(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual P It
(19) World Intellectual Property N A 80 0 A R0 0O O A 0

Organization
International Bureau (10) International Publication Number

(43) International Publication Date WO 2021/113626 A1l
10 June 2021 (10.06.2021) WIPQO | PCT
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 13/00 (2006.01) GO6F 9/44 (2018.01) kind of national protection available). AE, AG, AL, AM,
GOoF 13/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

(21) International Application Number: DZ. EC. EE. EG. ES. FI. GB. GD. GE, GH, GM. GT, HN,

ECLUSLOZONCS 25 HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
(22) International Filing Date: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD,
04 December 2020 (04.12.2020) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
. , NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
(25) Filing Language: English SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
(26) Publication Language: English IR, TT, TZ, UA, UG, U5, UZ, VC, VN, WS, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (unless otherwise indicated, for every
62/944.393 06 December 2019 (06.12.2019) US kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
(72) Inventor; and | UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, T,
138, Williamsport, OH 43164 (U). EE. ES, FI, FR, GB. GR. HR, HU, IE, IS, IT, LT, LU, LV.
(74) Agent: SMITH, Adam, J. etal.; Standley Law Group LLP, MC MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
6300 Riverside Drive, Dublin, OH 43017 (US). TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).
== (54) Title: HIGH-LEVEL PROGRAMMING LANGUAGE WHICH UTILIZES VIRTUAL MEMORY
= Machine Language Use of Multiple Address Spaces
— 40A
— \ 0 DC CL8 Sparrow’ +— 40R
— 8 DC CL8’Brown’ DC CL8 Robin’ *
— 10 DC F'361" DC CL8’Red’ /
— 14 DC C'N36.43W' DC F'645 «+—
— 1A DS 1400X DC C’'N34.62W’
—_— DS 1400X
E— Addressed by R2 Addressed by R3
— T
E— 5
— %
— CLC 0(8,R2), 0 (R3) Compare Birds .
= BE MATCH
— L Rl,lO(RZ)J Inventory Number /
e — C R1,10(R3) Compare with Bird
R— BL LOWER
- Part of Machine Code
2 Figure 2
\&
e\
\&
¢#) (57) Abstract: Systems and methods for utilizing virtual memory with a high-level programming language are provided. Multiple
: address spaces are created 1n virtual memory, wherein each of the multiple address spaces include data entnes, each of which have a
: value. A machine executable software program i1s operated which utilizes each of said multiple address spaces. At least a first one of
3 the address spaces 1s independent from at least a second one of said address spaces, and at least a third one of the address spaces 1s
g clectronically associated with at least a fourth one of the address spaces.

[Continued on next page/

WO 20217113626 A1 |} 08YF VO A PN ACR 0 AR RO VRO R

Published:
— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

WO 2021/113626 PCT/US2020/063288

HIGH-LEVEL PROGRAMMING LANGUAGE WHICH UTILIZES VIRTUAL MEMORY

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application Serial No.
62/944,393 filed December 6, 2019, the disclosures of which are hereby incorporated by
reference as if fully restated herein.

TECHNICAL FIELD

[0002] Exemplary embodiments relate generally to systems and methods for high-
level programming languages which utilize virtual memory storage spaces.

BACKGROUND AND SUMMARY OF THE INVENTION
[0003] High-level programming languages, such as Cobol, Fortran, PL1, C, C++,
and Algol are severely limited to their ability to express where data is stored. The goal of
such high-level programming languages is generally to isolate the programming process
from the machine-level instructions. Any given computing machine is controlled by the
machine-level instructions which reflect, and are sometimes defined by, the given
machine’'s unique architecture. These instructions are often specific to the machine, and
may be vastly different between various computing machines. The creation of high-level
programming languages allows a natural expression for programming that is ultimately
translated into a form that the specitic machine can utilize.
[0004] A program written in a high-level programming language must be
converted to machine-level instructions by a language compiler to perform actual

operations on the computing machine. This compiling process allows the programmer to

10

15

20

WO 2021/113626 PCT/US2020/063288

write a program in a more readable and clearer format, rather than the more complex and
detailled machine-level instructions that the computing machine actually requires for
operation. Essentially, these high-level programming languages serve as shorthand for
the machine-level instructions.

[0005] High-level programming languages were developed to provide a more
plain-English-like description of the underlying machine operation. However, the details
of the machine-level language are generally more accurate and provide more precise
control over the computing machine’'s actual operations. Each specific instruction
performs an operation interacting between memory, registers, accumulators, or stacks to
achieve the single operation. This is quite different from a high-level programming
language where the more natural expression is less specific to the actual machine
operation. Indeed, the compiler may implement the machine-level code translation of the
high-level programming in a number of ways. Furthermore, because the high-level
programming language is not tied to machine-level instructions, multiple implementations
may be produced for distinctly different machines while providing identical syntaxes for
the high-level programmer. Essentially, the same high-level programming language may
be used, with an appropriate complier (i.e., translator), for a given computing machine.
[0006] Storage usage in high-level programming languages is significantly different
than usage in machine-level languages. When instructions operate at the machine level,
there Is generally no limit to how storage may be managed and manipulated. High-level
programming languages, on the other hand, generally require a far more organized and
predefined arrangement of storage. As a program operates, its translated version must

be able to reasonably locate and manipulate the predefined variables. There are

10

15

20

WO 2021/113626 PCT/US2020/063288

examples of programs that dynamically allocate storage to use, but even these areas
must be carefully defined so that the language compiler may produce a machine-level
Interpretation of the storage access.

