
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0179042 A1

Bram et al. (43) Pub. Date:

US 2006O179042A1

Aug. 10, 2006

(54)

(75)

(73)

(21)

(22)

METHODS AND SYSTEMIS FOR PROVIDING
A USER INTERFACE USING FORMS
STORED IN A FORMI REPOSITORY

Inventors: Charles Bram, Fox Point, WI (US);
John Emmerichs, Brown Deer, WI
(US); Richard Wood, Bayside, WI
(US); Christopher Parrott, Tattenhall
(GB); James Kohn, Shorewood, WI
(US)

Correspondence Address:
MICHAEL BEST & FRIEDRICH, LLP
100 E WISCONSNAVENUE

MILWAUKEE, WI 53202 (US)

Assignee: eFunds Corporation

Appl. No.: 11/243,327

Filed: Oct. 4, 2005

+ o
Q IMPOR

UILTY

25
OBJECT

DEFINITIONS

2 metadata
GENERATOR
UtLTY

2

CONFIGURATION
METADATA
DATABASE

CONFIGURATIONU
GENERATORULY

CONFIGURATION
META)AA

MANAGEMENT
APPLICATION

DATABASE
ABSTRACTONLAYER

(63)

(60)

(51)

(52)

(57)

Related U.S. Application Data

Continuation of application No. 11/159,847, filed on
Jun. 22, 2005.

Provisional application No. 60/649,905, filed on Feb.
4, 2005.

Publication Classification

Int. C.
G06F 7/30 (2006.01)
U.S. Cl. .. 707/3

ABSTRACT

Systems and methods for providing a user interface. One
system can include a server configured to provide a form
repository including a plurality of form definitions defining
a plurality of forms and to provide data to populate at least
one of the plurality of forms and a browser-based application
configured to obtain the form repository, to request data
from the server based on at least one of the form definitions,
and to use the data and at least one of the form definitions
to generate a completed form.

CONFIGURATION
LOADFILES

CONFIGURATION
MANAGEMENTU

CONFIGURATION
MANAGEMEN
FRAMEWORK

CONFIGURATION
MANAGEMENT
APPLICATION

MMEDIATE
REFreSHUNCTION

52 -7

DATABASE
CONSSTENCY

CHECK

+

le
ExRAC
UTILITIES

47
s

CONFIGURATION
EXRACS

O

APPLICAONS

fle

Patent Application Publication Aug. 10, 2006 Sheet 1 of 31 US 2006/0179042 A1

o
>

APPLICATIONS

S
L
H
Of
>
C/D

D
VD
Z
9

s
D
CD
l
2.
O
O

FOUNDATION SYSTEM
(LIBRARIES, PLATFORMINTERFACES, ETC.)

FIG. 1

Patent Application Publication Aug. 10, 2006 Sheet 2 of 31 US 2006/0179042 A1

43
CONFIGURATION

+ Fo LOAD FILES +2.

S. IMPORT
UTILITY

25 C D DATABASE --
OBJECT CONSISTENCY

DEFINITIONS CONFIGURATION CHECK
DATABASE

28 le
METADATA
GENERATOR ERA,

UTILITY DATABASE
2 ABSTRACTION LAYER

CONFIGURATION
METADATA
DATABASE MANAGEMENT Ul

CONFIGURATION
MANAGEMENT
FRAMEWORK CONFIGURATION U.

GENERATOR. UTILITY
CONFIGURATION
MANAGEMENT

32 APPLICATION

t
X

g C

CONFIGURATION 6 5p
METADATA 3 -e-

MANAGEMENT

APPLICATION Q f
Os \ MMEDIATE
C 3D REFRESH FUNCTION

52-1 Q APPLICATIONS
fle

F.G. 2

Patent Application Publication Aug. 10, 2006 Sheet 3 of 31 US 2006/0179042 A1

f
y

S INTERNAL
B N} | . OBJECTS RELATED

OBJECT

SYSTEM USER DEVICE OBJECT
2-7

CONFIGURATION MANAGEMENTAPPLICATION

OBJECTS

DATABASE ABSTRACTION LAYER DATA
STORAGE

2 2.

UNDERLYING DATABASE MANAGEMENT
SYSTEM

O

CONFIGURATION
DATABASE

FG. 3

US 2006/0179042 A1

oQ |

/ L'HOCHW|
| No.

SLOEITEO T\/NRÆLNI -HTES
ELVOITWA ()

L 2

lèJOdWI

Patent Application Publication Aug. 10, 2006 Sheet 4 of 31

G (5)|–}

}}EST WELSÅSQ3 Z- Z

S $

US 2006/0179042 A1 Patent Application Publication Aug. 10, 2006 Sheet 5 of 31

C

Patent Application Publication Aug. 10, 2006 Sheet 6 of 31 US 2006/0179042 A1

bo

WORK
REGUEST

WORKFLOW
RULES

REPORTING
DATABASE

is "
1 MANAGEMENT QUEUES

5- MANAGEMENT ROLE

FIG. 6

US 2006/0179042 A1

|----| SnOIABHdSTROIAETHd 2Z |

NOI LOTACIO?Hd|-NOILOTACIO>]dNOI LOTICIO>]d
2 ----------------------o]

øez ~17ao2

Patent Application Publication Aug. 10, 2006 Sheet 7 of 31

US 2006/0179042 A1 Patent Application Publication Aug. 10, 2006 Sheet 8 of 31

• |

o 12

Å8 LOET8O LESO EnT\//\.1XEN LEIÐ

SETEVIL Å>}OWEW-NI

SC]OHLEWN SSE OO\/

o 22

Patent Application Publication Aug. 10, 2006 Sheet 9 of 31 US 2006/0179042 A1

PROBLEM
DATA 47
STORE 3o

PROBLEM
MANAGEMENT

MODULE AUTOMATIC
ACTIONS

B

MONTORING
SUBSYSTEM

EXTERNAL
ACTIONS

MONITORNG
USER

INTERFACE COMMAND

LINE SYSTEM
USER

PROFILES/
ROLES

INTERFACE

FIG. 9

Patent Application Publication Aug. 10, 2006 Sheet 10 of 31 US 2006/0179042 A1

ADD OBJECT

FIG 10

START
BUFFER
TIMER

UPDATE CURRENT
BUFFER INDICATOR

(CREATE NEWBUFFER
IF NEEDED)

CANCEL BUFFER
: TIMER

WRITE IN
PROGROSS2

st if

PASS BUFFERTO
SYNCHRONOUS

Patent Application Publication Aug. 10, 2006 Sheet 11 of 31 US 2006/0179042 A1

TMERTASK

SELECT
CURRENT
BUFFER

52 2.

6 Z (2
ADD BUFFERTO
WAITING LIST

WRITE IN
PROGRESS2

UPDATE CURRENT
BUFFER INDICATOR

(CREATE NEW
BUFFER F NEEDED)

PASS BUFFERTO
SYNCHRONOUS

THREADS

FIG 11

Patent Application Publication Aug. 10, 2006 Sheet 12 of 31 US 2006/0179042 A1

SYNCHRONOUS
THREADS

Y

SEND/WRITE
FIG. 12 BUFFER N-25

UPDATE BUFFER

ES

UPDATE CONTEXT
OBJECTS FAILED
FOR LOG FAILED

REMOVE
THREAD

REQUEUE
CONTEXT
OBJECTS

ASYNCHRONIOUS
THREADS?

PASS BUFFER TO
SYNCHRONOUS THREADS PASS FIRST WAITING

BUFFERTO
SYNCHRONOUS THREADS

Patent Application Publication Aug. 10, 2006 Sheet 13 of 31 US 2006/0179042 A1

ASYNCHRONOUS
THREAD

BUFFER
AVAILABLE

YES

ANY FILE
ERRORSP

MOVE TO
NEXT

SECUENCE

ANY WATING
BUFFERS2

PASS FRS WAITING
BUFFER TO

SYNCHRONOUS
THREADS

FIG. 13

Patent Application Publication Aug. 10, 2006 Sheet 14 of 31 US 2006/0179042 A1

SUBSCRIBER

CREATE
subscRIBER - 22
OBJECT

REFERENCE
TO TARGET
PROCESS

WAIT

SEND
SUBSCRIBE
RECQUEST

F.G. 14

Patent Application Publication Aug. 10, 2006 Sheet 15 of 31 US 2006/0179042 A1

COMMUNICATION
THREAD

REGUEST

PUBLISH SUBSCRIBEACK

HANDLE HANDLE
BUFFER RECOVERY

FIG. 15

Patent Application Publication Aug. 10, 2006 Sheet 16 of 31 US 2006/0179042 A1

A lot
FOUNDATION
COMPONENTS

elab
/ RULE OBJECT

RULES ENGINE -

ENVIRONMENT OR PLATFORM

F.G. 16

elpO

US 2006/0179042 A1 Patent Application Publication Aug. 10, 2006 Sheet 17 of 31

99% –

1OET8O IXELNOO EN 15DNE SET[\\]

Patent Application Publication Aug. 10, 2006 Sheet 18 of 31 US 2006/0179042 A1

MERCHANT BASED RULES
ACTION

CONDITION LIMIT NLINE POSTAUTH
NUMBER OF TRANSACTION
REVERSALS WITHIN (60 MINUTES) EsACTION f
FROM SAME DEVICE

NUMBER OF DENIED SEM
TRANSACTIONS WITHIN (1 DAY CASE AND
FROM THE SAME DEVICE NOTIFY

CREATE
PROBLEM

SUSPEND
DEVICE

NUMBER OF CAPTURED CARDS
WTHIN 60 MINUTES FROM THE
SAME E. CASE AND

NOTFY
NUMBER OF FOREIGN
CARDHOLDERS ATA DEVICE (15) EsACTION END
WITHIN (60 MINUTES)
NUMBER OF TRANSACTIONS DENY DSABLE
MANUALLY ENTERED WITHIN (60 5) TR MINUTES FROM THE SAME is NSACTION MERCHANT

CREATE
DENY PROBLEM
TRANSACTIONCASEAND

NOTFY
CREATE

(SF DENY PROBLEM
CODES) TRANSACTION CASE AND

NOTFY

NUMBER OF FALING ON CC/CVC DENY DSABLE
OR CVVS/CVC2 TRANSACTIONDEVICE

FG. 18A

SUSPEND
DEVICE

TRANSACTION AMOUNT FOR "CARD
NOT PRESENT TRANSACTION

MCC CODE IN LEST

Patent Application Publication Aug. 10, 2006 Sheet 19 of 31 US 2006/0179042 A1

CARD BASED RULES ACTION

TCONDITION LIMIT NLINE POSTAUTH

NUMBER OF WTHDRAWALS
WITHIN (7 DAYS

PROBLEM
CASE AND

PROBLEM
CASE AND

CONSECUTVE TRANSACTIONS
DENIED DUE TO INSUFFICIENT
FUNDS

CONSECUTVE TRANSACTIONS DSABLE
MADE BETWEEN (22:00 AND
03:00" ON WEEKDAYS TRANSACTION CARDHOLDER

NUMBER WITHDRAWALS WITHIN 5
MINUTES) TRANSACTIONBLOCKCARD

AMOUNT WITHDRAWN INLAST (2 DISABLE DAYS TRANSACTIONCARDHOLDER

TRANSACTION AMOUNT FOR POS DSABLE TRANSACTION TRANSACTIONCARDHOLDER

3
NUMBER OF DFFERENT MCC DENY DISABE
CODES FOR SAME CARDHOLDER essACTION CAROHOLDER

CREATE
DENY PROBLEM

(200.00) TRANSACTION CASE AND

PROBLEM
CASE AND

DSABLE
CARDHOLDER

s
D E N Y

TOTALWTHDRAWALAMOUNT
FOLLOWING A 10.00)
AUTHORIZATION WITHIN (1 DAY

WITHIN 4 HOURS

NOTFY

FIG. 18B |

Patent Application Publication Aug. 10, 2006 Sheet 20 of 31 US 2006/0179042 A1

(-66
4.73 V

% O START RULE

4.
FINANCIAL O STATUS ADMN

cle
YO WITHDRAWL

Lt.

BIN 1 O BIN 2 O BIN 3 C BN 4 O

tle
V
O FOOR LIMIT 100 O FLOOR LIMIT 120

N444

o le tle
\ / te

O O NO NO O O-4
YES YES

Patent Application Publication Aug. 10, 2006 Sheet 21 of 31 US 2006/0179042 A1

47/

472 RULE EXECUTION 444
N ROUTINE

(RULES ENGINE) RULE
IDENTIFIER

(74
DENTITY TYPE RULE

OBJECT

DESTINATION ROUTING
RULE OBJECT

DIRECT ROUTING
RULE OBJECT

CARD ROUTING
RULE OBJECT

REJECT TRANSACTION
RULE OBJECT

DONE

F.G. 20

US 2006/0179042 A1

888= 10\/LNOO OZ) = LIWIT MOOTH

(KNVdWOO Cl}}\/O LIGJE? JO

ÅN\/dWOO CRIVO
JLIGJE? JO GINOOES=XHM-IONALENC|NOOES HOH LIWIT

Patent Application Publication Aug. 10, 2006 Sheet 22 of 31

zz '914

US 2006/0179042 A1 Patent Application Publication Aug. 10, 2006 Sheet 23 of 31

US 2006/0179042 A1

WELSÅS

9 LNENOdWOO WELSÅS

Patent Application Publication Aug. 10, 2006 Sheet 24 of 31

US 2006/0179042 A1

oll

Patent Application Publication Aug. 10, 2006 Sheet 25 of 31

ERHOO NOLLY/CINTAO-R WELLSÅS

LNEWES)VNVW

US 2006/0179042 A1 Patent Application Publication Aug. 10, 2006 Sheet 26 of 31

LEEHSETALS

US 2006/0179042 A1 Patent Application Publication Aug. 10, 2006 Sheet 27 of 31

US 2006/0179042 A1 Patent Application Publication Aug. 10, 2006 Sheet 28 of 31

SXSW/L WELLSÅS

SLNENOdWOO ||NELSÅS

A LITION/-| NOI LVOINT INWOO

S_LNENOdWOO TVNOJ LICJCIV

JLNESOV/ EGION LS?||-||

Patent Application Publication Aug. 10, 2006 Sheet 29 of 31 US 2006/0179042 A1

CENSE CONTROL FILE LCENSE
KEYFILE

FIG. 28

Patent Application Publication Aug. 10, 2006 Sheet 30 of 31 US 2006/0179042 A1

46d

FIREWALL

TERMINAL
CONNECTIONS

FIG. 29

Patent Application Publication Aug. 10, 2006 Sheet 31 of 31 US 2006/0179042 A1

US 2006/0179042 A1

METHODS AND SYSTEMIS FOR PROVIDING A
USER INTERFACE USING FORMS STORED IN A

FORMI REPOSITORY

RELATED APPLICATIONS

0001. The present application is a continuation of co
pending U.S. patent application Ser. No. 11/159,847 titled
RULES-BASED SYSTEMARCHITECTURE AND SYS
TEMS USING THE SAME, filed on Jun. 22, 2005, which
claims priority to U.S. Provisional Patent Application Ser.
No. 60/649,905 of the same title, filed on Feb. 4, 2005, the
entire contents are both herein incorporated by reference.

BACKGROUND OF THE INVENTION

0002 System architecture can describe the organization
and structure of a computer system. In complex computer
systems, an architectural description can help identify and
plan system components, Sub-systems, and the correspond
ing communication and interaction of the components. The
architecture of a computer system can influence and govern
the design and functionality of the system.
0003) Given the ever-changing dynamics of businesses,
computer system architectures should be highly maintain
able, evolvable, portable, and interoperable. In addition,
system users often require computer systems that can be
personalized, updated, and that can coexist and cooperate
with other computer systems. These requirements often add
to the complexity of a computer system.
0004. In an effort to reduce system complexity, rules
based processing architectures were developed. Rules-based
processing architectures attempt to separate business rules
from business rule application. Traditional rules-based pro
cessing architectures include a computer application and a
separate rules engine. The computer application performs
the actual processing work and uses the rules engine to
control how the work should be processed. The rules engine
provides facilities to determine when particular processing
should occur, specific processing the application should
perform, and which rule should be applied next, if any. The
application then carries out the processing indicated by the
rules engine.

