a2 United States Patent

US006405272B1

10y Patent No.: US 6,405,272 B1

Regis 5) Date of Patent: Jun. 11, 2002
(54) SYSTEM AND METHOD FOR ARBITRATION 4,914,574 A 4/1990 Terada et al. 364/200
OF A PLURALITY OF PROCESSING 4,974,148 A * 11/1990 Matteson 713/600
N
MODULES 5,101,482 A * 3/1992 Kipnisccccovuiviinnnnns 710/118
5,159,551 A 10/1992 Brunnett et al. 364/413.13
. : : 5,253,347 A 10/1993 Bagnoli et al. 395/325
(75) Inventor: Robert T. Regis, Huntington, NY (US) 5263163 A * 11/1993 Holt et al. 7101242
. . . e . 5,276,684 A 1/1994 Pearson
(73) Assignee: Iw“.tlerplg“al g‘gh{}“sl“gy Corporation, 5287463 A 2/1994 Frame et al. oo, 395/325
mington, (US) 5355453 A 10/1994 Row etal.cccccon....... 395/200
)) o) 5396599 A 3/1995 Cobbs et al. 395/325
(*) Notice: Subject to any disclaimer, the term of this 5308243 A * 3/1995 Aguilhoh et al. 370/438
patent is extended or adjusted under 35 5,509,126 A 4/1996 Oprescu et al. 395/307
U.S.C. 154(b) by 0 days. 5,557,754 A * 9/1996 Sone et al. 710/107
5,561,669 A 10/1996 Lenny et al. 370/352
. 5,572,687 A * 11/1996 Alnuweiri 710/123
(21) Appl. No.: 09/079,600 ~le
5,689,657 A * 11/1997 Desor et al. 710/119
22) Filed: May 15. 1998 5,740,174 A * 4/1998 Somercccceeivnnn. 370/402
() v 5,754,800 A * 5/1998 Lentz et al 710/116
Related U.S. Application Data 5,884,051 A * 3/1999 Schaffer et al. 710/107
5,968,154 A * 10/1999 Choocevvvvvvvvvenennnnnnnn 710/119
(63) Continuation of application No. 08/671,221, filed on Jun. 6,157,963 A * 12/2000 Courtright, I et al. 710/5
7
(51) Int. CL7 o GO6F 13/368 EP 0022170 A2 1/1981 HO41/5/00
(52) U-S- Cl- .. 710/121, 710/107 EP 0525860 A2 2/1993 G06F/13/28
(58) Field of Search 710/119-125, 107-112; Ip S5837725 3/1983
370/438-439 JP H773138 3/1995
. .
(56) References Cited cited by examiner
Primary Examiner—Sumati Lefkowitz
U.S. PATENT DOCUMENTS .
74) Attorney, Agent, or Firm—Volpe and Koenig, P.C.
Y, Ag p g
4156277 A 5/1979 Seitz et al. wovrevereeenn.. 364/200
4202623 A 9/1981 FEswaran et al. (57) ABSTRACT
4,458,314 A 7/1984 Grimescceevveeveennnn 364/200 bi . hich all ication b
4467418 A * 8/1984 QUINQUIS .ooovrerrvrenne.. 710/119 ~ Anarbitration system which allows communication between
a plurality of competing processing modules over a share
4,480,307 A 10/1984 Budde et al. ..oooovveenee. 364/200 plurality of competing p g modull shared
4570220 A 2/1986 Tetrick et al. vvvevnnn.. 364/200 communication bus. The system comprises an arbitration
D70, / / Yy p
4,608,700 A 8/1986 Kirtley, Ir. et al. 375/36 line coupled to a controller located on each processing
4,626,843 A * 12/1986 Szeto et al. 340/825.5 module. When a processing module desires access to the
4,646,232 A 2/1987 Chang et al. .ocooveennes 364/200 communication bus, each controller, executing the same
j,ggz,égg 2 * Z }gg; SDCI;I]n}d ettali 3403/%/582 arbitration protocol, shifts its respective module address
675, eVries et al.ooeeeennes e . . e .
4719458 A * 1/1988 Miesterfeld cf al. ... 340/825.5 onto the arbltrgt.lon line and monitors the arbitration line to
4744079 A 5/1988 Csapo et al. w..ooooveeeeen.. 37004 detect for collisions.
4,768,145 A 8/1988 Wheelwright et al. 364/200
4,818,985 A 4/1989 Tkedacccccovveennnnn. 340/825.5 16 Claims, 17 Drawing Sheets

i

1

I

{FIFQ READ EN
1

: J
I

|

DATABIT 6

NO MATCH
CLEAR ARB FF

CLEAR
ARBITRATE

SET FIFO TO

7
FF,
READ ENABLE |
NO MATCH
CLEAR ARB FF
/ |

NO MATCH
CLEAR ARB FF

US 6,405,272 Bl

Sheet 1 of 17

Jun. 11, 2002

U.S. Patent

/ o/l

\

pajualio-Blep 4 pajualio fowaw

— ‘aw-|eas — ~— ousdwnueydje —

*o19 ‘Juawiedxa ‘ssavoid

;4 |

Bumm:
O_ <B hmto_a
leybip| { av | |1eund

TR WOod ad
@ssjseafeseatsl mamw

] 3SIp

ssew — Aowsw ——

Ndo
r——71
* sbey _ Hun ".m:omo.__
oibo} | — lhw.o
e Ho.ad
opoJap nd
Jsui AOES

siaysibal

JO1lU0D SNnq |

ST

——————— Snq Bjep

14V HOIldd

1Ol

‘[e10ads 1wag jeuoieN (p) “1sows (o) ‘uuoo ped-g Ajisusp ybiy-H

¢ 10309UU09 uid-g6 ,pled0ing, Led-z-Nig ‘3bpe-pled-33(q)
‘s3dniivjul SAISUSS-]aAS)| 10-26pd sjqewweiboid-¢