[0007] There is a general category of electrical machinery that is often referred to

as a “‘computing machine” or “computer.” These computing machines are sometimes
connected to, or interfaced with, a wide variety of equipment to produce and operate an
almost inexhaustible number of devices. Furthermore, these computing machines
operate under the control of programming. Programming may vary the machine’s
operation, and may function based upon real time decision selection, or external events,
that are generally communicated using external device input. Computing machines
operate under the direction of these programs, which execute machine code instructions.
Machine code instructions are the basic operational codes that control the machine’s
operation and are entirely specific to the type and manufacture of the computing machine.
[0008] Machine-level code may come in as many different varieties as the number
of computing machines available. It is common to develop a pseudo machine which may
be universally implemented by many different types of computing machines having many
different machine-level code instructions, and thus provide greater portability for
programs and object code. This recent development has produced a number of fictitious
and pseudo machine definitions that allow for the execution of pseudo code within an
emulated pseudo or virtual environment.

[0009] There are generally two types of machine operation implementation:

register or accumulator, and stack architecture. The register machines have high speed

memory locations which can store information, numbers, or addresses, and are called

10

15

20

WO 2021/113626 PCT/US2020/063288

registers or accumulators. Machine-level instructions may perform operations upon the
data held in the registers and may utilize this data to also manipulate and change data
stored in general memory. A stack-oriented machine does not implement any specialized
locations, but rather has a memory stack. The memory stack is effectively a pointer to a
portion of general memory that allows data to be pushed onto and off from the stack;
generally, in a last in, first out sequence. Machine-level instructions perform operations
upon the data held in the stack and replace, remove, or insert their results upon the stack.
[0010] Computing machines most often utilize a complex instruct set code (“CISC”)
for their instruction set. In other words, the number of instructions available for
programming operations are often extensive and complex. Some machines have
developed many hundreds of machine instructions during their evolutionary development,
and these complex sets of instructions include a wide variety of instruction variations. For
example, a given machine-level instruction set often includes an add, add short, add long,
add decimal, and add immediate instruction. Each of these different versions of the add
Instruction are designed to perform addition against different data types. In this brief list,
add would operate upon integers, while add long operates upon a 64-bit floating point
number. By continually expanding instruct sets, these CISC machines are extremely
flexible and offer a large pallet of programming options.

[0011] Prior to the development of extremely thin microelectronics, there was a
push to reduce the complexity of the processing unit of computing machines. This
development produced Reduced Instruction Set Code (“RISC”) machines. The overall
design objective of these instruction sets was to reduce the sheer number of instructions

being used in order to improve the efficiency of computing power due to the reduction in

10

15

20

WO 2021/113626 PCT/US2020/063288

necessary electrical circuits. While this approach produced an efficiency in electrical
speed, it was ultimately replaced by the exponential reduction in computer size.
Furthermore, the complex software still required instructions, and often those instructions
involved far more of the RISC instructions than the CISC instructions would have
consumed. The failure of RISC as an architectural objective was due to the continued
complex requirements from the higher-level software that drove the use of the RISC
iInstructions beyond their intended efficiency.

[0012] The fundamental idea behind virtual storage is the ability to appear to utilize
far more memory space than is actually available. This is made possible because certain
locations within memory are used less often than others. The concept is similar to
reserves In banking, where the bank holds only the cash that is expected to be used
rather than the entire aggregate that might be held in trust. It is unlikely that all customers
will ask for all their money, all at the same time. Therefore, the bank needs to only have
on hand what the bank reasonably expects will be requested during a given time period.
[0013] This internal hardware control over virtual storage i1s accomplished using
two major controls. First, a translation table must be maintained to facilitate mapping
virtual addresses to real addresses. As an instruction is executed by the hardware
processor, all addresses necessary for the machine instruction to be completed must be
resolved. This resolution process involves looking up the virtual address within the
translation table and dynamically converting the virtual address to the corresponding real
address. Once all addresses have been translated, the instruction may be executed and

the illusion of the larger virtual area is complete.

10

15

20

WO 2021/113626 PCT/US2020/063288

[0014] Second, when the dynamic address translation process fails to produce a
valid real address for use, an interruption of the normal machine program execution
occurs. Control is passed to the machine’s operating system and gives the operating
system the opportunity to manipulate memory. The operating system either assigns an
avallable free piece of real memory that is added to the translation table, or swaps out a
piece of lesser used real memory to make room for a piece of storage previously moved
to long term storage. The dynamic translation table is updated and the interrupted
program Is resumed to permit the instruction execution to complete normal operations.
[0015] Since the internal hardware of the computing machine is designed to allow
for the use of virtual memory, these machines provide a wide range of support for multiple
virtual memory areas within the machine; therefore, a single operating program may have
access to more than one virtual area at a time, or different programs within the machine
may be assigned specific virtual memory areas for their operation.

[0016] The two major controls over virtual storage operation are tightly connected
to both the hardware and the operating system of the given machine. The dynamic
address translation table must be managed by the operating system, as does the
iInterruption method for switching between real memory usage and physical long-term
storage.

[0017] When a program, written in machine-level language, has access to multiple
virtual storage areas, the specific location of data may be highly mixed in origin. Rather
than cohesive areas of storage, an individual instruction might operate on data stored In
different address spaces, while the program itself resides in yet another unique virtual

address space. This use of multiple address spaces may vary from instruction to

10

15

20

WO 2021/113626 PCT/US2020/063288

Instruction, thereby creating a multidimensional program execution model. While this type
of programming is complex, it is also attainable due to the method and operation of
iIndividual machine-level instructions. Furthermore, while machine operations might differ
between platforms, the low-level execution allows similar types of multidimension access
regardless of specific architecture type.