SUMMARY OF THE INVENTION

0005 Conventional rules-based processing architectures
can simplify computer systems. However, conventional
rules-based processing architectures separate the application
(the actual processing code) from the rules. The rules engine
uses the rules to instruct the application how or what to
execute and process. In some situations, traditional rules
based systems require modifications to the rules, the rules
engine, and/or the application in order to modify the com
puter system. Furthermore, since the rules are separate from
the application (or processing code), it is often difficult to
identify and trace relationships between rules and applica
tion in order to modify the functionality of the computer
system. In addition, users of rules-based computer systems
may not be allowed to modify the rules, the rules engine,
and/or the application. Users may be required to request
customized modifications from system developers, which is
often costly and time-consuming.
0006. Some embodiments of the invention provide sys
tems and methods for providing a user interface. One system

Aug. 10, 2006

can include a server configured to provide a form repository
including a plurality of form definitions defining a plurality
of forms and to provide data to populate at least one of the
plurality of forms and a browser-based application config
ured to obtain the form repository, to request data from the
server based on at least one of the form definitions, and to
use the data and at least one of the form definitions to
generate a completed form.

0007 Additional embodiments provide a computer read
able medium including instructions for providing a user
interface. The computer readable medium can include
instructions for obtaining a form repository including a
plurality of form definitions defining a plurality of forms,
requesting data from a server to populate at least one of the
plurality of forms, and generating a completed form based
on the data and at least one of the plurality of forms.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 FIG. 1 schematically illustrates computer system
architecture according to one embodiment of the invention.
0009 FIG. 2 illustrates a configuration subsystem
defined in the computer system architecture of FIG. 1.
0010 FIG. 3 illustrates object-orientated functionality of
the configuration Subsystem of FIG. 2 according to one
embodiment of the invention.

0011 FIG. 4 illustrates a process of obtaining and vali
dating configuration data from a manual entry process and
an automated entry process according to one embodiment of
the invention.

0012 FIG. 5 illustrates a method of generating custom
ized user interfaces with the configuration Subsystem of
FIG. 2 according to one embodiment of the invention.
0013 FIG. 6 illustrates a workflow management feature
of the configuration subsystem of FIG. 2 according to one
embodiment of the invention.

0014 FIG. 7 illustrates a process of data life cycle
management according to one embodiment of the invention.

0015 FIG. 8 illustrates an application included in the
computer system architecture of FIG. 1 and configuration
management application programming interfaces according
to one embodiment of the invention.

0016 FIG. 9 illustrates functionality of a monitoring
Subsystem defined in the computer system architecture of
FIG. 1 according to one embodiment of the invention.

0017 FIGS. 10-15 illustrate a method of interacting with
a logger object according to one embodiment of the inven
tion.

0018 FIG. 16 schematically illustrates a processing
module defined in the computer system architecture of FIG.
1.

0.019 FIG. 17 illustrates a rules engine included in the
processing module of FIG. 16.

0020 FIGS. 18A and 18B illustrate rules executed by
the rules engine of FIG. 17 according to one embodiment of
the invention.

US 2006/0179042 A1

0021 FIG. 19 schematically illustrates a chain of rules
executed by the rules engine of FIG. 17 according to one
embodiment of the invention.

0022 FIG. 20 illustrates a transaction routing routine
performed by the rules engine of FIG. 17 according to one
embodiment of the invention.

0023 FIG. 21 illustrates a process of creating rule
objects based on configuration data stored in the configu
ration subsystem of FIG. 2.
0024 FIG. 22 schematically illustrates a structure of
applications and Subsystems embodying the computer sys
tem architecture of FIG. 1.

0.025 FIG. 23 illustrates an embodiment of the computer
system architecture of FIG. 1 including heterogeneous sys
tem components.

0026 FIG. 24 schematically illustrates subsystems and a
communication facility included in an embodiment of the
computer system architecture of FIG. 1.
0027 FIG.25 illustrates functionality of a browser-based
user interface according to one embodiment of the inven
tion.

0028 FIG. 26 illustrates an embodiment of the computer
system architecture of FIG. 1 including a multiple node
cluster and secondary communication links.
0029 FIG. 27 illustrates processes executed by a node
included in an embodiment of the computer system archi
tecture of FIG. 1.

0030 FIG. 28 illustrates a license control file and a
license key file according to one embodiment of the inven
tion.

0031 FIG. 29 illustrates an embodiment of the computer
system architecture of FIG. 1 including a single server.
0032 FIG. 30 illustrates an embodiment of the computer
system architecture of FIG. 1 including multiple cluster
SWCS.

DETAILED DESCRIPTION

0033. Before any embodiments of the invention are
explained in detail, it is to be understood that the invention
is not limited in its application to the details of construction
and the arrangement of components set forth in the follow
ing description or illustrated in the following drawings. The
invention is capable of other embodiments and of being
practiced or of being carried out in various ways. Also, it is
to be understood that the phraseology and terminology used
herein is for the purpose of description and should not be
regarded as limiting. The use of “including.”"comprising” or
"having and variations thereof herein is meant to encom
pass the items listed thereafter and equivalents thereof as
well as additional items. The terms “mounted,”“connected
and “coupled are used broadly and encompass both direct
and indirect mounting, connecting and coupling. Further,
“connected” and “coupled are not restricted to physical or
mechanical connections or couplings, and can include elec
trical connections or couplings, whether direct or indirect.
0034. In addition, it should be understood that embodi
ments of the invention include both hardware and software
components or modules that, for purposes of discussion, can

Aug. 10, 2006

be illustrated and described as if the majority of the com
ponents were implemented solely in hardware. However,
one of ordinary skill in the art, and based on a reading of this
detailed description, would recognize that, in at least one
embodiment, the electronic based aspects of the invention
can be implemented in software. As such, it should be noted
that a plurality of hardware and software based devices, as
well as a plurality of different structural components can be
utilized to implement the invention. Furthermore, and as
described in Subsequent paragraphs, the specific configura
tions illustrated in the drawings are intended to exemplify
embodiments of the invention and that other alternative
configurations are possible.

0035 Embodiments of the invention provide a computer
system having a novel architecture. In some embodiments,
the computer system architecture defines a structure for
financial transaction processing systems. It should be under
stood, however, that the structure illustrated and described
below can be applied to various types of computer systems
for use in various applications.
0036 FIG. 1 schematically illustrates computer system
architecture 10 according to one embodiment of the inven
tion. In some embodiments, the computer system architec
ture 10 can be embodied as a financial transaction process
ing system (hereinafter “the system') 11. As shown in FIG.
1, the system 11 can include a foundation system 12, a
configuration Subsystem 14, one or more applications 16,
and a monitoring subsystem 18. In some embodiments, the
foundation system 12 includes libraries, hardware inter
face(s), and other platform-dependent system components.
The foundation system 12 can execute and/or interface with
an environment or platform 19. The environment 19 can
include the hardware and/or Software (e.g., an operating
system) included in a processing device or component
included in the system 11, such as a server. The foundation
system 12 can include structures and standards for building
the configuration Subsystem 14, the applications 16, and/or
the monitoring Subsystem 18. In some embodiments, the
configuration Subsystem 14, the applications 16, the moni
toring Subsystem 18, and/or any additional applications and
subsystems built on the foundation system 12 are platform
independent.

0037. The applications 16 can include subsystems and
applications included in the system 11 that perform func
tions of the system 11. For example, the applications 16 can
include one or more components and applications that
provide financial transaction processing. As previously
stated, however, the applications 16 can include applications
or components configured to provide various types of pro
cessing and functionality other than financial transaction
processing.

0038. In some embodiments, the functionality of the
system 11 (e.g., the functionality of the applications 16, the
monitoring Subsystem 18, and the configuration Subsystem
14) can be configured and controlled by information stored
in and managed by the configuration Subsystem 14. As
shown in FIG. 2, the configuration subsystem 14 can
include a configuration database 20. The configuration data
base 20 can include a relational database that stores data
used to configure and run the system 11. In some embodi
ments, the structure of the configuration database 20 can be
designed to use relationships between different types of

US 2006/0179042 A1

configuration data and to eliminate the storage of duplicate
data. The configuration Subsystem 14 can also include a
database abstraction layer 22 that provides an interface
between the configuration database 20 (where configuration
data can be stored in rows and tables) and other components
of the configuration Subsystem 14 (where data can be
managed as objects). The database abstraction layer 22 can
convert data as needed from one format to another and can
separate the logic of the configuration Subsystem 14 from
the details of the structure of the configuration database 20.
0039. As shown in FIG. 2, the configuration subsystem
14 can include an object definitions database 25. The object
definitions database 25 can define objects (or related data)
that are stored in the configuration database 20. In some
embodiments, the configuration Subsystem 14 includes a
configuration metadata database 26. The configuration meta
data database 26 can include information (i.e., metadata)
about the structure of the configuration data when viewed
and manipulated as objects by a configuration management
application 27 and/or other applications 16 of the system 11.
A metadata generation utility 28 can create initial or default
metadata based on the data stored in the configuration
database 20 and/or information stored in the object defini
tions database 25. The default metadata can be stored to the
configuration metadata database 26. The configuration Sub
system 14 can also include a configuration metadata man
agement application 30 that allows system users to modify
the default configuration metadata. In some embodiments,
changes to configuration metadata can be saved in a meta
data database independent of the generated default metadata
so that metadata changes are not lost if the metadata gen
eration utility 28 updates the default metadata. Using the
configuration metadata management application 30, System
users can manipulate configuration metadata in order to
change the way the configuration data management appli
cation 27 displays and obtains configuration data. For
example, the configuration metadata can define what con
figuration data is to be displayed to a particular system user.
In some embodiments, the configuration metadata manage
ment application 30 can include a web-based application.
0040. The configuration data management application 27
allows system users to create, manage, and retire configu
ration data in order to build and maintain the system 11. In
Some embodiments, as described above, the configuration
data management application 27 includes a web or browser
based application, and web pages or forms displayed with
the configuration data management application 27 can be
generated from the configuration metadata set by default
with the metadata generator utility 28 and/or by a system
user with the configuration metadata management applica
tion 30. In some embodiments, the configuration Subsystem
14 can include a configuration user interface (“UI”) genera
tor utility 38 that uses the configuration metadata to generate
a user interface. Such as a web page or form to be displayed
with the configuration management application 27. The
configuration management application 27 can add configu
ration data from the configuration database 20 to the user
interface and can display the user interface to a system user.
0041 As shown in FIG. 2, the configuration subsystem
14 can include a data import utility 40 and a data export
utility 42. The data import utility 40 can import configura
tion data from an external “load file'43 into the configura
tion database 20, and the data export utility 42 can export

Aug. 10, 2006

data into an external “load file'43 from the configuration
database 20. In some embodiments, the data import utility
40 can check imported data for consistency and correctness
before storing the configuration data in the configuration
database 20. The configuration Subsystem 14 can also
include a consistency check utility 44 that verifies that data
stored in the configuration database 20 is complete and
consistent.

0042. The configuration system 14 can include one or
more extract utilities 46, which can include utilities to
extract configuration data from the configuration database
20 in order to obtain configuration data needed by applica
tions 16 of the system 11 (“configuration extracts 47). The
extract utilities 46 can convert configuration data from a
format used in the configuration database 20 to a format used
by individual components of the system 11.
0043. The configuration subsystem 14 can also include an
extract refresh or update function 50. In some embodiments,
the extract refresh function 50 obtains and applies configu
ration extracts 47 for one or more applications during
start-up of the system 11. The extract refresh function 50 can
also refresh or update configuration extracts 47 for one or
more applications 16 while the system 11 is running. Con
figuration extracts can be refreshed due to a manual console
command, a timed event, etc. Similarly, the configuration
Subsystem 14 can include an immediate extract refresh or
update function 52. In some embodiments, configuration
data can require updating throughout the system 11 as soon
as it is available. In these situations, the immediate extract
refresh function 52 can provide updated configuration data
to applications quickly without waiting for an updated
configuration extract 47 to be created.
0044 FIG. 3 illustrates object-oriented functionality of
the configuration Subsystem 14 according to one embodi
ment of the invention. The configuration management appli
cation 27 includes an object-orientated configuration system
that employs a rules-based workflow management feature or
capability in order to attempt to control the actions of
multiple system user roles with varying skill sets. System
users can modify the functionality of the system 11 using
customizable rules without changing the underlying or base
programming code of the system 11.
0045. The object-oriented nature of the configuration
Subsystem 14 and the corresponding configuration manage
ment application 27 allows system users to work with
familiar business objects, such as financial institutions,
devices (e.g., ATMs), and processing networks, rather than
working with the structure of an underlying database used to
store the configuration data. In some embodiments, the
configuration Subsystem 14 is independent of and isolated
from the details of how the data is stored on any database
system.

0046. Unlike most configuration systems that concentrate
on data within a configuration repository, or an underlying
data file, the configuration Subsystem 14 concentrates on
objects represented within the configuration system 14.

0047 The system 11 may handle hundreds of different
types of objects including objects representing financial
institutions (e.g., banks), processing networks (e.g., Visa or
MasterCard), devices (e.g., ATMs), transaction routing
requirements, dispute cases, etc. Each type of object is

US 2006/0179042 A1

defined by an object class that defines the data the object will
use and the processing it can perform when generated or
instantiated.

0.048 System users can be more familiar with objects
processed within the system 11 than with the structure of
underlying files used to store the information about objects.
Therefore, an object-oriented configuration management
system can be easier to understand than another configura
tion system that deals directly with the underlying data files.
0049 Separating an object view of configuration data
from the underlying data storage mechanism can be exem
plified by the database abstraction layer 22, which separates
the use of an underlying configuration management system
60 and the configuration database 20 from the configuration
management application 27 that allows individual system
users to use different data storage facilities within a single
standard configuration management application 27.
0050. In addition to the physical objects described above

(i.e., the objects defined in the object definitions database
25), the configuration Subsystem 14 can store rules used in
the system 11. By storing rules in the configuration Sub
system 14, System users can modify processing logic of the
system 11. In some embodiments, executable code for each
rule resides outside the configuration subsystem 14, but the
configuration data used by each rule, including the order in
which rules are executed, can be controlled through the
configuration subsystem 14. Thus, the objects described here
can relate to the applications 16, transaction routing rules,
workflow management, and other non-physical objects as
well as physical objects as described above.
0051. In some embodiments, the object definitions stored
in the object definitions database 25 include programming
code for validating and editing configuration data included
in an object. Using the programming code for validating and
editing configuration data, the configuration Subsystem 14
can import and validate configuration data in batch opera
tions, online operations, and in manual entry operations
using Substantially similar programming code (e.g., pro
gramming code based on the validation and editing pro
gramming code included in the object definitions) for data
validation.

0.052 Many systems provide a manual process for system
users to enter and edit configuration data. The configuration
subsystem 14 also provides the ability to enter and edit
configuration data for automated and online processes.
0053 As described above with respect to FIG. 2, the
configuration Subsystem 14 may import configuration data
through a batch-based process from external configuration
load files 43, through real-time processing of online trans
actions, through manual operations by an external operator
using a manual user interface (e.g., the configuration man
agement application 27), and/or through other import means,
which may become available in the future.
0054 The configuration subsystem 14 verifies the con
sistency and accuracy of imported data regardless of how it
is obtained. In some embodiments, the configuration Sub
system 14 places data editing and validation rules within
programming code of the objects that will ultimately contain
and use the configuration data in the system 11. Each object
can implement a validation process (a “validation method”)
that verifies that configuration data included in the object is

Aug. 10, 2006

consistent and accurate. If the validation method does not
verify that configuration data included the object is consis
tent and accurate, the validation method can generate an
error-reporting object that indicates incorrect data. The
error-reporting object can also indicate how to fix incorrect
data. In some embodiments, the configuration Subsystem 14
does not store configuration data in the configuration data
base associated with an object, if the object does not validate
the configuration data. Objects that include other objects
(i.e., internal objects) can execute a validation method
associated with each internal object and can combine any
reported errors into a single error-reporting object. In some
embodiments, objects can include internal objects to any
level, and each object at each level can be responsible for
validating its own data configuration with its own validation
method.

0055 To provide as much data validation as quickly as
possible for system users entering and maintaining configu
ration data through a user interface (e.g., the configuration
management application 27), the configuration system 14
can provide editing and validation information directly on
the user interface so that the user interface can display error
messages immediately. In some embodiments, each object
can implement a validation requirements process (a
“required validation method”) that instructs a user interface,
or another part of the configuration Subsystem 14 requiring
Such validation information, how to perform required data
validation operations and what errors to display when Vali
dation fails based on the validation method. The user inter
face builds data editing and validation as provided or
instructed by an object into each page or form it displays so
that errors can be identified directly on the user interface
without waiting for the configuration Subsystem 14 to send
entered data back to an object within the configuration
Subsystem 14 for validation. Internal objects can also imple
ment validation methods. In some embodiments, internal
objects send their validation methods to a parent or broader
object, and a highest parent object combines the validation
methods into a single message that it can send to a user
interface, or to another part of the system 11 that requires
information on data validation.