‘diysselsew snq el Jul, -W(,owW je 3ool,,) INV1-1¢eAnIsuas-abpa-3(e)

US 6,405,272 Bl

$8)BJO AUBW SSOJOB UoHERIIUNWIWOD H 03 W VO, . . ze ZE 091 sngiseq
Py — Vv 0zl shgasmmng
€-NNS MOVl pauteyo-Asiep NI@ 1LL 2 ¥V -« — - ZEWZ'9L 2EIL'S ob INA
o JJOIS JOd IN] PojROIpap L SppE JJysSoude NI 1L W S - ¢ ° 4 rA> ot sngnN
~ asMIaYIO WOZ “1ojx NIq 1oy s/gmop ‘Avted NI TLL W S - - - 2ZE'YL 2E'YEOL'e Op IISNAWINN
- Auted ‘sales 098 ‘08LXVA dIZ L b S . - o 2E 2EPEil's £l 19 XVA
e snqg jonuoo p uopisnboeelep ID DOMLL 1 S — — ¢ 6 e 5 JVAVO
a sioyjopue -NAS RNl 3D 1L 8 V. o+ — — 1202 glL'g oL | SnqQRINW
3 MOVI pauleya-Asiepi‘I-XVATLL-ST 30 (P v Vv - - ¢ A4 gl Z snq -0
7 ainByuos-one ‘gZ/Sd Wal 30 1ML LL v+ — ¢ (2€)ve (eg)9L’s 0T [BUUBYDOIINW
ainbyuoo-olne ‘1y/0d pedoueyqua 30 ILL dLE S -+ — - gE'pZ0e ge'al's €€ S E|
spied |x/od sideooe 39 1L IO S (9) — — ve'oe gL‘s £'s Lv/od
~ ssjqnedwod 3 0d Wgdi leutbpyo 30 4L 3§ S — — — 0c 8 AN S 1X/0d
= suopjeojdde sdAy-s9qo0Uuc0d 39 L LS T T T 9l 8 snq dls
« Sjuswwol a @ © o o & ¢ ypwm UM (s/elAqn) sng
= s £ 83 ¢ m $ sseippy @leq wipmpuEq
o (8] ‘= =
5 e 4 J3F E g% MvH
- . 25333
o N = vw
D
=
Ldv Hoidd

¢ Ol

U.S. Patent

US 6,405,272 Bl

Sheet 3 of 17

Jun. 11, 2002

U.S. Patent

08
i ! _ -
—t——t————————— - T T T T |
_ MG |
" 22 9z ve €€~ 0014 "WwWo)H "
R I A | o/l ;elleied| |
! Ol [elias |
_ jos diu9
| oI o4ld |
|| 108UOD | spj@0ey | nwsuely 4RO VIND ”
| 20INO |
L 09£89 _
|
I "
sng ejed “ m “ ov w 8¢ H 9€ ¢E ™ _
B SS2IPPY " 0¢ 0 ! “
| |
| aws axels | | aels Ndo _
| WOHd 0v00389 |
|| wvda | | wvds| |HSYd _ |
L ve _

US 6,405,272 Bl

Sheet 4 of 17

Jun. 11, 2002

U.S. Patent

T . ,,,,i
ﬁ e T b
gHay. :
; a 24ay gHAV dn
ZHAY dn ¢
) oHqY |—tHav dn . _
\ 840V dn 8 —J(8:v)4av dn
! AW I o———= - ——CIN ALdWT 3Xd
N4 axLo—CALdWE XL (Vi LINSNVHL HO4 3SN)
ALdWT dxypp—tT10d dX1 - I ALIWT XY
v N ALdWE d4XH (VIWa AI3934 3LVILINI OL 33n)
1IN4 4XE0
N TInd X34
8 i~ - \ 9¢ -
N 13S38p0— <IN 13S3H
24P — <IN Sa
oy 1 SOp— — NSO
MY —<IN MY
10 LoV_SN8 mw..hzw:m Xny
Y LoV sngpre=rs
44 1 asHI LIV $ng S
W10 snd SH ~
yHILIVESH
y43LTVESH
; —<IVI0 LY 8SH
s —< N0 8SH—~
s —CJLSHNL 2
5~ — W HILSVW

V'Ol

US 6,405,272 Bl

' TTTTT H
. m
R A
- NI0dT X3 04
TR
N3)04007 o T 00
ppo——r—=—
ox 4 1
~ 999W IXH 1
— 180N axy 5
S P Lv
= 930N SXH T o _
v GO bXy —1 (8:2)Lva SH
- A exXy —1
3 £30N o 2
= 280M 1Xd]
7 190N oxd ;
s
E @ 4
TR e T
m N N3 V 8SH —CHM 4XY Mxxw i o»
S ——dad 3xL XL %
= S IECEIE) 1
= —qINO NOT S 201 Toh
i L quIsay 4xL 1 g
E L dumdxt oXL 7
ax3 _
DHF XL 240 4
oHr Xd mmm .m.m
VLW hg 7
£Ha g
. z4d &2
ay ol :
050}) I

U.S. Patent

US 6,405,272 Bl

Sheet 6 of 17

Jun. 11, 2002

U.S. Patent

(0-16)va @
- <
0414 LINSNVHL x
N 52 6X)140:lld oy 52_6X0110314
ON ZTINFHNOISNYAXS] Odld IAE03H | 7] TIFHNOISNVAXS 5,
7 ALdW3 — 23 ALdW3 .I|_|D\|oo>
Fdqind 0 i 8
or] £ 8ra X1
{72 @ 9 A T4
s 12 g A
% 0% ¥ 0¢ 9
Ji 6l 3 13 i/
82 oL 2 b 82
6% ¢l b
0E 1} 0 9 113
1€ o [L I3
zo_mzzxmj NOISNVdXIP5—" y
LIWSNYHLIH/AYO LINSNVELIHIAVO Per = Tmyig
JLHM LMD X0t
avay Qv gy
— 1353 e 1353 Pey
% EXOML04 B LLLLL L w 6XO1LOdH Q0A|,
a