[0018] When applying these same necessities to high-level programming
languages, the options and available addressability becomes a serious issue. Since high-
level programming languages require careful predefinitions for data use, there is little to
no available nomenclature that could be used. The best that may be expected with
currently available languages are function or system calls that allocate contiguous blocks
of storage that may or may not reside within additional address spaces. While this may
have some functionality, it is highly limiting, and only serves to use multiple address
spaces as additional storage rather than the multiple dimensionality that is available by
the hardware. Therefore, what Is needed is a high-level programming language that
effectively utilizes multiple virtual storage areas.

[0019] These disclosures provide systems and methods where a high-level
programming language may effectively utilize multiple virtual storage areas. Such
utilization may be achieved through the application of specific syntax. Systems and
methods for identifying the use and need for multiple spaces may define the elements
necessary, and additional variable identifications may produce a connection to the
alternative address spaces. These changes to high-level programming language

definitions and statements may produce a compliable high-level program that may

10

15

20

WO 2021/113626 PCT/US2020/063288

operate upon data stored in multiple address spaces, while allowing the programmer to
develop these programs without the necessity of machine-level code.

[0020] In exemplary embodiments, without limitation, this may be accomplished by
providing one or more universes for such data and variables. These universes may each
comprise their own set of data and variables in a virtual memory arrangement. A number
of types of universes may be defined. Parallel universes may define spaces which each
are independently defined and do not depend on one another. A new parallel universe
may be created whenever a data or variable value is changed. Conjoined universes may
be created by essentially duplicating a given universe, however, at least one value in the
new, conjoined universe is independent from the given universe but at least one other
value in the new, conjoined universe may depend on the value in the given universe.
Sequenced universes may be created by essentially duplicating a given universe,
however, at least one additional data or variable point may be added. Again, at least one
value in the new, sequenced universe may be independent from the given universe but
at least one other value in the new, sequenced universe may depend on the value in the
given universe. For at least the conjoined and sequenced universes, updating the given
universe may result in updates to the sequenced or conjoined universes. Additionally, or
alternatively, direction to create a different value for the data or variable point may result
In the creation of a new parallel, conjoined, or sequenced universe.

BRIEF DESCRIPTION OF THE DRAWINGS
[0021] In addition to the features mentioned above, other aspects of the present

invention will be readily apparent from the following descriptions of the drawings and

10

15

20

WO 2021/113626 PCT/US2020/063288

exemplary embodiments, wherein like reference numerals across the several views refer
to identical or equivalent features, and wherein:
[0022] FIGURE 1 illustrates an exemplary compiler process;
[0023] FIGURE 2 illustrates an exemplary machine-level language use of multiple
address spaces in accordance with the present disclosures; and
[0024] FIGURE 3 illustrates an exemplary high-level programming language
syntax in accordance with the present disclosures.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENT(S)
[0025] Various embodiments of the present invention will now be described In
detail with reference to the accompanying drawings. In the following description, specific
detalls such as detailed configuration and components are merely provided to assist the
overall understanding of these embodiments of the present invention. Therefore, it should
be apparent to those skilled in the art that various changes and modifications of the
embodiments described herein can be made without departing from the scope and spirit
of the present Invention. In addition, descriptions of well-known functions and
constructions are omitted for clarity and conciseness.
[0026] Embodiments of the invention are described herein with reference to
illustrations of idealized embodiments (and intermediate structures) of the invention. As
such, variations from the shapes of the illustrations as a result, for example, of
manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of
the Invention should not be construed as limited to the particular shapes of regions
illustrated herein but are to include deviations in shapes that result, for example, from

manufacturing.

10

15

20

WO 2021/113626 PCT/US2020/063288

[0027] FIGURE 1 is an example of a compiler 20 that translates a high-level
programming language 10 into a machine-level language 30. Figure 1 provides an
example of a simple program in the high-level programming language 10 and In the
machine-level code 30. Both programs operate to produce the same result. However,
the program written Iin the high-level programming language 10 is far more
understandable to a human than the program presented in machine-level language 30.
High-level programming languages 10 tend to have common elements that may be
processed by a language compiler 20 into a more machine specific, machine-level
executable version 30. These elements usually include the following, which are provided
as examples and are not intended to be limiting.

[0028] Environmental: Where specific elements of the targeted machine are
carefully defined so that the language compiler 20 may produce correctly executable
machine-level code 30.

[0029] Data Definition: Where named variables or arrays are identified. This allows
the language compiler 20 to determine the name of the variable, along with its potential
content and memory space. During the compilation process, the language compiler 20
may produce machine-level code 30 that allows for operations between variables that are
appropriate to the data content contained with them.

[0030] Program Statements: Logical operations, such as decisions, branches,
loops, groupings, and mathematical/logistical operations upon variables are presented by
a series of statements. These statements may all follow a predefined syntax and may

form the logic of the program. These logical statements may be provided in the high-level

10

10

15

20

WO 2021/113626 PCT/US2020/063288

programming language 10 and translated by the compiler 20 into machine-level
instructions 30, for example as illustrated in Figure 1.

[0031] Subroutines and Procedures: Grouping of statements that might be utilized
more than once may be organized into a functional routine that may be called or invoked
from some other placement within the overall program. These routines may have their
own data definitions, may be reentrant, or be serially reusable.