0056. In some embodiments, the user interface can pro
vide multiple levels of data validation. A first level of data
validation can check for error conditions directly on the user
interface, and can allow system users to correct errors. A
second level of data validation can execute one or more
validation methods of one or more objects using the con
figuration subsystem 14. The validation methods recheck
data initially checked on the user interface and performs
additional checks. The second level of data validation can
return errors back to the user interface for correction.
Providing multiple levels of data validation can provide
immediate data validation directly on the user interface and
can provide additional validation as well as verifying that
the validation performed by the user interface is correct
before committing new or edited configuration data to the
configuration database 20. Multiple levels of data validation
can provide a fail-safe check on possible errors in the user
interface and prevent errors in configuration data obtained
from any source from being stored in the configuration
database 20.

0057 FIG. 4 illustrates a process of obtaining and vali
dating configuration data from a manual entry process and

US 2006/0179042 A1

an automated entry process according to one embodiment of
the invention. Manual configuration data updates through
the configurable user interface are shown on the left side of
FIG. 4. At a first step of the manual entry process, the
configuration Subsystem 14 (e.g., the configuration manage
ment application 27) retrieves an object to update or creates
a new object to be initialized (step 70). The configuration
subsystem 14 also obtains validation information for the
data included in the object. If the manual entry process
includes updated configuration data, the configuration Sub
system 14 sends current or existing configuration data
included in the object.
0.058 At a second stop of the manual entry process, a user
interface framework application or module 80 uses the
validation information (and the current configuration data if
application) to build a customized user interface 82 for the
retrieved or created object (step 72). In some embodiments,
the customized user interface can include a web page or a
form displayable with a browser application.
0059. In some embodiments, the user interface frame
work module 80 does not directly use the validation infor
mation (i.e., the validation method code) included in an
object to edit entered configuration data, but implements its
own programming code to implement validation require
ments of the object. The user interface framework module
80 can also include logic to implement common validation
required for objects. In some embodiments, the customized
user interface 82 can also be configured to a particular role
or security settings of a system user manually entering
configuration data.
0060. After the customized user interface 82 is generated,
the customized user interface is displayed to a system user
(step 73).
0061. At a fourth step of the manual entry process, a
system user interacts with the customized user interface 82
and provides configuration data (step 74). As described
above, the customized user interface 82 can provide a first
level of data validation. Any errors identified in the first level
of data validation can be immediately indicated to the
system user.

0062) When entered configuration data passes the first
level of data validation, the system user submits the con
figuration data entered in the customized user interface 82
(step 75). The entered configuration data is presented to the
original object retrieved or created in the configuration
subsystem 14 for a second level of data validation (step 76).
0063. Objects can pass entered configuration data related
to each internal object for validation (step 77).
0064 Objects can combine the results of the validation
methods of any internal objects with the results of its
validation method and determine if the configuration data is
correct (step 78).
0065. If the configuration data is not correct, an object
can pass an object containing one or more error messages to
the user interface framework module 80 (step 79). The
object containing error messages can instruct a system user
how to correct incorrect configuration data.
0066. The user interface framework module 80 builds
another customized user interface 82 that includes the pre
viously entered configuration data and the error messages

Aug. 10, 2006

included in the returned object (step 85). The customized
user interface 82 is then displayed to a system user (step 73).
The system user corrects the identified errors and resubmits
the entered configuration data (step 74). This process con
tinues until the configuration data is validated at both the
first level of validation and the second level of validation or
until a system user stops attempting to update configuration
data.

0067. Once the validation methods within an object have
validated the entered configuration data, the object updates
its image (i.e., data) in the configuration database 20 (step
86).
0068 Automatic configuration data updates through
batch or online updates are shown on the right side of FIG.
4. In a first step of an automated entry process, a bath or
online import utility 40 obtains configuration data (i.e.,
configuration load files 43) to add to or update in the
configuration database 20 (step 100).
0069. After the import utility 40 obtains configuration
data, the incoming data is presented to existing objects or
new objects for validation (step 102). Each object executes
its validation method. An object with internal objects can
pass configuration data related to each internal object to that
object and each internal object can execute it own validation
method.

0070 An object combines the results of the internal
objects validation methods with the results of its own
validation method and determines if the imported configu
ration data is correct (step 78).
0071. If the imported configuration data is not correct, the
object passes an object containing one or more error mes
sages to the import utility 40 (step 104). The error messages
included in the returned object can instruct a system user
how to correct incorrect configuration data.
0072. In some embodiments, the import utility 40 can
disallow the update or addition of an object including errors.
The import utility can log errors to an error log or database
108 (step 106).
0073. Otherwise, once the validation methods within an
object have validated the imported configuration data, the
object updates its image (i.e., data) stored in the configura
tion database 20 (step 86).
0074 As described above with respect to FIG. 2, a
system user can use a configuration metadata management
application 30 to configure customized user interfaces 82
displayed to system users in order to obtain and/or edit
configuration data. A system user can edit and manage
configuration metadata, stored in the configuration metadata
database 26, in order to present certain data elements that the
system user associates with one or more system user roles so
that each system user manages only the configuration data
they are responsible for.

0075 Customized user interfaces 82 for manually enter
ing and updating configuration data provide the ability to
modify displayed fields and functions provided on a user
interface each time the customized user interface 82 is
displayed to a system user. For example, the fields and
functions displayed by a customized user interface 82 can be
controlled by a role or security profile of a system user. A
role and security profile of a system user can indicate what

US 2006/0179042 A1

permissions, privileges, and skill sets a system user has, and
by user interface configuration rules, which permissions,
privileges, and skill sets a system user can modify. Different
customized user interfaces 82 for different system user roles
can provide different customized user interfaces 82 to sys
tem users filling different roles. For example, an object
representing an ATM device may contain data defining the
business relationships between a financial institution Sup
porting the ATM device, types of cards the ATM device
supports, cash limits, and networks with which the ATM
device can operate. The object may also contain data defin
ing technical details of how the device is configured, such as
communications protocols used to connect to networks,
different types of bills the ATM device can dispense, avail
ability of a deposit function, and details of instructions
displayed on a screen of the ATM device. To provide
configuration data for the device, a first system user (per
forming the role of a business analyst) can see a customized
user interface 82 containing business elements of the device,
a second system user (performing the role of a communi
cations technician) can see a customized user interface 82
containing technical communication elements, and a third
system user (performing the role of a device manager at a
financial institution Supporting the device) can see a cus
tomized user interface 83 containing elements needed to
control a display or screen of the ATM device.

0076. As described above, the configuration metadata
management application 30 can allow system users to
modify configuration metadata and/or rules in order to
enable, disable, require, and/or hide individual fields and
features on a particular customized user interface 82 dis
played to a system user. By building customized user
interfaces 82, as described above with respect to FIG. 4, a
system user can remove a field or feature from a customized
user interface 82 associated with one system user role and
can enable a field or feature for a different system user role.
The ability to disable and enable fields and/or features by
changing the configuration metadata and/or associated rules,
can allow system users to determine what fields and features
they want to associate with each system user role without
changing underlying programming code of the system 11.

0077. In some embodiments, for objects, such as simple
objects, a system user can create a customized user interface
82 including an all-inclusive user interface. When entering
configuration data for an object, Such as objects representing
an ATM device, a system user may deal with multiple
objects at one time. For example, an object representing an
ATM device can include an object representing canisters of
bills to be dispensed and an object representing a depository
for depositing cash and checks.

0078. In some embodiments, customized user interfaces
82 can also be internalization and localization in order to
provide international customized user interfaces 82.
0079 FIG. 5 illustrates a method of generating custom
ized user interfaces 82 according to one embodiment of the
invention. As shown in FIG. 5, the user interface framework
module 80 can build a customized user interface 82 (e.g.,
using a user interface builder module 117). In some embodi
ments, the user interface framework module 80 uses a user
interface template 119 to create a customized user interface
82. The user interface framework module 80 can also use
services provided from the configuration management appli

Aug. 10, 2006

cation 27 and/or the configuration metadata management
application 30 to build a customized user interface 82. For
example, the user interface framework module 80 can use a
user interface rule service 120, a data access service 121,
and/or an object editing service 122.
0080. In some embodiments, the configuration subsystem
14 can include a workflow management feature that allows
the system 11 to gather information from multiple system
users independently, either at separate times or simulta
neously, and to combine multiple entries into a complete
picture of objects being configured. FIG. 6 illustrates a
workflow management feature 150 of the configuration
Subsystem 14 according to one embodiment of the inven
tion. The workflow manager feature 150 can include work
flow controls, such as work queues 152, to align pending
work with individual system users or roles, prioritize work,
escalate scheduling problems, and report the configuration
management process for analysis and history.
0081. The workflow management feature 150 allows a
system user to set workflow rules 155 when configuring the
system 11. For example, a system user can set an order in
which system users should perform configuration activities.
Separate activities can be queued and prioritized for differ
ent system user roles as defined above, and may be pro
cessed in a specific order or simultaneously. Separate work
queues 152 can schedule work for separate system user
roles. In some embodiments, the workflow management
feature 150 allows partial completion of configuration data
for an object and tracks a process needed to complete
configuration data of the object.
0082 The workflow management feature 150 can include
one or more process management queues 154 that handle the
escalation of scheduling and/or other problems for review
and resolution of workflow inefficiencies and errors. The
workflow management feature 150 can also include report
ing features 156 that can present a status of current con
figuration activities and/or tasks and can present information
regarding the configuration Subsystem 14 for analysis and
history.

0083. In some embodiments, system users can modify
system user roles, the process management queues and
related priorities and trigger conditions used to manage
work, and reporting options by editing process management
rules. The workflow management feature 150, in conjunc
tion a security system of the system 11, can also allow
system users to move configuration management functions
to customers or their customers’ customers, as appropriate,
and to manage the process required to move the configura
tion management functions to a customer in order insure that
configuration data is entered accurately and/or on time.
0084. Some objects can contain configuration data that
rarely changes from one instantiation of an object to another.
To provide default or common information, the configura
tion subsystem 14 can provide “model objects.” The model
objects are not part of an active configuration repository of
a system user but include a model of how to build a
“standard” object. Model objects can be used to fill in
commonly used values, and to default these values on user
interfaces displayed to system users when manually entering
configuration data. The configuration Subsystem 14 can
provide default values from model objects to pre-fill as
much of standard manually entered data as possible. System

US 2006/0179042 A1

users can change the default values of the model objects as
needed. In some embodiments, system users can build
model objects for any objects in the configuration database
20 and can set the default values.

0085 Model objects can specify locked default values
that should not be changed, and customized user interfaces
82 can be configured not to let system users change locked
default values. In some embodiments, system users can
create an “expert' role and provide a customized user
interface 82 that displays locked defaulted values in order to
change locked default values.
0.086 The configuration subsystem 14 can include pro
cesses to extract and package configuration data needed by
applications 16, to update or “roll in changes while the
system 11 is running, to undo or “back out' changes if they
cause problems, and to track changes and related effects for
analysis and history.
0087. In some embodiments, the configuration subsystem
14 provides features to manage a lifecycle of any given piece
of data. FIG. 7 illustrates a process of data lifecycle man
agement according to one embodiment of the invention.
0088 A first step in a data lifecycle includes the creation
of a new configuration object with new configuration data
(step 200). A second step in the data lifecycle includes
storing the configuration object using a managed change
request that places the configuration object into a 'staged
status in a development configuration repository 204 (step
202).
0089. After the configuration object is staged, the con
figuration object is promoted to a “production' status in the
development configuration repository 204 (step 206). Next,
the configuration object is promoted to additional reposito
ries, such as a quality assurance repository 207, an accep
tance testing repository, and/or another repository associated
with pre-production processes (steps 208 and 210).
0090. After any pre-production processes are performed,
the configuration object is installed into a production reposi
tory 212 in a “staged status (step 214). Next, the configu
ration object is promoted to a “production' status within the
production repository 212 (step 216). Once the configuration
object has a “production' status in the production repository
212, the configuration object can be extracted into one or
more configuration extracts (step 218), which are tailored to
the needs of various applications 16.
0091. Once the configuration data is extracted into a
configuration extract, the configuration object is loaded into
a configuration manager module 220 (step 222), and the
configuration data included in the configuration object is
used productively within one or more applications 16 (step
224).
0092. As applications 16 of the system 11 use the con
figuration data included in the configuration object, the
configuration data can be updated (step 228). Updated
configuration data can follow the data lifecycle as described
in the above steps (i.e., step 202, 206, 208, 210, 214, and
216).
0093. Once updated configuration data is promoted to a
“production' status within the production repository 212,
the previous or replaced configuration data can be promoted
to a “previous status (step 230). The previous configuration

Aug. 10, 2006

data can remain available in the production repository 212,
and, in Some embodiments, the previous configuration data
can rolled back into production (re-promoted to a “produc
tion' status) in order to help alleviate problems caused by
the updated configuration data.
0094 Configuration data with a “previous' status can
also be deleted from the system 11. In some embodiments,
previous configuration data can be deleted and/or archived
to a history file or database 240 as inactive configuration
data when more recent configuration data is promoted to a
“previous' status (step 242).
0095. A configuration change request process can allow
system users to move one or more independent or inter
related and dependent updates into an appropriate repository
(e.g., development, quality assurance, production, etc.) at
any given time. In some embodiments, configuration objects
can include effective dates that allow system users to move
configuration objects to a “production' status before they
should be effective. The configuration objects can remain
ineffective or inaction until their effective date.

0096. The configuration subsystem 14 provides a stan
dard application programming interface (API) that appli
cations can use to load and manage configuration data they
use through common reusable code. In addition, the con
figuration subsystem 14 provides the ability to define any
combination of configuration data in any way that may be
appropriate for specific applications without being limited
by the standard configuration API. The configuration sub
system 14 can provide standard formats for storing, retriev
ing, and using configuration data within applications 16 of
the system 11. In some embodiments, the configuration
Subsystem 14 also provides a set of programming "classes.”
which define objects needed to perform a set of standard
configuration management functions within each application
16. The programming classes define a set of API definitions
that applications 16 can use to access configuration data
without having to manipulate configuration data directly.

0097 FIG. 8 illustrates an application 16 and configu
ration management APIs 300 according to one embodiment
of the invention. The configuration management APIs 300
provide a small, common, and/or reusable data management
facility within the configuration manager module 220 of an
application 16. An application 16 calls for and uses con
figuration data as needed using the configuration manage
ment APIs 300 without having to obtain knowledge about
how the configuration data is stored or organized within the
configuration Subsystem 14 and/or the configuration man
ager module 220.
0098. In addition to standard functions, the configuration
Subsystem 14 provides a mechanism for custom formatting
and management of configuration data. For example, some
configuration data is most useful when loaded into large or
complex tables 310 within the memory of an application 16.
Applications 16 that can make use of Such specific data
formatting and processing can also define a format and
processing for configuration data as needed.