US 6,405,272 Bl

Sheet 7 of 17

Jun. 11, 2002

U.S. Patent

szilavh. T
= = © napd-
N Lovsng xny 8| d - oF _
‘- —
— LdNHEIINI XL 4
LdNYYHILINS XY
ol
002
szLiavy.
S o LS —
N 1ovsng 8l NP NN3 ¥ 8SH
~ @
£5
0 SZLL8VYL 268 YhL
T /ﬂ ——= & ZJOm 7 = = | <
YO 107 8SH v3 107 gSH \@P% 0} LNO 88V H .
~— 6§ A .
§21LEVHL —
a Al
w1 sngsH L <N3Pg g
d ~
. —
av ol —

US 6,405,272 Bl

Sheet 8 of 17

Jun. 11, 2002

U.S. Patent

0e

vysng
vLva
gSH

cgLavyL

(8:2)¥Lva gsH <&

mm\

J0A

PG~

~ Oho|<im|oy— O

N F18YNT XL

~ A

1

N NIV 8S

<4

<3

1NO WO3 SH

sLlavys

7 V138 8SH

=1 Ak

7 ¥135 9SH

€

A
N3

@)

a

k<

CESVL *

AY

d

L]

US 6,405,272 B1

Sheet 9 of 17

Jun. 11, 2002

U.S. Patent

ejeq ywsuel) — Odld HWSUBLL) e

eled
gSH

2

\

jonuod gSH

uonesaly

gSH
LO&E m>_oomm|/

9¢

oY

juwsuel] HEIS
(euop YWQ)

(yuas obessowd) 1dnuisiy]

G

51

spuewwo) pesy

18]|01u0Q
vind

!

2

uels pue
lajsuey} dnids

105S920.d

(43

US 6,405,272 Bl

OF ~1

N J84ng

¢ dayng
¢ 1aynd
L 1ayng

Al1OWBN INVH

SpUBWIWO)

ve eleq obessap

Ry

~
—
= O4ld Hwsuel}
=]
—
b
3
= 22
g 0
= |01ju0) gSH
=
[g\]
= 9
i eleq abesssiy NN
= SAlIB08Y
2 !
Odld 8Al809Yy
eleq gSH

U.S. Patent

AA1909Y

221A19S }sonbay

9'OIl4

abessap 1O pu3 - suoQd

I/Q_:s
£€
5

18]j01U0D
YWa

!

dneg
1dnuaiyy
ponlaoay obessaiN

A%

v 10553820.1d

US 6,405,272 Bl

Sheet 11 of 17

Jun. 11, 2002

U.S. Patent

0S
g .
m £E — 30 1y
g8l ™ .ool_mh._h_orhwnn_v_ 8c ‘5014 ‘WWo)
cct 2t | pz1 o/l I9llesed ¢ ve o/l 19ljesed
IS { Y O/l 21195 { 0 O/l [e13S
: jos diyd jos diyo
IO VNG| zz 10 YNNG
josuod | O4id 0414 39IN0 [oJuod | Odid Odid 391N
TH |ea1@oay |wsuel) 09£89 TH |oAl@d9Y |HWSUELL 09£89
08~ # « | % « e !
shaoiea « « « sng eled “ 0 «
B SSAIPPY 9 SSAIPPY
-] ndo
A%
| aws | |axzLs| |axels oS oy~ W8 | |Exgis| |axeLs 0v00389

ob L ~A WOHd WOHd

WvHa | |WvHS | |HSVd c Wvda | |Wvds | |HSVd

o) e 0 (

gl 9gt 8¢ 9g

// el

/"9l

US 6,405,272 Bl

Sheet 12 of 17

Jun. 11, 2002

U.S. Patent

Y

Ndd HO0SS300Hd

1S3N034 LINSNVH.L HV31O

14V1S

8.

3lvdligdyv

9.

80ld

08

~

JHINONI
174

0L

LINX
14V1S

=

U.S. Patent Jun. 11, 2002 Sheet 13 of 17 US 6,405,272 B1

NO BUS
ACTIVITY

NO BUS
ACTIVITY

BUS
ACTIVITY

BUS
ACTIVITY

NO BUS NO BUS
ACTIVITY ACTIVITY
BUS
ACTIVITY
ACTIVITY
NO BUS NO BUS
ACTIVITY ACTIVITY

NO BUS
ACTIVITY

U.S. Patent Jun. 11, 2002 Sheet 14 of 17 US 6,405,272 B1

r-———————— === == 'll
{

{ ARB FF |
} FIFO READ EN J {
| |
| J - K I
| |
| |
|

S B U |

BIT
ERROR

CLEAR

ARBITRATE
FF,

SET FIFO TO

READ ENABLE

DATABIT 6

NO MATCH
CLEAR ARB FF

NO MATCH
DATA | CLEAR ARB FF

NO MATCH

CLEAR
NO MATCH ARB
CLEAR ARB FF FF

NO MATCH
CLEAR ARB FF

DATA DATA
BIT BIT
4 2

U.S. Patent Jun. 11, 2002 Sheet 15 of 17 US 6,405,272 B1

FIG.11

CLEAR SEIZE
CLEAR XMIT EN

CLEAR XMIT REQ TRANSMIT ENABLE

CLEAR FIFO,
READ ENABLE

FIG.12

84
N 89
RCVR RCVR

INT J ALERT

86 88

U.S. Patent Jun. 11, 2002 Sheet 16 of 17 US 6,405,272 B1

FIG.13

BUS
ACTIVE
BUS
BUS
ACTIVE AOTVE
BUS
BUs s ACTIVE
ACTIVE ACTIVE

!
1

—_——

U.S. Patent Jun. 11, 2002 Sheet 17 of 17 US 6,405,272 B1

FIG.14

CLEAR STORED DATA

RECEIVER
READY

-~

NOT MY
ADDRESS

US 6,405,272 B1

1

SYSTEM AND METHOD FOR ARBITRATION
OF A PLURALITY OF PROCESSING
MODULES

CROSS REFERENCE TO RELATED
APPLICATION

This is a continuation of application Ser. No. 08/671,221,
filed on Jun. 27, 1996, now U.S. Pat. No. 5,754,803 which
incorporates by reference application Ser. No. 08/669,775,
filed Jun. 27, 1996, now U.S. Pat. No. 5,799,010 as if fully
set forth.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to a system for transfer-
ring data between a data processing module and a plurality
of data processing modules. More particularly, the invention
relates to a high-speed data communication system which
transfers information between different digital processing
modules on a shared parallel bus.