[0032] Block Data Definitions: Where a collection of variables may be defined so
that an allocated block of storage may be used to contain such variables. These
allocations may occur dynamically within the program’s execution, and this definition may
allow the compiler 20 to determine how to handle the language translation of any
variable’'s usage within the dynamically defined area.

[0033] In order to identify and manipulate multiple storage address spaces for a
high-level programming language 10, several extensions may be made to the elements
presented above. These changes or additions are not merely syntax or language
extensions, but rather conceptual changes to the way that the entire programming
environment is understood.

[0034] FIGURE 2 is an exemplary machine-level language 30 use of multiple
address spaces 40. Each storage address space 40 may be described herein as a
separate universe 40 of data and variables. The program itself may function
independently from a given universe 40. In other words, in a normal and expected
programming environment, there is only one universe 40 for data and variables, and all
the data managed and manipulated by the program resides somewhere within this one

universe 40. However, In the disclosed systems and methods, multiple universes 40 may

11

10

15

20

WO 2021/113626 PCT/US2020/063288

be provided, each of which may contain its own set of data and variables. While the
program remains consistent, the universe 40 for the data may change, and thereby all the
referenced values may change as well. More than one universe 40 may be utilized by a
given program.

[0035] For example, without limitation, it an address space 40 contains all the data
and variables concerning the lite and tlight of a single bird, the program may be written to
handle these variables and simulate the movement and actions of this one bird. However,
when the variable that identifies the specific bird is changed to represent another bird, the
address space 40 changes with that variable value and theretore, so do all the data and
variables. In this way, each address space 40 acts as a separate version of the program,
seeing the world differently depending upon a single variable that defines the specific
bird.

[0036] The following examples of language syntax are used here for purposes of
illustrations and are by no means exhaustive and therefore are not intended to be limiting.
It Is contemplated that extensions to various higher-level programming languages may
appear differently and may utilize different language syntax. However, at least the

following specific elements and syntax are contemplated for example, without limitation.

Parallel{ Flw’iii }
Define Universe by var as figl
Y Conjoined
Sequenced
[0037] This data definition may identity the creation of multiple address spaces 40,

which may be referred to herein as universes 40. While the underlying hardware may
define address spaces 40 as large contiguous areas of memory that are addressable as

a continuum, the language reference may identifty how these spaces are to be understood

12

10

15

20

WO 2021/113626 PCT/US2020/063288

from a programming point of view. There are three distinctly different types of universes
40, as illustrated in FIGURE 3 and discussed herein.

[0038] Parallel: Parallel spaces 50 may maintain completely independent
contents, and may be created whenever there is a change in the value of the specifically
identified variable. In the example shown and described with respect to Figure 3, the
value of “A” may act as the delaminating variable as it is not the same value for any
parallel space 50A-50C. In other words, the definition for “A” may be established by using
a command such as, but not limited to, “Define Universe by A as Parallel” to create a new
parallel address space 50 whenever the value contained within the variable A is changed.
Furthermore, whenever the value of A matches an address space of a parallel universe
50A-50C, then all of the data variables within that same space are also available for the
operating program. The additional concepts of fluid and rigid parallel universes 50A-50C
may be used to define whether the address space encompasses all of the variables In
the program (i.e., fluid) or only a defined subsection (i.e., rigid). Parallel universes 40
may define spaces which each are independently defined and do not depend on one
another. A new parallel universe (e.g., 40B or 40C) may be created whenever a data or
variable value is changed in a given parallel universe (e.g., 40A).

[0039] Conjoined: Conjoined spaces 60 may be defined by the hardware as
having separate virtual identities. However, such spaces may share some or most of the
data and variable content. As variables are defined, it may be possible to limit the
existence of a variable to a specific conjoined universe space 60A-60C, or allow the
variable to have an identity within all conjoined spaces 60A-60C, and therefore be

updatable by each conjoined space 60A-60C separately. This differs from the concept of

13

10

15

20

WO 2021/113626 PCT/US2020/063288

a parallel universe 50A-50C, where variables within each parallel space 50A-50C
maintain their own separate values. Conjoined universes 60 may be created by
essentially duplicating a given universe (e.g., 60A), however, at least one value of the
new, conjoined universe (e.g., 60B) may be independent from the given universe (e.g.,
60A) while at least one other value of the new, conjoined universe (e.g., 60B) may depend
on the value in the given universe (e.g., 60A). For example, conjoined universe 60B iIs
the same as universe 60A, but with the value of A changed from “Robin” to “Hawk” in the
example provided in Figure 3.

[0040] Sequenced: Sequenced spaces 70 may take on the values of the space
/0A-70C in control at the time of its creation. However, once in existence a given
sequenced space 70A-70C may otherwise function as a parallel space 50 and may
diverge from all other spaces 40. Therefore, when the delaminating variable changes to
a value unrepresented within any current sequenced space 70A-70C, the address space
/0A-70C in previous use may be duplicated completely to create the new space 70A-
/0C, and only the delaminating variable may hold a unique value. However, once
created, this space’s 70A-70C variables may diverge freely and may not be connected or
related to any other space 70A-70C. Sequenced universes 70 may be created by
essentially duplicating a given conjoined universe (e.g., 70A), however, at least one
additional data or variable point may be added. Again, at least one value in the new,
sequenced universe (e.g., 70B) may be independent from the given universe (e.g., 7/0A),
but at least one other value of the new, sequenced universe (e.g., /0B) may depend on

the given universe (e.g., 7/0A). For example, sequenced universe 70B may be the same

14

10

15

20

WO 2021/113626 PCT/US2020/063288

as universe 70A, but with the value of C defined as “Inflight” in the example provided in
Figure 3.