0099. As shown in FIG. 1, the system 11 includes a
monitoring Subsystem 18. The monitoring Subsystem 18 can
obtain and act upon information provided throughout the
system 11. Monitoring processing rules, similar to transac
tion processing rules and workflow management rules, can

US 2006/0179042 A1

enable the monitoring subsystem 18 to act directly upon
many reported events and status changes without manual
intervention. Escalation rules can enable the monitoring
Subsystem 18 to alert a system user and/or another moni
toring system of conditions it cannot handle directly. In
addition, the monitoring Subsystem 18 can instruct a prob
lem management Subsystem 18 to track and manage ongoing
problem cases. In some embodiments, workflow features (as
describe above with respect to FIG. 6) can continuously
monitor and escalate ongoing problem cases as necessary. In
Some embodiments, the system 11 can provide any or all of
the features described above in response to an event depend
ing on what associated monitoring rule objects require
and/or perform. In some embodiments, the monitoring Sub
system 18 can accept manually entered commands or com
mand Scripts from a command line interface. The monitoring
Subsystem 18 can process command Scripts directly and/or
can Submit commands Script to an operating system com
mand interpreter.
0100. The monitoring subsystem 18 can also include
rules related to system status messages in order to keep track
of the health of the system 11. If a status message causes a
counter to pass a configurable threshold, the monitoring
Subsystem 18 can take corrective action or can escalate the
condition for manual action as appropriate.
0101 The monitoring subsystem 18 can also keep a
history of the reported system conditions and events in order
to display history information on demand or to use as a
baseline to compare against current conditions and trends.
The system 11 can also use the historical data to set
thresholds for proactive monitoring as described below.
0102 FIG. 9 illustrates functionality of the monitoring
subsystem 18 according to one embodiment of the inven
tion. The monitoring Subsystem 18 can consume messages,
transactions, and events associated with the system 11 as
input and can interpret the input and take actions accord
ingly. In some embodiments, the monitoring Subsystem 18
can maintain a history of monitored statistics and events and
can provide a monitoring interface user interface 400 for
accessing current and historic data. In some embodiments,
actions taken by the monitoring Subsystem 18 can be con
figurable as describe below.
0103) The monitoring subsystem 18 can provide reactive
monitoring that automatically detects an error or exception
and notifies an appropriate party and/or takes a self-correct
ing action. In some embodiments, the monitoring Subsystem
18 can provide proactive monitoring and can provide a
'dashboard' that shows system status and can be accessed
by System users. The dashboard can show a current status,
which can include notifications occurring associated with a
problem or exception and non-error messages. The dash
board can be displayed to a system user using a web
application and/or a specific client application. The moni
toring Subsystem 18 can passively receive non-error mes
sages generated by components of the system 11, Such as
transaction logs and/or event logs, which it can use to
indicate a status or health of the system 11. The monitoring
Subsystem 18 can also actively interrogate applications 16
and/or components of the system 11 in order to determine a
current state of the system 11.
0104. In some embodiments, the monitoring subsystem
18 can generate one or more entities and one or more current

Aug. 10, 2006

monitored elements (“CMEs). An entity can be associated
with a component (e.g., a logical component or a physical
component) being monitored (e.g., an ATM device or a
group level identifier, Such as a financial institution identi
fier) with the monitoring subsystem 18. An entity can
include one or more attributes. Such as a unique label for the
entity, an entity type, a rule to start upon updating the entity,
a timestamp of a last update of the entity, and a timestamp
of initiation of the entity or a last reset of the entity. In some
embodiments, the monitoring Subsystem 18 can use one or
more entity templates to create an entity. Each entity can
include an entity type that links the entity to an entity
template. Entity types (and corresponding templates) can be
configured using the configuration Subsystem 14 and/or the
monitoring Subsystem 18. In some embodiments, the moni
toring Subsystem 18 includes entity types (and correspond
ing template) linked to device entity types (and/or device
model entity types), link entity types (e.g., internal links and
external links), node entity types (i.e., physical or logical
processing components of the system 11), process entity
types, and business entity types (e.g., a financial institution).
0105. Each entity can be associated with one or more
CMEs. ACME can include an individual element or bucket
of data. A CME can include one or attributes, such as a
unique label, data contained in the element or bucket, a rule
to start upon updating the CME, a timestamp of a last update
of the CME, and a timestamp of initiation of the CME or a
last reset of the CME. In some embodiments, a CME can
include a timer that alerts the CME of a lack of activity. A
CME can generate an event when a timer expires. In some
embodiments, the monitoring Subsystem 18 can create a
CME based on a CME template.
0106 Active CMEs used in the monitoring subsystem 18
can be included in a current monitored window (“CMW).
0.107. In some embodiments, an entity can be associated
with a CME counter element. A CME counter element can
store a numeric value that the monitoring Subsystem 18 can
set, add to, Subtract from, reset, compare, and/or increment.
An entity can also be associated with a CME consecutive
element. A CME consecutive element can store a numeric
value that the monitoring Subsystem 18 can set, add to, reset,
compare, and/or increment. An entity can also be associated
with a CME rolling average element that stores a numeric
value representing a mean average of one or more CME
counters elements. The monitoring Subsystem 18 can set,
add to, reset, and/or compare the CME rolling average
element. In some embodiments, a CME rolling average
element includes an attribute that specifies a number of
CME counter elements making up the mean average. The
number of CME counter elements making up a mean
average can be configured using the configuration Subsystem
14 and/or the monitoring subsystem 18.

0108. In some embodiments, an entity can also be asso
ciated with a CME status Boolean element that stores a
Boolean status of an entity (e.g., an ATM device or a group
of ATM devices) and a CME status level element that stores
a status level as a percentage.
0.109 The monitoring subsystem 18 can provide moni
toring of transactions, such as electronic financial transac
tions. To obtain information about transactions, the moni
toring Subsystem 18 can Subscribe to transaction log files (as
described below with respect to FIG. 15).

US 2006/0179042 A1

0110. In some embodiments, the monitoring subsystem
18 includes a message mapper. The message mapper can
extract accepted or required data from incoming events,
information, and log entries. The monitoring Subsystem 18
can also subscribe to a monitoring event queue. In some
embodiments, applications and components of the system 11
can include a local monitoring agent responsible for con
figurable system checks and forwarding events to the moni
toring event queue. The monitoring Subsystem 18 can also
monitor change-of-status messages generated by devices
and/or device managers, status messages generated by node
agents, messages generated when new nodes and/or devices
are added to the system 11, and events from devices or
device managers that are received out of order.
0111 When the monitoring subsystem 18 receives infor
mation about a transaction, the monitoring Subsystem 18 can
identify one or more entities and/or CMEs to be updated
with the event information. The monitoring subsystem 18
can update the entities and/or the CMEs (and/or any asso
ciated elements, for example, the CME rolling average
element), and can determine if any thresholds associated
with the entities and/or the CMEs have been exceeded. In
Some embodiments, thresholds, such as a number of error
messages that can be received from an ATM device before
a technician is notified, can be included in CMEs. Thresh
olds can include an age of a data timer (e.g., a timestamp of
a last reset), an inactivity timer (e.g., a timestamp of a last
update), a numerical range or limit, an enumerated type
value check (e.g., "disconnected’), and/or a Boolean value.
0112 The monitoring subsystem 18 can use a rules
engine to execute rule objects (as described below with
respect to FIGS. 16 and 17) to interpret incoming events
and information. In some embodiments, a rule object can
include one or more thresholds that a rule object can check
when an entity and/or a CME is updated. As described
above, an entity and a CME can include an attribute speci
fying a rule to execute when the entity or the CME is
updated. The specified rule can perform threshold checking.
If a threshold is exceeded, a rule object executed with the
monitoring Subsystem 18 can forward an event and/or a
message to a third party, format and send a message or a
command to an internal component of the system 11, reset
a CME, archive CME data to a monitoring history database
or log file, run a system configured Script, generate a
problem case, etc.

0113 As described above, rules objects executed when
an entity or a CME is updated can initiate actions. For
example, a rule object can initiate the execution of an
operating system script, the generation of a problem in a
problem system, the sending of an internal message or an
alert to another system component, the sending of an exter
nal message or an alert to another system, and/or the sending
of a message oran alert to one or more system users. In some
embodiments, messages can be sent to system users via a
telephone system (e.g., sending a page or a fax) and/or via
a network (e.g., sending an email). In some embodiments,
messages and/or alerts can be sent to third party components
and systems, such as simple network protocol management
protocol (“SNMP) managers.

0114 Rule objects executed with the monitoring sub
system 18 can include rules objects for storing entities
and/or CMEs to a database, checking thresholds, rolling or

Aug. 10, 2006

archiving historical monitored events and/or information,
resetting entity attributes, CME attributes, and/or CME
elements, and performing script or command execution. In
some embodiments, rule objects executed with the monitor
ing subsystem 18 can store entities, CMEs, and/or other
information associated with the monitoring Subsystem 18
(e.g., monitored events and resulting actions) to a database
and/or log file.
0.115. As shown in FIG. 9, the monitoring subsystem 18
can include a monitoring user interface 400. The monitoring
user interface 400 can display a “dashboard indicating
communications and software health. The "dashboard’ can
also display threshold values (e.g., approval rates over a
link) and monitored entities. In some embodiments, a system
user can configure the threshold values and/or the monitored
entities displayed by the monitoring user interface 400 using
the monitoring Subsystem 18 and/or the configuration Sub
system 14. In some embodiments, the monitoring user
interface 400 can use system user profiles (i.e., roles and/or
security settings) 410, to determine whether a particular
system user should be allowed to configure threshold levels,
monitored entities, and/or other monitoring configuration
data.

0.116) The monitoring user interface 400 can also include
a graphical system health/operations Subsystem that pro
vides filtered drill down capability. System users can also
use the monitoring user interface 400 to scroll through
filtered event lists. In some embodiments, event lists can
include tokenized events or information and a system user
can filter the event list based on token existence, token
identifier, and/or token value.
0.117) The monitoring user interface 400 can also gener
ate on-demand displays of statuses. In some embodiments,
the monitoring user interface 400 can provide search capa
bilities that allow a system user to search and receive the
status of a particular entity.
0118. As described above, system users can use the
monitoring user interface 400 to create, read, update, and
delete monitored entities. The monitoring user interface 400
can also allow system users to create, read, update, and
delete rules associated with monitored entities. In addition,
the monitoring user interface 400 can allow system users to
edit monitored entity Scripts and/or commands executed
according to the rules. As described above, the monitoring
user interface 400 can use system user profiles 410 to
determine which configuration functionalities are available
to a particular system user executing the monitoring user
interface 400.

0119) As also shown in FIG. 9, the monitoring subsystem
18 can include a problem management Subsystem or module
420. The problem management subsystem 420 can use a
problem data store 430 to track problem cases generated and
managed with the monitoring subsystem 18. The problem
management subsystem 420 can provide an API that allows
the monitoring Subsystem 18 to create problem cases. In
Some embodiments, the monitoring Subsystem 18 generates
a problem case for monitored conditions requiring external
effort to resolve. A rules-based workflow manager capability
of the configuration subsystem 14 (as described above with
respect to FIG. 6) can monitor and trace a problem case to
its resolution.

0.120. In some embodiments, the system 11 processes and
manages context objects. A context object can include

US 2006/0179042 A1

information needed to complete a specific transaction, case,
or other element of work to be processed by the system 11.
Context objects can be considered running or executing
instances of a class or a type of object. Each class can
contain definitions or data types and programming code for
an object. For example, an automated teller machine
(ATM) class may define an ATM machine. The ATM class
can define what types of data or information the ATM
machine includes, such as the name or other identifier of a
financial institution (“FI) that owns or manages the ATM.
The ATM class can also define what an ATM machine can
do and how it works. The ATM class can also contain the
programming code needed to handle ATM processing and
define the data that the programming code uses.
0121 When an instance of a class is instantiated or
generated (“an object”), each instance of the class includes
one or more data types defined by the class, which are set to
data specific to a particular object (e.g., a name of a FI
managing an ATM machine). The instance of the class also
includes the programming code or functionality defined by
the class. For example, an object named ATM123 can be an
instance of the ATM class and can define a specific ATM
machine in a specific location. The ATM123 object can
include ATM data related to a specific instance of an ATM
and can provide processing as defined by the ATM class. In
a single application or system there can be many instances
of a class.

0122) To generate a context object, the system 11 can
extract information from incoming data and place it into an
object called a context object. Incoming data can include
requests for service from external devices and systems. Such
as an ATM or a financial institution network. Requests can
include financial transactions, such as withdrawing cash
from an ATM; manual requests from users who are querying
the system for information; or requests for updates and/or
modifications from operators running and/or configuring the
system 11. The system 11 can encapsulate each request into
a context object. In some embodiments, different types of
context objects can be used for different types of requests.
Each type of context object, however, can inherit a basic
form and structure from a base context class. Therefore,
once incoming data is encapsulated into a context object, the
system 11 can process the context object regardless of a
specific type or format of the original incoming data and the
type of context object created to contain the incoming data.
0123. While processing context objects, the system 11
can transfer a context object to another component or
Subsystem of the system 11. In some embodiments, data
contained in a context object can also be transmitted to other
external systems. The system 11 can use a format called a
“tokenized message' to transfer context objects and other
information. A tokenized message can include one or more
self-defining “tokens. Each token can represent a unit of
information. A system component or external application
can obtain information from the tokenized message by
examining individual tokens included in the message. In
Some embodiments, a system component or external appli
cation obtaining the tokenized message does not need to
know the overall or complete structure of the tokenized
message. A system component or external system can search
tokens included in a tokenized message for tokens that
identify needed or accepted data and can ignore tokens
identifying unneeded or unaccepted data. Using tokenized

Aug. 10, 2006

messages can simplify system maintenance and updating
since as new data elements are added to a tokenized mes
sage, additional code to handle the data change is mini
mized. For example, to include new data in a tokenized
message, components that use the new data can be updated
to identify and use the new data included in the message, and
components that do not need the new data element can
ignore the new data as they ignore other unaccepted tokens.

0.124. In some embodiments, the system 11 can also use
tokenized messages to save a context object to a logging file
and/or a trace file, to move a context object between
processes or applications that are implemented in a different
programming language (e.g., Java or C++), to send Visual
information to a user interface for display with a browser
application, and/or to construct an configuration extract of
configuration information for a specific portion of the sys
tem 11 from the configuration subsystem 14.

0.125. In some embodiments, applications 16 of the sys
tem 11 can use a logger object (an instantiation of a logger
class) to write a context object (or other system information)
to a log file. The logger object can provide an API that an
application calling or instantiating the logger object can use
to supply parameters and format a log entry. In some
embodiments, a log entry includes a tokenized log entry. Log
entries are added to a log file buffer and are written as the log
entry buffer becomes full and/or after a predetermined
amount of time. In some embodiments, a system user can
configure the predetermined amount of time before log
entries included in a log file buffer are written to a log file.
Log entries can be written to a log file using a log output
stream. In some embodiments, the log output stream can
process log entries in either direction (i.e., starting with a
first log entry in the log entry buffer or starting with a last
log entry in the log entry buffer).

0.126 Each log buffer can include an entry including a
byte length of its contents, a byte offset in a stream, a count
of log entries in the buffer, and log entries. In some embodi
ments, the byte length of the contents of a log buffer can be
included at both ends of a log buffer in order to support
processing of a log buffer in either direction.
0127. A log output stream includes the contents of each

file in a log set. A log output stream can include a sequence
of variable length log buffers.
0128. In some embodiments, a log key includes an entry
including a logger process name, a logger object name, a file
sequence number, a buffer byte offset into a file, and an entry
number in the buffer. The log key can be added to a context
object to provide a reference to where a corresponding log
entry can be found.
0129. The logger object (or the corresponding log class)

is configured to write to one or more log file sets. In some
embodiments, the logger object is configured to write to one
or more log file sets in parallel. Each file set includes a set
of files in a directory. The logger object can concatenate a
name of the logger object with a file sequence number in
order to generate a name of a log file. For example, a logger
object named “transactions' instantiated by a process or
application named “switch2 generates file names
“switch2transaction1.oel' O

“switch22transactions9999999, depending on a file
sequence number (i.e., the number of log files previously

US 2006/0179042 A1

generated). The logger object can save the log files, with the
generated names, to directories specified in each log file set.
0130. A logger object can support one or more strategies
for executing once instantiated by a calling application or
process. In a first strategy, an asynchronous strategy, the
calling application (or a thread of the calling application)
continues processing after the logger object adds a log entry
to a log file buffer. In a second strategy, a synchronous
strategy, the calling application (or a thread of the calling
application) is blocked until a log buffer that the logger
objects adds a log file entry to is written or flushed. In a third
strategy, an asynchronous secure strategy, the calling appli
cation (or a thread of the calling application) continues
executing after the logger object adds a log entry to the log
entry buffer, and the context object passed to the API is
re-queued for further processing once the buffer has been
flushed to all file sets.

0131) Applications 16 can subscribe to logger objects. To
Subscribe to a logger object, an application 16 sends a
Subscription request to an application process associated
with the logger object. In some embodiments, logger objects
send details of its current state and buffers logged to each
Subscribing application (hereinafter 'Subscriber applica
tions'). The Subscription request can indicate whether a
Subscriber applications process is to be treated as Synchro
nous (i.e. equivalent to a file set, Suspending the application
process until a reply is sent), asynchronous (i.e. fire and
forget), or follow-on (i.e. fire and forget but not until the
buffer has been flushed to the file sets).
0132) In some embodiments, log entries can be token
ized, and the tokenization method used to create log entries
can Support multiple versions so that Sources and consumers
(e.g., applications reading log file and Subscriber processes)
do not need to be at a same release level or version to
communicate and can be software-language independent.
Consumers of a tokenized log entry, whether a subscriber
application or an application reading a log file, can recreate
the logged object (and its contents) by unpacking the token
ized log entry. The format of the tokenized object can be
recursive so that internal objects can also be unpacked.
0133. In some embodiments, an application 16 of the
system 11 is configured to run one or more logger objects.
Configuration data for each logger object can specify a
logger class, an API available to an application 16, a roll
over size for each log entry or file, a size of a full log buffer,
a maximum time to delay a log entry waiting for a log buffer
to fill, and a directory path name for each file set.
0134. On startup, a logger object can use a file sequence
number one greater than a maximum file sequence number
found in any file set. In some embodiments, if a write to a
log file fails, a logger object can move to a next file sequence
number. A logger object can also move to a next file
sequence number if a log file is refreshed because of a failed
disc or a network node is returned to service. In some
embodiments, a file sequence number existing in each file
set differs only in the last buffer written.
0135) If a subscriber application fails (or is stopped), a
logger object receives an error when sending a log buffer to
the Subscribing application. In some embodiments, if a
logger object receives an error when sending a buffer to a
Subscribing application, the logger object removes the Sub

Aug. 10, 2006

scriber application from a list of Subscriber applications
maintained by the logger object. On recovery, a failed
Subscriber application can attempt to reconnect to the logger
object. In some embodiments, a Subscriber application can
determine whether missed log entries should be recovered
from log files and, if so, whether this is a background
catch-up task or is done before processing new log data.
0.136 If the logger object fails, subscribing applications
can detect failed logger objects with a failure of a subscribe
request. In some embodiments, a Subscribe request remains
as an outstanding request as long as the logger object is
running. A subscribing application can attempt to re-estab
lish a connection with the failed logger object and can
handle any recovery required.