2. Description of the Related Art

For communication within a digital device, such as
between a CPU (central processing unit), memory,
peripherals, I/O (input/output) devices, or other data
processors, a communication bus is often employed. As
shown in FIG. 1, a communication bus is a set of shared
electrical conductors for the exchange of digital words. In
this manner, communication between devices is simplified,
thereby obviating separate interconnections.

A communication bus typically contains a set of data
lines, address lines for determining which device should
transmit or receive, and control and strobe lines that specify
the type of command is executing. The address and strobe
lines communicate one-way from a central processing unit.
Typically, all data lines are bidirectional.

Data lines are asserted by the CPU during the write
instruction, and by the peripheral device during read. Both
the CPU and peripheral device use three-state drivers for the
data lines.

In a computer system where several data processing
devices exchange data on a shared data bus, the two normal
states of high and low voltage (representing the binary 1’s
and 0’s) are implemented by an active voltage pullup.
However, when several processing modules are exchanging
data on a data bus, a third output state, open circuit, must be
added so that another device located on the bus can drive the
same line.

Three-state or open-collector drivers are used so that
devices connected to the bus can disable their bus drivers,
since only one device is asserting data onto the bus at a given
time. Each bus system has a defined protocol for determin-
ing which device asserts data. A bus system is designed so
that, at most, one device has its drivers enabled at one time
with all other devices disabled (third state). A device knows
to assert data onto the bus by recognizing its own address on
the control lines. The device looks at the control lines and
asserts data when it sees its particular address on the address
lines and a read pulse. However, there must be some external
logic ensuring that the three-state devices sharing the same
lines do not talk at the same time or bus contention will
result.

Bus control logic or a “bus arbiter” executes code for the
protocol used to arbitrate control of the bus. The bus master
may be part of a CPU or function independently. More
importantly, control of the bus may be granted to another

10

15

20

25

30

35

40

45

50

55

60

65

2

device. More complex bus systems permit other devices
located on the bus to master the bus.

Data processing systems have processors which execute
programmed instructions stored in a plurality of memory
locations. As shown in FIG. 1, The processed data is
transferred in and out of the system by using I/O devices
onto a bus, interconnecting with other digital devices. A bus
protocol, or handshaking rules delineate a predetermined
series of steps to permit data exchange between the devices.

To move data on a shared bus, the data, recipient and
moment of transmission must be specified. Therefore, data,
address and a strobe line must be specified. There are as
many data lines as there are bits in a word to enable a whole
word to be transferred simultaneously. Data transfer is
synchronized by pulses on additional strobe bus lines. The
number of address lines determines the number of addres-
sable devices.

Communication buses are either synchronous or asyn-
chronous. In a synchronous bus, data is asserted onto or
retrieved from the bus synchronously with strobing signals
generated by the CPU or elsewhere in the system. However,
the device sending the data does not know if the data was
received. In an asynchronous bus, although handshaking
between communicating devices assures the sending device
that the data was received, the hardware and signaling
complexity is increased.

In most high-speed, computationally intensive multichan-
nel data processing applications, digital data must be moved
very rapidly to or from another processing device. The
transfer of data is performed between memory and a periph-
eral device via the bus without program intervention. This is
also known as direct memory access (DMA). In DMA
transfers, the device requests access to the bus via special
bus request lines and the bus master arbitrates how the data
is moved, (either in bytes, blocks or packets), prior to
releasing the bus to the CPU.

A number of different types of bus communication sys-
tems and protocols are currently in use today to perform data
transfer. As shown in the table of FIG. 2, various methods
have been devised to manipulate data between processing
devices. Data communication buses having powerful SDLC/
HDLC (synchronous/high-level data link control) protocols
exist, along with standardized parallel transmission such as
small computer system interface (SCSI) and carrier-sense
multiple-access/collision-detection (CSMA/CD) (Ethernet)
networks. However, in specialized, high-speed applications,
a simplified data communication bus is desired.

Accordingly, there exists a need for a simplified data
processing system architecture to optimize data and message
transfer between various processor modules residing on a
data bus.

SUMMARY OF THE INVENTION

A parallel packetized intermodule arbitrated high speed
control data bus system is provided which allows high speed
communications between microprocessor modules in a more
complex digital processing environment. The system fea-
tures a simplified hardware architecture featuring fast FIFO
(first-in/first-out) queuing operating at 12.5 MHz, TTL
CMOS (complimentary metal-oxide silicon) compatible
level clocking signals, single bus master arbitration, syn-
chronous clocking, DMA, and unique module addressing for
multiprocessor systems. The present invention includes a
parallel data bus with sharing bus masters residing on each
processing module decreeing the communication and data
transfer protocols.

US 6,405,272 B1

3

The high-speed intermodule communication bus (HSB) is
used for communication between various microprocessor
modules. The data bus is synchronous and completely
bidirectional. Each processing module that communicates
on the bus will have the described bus control architecture.
The HSB comprises eight shared parallel data lines for the
exchange of digital data, and two additional lines for arbi-
tration and clock signals. No explicit bus request or grant
signals are required. The HSB can also be configured as a
semi-redundant system, duplicating data lines while main-
taining a single component level. The bus is driven by
three-state gates with resistor pullups serving as terminators
to minimize signal reflections.