[0041] In at least the conjoined 60 and sequenced 70 universes, updating one
universe 40 may result in updates to the sequenced 60 or conjoined 70 universes.
Additionally, or alternatively, direction to create a ditferent value for the data or variable

point may result in the creation of a new parallel 50, conjoined 60, or sequenced 70

universe.
[0042] Variable Reference within Expressions and Statements
Var|! Universe qualifying value]
[0043] As multiple address spaces, i.e., universes 40, of variables and data are

avallable to any given program, there may be times when an expression or statement
may need to reference the specific value of a variable contained within a specific space
40. Generally, when a program makes reference to a variable, this variable may be the
one that is within the primary space correctly in execution. In other words, whenever the
content of the delaminating variable is changed, the address space 40 may be modified
so that the primary space is the one that contains a delaminating value that matches the
change. Each address space 40 may contain a delaminating variable that is unique to
one, and only one, address space 40.

[0044] Using a qualified variable reference, the program may access information
stored In address spaces 40 other than the primary address space 40 for the program.
For example, given the illustration in Figure 3 of parallel universes 50, a statement

A:="Hawk” may cause the Hawk address space to become the primary space, and

15

10

15

20

WO 2021/113626 PCT/US2020/063288

therefore, the values of B and C may immediately become “Black” and “Gliding”
respectively.

[0045] However, if the programmer wants to compare the values of different
address spaces 40, a qualifying modifier may be added. For example, without limitation,
the statement “If B = B!A="Finch’ Then” may allow the value of B, which in the given
example of Figure 3 is currently “Black”, to be compared with the value of “Blue”, which
IS the contents of variable B, within the universe 50C where A is equal to the value of
“FInch.” This system and method of variable references may permit specific references
to specific spaces 40 to be made without forcing a change to the primary address space
40 currently being used by the program. These universe qualifying expressions may be
as complex as necessary in order to properly identity the value within the delaminating
variable. The only necessary identification may be a symbolic separator, herein used as
“I" though any type of symbolic separator is contemplated, that separates the variable

name from the qualifying expression.

[0046] Multiple Processing
[0047] In order to perform more complex operations on multiple address spaces

40 or universes 40, the following additional operational statement may be available:

Whileas universe — expression Beginwith

{ Statements and operations to be done in another process }
or subtask while the primary program continues operation

Endwith
[0048] When this block of statements is presented, the universal expression may
be used to locate an appropriate address space 40, and the program may begin executing

within that universe 40. Stated another way, a separate programming process may be

16

10

15

20

WO 2021/113626 PCT/US2020/063288

created, where its primary address space 40 may have a value that is identified by the
universe-expression. These statements may operate in parallel and may not delay the
operation of the primary program which may immediately continue to operate on the
program statement following the “End with”, or similar, syntax. The specific choice of
syntax is presented for illustration, and other formats may well be more appropriate for
other languages.

[0049] It Is possible to involve multiple processes, each operating within their own
universes 40, through a higher nesting. For example, if the delaminating variable is V,
and it has a value of 1, 2 and 3, each within their own universes 40, the following
statements may create three subtasks or processes:

For A:=1 to 3 Begin

Whileas V:=A Beginwith

Statement ...
Statement ...
Endwith
End
[0050] The universe-expression may not cause a change to the primary program's

address space 40, but rather may select an address space 40, and creates a separate
process to execute the statements, having access to that address space 40.
[0051] With these three extensions to a higher-level programming language, a

complex and powerful control over multiple address spaces 40 may be gained.

17

10

15

WO 2021/113626 PCT/US2020/063288

[0052] Any embodiment of the present invention may include any of the features
of the other embodiments of the present invention. The exemplary embodiments herein
disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the
invention. The exemplary embodiments were chosen and described in order to explain
the principles of the present invention so that others skilled in the art may practice the
invention. Having shown and described exemplary embodiments of the present
iInvention, those skilled in the art will realize that many variations and modifications may
be made to the described invention. Many of those variations and modifications will
provide the same result and fall within the spirit of the claimed invention. ltis the intention,
therefore, to limit the invention only as indicated by the scope of the claims.

[0053] Certain operations described herein may be performed by one or more
electronic devices. Each electronic device may comprise one or more pProcessors,
electronic storage devices, executable software instructions, and the like configured to
perform the operations described herein. The electronic devices may be general purpose
computers or specialized computing device. The electronic devices may be personal
computers, smartphone, tablets, databases, servers, or the like. The electronic

connections described herein may be accomplished by wired or wireless means.

18

10

15

20

WO 2021/113626 PCT/US2020/063288

CLAIMS
What is claimed is:
1. A method for utilizing virtual memory with a high-level programming language, said

method comprising the steps of:
creating multiple address spaces in virtual memory, wherein:

each of said multiple address spaces comprises data entries;

each of said data entries comprises a value;

at least a first one of said multiple address spaces Is independent from at
least a second one of said multiple address spaces; and

at least a third one of said multiple address spaces is electronically
assoclated with at least a fourth one of said multiple address spaces; and
operating a machine executable software program which utilizes each of said

multiple address spaces.

2. The method of claim 1 wherein:
said first one of said multiple address spaces is independent from said second one
of said multiple address spaces by having values in each of the data entries of said first
one of said multiple address spaces that are different from, and do not reference, the

values of corresponding data entries of said second one of said multiple address spaces.

3. The method of claim 2 wherein:
each of said multiple address spaces is independent from each other one of said

multiple address spaces.