0.137 In some embodiments, logger classes are provided
as a Java API and/or a C++ API. A base logger class can
include programming code for configuring a logger object,
initializing file sets, creating thread objects for each file set
and each Subscriber application, managing a pool of log
buffer objects, coordinating between thread objects and
buffer objects, and responding to a command interface.
0.138 An event logger class is derived from a base logger
class and uses asynchronous logging. Additionally, an event
logger class can be configured to filter calling or instantiat
ing application requests based on log level. The event logger
class Supports an AddEventObject method where an instan
tiating application identifies an event source and a unique
event number along with the parameters relevant to the
event. In some embodiments, consumers of log entries
logged with the logger object can format log entries based on
the unique event number, for example, in order to provide an
internationalized message for a user.
0.139. A context logger class is derived from a base logger
class and uses synchronous logging. The context logger
class Supports an AddObject method that is passed a context
object to be logged. The context object can be updated with
a key to a log entry. Each calling thread can wait to be
notified that the log buffer has flushed before returning to an
application that called or instantiated the logger object.

0140. A trace logger class is derived from a base logger
class and uses asynchronous logging. Additionally, the trace
logger class can be configured to filter application requests
based on a trace level. The trace logger class can also operate
in a short mode, which limits the amount of detail required.
The trace logger class Supports an AddTraceObject method,
which is passed a context object to be logged and details
regarding why the context object is being traced. Optionally,
an application calling or instantiating the trace logger object
can pass a list of field names as details to the AddTraceCb
ject so that only a Subset of a context object is logged if a
logger object is operating in a short mode.

0.141. A context worker logger class is derived from a
base logger class and uses asynchronous secure logging. The
context worker logger class is configured with a name of a
thread pool to handle processing. The context worker logger
class Supports an AddObject method that is passed a context
object to be logged. The context object is updated with a key
to the log entry. A list of context objects to forward is
associated with a log buffer. When the log buffer is success
fully flushed each listed context object is passed to the thread
pool for further processing.

US 2006/0179042 A1

0142 FIG. 10 illustrates a process performed when an
application thread calls the AddObject method on a context
worker logger object. As shown in FIG. 10 a context worker
logger object can select a current buffer (step 500). If a log
entry is a first entry in a buffer, the context worker logger
object can start a buffer timer (step 504). The context worker
logger object can then tokenize and add the tokenized log
entry to the buffer (step 506). Next, the context worker
logger object can add the context object to a buffer list (step
508). If the buffer is full (longer than a configured size) or
the buffer timer has expired (step 510), the context worker
logger object can update a current buffer indicator (step
512). In some embodiments, the context worker logger
object can create a new buffer if needed.
0143. After the context worker logger object updates the
current buffer indicator, the context worker logger object can
cancel the buffer timer (step 514). Next, the context worker
logger object can determine if a buffer write is in progress
(step 216). In some embodiments, only one buffer is used for
writing at a time. A number of full buffers, however, can be
queued waiting to be written.
0144. If a write is in progress, the context worker logger
object can add the buffer to a waiting list (step 518).
0145 If the buffer is full (step 510) and a buffer write is
not in progress (step 516), the context worker logger object
can pass the buffer to the synchronous threads (step 520).
0146 FIG. 11 illustrates a process performed when a
buffer timer expires indicating that a buffer is ready for
writing. Until previous buffer writes are completed, the
buffer ready for writing can have new log entries appended
to it. As shown in FIG. 11, a logger object can select a
current buffer (step 522) and can determine if a buffer write
is in progress (step 524). As described above with respect to
FIG. 10, only one buffer can be writing at a time.
0147 If a buffer write is in progress (step 524), the logger
object can add the current buffer to a waiting list (step 526).
0148. Otherwise, if a buffer write is not in progress (step
524), the logger object can update a current buffer indicator
or create a new buffer if needed (step 528) and can pass the
buffer associated with the expired timer to synchronous
threads (step 530).
014.9 FIG. 12 illustrates a process of handling log file
sets and/or synchronous Subscribing applications using Syn
chronous threads of a logger object. In some embodiments,
the synchronous threads of the logger object wait to be
notified of a buffer to write or send to a subscribing
application. As shown in FIG. 12, a synchronous thread of
the logger object can determine if a buffer is available for
sending to a Subscribing application or writing (step 532). If
a buffer is not available, the synchronous thread of the
logger object can wait a predetermined amount of time (step
534) and can then recheck for an available buffer (step 532).
0150. Otherwise, if a buffer is available, the synchronous
thread of the logger object can send the buffer or write the
buffer (step 535) and can update the buffer in order to inform
the buffer of the completed send or write (step 536).
0151. In some embodiments, a last synchronous thread of
the logger object to complete a buffer send or write performs
post processing (step 538). For example, a last synchronous
thread of the logger object can determine if a buffer was not

Aug. 10, 2006

written or sent (step 540). If the buffer was not written or
sent, the last synchronous thread of the logger object updates
context objects included in the buffer (step 542). Otherwise,
if the buffer was written or sent, the last synchronous thread
can determine if any log files failed (step 544). If any log file
failed, the last synchronous thread can move to a next file
sequence number (step 546).

0152. As shown in FIG. 12, after the last synchronous
thread determines if the buffer was written or sent (step 540)
and determines whether any log files failed (step 544) (if
applicable), the last synchronous thread of the logger object
can re-queue context objects to a configured pool or queue
for further processing (step 548).

0153. Next, the last synchronous thread of the logger
object can determine if there are asynchronous threads (step
550). If there are asynchronous threads, the last synchronous
thread can pass a buffer to an asynchronous thread (step
552). Otherwise, if there are not any asynchronous threads,
the last synchronous thread can determine if there are any
waiting buffers (step 554). If there is a waiting buffer, the last
synchronous thread can pass a first waiting buffer to Syn
chronous threads (step 556).

0154 As shown in FIG. 12, if a thread is not a last
synchronous thread of the logger object (step 538) or if the
above post-processing functions, as described above, were
performed by a last synchronous thread, a synchronous
thread of the logger object can determine whether the buffer
send or write was successful (step 558). If the buffer write
or send failed, the synchronous thread of the logger object
exits (i.e., is removed) after updating a logger objects list
(step 560). Otherwise, if the buffer write or send was
Successful, the synchronous thread of the logger object
returns to check for available buffers (step 532).
0.155 FIG. 13 illustrates a process of handling log file
sets and/or asynchronous Subscribing applications using
asynchronous threads. In some embodiments, asynchronous
threads wait to be notified of a buffer to write or send to a
Subscribing application. As shown in FIG. 13, a logger
object asynchronous thread can determine if a buffer is
available for sending to a subscribing application or writing
(step 562). If a buffer is not available, the asynchronous
thread can wait a predetermined amount of time (step 564)
and can then recheck for an available buffer (step 562).
0.156. Otherwise, if a buffer is available, the asynchro
nous threads can send the buffer or write the buffer (step
566) and can update the buffer in order to inform the buffer
of the completed send or write (step 568).

0157. In some embodiments, a last asynchronous thread
to complete a buffer send or write performs post processing
(step 570). For example, a last asynchronous thread of the
logger object can determine if log files failed (step 572). If
any log files failed, the last asynchronous thread of the
logger object can move to a next file sequence number (step
574).

0158 As shown in FIG. 13, after the last asynchronous
thread determines whether any log files failed (step 572), the
last asynchronous thread can determine if there are any
waiting buffers (step 576). If there is a waiting buffer, the last
asynchronous thread can pass a first waiting buffer to
synchronous threads (step 578).

US 2006/0179042 A1

0159. As shown in FIG. 13, if a last asynchronous thread
did not complete (step 570) and/or the above post-process
ing functions, as described above, were performed, an
asynchronous thread of the logger object can determine
whether the buffer send or write was successful (step 578).
If the buffer write or send failed, the asynchronous thread of
the logger object exits (i.e., is removed) after updating a
logger objects list (step 580). Otherwise, if the buffer write
or send was successful, the asynchronous thread of the
logger object returns to check for available buffers (step
562).
0160 An application 16 can be configured to subscribe to
one or more logger objects associated with one or more
processes. In some embodiments, an application can con
figure logger objects to process Subscribing applications as
a set. For example, a set can include, all logger objects
named “transaction' on all processes in a category Switch. A
subscriber applicant creates a subscriber thread for each
logger. A subscriber thread (part of a logger object API) can
create a Subscriber application object, can obtain a reference
to an appropriate logger process publisher object, and can
send a Subscribe request. In some embodiments, a reply to
a subscribe request is only received if there is an error. A
logger object can also make call-back requests to the Sub
scriber object (a reference to which is a parameter of the
subscribe request). Call-back request can be handled by
worker threads under control of inter-process communica
tions software being used with the system 11.
0161 FIG. 14 illustrates a process of creating a subscrib
ing application object implementing a Subscriber interface
and activating it. As shown in FIG. 14, a Subscribing
application thread creates a Subscribing application object
(step 582). Next, the subscribing application thread obtains
a reference to a target process (i.e., publisher interface object
of logger process) (step 584). In some embodiments, the
Subscribing application thread can determine whether the
reference to the target process is valid (step 586). If the
reference is not valid, the Subscribing application thread can
wait a predetermined amount of time (step 588) and can
attempt to obtain a new reference to the target process (step
584).
0162. Once the subscribing application thread obtains a
valid reference to a target process, the Subscribing applica
tion object sends a Subscribe request to the target process
(step 590). The subscribe request can indicate a logger
object required and, in some embodiments, a call-back
object reference. Receiving a reply to the subscribe request
can indicate that the subscription has failed and should be
retired (step 584).
0163 FIG. 15 illustrates a process of handling a call
back requests. As shown in FIG. 15, a communication
thread can determine a type of call-back request (step 592).
In some embodiments, communication threads are imple
mented in Subclasses of the Subscribing application thread in
order to handle call-back requests.
0164. If the communication thread determines that the
call-back request includes a handle-recovery request (step
594), the communication thread can recover log entries
missed while the logger object was disconnected (if appli
cable). Otherwise, if the call-back request includes a handle
buffer request (step 596), the communication thread can
process entries contained in a received buffer. In some

Aug. 10, 2006

embodiments, processing entries contained in a received
buffer includes queuing the buffer or entries to be handled by
background tasks.
0.165. As shown in FIG. 15, the communication thread
can inform the logger object that it can continue (step 598).
0166 In some embodiments, each process in the system
11 is configured with an event logger object. The event
logger object is used by the process to log events, such as
communication failures, device status messages, auditing
information, etc. Each call to the event logger object can
specify a level such as “ERROR,”“WARNING,”“INFO,” or
“DEBUG, and the event logger object can be configured to
process only events with a level greater than or equal to a
predetermined level, such as “WARNING.' Event logger
objects, however, can be modified by configuration or con
trol in order to handle events with an “INFO level and/or
a “DEBUG' level. In some embodiments, an event logger
object has a timer value which flushes buffers every few
seconds.

0.167 The monitoring subsystem 18 can subscribe to
event logger objects and, for each event received, can
process rules in order to determine if any actions are
required, such as which users to inform of the event.
0.168. In some embodiments, a database loader applica
tion may subscribe to the event logger object to capture
events required for back office processing. Other applica
tions may also subscribe directly to the event logger object.
For example, an application 16 can Subscribe to one or more
processes in order to combine event logs from the one or
more processes into a consolidated log file.
0.169 Subscriber applications can also use logs written by
the monitoring Subsystem 18 after applying rules in order to
distill event information.

0170 In some embodiments, logger objects capture
transactions (i.e., context objects including data defining a
transaction) being processed by the system 11 and can safely
store transactions before replying to the transaction origi
nator. Logger objects capturing transactional data ("context
object logger objects”) can be configured in a business
transaction originating process and can have short buffer
flush timer values. In some embodiments, database loaders
Subscribe to context object logger objects in order to update
a main transaction database as a background task. In addi
tion, the monitoring Subsystem 18 can Subscriber to context
object logger objects in order to maintain statistics.
0171 As described above, a context object can include
data defining a transaction (hereinafter referred to as a
“transaction'). A transaction can include request information
and an indication of processing needed to respond to a
request. For example, a transaction for a withdrawal from an
ATM can include an indication of processing needed to
receive a request for money from an ATM, to route the
request to a FI associated with a card provided to the ATM,
to receive an authorization from the FI, to authorize the ATM
to dispense the money, to record a financial transaction for
further processing, and to handle any errors that occur
during processing. In some embodiments, once created,
transactions last or are active for a few seconds and, except
for recording transaction data for further processing at a later
late or for logging purposes, can exist only within the
memory of the computer system handling the transaction.

US 2006/0179042 A1

0172 A context object can include a case. In comparison
to a transaction, a case can include information needed to
respond to a longer-term service request. In some embodi
ments, the longer-term requests can include manual process
ing and/or computer processing. For example, a case can
include information needed to handle a dispute when some
one receives less money than requested from a possibly
malfunctioning ATM. The case can require documentation
of the problem from the person asking for the adjustment,
documentation of the problem from an FI managing the
ATM, and/or documentation of the problem from an FI that
issued the card provided to the ATM. In some embodiments,
cases can take days or months to reach a resolution, and can
require input from any number of people, system compo
nents, and systems while being processed.

0173. In some embodiments, transactions and cases exist
over different time periods, and can have different require
ments. In both situations, however, a context object contains
and manages access to information for an element of work
processed by the system 11 (e.g., a case or a transaction).

0174 If the system 11 encounters a problem while pro
cessing a transaction, the system 11 can generate a context
object that includes a problem case. In some embodiments,
the system 11 uses a problem management Subsystem to
generate a problem case. The context object including the
problem case can be related to the context object including
the transaction or the case that caused or generated the
problem. The processing needed to complete the transaction
or the case, therefore, can involve more than one context
object.

0175. As described above, some context objects exist in
the system 11 for only a second or two, while other context
objects can exist or are active in the system 11 for days or
months. In some embodiments, context objects can be saved
to log files or other disk storage at Some point. Context
objects can also be saved in persistent storage. Such as disks.
In some embodiments, storage mechanisms used to store
context objects can use standard relational database man
agement system (“RDBMS) technology to store the context
objects in order to provide efficient searching and reporting.
Individual context objects, however, can be reconstituted in
an original context object form when opened or activated.

0176). As shown in FIG. 16, in order to process context
objects, system components (e.g., the applications 16, the
configuration Subsystem 14, and the monitoring Subsystem
18) can include one or more processing modules 660. Each
processing module 660 can include a container 662. A
container 662 can include a rules engine 664 that executes
rules objects 666. The processing module 660 can also
include foundation components 667. The foundation com
ponents 667 can include logic or application for initializing
and executing the processing module 660. The foundation
components 667 can include listeners or event handlers that
intercept incoming data to a process device or system (i.e.,
the environment 19). In some embodiments, the foundation
components 667 can include one or more communication
facilities or interfaces that allow the processing module 660
to communicate or interact with other process modules 660,
other system components, and/or other systems. For
example, the foundation components 667 can include a
common object request broker architecture (“CORBA)
interface.