To move data on the HSB, each processing module must
specify the data, the recipient, and the moment when the data
is valid. Only one message source, known as the bus master,
is allowed to drive the bus at any given time. Since the data
flow is bidirectional, the bus arbitration scheme establishes
a protocol of rules to prevent collisions on the data lines
when a given processing module microprocessor is execut-
ing instructions. The arbitration method depends on the
detection of collisions present only on the arbitration bus
and uses state machines on each data processing module to
determine bus status. Additionally, the arbitration method is
not daisy chained, allowing greater system flexibility.

The state machines located on each processing module are
the controlling interface between the microprocessor used
within a given processing module and the HSB. The cir-
cuitry required for the interface is comprised of a transmit
FIFO, receive FIFO, miscellancous directional/bidirectional
signal buffers and the software code for the state machines
executed in an EPLD (erasable programmable logic device).

Accordingly, it is an object of the present invention to
provide a system for high-speed digital data exchange
between data processing devices.

It is a further object of the invention to provide a simple
method of transferring data which has been processed into
and out of a digital system from a plurality of processing
modules onto a bus which interconnects all data processing
hardware.

It is a further object of the invention to provide an
improved, simple method of data transfer.

Other objects and advantages of the system and method
will become apparent to those skilled in the art after reading
the detailed description of the preferred embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a typical, prior art data
communication bids.

FIG. 2 is a table of prior art data bus architectures.

FIG. 3 is a simplified block diagram of the preferred
embodiment.

FIGS. 4A through 4D are electrical schematics.

FIG. 5 is a block diagram of the message transmit DMA.
FIG. 6 is a block diagram of the message receive DMA.
FIG. 7 is a block diagram of the digital processor system.

FIG. 8 is a general flow diagram of the transmit instruc-
tion.

FIG. 9 is a state diagram of the inquiry phase.
FIG. 10 is a state diagram of the arbitrate phase.
FIG. 11 is a state diagram of the transmit phase.

FIG. 12 is a general flow diagram of the receive instruc-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

4
FIG. 13 is a state diagram of the delay phase.

FIG. 14 is a state diagram of the receive phase.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The preferred embodiment will be described with refer-
ence to the drawing figures where like numerals represent
like elements throughout.

The high-speed intermodule bus (HSB) 20 of the present
invention is shown in simplified form in FIG. 3. The
preferred embodiment comprises a bus controller 22, a
transmit FIFO 24, a receive FIFO 26, an eight bit parallel
data bus 28 and a serial arbitration bus 50. The ends of the
bus 28 are terminated with a plurality of resistive dividers to
minimize signal reflections. An internal 8 bit address and
data bus 30 couples the transmit 24 and receive 26 FIFOs
and bus controller 22 to a CPU 32 and DMA controller 33
located on a given processor module 34. The internal
address and data bus 30 also permits communication
between the CPU 32 and bus controller 22 and various
memory elements such as PROM 36, SRAM 38, and DRAM
40 required to support the applications of the data processing
module 34.

The HSB 20 is a packetized message transfer bus system.
Various processor modules 34 can communicate data, con-
trol and status messages via the present invention.

The HSB 20 provides high speed service for a plurality of
processor modules 34 with minimum delay. The message
transfer time between modules is kept short along with the
overhead of accessing the data bus 28, and queuing each
message. These requirements are achieved by using a mod-
erately high clock rate and a parallel data bus 28 architec-
ture. Transmit 24 and receive 26 FIFOs are used to simplify
and speed up the interface between a processor module 34
CPU 32 and the data bus 28.

Referring to FIGS. 4A through 4D, a common clock
signal (HSB__CLK) 42 comprising a TTL compatible
CMOS level signal with a frequency nominally 12.5 MHz
and a duty cycle of approximately 50 synchronizes all HSB
20 components and executions. The clock 42 pulse may
originate in any part of the complete digital system and its
origination is beyond the scope of this disclosure.

The parallel data bus 28 (HSB__DAT) lines 07, provides
8 bidirectional TTL compatible CMOS level signals. Only
one message source, the bus controller or master 22, is
allowed to drive the bus 28 at any one time. A bus arbitration
scheme determines which out of a plurality of processing
module may become bus master and when.

The relationship of the data 28 and control signal transi-
tions to the clock 42 edges are important to recovering the
data reliably at a receiving module. Data is clocked out from
a transmitting module 34 onto the data bus 28 with the
negative or trailing edge of the clock signal 42. The data is
then clocked on the positive or leading edge of the clock
signal 42 at an addressed receiving module. This feature
provides a sufficient setup and hold time of approximately
40 ns without violating the minimum setup time for octal
register 60.

Before data can be transmitted on the data bus 28, the bus
controller 22 must obtain permission from the arbitration
bus 50 to prevent a possible data collision. The message
source must win an arbitration from a potential multiplicity
of processor module 34 access requests. The winner is
granted temporary bus mastership for sending a single
message. After the transfer of data is complete, bus master-

US 6,405,272 B1

5

ship is relinquished, thereby permitting bus 28 access by
other processor modules 34.

No explicit bus request and grant signals are required with
the serial arbitration method of the present invention. The
preferred method eliminates complex signaling and signal
lines, along with the requisite centralized priority encoder
and usual granting mechanism. The arbitration method is not
daisy chained so that any processor module location on the
bus 28 may be empty or occupied without requiring a change
to address wiring.

In the present invention, the open-collector arbitration bus
50 permits multiple processing modules 34 to compete for
control of the data bus 28. Since no processing module 34
in the digital system knows a priori if another processing
module has accessed the arbitration bus 50, modules within
the HSB system may drive high and low level logic signals
on the HSB simultaneously, causing arbitration collisions.
The collisions occur without harm to the driving circuit
elements. However, the collisions provide a method of
determining bus activity.

The arbitration bus 50 includes pullup resistors connected
to a regulated voltage source to provide a logic 1 level. The
arbitration bus driver 52 connects the arbitration bus 50 to
ground to drive a logic 0 level. This results in a logic 1 only
when no other processing module 34 drives a logic 0. The
arbitration bus 50 will be low if any processing module 34
arbitration bus 50 driver 52 asserts a logic 0.