19

10

15

20

WO 2021/113626 PCT/US2020/063288

4. The method of claim 1 wherein:
said third one of said multiple address spaces Is electronically associated with said
fourth one of said multiple address spaces by having at least one data entry in said third
one of said multiple address spaces that references the value of a corresponding data

entry of said fourth one of said multiple address spaces.

5. The method of claim 4 wherein:
each of saild multiple address spaces has at least one data entry that is
electronically associated with a corresponding data entry of at least one other one of said

multiple address spaces.

6. The method of claim 1 further comprising the steps of:
creating a new address space electronically associated with a given one of said
multiple address spaces, wherein said new address space comprises data entries having
values referencing the values of the data entries of said given one of said multiple address
spaces except for a particular one of the data entries of said new address space which
comprises a new value different from, and not referencing, the value of a corresponding

one of the data entries of said given one of said multiple address spaces.

/. The method of claim 6 further comprising the steps of:
changing the value of a given one of the data entries of said given one of said

multiple address spaces to a changed value, wherein said given one of said data entries

20

10

15

20

WO 2021/113626 PCT/US2020/063288

IS not said corresponding one of said data entries of said given one of said multiple
address spaces; and

updating a corresponding one of the data entries of said new address space to
sald changed value, wherein operation of said machine executable software program is

configured to utilize said new address space and said multiple address spaces.

8. The method of claim 1 further comprising the steps of:
creating a new address space electronically associated with a given one of said
multiple address spaces, wherein said new address space comprises data entries having
values referencing the values of the data entries of said given one of said multiple address
space, and wherein said new address spaces comprises an additional data entry not

found In said given one of said multiple address spaces having an additional value.

9. The method of claim 8 further comprising the steps of:
changing the value of a given one of the data entries of said given one of said
multiple address spaces to a changed value; and
updating a corresponding one of the data entries of said new address space with
sald changed value, where said corresponding one of said data entries Is not said
additional data entry, and wherein operation of saild machine executable software
program Is configured to utilize saild new address space and said multiple address

spaces.

10. The method of claim 1 wherein:

21

10

15

20

WO 2021/113626 PCT/US2020/063288

the value of a given data entry of a given one of the multiple address spaces is
different from the value of a corresponding one of the data entries of each remaining ones

of the multiple address spaces.

11. The method of claim 1 wherein:
the value of a given data entry of a given one of the multiple address spaces is the
same as the value of a corresponding one of the data entries of each remaining ones of

the multiple address spaces.

12. The method of claim 1 wherein:
the value of a given one of the data entries of a given one of said multiple address
spaces comprises a reference to the value of a particular one of the data entries of a
particular one of said multiple address spaces; and
operation of saild machine executable software program comprises the sub-steps
of referencing the value of the particular one of the data entries of the particular one of
sald multiple address spaces upon attempted retrieval of the value of the given data entry

of the given one of said multiple address spaces.

13. The method of claim 12 wherein:
operation of saild machine executable software program comprises the sub-steps
of comparing the value of the particular one of the data entries of the particular one of
sald multiple address spaces with the value of the given data entry of the given one of

sald multiple address spaces.

22

WO 2021/113626 PCT/US2020/063288

14. The method of claim 12 further comprising the steps of:
operating a second machine executable software program in parallel with said
machine executable software program, wherein said second machine executable

5 software program utilizes at least a subset of said multiple address spaces.

15. A system for utilizing virtual memory with a high-level programming language, said
system comprising:
one or more computing devices configured to utilize virtual memory and comprising
10 software instructions, which when executed, configure the one or more computing
devices to:
create multiple address spaces in said virtual memory;,
populate data entries of each of said multiple address spaces with values,
wherein one or more of the data entries of one or more of said multiple address
15 spaces comprises a reference to the value of a given one of the data entries of a
given one of said multiple address spaces;
change the value of the given one of the data entries of the given one of
sald multiple address spaces;
automatically update the value of each of the one or more of the data entries
20 of the one or more of the multiple address spaces comprising the reference to the
value of the given one of the data entries of the given one of said multiple address
spaces such that the value of remaining ones of said data entries of said multiple

address spaces remain unchanged.

23

WO 2021/113626 PCT/US2020/063288

16. The system of claim 15 further comprising:
additional software instructions stored at the one or more computing devices which
when executed configure the one or more computing devices to:

5 create a new address space electronically associated with a particular one
of said multiple address spaces, wherein said new address space comprises data
entries having values referencing the values of the data entries of said particular
one of said multiple address space except for a particular one of the data entries
of said new address space which comprises a new value different from, and not

10 referencing, the value of a corresponding one of the data entries of said particular
one of said multiple address spaces;
change the value of a second particular one of the data entries of said
particular one of said multiple address spaces to a changed value, wherein said
second particular one of said data entries i1s not said corresponding one of said
15 data entries of said particular one of said multiple address spaces;
update a corresponding one of the data entries of said new address space
to said changed value, wherein said corresponding one of the data entries of said
new address space comprises a reference to the value of said second particular
one of the data entries of said particular one of said multiple address spaces;
20 create a second new address space electronically associated with said
particular one of said multiple address spaces, wherein said second new address
space comprises data entries having values referencing the values of the data

entries of said particular one of said multiple address space, and wherein said

24

WO 2021/113626 PCT/US2020/063288

second new address spaces comprises an additional data entry not found in said
particular one of said multiple address spaces having an additional value;

change the value of a third particular one of the data entries of said
particular one of said multiple address spaces to a second changed value,

5 update a corresponding one of the data entries of said second new address
space with said second changed value, where said corresponding one of said data
entries Is not said additional data entry, and wherein said corresponding one of
sald data entries comprises a reference to said third particular one of said data
entries of said particular one of said multiple address spaces; and

10 operate a machine executable software program which utilizes each of said
multiple address spaces, said first new address space, and said second new

address space.