Aug. 10, 2006

0177. In some embodiments, the system 11 can include
multiple processing modules 660 configured to execute rule
objects 666 related to particular functions. For example,
separate containers 662 or rules engines 664 can execute
terminal management rule objects, transaction routing rule
objects, transaction authorization rule objects, logging rule
objects, and monitoring rule objects. In some embodiments,
each container 662, regardless of the specific type or scope
of the rule objects 666 it executes, can be configured to
execute rules objects 666 using context objects as input.
Each container 662 of the system 11, therefore, can have a
similar structure, and the structure can be independent of the
types of rule objects 666 that a container 662 executes.
0.178 In some embodiments, the processing module 660
performs a startup procedure. During a startup procedure,
the processing module 660 can load a configuration extract,
and, once configured with the configuration extract, the
processing module 660 can wait for incoming messages.
When an incoming message arrives, the processing module
660 creates a new context object (or uses a context object
included in the incoming message) and passes the context
object to the rules engine 664 for processing.
0179. As shown in FIG. 17, the rules engine 664
executes rule objects 666 in a loop. In some embodiments,
the rules engine 664 starts by generating a first rule object
666 to execute based on data included in the context object.
Once the rules engine 664 generates the first rule object 666,
the rules engine 664 passes the context object to the first rule
object 666 as input and the first rule object executes and
performs the business functions or logic. The rule objects
666 executed with the rules engine 664 include the appli
cation logic, and, therefore, the act of executing a rule object
666 causes the system 11 to execute logic contained within
the rule object 666.
0180. In some embodiments, while executing a rule
object 666, a rule object 666 can wait for additional incom
ing data. Incoming data can include data from an external
Source or from another context object included in another
part of the system 11. For external incoming data, rule
objects 666 can create a context object including the incom
ing data. For internal incoming requests, the incoming data
can already include a context object.
0181. Each context object can include a rule identifier.
The rule identifier can indicate a rule to execute. The rules
engine 664 instantiates or generates a rule object 666
corresponding to the indicated rule and executes the rule
object 666. Each executed rule object 666 modifies the rule
identifier to indicate a next rule to execute. After a rule
object 666 finishes executing, the context object is returned
to the rules engine 664, which can generate another rule
object 666 based on the rule identifier included in the
returned context object. The rules engine 664 continues
generating rule objects 666 until processing is complete.
Processing can include passing a context object to other rule
objects 666, other processing modules 660, or other com
ponents of the system 11 on the same computer as the rule
object 666 or on another computer. In some embodiments, a
rule object 666 can pass a context object to any component
of the system 11 that can accept and process context objects.
0182 To finish processing a context object, a rule object
666 can set the rule identifier of a context object to a
predetermined termination value, such as “null.” In some

US 2006/0179042 A1

embodiments, when the rules engine 664 encounters a rule
identifier set to a termination value, the rules engine 664
and/or the container 662 can return the context object to a
caller (i.e., the system component or outside component that
initially sent the incoming message). The rules engine 664
and/or the container 662 can also perform one or more
post-processing functions, such as logging processing infor
mation. The processing module 660 can then wait for
another incoming message.
0183 Each rule can include one or more constraints or
limits. Once instantiated as a rule object 666, the constraints
or limits of the rule can be applied to data included in a
context object or other requested data. Depending on the
results of testing the constraint or limit, a rule object 666 can
perform one or more actions. In some embodiments, the
actions performed by a rule object 666 can include modi
fying data included in a context object. The actions can also
include generating another context object (e.g., a context
object including a case) or requesting additional data from
another system, rule object, or context object. FIGS. 18a
and 18b illustrate rules 675 according to one embodiment of
the invention.

0184 In some embodiments, network or switch managers
can change constraints or limit values and/or actions defined
in a particular rule without changing foundation code of the
system 11. Over time, a set of rules can evolve into a
network of interconnections where each rule knows what it
is to do, but does not necessarily know how the system 11
got to its current condition.
0185. Rule objects 666 can read and update data included
in a context object in order to test a constraint or limit. For
example, if one rule object (“Rule B) needs to know how
a previous rule object (“Rule A) made a decision, Rule A
can record decision information in the context object passed
to Rule B. Rule B can then interrogate the decision infor
mation without having to duplicate any logic performed by
Rule A. In this way, rules objects 666 can communicate
indirectly. In some embodiments, context objects are the
only source of information provided from one rule object
666 to another rule object 666.
0186 Rule objects 666 can also retrieve information from
the configuration Subsystem 14. For example, many values
that exception management rule objects use in their con
straints can be stored in the configuration database 20. In
addition, rule objects 666 can request information from
components of the system 11. For example, a rule object 666
can request current threshold settings for various types of
event processing from the monitoring Subsystem 18.
0187. After performing actions, a rule object 666 indi
cates what rule, if any, the rules engine 664 should execute
next. As described above, a rule object 666 can set a rule
identifier included in a context object to an identifier of a
next rule to execute, and the rules engine 664 can generate
a rule object 666 corresponding to the indicated rule. As
shown in FIG. 19, the rules engine 664 executes a first or
start rule object 666 and continues to execute rule objects
666 (shown as circles in FIG. 19) as long a rule object 666
currently being executed indicates a next rule object 666 to
process (next rule object 666 shown linked to a previous rule
object 666 by a connecting line in FIG. 19). Similar to
standard applications that execute Subroutines or Sub-func
tions, rule objects 666 can also generate their own instances
of a rules engine 664 to activate nested rule loops.

Aug. 10, 2006

0188 If a currently executing rule object 666 does not
indicate a next rule to process, the rules engine 664 has
completed the requested processing and the processing
module 660 can return the processed context object to a
calling application or system component that sent the incom
ing message that initiated the processing. In some embodi
ments, the context object is returned to a rule object 666. The
rule object 666 receiving the returned, processed context
object can be part of another rules engine 664 included in the
same container 662 as the rules engine 664 that processed
the context object. The rule object 666 receiving the
returned, processed context object can also be part of
another rules engine 664 included in another processing
module 660. A processing module 660 can also generate
another rules engine 664 to perform additional processing
after a rules engine 664 processes a context object. The
processing module 660 can also pass the context object to
another processing module 660, container 662, application
16, or system component included in the system 11 or
included in an external system.
0189 As shown in FIG. 19, the processing performed on
a context object can be represented as a chain or network of
rule objects 670. The network of rule objects 670 can differ
from one context object to another. As described above, a
rule object 666 can also invoke nested processing by execut
ing its own instance of a rules engine 664. In some embodi
ments, there is no limit to the maximum number of rule
processing levels executing in the system 11 at any given
time.

0190. In some embodiments, the processing defined with
a set of rule objects 666 can happen consecutively without
interruption. The system 11 can also save a context object
and can resume processing of the context object at a later
date or time. In some embodiments, the system 11 can save
context objects that are waiting on incoming data. The
system 11 can also execute rule objects 666 to look through
saved context objects to identify context objects that need
attention and/or that are ready to resume processing. In some
embodiments, rule objects 666 can include timeout condi
tions that can be compared against data included in stored
context objects in order to determine whether a saved
context object has timed-out or expired.
0191 FIG. 20 illustrates a chain or network of rule object
671 used to route a context object or transaction 672
according to one embodiment of the invention. In some
embodiments, the network of rule objects 671 can include
multiple types of routing rules. For example, the network of
rule objects 671 can include identify route rule objects 674,
destination routing rule objects 676, direct routing type rule
objects 678, card routing rule objects 680, and reject trans
action rule objects 682. Identify route type rule objects 674
can look at the data included in the context object 672 and
determine if the context object 672 should be routing using
destination routing, direct routing, or card routing. Depend
ing on the data included in the context object 672, identify
route type rule objects 674 can pass control to an appropriate
routing rule object. Identify route type rule objects 674 can
also store an error message or an error identifier in the
context object 672 and pass control of the context object 672
to a reject transaction rule object 682 if an error occurs while
processing the context object 672.
0.192 Destination routing rule objects 676 can identify a
destination routing identifier, can find an appropriate routing

US 2006/0179042 A1

record, can verify that a personal access or account number
(“PAN’) has a proper length, and can update the context
object 672 with a route to use. Destination routing rule
objects 676 can also indicate that additional rule objects 666
are not required to route the context object (i.e., by setting
the rule identifier of the context object 672 to “null).
Destination routing rule objects 676 can also store an error
message or an error identifier in the context object 672 and
pass control of the context object 672 to a reject transaction
rule object 682 if errors exist in the context object 672.
0193 Direct routing rule objects 678 can identify a direct
routing identifier, can find an appropriate routing record, can
verify that a PAN has a proper length, and can update the
context object with a route to use. Direct routing rule objects
678 can also indicate that additional rule objects 666 are not
required to route the context object 672. In some embodi
ments, direct routing rule objects 678 can also add an error
message or an error identifier to the context object 672 and
can pass control of the context object 672 to a reject
transaction rule object 682 if an error exists in the context
object 672.
0194 Card routing rule objects 680 can find a card base
record, can match network logos to a routing record, can
check interchange values, and can check currency. Card
routing rule objects 680 can also update the context object
672 with a route to use and an indication that additional rules
are not required (i.e., processing is complete). In addition,
card routing rule objects 680 can store an error message or
an error identifier in the context object 672 and pass control
of the context object 672 to a reject transaction rule object
682.

0.195 Reject transaction rule objects 682 can log an error
based on an error message or error identifier stored in the
context object 672. Reject transaction rule objects 682 can
also mark the context object 672 as rejected, and can
indicate that additional rules are not required (i.e., process
ing is complete) since an error occurred while processing the
context object 672.
0196. As shown in FIG. 20, the system 11 can pass the
context object 672 (or a reference to the context object 672)
representing a current transaction to the rules engine 664.
The context object 672 can include a rule identifier 683 that
indicates a rule to execute or apply. The rules engine 664
generates a rule object 666 corresponding to the value of the
rule identifier 683 (an identify route type rule object 674 in
the current example) and passes the context object 672 (or
a reference thereto) to the generated identify route type rule
object 674. Using the data included in the context object
672, the identity route type rule object 674 determines a next
routing rule object to apply and sets the rule identifier 683
of the context object 672 to an identifier of the next routing
rule. The identity route type rule object 674 can also store a
“no route' error identifier in the context object 672 and set
the rule identifier 683 of the context object 672 to an
identifier of a reject transaction rule 682. After the identity
route type rule object 674 execute, the rule object 674
returns control to the rules engine 664.
0.197 As shown in FIG. 20, the rules engine 664 con
tinues to generate and execute a rule object 666 as identified
by the rule identifier 683 after each rule object 666 com
pletes execution. Each rule object 666 can modify, add,
and/or delete information stored in the context object 672.

Aug. 10, 2006

For example, the destination routing rule objects 676, the
card routing rule objects 678, and the card routing rule
objects 680 can add routing information to the context object
672, and other rule objects 666 that receive the context
object 678 can use the routing information to route the
context object 672 accordingly. Each rule object 666 can
also place a termination value. Such as an empty or “null
value, into the rule identifier 683 of the context object.
Setting the rule identifier value to a termination value can
indicate that processing is complete.
0198 If a rule object 666 encounters an error, a rule
object 666 can add an appropriate error message or error
identifier to the context object 672 and can set the rule
identifier 683 to an identifier of a reject rule object, such as
a reject transaction rule object 682. The reject rule object can
handle error conditions identified in the context object 672.
In some embodiments, after handling any errors, a reject rule
object can set the rule identifier 683 to a termination value
in order to end the current processing.
0199. In some embodiments, when the context object 672

is returned to the rules engine 664 with the rule identifier 683
set to a termination value, the rules engine 664 terminates.
After the rules engine 664 terminates, the context object 672
is returned to the caller or instantiator of the routing routine.
In some embodiments, the caller can include another rule
object 666. For example, a rule object 666 (i.e., an obtain
transaction routing rule object) can initialize and execute a
rules engine 664 and the rules engine 664 can execute one
or more rule objects 666 in order to obtain routing infor
mation.

0200. In some embodiments, rule objects 666 include
data stored in the configuration database 20. As shown in
FIG. 21, a rule object 666 can be generated (or include
specify configuration data) based on data included in a
context object. For example, as shown in FIG. 21, a first
context object 690a can include data identifying a transac
tion associated with a first credit card company network, and
the rules engine 664 can generate a first rule object 692a
based on a rule definition or class 695 that includes values
and conditions for checking a floor limit amount for trans
actions associated with the first credit card company. Simi
larly, if a second context object 690b specifies a second
credit card company network different from the first credit
card company network, the rules engine 664 can generate a
second rule object 692b based on the same rule definition or
class 695 that includes values and conditions for checking a
floor limit amount for a transaction associated with the
second credit card company. Therefore, to change the logic
of the system 11 (e.g., add rules for a particular credit card
company), System developers and system users can change
the configuration data using the configuration Subsystem 14
as described above. Using the configuration data, System
developers and system users can also indirectly add new
rules by adding configuration data for new types of rules that
already exist in the system 11. For example, as described
above, the system 11 includes a base “CheckFloor imit”
rule definition or class 695 and includes related configura
tion data for processing transactions associated with the first
credit card company and the second credit card company.
The system 11 can apply the configuration data to the base
rule class 695 in order to generate a rule object 692a for
transactions related to the first credit card company and a
rule object 692b for transactions related to the second credit

US 2006/0179042 A1

card company. To modify the system 11 to handle transac
tions from a third credit card company identified by a third
context object 690c, system developers or system users can
add configuration data for the third type of credit card
company to the configuration database 20 using the con
figuration Subsystem 14. The rules engine 664 can then
apply the new configuration data related to the third credit
card company to the base rule class 695 and generate a third
rule object 692c to process the third context object 690c.
Using the configuration data, rules objects 666 are custom
ized based on the data included in the context object being
processed.

0201 In addition to using rule objects 666 to process a
transaction, the system 11 can use rule objects 666 to
provide workflow assistance to help lead a system user
through steps needed to perform a job. Workflow assistance
can include providing work queues to help system users
gather, prioritize, and manage work to be done. Work queue
management can also allow authorized users to create and
modify queues and to move work between queues. Work
queue operators can process work requests on queues asso
ciated with an individual operator or by operator skill set.
Workflow assistance can also include filtering operator
options to display only valid actions for the current work
request. For example, the interface used to select the next
step and reason code for an exception management system
(“EMS) case can show steps and codes that are valid for the
current case being processed. The valid steps and codes can
change from one work request to another work request.

0202. Using the above workflow assistance and work
request rules, the system 11 can automatically check aging
conditions of work requests. For example, the system can
bring a specific unit of work to an operators attention if a
processing period is about to expire or has expired without
the proper processing having been performed.

0203. In some embodiments, workflow features use an
identifying object, often called a “case,” a “ticket', or a
job.” to manage work requests. When a problem occurs, the

system can create a ticket and can create a context object to
hold the data associated with that ticket, including what
happened and when. As described above, the system 11 can
place an identifier of a first workflow rule to process, for
example a “handle new problem rule in this case, into the
context object and can pass the work request, encapsulated
as a context object, (or a reference thereto) to a rules engine.
The rules engine can generate a rule object corresponding to
the identified rule and can execute the rule object to process
the context object. The rule objects can notify specific
individuals about a problem, can attempt to solve a problem
automatically, and/or can add information about a ticket to
a work queue for a specific type of operator. If a rule object
does not delete the ticket, the system 11 can store the context
object in a database for additional use in the future. While in
Some embodiments context objects including data defining
transactions reside within the system memory for only a few
seconds, context objects defining problems (and related rule
objects) can be saved in a database file for days, weeks, or
months as an active process.
0204 If an operator works on a problem, the system 11
can update a ticket and any related Stored data in order to
indicate that work was performed. For instance, a user can
add a comment to a ticket indicating that a service person

Aug. 10, 2006

has been called. Workflow rules can present the user with
actions that are appropriate for a particular ticket at a
particular time. Workflow rules can also validate that the
actions performed by the system user were performed cor
rectly.
0205 The system 11 can keep track of pending tickets
based on timeout values stored in context objects. The
system 11 can set timers to expire if no action is taken by
each timeout. When Such a timer expires, the system can
create a new context object with the original ticket data and
can pass the new context object to a rules engine. In some
embodiments, the new context object includes an indication
of an initial rule identifier different from the initial rule
identifier included in the first, timed-out context object. For
example, the new context object-can include an indication to
an “initial timeout expiration' rule. The rule can attempt to
escalate the problem, can notify additional people, and can
place information about the escalation to a work queue of a
problem Supervisor.

0206. The system 11 can continue to track a ticket
through any number of stages (usually called “states') with
different deadlines depending on the severity and age of the
problem as defined by current workflow rules. In some
embodiments, actions performed by a rule object or a system
user can remove or modify an active status of a ticket.
0207. At any given time, any number of tickets (includ
ing none) can be active in the system 11. In some embodi
ments, problem tickets can remain active for only a short
time, and transaction exception cases can remain active for
months. As long as the information about a case or a ticket
remains in an active database file, the workflow systems can
continue to manage them as defined by the workflow rules.
0208. As described above, the system 11 can use rule
objects 666 to process transactions flowing through the
system 11 and/or workflow request Surrounding the process
ing of short term or long term manual efforts. In some
embodiments, rule objects 666 can also be used for tracing
system activities. For example, system activities can change
between development, problem identification, and normal
productive use, and can be controlled system-wide through
a set of tracing rules. System throughput can also vary as a
changing Volume of work is routed around equipment that is
malfunctioning or heavily loaded. The process used to route
work within a single system component or between system
components, can also be controlled by rules. The EMS can
also use rules to ensure that the system 11 and system users
follow rules published in a network’s exception manage
ment procedure notebooks. In some embodiments, the EMS
can use a different rule set for individual networks. Proce
dures can also change frequently, and rules can be updated
frequently to keep up with the changes. Furthermore, cases
created while previous rules were in effect must still use
those previous rules, and the EMS can use multiple rule sets
for each network with multiple effective dates (described
below) So it can process each case correctly.
0209. In some embodiments, system rules (e.g., transac
tion processing rules, workflow management rules, etc.) can
be managed by a rules management Subsystem or environ
ment. Using the rules management Subsystem, system devel
opers and system users can establish rule sets. Separating
rules into individual rule sets can make them easier to
modify and control. Rules can differ by network, transaction

US 2006/0179042 A1

type, or any number of different groupings. In some embodi
ments, process-specific rules allow system users to install a
set of rules at a specific location, possibly on a single system
component, while continuing to use existing rules in other
components of the system 11. This can allow a limited
execution of rules to be applied in a productive environment
for final real-world validation prior to a full production
installation.