As known to those familiar with the art, the connection is
called “wired-OR” since it behaves like a large NOR gate
with the line going low if any device drives high
(DeMorgan’s theorem). An active low receiver inverts a
logic O level, producing an equivalent OR gate. Using
positive-true logic conventions yields a “wired-AND,” using
negative logic yields a “wired-OR.” This is used to indicate
if at least one device is driving the arbitration bus 50 and
does not require additional logic. Therefore, if a processing
module 34 asserts a logic 1 on the arbitration bus 50 and
monitors a logic 0, via buffer 53 on monitor line 55
(BUS__ACT _N), the processing module 34 bus controller
22 determines that a collision has occurred and that it has
lost the arbitration for access.

The arbitration method depends on the detection of col-
lisions and uses state machines 46 and 48 within the bus
controller 22 on each processing module 34 to determine
arbitration bus 50 status as arbitration proceeds. All transi-
tions on the arbitration bus 50 are synchronized to the bus
clock 42. Each processor module 34 has a unique pro-
grammed binary address to present to the arbitration bus 50.
The device address in the current embodiment is six bits,
thereby yielding 63 unique processing module 34 identifi-
cations.

Each processing module 34 bus controller 22 located on
the HSB 20 monitors, (via a buffer 53), and interrogates, (via
a buffer 52), the arbitration bus (HSBI_ARB1_N) 50. Six
or more high level signals clocked indicate that the bus is not
busy. If a processing module 34 desires to send a message,
it begins arbitration by serially shifting out its own unique
six bit address onto the arbitration bus 50 starting with the
most significant bit. Collisions will occur on the arbitration
bus 50 bit by bit as each bit of the six bit address is shifted
out and examined. The first detected collision drops the
processing module 34 wishing to gain access out of the
arbitration. If the transmit state machine 46 of the sending
module 34 detects a collision it will cease driving the
arbitration bus 50, otherwise it proceeds to shift out the
entire six bit address. Control of the data bus 28 is achieved
if the entire address shifts out successfully with no errors.

10

20

25

30

35

40

45

50

55

60

65

6

A priority scheme results since logic 0°s pull the arbitra-
tion bus 50 low. Therefore, a processor module 34 serially
shifting a string of logic 0’s that constitute its address will
not recognize a collision until a logic 1 is shifted. Addresses
having leading zeroes effectively have priority when arbi-
trating for the bus 50. As long as bus 28 traffic is not heavy,
this effect will not be significant.

In an alternative embodiment, measures can be taken to
add equity between processor modules 34 if required. This
can be done by altering module arbitration ID’s or the
waiting period between messages.

Once a processor module 34 assumes bus mastership it is
free to send data on the data bus 28. The bus controller 22
enables its octal bus transceiver (driver) 60 and transmits at
the clock 42 rate. The maximum allowed message length is
512 bytes. Typically, messages will be 256 bytes or shorter.
After a successful arbitration, the arbitration bus 50 is held
low by the transmitting processor module 34 during this
period as an indication of a busy arbitration bus 50.

Once the data transfer is complete, the bus controller 22
disables its octal bus transceiver (drivers) 60 via line 54
(HSB_A_EN_N) and releases the arbitration bus 50 to
high. Another arbitration anywhere in the system may then
take place.

An alternative embodiment allows bus 28 arbitration to
take place simultaneous with data transfer improving on data
throughput throughout the digital system. In the preferred
embodiment, the delay is considered insignificant obviating
the added complexity.

The bus controller 22 is required to control the interface
between the processing module 34 microprocessor 32 and
the HSB 20 and between the HSB and the bus (data bus 28
and arbitration bus 50) signals. In the preferred embodiment
the bus controller 22 is an Altera 7000 series EPLD (erasable
programmable logic device). The 8 bit internal data bus 30
interfaces the bus controller 22 with the processor module
34 CPU 32. The processor module 34 CPU 32 will read and
write directly to the bus controller 22 internal registers via
the internal data bus 30. The bus controller 22 monitors the
arbitration bus 50 for bus status. This is necessary to gain
control for outgoing messages and to listen and recognize its
address to receive incoming messages. The bus controller 22
monitors and controls the data FIFO’s 24 and 25, DMA
controller 33, and bus buffer enable 54.

The components used in the preferred embodiment are
shown in Table 1.

TABLE 1
MANU- ELE-
QTY FACTURER PART NUMBER DESCRIPTION MENT
1 IDT IDT7202LA-507 1K x 9 Receive 24
or FIFO
Samsung KM75C02AT50
1 IDT IDT7204LA-507 4K x 9 Transmit 26
or FIFO
Samsung KM75C04AT50
1 TI SN74ABT125 Quad tristate 58
or driver
TI SN74BCT125
3 0TI SN74ABT245 TTL Octal 60
or Buffers
TI SN74BCT245
1 Altera 7128E erasable 22
programmable

logic device

Address decoding and DMA gating are required and are
performed in the bus controller 22. The bus controller 22

US 6,405,272 B1

7

also contains a number of internal registers that can be read
or written to. The CPU 32 communicates with and instructs
the bus controller 22 over the 8 bit internal data bus 30.

Loading the transmit FIFO 24 is handled by the bus
controller 22, DMA and address decoding circuits contained
within the bus controller 22. Gaining access to the bus 28
and unloading the FIFO 24 is handled by the transmit state
machine.

On power up the bus controller 22 receives a hardware
reset 56. The application software running on the processor
module 34 CPU 32 has the option of resetting the bus
controller 22 via a write strobe if the application requires a
module reset. After a reset, the bus controller 22 monitors
the arbitration bus 50 on line 55 to determine bus activity
and to sync with the data bus 28.