17. The system of claim 16 further comprising:

15 additional software instructions stored at the one or more computing devices which
when executed configure the one or more computing devices to operate a second
machine executable software program in parallel with said machine executable software
program, wherein said second machine executable software program utilizes at least a
subset of said multiple address spaces, said first new address space, and said second

20 new address space.

18. The system of claim 17 further comprising:

29

10

15

20

WO 2021/113626 PCT/US2020/063288

additional software instructions stored at the one or more computing devices which
when executed configure the one or more computing devices to reference the value of a
certain one of the data entries of a certain one of said multiple address spaces upon
attempted retrieval of the value of a ditferent one of the data entries of a different one of
sald multiple address spaces, wherein the value of the different one of the data entries of
the different one of said multiple address spaces comprises a reference to the value of

the certain one of the data entries of the certain one of said multiple address spaces.

19. A method for utilizing virtual memory with a high-level programming language, said

method comprising the steps of:

creating multiple address spaces in virtual memory, wherein each of said multiple
address spaces comprises data entries, and wherein each of said data entries comprises
a value;

creating a new address space electronically associated with a given one of said
multiple address spaces, wherein said new address space comprises data entries having
values referencing the values of the data entries of said given one of said multiple address
spaces except for a particular one of the data entries of said new address space which
comprises a new value different from, and not referencing, the value of a corresponding
one of the data entries of said given one of said multiple address spaces,;

changing the value of a given one of the data entries of said given one of said
multiple address spaces to a changed value, wherein said given one of said data entries
IS not said corresponding one of said data entries of said given one of said multiple

address spaces,;

26

10

15

20

WO 2021/113626 PCT/US2020/063288

updating a corresponding one of the data entries of said new address space to
said changed value by reference;

creating a second new address space electronically associated with a second
given one of said multiple address spaces, wherein said second new address space
comprises data entries having values referencing the values of the data entries of said
second given one of said multiple address spaces, and wherein said second new address
space comprises an additional data entry not found in said second given one of said
multiple address spaces having an additional value;

changing the value of a given one of the data entries of said second given one of
sald multiple address spaces to a second changed value;

updating a corresponding one of the data entries of said second new address
space with said second changed value by reference, where said corresponding one of
sald data entries Is not said additional data entry; and

operating a machine executable software program which utilizes each of said
multiple address spaces, said first new address space, and said second new address
space, wherein the value of a certain one of the data entries of a certain one of said
multiple address spaces comprises a reference to the value of a different one of the data
entries of a different one of said multiple address spaces, and wherein operation of said
machine executable software program comprises the sub-steps of referencing the value
of the different one of the data entries of the different one of said multiple address spaces
upon attempted retrieval of the value of the certain one of the data entries of the certain

one of said multiple address spaces;

2/

10

WO 2021/113626 PCT/US2020/063288

wherein at least a first one of said multiple address spaces Is independent from at
least a second one of said multiple address spaces, and at least a third one of said
multiple address spaces is electronically associated with at least a fourth one of said

multiple address spaces.

20. The method of claim 19 further comprising the steps of:
operating a second machine executable software program in parallel with said
machine executable software program, wherein said second machine executable
software program utilizes at least a subset of said multiple address spaces, said first new

address space, and said second new address space.

28

PCT/US2020/063288

WO 2021/113626

1/3

0t

OT

0¢

19|qUIISSY Ul @3engdue aulyde|A

pu3
;29U 0(]
‘do07 01 09

'V+9=:9

‘2uUogoloouayl gs=<gJ
:d0o07

-4
-V

2dengue] dulwweldold [aAa7 Y3IH

$S920.d Jo|ldwo)

(LYY ¥OIYdd)
T 24n314

PCT/US2020/063288

WO 2021/113626

2/3

d07

Ot

\

pJIg Ylim aledwo)
laquinN AJojuanuj

spJig aJedwo)

9p0D 3UIYdBIA JO Jied

YIMOT
(€Y)OT TY

~(¢H)OT‘TH
HOLVIA
(€Y) 0 “(2¥'8)0

/T

€Y Aq passalippy

X0071
AMMEITEN,D

> S179.d

P24, 81D

» M40, 81)

1d

14
J1J

Y AQ passalppy

X0071
AMET IEN,D

», 19¢ .4
,umoJig,81d
» ,Molieds, 81D

sooedg ssaJppy 2|di3N|N JO 3sN @8endue] aulydep

7 94n3I4

VOV

PCT/US2020/063288

WO 2021/113626

3/3

J0S

J0L S9SJOAIUN PaJuanbag

d0.