0210 A rules management subsystem can also provide
rule status values (e.g., draft, stage, productive, and previ
ous) that allows developers to create and test rules, roll rules
into production, and roll rules back out of production as
needed.

0211 System developers and system users can use the
rules management Subsystem to set one or more effective
dates for a rule. One effective date can control when a rule
becomes effective and another effective date can control
when a rule becomes obsolete (ceases to be effective) within
the system 11. In some embodiments, effective dates can
allow system users to roll-in rules before the system 11 can
use them so operations can use low volume times to perform
the roll-in process. In some embodiments, multiple rules can
exist to perform similar functionality and each rule can have
different effective dates that set the lifetime of the rule. In
Some embodiments, the system can choose an “active' rule
to execute based on a date included in a context object being
processed.
0212. The rules management subsystem can also allow
system developers and system users to establish override
rules. A set of override rules can take precedence and can be
processed or executed instead of another set of rules. Over
ride rules can be used to add, modify, or eliminate features
of an underlying or base rule set. Since override rules are
established and stored as separate rules (rather than actually
modifying the base rule set), system developers and system
users can change the functionality of the system 11 without
actually changing the base functionality of the system 11. In
Some embodiments, by establishing separate override rules,
system updates only change the base functionality of the
system 11 and system users do not have to retrofit their
customizations back into the updated system 11 since the
previously-established override rules still override the
updated base rules.
0213 As shown in FIG. 22, system developers and
system users can use the configuration Subsystem 14 and the
rules management Subsystem described above to generate
and run customized versions of system components (e.g.,
applications 16) by manipulating the rules and the related
configuration data.
0214. As shown in FIG. 22, the configuration subsystem
14 can be included in a system core foundation 700. The
system core foundation 700 can provide system manage
ment, including startup, shutdown, and process restarting
and security, which can include user authentication and
authorization as well as component and communication
security within the system 11. As described above, the
system core foundation 700 can also provide the rules-based
architecture used to control transaction processing, problem
management, configuration, workflow assistance to users,
etc. In addition, the system core foundation 700 can provide
monitoring, configuration management, workflow manage
ment, reporting, logging, tracing, and auditing.

Aug. 10, 2006

0215. In some embodiments, the system 11 can include
subsystems that interact with each other and with the system
core foundation 700 to perform the functionality of the
system 11. Subsystems built upon the system core founda
tion 700 can share similar technologies and architecture as
the system core foundation 700, and, in some embodiments,
depend upon the system core foundation 700 to provide
foundation features, such as those listed above.

0216) In some embodiments, the system core foundation
700, which establishes the structure of applications 16 and
system components included in the system 11, isolates
application logic from the underlying operating system and
computer hardware. In some embodiments, the system
architecture can run on a variety of computer hardware and
operating systems. The architecture can include a runtime
environment 702 that interacts directly with an operating
system 704 and computer hardware 706 to get the system 11
started and to restart processes that may fail. In some
embodiments, the architecture Supports core components of
the system 11 (e.g., the monitoring Subsystem 18 and the
configuration Subsystem 14) for a broad range of applica
tions. The architecture can also support utilities 710 and
libraries 712 of routines (e.g., configuration extract utilities
46 and additional time and date rules useable throughout the
system 11) that Support the core and application-unique
components. In addition, the architecture can include appli
cation-unique components that provide specific application
logic (e.g., a transaction routing Subsystem).

0217. The architecture can simplify the creation of new
applications upon existing, well-tested foundation features,
and can implement applications on a broad variety of
computer systems. In some embodiments, the system core
foundation 700 can provide a mechanism to support the
system 11 using various types of computer hardware. As
shown in FIG. 23, since the system core foundation 700
Supports various types of computer hardware, the system 11
can be run on a heterogeneous combination of computers
and computer systems 750. In some embodiments, the
system 11 can also work with a broad range of operating
environments. To Support multiple computer types and oper
ating systems, the system 11 can execute on commonly used
open system environments, such as IBM Z-series computers
running Linux, IBM p-series computers running AIX/Linux,
HP Non-Stop computer running OSS, HP Integrity comput
ers running Linux/HP-UX, Sun computers running Solaris,
and Intel server computers running Windows Server 68003.

0218. To enhance portability between different types of
computers, the system core foundation 700, the applications
16, the configuration Subsystem 14, and/or the monitoring
Subsystem 18 can be written in a common or standard
transportable language. For example, the system core foun
dation 700 and the applications 16 can be written in Java
and/or C++. The system 11 can also use industry standard
protocols, data formats and facilities such as Java, C++,
JavaScript, Java 2 Enterprise Edition (“J2EE), extensible
markup language (XML), hypertext transfer protocol
(“HTTP), web services, Java Management Extensions
(“JMX'), Java Database Connectivity (“JDBC), etc. to
further increase portability.

0219. As shown in FIG. 24, the architecture of the
system 11 can include multiple subsystems 755 that interact
and communicate using a common communication facility

US 2006/0179042 A1

757. In some embodiments, the system 11 can run as many
instances of each subsystem 755 as needed. The system 11
can also run one or more instances of a subsystem 755 on
any computer or computer system (i.e., a node) included in
the system 11. As described above with respect to FIG. 22.
the system core foundation 700 and the runtime environment
702 can provide a common framework for establishing
multiple applications 16.

0220. In some embodiments, the common communica
tion facility 757 is based on Java's standard communication
components, such as CORBA. The communication facility
757 can allow subsystems 755 to communicate and pass
context objects. In some embodiments, the common com
munication facility 757 includes a set of standard interfaces
that allows the subsystems 755 to communicate with each
other regardless of the inner structure, language, or other
details of the internal Subsystems or application compo
nents. In some embodiments, each subsystem 755 is con
sidered a strong independent unit, which is loosely coupled
to the rest of the system 11 through the common commu
nication facility 757.

0221) To facilitate communication, each subsystem 755
shown in FIG. 24, including the system foundation core
700, is wrapped in a common communication interface
using the communication facility 757 to standardize com
munication between the subsystems 705. As also shown in
FIG. 24, the subsystems 755 can communicate with cus
tomer touch points 760 and routing ending points 770 that
are external to the system 11, such as ATMs and financial
institution networks.

0222. In some embodiments, the system 11 can include
specialized third party hardware and Software products, such
as hardware security modules (“HSMs) and database man
agement systems (“DBMSs). The system 11 can wrap third
party products in an abstraction layer that isolates the rest of
the system 11 from third party products. Using abstraction
layers can allow third party products to change without
requiring additional changes through the rest of the system
11. For example, a database abstraction layer can Support
several commercial relational DBMS products, and can
handle the conversions between the relational structure of
the underlying DBMS and the object oriented structure of
the system 11.

0223) As shown in FIGS. 23 and 24, the system 11 can
include multiple subsystems 755. Furthermore, the system
11 can include multiple hardware components, and, in some
embodiments, can interact with external systems. In some
embodiments, in order to provide a single system view to
system users such that a system user is unaware of the
environment and/or structure of the system 11, the system 11
can use standard simple network managing protocols
(“SNMPs) to monitor and control the multiple subsystem
and hardware components it includes as well as external
systems added to or interacting with the system 11. For
example, the system 11 can be combined with legacy or
existing electronic funds transfer systems and both systems
can be monitored and controlled seamlessly without a sys
tem user knowing which systems are included or interacting
with the system 11 and/or which particular systems are
processing work requests and/or transactions. The single
system view can ease the migration from existing systems
by allowing users to run both new and existing components

Aug. 10, 2006

as if they were a single system while individual components
migrate from older systems to the current system 11.

0224. In some embodiments, the system provides 11 an
object-oriented configuration Subsystem capable of provid
ing separate interfaces to users filling different roles for the
objects they work with. For example, business users can fill
in the business values for a new ATM object managed by the
system 11, while technical users fill in separate technical
values for the same device object. To accomplish this, the
configuration Subsystem 14 can allow system users to define
data element responsibility by a system user type.

0225. When a system user modifies configuration data,
the system 11 can provide the ability to introduce configu
ration changes non-disruptively, the ability to audit and
report on all changes, and the ability to back out configu
ration changes to the previous run State if a run-time problem
occurs. The system 11 can also 'stage' configuration data
updates within the system 11 So that updates can be made
effective automatically at a specific date and time without
any manual intervention. The system 11 can also update one
computer in a multi-node system with a configuration update
for production verification before updating all nodes in the
system. Some configuration changes made by System users
need to be immediate (e.g., the real-time addition of a
point-of-sale (“POS) device), and, therefore, are done non
disruptively.

0226 Workflow features can also allow system users to
add change requests to the system to add, change, or delete
configuration data, and to track the execution of work for
each appropriate role (e.g. technical and business data
management). For example, the system 11 can provide
different forms for technical specialists to define the tech
nical description of items, such as external terminals, than
forms for business specialists to define the business descrip
tions of the same terminals. Late or missing completion of
Such work can be detected and escalated for configuration
managers as needed.
0227. In some embodiments, the configuration subsystem
14 is itself configurable. The configuration Subsystem 14 can
execute a set of rule objects as described above to provide
and manage configuration data. System users can configure
the configuration Subsystem 14 by controlling the rules and
configuration data as described above.
0228. In some embodiments, the system 11 provides
browser-based user interfaces so that system users with an
acceptable web browser, such as a standard extensible
markup language (XML) enabled web browser, can access
features of the system 11, which are allowed by the system
user's security profiles, from any location that provides
connectivity to the system 11. The system 11 can also
include some non-browser interfaces for performance rea
sons. The system 11 can allow system users to distribute
functions that are often performed at a central site to system
users and remote users through the browser-based inter
faces. For example, a Switch manager can delegate user
security administration to the local level by defining local
security managers. Client organizations can also manage
their own configuration data through a browser-based user
interface.

0229 Browsers, such as Microsoft's Internet Explorer
and Mozillas Firefox, provide the ability to manage exten

US 2006/0179042 A1

sible markup language (XML) documents and manipulate
XML data within an XML document object model
("DOM). Information expressed using XML is called a
“XML Document,” and is organized into a hierarchy of
objects called a XML DOM. Software tools exits that allow
information to be added to an existing XML DOM, extract
information from an existing XML DOM, and manipulate
data Stored within an XML DOM.

0230 Browsers also process JavaScript instructions.
JavaScript is a programming language run on a browser to
manipulate an XML DOM and/or to modify an HTML
document as a user works with the browser.

0231 Browsers also process extensible stylesheet lan
guage transformations (XSLT) directly on the browser as
built-in features. XSLT facilities transform information from
one format (or language syntax) to another format. For
example, XSLT facilities can combine data stored as XML
with a HTML page or form or an extensible HTML
(XHTML') page or form in order to provide a page or form
to display the data. XSLT facilities produce HTML fragment
which is spliced into an HTML page or form for display.

0232 FIG. 25 illustrates functionality of a browser-based
user interface 765 of the system 11 according to one embodi
ment of the invention. The browser-based user interface 765
provided to system users (e.g., for providing and updating
configuration data) displays one or more “forms' or pages
766 of information. In some embodiments, the browser
based user interface 765 displays XML forms. The browser
based user interface 765 can format forms 766 with an
associated style sheet 767, such as a XSLT, that reformats
forms 766 into a browser-displayable language. Such as
hypertext markup language (“HTML). In some embodi
ments, the browser-based user interface 765 uses supporting
data Such as language dependent text, configuration depen
dent option lists, etc. to format forms. The browser-based
user interface 765 can hold forms in a form repository 768,
such as an XML DOM. Only data not held in the form
repository 768 (or defined as dynamic) is requested from a
server or browser cache that provides the forms. The
browser-based user interface 765 maintains configuration
data in a single form repository 768, which is loaded with the
browser-based user interface 765 the first time it is needed.
The form repository 768 includes multiple browser forms.

0233. For example, the browser-based user interface 765
requests XML data (from the server 769) it needs to display
each form 766 and Stores the XML data in the XML DOM
768. Once the form 766 is loaded with the browser-based
user interface 765, the browser-based user interface 765 uses
the appropriate XML form 766 definition included in the
XML DOM 768, and the XML data (received from the
server 769), and the XSLT 767 associated with the form 766
to create a form 766 to be displayed with the browser to a
system user.

0234. Once data entered into a form 766 has been vali
dated using a first data validation level, as described above,
the browser-based user interface 765 sends a request, con
taining data entered by a system user, to the server 769. In
Some embodiments, the request is sent as a single "docu
ment,” such as an XML document rather than the standard
individual data elements normally used to return separate
data elements.

20
Aug. 10, 2006

0235. The server 769 generates a reply, and the browser
based user interface 765 processes the reply in order to
display a next form 766.

0236. In some embodiments, the browser-based user
interface 765 includes XML and/or XSLT representations of
common HTML display controls, such as lists and grids. The
browser-based user interface 765 can provide the ability to
process data within a form through the use of JavaScript.
Using the display controls, a system user can scroll through
data, resort data, and reorganize data directly on the browser
without requesting additional data or processing from a web
server. The XML and/or XSLT representation of common
HTML display controls and dynamic HTML (“DHTML')
facilities stored in a single XML DOM 768 can provide a
fast and rich browser-based user interface 765 to a system
user. DHTML facilities can provide HTML manipulation
with JavaScript to provide an active and programmable
interface on a browser-based user interface 765.

0237) When displaying a form 766, the browser-based
user interface 765 can respond to events according to
configuration rules in order to produce popup menus, new
forms, drag and drop functionality, service requests, and
other actions.

0238. As described above, the browser-based user inter
face 765 uses XML to store multiple forms 766 within a
browser XML DOM 768 and populates the forms with data
from a server 769 without having to retransmit formatting
and display information each time the browser displays a
form 766. In some embodiments, the browser-based user
interface 765 also provides common XML-based display
controls within the forms Stored in the XML DOM 768 that
use XML and DHTML in an XML DOM-based environ
ment. In summary, the browser-based user interface 765
only needs to exchange data with the server 769 and handles
data display requirements directly once the XML DOM 768
is loaded in the browser with the required form 766 defini
tions.

0239). In some embodiments, user interfaces displayed
with the system 11 are internationalized to include the use of
local languages, icons, and colors. User interfaces can also
Support both left-to-right and right-to-left languages with
double-byte character sets capable of displaying Asian,
Arabic, Hebrew, and other non-Latin languages. In addition
to providing standard browser interfaces, the system
browser-based interfaces can also be capable of handling
drag and drop element manipulation, interactive graphs and
charts, and true graphical displays.

0240. As described above, system users can also define
many details of the configuration Subsystem 14, including
the user interfaces, by manipulating metadata that describes
the contents of each page without having to develop and
install new page layouts.

0241. In some embodiments, the system 11 is designed to
run on one or more clusters of various types of computers,
including heterogeneous clusters made up of different types
of computers running different operating systems. Each
individual computer is called a “node.” Multiple clusters can
run simultaneously at multiple locations to provide mutual
backup options for a single system. As shown in FIG. 26.
nodes 800 within a cluster 810 can communicate through
multiple independent networks 820, such as local area

US 2006/0179042 A1

networks (“LANs), so that the failure of one network does
not disrupt the operation of the cluster 810.

0242. In some embodiments, the entire system 11 is
configured on each node 800 in a cluster 810. Some embodi
ments of the system 11 can also dedicate specific system
functions to specific nodes 800 included in a cluster 810.
Executing the system 11 on a cluster 810 of several inter
connected nodes 800 can allow the system 11 to accomplish
several critical performance and reliability requirements.
For example, utilizing multiple nodes 800 can provide
load-balancing routines that can improve overall perfor
mance by routing incoming traffic to the least busy node
800. System users can also temporarily expand a systems
capacity to handle peak loads by configuring new nodes 800,
normally used for other purposes, to be part of the system 11.
Likewise, system users can remove nodes from or add nodes
to a running system 11 to perform upgrades or to reconfigure
the system 11 for changing requirements without interrupt
ing the running application. In some embodiments, a cluster
810 can automatically route all incoming traffic away from
a failing (or failed) node 800 allowing the system 11 to
continue processing while someone fixes and/or replaces the
failed node 800. In addition, the use of multiple nodes 800
allows the system 11 to perform continuously at a high level
of performance regardless of needs to handle hardware
failures, system upgrades, and Software updates.