After a period of inactivity the bus controller 22 knows
that the bus 28 is between messages and not busy. A
processor module 34 can then request control of the bus via
arbitration. If no messages are to be sent, the bus controller
22 continues to monitor the arbitration bus 50.

The processor module CPU 32 writes messages into the
transmit FIFO 24 at approximately 20 MBps. The DMA
controller, a Motorola 68360 33 running at 25 MHz will be
able to DMA the transmit FIFO 24 at approximately 12.5
MBps. Since only one message is allowed in the transmit
FIFO 24 at any one time, the CPU 32 must buffer additional
transmit messages in its own RAM 40. Since the maximum
allowable message length is 512 bytes with anticipated
messages averaging 256 bytes, a FIFO length of 1 KB is
guaranteed not to overflow. Once a message has been
successfully sent, the transmit FIFO 24 flags empty and the
next message can be loaded.

A typical 256 byte message sent by a processing module
34 CPU 32 at 12.5 MBps will take less than 21 usec from
RAM 40 to transmit FIFO 24. Bus arbitration should occupy
not more than 1 usec if the bus is not busy. Total elapsed time
from the loading of one transmit message to the next is
approximately 43 to 64 usec. Since not many messages can
queue during this period, circular RAM buffers are not
required.

As shown in FIGS. 5§ and 7, during DMA transfers, the
DMA controller 33 disables the processor module 34 CPU
32 and assumes control of the internal data bus 30. The
DMA transfer is brought about by the processor module 34
or by a request from another processor module 134. The
other processor 134 successfully arbitrates control of the
data bus 28 and signals the processor module CPU 32. The
CPU 32 gives permission and releases control of bus 30. The
processor module CPU 32 signals the DMA controller 33 to
initiate a data transfer. The DMA controller 33 generates the
necessary addresses and tracks the number of bytes moved
and in what direction. A byte and address counter are a part
of the DMA controller 33. Both are loaded from the pro-
cessor module CPU 32 to setup the desired DMA transfer.
On command from the CPU 32, a DMA request is made and
data is moved from RAM memory 40 to the transmit FIFO
24.

Data transferred on the bus 28 is monitored by each
processing module 34 located on the bus 28. Each bus
controller 22 in the entire processor system contains the
destination addresses of all devices on the bus 28. If a match
is found, the input to that receiving processing module 34
FIFO 26 is enabled. Since multiple messages may be
received by this FIFO 26, it must have more storage than a
transmit FIFO 24. The receive FIFO 26 has at a minimum 4
KBx 9 of storage. This amount of storage will allow at least
16 messages to queue within the receive FIFO 26 based on
the message length of 256 bytes. A message burst from
multiple sources could conceivably cause multiple messages

10

15

20

25

30

40

45

50

55

60

65

8

to temporarily congest the receive FIFO 26. The receiving
module CPU 32 must have a suitable message throughput
from the receive FIFO 26 or else a data overflow will result
in lost information. DMA is used to automatically transfer
messages from the receive FIFO 26 to RAM 40. The transfer
time from the receive FIFO 26 to RAM 40 is typically 21
usec.

When a message is received by the bus controller 22, a
request for DMA service is made. Referring to FIG. 6, the
DMA controller 33 generates a message received hardware
interrupt (DMA DONE) and signals processor module CPU
32 that it has control of the internal bus 30. An interrupt
routine updates the message queue pointer and transfers the
contents of receive FIFO 26 to RAM memory 40. The DMA
controller 33 is then readied for the next message to be
received and points to the next available message buffer.
This continues until all of the contents of the receive FIFO
26 are transferred. An end of message signal is sent by the
receive FIFO 26 to the DMA controller 33 via the bus
controller 22. The processor module 34 CPU 32 then regains
control of the internal communication bus 30.

The total elapsed time that it takes for a source to
destination message transfer is approximately 64 to 85 usec.
As shown in FIG. 7, the time is computed from when a
processor module 34 starts to send a message, load its
transmit FIFO 24, arbitrate and acquire the data bus 28,
transfer the data to the destination receive FIFO 126, bus the
message to the CPU 132, and then finally transfer the
message into RAM 140 of the recipient module 134. The
actual throughput is almost 200 times that of a 8 KBps time
slot on a PCM highway.

Controlling the HSB 20 requires two state machines; one
transmitting information 70, the other receiving information
72. Both state machines are implemented in the bus con-
troller 22 as programmable logic in the form of Altera’s
MAX+PLUS 11, Version 6.0 state machine syntax.

Any arbitrary state machine has a set of states and a set of
transition rules for moving between those states at each
clock edge. The transition rules depend both on the present
state and on the particular combination of inputs present at
the next clock edge. The Altera EPLD 22 used in the
preferred embodiment contains enough register bits to rep-
resent all possible states and enough inputs and logic gates
to implement the transition rules.

A general transmit program flow diagram 70 for the
transmit state machine is shown in FIG. 8. Within the
general flow diagram 70 are three state machine diagrams
for the inquire 74, arbitrate 76, and transmit 78 phases of the
transmit state machine.

The processor module CPU 32 initiates the inquire phase
74. As shown in FIG. 9, eight states are shown along with
the transition rules necessary for the bus controller 22 to
sense bus activity. After initiation, a transmit request is
forwarded to the bus controller 22 to see if there is bus
activity. The bus controller 22 monitors the arbitration bus
50 for a minimum of 7 clock cycles. Six internal bus
controller addresses are examined for collisions. If no col-
lisions are detected, a request to arbitrate is made on the
inactive bus.

As shown in FIG. 10, the arbitrate request sets a flip-flop
80 and begins sending out a unique identifier followed by six
address bits on the arbitration line (HSBI_ARB1_N) 50. A
collision is detected if any of the bits transmitted are not the
same as monitored. If the six bits are successfully shifted
onto the bus 28, then that particular bus controller 22 has bus
mastership and seizes the bus. A transmit FIFO 24 read
enable is then set. If any one of the bits suffers a collision,
the arbitration bus 50 is busy and the processor module 34
stops arbitrating.

