c . DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2009-0271491 Al (SHA0WEI PAN) 29 October 2009 1 , 11-14 , 19-20

See paragraphs 20-23 , 29-39 , 41-54 ; and f igs . 1-3. , 24-25

2-10 , 15-18 ,21-23

, 26-30

US 2006-0253575 Al (STEPHEN R. CARTER e t a l .) 09 November 2006 1 , 11-14 , 19-20

See paragraphs 19-30 , 37-45 ; and igs . 1 , 3 . , 24-25
2-10 , 15-18 ,21-23

, 26-30

US 2010-0036885 Al (JINMEI SHEN e t a l .) 11 February 2010 1-30

See paragraphs 32-41 ; and f igs . 2-4.

US 2007-0165516 Al (JIANMING XU e t a l .) 19 July 2007 1-30

See paragraphs 46 , 49 53 , 56~ 57 ; and igs . 3a, 4a, 5a.

US 2003-0021400 Al (CHARLES M. GRANDGENT e t a l .) 30 January 2003 1-30

See paragraphs 41-95 ; and f igs . 1-2 .

Further documents are listed in the continuation of Box C . patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited t o establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

20 MARCH 2013 (20.03.2013) 21 MARCH 2013 (21.03.2013)
Name and mailing address of the ISA/KR Authorized officer

BYUN, Sung Cheal TO
\n p

F o . 82-42-472-7140 Telephone No. 82-42-481-8262 "i

Form PCT/ISA/210 (second sheet) (My 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2012/068278

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2009- 27 149 A 1 29 . 10 .2009 US 2012-002607 A1 05. 0 1 .2012
US 8046420 B2 25. 10 ,,201 1

us 2006--0253575 A 1 09 . 11.2006 US 7076555 B1 11.07 ,,2006
US 7996517 B2 09. 08 ,,201 1

us 2010--0036885 A 1 11.02 .20 10 AT 518189 T 15. 08 ,,201 1
CN 102105867 A 22. 06 ,,201 1
EP 2281240 A1 09. 02 ,,201 1
EP 2281240 B1 27. 07 ,,201 1

P 0510290 1 B2 05. 10 2012
P 201 1-530 127 A 15. 12 ,,201 1

KR 10-201 1-0044858 A 02. 05 ,,201 1
O 2010-015574 A1 11.02 ,,2010

us 2007--01655 16 A 1 19 . 07 .2007 CN 1969494 A 23. 05 2007
CN 1969494 CO 23. 05 ,,2007
EP 1719282 A1 08. 11,,2006
EP 1719282 A4 17. 06 2009
US 7577090 B2 18. 08 ,,2009

O 2005-08 1447 A1 0 1 . 09 ,,2005

us 2003--0021400 A 1 30 . 0 1 .2003 None

Form PCT/ISA/210 (patent family annex) (y 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