AJSUNH = g

W84 ur=> =
pay, =9 WS4 up=>o

:SUC_H_\.. =V :.—men_.: =4
:v_>_>m_l_t =V

S3SJDAIUN pauloluo)

J09
V09

194 Y = D
:vmx: - m
xspx_UC_H_\\ - <

15041y =D

«P°d,, = 4 1594 1Y =)
~AMEH,, =Y «P2d,, =4
Ml40d,, =V

d0S sasiaAIuN [3]|eJed

Yysi4 up =D suipl|9 =D
2ng, =49 Sdeld, =4
:V_Bm_l____\ - <

b.F_UC_H_t_ - <

SUOIIULER(Q 3SIDAIUN

V0L

VOS

159417 = D
\\Um”_: = m

\\C_Qox\\ - <

09

0L

0S

¢ 24N314

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 20/63288

A. CLASSIFICATION OF SUBJECT MATTER
IPC - GO6F 13/00; GO6F 13/14; GO6F 9/44 (2021.01)

CPC - GO06T 1/60; GO6F 12/1036; GO6F 12/1063; GO6F 12/1072; GO6F 12/1081; GO6F 12/109; GO6F
9/644; GO6T 1/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

e — e — S—— PR T — T e ey S— o ———

Minimum documentation searched (classification system followed by classification symbols)
See Search History document

—————. S —— e S——y o ———. P e e e e e <o R A

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
See Search History document

Electronic data base consulted during the intermational search (name of data base and, where practicable, search terms used)
See Search History document

A e e e e—— — A — —

p——

C. DOCUMENTS CONSIDERED TO BE RELEVANT

S—— — S— —— s Ay —

Category* l Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No.
tire

1-14, 19-20

e —p—'

PR———y —— i — P —— pri—— e

X US 2019/0266101 A1 (Imagination Technologies Limited) 29 August 2019 (29.08.2019), en
document, especially abstract and para [0209}-{0214], {0293}-[0294}.

| S

D Further documents are listed in the continuation of Box C. D See patent family annex.

e e e e e A e ———————— e g’

gy S S —— o ——" A, —— A

* Special categories of cited documents: “T” later document published after the international filing date or priority

“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

“D” document cited by the applicant in the international application “X" document of particular relevance; the claimed invention cannot be

“E™ earlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive step
filing date when the document 1s taken alone

“L” document which maK throw doubts on priority claim(s) or which “Y™ document of particular relevance; the claimed invention cannot
is cited to establish the ﬁpubllcatnon date of another citation or other be considered to involve an inventive step when the document is
special reason (as specified) combined with one or more other such documents, such combination

“QO" documentreferring to anoral disclosure, use, exhibition or other means being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than “&” document member of the same patent family
the priority date claimed

Date of the actual completion of the international search

Date of mailing of the international search report

APROS 202

Authorized officer

26 March 2021 (26.03.2021)

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300
Form PCT/ISA/210 (second sheet) (July 2019)

Lee Young

Telephone No. PCT Helpdesk: 571-272-4300

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 20/63288

Box No. Il Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Clanns Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos..

because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3, D Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. IIl Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive
concept under PCT Rule 13.1.

Group I: Claims 1-14, 19-20, directed to a method for utilizing virtual memory with a high-level programming language comprising
independent multiple address spaces.

Group Il: Claims 15-18, directed to a system for utilizing virtual memory with a high-level programming language comprising
automatically updating values for data entries of multiple address spaces such that the value of remaining data entries of said multiple
address spaces remain unchanged.

(See extra sheet)

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. D As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. K{ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted
to the invention first mentioned in the claims; it 1s covered by claims Nos..

1-14, 18-20

Remark on Protest D The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

I:I The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2019)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 20/63288

In Continuation of Box No. Ill Observations where unity of invention is lacking (Continuation of item 3 of fi rst shest):

The groups of inventions listed above do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule
13.2, they lack the same or corresponding special technical features for the following reasons:

The special technical feature of the Group | invention is at least a first one of said multiple address spaces is independent from at least a
second one of said multiple address spaces; and at least a third one of said multiple address spaces is electronically associated with at
least a fourth one of said muitiple address spaces, not required by Group Il.

The special technical feature of the Group |l invention is automatically update the value of each of the one or more of the data entries of
the one or more of the multiple address spaces comprising the reference to the value of the given one of the data entries of the given
one of said multiple address spaces such that the value of remaining ones of said data entries of said mulitiple address spaces remain
unchanged, not required by Group |.

Groups |-l share the technical features of, in various combination, creating multiple address spaces in virtual memory, each of said
multiple address spaces comprises data entries, the data entries comprising values.

However, these shared technical features fail to represent a contribution over the prior art of US 2019/0266101 A1 to Imagination
Technologies Limited (hereinafter 'Imagination'), which discloses creating multiple address spaces in virtual memory (para [0209], [0293]
- "the reversse translation module permits the physical address to be translated into a virtual address (for example, the memory request
can be translated into a translated memory request addressed in the virtual address space)”; "the reverse translation data structure may
comprise a list of one or more range of memory addresses. For example, the reverse translation data structure may comprise a start
address and an end address of a range of memory addresses (or multiple start addresses and multiple end addresses of multiple ranges
of memory addresses). The range of memory addresses may comprise odd addresses or even addresses. A group or set of memory
addresses may comprise the list of memory addresses and/or the one or more range of memory addresses. More than one group or set
of memory addresses may be provided"), each of said multiple address spaces comprises data entries, the data entries comprising
values (para [0210] - “In addition to the virtual and physical address information, each reverse transfation data structure entry contains
status fields indicating the overall status of the page entry. The status fields may indicate: whether the reverse translation data structure
entry is currently in use or can be allocated, whether it is in the process of being spilled (see elsewhere herein), whether the cache lines
in use within the page are in states that permit spilling or whether any cache lines within the table are in a state for which a snoop
request would be responded to as having ownership of the cacheline").

Thus, the inventions listed as Groups |-l lack unity of invention because they do not share a same or corresponding special technical
feature providing a contribution over the prior art.

Form PCT/ISA/210 (extra sheet) (July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report
	Page 35 - wo-search-report
	Page 36 - wo-search-report