US 6,405,272 B1

9

Referencing FIG. 11, the transmit FIFO 24 read enable
sets a flip-flop 82 and initiates a transmit enable. The
contents of transmit FIFO 24 are output through the bus
controller 22, through octal bus transceiver 60, onto the data
bus 28. The data is transmitted until an end of message flag
is encountered. Once the transmit FIFO 24 is emptied, a
clear transmit request signal is output, returning the bus
controller 22 back to monitoring the bus 28.

The state machine for controlling the receive FIFO 26 is
similarly reduced into two state machines. As shown in FIG.
12, a general flow diagram is shown for controlling the
receive FIFO 26.

Referencing FIG. 12, the bus controller 22 monitors the
arbitration bus 50 for a period lasting seven clock cycles.
Bus activity is determined by the reception of a leading start
bit from another processor module 34 bus controller 22. If
after seven clock cycles the bus has not been seized, a
receive alert signal is input to receive flip-flop 89.

As shown in FIG. 13, the bus controller 22 examines the
first bit of data transmitted and compares it with its own
address. If the first data bit is the unique identifier for that
bus controller 22, data is accumulated until an end of
message flag is encountered. If the first data bit is not the
unique identifier of the listening bus controller 22, the bus
controller 22 returns to the listening state.

There are two embodiments for the software to transmit
messages. The first embodiment will allow waiting an
average of 50 sec to send a message since there are no
system interrupts performed. This simplifies queuing and
unqueuing messages. The second embodiment assumes that
messages are being sent fast, the operating system is fast and
preemptive, system interrupts are handled quickly, and
idling of the processor 32 is not allowed while messaging.

Upon completion of the transmit DMA, data bus 28
arbitration must take place. After the data bus 28 has been
sucessfully arbitrated, the bus controller 22 may release the
transmit FIFO 24 thereby placing the contents on the data
bus 28. An empty flag signals a complete transfer to the bus
controller 22 and processor module 34 CPU 32.

While specific embodiments of the present invention have
been shown and described, many modifications and varia-
tions could be made by one skilled in the art without
departing from the spirit and scope of the invention. The
above description serves to illustrate and not limit the
particular form in any way.

I claim:

1. An arbitration system allowing communication
between a plurality of competing processing modules over a
shared communication bus comprising:

a common serial arbitration line coupled to a controller
located on each processing module;

each controller executing the same arbitration protocol;
and

each processing module controller shifting its respective
module address onto said arbitration line while moni-
toring said arbitration line to detect for collisions on
said arbitration line when communication with another
processing module is desired, wherein no bus request
signal is used prior to said shifting.

2. The arbitration system according to claim 1, wherein
said controller uses three-state logic.

3. The arbitration system according to claim 2, wherein a
processing module address is a plurality of bits.

4. The arbitration system according to claim 3, wherein
said monitoring observes, bit-by-bit, whether a signal level
on said arbitration line corresponds to said processing mod-
ule’s address.

10

15

20

25

30

35

40

45

50

55

60

10

5. The arbitration system according to claim 4, wherein if
said signal level is different than-said-shifted-out address bit
signal level, said processing module desiring access to the
communication bus drops out of contention.

6. The arbitration system according to claim 4, wherein
said processing module controller that successfully shifts out
its complete address wins arbitration and maintains a low
signal level on said arbitration line indicating that said
arbitration line is asserted and that communication from said
winning processing module may proceed on the bus.

7. An arbitration system allowing packetized message
communication between a plurality of competing processing
modules over a shared communication bus comprising:

a common serial arbitration line coupled to a controller

located on each processing module;

each controller executing the same arbitration protocol;

and

each processing module controller shifting its respective

module address onto said arbitration line while moni-
toring said arbitration line to detect for collisions on
said arbitration line when communication with another
processing module is desired, wherein no bus request
signal is issued prior to said shifting.

8. The arbitration system according to claim 7, wherein
said controller uses three-state logic.

9. The arbitration system according to claim 8, wherein a
processing module address is a plurality of bits.

10. The arbitration system according to claim 9, wherein
said monitoring observes, bit-by-bit, whether a signal level
on said arbitration line corresponds to said processing mod-
ule’s address.

11. The arbitration system according to claim 10, wherein
if said signal level is different than said shifted-out address
bit signal level, said processing module desiring access to
the communication bus drops out of contention.

12. The arbitration system according to claim 10, wherein
said processing module controller that successfully shifts out
its complete address wins arbitration and maintains a low
signal level on said arbitration line indicating that said
arbitration line is asserted and that communication from said
winning processing module may proceed on the bus.

13. A method for arbitrating communication between a
plurality of processing modules over a shares communica-
tion bus, each processing module having a controller, the
method comprising the steps of:

shifting out a processing module’s address from the

controller of a processing module desiring
communication, whereby no bus request signal is
issued prior to said shifting;

monitoring said respective address as it is shifted-out of

said controller;

detecting collisions after each shifted-out bit; and

asserting the arbitration line if no collisions are detected.

14. The method of arbitration according to claim 13
wherein the step of monitoring further observing, bit-by-bit,
whether a signal level on said arbitration line corresponds to
said processing module’s address.

15. The method of arbitrating according to claim 14,
wherein the step of detecting further includes dropping out
of contention if said observed signal level is different than
said shifted-out address bit signal level.

16. The method for arbitrating according to claim 15,
wherein the step of asserting further comprises maintaining
a low signal level on said arbitration line if said processing
module controller successfully shifts-out its complete
address.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,405,272 B1 Page 1 of 1

DATED

: June 11, 2002

INVENTOR(S) : Robert T. Regis

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 3
Line 51, “bids” should read -- bus --.

Column 4
Line 41, “50” should read -- 50% --.

Column 9
Line 27, “sec” should read -- usec --.
Line 58, “used” should read -- issued --.

Column 10
Line 41, “shares” should read -- shared --.

Signed and Sealed this

Twenty-eighth Day of January, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office