0243 An alternate strategy to a multi-nodal structure is to
use a single node with fault-tolerant computer systems, such
as the HP Non-Stop or Stratus ftServer computers, that
provide internal redundant components and Software recov
ery facilities to provide the reliability and continuous avail
ability that the system 11 is designed to utilize.

0244 As illustrated and described above with respect to
FIG. 27, each node 800 can execute a number of processes.
In some embodiments, each Subsystem can include a virtual
machine, Such as a Java Virtual Machine, to execute multiple
processes. A virtual machine can appear as a single process
to a node's operating system, but can run various processes
simultaneously. Individual processes that could become a
single point of failure for a node 800 can be duplicated on
that node 800 to ensure throughput.
0245 A“node agent'850 is a process executed by a node
800 that listens for input from within or from outside the
node 800. The node agent 850 can start processes within the
node 800. In some embodiments, an operating system of a
node 800 starts one or more node agents 850 as standard
processes when the node 800 is started or booted up. The
node agents 850 can remain running as long as the node 800
remains running. Node agents 850 for a single node can be
“separated as much as possible to ensure availability of a
node 800. For example, node agents 850 can be connected
to separate network segments and/or can be running on
different processing units. Once started, an operating system
of a node 800 monitors each node agent 850, and restarts a
node agent 850 if it fails. In some embodiments, using two
node agents 850 ensures that at least one node agent 850 is
available when needed. Since node agents 850 can be started
when a node 800 is started, node agents 850 can allow a
cluster 810 of nodes 800 to automatically start required
system processes on a new node 800 that joins the cluster
810 when the cluster 810 is initially started or after the
cluster 810 has started.

Aug. 10, 2006

0246. In some embodiments, in order to communicate
with other nodes 800, an operating system of a node 800
starts a communication facility as a standard process when
the node 800 is started. The communication facility remains
running as long as the node 800 remains running. Once
started, the operating system monitors the communication
facility and restarts the communication facility if it fails.
0247 As shown in FIG. 27, an operating system of a
node 800 starts a first virtual machine (“VM #1') 870 as a
standard process when the node 800 is started. The first
virtual machine 870 remains running as long as the node 800
remains running and can be configured to start a first process
monitor (“PM #1') 880, which is responsible for reading the
configuration data for a node 800 and for starting additional
processes on a node 800.

0248. The first process monitor starts a second virtual
machine (“VM #2) 890, which starts a second process
monitor (“PM #2)900. The first virtual machine 870 uses
the first process monitor 880 to monitor the second virtual
machine 870, and the second virtual machine 900 uses the
second process monitor 900 to monitor the first virtual
machine. In this way, the first virtual machine 870 and the
second virtual machine 890 ensure that at least one virtual
machine is available when needed and can be present to start
the other virtual machine if it fails.

0249. To monitor each virtual machine and process moni
tor, the first process monitor 880 and the second process
monitor 900 can start a “functioning” process 910 and 920
within the first virtual machine 870 and the second virtual
machine 890 respectively, in order to indicate to the system
11 that a process monitor and a virtual machine is function
ing. The first process monitor 880 watches the functioning
process 920 started in the second virtual machine 890, and
the second process monitor 900 watches the functioning
process 910 started in the first virtual machine 870 in order
to make Sure a virtual machine is available to start processes.
In some embodiments, the first process monitor 880 and/or
the second process monitor 900 also monitor statuses of
other virtual machines on other nodes 800.

0250) The first process monitor 880 and/or the second
process monitor 900 can use configuration data for their
node 800 to start additional processes in a node 800. In some
embodiments, the first process monitor 880 and/or the
second process monitor 900 are also configured to start
additional processes in other nodes 800.
0251 The first process monitor 880 and/or the second
process monitor 900 can load a licensing subsystem. Each
additional subsystem or process started with one of the
process monitors 880 and 900 checks the validity of its own
configuration data, and Verifies with the licensing Subsystem
that authorization exists to run a Subsystem or process. Any
Subsystem or process requiring configuration data or rules
that are not licensed can be restricted from being started.
0252) In some embodiments, system users obtain com
plete copies of the system 11 (i.e., code for all possible
functionality provided with the system 11). System users
also obtain a license control file and a license key file. FIG.
28 illustrates a license control file 950 and a license key file
952 according to one embodiment of the invention. The
license control file 950 specifies what functions are associ
ated with particular licenses. In some embodiments, the

US 2006/0179042 A1

license control file 950 includes one or more license files.
Each license file can be associated with a licensable com
ponent of the system 11. The license key file 952 provides
authorization to apply certain license files. Using the license
key file 952, the system 11 can start subsystems or processes
that a system user has purchased or is authorized to execute,
while disabling Subsystems or processes that a system user
has not licensed and, therefore, cannot execute. In some
embodiments, license control files 950 and/or license key
files 952 are encrypted to prevent cheating. Licenses can
also be tied to a system user's specific configuration so that
system users cannot share licenses, and distributors cannot
serve multiple system users with a single license. By cus
tomizing licenses and separating licenses for individual
components, licenses can be created that expire on various
schedules and have different prices.
0253) To purchase additional subsystems or features of
the system 11, a system user obtains an updated license key
file 952 that will enable additional features of the system 11
(i.e., applies additional license files included in the license
control file 950). In some embodiments, a license key file
952 is transmitted over a network, such as a local area
network (“LAN”) or the Internet, to a system user.
0254 Licenses can be time-bound (i.e., include a license
effective date) and each license can include actions for the
system 11 to take if the license expires. Actions can include
shutting down the Subsystems or process, shutting down the
system 11, and posting renewal reminders on consoles or
terminals of the system 11. Additional components can also
be added to the system 11 and configured before a license
effective date. For example, system users can obtain dem
onstration licenses with relatively short expiration spans. In
Some embodiments, the system 11 can provide current
license status information to a system user and/or a system
provider for billing purposes.
0255 In some embodiments, upon attempted activation
of a Subsystem or process, a node checks the license control
file 950 and the license key file 952 in order to determine if
the Subsystem or process can be activated. By delaying
validation until attempted activation, system users can load
updated license key files 952 in order to add new function
ality to the system 11 while the system 11 is running.
0256 As shown in FIG. 29, the system 11 can run on a
computer (server) and can connect to terminals 1400, insti
tutions 1410, HSMs 1420, and/or other equipment as
needed. Online storage and database files 1430 can use a
server's standard storage or network addressable storage and
can usually employ a redundant array of independent disks
(“RAID) configuration to provide fault tolerance and the
ability to replace failed drives on the fly. For small systems,
DBMSs, such as Oracle, DB2, or SQL Server, can run on a
cluster of multiple separate servers (e.g., 2) that provide
fail-over Support, or a single fault tolerant server. A database
abstraction layer within the system 11 can allow an appli
cation 16 to work with different types of database manage
ment systems.

0257. In some embodiments, a separate web application
server, such as BEA Web Logic or IBM WebSphere, and
web server, such as Apache, Web Logic, or WebSphere can
run on a separate web server computer 1440. The web server
computer 1440 provides a user interface to a browser
running in an end user's remote computer 1450. A firewall

22
Aug. 10, 2006

1460 can protect the web server from unwanted external
intrusions. A second firewall (not shown) can protect the
system components from a web server environment.
0258. In some embodiments, system users can execute
two active versions of the system 11. A first system version
(a testing system) can be used for initial installation and
testing of new software releases. A second system version (a
production system) can be used to run tested and configured
applications.

0259. As shown in FIG. 30, the system 11 can run on
multiple servers clustered in order to provide automatic
fail-over for failed servers. Multiple clusters, usually on
multiple networks, can provide additional fail-over protec
tion.

0260 Various types of system end points can be con
nected to the system 11 through routers 1470, which help
balance the workload between the available servers. Com
mon resources, such as HSMs 1420, can be grouped into
available pools and used as needed. Pooled resources can
take up work when individual resources fail.
0261 Local storage can use network addressable storage
or storage array networks ("SANs) 114680, usually in a
RAID configuration that is fault tolerant, and Supports
online drive replacement for failed components.
0262 Database servers 1430 can be grouped into their
own highly reliable database cluster, or can make use of
special fault tolerant equipment. The database servers 1430
can include fault tolerant servers.

0263. As shown in FIG. 30, a series of separate web
application servers 1440 can provide system user interface
processing. These servers can run application server Soft
ware, such as IBM WebSphere, BEA WebLogic, Macrome
dia Jrun, JBoss, etc. The web application servers 1440 can
be clustered to tolerate failures among the web application
servers 1440.

0264 Individual web pages can be provided to each end
user through standard web server computers 1490 running
web server software, such as IBM WebSphere, BEA
WebLogic, or the Apache web server. The web server
computers 1490 can be protected by a site security system
1500, such as those provided by Netegrity Siteminder, and
can be connected to a network, Such as the Internet or
another network facility, through routers that distribute the
processing load evenly among the available web servers.
0265. Firewalls 1510 and 1520 can protect the web server
computer in a user-facing data management Zone, and can
further protect the system servers and the database servers
1430 from outside intrusions.

0266 Disaster recovery addresses the problem of keep
ing the system 11 running through a disaster which can
disable a data processing center managing the system 11.
The system 11 can address disaster recovery by Supporting
a geographically distributed configuration that can run in
multiple processing sites simultaneously. In some embodi
ments, the system 11 uses various approaches to provide
multi-site processing Such as hot backups, cold backups, and
variations in between, which are commonly called warm
backups.
0267 In some embodiments, the most effective way to
provide continuous processing is to distribute the physical

US 2006/0179042 A1

location of the system 11 over multiple sites with enough
duplication at each site to be capable of incorporating the
load of any other site. The system 11 can execute at multiple
sites (e.g., two sites) with Sufficient redundancy to insure
that either site can continue processing effectively when the
other site fails. System sites can continuously process trans
actions and can synchronize database files on a continuous
basis, usually through a primary/secondary database rela
tionship. The system 11 can provide facilities in order to
ensure that critical information in log files are automatically
duplicated at remote sites.
0268 If components within one site fail, redundant facili
ties within that site can provide immediate backup for the
failed component. If one entire site fails, however, the
second site can continue processing without interruption.
This approach to availability is similar to the way the
Internet distributes its backbone servers around the globe.
One or more of these installations can be down for main
tenance, broken, under attack by a malicious agent, or
otherwise out of commission, but the Internet can still
continue to function. If enough components are unavailable,
response time for the end user can start to suffer, but the
system 11 can still process as much traffic as possible.
0269. An end point connected only to components that
have failed can see a true system failure, and, therefore, end
points can be connected to the system 11 at multiple geo
graphic locations, preferably through different communica
tions facilities. Some in-flight transactions can be lost when
a site fails, but they can be completed normally if retried.
0270. Unlike hot backups, cold backups provide backup
processing facilities at a secondary processing site, but do
not use those facilities until the primary site fails. This
approach can cause a noticeable system outage while the
backup site is configured for productive operation and the
backup system is brought online. However, once the backup
site is operational, it can Support system processing while
the primary site remains unavailable.
0271 The system 11 can support a broad range of hot to
cold backup configurations depending on the required level
of system availability and the resources available for the
backup environment. In addition to setting up a proper
configuration for system recovery and continuous operation,
system users can modify and maintain the recovery con
figuration to meet changing conditions and maintenance
schedules.

0272. In some embodiments, in order to provide a con
tinuously available system, the system 11 can allow system
users to dynamically add or remove processing nodes 800
(application server computers) without disrupting the sys
tems operation. The system 11 can detect new nodes 800
automatically or through configuration data changes identi
fying the new node's identity and address. The normal load
balancing facilities then can automatically feed new work to
an added node 800 without manual intervention. The system
11 can also detect failed nodes 800 and can automatically
take them out of the currently active system. To remove an
actively running node 800, a system user can shutdown the
node manually in order to properly finish any work in
progress. The system 11 can then take the node out of the
currently active system just as it would for a failed node 800.
0273 Removing and adding nodes 800 allows systems
managers to maintain equipment, upgrade the existing hard

Aug. 10, 2006

ware, maintain the current version of an operating system,
perform standard database maintenance, and keep the sys
tem 11 up to date and running Smoothly with regularly
scheduled maintenance. Removing and adding nodes 800
allows managers to add nodes 800 when data processing
Volume required of the system 11 increases and to remove
nodes 800 when data processing volume required of the
system 11 decreases without disrupting current transaction
flow.

0274. In some embodiments, the system 11 provides
continuous availability even when updates are made to
nodes 800. In order to support updates to the system 11 by
updating one node 800 at a time, the system 11 can run some
nodes using a "current version of an application 16 (e.g.
V1.0) and some nodes using a “next version of the appli
cation 16 (e.g. V1.1). This ability to run a current application
version and a next application version at the same time is
known as “N, N+1 processing, where N stands for any
version of the system, and "N+1 stands for the next version
to be installed.

0275. In some embodiments, new features available only
in the N+1 version are not usable until the entire system 11
has been updated, but the current version can run correctly
and uninterrupted during the update process. In addition to
providing continuous availability during an application
update, N. N+1 processing makes it easy to Verify that an
update does not disrupt the system’s existing functions by
allowing system users to update just a single node 800, or
even a single process, for production verification before
updating the rest of the system 11. In some embodiments,
version updates, including configuration data changes, pro
gramming changes, database changes, etc., are N, N+1
compatible.

0276 Various features and advantageous of the invention
are set forth in the following claims.

1. A system for providing a user interface comprising:
a server that provides a form repository including a

plurality of form definitions defining a plurality of
forms and provides data to populate at least one of the
plurality of forms; and

a browser-based application that obtains the form reposi
tory, requests data from the server based on at least one
of the form definitions, and uses the data and at least
one of the form definitions to generate a completed
form.

2. The system of claim 1 wherein the form repository
includes an extensible markup language document object
model.

3. The system of claim 1 wherein the plurality of forms
includes at least one extensible markup language document.

4. The system of claim 1 wherein the browser-based
application obtains at least one style sheet.

5. The system of claim 4 wherein the at least one style
sheet includes an extensible stylesheet language style sheet.

6. The system of claim 4 wherein the browser-based
application applies the at least one style sheet to the com
pleted form in order to generate a displayable form.

7. The system of claim 6 wherein the displayable forms
includes a hypertext markup language form.

US 2006/0179042 A1

8. The system of claim 6 wherein the displayable form
includes instructions for providing a display control for
reorganizing data displayed in the displayable form.

9. The system of claim 6 wherein the browser-based
application displays the displayable form.

10. The system of claim 9 wherein the browser-based
application obtains input data entered in the displayable
form.

11. The system of claim 10 wherein the browser-based
application formats the input data into a request form.

12. The system of claim 11 wherein the request form
includes an extensible markup language form.

13. The system of claim 11 wherein the browser-based
application transmits the request form to the server.

14. A method of providing a user interface comprising:
providing a form repository including a plurality of form

definitions defining a plurality of forms to a browser
based application;

requesting data from a server to populate at least one of
the plurality of forms; and

generating a completed form based on the data and at least
one of the plurality of forms.

15. The method of claim 14 wherein providing a form
repository including a plurality of form definitions defining
a plurality of forms includes transmitting an extensible
markup language document object model including a plu
rality of form definitions for a plurality of extensible markup
language forms.

16. The method of claim 14 further comprising providing
at least one style sheet to the browser-based application.

17. The method of claim 16 wherein providing at least one
style sheet includes providing at least one extensible
stylesheet language style sheet.

24
Aug. 10, 2006

18. The method of claim 16 further comprising generating
a displayable form based on the at least one style sheet and
the completed form.

19. The method of claim 18 wherein generating a dis
playable form includes generating a hypertext markup lan
guage form.

20. The method of claim 18 wherein generating a dis
playable form includes generating a displayable form that
includes instructions for providing a display control for
reorganizing data displayed in the displayable form.

21. The method of claim 18 further comprising displaying
the displayable form with the browser-based application.

22. The method of claim 21 further comprising obtaining
input data entered in the displayable form with the browser
based application.

23. The method of claim 22 further comprising formatting
the input data into a request form with the browser-based
application.

24. The method of claim 23 whereinformatting the input
data into a request form includes formatting the input data
into an extensible markup language form.

25. The method of claim 23 further comprising transmit
ting the request form from the browser-based application to
a SWC.

26. Computer readable medium including instructions for
providing a user interface, the instructions comprising:

obtaining a form repository including a plurality of form
definitions defining a plurality of forms;

requesting data from a server to populate at least one of
the plurality of forms; and

generating a completed form based on the data and at least
one of the plurality of forms.

k k k k k

